1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GPMC support functions
4 *
5 * Copyright (C) 2005-2006 Nokia Corporation
6 *
7 * Author: Juha Yrjola
8 *
9 * Copyright (C) 2009 Texas Instruments
10 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11 */
12 #include <linux/cleanup.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/ioport.h>
21 #include <linux/spinlock.h>
22 #include <linux/io.h>
23 #include <linux/gpio/driver.h>
24 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
25 #include <linux/gpio/machine.h>
26 #include <linux/interrupt.h>
27 #include <linux/irqdomain.h>
28 #include <linux/platform_device.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/of_platform.h>
33 #include <linux/omap-gpmc.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/sizes.h>
36
37 #include <linux/platform_data/mtd-nand-omap2.h>
38
39 #define DEVICE_NAME "omap-gpmc"
40
41 /* GPMC register offsets */
42 #define GPMC_REVISION 0x00
43 #define GPMC_SYSCONFIG 0x10
44 #define GPMC_SYSSTATUS 0x14
45 #define GPMC_IRQSTATUS 0x18
46 #define GPMC_IRQENABLE 0x1c
47 #define GPMC_TIMEOUT_CONTROL 0x40
48 #define GPMC_ERR_ADDRESS 0x44
49 #define GPMC_ERR_TYPE 0x48
50 #define GPMC_CONFIG 0x50
51 #define GPMC_STATUS 0x54
52 #define GPMC_PREFETCH_CONFIG1 0x1e0
53 #define GPMC_PREFETCH_CONFIG2 0x1e4
54 #define GPMC_PREFETCH_CONTROL 0x1ec
55 #define GPMC_PREFETCH_STATUS 0x1f0
56 #define GPMC_ECC_CONFIG 0x1f4
57 #define GPMC_ECC_CONTROL 0x1f8
58 #define GPMC_ECC_SIZE_CONFIG 0x1fc
59 #define GPMC_ECC1_RESULT 0x200
60 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
61 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
62 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
63 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
64 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
65 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
66 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
67
68 /* GPMC ECC control settings */
69 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
70 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
71 #define GPMC_ECC_CTRL_ECCREG1 0x001
72 #define GPMC_ECC_CTRL_ECCREG2 0x002
73 #define GPMC_ECC_CTRL_ECCREG3 0x003
74 #define GPMC_ECC_CTRL_ECCREG4 0x004
75 #define GPMC_ECC_CTRL_ECCREG5 0x005
76 #define GPMC_ECC_CTRL_ECCREG6 0x006
77 #define GPMC_ECC_CTRL_ECCREG7 0x007
78 #define GPMC_ECC_CTRL_ECCREG8 0x008
79 #define GPMC_ECC_CTRL_ECCREG9 0x009
80
81 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
82
83 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
84
85 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
86 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
87 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
88 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
89 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
90 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
91
92 #define GPMC_CS0_OFFSET 0x60
93 #define GPMC_CS_SIZE 0x30
94 #define GPMC_BCH_SIZE 0x10
95
96 /*
97 * The first 1MB of GPMC address space is typically mapped to
98 * the internal ROM. Never allocate the first page, to
99 * facilitate bug detection; even if we didn't boot from ROM.
100 * As GPMC minimum partition size is 16MB we can only start from
101 * there.
102 */
103 #define GPMC_MEM_START 0x1000000
104 #define GPMC_MEM_END 0x3FFFFFFF
105
106 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
107 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
108
109 #define CS_NUM_SHIFT 24
110 #define ENABLE_PREFETCH (0x1 << 7)
111 #define DMA_MPU_MODE 2
112
113 #define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf)
114 #define GPMC_REVISION_MINOR(l) ((l) & 0xf)
115
116 #define GPMC_HAS_WR_ACCESS 0x1
117 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2
118 #define GPMC_HAS_MUX_AAD 0x4
119
120 #define GPMC_NR_WAITPINS 4
121
122 #define GPMC_CS_CONFIG1 0x00
123 #define GPMC_CS_CONFIG2 0x04
124 #define GPMC_CS_CONFIG3 0x08
125 #define GPMC_CS_CONFIG4 0x0c
126 #define GPMC_CS_CONFIG5 0x10
127 #define GPMC_CS_CONFIG6 0x14
128 #define GPMC_CS_CONFIG7 0x18
129 #define GPMC_CS_NAND_COMMAND 0x1c
130 #define GPMC_CS_NAND_ADDRESS 0x20
131 #define GPMC_CS_NAND_DATA 0x24
132
133 /* Control Commands */
134 #define GPMC_CONFIG_RDY_BSY 0x00000001
135 #define GPMC_CONFIG_DEV_SIZE 0x00000002
136 #define GPMC_CONFIG_DEV_TYPE 0x00000003
137
138 #define GPMC_CONFIG_WAITPINPOLARITY(pin) (BIT(pin) << 8)
139 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
140 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
141 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
142 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
143 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
144 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
145 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
146 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
147 /** CLKACTIVATIONTIME Max Ticks */
148 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
149 #define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23)
150 /** ATTACHEDDEVICEPAGELENGTH Max Value */
151 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
152 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
153 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
154 #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
155 /** WAITMONITORINGTIME Max Ticks */
156 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
157 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16)
158 #define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12)
159 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
160 /** DEVICESIZE Max Value */
161 #define GPMC_CONFIG1_DEVICESIZE_MAX 1
162 #define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10)
163 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
164 #define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8)
165 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
166 #define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3)
167 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
168 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
169 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
170 #define GPMC_CONFIG7_CSVALID (1 << 6)
171
172 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
173 #define GPMC_CONFIG7_CSVALID_MASK BIT(6)
174 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
175 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
176 /* All CONFIG7 bits except reserved bits */
177 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
178 GPMC_CONFIG7_CSVALID_MASK | \
179 GPMC_CONFIG7_MASKADDRESS_MASK)
180
181 #define GPMC_DEVICETYPE_NOR 0
182 #define GPMC_DEVICETYPE_NAND 2
183 #define GPMC_CONFIG_WRITEPROTECT 0x00000010
184 #define WR_RD_PIN_MONITORING 0x00600000
185
186 /* ECC commands */
187 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
188 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
189 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
190
191 #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
192
193 enum gpmc_clk_domain {
194 GPMC_CD_FCLK,
195 GPMC_CD_CLK
196 };
197
198 struct gpmc_cs_data {
199 const char *name;
200
201 #define GPMC_CS_RESERVED (1 << 0)
202 u32 flags;
203
204 struct resource mem;
205 };
206
207 /* Structure to save gpmc cs context */
208 struct gpmc_cs_config {
209 u32 config1;
210 u32 config2;
211 u32 config3;
212 u32 config4;
213 u32 config5;
214 u32 config6;
215 u32 config7;
216 int is_valid;
217 };
218
219 /*
220 * Structure to save/restore gpmc context
221 * to support core off on OMAP3
222 */
223 struct omap3_gpmc_regs {
224 u32 sysconfig;
225 u32 irqenable;
226 u32 timeout_ctrl;
227 u32 config;
228 u32 prefetch_config1;
229 u32 prefetch_config2;
230 u32 prefetch_control;
231 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
232 };
233
234 struct gpmc_waitpin {
235 u32 pin;
236 u32 polarity;
237 struct gpio_desc *desc;
238 };
239
240 struct gpmc_device {
241 struct device *dev;
242 int irq;
243 struct irq_chip irq_chip;
244 struct gpio_chip gpio_chip;
245 struct notifier_block nb;
246 struct omap3_gpmc_regs context;
247 struct gpmc_waitpin *waitpins;
248 int nirqs;
249 unsigned int is_suspended:1;
250 struct resource *data;
251 };
252
253 static struct irq_domain *gpmc_irq_domain;
254
255 static struct resource gpmc_mem_root;
256 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
257 static DEFINE_SPINLOCK(gpmc_mem_lock);
258 /* Define chip-selects as reserved by default until probe completes */
259 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
260 static unsigned int gpmc_nr_waitpins;
261 static unsigned int gpmc_capability;
262 static void __iomem *gpmc_base;
263
264 static struct clk *gpmc_l3_clk;
265
266 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
267
gpmc_write_reg(int idx,u32 val)268 static void gpmc_write_reg(int idx, u32 val)
269 {
270 writel_relaxed(val, gpmc_base + idx);
271 }
272
gpmc_read_reg(int idx)273 static u32 gpmc_read_reg(int idx)
274 {
275 return readl_relaxed(gpmc_base + idx);
276 }
277
gpmc_cs_write_reg(int cs,int idx,u32 val)278 void gpmc_cs_write_reg(int cs, int idx, u32 val)
279 {
280 void __iomem *reg_addr;
281
282 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
283 writel_relaxed(val, reg_addr);
284 }
285
gpmc_cs_read_reg(int cs,int idx)286 static u32 gpmc_cs_read_reg(int cs, int idx)
287 {
288 void __iomem *reg_addr;
289
290 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
291 return readl_relaxed(reg_addr);
292 }
293
294 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)295 static unsigned long gpmc_get_fclk_period(void)
296 {
297 unsigned long rate = clk_get_rate(gpmc_l3_clk);
298
299 rate /= 1000;
300 rate = 1000000000 / rate; /* In picoseconds */
301
302 return rate;
303 }
304
305 /**
306 * gpmc_get_clk_period - get period of selected clock domain in ps
307 * @cs: Chip Select Region.
308 * @cd: Clock Domain.
309 *
310 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
311 * prior to calling this function with GPMC_CD_CLK.
