1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3 *
4 * Copyright (C) 2015-2021 Google, Inc.
5 */
6
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/tcp.h>
13 #include <linux/slab.h>
14 #include <linux/skbuff.h>
15
16 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
18 {
19 int num_avail;
20
21 if (!tx->dqo.qpl)
22 return true;
23
24 num_avail = tx->dqo.num_tx_qpl_bufs -
25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
26 tx->dqo_tx.free_tx_qpl_buf_cnt);
27
28 if (count <= num_avail)
29 return true;
30
31 /* Update cached value from dqo_compl. */
32 tx->dqo_tx.free_tx_qpl_buf_cnt =
33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
34
35 num_avail = tx->dqo.num_tx_qpl_bufs -
36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt -
37 tx->dqo_tx.free_tx_qpl_buf_cnt);
38
39 return count <= num_avail;
40 }
41
42 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
44 {
45 s16 index;
46
47 index = tx->dqo_tx.free_tx_qpl_buf_head;
48
49 /* No TX buffers available, try to steal the list from the
50 * completion handler.
51 */
52 if (unlikely(index == -1)) {
53 tx->dqo_tx.free_tx_qpl_buf_head =
54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
55 index = tx->dqo_tx.free_tx_qpl_buf_head;
56
57 if (unlikely(index == -1))
58 return index;
59 }
60
61 /* Remove TX buf from free list */
62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
63
64 return index;
65 }
66
67 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
69 struct gve_tx_pending_packet_dqo *pkt)
70 {
71 s16 index;
72 int i;
73
74 if (!pkt->num_bufs)
75 return;
76
77 index = pkt->tx_qpl_buf_ids[0];
78 /* Create a linked list of buffers to be added to the free list */
79 for (i = 1; i < pkt->num_bufs; i++) {
80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
81 index = pkt->tx_qpl_buf_ids[i];
82 }
83
84 while (true) {
85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
86
87 tx->dqo.tx_qpl_buf_next[index] = old_head;
88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
89 old_head,
90 pkt->tx_qpl_buf_ids[0]) == old_head) {
91 break;
92 }
93 }
94
95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
96 pkt->num_bufs = 0;
97 }
98
99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)100 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
101 {
102 /* Check TX path's list. */
103 if (tx->dqo_tx.free_pending_packets != -1)
104 return true;
105
106 /* Check completion handler's list. */
107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
108 return true;
109
110 return false;
111 }
112
113 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)114 gve_alloc_pending_packet(struct gve_tx_ring *tx)
115 {
116 struct gve_tx_pending_packet_dqo *pending_packet;
117 s16 index;
118
119 index = tx->dqo_tx.free_pending_packets;
120
121 /* No pending_packets available, try to steal the list from the
122 * completion handler.
123 */
124 if (unlikely(index == -1)) {
125 tx->dqo_tx.free_pending_packets =
126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
127 index = tx->dqo_tx.free_pending_packets;
128
129 if (unlikely(index == -1))
130 return NULL;
131 }
132
133 pending_packet = &tx->dqo.pending_packets[index];
134
135 /* Remove pending_packet from free list */
136 tx->dqo_tx.free_pending_packets = pending_packet->next;
137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
138
139 return pending_packet;
140 }
141
142 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)143 gve_free_pending_packet(struct gve_tx_ring *tx,
144 struct gve_tx_pending_packet_dqo *pending_packet)
145 {
146 s16 index = pending_packet - tx->dqo.pending_packets;
147
148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
149 while (true) {
150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
151
152 pending_packet->next = old_head;
153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
154 old_head, index) == old_head) {
155 break;
156 }
157 }
158 }
159
160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
161 */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
163 {
164 int i;
165
166 for (i = 0; i < tx->dqo.num_pending_packets; i++) {
167 struct gve_tx_pending_packet_dqo *cur_state =
