xref: /linux/drivers/net/ethernet/google/gve/gve_tx_dqo.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/tcp.h>
13 #include <linux/slab.h>
14 #include <linux/skbuff.h>
15 
16 /* Returns true if tx_bufs are available. */
gve_has_free_tx_qpl_bufs(struct gve_tx_ring * tx,int count)17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
18 {
19 	int num_avail;
20 
21 	if (!tx->dqo.qpl)
22 		return true;
23 
24 	num_avail = tx->dqo.num_tx_qpl_bufs -
25 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
26 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
27 
28 	if (count <= num_avail)
29 		return true;
30 
31 	/* Update cached value from dqo_compl. */
32 	tx->dqo_tx.free_tx_qpl_buf_cnt =
33 		atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
34 
35 	num_avail = tx->dqo.num_tx_qpl_bufs -
36 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
37 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
38 
39 	return count <= num_avail;
40 }
41 
42 static s16
gve_alloc_tx_qpl_buf(struct gve_tx_ring * tx)43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
44 {
45 	s16 index;
46 
47 	index = tx->dqo_tx.free_tx_qpl_buf_head;
48 
49 	/* No TX buffers available, try to steal the list from the
50 	 * completion handler.
51 	 */
52 	if (unlikely(index == -1)) {
53 		tx->dqo_tx.free_tx_qpl_buf_head =
54 			atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
55 		index = tx->dqo_tx.free_tx_qpl_buf_head;
56 
57 		if (unlikely(index == -1))
58 			return index;
59 	}
60 
61 	/* Remove TX buf from free list */
62 	tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
63 
64 	return index;
65 }
66 
67 static void
gve_free_tx_qpl_bufs(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pkt)68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
69 		     struct gve_tx_pending_packet_dqo *pkt)
70 {
71 	s16 index;
72 	int i;
73 
74 	if (!pkt->num_bufs)
75 		return;
76 
77 	index = pkt->tx_qpl_buf_ids[0];
78 	/* Create a linked list of buffers to be added to the free list */
79 	for (i = 1; i < pkt->num_bufs; i++) {
80 		tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
81 		index = pkt->tx_qpl_buf_ids[i];
82 	}
83 
84 	while (true) {
85 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
86 
87 		tx->dqo.tx_qpl_buf_next[index] = old_head;
88 		if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
89 				   old_head,
90 				   pkt->tx_qpl_buf_ids[0]) == old_head) {
91 			break;
92 		}
93 	}
94 
95 	atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
96 	pkt->num_bufs = 0;
97 }
98 
99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
gve_has_pending_packet(struct gve_tx_ring * tx)100 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
101 {
102 	/* Check TX path's list. */
103 	if (tx->dqo_tx.free_pending_packets != -1)
104 		return true;
105 
106 	/* Check completion handler's list. */
107 	if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
108 		return true;
109 
110 	return false;
111 }
112 
113 static struct gve_tx_pending_packet_dqo *
gve_alloc_pending_packet(struct gve_tx_ring * tx)114 gve_alloc_pending_packet(struct gve_tx_ring *tx)
115 {
116 	struct gve_tx_pending_packet_dqo *pending_packet;
117 	s16 index;
118 
119 	index = tx->dqo_tx.free_pending_packets;
120 
121 	/* No pending_packets available, try to steal the list from the
122 	 * completion handler.
123 	 */
124 	if (unlikely(index == -1)) {
125 		tx->dqo_tx.free_pending_packets =
126 			atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
127 		index = tx->dqo_tx.free_pending_packets;
128 
129 		if (unlikely(index == -1))
130 			return NULL;
131 	}
132 
133 	pending_packet = &tx->dqo.pending_packets[index];
134 
135 	/* Remove pending_packet from free list */
136 	tx->dqo_tx.free_pending_packets = pending_packet->next;
137 	pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
138 
139 	return pending_packet;
140 }
141 
142 static void
gve_free_pending_packet(struct gve_tx_ring * tx,struct gve_tx_pending_packet_dqo * pending_packet)143 gve_free_pending_packet(struct gve_tx_ring *tx,
144 			struct gve_tx_pending_packet_dqo *pending_packet)
145 {
146 	s16 index = pending_packet - tx->dqo.pending_packets;
147 
148 	pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
149 	while (true) {
150 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
151 
152 		pending_packet->next = old_head;
153 		if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
154 				   old_head, index) == old_head) {
155 			break;
156 		}
157 	}
158 }
159 
160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
161  */
gve_tx_clean_pending_packets(struct gve_tx_ring * tx)162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
163 {
164 	int i;
165 
166 	for (i = 0; i < tx->dqo.num_pending_packets; i++) {
167 		struct gve_tx_pending_packet_dqo *cur_state =
168 			&tx->dqo.pending_packets[i];
169 		int j;
170 
