1 // SPDX-License-Identifier: GPL-2.0-only
2 /* CAN driver for Geschwister Schneider USB/CAN devices
3 * and bytewerk.org candleLight USB CAN interfaces.
4 *
5 * Copyright (C) 2013-2016 Geschwister Schneider Technologie-,
6 * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt).
7 * Copyright (C) 2016 Hubert Denkmair
8 * Copyright (c) 2023 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
9 *
10 * Many thanks to all socketcan devs!
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/clocksource.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/signal.h>
20 #include <linux/timecounter.h>
21 #include <linux/units.h>
22 #include <linux/usb.h>
23 #include <linux/workqueue.h>
24
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/error.h>
28 #include <linux/can/rx-offload.h>
29
30 /* Device specific constants */
31 #define USB_GS_USB_1_VENDOR_ID 0x1d50
32 #define USB_GS_USB_1_PRODUCT_ID 0x606f
33
34 #define USB_CANDLELIGHT_VENDOR_ID 0x1209
35 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323
36
37 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2
38 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f
39
40 #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0
41 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8
42
43 #define USB_XYLANTA_SAINT3_VENDOR_ID 0x16d0
44 #define USB_XYLANTA_SAINT3_PRODUCT_ID 0x0f30
45
46 #define USB_CANNECTIVITY_VENDOR_ID 0x1209
47 #define USB_CANNECTIVITY_PRODUCT_ID 0xca01
48
49 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts
50 * for timer overflow (will be after ~71 minutes)
51 */
52 #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ)
53 #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800
54 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC <
55 CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2);
56
57 /* Device specific constants */
58 enum gs_usb_breq {
59 GS_USB_BREQ_HOST_FORMAT = 0,
60 GS_USB_BREQ_BITTIMING,
61 GS_USB_BREQ_MODE,
62 GS_USB_BREQ_BERR,
63 GS_USB_BREQ_BT_CONST,
64 GS_USB_BREQ_DEVICE_CONFIG,
65 GS_USB_BREQ_TIMESTAMP,
66 GS_USB_BREQ_IDENTIFY,
67 GS_USB_BREQ_GET_USER_ID,
68 GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID,
69 GS_USB_BREQ_SET_USER_ID,
70 GS_USB_BREQ_DATA_BITTIMING,
71 GS_USB_BREQ_BT_CONST_EXT,
72 GS_USB_BREQ_SET_TERMINATION,
73 GS_USB_BREQ_GET_TERMINATION,
74 GS_USB_BREQ_GET_STATE,
75 };
76
77 enum gs_can_mode {
78 /* reset a channel. turns it off */
79 GS_CAN_MODE_RESET = 0,
80 /* starts a channel */
81 GS_CAN_MODE_START
82 };
83
84 enum gs_can_state {
85 GS_CAN_STATE_ERROR_ACTIVE = 0,
86 GS_CAN_STATE_ERROR_WARNING,
87 GS_CAN_STATE_ERROR_PASSIVE,
88 GS_CAN_STATE_BUS_OFF,
89 GS_CAN_STATE_STOPPED,
90 GS_CAN_STATE_SLEEPING
91 };
92
93 enum gs_can_identify_mode {
94 GS_CAN_IDENTIFY_OFF = 0,
95 GS_CAN_IDENTIFY_ON
96 };
97
98 enum gs_can_termination_state {
99 GS_CAN_TERMINATION_STATE_OFF = 0,
100 GS_CAN_TERMINATION_STATE_ON
101 };
102
103 #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED
104 #define GS_USB_TERMINATION_ENABLED 120
105
106 /* data types passed between host and device */
107
108 /* The firmware on the original USB2CAN by Geschwister Schneider
109 * Technologie Entwicklungs- und Vertriebs UG exchanges all data
110 * between the host and the device in host byte order. This is done
111 * with the struct gs_host_config::byte_order member, which is sent
112 * first to indicate the desired byte order.
113 *
114 * The widely used open source firmware candleLight doesn't support
115 * this feature and exchanges the data in little endian byte order.
116 */
117 struct gs_host_config {
118 __le32 byte_order;
119 } __packed;
120
121 struct gs_device_config {
122 u8 reserved1;
123 u8 reserved2;
124 u8 reserved3;
125 u8 icount;
126 __le32 sw_version;
127 __le32 hw_version;
128 } __packed;
129
130 #define GS_CAN_MODE_NORMAL 0
131 #define GS_CAN_MODE_LISTEN_ONLY BIT(0)
132 #define GS_CAN_MODE_LOOP_BACK BIT(1)
133 #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2)
134 #define GS_CAN_MODE_ONE_SHOT BIT(3)
135 #define GS_CAN_MODE_HW_TIMESTAMP BIT(4)
136 /* GS_CAN_FEATURE_IDENTIFY BIT(5) */
137 /* GS_CAN_FEATURE_USER_ID BIT(6) */
138 #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
139 #define GS_CAN_MODE_FD BIT(8)
140 /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */
141 /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */
142 /* GS_CAN_FEATURE_TERMINATION BIT(11) */
143 #define GS_CAN_MODE_BERR_REPORTING BIT(12)
144 /* GS_CAN_FEATURE_GET_STATE BIT(13) */
145
146 struct gs_device_mode {
147 __le32 mode;
148 __le32 flags;
149 } __packed;
150
151 struct gs_device_state {
152 __le32 state;
153 __le32 rxerr;
154 __le32 txerr;
155 } __packed;
156
157 struct gs_device_bittiming {
158 __le32 prop_seg;
159 __le32 phase_seg1;
160 __le32 phase_seg2;
161 __le32 sjw;
162 __le32 brp;
163 } __packed;
164
165 struct gs_identify_mode {
166 __le32 mode;
167 } __packed;
168
169 struct gs_device_termination_state {
170 __le32 state;
171 } __packed;
172
173 #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0)
174 #define GS_CAN_FEATURE_LOOP_BACK BIT(1)
175 #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2)
176 #define GS_CAN_FEATURE_ONE_SHOT BIT(3)
177 #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4)
178 #define GS_CAN_FEATURE_IDENTIFY BIT(5)
179 #define GS_CAN_FEATURE_USER_ID BIT(6)
180 #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7)
181 #define GS_CAN_FEATURE_FD BIT(8)
182 #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9)
183 #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10)
184 #define GS_CAN_FEATURE_TERMINATION BIT(11)
185 #define GS_CAN_FEATURE_BERR_REPORTING BIT(12)
186 #define GS_CAN_FEATURE_GET_STATE BIT(13)
187 #define GS_CAN_FEATURE_MASK GENMASK(13, 0)
188
189 /* internal quirks - keep in GS_CAN_FEATURE space for now */
190
191 /* CANtact Pro original firmware:
192 * BREQ DATA_BITTIMING overlaps with GET_USER_ID
193 */
194 #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31)
195
196 struct gs_device_bt_const {
197 __le32 feature;
198 __le32 fclk_can;
199 __le32 tseg1_min;
200 __le32 tseg1_max;
201 __le32 tseg2_min;
202 __le32 tseg2_max;
203 __le32 sjw_max;