312 */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)313 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
314 {
315 unsigned long tick_ps = gpmc_get_fclk_period();
316 u32 l;
317 int div;
318
319 switch (cd) {
320 case GPMC_CD_CLK:
321 /* get current clk divider */
322 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
323 div = (l & 0x03) + 1;
324 /* get GPMC_CLK period */
325 tick_ps *= div;
326 break;
327 case GPMC_CD_FCLK:
328 default:
329 break;
330 }
331
332 return tick_ps;
333 }
334
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)335 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
336 enum gpmc_clk_domain cd)
337 {
338 unsigned long tick_ps;
339
340 /* Calculate in picosecs to yield more exact results */
341 tick_ps = gpmc_get_clk_period(cs, cd);
342
343 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
344 }
345
gpmc_ns_to_ticks(unsigned int time_ns)346 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
347 {
348 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
349 }
350
gpmc_ps_to_ticks(unsigned int time_ps)351 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
352 {
353 unsigned long tick_ps;
354
355 /* Calculate in picosecs to yield more exact results */
356 tick_ps = gpmc_get_fclk_period();
357
358 return (time_ps + tick_ps - 1) / tick_ps;
359 }
360
gpmc_ticks_to_ps(unsigned int ticks)361 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
362 {
363 return ticks * gpmc_get_fclk_period();
364 }
365
gpmc_round_ps_to_ticks(unsigned int time_ps)366 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
367 {
368 unsigned long ticks = gpmc_ps_to_ticks(time_ps);
369
370 return ticks * gpmc_get_fclk_period();
371 }
372
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)373 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
374 {
375 u32 l;
376
377 l = gpmc_cs_read_reg(cs, reg);
378 if (value)
379 l |= mask;
380 else
381 l &= ~mask;
382 gpmc_cs_write_reg(cs, reg, l);
383 }
384
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)385 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
386 {
387 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
388 GPMC_CONFIG1_TIME_PARA_GRAN,
389 p->time_para_granularity);
390 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
391 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
392 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
393 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
394 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
395 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
396 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
397 GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
398 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
399 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
400 p->cycle2cyclesamecsen);
401 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
402 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
403 p->cycle2cyclediffcsen);
404 }
405
406 #ifdef CONFIG_OMAP_GPMC_DEBUG
407
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)408 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
409 enum gpmc_clk_domain cd)
410 {
411 return ticks * gpmc_get_clk_period(cs, cd) / 1000;
412 }
413
414 /**
415 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
416 * @cs: Chip Select Region
417 * @reg: GPMC_CS_CONFIGn register offset.
418 * @st_bit: Start Bit
419 * @end_bit: End Bit. Must be >= @st_bit.
420 * @max: Maximum parameter value (before optional @shift).
421 * If 0, maximum is as high as @st_bit and @end_bit allow.
422 * @name: DTS node name, w/o "gpmc,"
423 * @cd: Clock Domain of timing parameter.
424 * @shift: Parameter value left shifts @shift, which is then printed instead of value.
425 * @raw: Raw Format Option.
426 * raw format: gpmc,name = <value>
427 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/
428 * Where x ns -- y ns result in the same tick value.
429 * When @max is exceeded, "invalid" is printed inside comment.
430 * @noval: Parameter values equal to 0 are not printed.
431 * @return: Specified timing parameter (after optional @shift).
432 *
433 */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)434 static int get_gpmc_timing_reg(
435 /* timing specifiers */
436 int cs, int reg, int st_bit, int end_bit, int max,
437 const char *name, const enum gpmc_clk_domain cd,
438 /* value transform */
439 int shift,
440 /* format specifiers */
441 bool raw, bool noval)
442 {
443 u32 l;
444 int nr_bits;
445 int mask;
446 bool invalid;
447
448 l = gpmc_cs_read_reg(cs, reg);
449 nr_bits = end_bit - st_bit + 1;
450 mask = (1 << nr_bits) - 1;
451 l = (l >> st_bit) & mask;
452 if (!max)
453 max = mask;
454 invalid = l > max;
455 if (shift)
456 l = (shift << l);
457 if (noval && (l == 0))
458 return 0;
459 if (!raw) {
460 /* DTS tick format for timings in ns */
461 unsigned int time_ns;
462 unsigned int time_ns_min = 0;
463
464 if (l)
465 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
466 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
467 pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
468 name, time_ns, time_ns_min, time_ns, l,
469 invalid ? "; invalid " : " ");
470 } else {
471 /* raw format */
472 pr_info("gpmc,%s = <%u>;%s\n", name, l,
473 invalid ? " /* invalid */" : "");
474 }
475
476 return l;
477 }
478
479 #define GPMC_PRINT_CONFIG(cs, config) \
480 pr_info("cs%i %s: 0x%08x\n", cs, #config, \
481 gpmc_cs_read_reg(cs, config))
482 #define GPMC_GET_RAW(reg, st, end, field) \
483 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
484 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
485 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
486 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
487 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
488 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
489 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
490 #define GPMC_GET_TICKS(reg, st, end, field) \
491 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
492 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
493 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
494 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
495 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
496
gpmc_show_regs(int cs,const char * desc)497 static void gpmc_show_regs(int cs, const char *desc)
498 {
499 pr_info("gpmc cs%i %s:\n", cs, desc);
500 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
501 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
502 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
503 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
504 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
505 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
506 }
507
508 /*
509 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
510 * see commit c9fb809.
511 */
gpmc_cs_show_timings(int cs,const char * desc)512 static void gpmc_cs_show_timings(int cs, const char *desc)
513 {
514 gpmc_show_regs(cs, desc);
515
516 pr_info("gpmc cs%i access configuration:\n", cs);
517 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
518 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
519 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
520 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
521 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
522 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
523 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
524 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
525 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
526 "burst-length");
527 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
528 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
529 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
530 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
531 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
532
533 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
534
535 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
536
537 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
538 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
539
540 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
541 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
542
543 pr_info("gpmc cs%i timings configuration:\n", cs);
544 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
545 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
546 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
547
548 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
549 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
550 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
551 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
552 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
553 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
554 "adv-aad-mux-rd-off-ns");
555 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
556 "adv-aad-mux-wr-off-ns");
557 }
558
559 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
560 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
561 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
562 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
563 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
564 }
565 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
566 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
567
568 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
569 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
570 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
571
572 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
573
574 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
575 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
576
577 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
578 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
579 "wait-monitoring-ns", GPMC_CD_CLK);
580 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
581 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
582 "clk-activation-ns", GPMC_CD_FCLK);
583
584 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
585 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
586 }
587 #else
gpmc_cs_show_timings(int cs,const char * desc)588 static inline void gpmc_cs_show_timings(int cs, const char *desc)
589 {
590 }
591 #endif
592
593 /**
594 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
595 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
596 * prior to calling this function with @cd equal to GPMC_CD_CLK.
597 *
598 * @cs: Chip Select Region.
599 * @reg: GPMC_CS_CONFIGn register offset.
600 * @st_bit: Start Bit
601 * @end_bit: End Bit. Must be >= @st_bit.
602 * @max: Maximum parameter value.
603 * If 0, maximum is as high as @st_bit and @end_bit allow.
604 * @time: Timing parameter in ns.
605 * @cd: Timing parameter clock domain.
606 * @name: Timing parameter name.
607 * @return: 0 on success, -1 on error.
608 */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)609 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
610 int time, enum gpmc_clk_domain cd, const char *name)
611 {
612 u32 l;
613 int ticks, mask, nr_bits;
614
615 if (time == 0)
616 ticks = 0;
617 else
618 ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
619 nr_bits = end_bit - st_bit + 1;
620 mask = (1 << nr_bits) - 1;
621
622 if (!max)
623 max = mask;
624
625 if (ticks > max) {
626 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
627 __func__, cs, name, time, ticks, max);
628
629 return -1;
630 }
631
632 l = gpmc_cs_read_reg(cs, reg);
633 #ifdef CONFIG_OMAP_GPMC_DEBUG
634 pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
635 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
636 (l >> st_bit) & mask, time);
637 #endif
638 l &= ~(mask << st_bit);
639 l |= ticks << st_bit;
640 gpmc_cs_write_reg(cs, reg, l);
641
642 return 0;
643 }
644
645 /**
646 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
647 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
648 * read --> don't sample bus too early
649 * write --> data is longer on bus
650 *
651 * Formula:
652 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
653 * / waitmonitoring_ticks)
654 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
655 * div <= 0 check.
656 *
657 * @wait_monitoring: WAITMONITORINGTIME in ns.
658 * @return: -1 on failure to scale, else proper divider > 0.
659 */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)660 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
661 {
662 int div = gpmc_ns_to_ticks(wait_monitoring);
663
664 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
665 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
666
667 if (div > 4)
668 return -1;
669 if (div <= 0)
670 div = 1;
671
672 return div;
673 }
674
675 /**
676 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
677 * @sync_clk: GPMC_CLK period in ps.
678 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
679 * Else, returns -1.
680 */
gpmc_calc_divider(unsigned int sync_clk)681 int gpmc_calc_divider(unsigned int sync_clk)
682 {
683 int div = gpmc_ps_to_ticks(sync_clk);
684
685 if (div > 4)
686 return -1;
687 if (div <= 0)
688 div = 1;
689
690 return div;
691 }
692
693 /**
694 * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
695 * @cs: Chip Select Region.
696 * @t: GPMC timing parameters.
697 * @s: GPMC timing settings.
698 * @return: 0 on success, -1 on error.
699 */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)700 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
701 const struct gpmc_settings *s)
702 {
703 int div, ret;
704 u32 l;
705
706 div = gpmc_calc_divider(t->sync_clk);
707 if (div < 0)
708 return -EINVAL;
709
710 /*
711 * See if we need to change the divider for waitmonitoringtime.
712 *
713 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
714 * pure asynchronous accesses, i.e. both read and write asynchronous.
715 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
716 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
717 *
718 * This statement must not change div to scale async WAITMONITORINGTIME
719 * to protect mixed synchronous and asynchronous accesses.
720 *
721 * We raise an error later if WAITMONITORINGTIME does not fit.