171 		for (j = 0; j < cur_state->num_bufs; j++) {
172 			if (j == 0) {
173 				dma_unmap_single(tx->dev,
174 					dma_unmap_addr(cur_state, dma[j]),
175 					dma_unmap_len(cur_state, len[j]),
176 					DMA_TO_DEVICE);
177 			} else {
178 				dma_unmap_page(tx->dev,
179 					dma_unmap_addr(cur_state, dma[j]),
180 					dma_unmap_len(cur_state, len[j]),
181 					DMA_TO_DEVICE);
182 			}
183 		}
184 		if (cur_state->skb) {
185 			dev_consume_skb_any(cur_state->skb);
186 			cur_state->skb = NULL;
187 		}
188 	}
189 }
190 
gve_tx_stop_ring_dqo(struct gve_priv * priv,int idx)191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
192 {
193 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
194 	struct gve_tx_ring *tx = &priv->tx[idx];
195 
196 	if (!gve_tx_was_added_to_block(priv, idx))
197 		return;
198 
199 	gve_remove_napi(priv, ntfy_idx);
200 	gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
201 	netdev_tx_reset_queue(tx->netdev_txq);
202 	gve_tx_clean_pending_packets(tx);
203 	gve_tx_remove_from_block(priv, idx);
204 }
205 
gve_tx_free_ring_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct gve_tx_alloc_rings_cfg * cfg)206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
207 				 struct gve_tx_alloc_rings_cfg *cfg)
208 {
209 	struct device *hdev = &priv->pdev->dev;
210 	int idx = tx->q_num;
211 	size_t bytes;
212 	u32 qpl_id;
213 
214 	if (tx->q_resources) {
215 		dma_free_coherent(hdev, sizeof(*tx->q_resources),
216 				  tx->q_resources, tx->q_resources_bus);
217 		tx->q_resources = NULL;
218 	}
219 
220 	if (tx->dqo.compl_ring) {
221 		bytes = sizeof(tx->dqo.compl_ring[0]) *
222 			(tx->dqo.complq_mask + 1);
223 		dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
224 				  tx->complq_bus_dqo);
225 		tx->dqo.compl_ring = NULL;
226 	}
227 
228 	if (tx->dqo.tx_ring) {
229 		bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
230 		dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
231 		tx->dqo.tx_ring = NULL;
232 	}
233 
234 	kvfree(tx->dqo.pending_packets);
235 	tx->dqo.pending_packets = NULL;
236 
237 	kvfree(tx->dqo.tx_qpl_buf_next);
238 	tx->dqo.tx_qpl_buf_next = NULL;
239 
240 	if (tx->dqo.qpl) {
241 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
242 		gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id);
243 		tx->dqo.qpl = NULL;
244 	}
245 
246 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
247 }
248 
gve_tx_qpl_buf_init(struct gve_tx_ring * tx)249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
250 {
251 	int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
252 		tx->dqo.qpl->num_entries;
253 	int i;
254 
255 	tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
256 					   sizeof(tx->dqo.tx_qpl_buf_next[0]),
257 					   GFP_KERNEL);
258 	if (!tx->dqo.tx_qpl_buf_next)
259 		return -ENOMEM;
260 
261 	tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
262 
263 	/* Generate free TX buf list */
264 	for (i = 0; i < num_tx_qpl_bufs - 1; i++)
265 		tx->dqo.tx_qpl_buf_next[i] = i + 1;
266 	tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
267 
268 	atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
269 	return 0;
270 }
271 
gve_tx_start_ring_dqo(struct gve_priv * priv,int idx)272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
273 {
274 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
275 	struct gve_tx_ring *tx = &priv->tx[idx];
276 
277 	gve_tx_add_to_block(priv, idx);
278 
279 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
280 	gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
281 }
282 
gve_tx_alloc_ring_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg,struct gve_tx_ring * tx,int idx)283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
284 				 struct gve_tx_alloc_rings_cfg *cfg,
285 				 struct gve_tx_ring *tx,
286 				 int idx)
287 {
288 	struct device *hdev = &priv->pdev->dev;
289 	int num_pending_packets;
290 	int qpl_page_cnt;
291 	size_t bytes;
292 	u32 qpl_id;
293 	int i;
294 
295 	memset(tx, 0, sizeof(*tx));
296 	tx->q_num = idx;
297 	tx->dev = hdev;
298 	atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
299 
300 	/* Queue sizes must be a power of 2 */
301 	tx->mask = cfg->ring_size - 1;
302 	tx->dqo.complq_mask = tx->mask;
303 
304 	/* The max number of pending packets determines the maximum number of
305 	 * descriptors which maybe written to the completion queue.
306 	 *
307 	 * We must set the number small enough to make sure we never overrun the
308 	 * completion queue.
309 	 */
310 	num_pending_packets = tx->dqo.complq_mask + 1;
311 
312 	/* Reserve space for descriptor completions, which will be reported at
313 	 * most every GVE_TX_MIN_RE_INTERVAL packets.
314 	 */
315 	num_pending_packets -=
316 		(tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
317 
318 	/* Each packet may have at most 2 buffer completions if it receives both
319 	 * a miss and reinjection completion.
