1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2008 Ralf Baechle (ralf@linux-mips.org)
7 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
8 */
9
10 #define pr_fmt(fmt) "irq-mips-gic: " fmt
11
12 #include <linux/bitfield.h>
13 #include <linux/bitmap.h>
14 #include <linux/clocksource.h>
15 #include <linux/cpuhotplug.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/irqchip.h>
20 #include <linux/irqdomain.h>
21 #include <linux/of_address.h>
22 #include <linux/percpu.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25
26 #include <asm/mips-cps.h>
27 #include <asm/setup.h>
28 #include <asm/traps.h>
29
30 #include <dt-bindings/interrupt-controller/mips-gic.h>
31
32 #define GIC_MAX_INTRS 256
33 #define GIC_MAX_LONGS BITS_TO_LONGS(GIC_MAX_INTRS)
34
35 /* Add 2 to convert GIC CPU pin to core interrupt */
36 #define GIC_CPU_PIN_OFFSET 2
37
38 /* Mapped interrupt to pin X, then GIC will generate the vector (X+1). */
39 #define GIC_PIN_TO_VEC_OFFSET 1
40
41 /* Convert between local/shared IRQ number and GIC HW IRQ number. */
42 #define GIC_LOCAL_HWIRQ_BASE 0
43 #define GIC_LOCAL_TO_HWIRQ(x) (GIC_LOCAL_HWIRQ_BASE + (x))
44 #define GIC_HWIRQ_TO_LOCAL(x) ((x) - GIC_LOCAL_HWIRQ_BASE)
45 #define GIC_SHARED_HWIRQ_BASE GIC_NUM_LOCAL_INTRS
46 #define GIC_SHARED_TO_HWIRQ(x) (GIC_SHARED_HWIRQ_BASE + (x))
47 #define GIC_HWIRQ_TO_SHARED(x) ((x) - GIC_SHARED_HWIRQ_BASE)
48
49 void __iomem *mips_gic_base;
50
51 static DEFINE_PER_CPU_READ_MOSTLY(unsigned long[GIC_MAX_LONGS], pcpu_masks);
52
53 static DEFINE_RAW_SPINLOCK(gic_lock);
54 static struct irq_domain *gic_irq_domain;
55 static int gic_shared_intrs;
56 static unsigned int gic_cpu_pin;
57 static struct irq_chip gic_level_irq_controller, gic_edge_irq_controller;
58
59 #ifdef CONFIG_GENERIC_IRQ_IPI
60 static DECLARE_BITMAP(ipi_resrv, GIC_MAX_INTRS);
61 static DECLARE_BITMAP(ipi_available, GIC_MAX_INTRS);
62 #endif /* CONFIG_GENERIC_IRQ_IPI */
63
64 static struct gic_all_vpes_chip_data {
65 u32 map;
66 bool mask;
67 } gic_all_vpes_chip_data[GIC_NUM_LOCAL_INTRS];
68
__gic_with_next_online_cpu(int prev)69 static int __gic_with_next_online_cpu(int prev)
70 {
71 unsigned int cpu;
72
73 /* Discover the next online CPU */
74 cpu = cpumask_next(prev, cpu_online_mask);
75
76 /* If there isn't one, we're done */
77 if (cpu >= nr_cpu_ids)
78 return cpu;
79
80 /*
81 * Move the access lock to the next CPU's GIC local register block.
82 *
83 * Set GIC_VL_OTHER. Since the caller holds gic_lock nothing can
84 * clobber the written value.
85 */
86 write_gic_vl_other(mips_cm_vp_id(cpu));
87
88 return cpu;
89 }
90
gic_unlock_cluster(void)91 static inline void gic_unlock_cluster(void)
92 {
93 if (mips_cps_multicluster_cpus())
94 mips_cm_unlock_other();
95 }
96
97 /**
98 * for_each_online_cpu_gic() - Iterate over online CPUs, access local registers
99 * @cpu: An integer variable to hold the current CPU number
100 * @gic_lock: A pointer to raw spin lock used as a guard
101 *
102 * Iterate over online CPUs & configure the other/redirect register region to
103 * access each CPUs GIC local register block, which can be accessed from the
104 * loop body using read_gic_vo_*() or write_gic_vo_*() accessor functions or
105 * their derivatives.
106 */
107 #define for_each_online_cpu_gic(cpu, gic_lock) \
108 guard(raw_spinlock_irqsave)(gic_lock); \
109 for ((cpu) = __gic_with_next_online_cpu(-1); \
110 (cpu) < nr_cpu_ids; \
111 gic_unlock_cluster(), \
112 (cpu) = __gic_with_next_online_cpu(cpu))
113
114 /**
115 * gic_irq_lock_cluster() - Lock redirect block access to IRQ's cluster
116 * @d: struct irq_data corresponding to the interrupt we're interested in
117 *
118 * Locks redirect register block access to the global register block of the GIC
119 * within the remote cluster that the IRQ corresponding to @d is affine to,
120 * returning true when this redirect block setup & locking has been performed.