204 __le32 brp_min;
205 __le32 brp_max;
206 __le32 brp_inc;
207 } __packed;
208
209 struct gs_device_bt_const_extended {
210 __le32 feature;
211 __le32 fclk_can;
212 __le32 tseg1_min;
213 __le32 tseg1_max;
214 __le32 tseg2_min;
215 __le32 tseg2_max;
216 __le32 sjw_max;
217 __le32 brp_min;
218 __le32 brp_max;
219 __le32 brp_inc;
220
221 __le32 dtseg1_min;
222 __le32 dtseg1_max;
223 __le32 dtseg2_min;
224 __le32 dtseg2_max;
225 __le32 dsjw_max;
226 __le32 dbrp_min;
227 __le32 dbrp_max;
228 __le32 dbrp_inc;
229 } __packed;
230
231 #define GS_CAN_FLAG_OVERFLOW BIT(0)
232 #define GS_CAN_FLAG_FD BIT(1)
233 #define GS_CAN_FLAG_BRS BIT(2)
234 #define GS_CAN_FLAG_ESI BIT(3)
235
236 struct classic_can {
237 u8 data[8];
238 } __packed;
239
240 struct classic_can_ts {
241 u8 data[8];
242 __le32 timestamp_us;
243 } __packed;
244
245 struct classic_can_quirk {
246 u8 data[8];
247 u8 quirk;
248 } __packed;
249
250 struct canfd {
251 u8 data[64];
252 } __packed;
253
254 struct canfd_ts {
255 u8 data[64];
256 __le32 timestamp_us;
257 } __packed;
258
259 struct canfd_quirk {
260 u8 data[64];
261 u8 quirk;
262 } __packed;
263
264 /* struct gs_host_frame::echo_id == GS_HOST_FRAME_ECHO_ID_RX indicates
265 * a regular RX'ed CAN frame
266 */
267 #define GS_HOST_FRAME_ECHO_ID_RX 0xffffffff
268
269 struct gs_host_frame {
270 struct_group(header,
271 u32 echo_id;
272 __le32 can_id;
273
274 u8 can_dlc;
275 u8 channel;
276 u8 flags;
277 u8 reserved;
278 );
279
280 union {
281 DECLARE_FLEX_ARRAY(struct classic_can, classic_can);
282 DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts);
283 DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk);
284 DECLARE_FLEX_ARRAY(struct canfd, canfd);
285 DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts);
286 DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk);
287 };
288 } __packed;
289 /* The GS USB devices make use of the same flags and masks as in
290 * linux/can.h and linux/can/error.h, and no additional mapping is necessary.
291 */
292
293 /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */
294 #define GS_MAX_TX_URBS 10
295 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */
296 #define GS_MAX_RX_URBS 30
297 #define GS_NAPI_WEIGHT 32
298
299 struct gs_tx_context {
300 struct gs_can *dev;
301 unsigned int echo_id;
302 };
303
304 struct gs_can {
305 struct can_priv can; /* must be the first member */
306
307 struct can_rx_offload offload;
308 struct gs_usb *parent;
309
310 struct net_device *netdev;
311 struct usb_device *udev;
312
313 struct can_bittiming_const bt_const, data_bt_const;
314 unsigned int channel; /* channel number */
315
316 u32 feature;
317 unsigned int hf_size_tx;
318
319 /* This lock prevents a race condition between xmit and receive. */
320 spinlock_t tx_ctx_lock;
321 struct gs_tx_context tx_context[GS_MAX_TX_URBS];
322
323 struct usb_anchor tx_submitted;
324 atomic_t active_tx_urbs;
325 };
326
327 /* usb interface struct */
328 struct gs_usb {
329 struct usb_anchor rx_submitted;
330 struct usb_device *udev;
331
332 /* time counter for hardware timestamps */
333 struct cyclecounter cc;
334 struct timecounter tc;
335 spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */
336 struct delayed_work timestamp;
337
338 unsigned int hf_size_rx;
339 u8 active_channels;
340 u8 channel_cnt;
341
342 unsigned int pipe_in;
343 unsigned int pipe_out;
344 struct gs_can *canch[] __counted_by(channel_cnt);
345 };
346
347 /* 'allocate' a tx context.
348 * returns a valid tx context or NULL if there is no space.
349 */
gs_alloc_tx_context(struct gs_can * dev)350 static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev)
351 {
352 int i = 0;
353 unsigned long flags;
354
355 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
356
357 for (; i < GS_MAX_TX_URBS; i++) {
358 if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) {
359 dev->tx_context[i].echo_id = i;
360 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
361 return &dev->tx_context[i];
362 }
363 }
364
365 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
366 return NULL;
367 }
368
369 /* releases a tx context
370 */
gs_free_tx_context(struct gs_tx_context * txc)371 static void gs_free_tx_context(struct gs_tx_context *txc)
372 {
373 txc->echo_id = GS_MAX_TX_URBS;
374 }
375
376 /* Get a tx context by id.
377 */
gs_get_tx_context(struct gs_can * dev,unsigned int id)378 static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev,
379 unsigned int id)
380 {
381 unsigned long flags;
382
383 if (id < GS_MAX_TX_URBS) {
384 spin_lock_irqsave(&dev->tx_ctx_lock, flags);
385 if (dev->tx_context[id].echo_id == id) {
386 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
387 return &dev->tx_context[id];
388 }
389 spin_unlock_irqrestore(&dev->tx_ctx_lock, flags);
390 }
391 return NULL;
392 }
393
gs_cmd_reset(struct gs_can * dev)394 static int gs_cmd_reset(struct gs_can *dev)
395 {
396 struct gs_device_mode dm = {
397 .mode = cpu_to_le32(GS_CAN_MODE_RESET),
398 };
399
400 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
401 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
402 dev->channel, 0, &dm, sizeof(dm), 1000,
403 GFP_KERNEL);
404 }
405
gs_usb_get_timestamp(const struct gs_usb * parent,u32 * timestamp_p)406 static inline int gs_usb_get_timestamp(const struct gs_usb *parent,
407 u32 *timestamp_p)
408 {
409 __le32 timestamp;
410 int rc;
411
412 rc = usb_control_msg_recv(parent->udev, 0, GS_USB_BREQ_TIMESTAMP,
413 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
414 0, 0,
415 ×tamp, sizeof(timestamp),
416 USB_CTRL_GET_TIMEOUT,
417 GFP_KERNEL);
418 if (rc)
419 return rc;
420
421 *timestamp_p = le32_to_cpu(timestamp);
422
423 return 0;
424 }
425
gs_usb_timestamp_read(struct cyclecounter * cc)426 static u64 gs_usb_timestamp_read(struct cyclecounter *cc) __must_hold(&dev->tc_lock)
427 {
428 struct gs_usb *parent = container_of(cc, struct gs_usb, cc);
429 u32 timestamp = 0;
430 int err;
431
432 lockdep_assert_held(&parent->tc_lock);
433
434 /* drop lock for synchronous USB transfer */
435 spin_unlock_bh(&parent->tc_lock);
436 err = gs_usb_get_timestamp(parent, ×tamp);
437 spin_lock_bh(&parent->tc_lock);
438 if (err)