320 	 */
321 	num_pending_packets /= 2;
322 
323 	tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
324 	tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
325 					   sizeof(tx->dqo.pending_packets[0]),
326 					   GFP_KERNEL);
327 	if (!tx->dqo.pending_packets)
328 		goto err;
329 
330 	/* Set up linked list of pending packets */
331 	for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
332 		tx->dqo.pending_packets[i].next = i + 1;
333 
334 	tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
335 	atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
336 	tx->dqo_compl.miss_completions.head = -1;
337 	tx->dqo_compl.miss_completions.tail = -1;
338 	tx->dqo_compl.timed_out_completions.head = -1;
339 	tx->dqo_compl.timed_out_completions.tail = -1;
340 
341 	bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
342 	tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
343 	if (!tx->dqo.tx_ring)
344 		goto err;
345 
346 	bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
347 	tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
348 						&tx->complq_bus_dqo,
349 						GFP_KERNEL);
350 	if (!tx->dqo.compl_ring)
351 		goto err;
352 
353 	tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
354 					     &tx->q_resources_bus, GFP_KERNEL);
355 	if (!tx->q_resources)
356 		goto err;
357 
358 	if (!cfg->raw_addressing) {
359 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
360 		qpl_page_cnt = priv->tx_pages_per_qpl;
361 
362 		tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
363 							qpl_page_cnt);
364 		if (!tx->dqo.qpl)
365 			goto err;
366 
367 		if (gve_tx_qpl_buf_init(tx))
368 			goto err;
369 	}
370 
371 	return 0;
372 
373 err:
374 	gve_tx_free_ring_dqo(priv, tx, cfg);
375 	return -ENOMEM;
376 }
377 
gve_tx_alloc_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
379 			   struct gve_tx_alloc_rings_cfg *cfg)
380 {
381 	struct gve_tx_ring *tx = cfg->tx;
382 	int total_queues;
383 	int err = 0;
384 	int i, j;
385 
386 	total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings;
387 	if (total_queues > cfg->qcfg->max_queues) {
388 		netif_err(priv, drv, priv->dev,
389 			  "Cannot alloc more than the max num of Tx rings\n");
390 		return -EINVAL;
391 	}
392 
393 	tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
394 		      GFP_KERNEL);
395 	if (!tx)
396 		return -ENOMEM;
397 
398 	for (i = 0; i < total_queues; i++) {
399 		err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
400 		if (err) {
401 			netif_err(priv, drv, priv->dev,
402 				  "Failed to alloc tx ring=%d: err=%d\n",
403 				  i, err);
404 			goto err;
405 		}
406 	}
407 
408 	cfg->tx = tx;
409 	return 0;
410 
411 err:
412 	for (j = 0; j < i; j++)
413 		gve_tx_free_ring_dqo(priv, &tx[j], cfg);
414 	kvfree(tx);
415 	return err;
416 }
417 
gve_tx_free_rings_dqo(struct gve_priv * priv,struct gve_tx_alloc_rings_cfg * cfg)418 void gve_tx_free_rings_dqo(struct gve_priv *priv,
419 			   struct gve_tx_alloc_rings_cfg *cfg)
420 {
421 	struct gve_tx_ring *tx = cfg->tx;
422 	int i;
423 
424 	if (!tx)
425 		return;
426 
427 	for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++)
428 		gve_tx_free_ring_dqo(priv, &tx[i], cfg);
429 
430 	kvfree(tx);
431 	cfg->tx = NULL;
432 }
433 
434 /* Returns the number of slots available in the ring */
num_avail_tx_slots(const struct gve_tx_ring * tx)435 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
436 {
437 	u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
438 
439 	return tx->mask - num_used;
440 }
441 
gve_has_avail_slots_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)442 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
443 				       int desc_count, int buf_count)
444 {
445 	return gve_has_pending_packet(tx) &&
446 		   num_avail_tx_slots(tx) >= desc_count &&
447 		   gve_has_free_tx_qpl_bufs(tx, buf_count);
448 }
449 
450 /* Stops the queue if available descriptors is less than 'count'.
451  * Return: 0 if stop is not required.
452  */
gve_maybe_stop_tx_dqo(struct gve_tx_ring * tx,int desc_count,int buf_count)453 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
454 				 int desc_count, int buf_count)
455 {
456 	if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
457 		return 0;
458 
459 	/* Update cached TX head pointer */
460 	tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
461 
462 	if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
463 		return 0;
464 
465 	/* No space, so stop the queue */
466 	tx->stop_queue++;
467 	netif_tx_stop_queue(tx->netdev_txq);
468 
469 	/* Sync with restarting queue in `gve_tx_poll_dqo()` */
470 	mb();
471 
472 	/* After stopping queue, check if we can transmit again in order to
473 	 * avoid TOCTOU bug.
474 	 */
475 	tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
476 
477 	if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
478 		return -EBUSY;
479 
480 	netif_tx_start_queue(tx->netdev_txq);
481 	tx->wake_queue++;
482 	return 0;
483 }
484 
gve_extract_tx_metadata_dqo(const struct sk_buff * skb,struct gve_tx_metadata_dqo * metadata)485 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
486 					struct gve_tx_metadata_dqo *metadata)
487 {
488 	memset(metadata, 0, sizeof(*metadata));
489 	metadata->version = GVE_TX_METADATA_VERSION_DQO;
490 
491 	if (skb->l4_hash) {
492 		u16 path_hash = skb->hash ^ (skb->hash >> 16);
493 
494 		path_hash &= (1 << 15) - 1;
495 		if (unlikely(path_hash == 0))
496 			path_hash = ~path_hash;
497 
498 		metadata->path_hash = path_hash;
499 	}
500 }
501 
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring * tx,u32 * desc_idx,struct sk_buff * skb,u32 len,u64 addr,s16 compl_tag,bool eop,bool is_gso)502 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
503 				     struct sk_buff *skb, u32 len, u64 addr,
504 				     s16 compl_tag, bool eop, bool is_gso)
505 {
506 	const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL;
507 
508 	while (len > 0) {
509 		struct gve_tx_pkt_desc_dqo *desc =
510 			&tx->dqo.tx_ring[*desc_idx].pkt;
511 		u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
512 		bool cur_eop = eop && cur_len == len;
513 
514 		*desc = (struct gve_tx_pkt_desc_dqo){
515 			.buf_addr = cpu_to_le64(addr),
516 			.dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
517 			.end_of_packet = cur_eop,
518 			.checksum_offload_enable = checksum_offload_en,
519 			.compl_tag = cpu_to_le16(compl_tag),
520 			.buf_size = cur_len,
521 		};
522 
523 		addr += cur_len;
524 		len -= cur_len;
525 		*desc_idx = (*desc_idx + 1) & tx->mask;
526 	}
527 }
528 
529 /* Validates and prepares `skb` for TSO.