121 *
122 * If @d is affine to the local cluster then no locking is performed and this
123 * function will return false, indicating to the caller that it should access
124 * the local clusters registers without the overhead of indirection through the
125 * redirect block.
126 *
127 * In summary, if this function returns true then the caller should access GIC
128 * registers using redirect register block accessors & then call
129 * mips_cm_unlock_other() when done. If this function returns false then the
130 * caller should trivially access GIC registers in the local cluster.
131 *
132 * Returns true if locking performed, else false.
133 */
gic_irq_lock_cluster(struct irq_data * d)134 static bool gic_irq_lock_cluster(struct irq_data *d)
135 {
136 unsigned int cpu, cl;
137
138 cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
139 BUG_ON(cpu >= NR_CPUS);
140
141 cl = cpu_cluster(&cpu_data[cpu]);
142 if (cl == cpu_cluster(¤t_cpu_data))
143 return false;
144 if (mips_cps_numcores(cl) == 0)
145 return false;
146 mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
147 return true;
148 }
149
gic_clear_pcpu_masks(unsigned int intr)150 static void gic_clear_pcpu_masks(unsigned int intr)
151 {
152 unsigned int i;
153
154 /* Clear the interrupt's bit in all pcpu_masks */
155 for_each_possible_cpu(i)
156 clear_bit(intr, per_cpu_ptr(pcpu_masks, i));
157 }
158
gic_local_irq_is_routable(int intr)159 static bool gic_local_irq_is_routable(int intr)
160 {
161 u32 vpe_ctl;
162
163 /* All local interrupts are routable in EIC mode. */
164 if (cpu_has_veic)
165 return true;
166
167 vpe_ctl = read_gic_vl_ctl();
168 switch (intr) {
169 case GIC_LOCAL_INT_TIMER:
170 return vpe_ctl & GIC_VX_CTL_TIMER_ROUTABLE;
171 case GIC_LOCAL_INT_PERFCTR:
172 return vpe_ctl & GIC_VX_CTL_PERFCNT_ROUTABLE;
173 case GIC_LOCAL_INT_FDC:
174 return vpe_ctl & GIC_VX_CTL_FDC_ROUTABLE;
175 case GIC_LOCAL_INT_SWINT0:
176 case GIC_LOCAL_INT_SWINT1:
177 return vpe_ctl & GIC_VX_CTL_SWINT_ROUTABLE;
178 default:
179 return true;
180 }
181 }
182
gic_bind_eic_interrupt(int irq,int set)183 static void gic_bind_eic_interrupt(int irq, int set)
184 {
185 /* Convert irq vector # to hw int # */
186 irq -= GIC_PIN_TO_VEC_OFFSET;
187
188 /* Set irq to use shadow set */
189 write_gic_vl_eic_shadow_set(irq, set);
190 }
191
gic_send_ipi(struct irq_data * d,unsigned int cpu)192 static void gic_send_ipi(struct irq_data *d, unsigned int cpu)
193 {
194 irq_hw_number_t hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(d));
195
196 if (gic_irq_lock_cluster(d)) {
197 write_gic_redir_wedge(GIC_WEDGE_RW | hwirq);
198 mips_cm_unlock_other();
199 } else {
200 write_gic_wedge(GIC_WEDGE_RW | hwirq);
201 }
202 }
203
gic_get_c0_compare_int(void)204 int gic_get_c0_compare_int(void)
205 {
206 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_TIMER))
207 return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
208 return irq_create_mapping(gic_irq_domain,
209 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_TIMER));
210 }
211
gic_get_c0_perfcount_int(void)212 int gic_get_c0_perfcount_int(void)
213 {
214 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_PERFCTR)) {
215 /* Is the performance counter shared with the timer? */
216 if (cp0_perfcount_irq < 0)
217 return -1;
218 return MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
219 }
220 return irq_create_mapping(gic_irq_domain,
221 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_PERFCTR));
222 }
223
gic_get_c0_fdc_int(void)224 int gic_get_c0_fdc_int(void)
225 {
226 if (!gic_local_irq_is_routable(GIC_LOCAL_INT_FDC)) {
227 /* Is the FDC IRQ even present? */
228 if (cp0_fdc_irq < 0)
229 return -1;
230 return MIPS_CPU_IRQ_BASE + cp0_fdc_irq;
231 }
232
233 return irq_create_mapping(gic_irq_domain,
234 GIC_LOCAL_TO_HWIRQ(GIC_LOCAL_INT_FDC));
235 }
236
gic_handle_shared_int(bool chained)237 static void gic_handle_shared_int(bool chained)
238 {
239 unsigned int intr;