168 &tx->dqo.pending_packets[i];
169 int j;
170
171 for (j = 0; j < cur_state->num_bufs; j++) {
172 if (j == 0) {
173 dma_unmap_single(tx->dev,
174 dma_unmap_addr(cur_state, dma[j]),
175 dma_unmap_len(cur_state, len[j]),
176 DMA_TO_DEVICE);
177 } else {
178 dma_unmap_page(tx->dev,
179 dma_unmap_addr(cur_state, dma[j]),
180 dma_unmap_len(cur_state, len[j]),
181 DMA_TO_DEVICE);
182 }
183 }
184 if (cur_state->skb) {
185 dev_consume_skb_any(cur_state->skb);
186 cur_state->skb = NULL;
187 }
188 }
189 }
190
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
192 {
193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
194 struct gve_tx_ring *tx = &priv->tx[idx];
195
196 if (!gve_tx_was_added_to_block(priv, idx))
197 return;
198
199 gve_remove_napi(priv, ntfy_idx);
200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
201 netdev_tx_reset_queue(tx->netdev_txq);
202 gve_tx_clean_pending_packets(tx);
203 gve_tx_remove_from_block(priv, idx);
204 }
205
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
207 struct gve_tx_alloc_rings_cfg *cfg)
208 {
209 struct device *hdev = &priv->pdev->dev;
210 int idx = tx->q_num;
211 size_t bytes;
212 u32 qpl_id;
213
214 if (tx->q_resources) {
215 dma_free_coherent(hdev, sizeof(*tx->q_resources),
216 tx->q_resources, tx->q_resources_bus);
217 tx->q_resources = NULL;
218 }
219
220 if (tx->dqo.compl_ring) {
221 bytes = sizeof(tx->dqo.compl_ring[0]) *
222 (tx->dqo.complq_mask + 1);
223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
224 tx->complq_bus_dqo);
225 tx->dqo.compl_ring = NULL;
226 }
227
228 if (tx->dqo.tx_ring) {
229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
231 tx->dqo.tx_ring = NULL;
232 }
233
234 kvfree(tx->dqo.pending_packets);
235 tx->dqo.pending_packets = NULL;
236
237 kvfree(tx->dqo.tx_qpl_buf_next);
238 tx->dqo.tx_qpl_buf_next = NULL;
239
240 if (tx->dqo.qpl) {
241 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
243 tx->dqo.qpl = NULL;
244 }
245
246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
247 }
248
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
250 {
251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
252 tx->dqo.qpl->num_entries;
253 int i;
254
255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
256 sizeof(tx->dqo.tx_qpl_buf_next[0]),
257 GFP_KERNEL);
258 if (!tx->dqo.tx_qpl_buf_next)
259 return -ENOMEM;
260
261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
262
263 /* Generate free TX buf list */
264 for (i = 0; i < num_tx_qpl_bufs - 1; i++)
265 tx->dqo.tx_qpl_buf_next[i] = i + 1;
266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
267
268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
269 return 0;
270 }
271
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
273 {
274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
275 struct gve_tx_ring *tx = &priv->tx[idx];
276
277 gve_tx_add_to_block(priv, idx);
278
279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
281 }
282
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
284 struct gve_tx_alloc_rings_cfg *cfg,
285 struct gve_tx_ring *tx,
286 int idx)
287 {
288 struct device *hdev = &priv->pdev->dev;
289 int num_pending_packets;
290 int qpl_page_cnt;
291 size_t bytes;
292 u32 qpl_id;
293 int i;
294
295 memset(tx, 0, sizeof(*tx));
296 tx->q_num = idx;
297 tx->dev = hdev;
298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
299
300 /* Queue sizes must be a power of 2 */
301 tx->mask = cfg->ring_size - 1;
302 tx->dqo.complq_mask = tx->mask;
303
304 /* The max number of pending packets determines the maximum number of
305 * descriptors which maybe written to the completion queue.
306 *
307 * We must set the number small enough to make sure we never overrun the
308 * completion queue.
309 */
310 num_pending_packets = tx->dqo.complq_mask + 1;
311
312 /* Reserve space for descriptor completions, which will be reported at
313 * most every GVE_TX_MIN_RE_INTERVAL packets.
314 */
315 num_pending_packets -=
316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
317
318 /* Each packet may have at most 2 buffer completions if it receives both
319 * a miss and reinjection completion.