530  *
531  * Returns header length, or < 0 if invalid.
532  */
gve_prep_tso(struct sk_buff * skb)533 static int gve_prep_tso(struct sk_buff *skb)
534 {
535 	struct tcphdr *tcp;
536 	int header_len;
537 	u32 paylen;
538 	int err;
539 
540 	/* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
541 	 * of the TSO to be <= 262143.
542 	 *
543 	 * However, we don't validate these because:
544 	 * - Hypervisor enforces a limit of 9K MTU
545 	 * - Kernel will not produce a TSO larger than 64k
546 	 */
547 
548 	if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
549 		return -1;
550 
551 	if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
552 		return -EINVAL;
553 
554 	/* Needed because we will modify header. */
555 	err = skb_cow_head(skb, 0);
556 	if (err < 0)
557 		return err;
558 
559 	tcp = tcp_hdr(skb);
560 	paylen = skb->len - skb_transport_offset(skb);
561 	csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen));
562 	header_len = skb_tcp_all_headers(skb);
563 
564 	if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
565 		return -EINVAL;
566 
567 	return header_len;
568 }
569 
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo * desc,const struct sk_buff * skb,const struct gve_tx_metadata_dqo * metadata,int header_len)570 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
571 				     const struct sk_buff *skb,
572 				     const struct gve_tx_metadata_dqo *metadata,
573 				     int header_len)
574 {
575 	*desc = (struct gve_tx_tso_context_desc_dqo){
576 		.header_len = header_len,
577 		.cmd_dtype = {
578 			.dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
579 			.tso = 1,
580 		},
581 		.flex0 = metadata->bytes[0],
582 		.flex5 = metadata->bytes[5],
583 		.flex6 = metadata->bytes[6],
584 		.flex7 = metadata->bytes[7],
585 		.flex8 = metadata->bytes[8],
586 		.flex9 = metadata->bytes[9],
587 		.flex10 = metadata->bytes[10],
588 		.flex11 = metadata->bytes[11],
589 	};
590 	desc->tso_total_len = skb->len - header_len;
591 	desc->mss = skb_shinfo(skb)->gso_size;
592 }
593 
594 static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo * desc,const struct gve_tx_metadata_dqo * metadata)595 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
596 			     const struct gve_tx_metadata_dqo *metadata)
597 {
598 	*desc = (struct gve_tx_general_context_desc_dqo){
599 		.flex0 = metadata->bytes[0],
600 		.flex1 = metadata->bytes[1],
601 		.flex2 = metadata->bytes[2],
602 		.flex3 = metadata->bytes[3],
603 		.flex4 = metadata->bytes[4],
604 		.flex5 = metadata->bytes[5],
605 		.flex6 = metadata->bytes[6],
606 		.flex7 = metadata->bytes[7],
607 		.flex8 = metadata->bytes[8],
608 		.flex9 = metadata->bytes[9],
609 		.flex10 = metadata->bytes[10],
610 		.flex11 = metadata->bytes[11],
611 		.cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
612 	};
613 }
614 
gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)615 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
616 				      struct sk_buff *skb,
617 				      struct gve_tx_pending_packet_dqo *pkt,
618 				      s16 completion_tag,
619 				      u32 *desc_idx,
620 				      bool is_gso)
621 {
622 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
623 	int i;
624 
625 	/* Note: HW requires that the size of a non-TSO packet be within the
626 	 * range of [17, 9728].
627 	 *
628 	 * We don't double check because
629 	 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
630 	 * - Hypervisor won't allow MTU larger than 9216.
631 	 */
632 
633 	pkt->num_bufs = 0;
634 	/* Map the linear portion of skb */
635 	{
636 		u32 len = skb_headlen(skb);
637 		dma_addr_t addr;
638 
639 		addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
640 		if (unlikely(dma_mapping_error(tx->dev, addr)))
641 			goto err;
642 
643 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
644 		dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
645 		++pkt->num_bufs;
646 
647 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
648 					 completion_tag,
649 					 /*eop=*/shinfo->nr_frags == 0, is_gso);
650 	}
651 
652 	for (i = 0; i < shinfo->nr_frags; i++) {
653 		const skb_frag_t *frag = &shinfo->frags[i];
654 		bool is_eop = i == (shinfo->nr_frags - 1);
655 		u32 len = skb_frag_size(frag);
656 		dma_addr_t addr;
657 
658 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
659 		if (unlikely(dma_mapping_error(tx->dev, addr)))
660 			goto err;
661 
662 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
663 		dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
664 		++pkt->num_bufs;
665 
666 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
667 					 completion_tag, is_eop, is_gso);
668 	}
669 
670 	return 0;
671 err:
672 	for (i = 0; i < pkt->num_bufs; i++) {
673 		if (i == 0) {
674 			dma_unmap_single(tx->dev,
675 					 dma_unmap_addr(pkt, dma[i]),
676 					 dma_unmap_len(pkt, len[i]),
677 					 DMA_TO_DEVICE);
678 		} else {
679 			dma_unmap_page(tx->dev,
680 				       dma_unmap_addr(pkt, dma[i]),
681 				       dma_unmap_len(pkt, len[i]),
682 				       DMA_TO_DEVICE);
683 		}
684 	}
685 	pkt->num_bufs = 0;
686 	return -1;
687 }
688 
689 /* Tx buffer i corresponds to
690  * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
691  * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
692  */