240 unsigned long *pcpu_mask;
241 DECLARE_BITMAP(pending, GIC_MAX_INTRS);
242
243 /* Get per-cpu bitmaps */
244 pcpu_mask = this_cpu_ptr(pcpu_masks);
245
246 if (mips_cm_is64)
247 __ioread64_copy(pending, addr_gic_pend(),
248 DIV_ROUND_UP(gic_shared_intrs, 64));
249 else
250 __ioread32_copy(pending, addr_gic_pend(),
251 DIV_ROUND_UP(gic_shared_intrs, 32));
252
253 bitmap_and(pending, pending, pcpu_mask, gic_shared_intrs);
254
255 for_each_set_bit(intr, pending, gic_shared_intrs) {
256 if (chained)
257 generic_handle_domain_irq(gic_irq_domain,
258 GIC_SHARED_TO_HWIRQ(intr));
259 else
260 do_domain_IRQ(gic_irq_domain,
261 GIC_SHARED_TO_HWIRQ(intr));
262 }
263 }
264
gic_mask_irq(struct irq_data * d)265 static void gic_mask_irq(struct irq_data *d)
266 {
267 unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq);
268
269 if (gic_irq_lock_cluster(d)) {
270 write_gic_redir_rmask(intr);
271 mips_cm_unlock_other();
272 } else {
273 write_gic_rmask(intr);
274 }
275
276 gic_clear_pcpu_masks(intr);
277 }
278
gic_unmask_irq(struct irq_data * d)279 static void gic_unmask_irq(struct irq_data *d)
280 {
281 unsigned int intr = GIC_HWIRQ_TO_SHARED(d->hwirq);
282 unsigned int cpu;
283
284 if (gic_irq_lock_cluster(d)) {
285 write_gic_redir_smask(intr);
286 mips_cm_unlock_other();
287 } else {
288 write_gic_smask(intr);
289 }
290
291 gic_clear_pcpu_masks(intr);
292 cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
293 set_bit(intr, per_cpu_ptr(pcpu_masks, cpu));
294 }
295
gic_ack_irq(struct irq_data * d)296 static void gic_ack_irq(struct irq_data *d)
297 {
298 unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
299
300 if (gic_irq_lock_cluster(d)) {
301 write_gic_redir_wedge(irq);
302 mips_cm_unlock_other();
303 } else {
304 write_gic_wedge(irq);
305 }
306 }
307
gic_set_type(struct irq_data * d,unsigned int type)308 static int gic_set_type(struct irq_data *d, unsigned int type)
309 {
310 unsigned int irq, pol, trig, dual;
311 unsigned long flags;
312
313 irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
314
315 raw_spin_lock_irqsave(&gic_lock, flags);
316 switch (type & IRQ_TYPE_SENSE_MASK) {
317 case IRQ_TYPE_EDGE_FALLING:
318 pol = GIC_POL_FALLING_EDGE;
319 trig = GIC_TRIG_EDGE;
320 dual = GIC_DUAL_SINGLE;
321 break;
322 case IRQ_TYPE_EDGE_RISING:
323 pol = GIC_POL_RISING_EDGE;
324 trig = GIC_TRIG_EDGE;
325 dual = GIC_DUAL_SINGLE;
326 break;
327 case IRQ_TYPE_EDGE_BOTH:
328 pol = 0; /* Doesn't matter */
329 trig = GIC_TRIG_EDGE;
330 dual = GIC_DUAL_DUAL;
331 break;
332 case IRQ_TYPE_LEVEL_LOW:
333 pol = GIC_POL_ACTIVE_LOW;
334 trig = GIC_TRIG_LEVEL;
335 dual = GIC_DUAL_SINGLE;
336 break;
337 case IRQ_TYPE_LEVEL_HIGH:
338 default:
339 pol = GIC_POL_ACTIVE_HIGH;
340 trig = GIC_TRIG_LEVEL;
341 dual = GIC_DUAL_SINGLE;
342 break;
343 }
344
345 if (gic_irq_lock_cluster(d)) {
346 change_gic_redir_pol(irq, pol);
347 change_gic_redir_trig(irq, trig);
348 change_gic_redir_dual(irq, dual);
349 mips_cm_unlock_other();
350 } else {
351 change_gic_pol(irq, pol);
352 change_gic_trig(irq, trig);
353 change_gic_dual(irq, dual);
354 }
355
356 if (trig == GIC_TRIG_EDGE)
357 irq_set_chip_handler_name_locked(d, &gic_edge_irq_controller,
358 handle_edge_irq, NULL);
359 else
360 irq_set_chip_handler_name_locked(d, &gic_level_irq_controller,
361 handle_level_irq, NULL);
362 raw_spin_unlock_irqrestore(&gic_lock, flags);
363
364 return 0;
365 }
366
367 #ifdef CONFIG_SMP
gic_set_affinity(struct irq_data * d,const struct cpumask * cpumask,bool force)368 static int gic_set_affinity(struct irq_data *d, const struct cpumask *cpumask,
369 bool force)
370 {
371 unsigned int irq = GIC_HWIRQ_TO_SHARED(d->hwirq);
372 unsigned int cpu, cl, old_cpu, old_cl;
373 unsigned long flags;
374
375 /*
376 * The GIC specifies that we can only route an interrupt to one VP(E),
377 * ie. CPU in Linux parlance, at a time. Therefore we always route to
378 * the first forced or online CPU in the mask.
