xref: /linux/drivers/cpufreq/powernv-cpufreq.c (revision 2be6a7503d32eb1d60b4c9c15547a10d4ec9a934)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * POWERNV cpufreq driver for the IBM POWER processors
4  *
5  * (C) Copyright IBM 2014
6  *
7  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8  */
9 
10 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
18 #include <linux/of.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/string_choices.h>
22 #include <linux/cpu.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
27 #include <asm/reg.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29 #include <asm/opal.h>
30 #include <linux/timer.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "powernv-trace.h"
34 
35 #define POWERNV_MAX_PSTATES_ORDER  8
36 #define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
37 #define PMSR_PSAFE_ENABLE	(1UL << 30)
38 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
39 #define MAX_PSTATE_SHIFT	32
40 #define LPSTATE_SHIFT		48
41 #define GPSTATE_SHIFT		56
42 #define MAX_NR_CHIPS		32
43 
44 #define MAX_RAMP_DOWN_TIME				5120
45 /*
46  * On an idle system we want the global pstate to ramp-down from max value to
47  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
48  * then ramp-down rapidly later on.
49  *
50  * This gives a percentage rampdown for time elapsed in milliseconds.
51  * ramp_down_percentage = ((ms * ms) >> 18)
52  *			~= 3.8 * (sec * sec)
53  *
54  * At 0 ms	ramp_down_percent = 0
55  * At 5120 ms	ramp_down_percent = 100
56  */
57 #define ramp_down_percent(time)		((time * time) >> 18)
58 
59 /* Interval after which the timer is queued to bring down global pstate */
60 #define GPSTATE_TIMER_INTERVAL				2000
61 
62 /**
63  * struct global_pstate_info -	Per policy data structure to maintain history of
64  *				global pstates
65  * @highest_lpstate_idx:	The local pstate index from which we are
66  *				ramping down
67  * @elapsed_time:		Time in ms spent in ramping down from
68  *				highest_lpstate_idx
69  * @last_sampled_time:		Time from boot in ms when global pstates were
70  *				last set
71  * @last_lpstate_idx:		Last set value of local pstate and global
72  * @last_gpstate_idx:		pstate in terms of cpufreq table index
73  * @timer:			Is used for ramping down if cpu goes idle for
74  *				a long time with global pstate held high
75  * @gpstate_lock:		A spinlock to maintain synchronization between
76  *				routines called by the timer handler and
77  *				governer's target_index calls
78  * @policy:			Associated CPUFreq policy
79  */
80 struct global_pstate_info {
81 	int highest_lpstate_idx;
82 	unsigned int elapsed_time;
83 	unsigned int last_sampled_time;
84 	int last_lpstate_idx;
85 	int last_gpstate_idx;
86 	spinlock_t gpstate_lock;
87 	struct timer_list timer;
88 	struct cpufreq_policy *policy;
89 };
90 
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 
93 static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
94 /**
95  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
96  *				  indexed by a function of pstate id.
97  *
98  * @pstate_id: pstate id for this entry.
99  *
100  * @cpufreq_table_idx: Index into the powernv_freqs
101  *		       cpufreq_frequency_table for frequency
102  *		       corresponding to pstate_id.
103  *
104  * @hentry: hlist_node that hooks this entry into the pstate_revmap
105  *	    hashtable
106  */
107 struct pstate_idx_revmap_data {
108 	u8 pstate_id;
109 	unsigned int cpufreq_table_idx;
110 	struct hlist_node hentry;
111 };
112 
113 static bool rebooting, throttled, occ_reset;
114 
115 static const char * const throttle_reason[] = {
116 	"No throttling",
117 	"Power Cap",
118 	"Processor Over Temperature",
119 	"Power Supply Failure",
120 	"Over Current",
121 	"OCC Reset"
122 };
123 
124 enum throttle_reason_type {
125 	NO_THROTTLE = 0,
126 	POWERCAP,
127 	CPU_OVERTEMP,
128 	POWER_SUPPLY_FAILURE,
129 	OVERCURRENT,
130 	OCC_RESET_THROTTLE,
131 	OCC_MAX_REASON
132 };
133 
134 static struct chip {
135 	unsigned int id;
136 	bool throttled;
137 	bool restore;
138 	u8 throttle_reason;
139 	cpumask_t mask;
140 	struct work_struct throttle;
141 	int throttle_turbo;
142 	int throttle_sub_turbo;
143 	int reason[OCC_MAX_REASON];
144 } *chips;
145 
146 static int nr_chips;
147 static DEFINE_PER_CPU(struct chip *, chip_info);
148 
149 /*
150  * Note:
151  * The set of pstates consists of contiguous integers.