439 dev_err(&parent->udev->dev,
440 "Error %d while reading timestamp. HW timestamps may be inaccurate.",
441 err);
442
443 return timestamp;
444 }
445
gs_usb_timestamp_work(struct work_struct * work)446 static void gs_usb_timestamp_work(struct work_struct *work)
447 {
448 struct delayed_work *delayed_work = to_delayed_work(work);
449 struct gs_usb *parent;
450
451 parent = container_of(delayed_work, struct gs_usb, timestamp);
452 spin_lock_bh(&parent->tc_lock);
453 timecounter_read(&parent->tc);
454 spin_unlock_bh(&parent->tc_lock);
455
456 schedule_delayed_work(&parent->timestamp,
457 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
458 }
459
gs_usb_skb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,u32 timestamp)460 static void gs_usb_skb_set_timestamp(struct gs_can *dev,
461 struct sk_buff *skb, u32 timestamp)
462 {
463 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
464 struct gs_usb *parent = dev->parent;
465 u64 ns;
466
467 spin_lock_bh(&parent->tc_lock);
468 ns = timecounter_cyc2time(&parent->tc, timestamp);
469 spin_unlock_bh(&parent->tc_lock);
470
471 hwtstamps->hwtstamp = ns_to_ktime(ns);
472 }
473
gs_usb_timestamp_init(struct gs_usb * parent)474 static void gs_usb_timestamp_init(struct gs_usb *parent)
475 {
476 struct cyclecounter *cc = &parent->cc;
477
478 cc->read = gs_usb_timestamp_read;
479 cc->mask = CYCLECOUNTER_MASK(32);
480 cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ);
481 cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift);
482
483 spin_lock_init(&parent->tc_lock);
484 spin_lock_bh(&parent->tc_lock);
485 timecounter_init(&parent->tc, &parent->cc, ktime_get_real_ns());
486 spin_unlock_bh(&parent->tc_lock);
487
488 INIT_DELAYED_WORK(&parent->timestamp, gs_usb_timestamp_work);
489 schedule_delayed_work(&parent->timestamp,
490 GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ);
491 }
492
gs_usb_timestamp_stop(struct gs_usb * parent)493 static void gs_usb_timestamp_stop(struct gs_usb *parent)
494 {
495 cancel_delayed_work_sync(&parent->timestamp);
496 }
497
gs_update_state(struct gs_can * dev,struct can_frame * cf)498 static void gs_update_state(struct gs_can *dev, struct can_frame *cf)
499 {
500 struct can_device_stats *can_stats = &dev->can.can_stats;
501
502 if (cf->can_id & CAN_ERR_RESTARTED) {
503 dev->can.state = CAN_STATE_ERROR_ACTIVE;
504 can_stats->restarts++;
505 } else if (cf->can_id & CAN_ERR_BUSOFF) {
506 dev->can.state = CAN_STATE_BUS_OFF;
507 can_stats->bus_off++;
508 } else if (cf->can_id & CAN_ERR_CRTL) {
509 if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) ||
510 (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) {
511 dev->can.state = CAN_STATE_ERROR_WARNING;
512 can_stats->error_warning++;
513 } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) ||
514 (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) {
515 dev->can.state = CAN_STATE_ERROR_PASSIVE;
516 can_stats->error_passive++;
517 } else {
518 dev->can.state = CAN_STATE_ERROR_ACTIVE;
519 }
520 }
521 }
522
gs_usb_set_timestamp(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)523 static u32 gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb,
524 const struct gs_host_frame *hf)
525 {
526 u32 timestamp;
527
528 if (hf->flags & GS_CAN_FLAG_FD)
529 timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us);
530 else
531 timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us);
532
533 if (skb)
534 gs_usb_skb_set_timestamp(dev, skb, timestamp);
535
536 return timestamp;
537 }
538
gs_usb_rx_offload(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)539 static void gs_usb_rx_offload(struct gs_can *dev, struct sk_buff *skb,
540 const struct gs_host_frame *hf)
541 {
542 struct can_rx_offload *offload = &dev->offload;
543 int rc;
544
545 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
546 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
547
548 rc = can_rx_offload_queue_timestamp(offload, skb, ts);
549 } else {
550 rc = can_rx_offload_queue_tail(offload, skb);
551 }
552
553 if (rc)
554 dev->netdev->stats.rx_fifo_errors++;
555 }
556
557 static unsigned int
gs_usb_get_echo_skb(struct gs_can * dev,struct sk_buff * skb,const struct gs_host_frame * hf)558 gs_usb_get_echo_skb(struct gs_can *dev, struct sk_buff *skb,
559 const struct gs_host_frame *hf)
560 {
561 struct can_rx_offload *offload = &dev->offload;
562 const u32 echo_id = hf->echo_id;
563 unsigned int len;
564
565 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) {
566 const u32 ts = gs_usb_set_timestamp(dev, skb, hf);
567
568 len = can_rx_offload_get_echo_skb_queue_timestamp(offload, echo_id,
569 ts, NULL);
570 } else {
571 len = can_rx_offload_get_echo_skb_queue_tail(offload, echo_id,
572 NULL);
573 }
574
575 return len;
576 }
577
578 static unsigned int
gs_usb_get_minimum_rx_length(const struct gs_can * dev,const struct gs_host_frame * hf,unsigned int * data_length_p)579 gs_usb_get_minimum_rx_length(const struct gs_can *dev, const struct gs_host_frame *hf,
580 unsigned int *data_length_p)
581 {
582 unsigned int minimum_length, data_length = 0;
583
584 if (hf->flags & GS_CAN_FLAG_FD) {
585 if (hf->echo_id == GS_HOST_FRAME_ECHO_ID_RX)
586 data_length = can_fd_dlc2len(hf->can_dlc);
587
588 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
589 /* timestamp follows data field of max size */
590 minimum_length = struct_size(hf, canfd_ts, 1);
591 else
592 minimum_length = sizeof(hf->header) + data_length;
593 } else {
594 if (hf->echo_id == GS_HOST_FRAME_ECHO_ID_RX &&
595 !(hf->can_id & cpu_to_le32(CAN_RTR_FLAG)))
596 data_length = can_cc_dlc2len(hf->can_dlc);
597
598 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
599 /* timestamp follows data field of max size */
600 minimum_length = struct_size(hf, classic_can_ts, 1);
601 else
602 minimum_length = sizeof(hf->header) + data_length;
603 }
604
605 *data_length_p = data_length;
606 return minimum_length;
607 }
608
gs_usb_receive_bulk_callback(struct urb * urb)609 static void gs_usb_receive_bulk_callback(struct urb *urb)
610 {
611 struct gs_usb *parent = urb->context;
612 struct gs_can *dev;
613 struct net_device *netdev;
614 int rc;
615 struct net_device_stats *stats;