320 */
321 num_pending_packets /= 2;
322
323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
325 sizeof(tx->dqo.pending_packets[0]),
326 GFP_KERNEL);
327 if (!tx->dqo.pending_packets)
328 goto err;
329
330 /* Set up linked list of pending packets */
331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
332 tx->dqo.pending_packets[i].next = i + 1;
333
334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
336 tx->dqo_compl.miss_completions.head = -1;
337 tx->dqo_compl.miss_completions.tail = -1;
338 tx->dqo_compl.timed_out_completions.head = -1;
339 tx->dqo_compl.timed_out_completions.tail = -1;
340
341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
343 if (!tx->dqo.tx_ring)
344 goto err;
345
346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
348 &tx->complq_bus_dqo,
349 GFP_KERNEL);
350 if (!tx->dqo.compl_ring)
351 goto err;
352
353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
354 &tx->q_resources_bus, GFP_KERNEL);
355 if (!tx->q_resources)
356 goto err;
357
358 if (!cfg->raw_addressing) {
359 qpl_id = gve_tx_qpl_id(priv, tx->q_num);
360 qpl_page_cnt = priv->tx_pages_per_qpl;
361
362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
363 qpl_page_cnt);
364 if (!tx->dqo.qpl)
365 goto err;
366
367 if (gve_tx_qpl_buf_init(tx))
368 goto err;
369 }
370
371 return 0;
372
373 err:
374 gve_tx_free_ring_dqo(priv, tx, cfg);
375 return -ENOMEM;
376 }
377
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
379 struct gve_tx_alloc_rings_cfg *cfg)
380 {
381 struct gve_tx_ring *tx = cfg->tx;
382 int total_queues;
383 int err = 0;
384 int i, j;
385
386 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
387 if (total_queues > cfg->qcfg->max_queues) {
388 netif_err(priv, drv, priv->dev,
389 "Cannot alloc more than the max num of Tx rings\n");
390 return -EINVAL;
391 }
392
393 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
394 GFP_KERNEL);
395 if (!tx)
396 return -ENOMEM;
397
398 for (i = 0; i < total_queues; i++) {
399 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
400 if (err) {
401 netif_err(priv, drv, priv->dev,
402 "Failed to alloc tx ring=%d: err=%d\n",
403 i, err);
404 goto err;
405 }
406 }
407
408 cfg->tx = tx;
409 return 0;
410
411 err:
412 for (j = 0; j < i; j++)
413 gve_tx_free_ring_dqo(priv, &tx[j], cfg);
414 kvfree(tx);
415 return err;
416 }
417
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)418 void gve_tx_free_rings_dqo(struct gve_priv *priv,
419 struct gve_tx_alloc_rings_cfg *cfg)
420 {
421 struct gve_tx_ring *tx = cfg->tx;
422 int i;
423
424 if (!tx)
425 return;
426
427 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
428 gve_tx_free_ring_dqo(priv, &tx[i], cfg);
429
430 kvfree(tx);
431 cfg->tx = NULL;
432 }
433
434 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)435 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
436 {
437 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
438
439 return tx->mask - num_used;
440 }
441
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)442 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
443 int desc_count, int buf_count)
444 {
445 return gve_has_pending_packet(tx) &&
446 num_avail_tx_slots(tx) >= desc_count &&
447 gve_has_free_tx_qpl_bufs(tx, buf_count);
448 }
449
450 /* Stops the queue if available descriptors is less than 'count'.
451 * Return: 0 if stop is not required.
452 */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)453 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
454 int desc_count, int buf_count)
455 {
456 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
457 return 0;
458
459 /* Update cached TX head pointer */
460 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
461
462 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
463 return 0;
464
465 /* No space, so stop the queue */
466 tx->stop_queue++;
467 netif_tx_stop_queue(tx->netdev_txq);
468
469 /* Sync with restarting queue in `gve_tx_poll_dqo()` */
470 mb();
471
472 /* After stopping queue, check if we can transmit again in order to
473 * avoid TOCTOU bug.
474 */
475 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
476
477 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
478 return -EBUSY;
479
480 netif_tx_start_queue(tx->netdev_txq);
481 tx->wake_queue++;
482 return 0;
483 }
484
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)485 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
486 struct gve_tx_metadata_dqo *metadata)
487 {
488 memset(metadata, 0, sizeof(*metadata));
489 metadata->version = GVE_TX_METADATA_VERSION_DQO;
490
491 if (skb->l4_hash) {
492 u16 path_hash = skb->hash ^ (skb->hash >> 16);
493
494 path_hash &= (1 << 15) - 1;
495 if (unlikely(path_hash == 0))
496 path_hash = ~path_hash;
497
498 metadata->path_hash = path_hash;
499 }
500 }
501
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,struct sk_buff * skb,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)502 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
503 struct sk_buff *skb, u32 len, u64 addr,
504 s16 compl_tag, bool eop, bool is_gso)
505 {
506 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL;
507
508 while (len > 0) {
509 struct gve_tx_pkt_desc_dqo *desc =
510 &tx->dqo.tx_ring[*desc_idx].pkt;
511 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
512 bool cur_eop = eop && cur_len == len;
513
514 *desc = (struct gve_tx_pkt_desc_dqo){
515 .buf_addr = cpu_to_le64(addr),
516 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
517 .end_of_packet = cur_eop,
518 .checksum_offload_enable = checksum_offload_en,
519 .compl_tag = cpu_to_le16(compl_tag),
520 .buf_size = cur_len,
521 };
522
523 addr += cur_len;
524 len -= cur_len;
525 *desc_idx = (*desc_idx + 1) & tx->mask;
526 }
527 }
528
529 /* Validates and prepares `skb` for TSO.
530 *
531 * Returns header length, or < 0 if invalid.
532 */
gve_prep_tso(struct sk_buff * skb)533 static int gve_prep_tso(struct sk_buff *skb)
534 {
535 struct tcphdr *tcp;
536 int header_len;
537 u32 paylen;
538 int err;
539
540 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
541 * of the TSO to be <= 262143.