379 */
380 if (force)
381 cpu = cpumask_first(cpumask);
382 else
383 cpu = cpumask_first_and(cpumask, cpu_online_mask);
384
385 if (cpu >= NR_CPUS)
386 return -EINVAL;
387
388 old_cpu = cpumask_first(irq_data_get_effective_affinity_mask(d));
389 old_cl = cpu_cluster(&cpu_data[old_cpu]);
390 cl = cpu_cluster(&cpu_data[cpu]);
391
392 raw_spin_lock_irqsave(&gic_lock, flags);
393
394 /*
395 * If we're moving affinity between clusters, stop routing the
396 * interrupt to any VP(E) in the old cluster.
397 */
398 if (cl != old_cl) {
399 if (gic_irq_lock_cluster(d)) {
400 write_gic_redir_map_vp(irq, 0);
401 mips_cm_unlock_other();
402 } else {
403 write_gic_map_vp(irq, 0);
404 }
405 }
406
407 /*
408 * Update effective affinity - after this gic_irq_lock_cluster() will
409 * begin operating on the new cluster.
410 */
411 irq_data_update_effective_affinity(d, cpumask_of(cpu));
412
413 /*
414 * If we're moving affinity between clusters, configure the interrupt
415 * trigger type in the new cluster.
416 */
417 if (cl != old_cl)
418 gic_set_type(d, irqd_get_trigger_type(d));
419
420 /* Route the interrupt to its new VP(E) */
421 if (gic_irq_lock_cluster(d)) {
422 write_gic_redir_map_pin(irq,
423 GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
424 write_gic_redir_map_vp(irq, BIT(mips_cm_vp_id(cpu)));
425
426 /* Update the pcpu_masks */
427 gic_clear_pcpu_masks(irq);
428 if (read_gic_redir_mask(irq))
429 set_bit(irq, per_cpu_ptr(pcpu_masks, cpu));
430
431 mips_cm_unlock_other();
432 } else {
433 write_gic_map_pin(irq, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
434 write_gic_map_vp(irq, BIT(mips_cm_vp_id(cpu)));
435
436 /* Update the pcpu_masks */
437 gic_clear_pcpu_masks(irq);
438 if (read_gic_mask(irq))
439 set_bit(irq, per_cpu_ptr(pcpu_masks, cpu));
440 }
441
442 raw_spin_unlock_irqrestore(&gic_lock, flags);
443
444 return IRQ_SET_MASK_OK;
445 }
446 #endif
447
448 static struct irq_chip gic_level_irq_controller = {
449 .name = "MIPS GIC",
450 .irq_mask = gic_mask_irq,
451 .irq_unmask = gic_unmask_irq,
452 .irq_set_type = gic_set_type,
453 #ifdef CONFIG_SMP
454 .irq_set_affinity = gic_set_affinity,
455 #endif
456 };
457
458 static struct irq_chip gic_edge_irq_controller = {
459 .name = "MIPS GIC",
460 .irq_ack = gic_ack_irq,
461 .irq_mask = gic_mask_irq,
462 .irq_unmask = gic_unmask_irq,
463 .irq_set_type = gic_set_type,
464 #ifdef CONFIG_SMP
465 .irq_set_affinity = gic_set_affinity,
466 #endif
467 .ipi_send_single = gic_send_ipi,
468 };
469
gic_handle_local_int(bool chained)470 static void gic_handle_local_int(bool chained)
471 {
472 unsigned long pending, masked;
473 unsigned int intr;
474
475 pending = read_gic_vl_pend();
476 masked = read_gic_vl_mask();
477
478 bitmap_and(&pending, &pending, &masked, GIC_NUM_LOCAL_INTRS);
479
480 for_each_set_bit(intr, &pending, GIC_NUM_LOCAL_INTRS) {
481 if (chained)
482 generic_handle_domain_irq(gic_irq_domain,
483 GIC_LOCAL_TO_HWIRQ(intr));
484 else
485 do_domain_IRQ(gic_irq_domain,
486 GIC_LOCAL_TO_HWIRQ(intr));
487 }
488 }
489
gic_mask_local_irq(struct irq_data * d)490 static void gic_mask_local_irq(struct irq_data *d)
491 {
492 int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
493
494 write_gic_vl_rmask(BIT(intr));
495 }
496
gic_unmask_local_irq(struct irq_data * d)497 static void gic_unmask_local_irq(struct irq_data *d)
498 {
499 int intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
500
501 write_gic_vl_smask(BIT(intr));
502 }
503
504 static struct irq_chip gic_local_irq_controller = {
505 .name = "MIPS GIC Local",
506 .irq_mask = gic_mask_local_irq,
507 .irq_unmask = gic_unmask_local_irq,
508 };
509
gic_mask_local_irq_all_vpes(struct irq_data * d)510 static void gic_mask_local_irq_all_vpes(struct irq_data *d)
511 {
512 struct gic_all_vpes_chip_data *cd;
513 int intr, cpu;
514
515 if (!mips_cps_multicluster_cpus())
516 return;
517
518 intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
519 cd = irq_data_get_irq_chip_data(d);
520 cd->mask = false;
521
522 for_each_online_cpu_gic(cpu, &gic_lock)
523 write_gic_vo_rmask(BIT(intr));
524 }
525
gic_unmask_local_irq_all_vpes(struct irq_data * d)526 static void gic_unmask_local_irq_all_vpes(struct irq_data *d)
527 {