616 struct gs_host_frame *hf = urb->transfer_buffer;
617 unsigned int minimum_length, data_length;
618 struct gs_tx_context *txc;
619 struct can_frame *cf;
620 struct canfd_frame *cfd;
621 struct sk_buff *skb;
622
623 BUG_ON(!parent);
624
625 switch (urb->status) {
626 case 0: /* success */
627 break;
628 case -ENOENT:
629 case -ESHUTDOWN:
630 return;
631 default:
632 /* do not resubmit aborted urbs. eg: when device goes down */
633 return;
634 }
635
636 minimum_length = sizeof(hf->header);
637 if (urb->actual_length < minimum_length) {
638 dev_err_ratelimited(&parent->udev->dev,
639 "short read (actual_length=%u, minimum_length=%u)\n",
640 urb->actual_length, minimum_length);
641
642 goto resubmit_urb;
643 }
644
645 /* device reports out of range channel id */
646 if (hf->channel >= parent->channel_cnt)
647 goto device_detach;
648
649 dev = parent->canch[hf->channel];
650
651 netdev = dev->netdev;
652 stats = &netdev->stats;
653
654 if (!netif_device_present(netdev))
655 return;
656
657 if (!netif_running(netdev))
658 goto resubmit_urb;
659
660 minimum_length = gs_usb_get_minimum_rx_length(dev, hf, &data_length);
661 if (urb->actual_length < minimum_length) {
662 stats->rx_errors++;
663 stats->rx_length_errors++;
664
665 if (net_ratelimit())
666 netdev_err(netdev,
667 "short read (actual_length=%u, minimum_length=%u)\n",
668 urb->actual_length, minimum_length);
669
670 goto resubmit_urb;
671 }
672
673 if (hf->echo_id == GS_HOST_FRAME_ECHO_ID_RX) { /* normal rx */
674 if (hf->flags & GS_CAN_FLAG_FD) {
675 skb = alloc_canfd_skb(netdev, &cfd);
676 if (!skb)
677 return;
678
679 cfd->can_id = le32_to_cpu(hf->can_id);
680 cfd->len = data_length;
681 if (hf->flags & GS_CAN_FLAG_BRS)
682 cfd->flags |= CANFD_BRS;
683 if (hf->flags & GS_CAN_FLAG_ESI)
684 cfd->flags |= CANFD_ESI;
685
686 memcpy(cfd->data, hf->canfd->data, data_length);
687 } else {
688 skb = alloc_can_skb(netdev, &cf);
689 if (!skb)
690 return;
691
692 cf->can_id = le32_to_cpu(hf->can_id);
693 can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode);
694
695 memcpy(cf->data, hf->classic_can->data, data_length);
696
697 /* ERROR frames tell us information about the controller */
698 if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG)
699 gs_update_state(dev, cf);
700 }
701
702 gs_usb_rx_offload(dev, skb, hf);
703 } else { /* echo_id == hf->echo_id */
704 if (hf->echo_id >= GS_MAX_TX_URBS) {
705 netdev_err(netdev,
706 "Unexpected out of range echo id %u\n",
707 hf->echo_id);
708 goto resubmit_urb;
709 }
710
711 txc = gs_get_tx_context(dev, hf->echo_id);
712
713 /* bad devices send bad echo_ids. */
714 if (!txc) {
715 netdev_err(netdev,
716 "Unexpected unused echo id %u\n",
717 hf->echo_id);
718 goto resubmit_urb;
719 }
720
721 skb = dev->can.echo_skb[hf->echo_id];
722 stats->tx_packets++;
723 stats->tx_bytes += gs_usb_get_echo_skb(dev, skb, hf);
724 gs_free_tx_context(txc);
725
726 atomic_dec(&dev->active_tx_urbs);
727
728 netif_wake_queue(netdev);
729 }
730
731 if (hf->flags & GS_CAN_FLAG_OVERFLOW) {
732 stats->rx_over_errors++;
733 stats->rx_errors++;
734
735 skb = alloc_can_err_skb(netdev, &cf);
736 if (!skb)
737 goto resubmit_urb;
738
739 cf->can_id |= CAN_ERR_CRTL;
740 cf->len = CAN_ERR_DLC;
741 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
742
743 gs_usb_rx_offload(dev, skb, hf);
744 }
745
746 can_rx_offload_irq_finish(&dev->offload);
747
748 resubmit_urb:
749 usb_fill_bulk_urb(urb, parent->udev,
750 parent->pipe_in,
751 hf, parent->hf_size_rx,
752 gs_usb_receive_bulk_callback, parent);
753
754 usb_anchor_urb(urb, &parent->rx_submitted);
755
756 rc = usb_submit_urb(urb, GFP_ATOMIC);
757
758 /* USB failure take down all interfaces */
759 if (rc == -ENODEV) {
760 device_detach:
761 for (rc = 0; rc < parent->channel_cnt; rc++) {
762 if (parent->canch[rc])
763 netif_device_detach(parent->canch[rc]->netdev);
764 }
765 }
766 }
767
gs_usb_set_bittiming(struct net_device * netdev)768 static int gs_usb_set_bittiming(struct net_device *netdev)
769 {
770 struct gs_can *dev = netdev_priv(netdev);
771 struct can_bittiming *bt = &dev->can.bittiming;
772 struct gs_device_bittiming dbt = {
773 .prop_seg = cpu_to_le32(bt->prop_seg),
774 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
775 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
776 .sjw = cpu_to_le32(bt->sjw),
777 .brp = cpu_to_le32(bt->brp),
778 };
779
780 /* request bit timings */
781 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_BITTIMING,
782 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
783 dev->channel, 0, &dbt, sizeof(dbt), 1000,
784 GFP_KERNEL);
785 }
786
gs_usb_set_data_bittiming(struct net_device * netdev)787 static int gs_usb_set_data_bittiming(struct net_device *netdev)
788 {
789 struct gs_can *dev = netdev_priv(netdev);
790 struct can_bittiming *bt = &dev->can.fd.data_bittiming;
791 struct gs_device_bittiming dbt = {
792 .prop_seg = cpu_to_le32(bt->prop_seg),
793 .phase_seg1 = cpu_to_le32(bt->phase_seg1),
794 .phase_seg2 = cpu_to_le32(bt->phase_seg2),
795 .sjw = cpu_to_le32(bt->sjw),
796 .brp = cpu_to_le32(bt->brp),
797 };
798 u8 request = GS_USB_BREQ_DATA_BITTIMING;
799
800 if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO)
801 request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING;
802
803 /* request data bit timings */
804 return usb_control_msg_send(dev->udev, 0, request,
805 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
806 dev->channel, 0, &dbt, sizeof(dbt), 1000,
807 GFP_KERNEL);
808 }
809
gs_usb_xmit_callback(struct urb * urb)810 static void gs_usb_xmit_callback(struct urb *urb)
811 {
812 struct gs_tx_context *txc = urb->context;
813 struct gs_can *dev = txc->dev;
814 struct net_device *netdev = dev->netdev;
815
816 if (!urb->status)
817 return;
818
819 if (urb->status != -ESHUTDOWN && net_ratelimit())
820 netdev_info(netdev, "failed to xmit URB %u: %pe\n",
821 txc->echo_id, ERR_PTR(urb->status));
822
823 netdev->stats.tx_dropped++;
824 netdev->stats.tx_errors++;
825
826 can_free_echo_skb(netdev, txc->echo_id, NULL);
827 gs_free_tx_context(txc);
828 atomic_dec(&dev->active_tx_urbs);
829
830 netif_wake_queue(netdev);
831 }
832