542 *
543 * However, we don't validate these because:
544 * - Hypervisor enforces a limit of 9K MTU
545 * - Kernel will not produce a TSO larger than 64k
546 */
547
548 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
549 return -1;
550
551 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
552 return -EINVAL;
553
554 /* Needed because we will modify header. */
555 err = skb_cow_head(skb, 0);
556 if (err < 0)
557 return err;
558
559 tcp = tcp_hdr(skb);
560 paylen = skb->len - skb_transport_offset(skb);
561 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
562 header_len = skb_tcp_all_headers(skb);
563
564 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
565 return -EINVAL;
566
567 return header_len;
568 }
569
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)570 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
571 const struct sk_buff *skb,
572 const struct gve_tx_metadata_dqo *metadata,
573 int header_len)
574 {
575 *desc = (struct gve_tx_tso_context_desc_dqo){
576 .header_len = header_len,
577 .cmd_dtype = {
578 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
579 .tso = 1,
580 },
581 .flex0 = metadata->bytes[0],
582 .flex5 = metadata->bytes[5],
583 .flex6 = metadata->bytes[6],
584 .flex7 = metadata->bytes[7],
585 .flex8 = metadata->bytes[8],
586 .flex9 = metadata->bytes[9],
587 .flex10 = metadata->bytes[10],
588 .flex11 = metadata->bytes[11],
589 };
590 desc->tso_total_len = skb->len - header_len;
591 desc->mss = skb_shinfo(skb)->gso_size;
592 }
593
594 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)595 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
596 const struct gve_tx_metadata_dqo *metadata)
597 {
598 *desc = (struct gve_tx_general_context_desc_dqo){
599 .flex0 = metadata->bytes[0],
600 .flex1 = metadata->bytes[1],
601 .flex2 = metadata->bytes[2],
602 .flex3 = metadata->bytes[3],
603 .flex4 = metadata->bytes[4],
604 .flex5 = metadata->bytes[5],
605 .flex6 = metadata->bytes[6],
606 .flex7 = metadata->bytes[7],
607 .flex8 = metadata->bytes[8],
608 .flex9 = metadata->bytes[9],
609 .flex10 = metadata->bytes[10],
610 .flex11 = metadata->bytes[11],
611 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
612 };
613 }
614
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)615 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
616 struct sk_buff *skb,
617 struct gve_tx_pending_packet_dqo *pkt,
618 s16 completion_tag,
619 u32 *desc_idx,
620 bool is_gso)
621 {
622 const struct skb_shared_info *shinfo = skb_shinfo(skb);
623 int i;
624
625 /* Note: HW requires that the size of a non-TSO packet be within the
626 * range of [17, 9728].
627 *
628 * We don't double check because
629 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
630 * - Hypervisor won't allow MTU larger than 9216.
631 */
632
633 pkt->num_bufs = 0;
634 /* Map the linear portion of skb */
635 {
636 u32 len = skb_headlen(skb);
637 dma_addr_t addr;
638
639 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
640 if (unlikely(dma_mapping_error(tx->dev, addr)))
641 goto err;
642
643 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
644 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
645 ++pkt->num_bufs;
646
647 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
648 completion_tag,
649 /*eop=*/shinfo->nr_frags == 0, is_gso);
650 }
651
652 for (i = 0; i < shinfo->nr_frags; i++) {
653 const skb_frag_t *frag = &shinfo->frags[i];
654 bool is_eop = i == (shinfo->nr_frags - 1);
655 u32 len = skb_frag_size(frag);
656 dma_addr_t addr;
657
658 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
659 if (unlikely(dma_mapping_error(tx->dev, addr)))
660 goto err;
661
662 dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
663 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
664 ++pkt->num_bufs;
665
666 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
667 completion_tag, is_eop, is_gso);
668 }
669
670 return 0;
671 err:
672 for (i = 0; i < pkt->num_bufs; i++) {
673 if (i == 0) {
674 dma_unmap_single(tx->dev,
675 dma_unmap_addr(pkt, dma[i]),
676 dma_unmap_len(pkt, len[i]),
677 DMA_TO_DEVICE);
678 } else {
679 dma_unmap_page(tx->dev,
680 dma_unmap_addr(pkt, dma[i]),
681 dma_unmap_len(pkt, len[i]),
682 DMA_TO_DEVICE);
683 }
684 }
685 pkt->num_bufs = 0;
686 return -1;
687 }
688
689 /* Tx buffer i corresponds to
690 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
691 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
692 */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)693 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
694 s16 index,
695 void **va, dma_addr_t *dma_addr)
696 {
697 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
698 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
699
700 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
701 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
702 }
703
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)704 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
705 struct sk_buff *skb,
706 struct gve_tx_pending_packet_dqo *pkt,
707 s16 completion_tag,
708 u32 *desc_idx,
709 bool is_gso)
710 {
711 u32 copy_offset = 0;
712 dma_addr_t dma_addr;
713 u32 copy_len;
714 s16 index;
715 void *va;
716
717 /* Break the packet into buffer size chunks */
718 pkt->num_bufs = 0;
719 while (copy_offset < skb->len) {
720 index = gve_alloc_tx_qpl_buf(tx);
721 if (unlikely(index == -1))
722 goto err;
723
724 gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
725 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
726 skb->len - copy_offset);
727 skb_copy_bits(skb, copy_offset, va, copy_len);
728
729 copy_offset += copy_len;
730 dma_sync_single_for_device(tx->dev, dma_addr,
731 copy_len, DMA_TO_DEVICE);
732 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb,
733 copy_len,
734 dma_addr,
735 completion_tag,
736 copy_offset == skb->len,
737 is_gso);
738
739 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
740 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
741 ++pkt->num_bufs;
742 }
743
744 return 0;
745 err:
746 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
747 gve_free_tx_qpl_bufs(tx, pkt);
748 return -ENOMEM;
749 }
750
751 /* Returns 0 on success, or < 0 on error.