528 struct gic_all_vpes_chip_data *cd;
529 int intr, cpu;
530
531 if (!mips_cps_multicluster_cpus())
532 return;
533
534 intr = GIC_HWIRQ_TO_LOCAL(d->hwirq);
535 cd = irq_data_get_irq_chip_data(d);
536 cd->mask = true;
537
538 for_each_online_cpu_gic(cpu, &gic_lock)
539 write_gic_vo_smask(BIT(intr));
540 }
541
gic_all_vpes_irq_cpu_online(void)542 static void gic_all_vpes_irq_cpu_online(void)
543 {
544 static const unsigned int local_intrs[] = {
545 GIC_LOCAL_INT_TIMER,
546 GIC_LOCAL_INT_PERFCTR,
547 GIC_LOCAL_INT_FDC,
548 };
549 unsigned long flags;
550 int i;
551
552 raw_spin_lock_irqsave(&gic_lock, flags);
553
554 for (i = 0; i < ARRAY_SIZE(local_intrs); i++) {
555 unsigned int intr = local_intrs[i];
556 struct gic_all_vpes_chip_data *cd;
557
558 if (!gic_local_irq_is_routable(intr))
559 continue;
560 cd = &gic_all_vpes_chip_data[intr];
561 write_gic_vl_map(mips_gic_vx_map_reg(intr), cd->map);
562 if (cd->mask)
563 write_gic_vl_smask(BIT(intr));
564 }
565
566 raw_spin_unlock_irqrestore(&gic_lock, flags);
567 }
568
569 static struct irq_chip gic_all_vpes_local_irq_controller = {
570 .name = "MIPS GIC Local",
571 .irq_mask = gic_mask_local_irq_all_vpes,
572 .irq_unmask = gic_unmask_local_irq_all_vpes,
573 };
574
__gic_irq_dispatch(void)575 static void __gic_irq_dispatch(void)
576 {
577 gic_handle_local_int(false);
578 gic_handle_shared_int(false);
579 }
580
gic_irq_dispatch(struct irq_desc * desc)581 static void gic_irq_dispatch(struct irq_desc *desc)
582 {
583 gic_handle_local_int(true);
584 gic_handle_shared_int(true);
585 }
586
gic_shared_irq_domain_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw,unsigned int cpu)587 static int gic_shared_irq_domain_map(struct irq_domain *d, unsigned int virq,
588 irq_hw_number_t hw, unsigned int cpu)
589 {
590 int intr = GIC_HWIRQ_TO_SHARED(hw);
591 struct irq_data *data;
592 unsigned long flags;
593
594 data = irq_get_irq_data(virq);
595 irq_data_update_effective_affinity(data, cpumask_of(cpu));
596
597 raw_spin_lock_irqsave(&gic_lock, flags);
598
599 /* Route the interrupt to its VP(E) */
600 if (gic_irq_lock_cluster(data)) {
601 write_gic_redir_map_pin(intr,
602 GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
603 write_gic_redir_map_vp(intr, BIT(mips_cm_vp_id(cpu)));
604 mips_cm_unlock_other();
605 } else {
606 write_gic_map_pin(intr, GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin);
607 write_gic_map_vp(intr, BIT(mips_cm_vp_id(cpu)));
608 }
609
610 raw_spin_unlock_irqrestore(&gic_lock, flags);
611
612 return 0;
613 }
614
gic_irq_domain_xlate(struct irq_domain * d,struct device_node * ctrlr,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_type)615 static int gic_irq_domain_xlate(struct irq_domain *d, struct device_node *ctrlr,
616 const u32 *intspec, unsigned int intsize,
617 irq_hw_number_t *out_hwirq,
618 unsigned int *out_type)
619 {
620 if (intsize != 3)
621 return -EINVAL;
622
623 if (intspec[0] == GIC_SHARED)
624 *out_hwirq = GIC_SHARED_TO_HWIRQ(intspec[1]);
625 else if (intspec[0] == GIC_LOCAL)
626 *out_hwirq = GIC_LOCAL_TO_HWIRQ(intspec[1]);
627 else
628 return -EINVAL;
629 *out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;
630
631 return 0;
632 }
633
gic_irq_domain_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hwirq)634 static int gic_irq_domain_map(struct irq_domain *d, unsigned int virq,
635 irq_hw_number_t hwirq)
636 {
637 struct gic_all_vpes_chip_data *cd;
638 unsigned int intr;
639 int err, cpu;
640 u32 map;
641
642 if (hwirq >= GIC_SHARED_HWIRQ_BASE) {
643 #ifdef CONFIG_GENERIC_IRQ_IPI
644 /* verify that shared irqs don't conflict with an IPI irq */
645 if (test_bit(GIC_HWIRQ_TO_SHARED(hwirq), ipi_resrv))
646 return -EBUSY;
647 #endif /* CONFIG_GENERIC_IRQ_IPI */
648
649 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
650 &gic_level_irq_controller,
651 NULL);
652 if (err)
653 return err;
654
655 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq)));
656 return gic_shared_irq_domain_map(d, virq, hwirq, 0);
657 }
658
659 intr = GIC_HWIRQ_TO_LOCAL(hwirq);
660 map = GIC_MAP_PIN_MAP_TO_PIN | gic_cpu_pin;
661
662 /*
663 * If adding support for more per-cpu interrupts, keep the
664 * array in gic_all_vpes_irq_cpu_online() in sync.