722 */
723 if (!s->sync_read && !s->sync_write &&
724 (s->wait_on_read || s->wait_on_write)
725 ) {
726 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
727 if (div < 0) {
728 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
729 __func__,
730 t->wait_monitoring
731 );
732 return -ENXIO;
733 }
734 }
735
736 ret = 0;
737 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
738 GPMC_CD_FCLK, "cs_on");
739 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
740 GPMC_CD_FCLK, "cs_rd_off");
741 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
742 GPMC_CD_FCLK, "cs_wr_off");
743 if (ret)
744 return -ENXIO;
745
746 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
747 GPMC_CD_FCLK, "adv_on");
748 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
749 GPMC_CD_FCLK, "adv_rd_off");
750 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
751 GPMC_CD_FCLK, "adv_wr_off");
752 if (ret)
753 return -ENXIO;
754
755 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
756 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
757 t->adv_aad_mux_on, GPMC_CD_FCLK,
758 "adv_aad_mux_on");
759 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
760 t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
761 "adv_aad_mux_rd_off");
762 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
763 t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
764 "adv_aad_mux_wr_off");
765 if (ret)
766 return -ENXIO;
767 }
768
769 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
770 GPMC_CD_FCLK, "oe_on");
771 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
772 GPMC_CD_FCLK, "oe_off");
773 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
774 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
775 t->oe_aad_mux_on, GPMC_CD_FCLK,
776 "oe_aad_mux_on");
777 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
778 t->oe_aad_mux_off, GPMC_CD_FCLK,
779 "oe_aad_mux_off");
780 }
781 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
782 GPMC_CD_FCLK, "we_on");
783 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
784 GPMC_CD_FCLK, "we_off");
785 if (ret)
786 return -ENXIO;
787
788 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
789 GPMC_CD_FCLK, "rd_cycle");
790 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
791 GPMC_CD_FCLK, "wr_cycle");
792 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
793 GPMC_CD_FCLK, "access");
794 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
795 t->page_burst_access, GPMC_CD_FCLK,
796 "page_burst_access");
797 if (ret)
798 return -ENXIO;
799
800 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
801 t->bus_turnaround, GPMC_CD_FCLK,
802 "bus_turnaround");
803 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
804 t->cycle2cycle_delay, GPMC_CD_FCLK,
805 "cycle2cycle_delay");
806 if (ret)
807 return -ENXIO;
808
809 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
810 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
811 t->wr_data_mux_bus, GPMC_CD_FCLK,
812 "wr_data_mux_bus");
813 if (ret)
814 return -ENXIO;
815 }
816 if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
817 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
818 t->wr_access, GPMC_CD_FCLK,
819 "wr_access");
820 if (ret)
821 return -ENXIO;
822 }
823
824 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
825 l &= ~0x03;
826 l |= (div - 1);
827 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
828
829 ret = 0;
830 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
831 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
832 t->wait_monitoring, GPMC_CD_CLK,
833 "wait_monitoring");
834 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
835 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
836 t->clk_activation, GPMC_CD_FCLK,
837 "clk_activation");
838 if (ret)
839 return -ENXIO;
840
841 #ifdef CONFIG_OMAP_GPMC_DEBUG
842 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
843 cs, (div * gpmc_get_fclk_period()) / 1000, div);
844 #endif
845
846 gpmc_cs_bool_timings(cs, &t->bool_timings);
847 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
848
849 return 0;
850 }
851
gpmc_cs_set_memconf(int cs,u32 base,u32 size)852 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
853 {
854 u32 l;
855 u32 mask;
856
857 /*
858 * Ensure that base address is aligned on a
859 * boundary equal to or greater than size.
860 */
861 if (base & (size - 1))
862 return -EINVAL;
863
864 base >>= GPMC_CHUNK_SHIFT;
865 mask = (1 << GPMC_SECTION_SHIFT) - size;
866 mask >>= GPMC_CHUNK_SHIFT;
867 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
868
869 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
870 l &= ~GPMC_CONFIG7_MASK;
871 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
872 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
873 l |= GPMC_CONFIG7_CSVALID;
874 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
875
876 return 0;
877 }
878
gpmc_cs_enable_mem(int cs)879 static void gpmc_cs_enable_mem(int cs)
880 {
881 u32 l;
882
883 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
884 l |= GPMC_CONFIG7_CSVALID;
885 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
886 }
887
gpmc_cs_disable_mem(int cs)888 static void gpmc_cs_disable_mem(int cs)
889 {
890 u32 l;
891
892 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
893 l &= ~GPMC_CONFIG7_CSVALID;
894 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
895 }
896
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)897 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
898 {
899 u32 l;
900 u32 mask;
901
902 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
903 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
904 mask = (l >> 8) & 0x0f;
905 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
906 }
907
gpmc_cs_mem_enabled(int cs)908 static int gpmc_cs_mem_enabled(int cs)
909 {
910 u32 l;
911
912 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
913 return l & GPMC_CONFIG7_CSVALID;
914 }
915
gpmc_cs_set_reserved(int cs,int reserved)916 static void gpmc_cs_set_reserved(int cs, int reserved)
917 {
918 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
919
920 gpmc->flags |= GPMC_CS_RESERVED;
921 }
922
gpmc_cs_reserved(int cs)923 static bool gpmc_cs_reserved(int cs)
924 {
925 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
926
927 return gpmc->flags & GPMC_CS_RESERVED;
928 }
929
gpmc_mem_align(unsigned long size)930 static unsigned long gpmc_mem_align(unsigned long size)
931 {
932 int order;
933
934 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
935 order = GPMC_CHUNK_SHIFT - 1;
936 do {
937 size >>= 1;
938 order++;
939 } while (size);
940 size = 1 << order;
941 return size;
942 }
943
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)944 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
945 {
946 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
947 struct resource *res = &gpmc->mem;
948 int r;
949
950 size = gpmc_mem_align(size);
951 spin_lock(&gpmc_mem_lock);
952 res->start = base;
953 res->end = base + size - 1;
954 r = request_resource(&gpmc_mem_root, res);
955 spin_unlock(&gpmc_mem_lock);
956
957 return r;
958 }
959
gpmc_cs_delete_mem(int cs)960 static int gpmc_cs_delete_mem(int cs)
961 {
962 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
963 struct resource *res = &gpmc->mem;
964 int r;
965
966 spin_lock(&gpmc_mem_lock);
967 r = release_resource(res);
968 res->start = 0;
969 res->end = 0;
970 spin_unlock(&gpmc_mem_lock);
971
972 return r;
973 }
974
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)975 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
976 {
977 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
978 struct resource *res = &gpmc->mem;
979 int r = -1;
980
981 if (cs >= gpmc_cs_num) {
982 pr_err("%s: requested chip-select is disabled\n", __func__);
983 return -ENODEV;
984 }
985 size = gpmc_mem_align(size);
986 if (size > (1 << GPMC_SECTION_SHIFT))
987 return -ENOMEM;
988
989 guard(spinlock)(&gpmc_mem_lock);
990
991 if (gpmc_cs_reserved(cs))
992 return -EBUSY;
993
994 if (gpmc_cs_mem_enabled(cs))
995 r = adjust_resource(res, res->start & ~(size - 1), size);
996 if (r < 0)
997 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
998 size, NULL, NULL);
999 if (r < 0)
1000 return r;
1001
1002 /* Disable CS while changing base address and size mask */
1003 gpmc_cs_disable_mem(cs);
1004
1005 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1006 if (r < 0) {
1007 release_resource(res);
1008 return r;
1009 }
1010
1011 /* Enable CS */
1012 gpmc_cs_enable_mem(cs);
1013 *base = res->start;
1014 gpmc_cs_set_reserved(cs, 1);
1015
1016 return 0;
1017 }
1018 EXPORT_SYMBOL(gpmc_cs_request);
1019
gpmc_cs_free(int cs)1020 void gpmc_cs_free(int cs)
1021 {
1022 struct gpmc_cs_data *gpmc;
1023 struct resource *res;
1024
1025 guard(spinlock)(&gpmc_mem_lock);
1026 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1027 WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1028 return;
1029 }
1030 gpmc = &gpmc_cs[cs];
1031 res = &gpmc->mem;
1032
1033 gpmc_cs_disable_mem(cs);
1034 if (res->flags)
1035 release_resource(res);
1036 gpmc_cs_set_reserved(cs, 0);
1037 }
1038 EXPORT_SYMBOL(gpmc_cs_free);
1039
gpmc_is_valid_waitpin(u32 waitpin)1040 static bool gpmc_is_valid_waitpin(u32 waitpin)
1041 {
1042 return waitpin < gpmc_nr_waitpins;
1043 }
1044
gpmc_alloc_waitpin(struct gpmc_device * gpmc,struct gpmc_settings * p)1045 static int gpmc_alloc_waitpin(struct gpmc_device *gpmc,
1046 struct gpmc_settings *p)
1047 {
1048 int ret;
1049 struct gpmc_waitpin *waitpin;
1050 struct gpio_desc *waitpin_desc;
1051
1052 if (!gpmc_is_valid_waitpin(p->wait_pin))
1053 return -EINVAL;
1054
1055 waitpin = &gpmc->waitpins[p->wait_pin];
1056
1057 if (!waitpin->desc) {
1058 /* Reserve the GPIO for wait pin usage.
1059 * GPIO polarity doesn't matter here. Wait pin polarity
1060 * is set in GPMC_CONFIG register.