752 *
753 * Before this function is called, the caller must ensure
754 * gve_has_pending_packet(tx) returns true.
755 */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)756 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
757 struct sk_buff *skb)
758 {
759 const bool is_gso = skb_is_gso(skb);
760 u32 desc_idx = tx->dqo_tx.tail;
761 struct gve_tx_pending_packet_dqo *pkt;
762 struct gve_tx_metadata_dqo metadata;
763 s16 completion_tag;
764
765 pkt = gve_alloc_pending_packet(tx);
766 pkt->skb = skb;
767 completion_tag = pkt - tx->dqo.pending_packets;
768
769 gve_extract_tx_metadata_dqo(skb, &metadata);
770 if (is_gso) {
771 int header_len = gve_prep_tso(skb);
772
773 if (unlikely(header_len < 0))
774 goto err;
775
776 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
777 skb, &metadata, header_len);
778 desc_idx = (desc_idx + 1) & tx->mask;
779 }
780
781 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
782 &metadata);
783 desc_idx = (desc_idx + 1) & tx->mask;
784
785 if (tx->dqo.qpl) {
786 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
787 completion_tag,
788 &desc_idx, is_gso))
789 goto err;
790 } else {
791 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
792 completion_tag,
793 &desc_idx, is_gso))
794 goto err;
795 }
796
797 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
798
799 /* Commit the changes to our state */
800 tx->dqo_tx.tail = desc_idx;
801
802 /* Request a descriptor completion on the last descriptor of the
803 * packet if we are allowed to by the HW enforced interval.
804 */
805 {
806 u32 last_desc_idx = (desc_idx - 1) & tx->mask;
807 u32 last_report_event_interval =
808 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
809
810 if (unlikely(last_report_event_interval >=
811 GVE_TX_MIN_RE_INTERVAL)) {
812 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
813 tx->dqo_tx.last_re_idx = last_desc_idx;
814 }
815 }
816
817 return 0;
818
819 err:
820 pkt->skb = NULL;
821 gve_free_pending_packet(tx, pkt);
822
823 return -1;
824 }
825
gve_num_descs_per_buf(size_t size)826 static int gve_num_descs_per_buf(size_t size)
827 {
828 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
829 }
830
gve_num_buffer_descs_needed(const struct sk_buff * skb)831 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
832 {
833 const struct skb_shared_info *shinfo = skb_shinfo(skb);
834 int num_descs;
835 int i;
836
837 num_descs = gve_num_descs_per_buf(skb_headlen(skb));
838
839 for (i = 0; i < shinfo->nr_frags; i++) {
840 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
841
842 num_descs += gve_num_descs_per_buf(frag_size);
843 }
844
845 return num_descs;
846 }
847
848 /* Returns true if HW is capable of sending TSO represented by `skb`.
849 *
850 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
851 * - The header is counted as one buffer for every single segment.
852 * - A buffer which is split between two segments is counted for both.
853 * - If a buffer contains both header and payload, it is counted as two buffers.