665 */
666 switch (intr) {
667 case GIC_LOCAL_INT_TIMER:
668 case GIC_LOCAL_INT_PERFCTR:
669 case GIC_LOCAL_INT_FDC:
670 /*
671 * HACK: These are all really percpu interrupts, but
672 * the rest of the MIPS kernel code does not use the
673 * percpu IRQ API for them.
674 */
675 cd = &gic_all_vpes_chip_data[intr];
676 cd->map = map;
677 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
678 &gic_all_vpes_local_irq_controller,
679 cd);
680 if (err)
681 return err;
682
683 irq_set_handler(virq, handle_percpu_irq);
684 break;
685
686 default:
687 err = irq_domain_set_hwirq_and_chip(d, virq, hwirq,
688 &gic_local_irq_controller,
689 NULL);
690 if (err)
691 return err;
692
693 irq_set_handler(virq, handle_percpu_devid_irq);
694 irq_set_percpu_devid(virq);
695 break;
696 }
697
698 if (!gic_local_irq_is_routable(intr))
699 return -EPERM;
700
701 if (mips_cps_multicluster_cpus()) {
702 for_each_online_cpu_gic(cpu, &gic_lock)
703 write_gic_vo_map(mips_gic_vx_map_reg(intr), map);
704 }
705
706 return 0;
707 }
708
gic_irq_domain_alloc(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs,void * arg)709 static int gic_irq_domain_alloc(struct irq_domain *d, unsigned int virq,
710 unsigned int nr_irqs, void *arg)
711 {
712 struct irq_fwspec *fwspec = arg;
713 irq_hw_number_t hwirq;
714
715 if (fwspec->param[0] == GIC_SHARED)
716 hwirq = GIC_SHARED_TO_HWIRQ(fwspec->param[1]);
717 else
718 hwirq = GIC_LOCAL_TO_HWIRQ(fwspec->param[1]);
719
720 return gic_irq_domain_map(d, virq, hwirq);
721 }
722
gic_irq_domain_free(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs)723 static void gic_irq_domain_free(struct irq_domain *d, unsigned int virq,
724 unsigned int nr_irqs)
725 {
726 }
727
728 static const struct irq_domain_ops gic_irq_domain_ops = {
729 .xlate = gic_irq_domain_xlate,
730 .alloc = gic_irq_domain_alloc,
731 .free = gic_irq_domain_free,
732 .map = gic_irq_domain_map,
733 };
734
735 #ifdef CONFIG_GENERIC_IRQ_IPI
736
gic_ipi_domain_xlate(struct irq_domain * d,struct device_node * ctrlr,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_type)737 static int gic_ipi_domain_xlate(struct irq_domain *d, struct device_node *ctrlr,
738 const u32 *intspec, unsigned int intsize,
739 irq_hw_number_t *out_hwirq,
740 unsigned int *out_type)
741 {
742 /*
743 * There's nothing to translate here. hwirq is dynamically allocated and
744 * the irq type is always edge triggered.