gs_can_start_xmit(struct sk_buff * skb,struct net_device * netdev)833 static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb,
834 struct net_device *netdev)
835 {
836 struct gs_can *dev = netdev_priv(netdev);
837 struct net_device_stats *stats = &dev->netdev->stats;
838 struct urb *urb;
839 struct gs_host_frame *hf;
840 struct can_frame *cf;
841 struct canfd_frame *cfd;
842 int rc;
843 unsigned int idx;
844 struct gs_tx_context *txc;
845
846 if (can_dev_dropped_skb(netdev, skb))
847 return NETDEV_TX_OK;
848
849 /* find an empty context to keep track of transmission */
850 txc = gs_alloc_tx_context(dev);
851 if (!txc)
852 return NETDEV_TX_BUSY;
853
854 /* create a URB, and a buffer for it */
855 urb = usb_alloc_urb(0, GFP_ATOMIC);
856 if (!urb)
857 goto nomem_urb;
858
859 hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC);
860 if (!hf)
861 goto nomem_hf;
862
863 idx = txc->echo_id;
864
865 if (idx >= GS_MAX_TX_URBS) {
866 netdev_err(netdev, "Invalid tx context %u\n", idx);
867 goto badidx;
868 }
869
870 hf->echo_id = idx;
871 hf->channel = dev->channel;
872 hf->flags = 0;
873 hf->reserved = 0;
874
875 if (can_is_canfd_skb(skb)) {
876 cfd = (struct canfd_frame *)skb->data;
877
878 hf->can_id = cpu_to_le32(cfd->can_id);
879 hf->can_dlc = can_fd_len2dlc(cfd->len);
880 hf->flags |= GS_CAN_FLAG_FD;
881 if (cfd->flags & CANFD_BRS)
882 hf->flags |= GS_CAN_FLAG_BRS;
883 if (cfd->flags & CANFD_ESI)
884 hf->flags |= GS_CAN_FLAG_ESI;
885
886 memcpy(hf->canfd->data, cfd->data, cfd->len);
887 } else {
888 cf = (struct can_frame *)skb->data;
889
890 hf->can_id = cpu_to_le32(cf->can_id);
891 hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode);
892
893 memcpy(hf->classic_can->data, cf->data, cf->len);
894 }
895
896 usb_fill_bulk_urb(urb, dev->udev,
897 dev->parent->pipe_out,
898 hf, dev->hf_size_tx,
899 gs_usb_xmit_callback, txc);
900
901 urb->transfer_flags |= URB_FREE_BUFFER;
902 usb_anchor_urb(urb, &dev->tx_submitted);
903
904 can_put_echo_skb(skb, netdev, idx, 0);
905
906 atomic_inc(&dev->active_tx_urbs);
907
908 rc = usb_submit_urb(urb, GFP_ATOMIC);
909 if (unlikely(rc)) { /* usb send failed */
910 atomic_dec(&dev->active_tx_urbs);
911
912 can_free_echo_skb(netdev, idx, NULL);
913 gs_free_tx_context(txc);
914
915 usb_unanchor_urb(urb);
916
917 if (rc == -ENODEV) {
918 netif_device_detach(netdev);
919 } else {
920 netdev_err(netdev, "usb_submit failed (err=%d)\n", rc);
921 stats->tx_dropped++;
922 }
923 } else {
924 /* Slow down tx path */
925 if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS)
926 netif_stop_queue(netdev);
927 }
928
929 /* let usb core take care of this urb */
930 usb_free_urb(urb);
931
932 return NETDEV_TX_OK;
933
934 badidx:
935 kfree(hf);
936 nomem_hf:
937 usb_free_urb(urb);
938
939 nomem_urb:
940 gs_free_tx_context(txc);
941 dev_kfree_skb(skb);
942 stats->tx_dropped++;
943 return NETDEV_TX_OK;
944 }
945
gs_can_open(struct net_device * netdev)946 static int gs_can_open(struct net_device *netdev)
947 {
948 struct gs_can *dev = netdev_priv(netdev);
949 struct gs_usb *parent = dev->parent;
950 struct gs_device_mode dm = {
951 .mode = cpu_to_le32(GS_CAN_MODE_START),
952 };
953 struct gs_host_frame *hf;
954 struct urb *urb = NULL;
955 u32 ctrlmode;
956 u32 flags = 0;
957 int rc, i;
958
959 rc = open_candev(netdev);
960 if (rc)
961 return rc;
962
963 ctrlmode = dev->can.ctrlmode;
964 if (ctrlmode & CAN_CTRLMODE_FD) {
965 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
966 dev->hf_size_tx = struct_size(hf, canfd_quirk, 1);
967 else
968 dev->hf_size_tx = struct_size(hf, canfd, 1);
969 } else {
970 if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX)
971 dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1);
972 else
973 dev->hf_size_tx = struct_size(hf, classic_can, 1);
974 }
975
976 can_rx_offload_enable(&dev->offload);
977
978 if (!parent->active_channels) {
979 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
980 gs_usb_timestamp_init(parent);
981
982 for (i = 0; i < GS_MAX_RX_URBS; i++) {
983 u8 *buf;
984
985 /* alloc rx urb */
986 urb = usb_alloc_urb(0, GFP_KERNEL);
987 if (!urb) {
988 rc = -ENOMEM;
989 goto out_usb_kill_anchored_urbs;
990 }
991
992 /* alloc rx buffer */
993 buf = kmalloc(dev->parent->hf_size_rx,
994 GFP_KERNEL);
995 if (!buf) {
996 rc = -ENOMEM;
997 goto out_usb_free_urb;
998 }
999
1000 /* fill, anchor, and submit rx urb */
1001 usb_fill_bulk_urb(urb,
1002 dev->udev,
1003 dev->parent->pipe_in,
1004 buf,
1005 dev->parent->hf_size_rx,
1006 gs_usb_receive_bulk_callback, parent);
1007 urb->transfer_flags |= URB_FREE_BUFFER;
1008
1009 usb_anchor_urb(urb, &parent->rx_submitted);
1010
1011 rc = usb_submit_urb(urb, GFP_KERNEL);
1012 if (rc) {
1013 if (rc == -ENODEV)
1014 netif_device_detach(dev->netdev);
1015
1016 netdev_err(netdev,
1017 "usb_submit_urb() failed, error %pe\n",
1018 ERR_PTR(rc));
1019
1020 goto out_usb_unanchor_urb;
1021 }
1022
1023 /* Drop reference,
1024 * USB core will take care of freeing it
1025 */
1026 usb_free_urb(urb);
1027 }
1028 }
1029
1030 /* flags */
1031 if (ctrlmode & CAN_CTRLMODE_LOOPBACK)
1032 flags |= GS_CAN_MODE_LOOP_BACK;
1033
1034 if (ctrlmode & CAN_CTRLMODE_LISTENONLY)
1035 flags |= GS_CAN_MODE_LISTEN_ONLY;
1036
1037 if (ctrlmode & CAN_CTRLMODE_3_SAMPLES)
1038 flags |= GS_CAN_MODE_TRIPLE_SAMPLE;
1039
1040 if (ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1041 flags |= GS_CAN_MODE_ONE_SHOT;
1042
1043 if (ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
1044 flags |= GS_CAN_MODE_BERR_REPORTING;
1045
1046 if (ctrlmode & CAN_CTRLMODE_FD)
1047 flags |= GS_CAN_MODE_FD;
1048
1049 /* if hardware supports timestamps, enable it */
1050 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1051 flags |= GS_CAN_MODE_HW_TIMESTAMP;
1052
1053 /* finally start device */
1054 dev->can.state = CAN_STATE_ERROR_ACTIVE;
1055 dm.flags = cpu_to_le32(flags);
1056 rc = usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_MODE,
1057 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1058 dev->channel, 0, &dm, sizeof(dm), 1000,
1059 GFP_KERNEL);
1060 if (rc) {
1061 netdev_err(netdev, "Couldn't start device (err=%d)\n", rc);
1062 dev->can.state = CAN_STATE_STOPPED;
1063