854 */
gve_can_send_tso(const struct sk_buff * skb)855 static bool gve_can_send_tso(const struct sk_buff *skb)
856 {
857 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
858 const struct skb_shared_info *shinfo = skb_shinfo(skb);
859 const int header_len = skb_tcp_all_headers(skb);
860 const int gso_size = shinfo->gso_size;
861 int cur_seg_num_bufs;
862 int prev_frag_size;
863 int cur_seg_size;
864 int i;
865
866 cur_seg_size = skb_headlen(skb) - header_len;
867 prev_frag_size = skb_headlen(skb);
868 cur_seg_num_bufs = cur_seg_size > 0;
869
870 for (i = 0; i < shinfo->nr_frags; i++) {
871 if (cur_seg_size >= gso_size) {
872 cur_seg_size %= gso_size;
873 cur_seg_num_bufs = cur_seg_size > 0;
874
875 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
876 int prev_frag_remain = prev_frag_size %
877 GVE_TX_MAX_BUF_SIZE_DQO;
878
879 /* If the last descriptor of the previous frag
880 * is less than cur_seg_size, the segment will
881 * span two descriptors in the previous frag.
882 * Since max gso size (9728) is less than
883 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
884 * for the segment to span more than two
885 * descriptors.
886 */
887 if (prev_frag_remain &&
888 cur_seg_size > prev_frag_remain)
889 cur_seg_num_bufs++;
890 }
891 }
892
893 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
894 return false;
895
896 prev_frag_size = skb_frag_size(&shinfo->frags[i]);
897 cur_seg_size += prev_frag_size;
898 }
899
900 return true;
901 }
902
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)903 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
904 struct net_device *dev,
905 netdev_features_t features)
906 {
907 if (skb_is_gso(skb) && !gve_can_send_tso(skb))
908 return features & ~NETIF_F_GSO_MASK;
909
910 return features;
911 }
912
913 /* Attempt to transmit specified SKB.
914 *
915 * Returns 0 if the SKB was transmitted or dropped.
916 * Returns -1 if there is not currently enough space to transmit the SKB.
917 */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)918 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
919 struct sk_buff *skb)
920 {
921 int num_buffer_descs;
922 int total_num_descs;
923
924 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
925 goto drop;
926
927 if (tx->dqo.qpl) {
928 /* We do not need to verify the number of buffers used per
929 * packet or per segment in case of TSO as with 2K size buffers
930 * none of the TX packet rules would be violated.
931 *
932 * gve_can_send_tso() checks that each TCP segment of gso_size is
933 * not distributed over more than 9 SKB frags..
934 */
935 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
936 } else {
937 num_buffer_descs = gve_num_buffer_descs_needed(skb);
938 if (!skb_is_gso(skb)) {
939 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
940 if (unlikely(skb_linearize(skb) < 0))
941 goto drop;
942
943 num_buffer_descs = 1;
944 }
945 }
946 }
947
948 /* Metadata + (optional TSO) + data descriptors. */
949 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
950 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs +
951 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP,
952 num_buffer_descs))) {
953 return -1;
954 }
955
956 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
957 goto drop;
958
959 netdev_tx_sent_queue(tx->netdev_txq, skb->len);
960 skb_tx_timestamp(skb);
961 return 0;
962
963 drop:
964 tx->dropped_pkt++;
965 dev_kfree_skb_any(skb);
966 return 0;
967 }
968
969 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)970 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
971 {
972 struct gve_priv *priv = netdev_priv(dev);
973 struct gve_tx_ring *tx;
974
975 tx = &priv->tx[skb_get_queue_mapping(skb)];
976 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
977 /* We need to ring the txq doorbell -- we have stopped the Tx
978 * queue for want of resources, but prior calls to gve_tx()
979 * may have added descriptors without ringing the doorbell.
980 */
981 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
982 return NETDEV_TX_BUSY;
983 }
984
985 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
986 return NETDEV_TX_OK;
987
988 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
989 return NETDEV_TX_OK;
990 }
991
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)992 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
993 struct gve_tx_pending_packet_dqo *pending_packet)
994 {
995 s16 old_tail, index;
996
997 index = pending_packet - tx->dqo.pending_packets;
998 old_tail = list->tail;
999 list->tail = index;
1000 if (old_tail == -1)
1001 list->head = index;
1002 else
1003 tx->dqo.pending_packets[old_tail].next = index;
1004
1005 pending_packet->next = -1;
1006 pending_packet->prev = old_tail;
1007 }
1008
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1009 static void remove_from_list(struct gve_tx_ring *tx,
1010 struct gve_index_list *list,
1011 struct gve_tx_pending_packet_dqo *pkt)
1012 {
1013 s16 prev_index, next_index;
1014
1015 prev_index = pkt->prev;
1016 next_index = pkt->next;
1017
1018 if (prev_index == -1) {
1019 /* Node is head */
1020 list->head = next_index;
1021 } else {
1022 tx->dqo.pending_packets[prev_index].next = next_index;
1023 }
1024 if (next_index == -1) {
1025 /* Node is tail */
1026 list->tail = prev_index;
1027 } else {
1028 tx->dqo.pending_packets[next_index].prev = prev_index;
1029 }
1030 }
1031
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1032 static void gve_unmap_packet(struct device *dev,
1033 struct gve_tx_pending_packet_dqo *pkt)
1034 {
1035 int i;
1036
1037 /* SKB linear portion is guaranteed to be mapped */
1038 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1039 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1040 for (i = 1; i < pkt->num_bufs; i++) {
1041 dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]),
1042 dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE);
1043 }
1044 pkt->num_bufs = 0;
1045 }
1046
1047 /* Completion types and expected behavior:
1048 * No Miss compl + Packet compl = Packet completed normally.