745 * */
746 *out_hwirq = 0;
747 *out_type = IRQ_TYPE_EDGE_RISING;
748
749 return 0;
750 }
751
gic_ipi_domain_alloc(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs,void * arg)752 static int gic_ipi_domain_alloc(struct irq_domain *d, unsigned int virq,
753 unsigned int nr_irqs, void *arg)
754 {
755 struct cpumask *ipimask = arg;
756 irq_hw_number_t hwirq, base_hwirq;
757 int cpu, ret, i;
758
759 base_hwirq = find_first_bit(ipi_available, gic_shared_intrs);
760 if (base_hwirq == gic_shared_intrs)
761 return -ENOMEM;
762
763 /* check that we have enough space */
764 for (i = base_hwirq; i < nr_irqs; i++) {
765 if (!test_bit(i, ipi_available))
766 return -EBUSY;
767 }
768 bitmap_clear(ipi_available, base_hwirq, nr_irqs);
769
770 /* map the hwirq for each cpu consecutively */
771 i = 0;
772 for_each_cpu(cpu, ipimask) {
773 hwirq = GIC_SHARED_TO_HWIRQ(base_hwirq + i);
774
775 ret = irq_domain_set_hwirq_and_chip(d, virq + i, hwirq,
776 &gic_edge_irq_controller,
777 NULL);
778 if (ret)
779 goto error;
780
781 ret = irq_domain_set_hwirq_and_chip(d->parent, virq + i, hwirq,
782 &gic_edge_irq_controller,
783 NULL);
784 if (ret)
785 goto error;
786
787 /* Set affinity to cpu. */
788 irq_data_update_effective_affinity(irq_get_irq_data(virq + i),
789 cpumask_of(cpu));
790 ret = irq_set_irq_type(virq + i, IRQ_TYPE_EDGE_RISING);
791 if (ret)
792 goto error;
793
794 ret = gic_shared_irq_domain_map(d, virq + i, hwirq, cpu);
795 if (ret)
796 goto error;
797
798 i++;
799 }
800
801 return 0;
802 error:
803 bitmap_set(ipi_available, base_hwirq, nr_irqs);
804 return ret;
805 }
806
gic_ipi_domain_free(struct irq_domain * d,unsigned int virq,unsigned int nr_irqs)807 static void gic_ipi_domain_free(struct irq_domain *d, unsigned int virq,
808 unsigned int nr_irqs)
809 {
810 irq_hw_number_t base_hwirq;
811 struct irq_data *data;
812
813 data = irq_get_irq_data(virq);
814 if (!data)
815 return;
816
817 base_hwirq = GIC_HWIRQ_TO_SHARED(irqd_to_hwirq(data));
818 bitmap_set(ipi_available, base_hwirq, nr_irqs);
819 }
820
gic_ipi_domain_match(struct irq_domain * d,struct device_node * node,enum irq_domain_bus_token bus_token)821 static int gic_ipi_domain_match(struct irq_domain *d, struct device_node *node,
822 enum irq_domain_bus_token bus_token)
823 {
824 bool is_ipi;
825
826 switch (bus_token) {
827 case DOMAIN_BUS_IPI:
828 is_ipi = d->bus_token == bus_token;
829 return (!node || to_of_node(d->fwnode) == node) && is_ipi;
830 break;
831 default:
832 return 0;
833 }
834 }
835
836 static const struct irq_domain_ops gic_ipi_domain_ops = {
837 .xlate = gic_ipi_domain_xlate,
838 .alloc = gic_ipi_domain_alloc,
839 .free = gic_ipi_domain_free,
840 .match = gic_ipi_domain_match,
841 };
842
gic_register_ipi_domain(struct device_node * node)843 static int gic_register_ipi_domain(struct device_node *node)
844 {
845 struct irq_domain *gic_ipi_domain;
846 unsigned int v[2], num_ipis;
847
848 gic_ipi_domain = irq_domain_create_hierarchy(gic_irq_domain, IRQ_DOMAIN_FLAG_IPI_PER_CPU,
849 GIC_NUM_LOCAL_INTRS + gic_shared_intrs,
850 of_fwnode_handle(node), &gic_ipi_domain_ops,
851 NULL);
852 if (!gic_ipi_domain) {
853 pr_err("Failed to add IPI domain");
854 return -ENXIO;
855 }
856
857 irq_domain_update_bus_token(gic_ipi_domain, DOMAIN_BUS_IPI);
858
859 if (node &&
860 !of_property_read_u32_array(node, "mti,reserved-ipi-vectors", v, 2)) {
861 bitmap_set(ipi_resrv, v[0], v[1]);
862 } else {
863 /*
864 * Reserve 2 interrupts per possible CPU/VP for use as IPIs,
865 * meeting the requirements of arch/mips SMP.