152  * powernv_pstate_info stores the index of the frequency table for
153  * max, min and nominal frequencies. It also stores number of
154  * available frequencies.
155  *
156  * powernv_pstate_info.nominal indicates the index to the highest
157  * non-turbo frequency.
158  */
159 static struct powernv_pstate_info {
160 	unsigned int min;
161 	unsigned int max;
162 	unsigned int nominal;
163 	unsigned int nr_pstates;
164 	bool wof_enabled;
165 } powernv_pstate_info;
166 
extract_pstate(u64 pmsr_val,unsigned int shift)167 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
168 {
169 	return ((pmsr_val >> shift) & 0xFF);
170 }
171 
172 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
173 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
174 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
175 
176 /* Use following functions for conversions between pstate_id and index */
177 
178 /*
179  * idx_to_pstate : Returns the pstate id corresponding to the
180  *		   frequency in the cpufreq frequency table
181  *		   powernv_freqs indexed by @i.
182  *
183  *		   If @i is out of bound, this will return the pstate
184  *		   corresponding to the nominal frequency.
185  */
idx_to_pstate(unsigned int i)186 static inline u8 idx_to_pstate(unsigned int i)
187 {
188 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
189 		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
190 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
191 	}
192 
193 	return powernv_freqs[i].driver_data;
194 }
195 
196 /*
197  * pstate_to_idx : Returns the index in the cpufreq frequencytable
198  *		   powernv_freqs for the frequency whose corresponding
199  *		   pstate id is @pstate.
200  *
201  *		   If no frequency corresponding to @pstate is found,
202  *		   this will return the index of the nominal
203  *		   frequency.
204  */
pstate_to_idx(u8 pstate)205 static unsigned int pstate_to_idx(u8 pstate)
206 {
207 	unsigned int key = pstate % POWERNV_MAX_PSTATES;
208 	struct pstate_idx_revmap_data *revmap_data;
209 
210 	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
211 		if (revmap_data->pstate_id == pstate)
212 			return revmap_data->cpufreq_table_idx;
213 	}
214 
215 	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
216 	return powernv_pstate_info.nominal;
217 }
218 
reset_gpstates(struct cpufreq_policy * policy)219 static inline void reset_gpstates(struct cpufreq_policy *policy)
220 {
221 	struct global_pstate_info *gpstates = policy->driver_data;
222 
223 	gpstates->highest_lpstate_idx = 0;
224 	gpstates->elapsed_time = 0;
225 	gpstates->last_sampled_time = 0;
226 	gpstates->last_lpstate_idx = 0;
227 	gpstates->last_gpstate_idx = 0;
228 }
229 
230 /*
231  * Initialize the freq table based on data obtained
232  * from the firmware passed via device-tree
233  */
init_powernv_pstates(void)234 static int init_powernv_pstates(void)
235 {
236 	struct device_node *power_mgt;
237 	int i, nr_pstates = 0;
238 	const __be32 *pstate_ids, *pstate_freqs;
239 	u32 len_ids, len_freqs;
240 	u32 pstate_min, pstate_max, pstate_nominal;
241 	u32 pstate_turbo, pstate_ultra_turbo;
242 	int rc = -ENODEV;
243 
244 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
245 	if (!power_mgt) {
246 		pr_warn("power-mgt node not found\n");
247 		return -ENODEV;
248 	}
249 
250 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
251 		pr_warn("ibm,pstate-min node not found\n");
252 		goto out;
253 	}
254 
255 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
256 		pr_warn("ibm,pstate-max node not found\n");
257 		goto out;
258 	}
259 
260 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
261 				 &pstate_nominal)) {
262 		pr_warn("ibm,pstate-nominal not found\n");
263 		goto out;
264 	}
265 
266 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
267 				 &pstate_ultra_turbo)) {
268 		powernv_pstate_info.wof_enabled = false;
269 		goto next;
270 	}
271 
272 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
273 				 &pstate_turbo)) {
274 		powernv_pstate_info.wof_enabled = false;
275 		goto next;
276 	}
277 
278 	if (pstate_turbo == pstate_ultra_turbo)
279 		powernv_pstate_info.wof_enabled = false;
280 	else
281 		powernv_pstate_info.wof_enabled = true;
282 
283 next:
284 	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
285 		pstate_nominal, pstate_max);
286 	pr_info("Workload Optimized Frequency is %s in the platform\n",
287 		str_enabled_disabled(powernv_pstate_info.wof_enabled));
288 
289 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
290 	if (!pstate_ids) {
291 		pr_warn("ibm,pstate-ids not found\n");
292 		goto out;
293 	}
294 
295 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
296 				      &len_freqs);
297 	if (!pstate_freqs) {
298 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
299 		goto out;
300 	}
301 
302 	if (len_ids != len_freqs) {