1064 goto out_usb_kill_anchored_urbs;
1065 }
1066
1067 parent->active_channels++;
1068 if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY))
1069 netif_start_queue(netdev);
1070
1071 return 0;
1072
1073 out_usb_unanchor_urb:
1074 usb_unanchor_urb(urb);
1075 out_usb_free_urb:
1076 usb_free_urb(urb);
1077 out_usb_kill_anchored_urbs:
1078 if (!parent->active_channels) {
1079 usb_kill_anchored_urbs(&parent->rx_submitted);
1080
1081 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1082 gs_usb_timestamp_stop(parent);
1083 }
1084
1085 can_rx_offload_disable(&dev->offload);
1086 close_candev(netdev);
1087
1088 return rc;
1089 }
1090
gs_usb_get_state(const struct net_device * netdev,struct can_berr_counter * bec,enum can_state * state)1091 static int gs_usb_get_state(const struct net_device *netdev,
1092 struct can_berr_counter *bec,
1093 enum can_state *state)
1094 {
1095 struct gs_can *dev = netdev_priv(netdev);
1096 struct gs_device_state ds;
1097 int rc;
1098
1099 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_STATE,
1100 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1101 dev->channel, 0,
1102 &ds, sizeof(ds),
1103 USB_CTRL_GET_TIMEOUT,
1104 GFP_KERNEL);
1105 if (rc)
1106 return rc;
1107
1108 if (le32_to_cpu(ds.state) >= CAN_STATE_MAX)
1109 return -EOPNOTSUPP;
1110
1111 *state = le32_to_cpu(ds.state);
1112 bec->txerr = le32_to_cpu(ds.txerr);
1113 bec->rxerr = le32_to_cpu(ds.rxerr);
1114
1115 return 0;
1116 }
1117
gs_usb_can_get_berr_counter(const struct net_device * netdev,struct can_berr_counter * bec)1118 static int gs_usb_can_get_berr_counter(const struct net_device *netdev,
1119 struct can_berr_counter *bec)
1120 {
1121 enum can_state state;
1122
1123 return gs_usb_get_state(netdev, bec, &state);
1124 }
1125
gs_can_close(struct net_device * netdev)1126 static int gs_can_close(struct net_device *netdev)
1127 {
1128 int rc;
1129 struct gs_can *dev = netdev_priv(netdev);
1130 struct gs_usb *parent = dev->parent;
1131
1132 netif_stop_queue(netdev);
1133
1134 /* Stop polling */
1135 parent->active_channels--;
1136 if (!parent->active_channels) {
1137 usb_kill_anchored_urbs(&parent->rx_submitted);
1138
1139 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1140 gs_usb_timestamp_stop(parent);
1141 }
1142
1143 /* Stop sending URBs */
1144 usb_kill_anchored_urbs(&dev->tx_submitted);
1145 atomic_set(&dev->active_tx_urbs, 0);
1146
1147 dev->can.state = CAN_STATE_STOPPED;
1148
1149 /* reset the device */
1150 gs_cmd_reset(dev);
1151
1152 /* reset tx contexts */
1153 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1154 dev->tx_context[rc].dev = dev;
1155 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1156 }
1157
1158 can_rx_offload_disable(&dev->offload);
1159
1160 /* close the netdev */
1161 close_candev(netdev);
1162
1163 return 0;
1164 }
1165
gs_can_hwtstamp_get(struct net_device * netdev,struct kernel_hwtstamp_config * cfg)1166 static int gs_can_hwtstamp_get(struct net_device *netdev,
1167 struct kernel_hwtstamp_config *cfg)
1168 {
1169 const struct gs_can *dev = netdev_priv(netdev);
1170
1171 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1172 return can_hwtstamp_get(netdev, cfg);
1173
1174 return -EOPNOTSUPP;
1175 }
1176
gs_can_hwtstamp_set(struct net_device * netdev,struct kernel_hwtstamp_config * cfg,struct netlink_ext_ack * extack)1177 static int gs_can_hwtstamp_set(struct net_device *netdev,
1178 struct kernel_hwtstamp_config *cfg,
1179 struct netlink_ext_ack *extack)
1180 {
1181 const struct gs_can *dev = netdev_priv(netdev);
1182
1183 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1184 return can_hwtstamp_set(netdev, cfg, extack);
1185
1186 return -EOPNOTSUPP;
1187 }
1188
1189 static const struct net_device_ops gs_usb_netdev_ops = {
1190 .ndo_open = gs_can_open,
1191 .ndo_stop = gs_can_close,
1192 .ndo_start_xmit = gs_can_start_xmit,
1193 .ndo_hwtstamp_get = gs_can_hwtstamp_get,
1194 .ndo_hwtstamp_set = gs_can_hwtstamp_set,
1195 };
1196
gs_usb_set_identify(struct net_device * netdev,bool do_identify)1197 static int gs_usb_set_identify(struct net_device *netdev, bool do_identify)
1198 {
1199 struct gs_can *dev = netdev_priv(netdev);
1200 struct gs_identify_mode imode;
1201
1202 if (do_identify)
1203 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON);
1204 else
1205 imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF);
1206
1207 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_IDENTIFY,
1208 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1209 dev->channel, 0, &imode, sizeof(imode), 100,
1210 GFP_KERNEL);
1211 }
1212
1213 /* blink LED's for finding the this interface */
gs_usb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1214 static int gs_usb_set_phys_id(struct net_device *netdev,
1215 enum ethtool_phys_id_state state)
1216 {
1217 const struct gs_can *dev = netdev_priv(netdev);
1218 int rc = 0;
1219
1220 if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY))
1221 return -EOPNOTSUPP;
1222
1223 switch (state) {
1224 case ETHTOOL_ID_ACTIVE:
1225 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON);
1226 break;
1227 case ETHTOOL_ID_INACTIVE:
1228 rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF);
1229 break;
1230 default:
1231 break;
1232 }
1233
1234 return rc;
1235 }
1236
gs_usb_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)1237 static int gs_usb_get_ts_info(struct net_device *netdev,
1238 struct kernel_ethtool_ts_info *info)
1239 {
1240 struct gs_can *dev = netdev_priv(netdev);
1241
1242 /* report if device supports HW timestamps */
1243 if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1244 return can_ethtool_op_get_ts_info_hwts(netdev, info);
1245
1246 return ethtool_op_get_ts_info(netdev, info);
1247 }
1248
1249 static const struct ethtool_ops gs_usb_ethtool_ops = {
1250 .set_phys_id = gs_usb_set_phys_id,
1251 .get_ts_info = gs_usb_get_ts_info,
1252 };
1253
gs_usb_get_termination(struct net_device * netdev,u16 * term)1254 static int gs_usb_get_termination(struct net_device *netdev, u16 *term)
1255 {
1256 struct gs_can *dev = netdev_priv(netdev);
1257 struct gs_device_termination_state term_state;
1258 int rc;
1259