gve_tx_buf_get_addr(struct gve_tx_ring * tx,s16 index,void ** va,dma_addr_t * dma_addr)693 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
694 				s16 index,
695 				void **va, dma_addr_t *dma_addr)
696 {
697 	int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
698 	int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
699 
700 	*va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
701 	*dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
702 }
703 
gve_tx_add_skb_copy_dqo(struct gve_tx_ring * tx,struct sk_buff * skb,struct gve_tx_pending_packet_dqo * pkt,s16 completion_tag,u32 * desc_idx,bool is_gso)704 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
705 				   struct sk_buff *skb,
706 				   struct gve_tx_pending_packet_dqo *pkt,
707 				   s16 completion_tag,
708 				   u32 *desc_idx,
709 				   bool is_gso)
710 {
711 	u32 copy_offset = 0;
712 	dma_addr_t dma_addr;
713 	u32 copy_len;
714 	s16 index;
715 	void *va;
716 
717 	/* Break the packet into buffer size chunks */
718 	pkt->num_bufs = 0;
719 	while (copy_offset < skb->len) {
720 		index = gve_alloc_tx_qpl_buf(tx);
721 		if (unlikely(index == -1))
722 			goto err;
723 
724 		gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
725 		copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
726 				 skb->len - copy_offset);
727 		skb_copy_bits(skb, copy_offset, va, copy_len);
728 
729 		copy_offset += copy_len;
730 		dma_sync_single_for_device(tx->dev, dma_addr,
731 					   copy_len, DMA_TO_DEVICE);
732 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb,
733 					 copy_len,
734 					 dma_addr,
735 					 completion_tag,
736 					 copy_offset == skb->len,
737 					 is_gso);
738 
739 		pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
740 		++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
741 		++pkt->num_bufs;
742 	}
743 
744 	return 0;
745 err:
746 	/* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
747 	gve_free_tx_qpl_bufs(tx, pkt);
748 	return -ENOMEM;
749 }
750 
751 /* Returns 0 on success, or < 0 on error.
752  *
753  * Before this function is called, the caller must ensure
754  * gve_has_pending_packet(tx) returns true.
755  */
gve_tx_add_skb_dqo(struct gve_tx_ring * tx,struct sk_buff * skb)756 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
757 			      struct sk_buff *skb)
758 {
759 	const bool is_gso = skb_is_gso(skb);
760 	u32 desc_idx = tx->dqo_tx.tail;
761 	struct gve_tx_pending_packet_dqo *pkt;
762 	struct gve_tx_metadata_dqo metadata;
763 	s16 completion_tag;
764 
765 	pkt = gve_alloc_pending_packet(tx);
766 	pkt->skb = skb;
767 	completion_tag = pkt - tx->dqo.pending_packets;
768 
769 	gve_extract_tx_metadata_dqo(skb, &metadata);
770 	if (is_gso) {
771 		int header_len = gve_prep_tso(skb);
772 
773 		if (unlikely(header_len < 0))
774 			goto err;
775 
776 		gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
777 					 skb, &metadata, header_len);
778 		desc_idx = (desc_idx + 1) & tx->mask;
779 	}
780 
781 	gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
782 				     &metadata);
783 	desc_idx = (desc_idx + 1) & tx->mask;
784 
785 	if (tx->dqo.qpl) {
786 		if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
787 					    completion_tag,
788 					    &desc_idx, is_gso))
789 			goto err;
790 	}  else {
791 		if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
792 					       completion_tag,
793 					       &desc_idx, is_gso))
794 			goto err;
795 	}
796 
797 	tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
798 
799 	/* Commit the changes to our state */
800 	tx->dqo_tx.tail = desc_idx;
801 
802 	/* Request a descriptor completion on the last descriptor of the
803 	 * packet if we are allowed to by the HW enforced interval.
804 	 */
805 	{
806 		u32 last_desc_idx = (desc_idx - 1) & tx->mask;
807 		u32 last_report_event_interval =
808 			(last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
809 
810 		if (unlikely(last_report_event_interval >=
811 			     GVE_TX_MIN_RE_INTERVAL)) {
812 			tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
813 			tx->dqo_tx.last_re_idx = last_desc_idx;
814 		}
815 	}
816 
817 	return 0;
818 
819 err:
820 	pkt->skb = NULL;
821 	gve_free_pending_packet(tx, pkt);
822 
823 	return -1;
824 }
825 
gve_num_descs_per_buf(size_t size)826 static int gve_num_descs_per_buf(size_t size)
827 {
828 	return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
829 }
830 
gve_num_buffer_descs_needed(const struct sk_buff * skb)831 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
832 {
833 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
834 	int num_descs;
835 	int i;
836 
837 	num_descs = gve_num_descs_per_buf(skb_headlen(skb));
838 
839 	for (i = 0; i < shinfo->nr_frags; i++) {
840 		unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
841 
842 		num_descs += gve_num_descs_per_buf(frag_size);
843 	}
844 
845 	return num_descs;
846 }
847 
848 /* Returns true if HW is capable of sending TSO represented by `skb`.
849  *
850  * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
851  * - The header is counted as one buffer for every single segment.
852  * - A buffer which is split between two segments is counted for both.
853  * - If a buffer contains both header and payload, it is counted as two buffers.