1061 */
1062 waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
1063 p->wait_pin, "WAITPIN",
1064 GPIO_ACTIVE_HIGH,
1065 GPIOD_IN);
1066
1067 ret = PTR_ERR(waitpin_desc);
1068 if (IS_ERR(waitpin_desc) && ret != -EBUSY)
1069 return ret;
1070
1071 /* New wait pin */
1072 waitpin->desc = waitpin_desc;
1073 waitpin->pin = p->wait_pin;
1074 waitpin->polarity = p->wait_pin_polarity;
1075 } else {
1076 /* Shared wait pin */
1077 if (p->wait_pin_polarity != waitpin->polarity ||
1078 p->wait_pin != waitpin->pin) {
1079 dev_err(gpmc->dev,
1080 "shared-wait-pin: invalid configuration\n");
1081 return -EINVAL;
1082 }
1083 dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin);
1084 }
1085
1086 return 0;
1087 }
1088
gpmc_free_waitpin(struct gpmc_device * gpmc,int wait_pin)1089 static void gpmc_free_waitpin(struct gpmc_device *gpmc,
1090 int wait_pin)
1091 {
1092 if (gpmc_is_valid_waitpin(wait_pin))
1093 gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc);
1094 }
1095
1096 /**
1097 * gpmc_configure - write request to configure gpmc
1098 * @cmd: command type
1099 * @wval: value to write
1100 * @return status of the operation
1101 */
gpmc_configure(int cmd,int wval)1102 int gpmc_configure(int cmd, int wval)
1103 {
1104 u32 regval;
1105
1106 switch (cmd) {
1107 case GPMC_CONFIG_WP:
1108 regval = gpmc_read_reg(GPMC_CONFIG);
1109 if (wval)
1110 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1111 else
1112 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
1113 gpmc_write_reg(GPMC_CONFIG, regval);
1114 break;
1115
1116 default:
1117 pr_err("%s: command not supported\n", __func__);
1118 return -EINVAL;
1119 }
1120
1121 return 0;
1122 }
1123 EXPORT_SYMBOL(gpmc_configure);
1124
gpmc_nand_writebuffer_empty(void)1125 static bool gpmc_nand_writebuffer_empty(void)
1126 {
1127 if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1128 return true;
1129
1130 return false;
1131 }
1132
1133 static struct gpmc_nand_ops nand_ops = {
1134 .nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1135 };
1136
1137 /**
1138 * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1139 * @reg: the GPMC NAND register map exclusive for NAND use.
1140 * @cs: GPMC chip select number on which the NAND sits. The
1141 * register map returned will be specific to this chip select.
1142 *
1143 * Returns NULL on error e.g. invalid cs.
1144 */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1145 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1146 {
1147 int i;
1148
1149 if (cs >= gpmc_cs_num)
1150 return NULL;
1151
1152 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1153 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1154 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1155 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1156 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1157 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1158 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1159 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1160 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1161 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1162 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1163 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1164 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1165 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1166
1167 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1168 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1169 GPMC_BCH_SIZE * i;
1170 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1171 GPMC_BCH_SIZE * i;
1172 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1173 GPMC_BCH_SIZE * i;
1174 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1175 GPMC_BCH_SIZE * i;
1176 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1177 i * GPMC_BCH_SIZE;
1178 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1179 i * GPMC_BCH_SIZE;
1180 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1181 i * GPMC_BCH_SIZE;
1182 }
1183
1184 return &nand_ops;
1185 }
1186 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1187
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1188 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1189 struct gpmc_settings *s,
1190 int freq, int latency)
1191 {
1192 struct gpmc_device_timings dev_t;
1193 const int t_cer = 15;
1194 const int t_avdp = 12;
1195 const int t_cez = 20; /* max of t_cez, t_oez */
1196 const int t_wpl = 40;
1197 const int t_wph = 30;
1198 int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1199
1200 switch (freq) {
1201 case 104:
1202 min_gpmc_clk_period = 9600; /* 104 MHz */
1203 t_ces = 3;
1204 t_avds = 4;
1205 t_avdh = 2;
1206 t_ach = 3;
1207 t_aavdh = 6;
1208 t_rdyo = 6;
1209 break;
1210 case 83:
1211 min_gpmc_clk_period = 12000; /* 83 MHz */
1212 t_ces = 5;
1213 t_avds = 4;
1214 t_avdh = 2;
1215 t_ach = 6;
1216 t_aavdh = 6;
1217 t_rdyo = 9;
1218 break;
1219 case 66:
1220 min_gpmc_clk_period = 15000; /* 66 MHz */
1221 t_ces = 6;
1222 t_avds = 5;
1223 t_avdh = 2;
1224 t_ach = 6;
1225 t_aavdh = 6;
1226 t_rdyo = 11;
1227 break;
1228 default:
1229 min_gpmc_clk_period = 18500; /* 54 MHz */
1230 t_ces = 7;
1231 t_avds = 7;
1232 t_avdh = 7;
1233 t_ach = 9;
1234 t_aavdh = 7;
1235 t_rdyo = 15;
1236 break;
1237 }
1238
1239 /* Set synchronous read timings */
1240 memset(&dev_t, 0, sizeof(dev_t));
1241
1242 if (!s->sync_write) {
1243 dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1244 dev_t.t_wpl = t_wpl * 1000;
1245 dev_t.t_wph = t_wph * 1000;
1246 dev_t.t_aavdh = t_aavdh * 1000;
1247 }
1248 dev_t.ce_xdelay = true;
1249 dev_t.avd_xdelay = true;
1250 dev_t.oe_xdelay = true;
1251 dev_t.we_xdelay = true;
1252 dev_t.clk = min_gpmc_clk_period;
1253 dev_t.t_bacc = dev_t.clk;
1254 dev_t.t_ces = t_ces * 1000;
1255 dev_t.t_avds = t_avds * 1000;
1256 dev_t.t_avdh = t_avdh * 1000;
1257 dev_t.t_ach = t_ach * 1000;
1258 dev_t.cyc_iaa = (latency + 1);
1259 dev_t.t_cez_r = t_cez * 1000;
1260 dev_t.t_cez_w = dev_t.t_cez_r;
1261 dev_t.cyc_aavdh_oe = 1;
1262 dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1263
1264 gpmc_calc_timings(t, s, &dev_t);
1265 }
1266
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1267 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1268 int latency,
1269 struct gpmc_onenand_info *info)
1270 {
1271 int ret;
1272 struct gpmc_timings gpmc_t;
1273 struct gpmc_settings gpmc_s;
1274
1275 gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1276
1277 info->sync_read = gpmc_s.sync_read;
1278 info->sync_write = gpmc_s.sync_write;
1279 info->burst_len = gpmc_s.burst_len;
1280
1281 if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1282 return 0;
1283
1284 gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1285
1286 ret = gpmc_cs_program_settings(cs, &gpmc_s);
1287 if (ret < 0)
1288 return ret;
1289
1290 return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1291 }
1292 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1293
gpmc_irq_endis(unsigned long hwirq,bool endis)1294 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1295 {
1296 u32 regval;
1297
1298 /* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1299 if (hwirq >= GPMC_NR_NAND_IRQS)
1300 hwirq += 8 - GPMC_NR_NAND_IRQS;
1301
1302 regval = gpmc_read_reg(GPMC_IRQENABLE);
1303 if (endis)
1304 regval |= BIT(hwirq);
1305 else
1306 regval &= ~BIT(hwirq);
1307 gpmc_write_reg(GPMC_IRQENABLE, regval);
1308
1309 return 0;
1310 }
1311
gpmc_irq_disable(struct irq_data * p)1312 static void gpmc_irq_disable(struct irq_data *p)
1313 {
1314 gpmc_irq_endis(p->hwirq, false);
1315 }
1316
gpmc_irq_enable(struct irq_data * p)1317 static void gpmc_irq_enable(struct irq_data *p)
1318 {
1319 gpmc_irq_endis(p->hwirq, true);
1320 }
1321
gpmc_irq_mask(struct irq_data * d)1322 static void gpmc_irq_mask(struct irq_data *d)
1323 {
1324 gpmc_irq_endis(d->hwirq, false);
1325 }
1326
gpmc_irq_unmask(struct irq_data * d)1327 static void gpmc_irq_unmask(struct irq_data *d)
1328 {
1329 gpmc_irq_endis(d->hwirq, true);
1330 }
1331
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1332 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1333 {
1334 u32 regval;
1335
1336 /* NAND IRQs polarity is not configurable */
1337 if (hwirq < GPMC_NR_NAND_IRQS)
1338 return;
1339
1340 /* WAITPIN starts at BIT 8 */
1341 hwirq += 8 - GPMC_NR_NAND_IRQS;
1342
1343 regval = gpmc_read_reg(GPMC_CONFIG);
1344 if (rising_edge)
1345 regval &= ~BIT(hwirq);
1346 else
1347 regval |= BIT(hwirq);
1348
1349 gpmc_write_reg(GPMC_CONFIG, regval);
1350 }
1351
gpmc_irq_ack(struct irq_data * d)1352 static void gpmc_irq_ack(struct irq_data *d)
1353 {
1354 unsigned int hwirq = d->hwirq;
1355
1356 /* skip reserved bits */
1357 if (hwirq >= GPMC_NR_NAND_IRQS)
1358 hwirq += 8 - GPMC_NR_NAND_IRQS;
1359
1360 /* Setting bit to 1 clears (or Acks) the interrupt */
1361 gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1362 }
1363
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1364 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1365 {
1366 /* can't set type for NAND IRQs */
1367 if (d->hwirq < GPMC_NR_NAND_IRQS)
1368 return -EINVAL;
1369
1370 /* We can support either rising or falling edge at a time */
1371 if (trigger == IRQ_TYPE_EDGE_FALLING)
1372 gpmc_irq_edge_config(d->hwirq, false);
1373 else if (trigger == IRQ_TYPE_EDGE_RISING)
1374 gpmc_irq_edge_config(d->hwirq, true);
1375 else
1376 return -EINVAL;
1377
1378 return 0;
1379 }
1380
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1381 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1382 irq_hw_number_t hw)
1383 {
1384 struct gpmc_device *gpmc = d->host_data;
1385
1386 irq_set_chip_data(virq, gpmc);
1387 if (hw < GPMC_NR_NAND_IRQS) {
1388 irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1389 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1390 handle_simple_irq);
1391 } else {
1392 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1393 handle_edge_irq);
1394 }
1395
1396 return 0;
1397 }
1398
1399 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1400 .map = gpmc_irq_map,
1401 .xlate = irq_domain_xlate_twocell,
1402 };
1403
gpmc_handle_irq(int irq,void * data)1404 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1405 {
1406 int hwirq, virq;
1407 u32 regval, regvalx;
1408 struct gpmc_device *gpmc = data;
1409
1410 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1411 regvalx = regval;
1412
1413 if (!regval)
1414 return IRQ_NONE;
1415
1416 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1417 /* skip reserved status bits */
1418 if (hwirq == GPMC_NR_NAND_IRQS)
1419 regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1420
1421 if (regvalx & BIT(hwirq)) {
1422 virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1423 if (!virq) {
1424 dev_warn(gpmc->dev,
1425 "spurious irq detected hwirq %d, virq %d\n",
1426 hwirq, virq);
1427 }
1428
1429 generic_handle_irq(virq);
1430 }
1431 }
1432
1433 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1434
1435 return IRQ_HANDLED;
1436 }
1437
gpmc_setup_irq(struct gpmc_device * gpmc)1438 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1439 {
1440 u32 regval;
1441 int rc;
1442
1443 /* Disable interrupts */
1444 gpmc_write_reg(GPMC_IRQENABLE, 0);
1445
1446 /* clear interrupts */
1447 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1448 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1449
1450 gpmc->irq_chip.name = "gpmc";
1451 gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1452 gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1453 gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1454 gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1455 gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1456 gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1457
1458 gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1459 gpmc->nirqs,
1460 &gpmc_irq_domain_ops,
1461 gpmc);
1462 if (!gpmc_irq_domain) {
1463 dev_err(gpmc->dev, "IRQ domain add failed\n");
1464 return -ENODEV;
1465 }
1466
1467 rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1468 if (rc) {
1469 dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1470 gpmc->irq, rc);
1471 irq_domain_remove(gpmc_irq_domain);
1472 gpmc_irq_domain = NULL;
1473 }
1474
1475 return rc;
1476 }
1477