866 */
867 num_ipis = 2 * num_possible_cpus();
868 bitmap_set(ipi_resrv, gic_shared_intrs - num_ipis, num_ipis);
869 }
870
871 bitmap_copy(ipi_available, ipi_resrv, GIC_MAX_INTRS);
872
873 return 0;
874 }
875
876 #else /* !CONFIG_GENERIC_IRQ_IPI */
877
gic_register_ipi_domain(struct device_node * node)878 static inline int gic_register_ipi_domain(struct device_node *node)
879 {
880 return 0;
881 }
882
883 #endif /* !CONFIG_GENERIC_IRQ_IPI */
884
gic_cpu_startup(unsigned int cpu)885 static int gic_cpu_startup(unsigned int cpu)
886 {
887 /* Enable or disable EIC */
888 change_gic_vl_ctl(GIC_VX_CTL_EIC,
889 cpu_has_veic ? GIC_VX_CTL_EIC : 0);
890
891 /* Clear all local IRQ masks (ie. disable all local interrupts) */
892 write_gic_vl_rmask(~0);
893
894 /* Enable desired interrupts */
895 gic_all_vpes_irq_cpu_online();
896
897 return 0;
898 }
899
gic_of_init(struct device_node * node,struct device_node * parent)900 static int __init gic_of_init(struct device_node *node,
901 struct device_node *parent)
902 {
903 unsigned int cpu_vec, i, gicconfig, cl, nclusters;
904 unsigned long reserved;
905 phys_addr_t gic_base;
906 struct resource res;
907 size_t gic_len;
908 int ret;
909
910 /* Find the first available CPU vector. */
911 i = 0;
912 reserved = (C_SW0 | C_SW1) >> __ffs(C_SW0);
913 while (!of_property_read_u32_index(node, "mti,reserved-cpu-vectors",
914 i++, &cpu_vec))
915 reserved |= BIT(cpu_vec);
916
917 cpu_vec = find_first_zero_bit(&reserved, hweight_long(ST0_IM));
918 if (cpu_vec == hweight_long(ST0_IM)) {
919 pr_err("No CPU vectors available\n");
920 return -ENODEV;
921 }
922
923 if (of_address_to_resource(node, 0, &res)) {
924 /*
925 * Probe the CM for the GIC base address if not specified
926 * in the device-tree.
927 */
928 if (mips_cm_present()) {
929 gic_base = read_gcr_gic_base() &
930 ~CM_GCR_GIC_BASE_GICEN;
931 gic_len = 0x20000;
932 pr_warn("Using inherited base address %pa\n",
933 &gic_base);
934 } else {
935 pr_err("Failed to get memory range\n");
936 return -ENODEV;
937 }
938 } else {
939 gic_base = res.start;
940 gic_len = resource_size(&res);
941 }
942
943 if (mips_cm_present()) {
944 write_gcr_gic_base(gic_base | CM_GCR_GIC_BASE_GICEN);
945 /* Ensure GIC region is enabled before trying to access it */
946 __sync();
947 }
948
949 mips_gic_base = ioremap(gic_base, gic_len);
950 if (!mips_gic_base) {
951 pr_err("Failed to ioremap gic_base\n");
952 return -ENOMEM;
953 }
954
955 gicconfig = read_gic_config();
956 gic_shared_intrs = FIELD_GET(GIC_CONFIG_NUMINTERRUPTS, gicconfig);
957 gic_shared_intrs = (gic_shared_intrs + 1) * 8;
958
959 if (cpu_has_veic) {
960 /* Always use vector 1 in EIC mode */
961 gic_cpu_pin = 0;
962 set_vi_handler(gic_cpu_pin + GIC_PIN_TO_VEC_OFFSET,
963 __gic_irq_dispatch);
964 } else {
965 gic_cpu_pin = cpu_vec - GIC_CPU_PIN_OFFSET;
966 irq_set_chained_handler(MIPS_CPU_IRQ_BASE + cpu_vec,
967 gic_irq_dispatch);
968 }
969
970 gic_irq_domain = irq_domain_create_simple(of_fwnode_handle(node),
971 GIC_NUM_LOCAL_INTRS +
972 gic_shared_intrs, 0,
973 &gic_irq_domain_ops, NULL);
974 if (!gic_irq_domain) {
975 pr_err("Failed to add IRQ domain");
976 return -ENXIO;
977 }
978
979 ret = gic_register_ipi_domain(node);
980 if (ret)
981 return ret;
982
983 board_bind_eic_interrupt = &gic_bind_eic_interrupt;
984
985 /*
986 * Initialise each cluster's GIC shared registers to sane default
987 * values.
988 * Otherwise, the IPI set up will be erased if we move code
989 * to gic_cpu_startup for each cpu.
990 */
991 nclusters = mips_cps_numclusters();
992 for (cl = 0; cl < nclusters; cl++) {
993 if (cl == cpu_cluster(¤t_cpu_data)) {
994 for (i = 0; i < gic_shared_intrs; i++) {
995 change_gic_pol(i, GIC_POL_ACTIVE_HIGH);
996 change_gic_trig(i, GIC_TRIG_LEVEL);
997 write_gic_rmask(i);
998 }
999 } else if (mips_cps_numcores(cl) != 0) {
1000 mips_cm_lock_other(cl, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL);
1001 for (i = 0; i < gic_shared_intrs; i++) {
1002 change_gic_redir_pol(i, GIC_POL_ACTIVE_HIGH);
1003 change_gic_redir_trig(i, GIC_TRIG_LEVEL);
1004 write_gic_redir_rmask(i);
1005 }
1006 mips_cm_unlock_other();
1007
1008 } else {
1009 pr_warn("No CPU cores on the cluster %d skip it\n", cl);
1010 }
1011 }
1012
1013 return cpuhp_setup_state(CPUHP_AP_IRQ_MIPS_GIC_STARTING,
1014 "irqchip/mips/gic:starting",
1015 gic_cpu_startup, NULL);
1016 }
1017 IRQCHIP_DECLARE(mips_gic, "mti,gic", gic_of_init);
1018