303 		pr_warn("Entries in ibm,pstate-ids and "
304 			"ibm,pstate-frequencies-mhz does not match\n");
305 	}
306 
307 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
308 	if (!nr_pstates) {
309 		pr_warn("No PStates found\n");
310 		goto out;
311 	}
312 
313 	powernv_pstate_info.nr_pstates = nr_pstates;
314 	pr_debug("NR PStates %d\n", nr_pstates);
315 
316 	for (i = 0; i < nr_pstates; i++) {
317 		u32 id = be32_to_cpu(pstate_ids[i]);
318 		u32 freq = be32_to_cpu(pstate_freqs[i]);
319 		struct pstate_idx_revmap_data *revmap_data;
320 		unsigned int key;
321 
322 		pr_debug("PState id %d freq %d MHz\n", id, freq);
323 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
324 		powernv_freqs[i].driver_data = id & 0xFF;
325 
326 		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
327 		if (!revmap_data) {
328 			rc = -ENOMEM;
329 			goto out;
330 		}
331 
332 		revmap_data->pstate_id = id & 0xFF;
333 		revmap_data->cpufreq_table_idx = i;
334 		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
335 		hash_add(pstate_revmap, &revmap_data->hentry, key);
336 
337 		if (id == pstate_max)
338 			powernv_pstate_info.max = i;
339 		if (id == pstate_nominal)
340 			powernv_pstate_info.nominal = i;
341 		if (id == pstate_min)
342 			powernv_pstate_info.min = i;
343 
344 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
345 			int j;
346 
347 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
348 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
349 		}
350 	}
351 
352 	/* End of list marker entry */
353 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
354 
355 	of_node_put(power_mgt);
356 	return 0;
357 out:
358 	of_node_put(power_mgt);
359 	return rc;
360 }
361 
362 /* Returns the CPU frequency corresponding to the pstate_id. */
pstate_id_to_freq(u8 pstate_id)363 static unsigned int pstate_id_to_freq(u8 pstate_id)
364 {
365 	int i;
366 
367 	i = pstate_to_idx(pstate_id);
368 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
369 		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
370 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
371 		i = powernv_pstate_info.nominal;
372 	}
373 
374 	return powernv_freqs[i].frequency;
375 }
376 
377 /*
378  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
379  * the firmware
380  */
cpuinfo_nominal_freq_show(struct cpufreq_policy * policy,char * buf)381 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
382 					char *buf)
383 {
384 	return sprintf(buf, "%u\n",
385 		powernv_freqs[powernv_pstate_info.nominal].frequency);
386 }
387 
388 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
389 	__ATTR_RO(cpuinfo_nominal_freq);
390 
391 static struct freq_attr *powernv_cpu_freq_attr[] = {
392 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
393 	NULL,
394 };
395 
396 #define throttle_attr(name, member)					\
397 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
398 {									\
399 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
400 									\
401 	return sprintf(buf, "%u\n", chip->member);			\
402 }									\
403 									\
404 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
405 
406 throttle_attr(unthrottle, reason[NO_THROTTLE]);
407 throttle_attr(powercap, reason[POWERCAP]);
408 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
409 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
410 throttle_attr(overcurrent, reason[OVERCURRENT]);
411 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
412 throttle_attr(turbo_stat, throttle_turbo);
413 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
414 
415 static struct attribute *throttle_attrs[] = {
416 	&throttle_attr_unthrottle.attr,
417 	&throttle_attr_powercap.attr,
418 	&throttle_attr_overtemp.attr,
419 	&throttle_attr_supply_fault.attr,
420 	&throttle_attr_overcurrent.attr,
421 	&throttle_attr_occ_reset.attr,
422 	&throttle_attr_turbo_stat.attr,
423 	&throttle_attr_sub_turbo_stat.attr,
424 	NULL,
425 };
426 
427 static const struct attribute_group throttle_attr_grp = {
428 	.name	= "throttle_stats",
429 	.attrs	= throttle_attrs,
430 };
431 
432 /* Helper routines */
433 
434 /* Access helpers to power mgt SPR */
435 
get_pmspr(unsigned long sprn)436 static inline unsigned long get_pmspr(unsigned long sprn)
437 {
438 	switch (sprn) {
439 	case SPRN_PMCR:
440 		return mfspr(SPRN_PMCR);
441 
442 	case SPRN_PMICR:
443 		return mfspr(SPRN_PMICR);
444 
445 	case SPRN_PMSR:
446 		return mfspr(SPRN_PMSR);
447 	}
448 	BUG();
449 }
450 
set_pmspr(unsigned long sprn,unsigned long val)451 static inline void set_pmspr(unsigned long sprn, unsigned long val)
452 {
453 	switch (sprn) {
454 	case SPRN_PMCR:
455 		mtspr(SPRN_PMCR, val);
456 		return;
457 
458 	case SPRN_PMICR:
459 		mtspr(SPRN_PMICR, val);
460 		return;
461 	}
462 	BUG();
463 }
464 
465 /*
466  * Use objects of this type to query/update
467  * pstates on a remote CPU via smp_call_function.