1049 * Miss compl + Re-inject compl = Packet completed normally.
1050 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1051 * Miss compl + Packet compl = Skipped i.e. packet not completed.
1052 */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1053 static void gve_handle_packet_completion(struct gve_priv *priv,
1054 struct gve_tx_ring *tx, bool is_napi,
1055 u16 compl_tag, u64 *bytes, u64 *pkts,
1056 bool is_reinjection)
1057 {
1058 struct gve_tx_pending_packet_dqo *pending_packet;
1059
1060 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1061 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1062 priv->dev->name, (int)compl_tag);
1063 return;
1064 }
1065
1066 pending_packet = &tx->dqo.pending_packets[compl_tag];
1067
1068 if (unlikely(is_reinjection)) {
1069 if (unlikely(pending_packet->state ==
1070 GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1071 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1072 priv->dev->name, (int)compl_tag);
1073 /* Packet was already completed as a result of timeout,
1074 * so just remove from list and free pending packet.
1075 */
1076 remove_from_list(tx,
1077 &tx->dqo_compl.timed_out_completions,
1078 pending_packet);
1079 gve_free_pending_packet(tx, pending_packet);
1080 return;
1081 }
1082 if (unlikely(pending_packet->state !=
1083 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1084 /* No outstanding miss completion but packet allocated
1085 * implies packet receives a re-injection completion
1086 * without a prior miss completion. Return without
1087 * completing the packet.
1088 */
1089 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1090 priv->dev->name, (int)compl_tag);
1091 return;
1092 }
1093 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1094 pending_packet);
1095 } else {
1096 /* Packet is allocated but not a pending data completion. */
1097 if (unlikely(pending_packet->state !=
1098 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1099 net_err_ratelimited("%s: No pending data completion: %d\n",
1100 priv->dev->name, (int)compl_tag);
1101 return;
1102 }
1103 }
1104 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1105 if (tx->dqo.qpl)
1106 gve_free_tx_qpl_bufs(tx, pending_packet);
1107 else
1108 gve_unmap_packet(tx->dev, pending_packet);
1109
1110 *bytes += pending_packet->skb->len;
1111 (*pkts)++;
1112 napi_consume_skb(pending_packet->skb, is_napi);
1113 pending_packet->skb = NULL;
1114 gve_free_pending_packet(tx, pending_packet);
1115 }
1116
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1117 static void gve_handle_miss_completion(struct gve_priv *priv,
1118 struct gve_tx_ring *tx, u16 compl_tag,
1119 u64 *bytes, u64 *pkts)
1120 {
1121 struct gve_tx_pending_packet_dqo *pending_packet;
1122
1123 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1124 net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1125 priv->dev->name, (int)compl_tag);
1126 return;
1127 }
1128
1129 pending_packet = &tx->dqo.pending_packets[compl_tag];
1130 if (unlikely(pending_packet->state !=
1131 GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1132 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1133 priv->dev->name, (int)pending_packet->state,
1134 (int)compl_tag);
1135 return;
1136 }
1137
1138 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1139 /* jiffies can wraparound but time comparisons can handle overflows. */
1140 pending_packet->timeout_jiffies =
1141 jiffies +
1142 secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT);
1143 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1144
1145 *bytes += pending_packet->skb->len;
1146 (*pkts)++;
1147 }
1148
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1149 static void remove_miss_completions(struct gve_priv *priv,
1150 struct gve_tx_ring *tx)
1151 {
1152 struct gve_tx_pending_packet_dqo *pending_packet;
1153 s16 next_index;
1154
1155 next_index = tx->dqo_compl.miss_completions.head;
1156 while (next_index != -1) {
1157 pending_packet = &tx->dqo.pending_packets[next_index];
1158 next_index = pending_packet->next;
1159 /* Break early because packets should timeout in order. */
1160 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1161 break;
1162
1163 remove_from_list(tx, &tx->dqo_compl.miss_completions,
1164 pending_packet);
1165 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1166 * the completion tag is not freed to ensure that the driver
1167 * can take appropriate action if a corresponding valid
1168 * completion is received later.