1260 rc = usb_control_msg_recv(dev->udev, 0, GS_USB_BREQ_GET_TERMINATION,
1261 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1262 dev->channel, 0,
1263 &term_state, sizeof(term_state), 1000,
1264 GFP_KERNEL);
1265 if (rc)
1266 return rc;
1267
1268 if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON))
1269 *term = GS_USB_TERMINATION_ENABLED;
1270 else
1271 *term = GS_USB_TERMINATION_DISABLED;
1272
1273 return 0;
1274 }
1275
gs_usb_set_termination(struct net_device * netdev,u16 term)1276 static int gs_usb_set_termination(struct net_device *netdev, u16 term)
1277 {
1278 struct gs_can *dev = netdev_priv(netdev);
1279 struct gs_device_termination_state term_state;
1280
1281 if (term == GS_USB_TERMINATION_ENABLED)
1282 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON);
1283 else
1284 term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF);
1285
1286 return usb_control_msg_send(dev->udev, 0, GS_USB_BREQ_SET_TERMINATION,
1287 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1288 dev->channel, 0,
1289 &term_state, sizeof(term_state), 1000,
1290 GFP_KERNEL);
1291 }
1292
1293 static const u16 gs_usb_termination_const[] = {
1294 GS_USB_TERMINATION_DISABLED,
1295 GS_USB_TERMINATION_ENABLED
1296 };
1297
gs_make_candev(unsigned int channel,struct usb_interface * intf,struct gs_device_config * dconf)1298 static struct gs_can *gs_make_candev(unsigned int channel,
1299 struct usb_interface *intf,
1300 struct gs_device_config *dconf)
1301 {
1302 struct gs_can *dev;
1303 struct net_device *netdev;
1304 int rc;
1305 struct gs_device_bt_const_extended bt_const_extended;
1306 struct gs_device_bt_const bt_const;
1307 u32 feature;
1308
1309 /* fetch bit timing constants */
1310 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1311 GS_USB_BREQ_BT_CONST,
1312 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1313 channel, 0, &bt_const, sizeof(bt_const), 1000,
1314 GFP_KERNEL);
1315
1316 if (rc) {
1317 dev_err(&intf->dev,
1318 "Couldn't get bit timing const for channel %d (%pe)\n",
1319 channel, ERR_PTR(rc));
1320 return ERR_PTR(rc);
1321 }
1322
1323 /* create netdev */
1324 netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
1325 if (!netdev) {
1326 dev_err(&intf->dev, "Couldn't allocate candev\n");
1327 return ERR_PTR(-ENOMEM);
1328 }
1329
1330 dev = netdev_priv(netdev);
1331
1332 netdev->netdev_ops = &gs_usb_netdev_ops;
1333 netdev->ethtool_ops = &gs_usb_ethtool_ops;
1334
1335 netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */
1336 netdev->dev_id = channel;
1337 netdev->dev_port = channel;
1338
1339 /* dev setup */
1340 strcpy(dev->bt_const.name, KBUILD_MODNAME);
1341 dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min);
1342 dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max);
1343 dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min);
1344 dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max);
1345 dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max);
1346 dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min);
1347 dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max);
1348 dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc);
1349
1350 dev->udev = interface_to_usbdev(intf);
1351 dev->netdev = netdev;
1352 dev->channel = channel;
1353
1354 init_usb_anchor(&dev->tx_submitted);
1355 atomic_set(&dev->active_tx_urbs, 0);
1356 spin_lock_init(&dev->tx_ctx_lock);
1357 for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
1358 dev->tx_context[rc].dev = dev;
1359 dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
1360 }
1361
1362 /* can setup */
1363 dev->can.state = CAN_STATE_STOPPED;
1364 dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can);
1365 dev->can.bittiming_const = &dev->bt_const;
1366 dev->can.do_set_bittiming = gs_usb_set_bittiming;
1367
1368 dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC;
1369
1370 feature = le32_to_cpu(bt_const.feature);
1371 dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature);
1372 if (feature & GS_CAN_FEATURE_LISTEN_ONLY)
1373 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;
1374
1375 if (feature & GS_CAN_FEATURE_LOOP_BACK)
1376 dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;
1377
1378 if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
1379 dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;
1380
1381 if (feature & GS_CAN_FEATURE_ONE_SHOT)
1382 dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
1383
1384 if (feature & GS_CAN_FEATURE_FD) {
1385 dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1386 /* The data bit timing will be overwritten, if
1387 * GS_CAN_FEATURE_BT_CONST_EXT is set.
1388 */
1389 dev->can.fd.data_bittiming_const = &dev->bt_const;
1390 dev->can.fd.do_set_data_bittiming = gs_usb_set_data_bittiming;
1391 }
1392
1393 if (feature & GS_CAN_FEATURE_TERMINATION) {
1394 rc = gs_usb_get_termination(netdev, &dev->can.termination);
1395 if (rc) {
1396 dev->feature &= ~GS_CAN_FEATURE_TERMINATION;
1397
1398 dev_info(&intf->dev,
1399 "Disabling termination support for channel %d (%pe)\n",
1400 channel, ERR_PTR(rc));
1401 } else {
1402 dev->can.termination_const = gs_usb_termination_const;
1403 dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const);
1404 dev->can.do_set_termination = gs_usb_set_termination;
1405 }
1406 }
1407
1408 if (feature & GS_CAN_FEATURE_BERR_REPORTING)
1409 dev->can.ctrlmode_supported |= CAN_CTRLMODE_BERR_REPORTING;
1410
1411 if (feature & GS_CAN_FEATURE_GET_STATE)
1412 dev->can.do_get_berr_counter = gs_usb_can_get_berr_counter;
1413
1414 /* The CANtact Pro from LinkLayer Labs is based on the
1415 * LPC54616 µC, which is affected by the NXP LPC USB transfer
1416 * erratum. However, the current firmware (version 2) doesn't
1417 * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the
1418 * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround
1419 * this issue.
1420 *
1421 * For the GS_USB_BREQ_DATA_BITTIMING USB control message the
1422 * CANtact Pro firmware uses a request value, which is already
1423 * used by the candleLight firmware for a different purpose
1424 * (GS_USB_BREQ_GET_USER_ID). Set the feature
1425 * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this
1426 * issue.