854  */
gve_can_send_tso(const struct sk_buff * skb)855 static bool gve_can_send_tso(const struct sk_buff *skb)
856 {
857 	const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
858 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
859 	const int header_len = skb_tcp_all_headers(skb);
860 	const int gso_size = shinfo->gso_size;
861 	int cur_seg_num_bufs;
862 	int prev_frag_size;
863 	int cur_seg_size;
864 	int i;
865 
866 	cur_seg_size = skb_headlen(skb) - header_len;
867 	prev_frag_size = skb_headlen(skb);
868 	cur_seg_num_bufs = cur_seg_size > 0;
869 
870 	for (i = 0; i < shinfo->nr_frags; i++) {
871 		if (cur_seg_size >= gso_size) {
872 			cur_seg_size %= gso_size;
873 			cur_seg_num_bufs = cur_seg_size > 0;
874 
875 			if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) {
876 				int prev_frag_remain = prev_frag_size %
877 					GVE_TX_MAX_BUF_SIZE_DQO;
878 
879 				/* If the last descriptor of the previous frag
880 				 * is less than cur_seg_size, the segment will
881 				 * span two descriptors in the previous frag.
882 				 * Since max gso size (9728) is less than
883 				 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible
884 				 * for the segment to span more than two
885 				 * descriptors.
886 				 */
887 				if (prev_frag_remain &&
888 				    cur_seg_size > prev_frag_remain)
889 					cur_seg_num_bufs++;
890 			}
891 		}
892 
893 		if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
894 			return false;
895 
896 		prev_frag_size = skb_frag_size(&shinfo->frags[i]);
897 		cur_seg_size += prev_frag_size;
898 	}
899 
900 	return true;
901 }
902 
gve_features_check_dqo(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)903 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
904 					 struct net_device *dev,
905 					 netdev_features_t features)
906 {
907 	if (skb_is_gso(skb) && !gve_can_send_tso(skb))
908 		return features & ~NETIF_F_GSO_MASK;
909 
910 	return features;
911 }
912 
913 /* Attempt to transmit specified SKB.
914  *
915  * Returns 0 if the SKB was transmitted or dropped.
916  * Returns -1 if there is not currently enough space to transmit the SKB.
917  */
gve_try_tx_skb(struct gve_priv * priv,struct gve_tx_ring * tx,struct sk_buff * skb)918 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
919 			  struct sk_buff *skb)
920 {
921 	int num_buffer_descs;
922 	int total_num_descs;
923 
924 	if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
925 		goto drop;
926 
927 	if (tx->dqo.qpl) {
928 		/* We do not need to verify the number of buffers used per
929 		 * packet or per segment in case of TSO as with 2K size buffers
930 		 * none of the TX packet rules would be violated.
931 		 *
932 		 * gve_can_send_tso() checks that each TCP segment of gso_size is
933 		 * not distributed over more than 9 SKB frags..
934 		 */
935 		num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
936 	} else {
937 		num_buffer_descs = gve_num_buffer_descs_needed(skb);
938 		if (!skb_is_gso(skb)) {
939 			if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
940 				if (unlikely(skb_linearize(skb) < 0))
941 					goto drop;
942 
943 				num_buffer_descs = 1;
944 			}
945 		}
946 	}
947 
948 	/* Metadata + (optional TSO) + data descriptors. */
949 	total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
950 	if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs +
951 			GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP,
952 			num_buffer_descs))) {
953 		return -1;
954 	}
955 
956 	if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
957 		goto drop;
958 
959 	netdev_tx_sent_queue(tx->netdev_txq, skb->len);
960 	skb_tx_timestamp(skb);
961 	return 0;
962 
963 drop:
964 	tx->dropped_pkt++;
965 	dev_kfree_skb_any(skb);
966 	return 0;
967 }
968 
969 /* Transmit a given skb and ring the doorbell. */
gve_tx_dqo(struct sk_buff * skb,struct net_device * dev)970 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
971 {
972 	struct gve_priv *priv = netdev_priv(dev);
973 	struct gve_tx_ring *tx;
974 
975 	tx = &priv->tx[skb_get_queue_mapping(skb)];
976 	if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
977 		/* We need to ring the txq doorbell -- we have stopped the Tx
978 		 * queue for want of resources, but prior calls to gve_tx()
979 		 * may have added descriptors without ringing the doorbell.
980 		 */
981 		gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
982 		return NETDEV_TX_BUSY;
983 	}
984 
985 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
986 		return NETDEV_TX_OK;
987 
988 	gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
989 	return NETDEV_TX_OK;
990 }
991 
add_to_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pending_packet)992 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
993 			struct gve_tx_pending_packet_dqo *pending_packet)
994 {
995 	s16 old_tail, index;
996 
997 	index = pending_packet - tx->dqo.pending_packets;
998 	old_tail = list->tail;
999 	list->tail = index;
1000 	if (old_tail == -1)
1001 		list->head = index;
1002 	else
1003 		tx->dqo.pending_packets[old_tail].next = index;
1004 
1005 	pending_packet->next = -1;
1006 	pending_packet->prev = old_tail;
1007 }
1008 
remove_from_list(struct gve_tx_ring * tx,struct gve_index_list * list,struct gve_tx_pending_packet_dqo * pkt)1009 static void remove_from_list(struct gve_tx_ring *tx,
1010 			     struct gve_index_list *list,
1011 			     struct gve_tx_pending_packet_dqo *pkt)
1012 {
1013 	s16 prev_index, next_index;
1014 
1015 	prev_index = pkt->prev;
1016 	next_index = pkt->next;
1017 
1018 	if (prev_index == -1) {
1019 		/* Node is head */
1020 		list->head = next_index;
1021 	} else {
1022 		tx->dqo.pending_packets[prev_index].next = next_index;
1023 	}
1024 	if (next_index == -1) {
1025 		/* Node is tail */
1026 		list->tail = prev_index;
1027 	} else {
1028 		tx->dqo.pending_packets[next_index].prev = prev_index;
1029 	}
1030 }
1031 
gve_unmap_packet(struct device * dev,struct gve_tx_pending_packet_dqo * pkt)1032 static void gve_unmap_packet(struct device *dev,
1033 			     struct gve_tx_pending_packet_dqo *pkt)
1034 {
1035 	int i;
1036 
1037 	/* SKB linear portion is guaranteed to be mapped */
1038 	dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1039 			 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1040 	for (i = 1; i < pkt->num_bufs; i++) {
1041 		dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]),
1042 			       dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE);
1043 	}
1044 	pkt->num_bufs = 0;
1045 }
1046 
1047 /* Completion types and expected behavior:
1048  * No Miss compl + Packet compl = Packet completed normally.