1169 */
1170 if (tx->dqo.qpl)
1171 gve_free_tx_qpl_bufs(tx, pending_packet);
1172 else
1173 gve_unmap_packet(tx->dev, pending_packet);
1174
1175 /* This indicates the packet was dropped. */
1176 dev_kfree_skb_any(pending_packet->skb);
1177 pending_packet->skb = NULL;
1178 tx->dropped_pkt++;
1179 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1180 priv->dev->name,
1181 (int)(pending_packet - tx->dqo.pending_packets));
1182
1183 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1184 pending_packet->timeout_jiffies =
1185 jiffies +
1186 secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT);
1187 /* Maintain pending packet in another list so the packet can be
1188 * unallocated at a later time.
1189 */
1190 add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1191 pending_packet);
1192 }
1193 }
1194
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1195 static void remove_timed_out_completions(struct gve_priv *priv,
1196 struct gve_tx_ring *tx)
1197 {
1198 struct gve_tx_pending_packet_dqo *pending_packet;
1199 s16 next_index;
1200
1201 next_index = tx->dqo_compl.timed_out_completions.head;
1202 while (next_index != -1) {
1203 pending_packet = &tx->dqo.pending_packets[next_index];
1204 next_index = pending_packet->next;
1205 /* Break early because packets should timeout in order. */
1206 if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1207 break;
1208
1209 remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1210 pending_packet);
1211 gve_free_pending_packet(tx, pending_packet);
1212 }
1213 }
1214
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1215 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1216 struct napi_struct *napi)
1217 {
1218 u64 reinject_compl_bytes = 0;
1219 u64 reinject_compl_pkts = 0;
1220 int num_descs_cleaned = 0;
1221 u64 miss_compl_bytes = 0;
1222 u64 miss_compl_pkts = 0;
1223 u64 pkt_compl_bytes = 0;
1224 u64 pkt_compl_pkts = 0;
1225
1226 /* Limit in order to avoid blocking for too long */
1227 while (!napi || pkt_compl_pkts < napi->weight) {
1228 struct gve_tx_compl_desc *compl_desc =
1229 &tx->dqo.compl_ring[tx->dqo_compl.head];
1230 u16 type;
1231
1232 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1233 break;
1234
1235 /* Prefetch the next descriptor. */
1236 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1237 tx->dqo.complq_mask]);
1238
1239 /* Do not read data until we own the descriptor */
1240 dma_rmb();
1241 type = compl_desc->type;
1242
1243 if (type == GVE_COMPL_TYPE_DQO_DESC) {
1244 /* This is the last descriptor fetched by HW plus one */
1245 u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1246
1247 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1248 } else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1249 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1250 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1251 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1252 gve_handle_miss_completion(priv, tx, compl_tag,
1253 &miss_compl_bytes,
1254 &miss_compl_pkts);
1255 } else {
1256 gve_handle_packet_completion(priv, tx, !!napi,
1257 compl_tag,
1258 &pkt_compl_bytes,
1259 &pkt_compl_pkts,
1260 false);
1261 }
1262 } else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1263 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1264
1265 gve_handle_miss_completion(priv, tx, compl_tag,
1266 &miss_compl_bytes,
1267 &miss_compl_pkts);
1268 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1269 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1270
1271 gve_handle_packet_completion(priv, tx, !!napi,
1272 compl_tag,
1273 &reinject_compl_bytes,
1274 &reinject_compl_pkts,
1275 true);
1276 }
1277
1278 tx->dqo_compl.head =
1279 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1280 /* Flip the generation bit when we wrap around */
1281 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1282 num_descs_cleaned++;
1283 }
1284
1285 netdev_tx_completed_queue(tx->netdev_txq,
1286 pkt_compl_pkts + miss_compl_pkts,
1287 pkt_compl_bytes + miss_compl_bytes);
1288
1289 remove_miss_completions(priv, tx);
1290 remove_timed_out_completions(priv, tx);
1291
1292 u64_stats_update_begin(&tx->statss);
1293 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1294 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1295 u64_stats_update_end(&tx->statss);
1296 return num_descs_cleaned;
1297 }
1298
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1299 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1300 {
1301 struct gve_tx_compl_desc *compl_desc;
1302 struct gve_tx_ring *tx = block->tx;
1303 struct gve_priv *priv = block->priv;
1304
1305 if (do_clean) {
1306 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1307 &block->napi);
1308
1309 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1310 mb();
1311
1312 if (netif_tx_queue_stopped(tx->netdev_txq) &&
1313 num_descs_cleaned > 0) {
1314 tx->wake_queue++;
1315 netif_tx_wake_queue(tx->netdev_txq);
1316 }
1317 }
1318
1319 /* Return true if we still have work. */
1320 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1321 return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1322 }
1323