468  */
469 struct powernv_smp_call_data {
470 	unsigned int freq;
471 	u8 pstate_id;
472 	u8 gpstate_id;
473 };
474 
475 /*
476  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
477  *
478  * Called via smp_call_function.
479  *
480  * Note: The caller of the smp_call_function should pass an argument of
481  * the type 'struct powernv_smp_call_data *' along with this function.
482  *
483  * The current frequency on this CPU will be returned via
484  * ((struct powernv_smp_call_data *)arg)->freq;
485  */
powernv_read_cpu_freq(void * arg)486 static void powernv_read_cpu_freq(void *arg)
487 {
488 	unsigned long pmspr_val;
489 	struct powernv_smp_call_data *freq_data = arg;
490 
491 	pmspr_val = get_pmspr(SPRN_PMSR);
492 	freq_data->pstate_id = extract_local_pstate(pmspr_val);
493 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
494 
495 	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
496 		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
497 		 freq_data->freq);
498 }
499 
500 /*
501  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
502  * firmware for CPU 'cpu'. This value is reported through the sysfs
503  * file cpuinfo_cur_freq.
504  */
powernv_cpufreq_get(unsigned int cpu)505 static unsigned int powernv_cpufreq_get(unsigned int cpu)
506 {
507 	struct powernv_smp_call_data freq_data;
508 
509 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
510 			&freq_data, 1);
511 
512 	return freq_data.freq;
513 }
514 
515 /*
516  * set_pstate: Sets the pstate on this CPU.
517  *
518  * This is called via an smp_call_function.
519  *
520  * The caller must ensure that freq_data is of the type
521  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
522  * on this CPU should be present in freq_data->pstate_id.
523  */
set_pstate(void * data)524 static void set_pstate(void *data)
525 {
526 	unsigned long val;
527 	struct powernv_smp_call_data *freq_data = data;
528 	unsigned long pstate_ul = freq_data->pstate_id;
529 	unsigned long gpstate_ul = freq_data->gpstate_id;
530 
531 	val = get_pmspr(SPRN_PMCR);
532 	val = val & 0x0000FFFFFFFFFFFFULL;
533 
534 	pstate_ul = pstate_ul & 0xFF;
535 	gpstate_ul = gpstate_ul & 0xFF;
536 
537 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
538 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
539 
540 	pr_debug("Setting cpu %d pmcr to %016lX\n",
541 			raw_smp_processor_id(), val);
542 	set_pmspr(SPRN_PMCR, val);
543 }
544 
545 /*
546  * get_nominal_index: Returns the index corresponding to the nominal
547  * pstate in the cpufreq table
548  */
get_nominal_index(void)549 static inline unsigned int get_nominal_index(void)
550 {
551 	return powernv_pstate_info.nominal;
552 }
553 
powernv_cpufreq_throttle_check(void * data)554 static void powernv_cpufreq_throttle_check(void *data)
555 {
556 	struct chip *chip;
557 	unsigned int cpu = smp_processor_id();
558 	unsigned long pmsr;
559 	u8 pmsr_pmax;
560 	unsigned int pmsr_pmax_idx;
561 
562 	pmsr = get_pmspr(SPRN_PMSR);
563 	chip = this_cpu_read(chip_info);
564 
565 	/* Check for Pmax Capping */
566 	pmsr_pmax = extract_max_pstate(pmsr);
567 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
568 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
569 		if (chip->throttled)
570 			goto next;
571 		chip->throttled = true;
572 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
573 			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
574 				     cpu, chip->id, pmsr_pmax,
575 				     idx_to_pstate(powernv_pstate_info.nominal));
576 			chip->throttle_sub_turbo++;
577 		} else {
578 			chip->throttle_turbo++;
579 		}
580 		trace_powernv_throttle(chip->id,
581 				      throttle_reason[chip->throttle_reason],
582 				      pmsr_pmax);
583 	} else if (chip->throttled) {
584 		chip->throttled = false;
585 		trace_powernv_throttle(chip->id,
586 				      throttle_reason[chip->throttle_reason],
587 				      pmsr_pmax);
588 	}
589 
590 	/* Check if Psafe_mode_active is set in PMSR. */
591 next:
592 	if (pmsr & PMSR_PSAFE_ENABLE) {
593 		throttled = true;
594 		pr_info("Pstate set to safe frequency\n");
595 	}
596 
597 	/* Check if SPR_EM_DISABLE is set in PMSR */
598 	if (pmsr & PMSR_SPR_EM_DISABLE) {
599 		throttled = true;
600 		pr_info("Frequency Control disabled from OS\n");
601 	}
602 
603 	if (throttled) {
604 		pr_info("PMSR = %16lx\n", pmsr);
605 		pr_warn("CPU Frequency could be throttled\n");
606 	}
607 }
608 
609 /**
610  * calc_global_pstate - Calculate global pstate
611  * @elapsed_time:		Elapsed time in milliseconds
612  * @local_pstate_idx:		New local pstate
613  * @highest_lpstate_idx:	pstate from which its ramping down
614  *
615  * Finds the appropriate global pstate based on the pstate from which its
616  * ramping down and the time elapsed in ramping down. It follows a quadratic
617  * equation which ensures that it reaches ramping down to pmin in 5sec.