1427 */
1428 if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) &&
1429 dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) &&
1430 dev->udev->manufacturer && dev->udev->product &&
1431 !strcmp(dev->udev->manufacturer, "LinkLayer Labs") &&
1432 !strcmp(dev->udev->product, "CANtact Pro") &&
1433 (le32_to_cpu(dconf->sw_version) <= 2))
1434 dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX |
1435 GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO;
1436
1437 /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */
1438 if (!(le32_to_cpu(dconf->sw_version) > 1 &&
1439 feature & GS_CAN_FEATURE_IDENTIFY))
1440 dev->feature &= ~GS_CAN_FEATURE_IDENTIFY;
1441
1442 /* fetch extended bit timing constants if device has feature
1443 * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT
1444 */
1445 if (feature & GS_CAN_FEATURE_FD &&
1446 feature & GS_CAN_FEATURE_BT_CONST_EXT) {
1447 rc = usb_control_msg_recv(interface_to_usbdev(intf), 0,
1448 GS_USB_BREQ_BT_CONST_EXT,
1449 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1450 channel, 0, &bt_const_extended,
1451 sizeof(bt_const_extended),
1452 1000, GFP_KERNEL);
1453 if (rc) {
1454 dev_err(&intf->dev,
1455 "Couldn't get extended bit timing const for channel %d (%pe)\n",
1456 channel, ERR_PTR(rc));
1457 goto out_free_candev;
1458 }
1459
1460 strcpy(dev->data_bt_const.name, KBUILD_MODNAME);
1461 dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min);
1462 dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max);
1463 dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min);
1464 dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max);
1465 dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max);
1466 dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min);
1467 dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max);
1468 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc);
1469
1470 dev->can.fd.data_bittiming_const = &dev->data_bt_const;
1471 }
1472
1473 can_rx_offload_add_manual(netdev, &dev->offload, GS_NAPI_WEIGHT);
1474 SET_NETDEV_DEV(netdev, &intf->dev);
1475
1476 rc = register_candev(dev->netdev);
1477 if (rc) {
1478 dev_err(&intf->dev,
1479 "Couldn't register candev for channel %d (%pe)\n",
1480 channel, ERR_PTR(rc));
1481 goto out_can_rx_offload_del;
1482 }
1483
1484 return dev;
1485
1486 out_can_rx_offload_del:
1487 can_rx_offload_del(&dev->offload);
1488 out_free_candev:
1489 free_candev(dev->netdev);
1490 return ERR_PTR(rc);
1491 }
1492
gs_destroy_candev(struct gs_can * dev)1493 static void gs_destroy_candev(struct gs_can *dev)
1494 {
1495 unregister_candev(dev->netdev);
1496 can_rx_offload_del(&dev->offload);
1497 free_candev(dev->netdev);
1498 }
1499
gs_usb_probe(struct usb_interface * intf,const struct usb_device_id * id)1500 static int gs_usb_probe(struct usb_interface *intf,
1501 const struct usb_device_id *id)
1502 {
1503 struct usb_device *udev = interface_to_usbdev(intf);
1504 struct usb_endpoint_descriptor *ep_in, *ep_out;
1505 struct gs_host_frame *hf;
1506 struct gs_usb *parent;
1507 struct gs_host_config hconf = {
1508 .byte_order = cpu_to_le32(0x0000beef),
1509 };
1510 struct gs_device_config dconf;
1511 unsigned int icount, i;
1512 int rc;
1513
1514 rc = usb_find_common_endpoints(intf->cur_altsetting,
1515 &ep_in, &ep_out, NULL, NULL);
1516 if (rc) {
1517 dev_err(&intf->dev, "Required endpoints not found\n");
1518 return rc;
1519 }
1520
1521 /* send host config */
1522 rc = usb_control_msg_send(udev, 0,
1523 GS_USB_BREQ_HOST_FORMAT,
1524 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1525 1, intf->cur_altsetting->desc.bInterfaceNumber,
1526 &hconf, sizeof(hconf), 1000,
1527 GFP_KERNEL);
1528 if (rc) {
1529 dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc);
1530 return rc;
1531 }
1532
1533 /* read device config */
1534 rc = usb_control_msg_recv(udev, 0,
1535 GS_USB_BREQ_DEVICE_CONFIG,
1536 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
1537 1, intf->cur_altsetting->desc.bInterfaceNumber,
1538 &dconf, sizeof(dconf), 1000,
1539 GFP_KERNEL);
1540 if (rc) {
1541 dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
1542 rc);
1543 return rc;
1544 }
1545
1546 icount = dconf.icount + 1;
1547 dev_info(&intf->dev, "Configuring for %u interfaces\n", icount);
1548
1549 if (icount > type_max(parent->channel_cnt)) {
1550 dev_err(&intf->dev,
1551 "Driver cannot handle more that %u CAN interfaces\n",
1552 type_max(parent->channel_cnt));
1553 return -EINVAL;
1554 }
1555
1556 parent = kzalloc(struct_size(parent, canch, icount), GFP_KERNEL);
1557 if (!parent)
1558 return -ENOMEM;
1559
1560 parent->channel_cnt = icount;
1561
1562 init_usb_anchor(&parent->rx_submitted);
1563
1564 usb_set_intfdata(intf, parent);
1565 parent->udev = udev;
1566
1567 /* store the detected endpoints */
1568 parent->pipe_in = usb_rcvbulkpipe(parent->udev, ep_in->bEndpointAddress);
1569 parent->pipe_out = usb_sndbulkpipe(parent->udev, ep_out->bEndpointAddress);
1570
1571 for (i = 0; i < icount; i++) {
1572 unsigned int hf_size_rx = 0;
1573
1574 parent->canch[i] = gs_make_candev(i, intf, &dconf);
1575 if (IS_ERR_OR_NULL(parent->canch[i])) {
1576 /* save error code to return later */
1577 rc = PTR_ERR(parent->canch[i]);
1578
1579 /* on failure destroy previously created candevs */
1580 icount = i;
1581 for (i = 0; i < icount; i++)
1582 gs_destroy_candev(parent->canch[i]);
1583
1584 usb_kill_anchored_urbs(&parent->rx_submitted);
1585 kfree(parent);
1586 return rc;
1587 }
1588 parent->canch[i]->parent = parent;
1589
1590 /* set RX packet size based on FD and if hardware
1591 * timestamps are supported.
1592 */
1593 if (parent->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) {
1594 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1595 hf_size_rx = struct_size(hf, canfd_ts, 1);
1596 else
1597 hf_size_rx = struct_size(hf, canfd, 1);
1598 } else {
1599 if (parent->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP)
1600 hf_size_rx = struct_size(hf, classic_can_ts, 1);
1601 else
1602 hf_size_rx = struct_size(hf, classic_can, 1);
1603 }
1604 parent->hf_size_rx = max(parent->hf_size_rx, hf_size_rx);
1605 }
1606
1607 return 0;
1608 }
1609
gs_usb_disconnect(struct usb_interface * intf)1610 static void gs_usb_disconnect(struct usb_interface *intf)
1611 {
1612 struct gs_usb *parent = usb_get_intfdata(intf);
1613 unsigned int i;
1614
1615 usb_set_intfdata(intf, NULL);
1616
1617 if (!parent) {
1618 dev_err(&intf->dev, "Disconnect (nodata)\n");
1619 return;
1620 }
1621
1622 for (i = 0; i < parent->channel_cnt; i++)
1623 if (parent->canch[i])
1624 gs_destroy_candev(parent->canch[i]);
1625
1626 kfree(parent);
1627 }
1628
1629 static const struct usb_device_id gs_usb_table[] = {
1630 { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID,
1631 USB_GS_USB_1_PRODUCT_ID, 0) },
1632 { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID,
1633 USB_CANDLELIGHT_PRODUCT_ID, 0) },
1634 { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID,
1635 USB_CES_CANEXT_FD_PRODUCT_ID, 0) },
1636 { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID,
1637 USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) },
1638 { USB_DEVICE_INTERFACE_NUMBER(USB_XYLANTA_SAINT3_VENDOR_ID,
1639 USB_XYLANTA_SAINT3_PRODUCT_ID, 0) },
1640 { USB_DEVICE_INTERFACE_NUMBER(USB_CANNECTIVITY_VENDOR_ID,
1641 USB_CANNECTIVITY_PRODUCT_ID, 0) },
1642 {} /* Terminating entry */
1643 };
1644
1645 MODULE_DEVICE_TABLE(usb, gs_usb_table);
1646
1647 static struct usb_driver gs_usb_driver = {
1648 .name = KBUILD_MODNAME,
1649 .probe = gs_usb_probe,
1650 .disconnect = gs_usb_disconnect,
1651 .id_table = gs_usb_table,
1652 };
1653
1654 module_usb_driver(gs_usb_driver);
1655
1656 MODULE_AUTHOR("Maximilian Schneider <mws@schneidersoft.net>");
1657 MODULE_DESCRIPTION(
1658 "Socket CAN device driver for Geschwister Schneider Technologie-, "
1659 "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n"
1660 "and bytewerk.org candleLight USB CAN interfaces.");
1661 MODULE_LICENSE("GPL v2");
1662