1049  * Miss compl + Re-inject compl = Packet completed normally.
1050  * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1051  * Miss compl + Packet compl = Skipped i.e. packet not completed.
1052  */
gve_handle_packet_completion(struct gve_priv * priv,struct gve_tx_ring * tx,bool is_napi,u16 compl_tag,u64 * bytes,u64 * pkts,bool is_reinjection)1053 static void gve_handle_packet_completion(struct gve_priv *priv,
1054 					 struct gve_tx_ring *tx, bool is_napi,
1055 					 u16 compl_tag, u64 *bytes, u64 *pkts,
1056 					 bool is_reinjection)
1057 {
1058 	struct gve_tx_pending_packet_dqo *pending_packet;
1059 
1060 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1061 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1062 				    priv->dev->name, (int)compl_tag);
1063 		return;
1064 	}
1065 
1066 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1067 
1068 	if (unlikely(is_reinjection)) {
1069 		if (unlikely(pending_packet->state ==
1070 			     GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1071 			net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1072 					    priv->dev->name, (int)compl_tag);
1073 			/* Packet was already completed as a result of timeout,
1074 			 * so just remove from list and free pending packet.
1075 			 */
1076 			remove_from_list(tx,
1077 					 &tx->dqo_compl.timed_out_completions,
1078 					 pending_packet);
1079 			gve_free_pending_packet(tx, pending_packet);
1080 			return;
1081 		}
1082 		if (unlikely(pending_packet->state !=
1083 			     GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1084 			/* No outstanding miss completion but packet allocated
1085 			 * implies packet receives a re-injection completion
1086 			 * without a prior miss completion. Return without
1087 			 * completing the packet.
1088 			 */
1089 			net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1090 					    priv->dev->name, (int)compl_tag);
1091 			return;
1092 		}
1093 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1094 				 pending_packet);
1095 	} else {
1096 		/* Packet is allocated but not a pending data completion. */
1097 		if (unlikely(pending_packet->state !=
1098 			     GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1099 			net_err_ratelimited("%s: No pending data completion: %d\n",
1100 					    priv->dev->name, (int)compl_tag);
1101 			return;
1102 		}
1103 	}
1104 	tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1105 	if (tx->dqo.qpl)
1106 		gve_free_tx_qpl_bufs(tx, pending_packet);
1107 	else
1108 		gve_unmap_packet(tx->dev, pending_packet);
1109 
1110 	*bytes += pending_packet->skb->len;
1111 	(*pkts)++;
1112 	napi_consume_skb(pending_packet->skb, is_napi);
1113 	pending_packet->skb = NULL;
1114 	gve_free_pending_packet(tx, pending_packet);
1115 }
1116 
gve_handle_miss_completion(struct gve_priv * priv,struct gve_tx_ring * tx,u16 compl_tag,u64 * bytes,u64 * pkts)1117 static void gve_handle_miss_completion(struct gve_priv *priv,
1118 				       struct gve_tx_ring *tx, u16 compl_tag,
1119 				       u64 *bytes, u64 *pkts)
1120 {
1121 	struct gve_tx_pending_packet_dqo *pending_packet;
1122 
1123 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1124 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1125 				    priv->dev->name, (int)compl_tag);
1126 		return;
1127 	}
1128 
1129 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1130 	if (unlikely(pending_packet->state !=
1131 				GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1132 		net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1133 				    priv->dev->name, (int)pending_packet->state,
1134 				    (int)compl_tag);
1135 		return;
1136 	}
1137 
1138 	pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1139 	/* jiffies can wraparound but time comparisons can handle overflows. */
1140 	pending_packet->timeout_jiffies =
1141 			jiffies +
1142 			secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT);
1143 	add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1144 
1145 	*bytes += pending_packet->skb->len;
1146 	(*pkts)++;
1147 }
1148 
remove_miss_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1149 static void remove_miss_completions(struct gve_priv *priv,
1150 				    struct gve_tx_ring *tx)
1151 {
1152 	struct gve_tx_pending_packet_dqo *pending_packet;
1153 	s16 next_index;
1154 
1155 	next_index = tx->dqo_compl.miss_completions.head;
1156 	while (next_index != -1) {
1157 		pending_packet = &tx->dqo.pending_packets[next_index];
1158 		next_index = pending_packet->next;
1159 		/* Break early because packets should timeout in order. */
1160 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1161 			break;
1162 
1163 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1164 				 pending_packet);
1165 		/* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1166 		 * the completion tag is not freed to ensure that the driver
1167 		 * can take appropriate action if a corresponding valid
1168 		 * completion is received later.