618  */
calc_global_pstate(unsigned int elapsed_time,int highest_lpstate_idx,int local_pstate_idx)619 static inline int calc_global_pstate(unsigned int elapsed_time,
620 				     int highest_lpstate_idx,
621 				     int local_pstate_idx)
622 {
623 	int index_diff;
624 
625 	/*
626 	 * Using ramp_down_percent we get the percentage of rampdown
627 	 * that we are expecting to be dropping. Difference between
628 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
629 	 * number of how many pstates we will drop eventually by the end of
630 	 * 5 seconds, then just scale it get the number pstates to be dropped.
631 	 */
632 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
633 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
634 
635 	/* Ensure that global pstate is >= to local pstate */
636 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
637 		return local_pstate_idx;
638 	else
639 		return highest_lpstate_idx + index_diff;
640 }
641 
queue_gpstate_timer(struct global_pstate_info * gpstates)642 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
643 {
644 	unsigned int timer_interval;
645 
646 	/*
647 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
648 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
649 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
650 	 * seconds of ramp down time.
651 	 */
652 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
653 	     > MAX_RAMP_DOWN_TIME)
654 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
655 	else
656 		timer_interval = GPSTATE_TIMER_INTERVAL;
657 
658 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
659 }
660 
661 /**
662  * gpstate_timer_handler
663  *
664  * @t: Timer context used to fetch global pstate info struct
665  *
666  * This handler brings down the global pstate closer to the local pstate
667  * according quadratic equation. Queues a new timer if it is still not equal
668  * to local pstate
669  */
gpstate_timer_handler(struct timer_list * t)670 static void gpstate_timer_handler(struct timer_list *t)
671 {
672 	struct global_pstate_info *gpstates = timer_container_of(gpstates, t,
673 								 timer);
674 	struct cpufreq_policy *policy = gpstates->policy;
675 	int gpstate_idx, lpstate_idx;
676 	unsigned long val;
677 	unsigned int time_diff = jiffies_to_msecs(jiffies)
678 					- gpstates->last_sampled_time;
679 	struct powernv_smp_call_data freq_data;
680 
681 	if (!spin_trylock(&gpstates->gpstate_lock))
682 		return;
683 	/*
684 	 * If the timer has migrated to the different cpu then bring
685 	 * it back to one of the policy->cpus
686 	 */
687 	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
688 		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
689 		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
690 		spin_unlock(&gpstates->gpstate_lock);
691 		return;
692 	}
693 
694 	/*
695 	 * If PMCR was last updated was using fast_switch then
696 	 * We may have wrong in gpstate->last_lpstate_idx
697 	 * value. Hence, read from PMCR to get correct data.
698 	 */
699 	val = get_pmspr(SPRN_PMCR);
700 	freq_data.gpstate_id = extract_global_pstate(val);
701 	freq_data.pstate_id = extract_local_pstate(val);
702 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
703 		reset_gpstates(policy);
704 		spin_unlock(&gpstates->gpstate_lock);
705 		return;
706 	}
707 
708 	gpstates->last_sampled_time += time_diff;
709 	gpstates->elapsed_time += time_diff;
710 
711 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
712 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
713 		lpstate_idx = gpstate_idx;
714 		reset_gpstates(policy);
715 		gpstates->highest_lpstate_idx = gpstate_idx;
716 	} else {
717 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
718 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
719 						 gpstates->highest_lpstate_idx,
720 						 lpstate_idx);
721 	}
722 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
723 	gpstates->last_gpstate_idx = gpstate_idx;
724 	gpstates->last_lpstate_idx = lpstate_idx;
725 	/*
726 	 * If local pstate is equal to global pstate, rampdown is over
727 	 * So timer is not required to be queued.