gpmc_free_irq(struct gpmc_device * gpmc)1478 static int gpmc_free_irq(struct gpmc_device *gpmc)
1479 {
1480 int hwirq;
1481
1482 free_irq(gpmc->irq, gpmc);
1483
1484 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1485 irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1486
1487 irq_domain_remove(gpmc_irq_domain);
1488 gpmc_irq_domain = NULL;
1489
1490 return 0;
1491 }
1492
gpmc_mem_exit(void)1493 static void gpmc_mem_exit(void)
1494 {
1495 int cs;
1496
1497 for (cs = 0; cs < gpmc_cs_num; cs++) {
1498 if (!gpmc_cs_mem_enabled(cs))
1499 continue;
1500 gpmc_cs_delete_mem(cs);
1501 }
1502 }
1503
gpmc_mem_init(struct gpmc_device * gpmc)1504 static void gpmc_mem_init(struct gpmc_device *gpmc)
1505 {
1506 int cs;
1507
1508 if (!gpmc->data) {
1509 /* All legacy devices have same data IO window */
1510 gpmc_mem_root.start = GPMC_MEM_START;
1511 gpmc_mem_root.end = GPMC_MEM_END;
1512 } else {
1513 gpmc_mem_root.start = gpmc->data->start;
1514 gpmc_mem_root.end = gpmc->data->end;
1515 }
1516
1517 /* Reserve all regions that has been set up by bootloader */
1518 for (cs = 0; cs < gpmc_cs_num; cs++) {
1519 u32 base, size;
1520
1521 if (!gpmc_cs_mem_enabled(cs))
1522 continue;
1523 gpmc_cs_get_memconf(cs, &base, &size);
1524 if (gpmc_cs_insert_mem(cs, base, size)) {
1525 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1526 __func__, cs, base, base + size);
1527 gpmc_cs_disable_mem(cs);
1528 }
1529 }
1530 }
1531
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1532 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1533 {
1534 u32 temp;
1535 int div;
1536
1537 div = gpmc_calc_divider(sync_clk);
1538 temp = gpmc_ps_to_ticks(time_ps);
1539 temp = (temp + div - 1) / div;
1540 return gpmc_ticks_to_ps(temp * div);
1541 }
1542
1543 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1544 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1545 struct gpmc_device_timings *dev_t,
1546 bool mux)
1547 {
1548 u32 temp;
1549
1550 /* adv_rd_off */
1551 temp = dev_t->t_avdp_r;
1552 /* XXX: mux check required ? */
1553 if (mux) {
1554 /* XXX: t_avdp not to be required for sync, only added for tusb
1555 * this indirectly necessitates requirement of t_avdp_r and
1556 * t_avdp_w instead of having a single t_avdp
1557 */
1558 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
1559 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1560 }
1561 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1562
1563 /* oe_on */
1564 temp = dev_t->t_oeasu; /* XXX: remove this ? */
1565 if (mux) {
1566 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
1567 temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1568 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1569 }
1570 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1571
1572 /* access */
1573 /* XXX: any scope for improvement ?, by combining oe_on
1574 * and clk_activation, need to check whether
1575 * access = clk_activation + round to sync clk ?
1576 */
1577 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
1578 temp += gpmc_t->clk_activation;
1579 if (dev_t->cyc_oe)
1580 temp = max_t(u32, temp, gpmc_t->oe_on +
1581 gpmc_ticks_to_ps(dev_t->cyc_oe));
1582 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1583
1584 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1585 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1586
1587 /* rd_cycle */
1588 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1589 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1590 gpmc_t->access;
1591 /* XXX: barter t_ce_rdyz with t_cez_r ? */
1592 if (dev_t->t_ce_rdyz)
1593 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1594 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1595
1596 return 0;
1597 }
1598
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1599 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1600 struct gpmc_device_timings *dev_t,
1601 bool mux)
1602 {
1603 u32 temp;
1604
1605 /* adv_wr_off */
1606 temp = dev_t->t_avdp_w;
1607 if (mux) {
1608 temp = max_t(u32, temp,
1609 gpmc_t->clk_activation + dev_t->t_avdh);
1610 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1611 }
1612 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1613
1614 /* wr_data_mux_bus */
1615 temp = max_t(u32, dev_t->t_weasu,
1616 gpmc_t->clk_activation + dev_t->t_rdyo);
1617 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1618 * and in that case remember to handle we_on properly
1619 */
1620 if (mux) {
1621 temp = max_t(u32, temp,
1622 gpmc_t->adv_wr_off + dev_t->t_aavdh);
1623 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1624 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1625 }
1626 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1627
1628 /* we_on */
1629 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1630 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1631 else
1632 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1633
1634 /* wr_access */
1635 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1636 gpmc_t->wr_access = gpmc_t->access;
1637
1638 /* we_off */
1639 temp = gpmc_t->we_on + dev_t->t_wpl;
1640 temp = max_t(u32, temp,
1641 gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1642 temp = max_t(u32, temp,
1643 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1644 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1645
1646 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1647 dev_t->t_wph);
1648
1649 /* wr_cycle */
1650 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1651 temp += gpmc_t->wr_access;
1652 /* XXX: barter t_ce_rdyz with t_cez_w ? */
1653 if (dev_t->t_ce_rdyz)
1654 temp = max_t(u32, temp,
1655 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1656 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1657
1658 return 0;
1659 }
1660
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1661 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1662 struct gpmc_device_timings *dev_t,
1663 bool mux)
1664 {
1665 u32 temp;
1666
1667 /* adv_rd_off */
1668 temp = dev_t->t_avdp_r;
1669 if (mux)
1670 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1671 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1672
1673 /* oe_on */
1674 temp = dev_t->t_oeasu;
1675 if (mux)
1676 temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1677 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1678
1679 /* access */
1680 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1681 gpmc_t->oe_on + dev_t->t_oe);
1682 temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1683 temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1684 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1685
1686 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1687 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1688
1689 /* rd_cycle */
1690 temp = max_t(u32, dev_t->t_rd_cycle,
1691 gpmc_t->cs_rd_off + dev_t->t_cez_r);
1692 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1693 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1694
1695 return 0;
1696 }
1697
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1698 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1699 struct gpmc_device_timings *dev_t,
1700 bool mux)
1701 {
1702 u32 temp;
1703
1704 /* adv_wr_off */
1705 temp = dev_t->t_avdp_w;
1706 if (mux)
1707 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1708 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1709
1710 /* wr_data_mux_bus */
1711 temp = dev_t->t_weasu;
1712 if (mux) {
1713 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
1714 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1715 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1716 }
1717 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1718
1719 /* we_on */
1720 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1721 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1722 else
1723 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1724
1725 /* we_off */
1726 temp = gpmc_t->we_on + dev_t->t_wpl;
1727 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1728
1729 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1730 dev_t->t_wph);
1731
1732 /* wr_cycle */
1733 temp = max_t(u32, dev_t->t_wr_cycle,
1734 gpmc_t->cs_wr_off + dev_t->t_cez_w);
1735 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1736
1737 return 0;
1738 }
1739
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1740 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1741 struct gpmc_device_timings *dev_t)
1742 {
1743 u32 temp;
1744
1745 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1746 gpmc_get_fclk_period();
1747
1748 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1749 dev_t->t_bacc,
1750 gpmc_t->sync_clk);
1751
1752 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1753 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1754
1755 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1756 return 0;
1757
1758 if (dev_t->ce_xdelay)
1759 gpmc_t->bool_timings.cs_extra_delay = true;
1760 if (dev_t->avd_xdelay)
1761 gpmc_t->bool_timings.adv_extra_delay = true;
1762 if (dev_t->oe_xdelay)
1763 gpmc_t->bool_timings.oe_extra_delay = true;
1764 if (dev_t->we_xdelay)
1765 gpmc_t->bool_timings.we_extra_delay = true;
1766
1767 return 0;
1768 }
1769
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1770 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1771 struct gpmc_device_timings *dev_t,
1772 bool sync)
1773 {
1774 u32 temp;
1775
1776 /* cs_on */
1777 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1778
1779 /* adv_on */
1780 temp = dev_t->t_avdasu;
1781 if (dev_t->t_ce_avd)
1782 temp = max_t(u32, temp,
1783 gpmc_t->cs_on + dev_t->t_ce_avd);
1784 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1785
1786 if (sync)
1787 gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1788
1789 return 0;
1790 }
1791
1792 /*
1793 * TODO: remove this function once all peripherals are confirmed to
1794 * work with generic timing. Simultaneously gpmc_cs_set_timings()
1795 * has to be modified to handle timings in ps instead of ns
1796 */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1797 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1798 {
1799 t->cs_on /= 1000;
1800 t->cs_rd_off /= 1000;
1801 t->cs_wr_off /= 1000;
1802 t->adv_on /= 1000;
1803 t->adv_rd_off /= 1000;
1804 t->adv_wr_off /= 1000;
1805 t->we_on /= 1000;
1806 t->we_off /= 1000;
1807 t->oe_on /= 1000;
1808 t->oe_off /= 1000;
1809 t->page_burst_access /= 1000;
1810 t->access /= 1000;
1811 t->rd_cycle /= 1000;
1812 t->wr_cycle /= 1000;
1813 t->bus_turnaround /= 1000;
1814 t->cycle2cycle_delay /= 1000;
1815 t->wait_monitoring /= 1000;
1816 t->clk_activation /= 1000;
1817 t->wr_access /= 1000;
1818 t->wr_data_mux_bus /= 1000;
1819 }
1820
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1821 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1822 struct gpmc_settings *gpmc_s,
1823 struct gpmc_device_timings *dev_t)
1824 {
1825 bool mux = false, sync = false;
1826
1827 if (gpmc_s) {
1828 mux = gpmc_s->mux_add_data ? true : false;
1829 sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1830 }
1831
1832 memset(gpmc_t, 0, sizeof(*gpmc_t));
1833
1834 gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1835
1836 if (gpmc_s && gpmc_s->sync_read)
1837 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1838 else
1839 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1840
1841 if (gpmc_s && gpmc_s->sync_write)
1842 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1843 else
1844 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1845
1846 /* TODO: remove, see function definition */
1847 gpmc_convert_ps_to_ns(gpmc_t);
1848
1849 return 0;
1850 }
1851
1852 /**
1853 * gpmc_cs_program_settings - programs non-timing related settings
1854 * @cs: GPMC chip-select to program
1855 * @p: pointer to GPMC settings structure
1856 *
1857 * Programs non-timing related settings for a GPMC chip-select, such as
1858 * bus-width, burst configuration, etc. Function should be called once
1859 * for each chip-select that is being used and must be called before
1860 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1861 * register will be initialised to zero by this function. Returns 0 on
1862 * success and appropriate negative error code on failure.