1169 		 */
1170 		if (tx->dqo.qpl)
1171 			gve_free_tx_qpl_bufs(tx, pending_packet);
1172 		else
1173 			gve_unmap_packet(tx->dev, pending_packet);
1174 
1175 		/* This indicates the packet was dropped. */
1176 		dev_kfree_skb_any(pending_packet->skb);
1177 		pending_packet->skb = NULL;
1178 		tx->dropped_pkt++;
1179 		net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1180 				    priv->dev->name,
1181 				    (int)(pending_packet - tx->dqo.pending_packets));
1182 
1183 		pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1184 		pending_packet->timeout_jiffies =
1185 				jiffies +
1186 				secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT);
1187 		/* Maintain pending packet in another list so the packet can be
1188 		 * unallocated at a later time.
1189 		 */
1190 		add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1191 			    pending_packet);
1192 	}
1193 }
1194 
remove_timed_out_completions(struct gve_priv * priv,struct gve_tx_ring * tx)1195 static void remove_timed_out_completions(struct gve_priv *priv,
1196 					 struct gve_tx_ring *tx)
1197 {
1198 	struct gve_tx_pending_packet_dqo *pending_packet;
1199 	s16 next_index;
1200 
1201 	next_index = tx->dqo_compl.timed_out_completions.head;
1202 	while (next_index != -1) {
1203 		pending_packet = &tx->dqo.pending_packets[next_index];
1204 		next_index = pending_packet->next;
1205 		/* Break early because packets should timeout in order. */
1206 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1207 			break;
1208 
1209 		remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1210 				 pending_packet);
1211 		gve_free_pending_packet(tx, pending_packet);
1212 	}
1213 }
1214 
gve_clean_tx_done_dqo(struct gve_priv * priv,struct gve_tx_ring * tx,struct napi_struct * napi)1215 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1216 			  struct napi_struct *napi)
1217 {
1218 	u64 reinject_compl_bytes = 0;
1219 	u64 reinject_compl_pkts = 0;
1220 	int num_descs_cleaned = 0;
1221 	u64 miss_compl_bytes = 0;
1222 	u64 miss_compl_pkts = 0;
1223 	u64 pkt_compl_bytes = 0;
1224 	u64 pkt_compl_pkts = 0;
1225 
1226 	/* Limit in order to avoid blocking for too long */
1227 	while (!napi || pkt_compl_pkts < napi->weight) {
1228 		struct gve_tx_compl_desc *compl_desc =
1229 			&tx->dqo.compl_ring[tx->dqo_compl.head];
1230 		u16 type;
1231 
1232 		if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1233 			break;
1234 
1235 		/* Prefetch the next descriptor. */
1236 		prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1237 				tx->dqo.complq_mask]);
1238 
1239 		/* Do not read data until we own the descriptor */
1240 		dma_rmb();
1241 		type = compl_desc->type;
1242 
1243 		if (type == GVE_COMPL_TYPE_DQO_DESC) {
1244 			/* This is the last descriptor fetched by HW plus one */
1245 			u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1246 
1247 			atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1248 		} else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1249 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1250 			if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1251 				compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1252 				gve_handle_miss_completion(priv, tx, compl_tag,
1253 							   &miss_compl_bytes,
1254 							   &miss_compl_pkts);
1255 			} else {
1256 				gve_handle_packet_completion(priv, tx, !!napi,
1257 							     compl_tag,
1258 							     &pkt_compl_bytes,
1259 							     &pkt_compl_pkts,
1260 							     false);
1261 			}
1262 		} else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1263 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1264 
1265 			gve_handle_miss_completion(priv, tx, compl_tag,
1266 						   &miss_compl_bytes,
1267 						   &miss_compl_pkts);
1268 		} else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1269 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1270 
1271 			gve_handle_packet_completion(priv, tx, !!napi,
1272 						     compl_tag,
1273 						     &reinject_compl_bytes,
1274 						     &reinject_compl_pkts,
1275 						     true);
1276 		}
1277 
1278 		tx->dqo_compl.head =
1279 			(tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1280 		/* Flip the generation bit when we wrap around */
1281 		tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1282 		num_descs_cleaned++;
1283 	}
1284 
1285 	netdev_tx_completed_queue(tx->netdev_txq,
1286 				  pkt_compl_pkts + miss_compl_pkts,
1287 				  pkt_compl_bytes + miss_compl_bytes);
1288 
1289 	remove_miss_completions(priv, tx);
1290 	remove_timed_out_completions(priv, tx);
1291 
1292 	u64_stats_update_begin(&tx->statss);
1293 	tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1294 	tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1295 	u64_stats_update_end(&tx->statss);
1296 	return num_descs_cleaned;
1297 }
1298 
gve_tx_poll_dqo(struct gve_notify_block * block,bool do_clean)1299 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1300 {
1301 	struct gve_tx_compl_desc *compl_desc;
1302 	struct gve_tx_ring *tx = block->tx;
1303 	struct gve_priv *priv = block->priv;
1304 
1305 	if (do_clean) {
1306 		int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1307 							      &block->napi);
1308 
1309 		/* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1310 		mb();
1311 
1312 		if (netif_tx_queue_stopped(tx->netdev_txq) &&
1313 		    num_descs_cleaned > 0) {
1314 			tx->wake_queue++;
1315 			netif_tx_wake_queue(tx->netdev_txq);
1316 		}
1317 	}
1318 
1319 	/* Return true if we still have work. */
1320 	compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1321 	return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1322 }
1323