728 	 */
729 	if (gpstate_idx != gpstates->last_lpstate_idx)
730 		queue_gpstate_timer(gpstates);
731 
732 	set_pstate(&freq_data);
733 	spin_unlock(&gpstates->gpstate_lock);
734 }
735 
736 /*
737  * powernv_cpufreq_target_index: Sets the frequency corresponding to
738  * the cpufreq table entry indexed by new_index on the cpus in the
739  * mask policy->cpus
740  */
powernv_cpufreq_target_index(struct cpufreq_policy * policy,unsigned int new_index)741 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742 					unsigned int new_index)
743 {
744 	struct powernv_smp_call_data freq_data;
745 	unsigned int cur_msec, gpstate_idx;
746 	struct global_pstate_info *gpstates = policy->driver_data;
747 
748 	if (unlikely(rebooting) && new_index != get_nominal_index())
749 		return 0;
750 
751 	if (!throttled) {
752 		/* we don't want to be preempted while
753 		 * checking if the CPU frequency has been throttled
754 		 */
755 		preempt_disable();
756 		powernv_cpufreq_throttle_check(NULL);
757 		preempt_enable();
758 	}
759 
760 	cur_msec = jiffies_to_msecs(get_jiffies_64());
761 
762 	freq_data.pstate_id = idx_to_pstate(new_index);
763 	if (!gpstates) {
764 		freq_data.gpstate_id = freq_data.pstate_id;
765 		goto no_gpstate;
766 	}
767 
768 	spin_lock(&gpstates->gpstate_lock);
769 
770 	if (!gpstates->last_sampled_time) {
771 		gpstate_idx = new_index;
772 		gpstates->highest_lpstate_idx = new_index;
773 		goto gpstates_done;
774 	}
775 
776 	if (gpstates->last_gpstate_idx < new_index) {
777 		gpstates->elapsed_time += cur_msec -
778 						 gpstates->last_sampled_time;
779 
780 		/*
781 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782 		 * we should be resetting all global pstate related data. Set it
783 		 * equal to local pstate to start fresh.
784 		 */
785 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
786 			reset_gpstates(policy);
787 			gpstates->highest_lpstate_idx = new_index;
788 			gpstate_idx = new_index;
789 		} else {
790 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
791 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
792 							 gpstates->highest_lpstate_idx,
793 							 new_index);
794 		}
795 	} else {
796 		reset_gpstates(policy);
797 		gpstates->highest_lpstate_idx = new_index;
798 		gpstate_idx = new_index;
799 	}
800 
801 	/*
802 	 * If local pstate is equal to global pstate, rampdown is over
803 	 * So timer is not required to be queued.
804 	 */
805 	if (gpstate_idx != new_index)
806 		queue_gpstate_timer(gpstates);
807 	else
808 		timer_delete_sync(&gpstates->timer);
809 
810 gpstates_done:
811 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
812 	gpstates->last_sampled_time = cur_msec;
813 	gpstates->last_gpstate_idx = gpstate_idx;
814 	gpstates->last_lpstate_idx = new_index;
815 
816 	spin_unlock(&gpstates->gpstate_lock);
817 
818 no_gpstate:
819 	/*
820 	 * Use smp_call_function to send IPI and execute the
821 	 * mtspr on target CPU.  We could do that without IPI
822 	 * if current CPU is within policy->cpus (core)
823 	 */
824 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
825 	return 0;
826 }
827 
powernv_cpufreq_cpu_init(struct cpufreq_policy * policy)828 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
829 {
830 	int base, i;
831 	struct kernfs_node *kn;
832 	struct global_pstate_info *gpstates;
833 
834 	base = cpu_first_thread_sibling(policy->cpu);
835 
836 	for (i = 0; i < threads_per_core; i++)
837 		cpumask_set_cpu(base + i, policy->cpus);
838 
839 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
840 	if (!kn) {
841 		int ret;
842 
843 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
844 		if (ret) {
845 			pr_info("Failed to create throttle stats directory for cpu %d\n",
846 				policy->cpu);
847 			return ret;
848 		}
849 	} else {
850 		kernfs_put(kn);
851 	}
852 
853 	policy->freq_table = powernv_freqs;
854 	policy->fast_switch_possible = true;
855 
856 	if (pvr_version_is(PVR_POWER9))
857 		return 0;
858 
859 	/* Initialise Gpstate ramp-down timer only on POWER8 */
860 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
861 	if (!gpstates)
862 		return -ENOMEM;
863 
864 	policy->driver_data = gpstates;
865 
866 	/* initialize timer */
867 	gpstates->policy = policy;
868 	timer_setup(&gpstates->timer, gpstate_timer_handler,
869 		    TIMER_PINNED | TIMER_DEFERRABLE);