1863 */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1864 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1865 {
1866 u32 config1;
1867
1868 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1869 pr_err("%s: invalid width %d!", __func__, p->device_width);
1870 return -EINVAL;
1871 }
1872
1873 /* Address-data multiplexing not supported for NAND devices */
1874 if (p->device_nand && p->mux_add_data) {
1875 pr_err("%s: invalid configuration!\n", __func__);
1876 return -EINVAL;
1877 }
1878
1879 if ((p->mux_add_data > GPMC_MUX_AD) ||
1880 ((p->mux_add_data == GPMC_MUX_AAD) &&
1881 !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1882 pr_err("%s: invalid multiplex configuration!\n", __func__);
1883 return -EINVAL;
1884 }
1885
1886 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1887 if (p->burst_read || p->burst_write) {
1888 switch (p->burst_len) {
1889 case GPMC_BURST_4:
1890 case GPMC_BURST_8:
1891 case GPMC_BURST_16:
1892 break;
1893 default:
1894 pr_err("%s: invalid page/burst-length (%d)\n",
1895 __func__, p->burst_len);
1896 return -EINVAL;
1897 }
1898 }
1899
1900 if (p->wait_pin != GPMC_WAITPIN_INVALID &&
1901 p->wait_pin > gpmc_nr_waitpins) {
1902 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1903 return -EINVAL;
1904 }
1905
1906 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1907
1908 if (p->sync_read)
1909 config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1910 if (p->sync_write)
1911 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1912 if (p->wait_on_read)
1913 config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1914 if (p->wait_on_write)
1915 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1916 if (p->wait_on_read || p->wait_on_write)
1917 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1918 if (p->device_nand)
1919 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1920 if (p->mux_add_data)
1921 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1922 if (p->burst_read)
1923 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1924 if (p->burst_write)
1925 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1926 if (p->burst_read || p->burst_write) {
1927 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1928 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1929 }
1930
1931 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1932
1933 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) {
1934 config1 = gpmc_read_reg(GPMC_CONFIG);
1935
1936 if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW)
1937 config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1938 else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH)
1939 config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin);
1940
1941 gpmc_write_reg(GPMC_CONFIG, config1);
1942 }
1943
1944 return 0;
1945 }
1946
1947 #ifdef CONFIG_OF
gpmc_cs_set_name(int cs,const char * name)1948 static void gpmc_cs_set_name(int cs, const char *name)
1949 {
1950 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1951
1952 gpmc->name = name;
1953 }
1954
gpmc_cs_get_name(int cs)1955 static const char *gpmc_cs_get_name(int cs)
1956 {
1957 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1958
1959 return gpmc->name;
1960 }
1961
1962 /**
1963 * gpmc_cs_remap - remaps a chip-select physical base address
1964 * @cs: chip-select to remap
1965 * @base: physical base address to re-map chip-select to
1966 *
1967 * Re-maps a chip-select to a new physical base address specified by
1968 * "base". Returns 0 on success and appropriate negative error code
1969 * on failure.
1970 */
gpmc_cs_remap(int cs,u32 base)1971 static int gpmc_cs_remap(int cs, u32 base)
1972 {
1973 int ret;
1974 u32 old_base, size;
1975
1976 if (cs >= gpmc_cs_num) {
1977 pr_err("%s: requested chip-select is disabled\n", __func__);
1978 return -ENODEV;
1979 }
1980
1981 /*
1982 * Make sure we ignore any device offsets from the GPMC partition
1983 * allocated for the chip select and that the new base confirms
1984 * to the GPMC 16MB minimum granularity.
1985 */
1986 base &= ~(SZ_16M - 1);
1987
1988 gpmc_cs_get_memconf(cs, &old_base, &size);
1989 if (base == old_base)
1990 return 0;
1991
1992 ret = gpmc_cs_delete_mem(cs);
1993 if (ret < 0)
1994 return ret;
1995
1996 ret = gpmc_cs_insert_mem(cs, base, size);
1997 if (ret < 0)
1998 return ret;
1999
2000 ret = gpmc_cs_set_memconf(cs, base, size);
2001
2002 return ret;
2003 }
2004
2005 /**
2006 * gpmc_read_settings_dt - read gpmc settings from device-tree
2007 * @np: pointer to device-tree node for a gpmc child device
2008 * @p: pointer to gpmc settings structure
2009 *
2010 * Reads the GPMC settings for a GPMC child device from device-tree and
2011 * stores them in the GPMC settings structure passed. The GPMC settings
2012 * structure is initialised to zero by this function and so any
2013 * previously stored settings will be cleared.
2014 */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2015 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2016 {
2017 memset(p, 0, sizeof(struct gpmc_settings));
2018
2019 p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
2020 p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
2021 of_property_read_u32(np, "gpmc,device-width", &p->device_width);
2022 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
2023
2024 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
2025 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
2026 p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
2027 p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
2028 if (!p->burst_read && !p->burst_write)
2029 pr_warn("%s: page/burst-length set but not used!\n",
2030 __func__);
2031 }
2032
2033 p->wait_pin = GPMC_WAITPIN_INVALID;
2034 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2035
2036 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
2037 if (!gpmc_is_valid_waitpin(p->wait_pin)) {
2038 pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin);
2039 p->wait_pin = GPMC_WAITPIN_INVALID;
2040 }
2041
2042 if (!of_property_read_u32(np, "ti,wait-pin-polarity",
2043 &p->wait_pin_polarity)) {
2044 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH &&
2045 p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) {
2046 pr_err("%s: Invalid wait-pin-polarity (%d)\n",
2047 __func__, p->wait_pin_polarity);
2048 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID;
2049 }
2050 }
2051
2052 p->wait_on_read = of_property_read_bool(np,
2053 "gpmc,wait-on-read");
2054 p->wait_on_write = of_property_read_bool(np,
2055 "gpmc,wait-on-write");
2056 if (!p->wait_on_read && !p->wait_on_write)
2057 pr_debug("%s: rd/wr wait monitoring not enabled!\n",
2058 __func__);
2059 }
2060 }
2061
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)2062 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
2063 struct gpmc_timings *gpmc_t)
2064 {
2065 struct gpmc_bool_timings *p;
2066
2067 if (!np || !gpmc_t)
2068 return;
2069
2070 memset(gpmc_t, 0, sizeof(*gpmc_t));
2071
2072 /* minimum clock period for syncronous mode */
2073 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
2074
2075 /* chip select timtings */
2076 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
2077 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
2078 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2079
2080 /* ADV signal timings */
2081 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2082 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2083 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2084 of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2085 &gpmc_t->adv_aad_mux_on);
2086 of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2087 &gpmc_t->adv_aad_mux_rd_off);
2088 of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2089 &gpmc_t->adv_aad_mux_wr_off);
2090
2091 /* WE signal timings */
2092 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2093 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2094
2095 /* OE signal timings */
2096 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2097 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2098 of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2099 &gpmc_t->oe_aad_mux_on);
2100 of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2101 &gpmc_t->oe_aad_mux_off);
2102
2103 /* access and cycle timings */
2104 of_property_read_u32(np, "gpmc,page-burst-access-ns",
2105 &gpmc_t->page_burst_access);
2106 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2107 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2108 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2109 of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2110 &gpmc_t->bus_turnaround);
2111 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2112 &gpmc_t->cycle2cycle_delay);
2113 of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2114 &gpmc_t->wait_monitoring);
2115 of_property_read_u32(np, "gpmc,clk-activation-ns",
2116 &gpmc_t->clk_activation);
2117
2118 /* only applicable to OMAP3+ */
2119 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2120 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2121 &gpmc_t->wr_data_mux_bus);
2122
2123 /* bool timing parameters */
2124 p = &gpmc_t->bool_timings;
2125
2126 p->cycle2cyclediffcsen =
2127 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2128 p->cycle2cyclesamecsen =
2129 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2130 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2131 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2132 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2133 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2134 p->time_para_granularity =
2135 of_property_read_bool(np, "gpmc,time-para-granularity");
2136 }
2137
2138 /**
2139 * gpmc_probe_generic_child - configures the gpmc for a child device
2140 * @pdev: pointer to gpmc platform device
2141 * @child: pointer to device-tree node for child device
2142 *
2143 * Allocates and configures a GPMC chip-select for a child device.