870 	gpstates->timer.expires = jiffies +
871 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
872 	spin_lock_init(&gpstates->gpstate_lock);
873 
874 	return 0;
875 }
876 
powernv_cpufreq_cpu_exit(struct cpufreq_policy * policy)877 static void powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878 {
879 	struct powernv_smp_call_data freq_data;
880 	struct global_pstate_info *gpstates = policy->driver_data;
881 
882 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
883 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
884 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
885 	if (gpstates)
886 		timer_delete_sync(&gpstates->timer);
887 
888 	kfree(policy->driver_data);
889 }
890 
powernv_cpufreq_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)891 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
892 				unsigned long action, void *unused)
893 {
894 	int cpu;
895 	struct cpufreq_policy *cpu_policy;
896 
897 	rebooting = true;
898 	for_each_online_cpu(cpu) {
899 		cpu_policy = cpufreq_cpu_get(cpu);
900 		if (!cpu_policy)
901 			continue;
902 		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
903 		cpufreq_cpu_put(cpu_policy);
904 	}
905 
906 	return NOTIFY_DONE;
907 }
908 
909 static struct notifier_block powernv_cpufreq_reboot_nb = {
910 	.notifier_call = powernv_cpufreq_reboot_notifier,
911 };
912 
powernv_cpufreq_work_fn(struct work_struct * work)913 static void powernv_cpufreq_work_fn(struct work_struct *work)
914 {
915 	struct chip *chip = container_of(work, struct chip, throttle);
916 	struct cpufreq_policy *policy;
917 	unsigned int cpu;
918 	cpumask_t mask;
919 
920 	cpus_read_lock();
921 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
922 	smp_call_function_any(&mask,
923 			      powernv_cpufreq_throttle_check, NULL, 0);
924 
925 	if (!chip->restore)
926 		goto out;
927 
928 	chip->restore = false;
929 	for_each_cpu(cpu, &mask) {
930 		int index;
931 
932 		policy = cpufreq_cpu_get(cpu);
933 		if (!policy)
934 			continue;
935 		index = cpufreq_table_find_index_c(policy, policy->cur, false);
936 		powernv_cpufreq_target_index(policy, index);
937 		cpumask_andnot(&mask, &mask, policy->cpus);
938 		cpufreq_cpu_put(policy);
939 	}
940 out:
941 	cpus_read_unlock();
942 }
943 
powernv_cpufreq_occ_msg(struct notifier_block * nb,unsigned long msg_type,void * _msg)944 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
945 				   unsigned long msg_type, void *_msg)
946 {
947 	struct opal_msg *msg = _msg;
948 	struct opal_occ_msg omsg;
949 	int i;
950 
951 	if (msg_type != OPAL_MSG_OCC)
952 		return 0;
953 
954 	omsg.type = be64_to_cpu(msg->params[0]);
955 
956 	switch (omsg.type) {
957 	case OCC_RESET:
958 		occ_reset = true;
959 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
960 		/*
961 		 * powernv_cpufreq_throttle_check() is called in
962 		 * target() callback which can detect the throttle state
963 		 * for governors like ondemand.
964 		 * But static governors will not call target() often thus
965 		 * report throttling here.
966 		 */
967 		if (!throttled) {
968 			throttled = true;
969 			pr_warn("CPU frequency is throttled for duration\n");
970 		}
971 
972 		break;
973 	case OCC_LOAD:
974 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
975 		break;
976 	case OCC_THROTTLE:
977 		omsg.chip = be64_to_cpu(msg->params[1]);
978 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
979 
980 		if (occ_reset) {
981 			occ_reset = false;
982 			throttled = false;
983 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
984 
985 			for (i = 0; i < nr_chips; i++) {
986 				chips[i].restore = true;
987 				schedule_work(&chips[i].throttle);
988 			}
989 
990 			return 0;
991 		}
992 
993 		for (i = 0; i < nr_chips; i++)
994 			if (chips[i].id == omsg.chip)
995 				break;
996 
997 		if (omsg.throttle_status >= 0 &&
998 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
999 			chips[i].throttle_reason = omsg.throttle_status;
1000 			chips[i].reason[omsg.throttle_status]++;
1001 		}
1002 
1003 		if (!omsg.throttle_status)
1004 			chips[i].restore = true;
1005 
1006 		schedule_work(&chips[i].throttle);
1007 	}
1008 	return 0;
1009 }
1010 
1011 static struct notifier_block powernv_cpufreq_opal_nb = {
1012 	.notifier_call	= powernv_cpufreq_occ_msg,
1013 	.next		= NULL,
1014 	.priority	= 0,
1015 };
1016 
powernv_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1017 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1018 					unsigned int target_freq)
1019 {
1020 	int index;
1021 	struct powernv_smp_call_data freq_data;
1022 
1023 	index = cpufreq_table_find_index_dl(policy, target_freq, false);
1024 	freq_data.pstate_id = powernv_freqs[index].driver_data;
1025 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1026 	set_pstate(&freq_data);
1027 
1028 	return powernv_freqs[index].frequency;
1029 }
1030 
1031 static struct cpufreq_driver powernv_cpufreq_driver = {
1032 	.name		= "powernv-cpufreq",
1033 	.flags		= CPUFREQ_CONST_LOOPS,
1034 	.init		= powernv_cpufreq_cpu_init,
1035 	.exit		= powernv_cpufreq_cpu_exit,
1036 	.verify		= cpufreq_generic_frequency_table_verify,
1037 	.target_index	= powernv_cpufreq_target_index,
1038 	.fast_switch	= powernv_fast_switch,
1039 	.get		= powernv_cpufreq_get,
1040 	.attr		= powernv_cpu_freq_attr,
1041 };
1042 
init_chip_info(void)1043 static int init_chip_info(void)
1044 {
1045 	unsigned int *chip;
1046 	unsigned int cpu, i;
1047 	unsigned int prev_chip_id = UINT_MAX;
1048 	cpumask_t *chip_cpu_mask;
1049 	int ret = 0;
1050 
1051 	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1052 	if (!chip)
1053 		return -ENOMEM;
1054 
1055 	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1056 	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1057 	if (!chip_cpu_mask) {
1058 		ret = -ENOMEM;
1059 		goto free_and_return;
1060 	}
1061 
1062 	for_each_possible_cpu(cpu) {
1063 		unsigned int id = cpu_to_chip_id(cpu);
1064 
1065 		if (prev_chip_id != id) {
1066 			prev_chip_id = id;
1067 			chip[nr_chips++] = id;
1068 		}
1069 		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1070 	}
1071 
1072 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1073 	if (!chips) {
1074 		ret = -ENOMEM;
1075 		goto out_free_chip_cpu_mask;
1076 	}
1077 
1078 	for (i = 0; i < nr_chips; i++) {
1079 		chips[i].id = chip[i];
1080 		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1081 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1082 		for_each_cpu(cpu, &chips[i].mask)
1083 			per_cpu(chip_info, cpu) =  &chips[i];
1084 	}
1085 
1086 out_free_chip_cpu_mask:
1087 	kfree(chip_cpu_mask);
1088 free_and_return:
1089 	kfree(chip);
1090 	return ret;
1091 }
1092 
clean_chip_info(void)1093 static inline void clean_chip_info(void)
1094 {
1095 	int i;
1096 
1097 	/* flush any pending work items */
1098 	if (chips)
1099 		for (i = 0; i < nr_chips; i++)
1100 			cancel_work_sync(&chips[i].throttle);
1101 	kfree(chips);
1102 }
1103 
unregister_all_notifiers(void)1104 static inline void unregister_all_notifiers(void)
1105 {
1106 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1107 					 &powernv_cpufreq_opal_nb);
1108 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1109 }
1110 
powernv_cpufreq_init(void)1111 static int __init powernv_cpufreq_init(void)
1112 {
1113 	int rc = 0;
1114 
1115 	/* Don't probe on pseries (guest) platforms */
1116 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1117 		return -ENODEV;
1118 
1119 	/* Discover pstates from device tree and init */
1120 	rc = init_powernv_pstates();
1121 	if (rc)
1122 		goto out;
1123 
1124 	/* Populate chip info */
1125 	rc = init_chip_info();
1126 	if (rc)
1127 		goto out;
1128 
1129 	if (powernv_pstate_info.wof_enabled)
1130 		powernv_cpufreq_driver.set_boost = cpufreq_boost_set_sw;
1131 
1132 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1133 	if (rc) {
1134 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1135 		goto cleanup;
1136 	}
1137 
1138 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1139 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1140 
1141 	return 0;
1142 cleanup:
1143 	clean_chip_info();
1144 out:
1145 	pr_info("Platform driver disabled. System does not support PState control\n");
1146 	return rc;
1147 }
1148 module_init(powernv_cpufreq_init);
1149 
powernv_cpufreq_exit(void)1150 static void __exit powernv_cpufreq_exit(void)
1151 {
1152 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1153 	unregister_all_notifiers();
1154 	clean_chip_info();
1155 }
1156 module_exit(powernv_cpufreq_exit);
1157 
1158 MODULE_DESCRIPTION("cpufreq driver for IBM/OpenPOWER powernv systems");
1159 MODULE_LICENSE("GPL");
1160 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1161