2144 * Returns 0 on success and appropriate negative error code on failure.
2145 */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2146 static int gpmc_probe_generic_child(struct platform_device *pdev,
2147 struct device_node *child)
2148 {
2149 struct gpmc_settings gpmc_s;
2150 struct gpmc_timings gpmc_t;
2151 struct resource res;
2152 unsigned long base;
2153 const char *name;
2154 int ret, cs;
2155 u32 val;
2156 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2157
2158 if (of_property_read_u32(child, "reg", &cs) < 0) {
2159 dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2160 child);
2161 return -ENODEV;
2162 }
2163
2164 if (of_address_to_resource(child, 0, &res) < 0) {
2165 dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2166 child);
2167 return -ENODEV;
2168 }
2169
2170 /*
2171 * Check if we have multiple instances of the same device
2172 * on a single chip select. If so, use the already initialized
2173 * timings.
2174 */
2175 name = gpmc_cs_get_name(cs);
2176 if (name && of_node_name_eq(child, name))
2177 goto no_timings;
2178
2179 ret = gpmc_cs_request(cs, resource_size(&res), &base);
2180 if (ret < 0) {
2181 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2182 return ret;
2183 }
2184 gpmc_cs_set_name(cs, child->full_name);
2185
2186 gpmc_read_settings_dt(child, &gpmc_s);
2187 gpmc_read_timings_dt(child, &gpmc_t);
2188
2189 /*
2190 * For some GPMC devices we still need to rely on the bootloader
2191 * timings because the devices can be connected via FPGA.
2192 * REVISIT: Add timing support from slls644g.pdf.
2193 */
2194 if (!gpmc_t.cs_rd_off) {
2195 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2196 cs);
2197 gpmc_cs_show_timings(cs,
2198 "please add GPMC bootloader timings to .dts");
2199 goto no_timings;
2200 }
2201
2202 /* CS must be disabled while making changes to gpmc configuration */
2203 gpmc_cs_disable_mem(cs);
2204
2205 /*
2206 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2207 * location in the gpmc address space. When booting with
2208 * device-tree we want the NOR flash to be mapped to the
2209 * location specified in the device-tree blob. So remap the
2210 * CS to this location. Once DT migration is complete should
2211 * just make gpmc_cs_request() map a specific address.
2212 */
2213 ret = gpmc_cs_remap(cs, res.start);
2214 if (ret < 0) {
2215 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2216 cs, &res.start);
2217 if (res.start < GPMC_MEM_START) {
2218 dev_info(&pdev->dev,
2219 "GPMC CS %d start cannot be lesser than 0x%x\n",
2220 cs, GPMC_MEM_START);
2221 } else if (res.end > GPMC_MEM_END) {
2222 dev_info(&pdev->dev,
2223 "GPMC CS %d end cannot be greater than 0x%x\n",
2224 cs, GPMC_MEM_END);
2225 }
2226 goto err;
2227 }
2228
2229 if (of_node_name_eq(child, "nand")) {
2230 /* Warn about older DT blobs with no compatible property */
2231 if (!of_property_read_bool(child, "compatible")) {
2232 dev_warn(&pdev->dev,
2233 "Incompatible NAND node: missing compatible");
2234 ret = -EINVAL;
2235 goto err;
2236 }
2237 }
2238
2239 if (of_node_name_eq(child, "onenand")) {
2240 /* Warn about older DT blobs with no compatible property */
2241 if (!of_property_read_bool(child, "compatible")) {
2242 dev_warn(&pdev->dev,
2243 "Incompatible OneNAND node: missing compatible");
2244 ret = -EINVAL;
2245 goto err;
2246 }
2247 }
2248
2249 if (of_match_node(omap_nand_ids, child)) {
2250 /* NAND specific setup */
2251 val = 8;
2252 of_property_read_u32(child, "nand-bus-width", &val);
2253 switch (val) {
2254 case 8:
2255 gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2256 break;
2257 case 16:
2258 gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2259 break;
2260 default:
2261 dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2262 child);
2263 ret = -EINVAL;
2264 goto err;
2265 }
2266
2267 /* disable write protect */
2268 gpmc_configure(GPMC_CONFIG_WP, 0);
2269 gpmc_s.device_nand = true;
2270 } else {
2271 ret = of_property_read_u32(child, "bank-width",
2272 &gpmc_s.device_width);
2273 if (ret < 0 && !gpmc_s.device_width) {
2274 dev_err(&pdev->dev,
2275 "%pOF has no 'gpmc,device-width' property\n",
2276 child);
2277 goto err;
2278 }
2279 }
2280
2281 /* Reserve wait pin if it is required and valid */
2282 if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2283 ret = gpmc_alloc_waitpin(gpmc, &gpmc_s);
2284 if (ret < 0)
2285 goto err;
2286 }
2287
2288 gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2289
2290 ret = gpmc_cs_program_settings(cs, &gpmc_s);
2291 if (ret < 0)
2292 goto err_cs;
2293
2294 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2295 if (ret) {
2296 dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2297 child);
2298 goto err_cs;
2299 }
2300
2301 /* Clear limited address i.e. enable A26-A11 */
2302 val = gpmc_read_reg(GPMC_CONFIG);
2303 val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2304 gpmc_write_reg(GPMC_CONFIG, val);
2305
2306 /* Enable CS region */
2307 gpmc_cs_enable_mem(cs);
2308
2309 no_timings:
2310
2311 /* create platform device, NULL on error or when disabled */
2312 if (!of_platform_device_create(child, NULL, &pdev->dev))
2313 goto err_child_fail;
2314
2315 /* create children and other common bus children */
2316 if (of_platform_default_populate(child, NULL, &pdev->dev))
2317 goto err_child_fail;
2318
2319 return 0;
2320
2321 err_child_fail:
2322
2323 dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2324 ret = -ENODEV;
2325
2326 err_cs:
2327 gpmc_free_waitpin(gpmc, gpmc_s.wait_pin);
2328 err:
2329 gpmc_cs_free(cs);
2330
2331 return ret;
2332 }
2333
2334 static const struct of_device_id gpmc_dt_ids[];
2335
gpmc_probe_dt(struct platform_device * pdev)2336 static int gpmc_probe_dt(struct platform_device *pdev)
2337 {
2338 int ret;
2339 const struct of_device_id *of_id =
2340 of_match_device(gpmc_dt_ids, &pdev->dev);
2341
2342 if (!of_id)
2343 return 0;
2344
2345 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2346 &gpmc_cs_num);
2347 if (ret < 0) {
2348 pr_err("%s: number of chip-selects not defined\n", __func__);
2349 return ret;
2350 } else if (gpmc_cs_num < 1) {
2351 pr_err("%s: all chip-selects are disabled\n", __func__);
2352 return -EINVAL;
2353 } else if (gpmc_cs_num > GPMC_CS_NUM) {
2354 pr_err("%s: number of supported chip-selects cannot be > %d\n",
2355 __func__, GPMC_CS_NUM);
2356 return -EINVAL;
2357 }
2358
2359 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2360 &gpmc_nr_waitpins);
2361 if (ret < 0) {
2362 pr_err("%s: number of wait pins not found!\n", __func__);
2363 return ret;
2364 }
2365
2366 return 0;
2367 }
2368
gpmc_probe_dt_children(struct platform_device * pdev)2369 static void gpmc_probe_dt_children(struct platform_device *pdev)
2370 {
2371 int ret;
2372 struct device_node *child;
2373
2374 for_each_available_child_of_node(pdev->dev.of_node, child) {
2375 ret = gpmc_probe_generic_child(pdev, child);
2376 if (ret) {
2377 dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2378 child, ret);
2379 }
2380 }
2381 }
2382 #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2383 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2384 {
2385 memset(p, 0, sizeof(*p));
2386 }
gpmc_probe_dt(struct platform_device * pdev)2387 static int gpmc_probe_dt(struct platform_device *pdev)
2388 {
2389 return 0;
2390 }
2391
gpmc_probe_dt_children(struct platform_device * pdev)2392 static void gpmc_probe_dt_children(struct platform_device *pdev)
2393 {
2394 }
2395 #endif /* CONFIG_OF */
2396
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2397 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2398 {
2399 return 1; /* we're input only */
2400 }
2401
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2402 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2403 unsigned int offset)
2404 {
2405 return 0; /* we're input only */
2406 }
2407
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2408 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2409 unsigned int offset, int value)
2410 {
2411 return -EINVAL; /* we're input only */
2412 }
2413
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2414 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2415 int value)
2416 {
2417 }
2418
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2419 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2420 {
2421 u32 reg;
2422
2423 offset += 8;
2424
2425 reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2426
2427 return !!reg;
2428 }
2429
gpmc_gpio_init(struct gpmc_device * gpmc)2430 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2431 {
2432 int ret;
2433
2434 gpmc->gpio_chip.parent = gpmc->dev;
2435 gpmc->gpio_chip.owner = THIS_MODULE;
2436 gpmc->gpio_chip.label = DEVICE_NAME;
2437 gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2438 gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2439 gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2440 gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2441 gpmc->gpio_chip.set = gpmc_gpio_set;
2442 gpmc->gpio_chip.get = gpmc_gpio_get;
2443 gpmc->gpio_chip.base = -1;
2444
2445 ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2446 if (ret < 0) {
2447 dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2448 return ret;
2449 }
2450
2451 return 0;
2452 }
2453
omap3_gpmc_save_context(struct gpmc_device * gpmc)2454 static void omap3_gpmc_save_context(struct gpmc_device *gpmc)
2455 {
2456 struct omap3_gpmc_regs *gpmc_context;
2457 int i;
2458
2459 if (!gpmc || !gpmc_base)
2460 return;
2461
2462 gpmc_context = &gpmc->context;
2463
2464 gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2465 gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2466 gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2467 gpmc_context->config = gpmc_read_reg(GPMC_CONFIG);
2468 gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2469 gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2470 gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2471 for (i = 0; i < gpmc_cs_num; i++) {
2472 gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2473 if (gpmc_context->cs_context[i].is_valid) {
2474 gpmc_context->cs_context[i].config1 =
2475 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2476 gpmc_context->cs_context[i].config2 =
2477 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2478 gpmc_context->cs_context[i].config3 =
2479 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2480 gpmc_context->cs_context[i].config4 =
2481 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2482 gpmc_context->cs_context[i].config5 =
2483 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2484 gpmc_context->cs_context[i].config6 =
2485 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2486 gpmc_context->cs_context[i].config7 =
2487 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2488 }
2489 }
2490 }
2491
omap3_gpmc_restore_context(struct gpmc_device * gpmc)2492 static void omap3_gpmc_restore_context(struct gpmc_device *gpmc)
2493 {
2494 struct omap3_gpmc_regs *gpmc_context;
2495 int i;
2496
2497 if (!gpmc || !gpmc_base)
2498 return;
2499
2500 gpmc_context = &gpmc->context;
2501
2502 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig);
2503 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable);
2504 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl);
2505 gpmc_write_reg(GPMC_CONFIG, gpmc_context->config);
2506 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1);
2507 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2);
2508 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control);
2509 for (i = 0; i < gpmc_cs_num; i++) {
2510 if (gpmc_context->cs_context[i].is_valid) {
2511 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2512 gpmc_context->cs_context[i].config1);
2513 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2514 gpmc_context->cs_context[i].config2);
2515 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2516 gpmc_context->cs_context[i].config3);
2517 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2518 gpmc_context->cs_context[i].config4);
2519 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2520 gpmc_context->cs_context[i].config5);
2521 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2522 gpmc_context->cs_context[i].config6);
2523 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2524 gpmc_context->cs_context[i].config7);
2525 } else {
2526 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0);
2527 }
2528 }
2529 }
2530
omap_gpmc_context_notifier(struct notifier_block * nb,unsigned long cmd,void * v)2531 static int omap_gpmc_context_notifier(struct notifier_block *nb,
2532 unsigned long cmd, void *v)
2533 {
2534 struct gpmc_device *gpmc;
2535
2536 gpmc = container_of(nb, struct gpmc_device, nb);
2537 if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev))
2538 return NOTIFY_OK;
2539
2540 switch (cmd) {
2541 case CPU_CLUSTER_PM_ENTER:
2542 omap3_gpmc_save_context(gpmc);
2543 break;
2544 case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */
2545 break;
2546 case CPU_CLUSTER_PM_EXIT:
2547 omap3_gpmc_restore_context(gpmc);
2548 break;
2549 }
2550
2551 return NOTIFY_OK;
2552 }
2553
gpmc_probe(struct platform_device * pdev)2554 static int gpmc_probe(struct platform_device *pdev)
2555 {
2556 int rc, i;
2557 u32 l;
2558 struct resource *res;
2559 struct gpmc_device *gpmc;
2560
2561 gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2562 if (!gpmc)
2563 return -ENOMEM;
2564
2565 gpmc->dev = &pdev->dev;
2566 platform_set_drvdata(pdev, gpmc);
2567
2568 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg");
2569 if (!res) {
2570 /* legacy DT */
2571 gpmc_base = devm_platform_ioremap_resource(pdev, 0);
2572 if (IS_ERR(gpmc_base))
2573 return PTR_ERR(gpmc_base);
2574 } else {
2575 gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2576 if (IS_ERR(gpmc_base))
2577 return PTR_ERR(gpmc_base);
2578
2579 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data");
2580 if (!res) {
2581 dev_err(&pdev->dev, "couldn't get data reg resource\n");
2582 return -ENOENT;
2583 }
2584
2585 gpmc->data = res;
2586 }
2587
2588 gpmc->irq = platform_get_irq(pdev, 0);
2589 if (gpmc->irq < 0)
2590 return gpmc->irq;
2591
2592 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2593 if (IS_ERR(gpmc_l3_clk)) {
2594 dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2595 return PTR_ERR(gpmc_l3_clk);
2596 }
2597
2598 if (!clk_get_rate(gpmc_l3_clk)) {
2599 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2600 return -EINVAL;
2601 }
2602
2603 if (pdev->dev.of_node) {
2604 rc = gpmc_probe_dt(pdev);
2605 if (rc)
2606 return rc;
2607 } else {
2608 gpmc_cs_num = GPMC_CS_NUM;
2609 gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2610 }
2611
2612 gpmc->waitpins = devm_kzalloc(&pdev->dev,
2613 gpmc_nr_waitpins * sizeof(struct gpmc_waitpin),
2614 GFP_KERNEL);
2615 if (!gpmc->waitpins)
2616 return -ENOMEM;
2617
2618 for (i = 0; i < gpmc_nr_waitpins; i++)
2619 gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID;
2620
2621 pm_runtime_enable(&pdev->dev);
2622 pm_runtime_get_sync(&pdev->dev);
2623
2624 l = gpmc_read_reg(GPMC_REVISION);
2625
2626 /*
2627 * FIXME: Once device-tree migration is complete the below flags
2628 * should be populated based upon the device-tree compatible
2629 * string. For now just use the IP revision. OMAP3+ devices have
2630 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2631 * devices support the addr-addr-data multiplex protocol.
2632 *
2633 * GPMC IP revisions:
2634 * - OMAP24xx = 2.0
2635 * - OMAP3xxx = 5.0
2636 * - OMAP44xx/54xx/AM335x = 6.0
2637 */
2638 if (GPMC_REVISION_MAJOR(l) > 0x4)
2639 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2640 if (GPMC_REVISION_MAJOR(l) > 0x5)
2641 gpmc_capability |= GPMC_HAS_MUX_AAD;
2642 dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2643 GPMC_REVISION_MINOR(l));
2644
2645 gpmc_mem_init(gpmc);
2646 rc = gpmc_gpio_init(gpmc);
2647 if (rc)
2648 goto gpio_init_failed;
2649
2650 gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2651 rc = gpmc_setup_irq(gpmc);
2652 if (rc) {
2653 dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2654 goto gpio_init_failed;
2655 }
2656
2657 gpmc_probe_dt_children(pdev);
2658
2659 gpmc->nb.notifier_call = omap_gpmc_context_notifier;
2660 cpu_pm_register_notifier(&gpmc->nb);
2661
2662 return 0;
2663
2664 gpio_init_failed:
2665 gpmc_mem_exit();
2666 pm_runtime_put_sync(&pdev->dev);
2667 pm_runtime_disable(&pdev->dev);
2668
2669 return rc;
2670 }
2671
gpmc_remove(struct platform_device * pdev)2672 static void gpmc_remove(struct platform_device *pdev)
2673 {
2674 int i;
2675 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2676
2677 cpu_pm_unregister_notifier(&gpmc->nb);
2678 for (i = 0; i < gpmc_nr_waitpins; i++)
2679 gpmc_free_waitpin(gpmc, i);
2680 gpmc_free_irq(gpmc);
2681 gpmc_mem_exit();
2682 pm_runtime_put_sync(&pdev->dev);
2683 pm_runtime_disable(&pdev->dev);
2684 }
2685
2686 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2687 static int gpmc_suspend(struct device *dev)
2688 {
2689 struct gpmc_device *gpmc = dev_get_drvdata(dev);
2690
2691 omap3_gpmc_save_context(gpmc);
2692 pm_runtime_put_sync(dev);
2693 gpmc->is_suspended = 1;
2694
2695 return 0;
2696 }
2697
gpmc_resume(struct device * dev)2698 static int gpmc_resume(struct device *dev)
2699 {
2700 struct gpmc_device *gpmc = dev_get_drvdata(dev);
2701
2702 pm_runtime_get_sync(dev);
2703 omap3_gpmc_restore_context(gpmc);
2704 gpmc->is_suspended = 0;
2705
2706 return 0;
2707 }
2708 #endif
2709
2710 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2711
2712 #ifdef CONFIG_OF
2713 static const struct of_device_id gpmc_dt_ids[] = {
2714 { .compatible = "ti,omap2420-gpmc" },
2715 { .compatible = "ti,omap2430-gpmc" },
2716 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
2717 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
2718 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */
2719 { .compatible = "ti,am64-gpmc" },
2720 { }
2721 };
2722 MODULE_DEVICE_TABLE(of, gpmc_dt_ids);
2723 #endif
2724
2725 static struct platform_driver gpmc_driver = {
2726 .probe = gpmc_probe,
2727 .remove = gpmc_remove,
2728 .driver = {
2729 .name = DEVICE_NAME,
2730 .of_match_table = of_match_ptr(gpmc_dt_ids),
2731 .pm = &gpmc_pm_ops,
2732 },
2733 };
2734
2735 module_platform_driver(gpmc_driver);
2736
2737 MODULE_DESCRIPTION("Texas Instruments GPMC driver");
2738 MODULE_LICENSE("GPL");
2739