1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
33 {
34 /*
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
42 *
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
46 *
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
50 */
51
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57
58 /**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
82
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 preempt_enable();
89
90 trace_gfs2_glock_lock_time(gl, rtt);
91 }
92
93 /**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
108
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 preempt_enable();
117 }
118
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 struct gfs2_glock *gl = arg;
122 unsigned ret;
123
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl->gl_lockref) &&
126 gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 return;
128
129 gfs2_update_reply_times(gl);
130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131
132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134
135 switch (gl->gl_lksb.sb_status) {
136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 if (gl->gl_ops->go_unlocked)
138 gl->gl_ops->go_unlocked(gl);
139 gfs2_glock_free(gl);
140 return;
141 case -DLM_ECANCEL: /* Cancel while getting lock */
142 ret = LM_OUT_CANCELED;
143 goto out;
144 case -EAGAIN: /* Try lock fails */
145 ret = LM_OUT_TRY_AGAIN;
146 goto out;
147 case -EDEADLK: /* Deadlock detected */
148 ret = LM_OUT_DEADLOCK;
149 goto out;
150 case -ETIMEDOUT: /* Canceled due to timeout */
151 ret = LM_OUT_ERROR;
152 goto out;
153 case 0: /* Success */
154 break;
155 default: /* Something unexpected */
156 BUG();
157 }
158
159 ret = gl->gl_req;
160 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
161 if (gl->gl_req == LM_ST_SHARED)
162 ret = LM_ST_DEFERRED;
163 else if (gl->gl_req == LM_ST_DEFERRED)
164 ret = LM_ST_SHARED;
165 else
166 BUG();
167 }
168
169 /*
170 * The GLF_INITIAL flag is initially set for new glocks. Upon the
171 * first successful new (non-conversion) request, we clear this flag to
172 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
173 * identifier to use for identifying it.
174 *
175 * Any failed initial requests do not create a DLM lock, so we ignore
176 * the gl->gl_lksb.sb_lkid values that come with such requests.
177 */
178
179 clear_bit(GLF_INITIAL, &gl->gl_flags);
180 gfs2_glock_complete(gl, ret);
181 return;
182 out:
183 if (test_bit(GLF_INITIAL, &gl->gl_flags))
184 gl->gl_lksb.sb_lkid = 0;
185 gfs2_glock_complete(gl, ret);
186 }
187
gdlm_bast(void * arg,int mode)188 static void gdlm_bast(void *arg, int mode)
189 {
190 struct gfs2_glock *gl = arg;
191
192 if (__lockref_is_dead(&gl->gl_lockref))
193 return;
194
195 switch (mode) {
196 case DLM_LOCK_EX:
197 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
198 break;
199 case DLM_LOCK_CW:
200 gfs2_glock_cb(gl, LM_ST_DEFERRED);
201 break;
202 case DLM_LOCK_PR:
203 gfs2_glock_cb(gl, LM_ST_SHARED);
204 break;
205 default:
206 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
207 BUG();
208 }
209 }
210
211 /* convert gfs lock-state to dlm lock-mode */
212
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)213 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
214 {
215 switch (lmstate) {
216 case LM_ST_UNLOCKED:
217 return DLM_LOCK_NL;
218 case LM_ST_EXCLUSIVE:
219 return DLM_LOCK_EX;
220 case LM_ST_DEFERRED:
221 return DLM_LOCK_CW;
222 case LM_ST_SHARED:
223 return DLM_LOCK_PR;
224 }
225 fs_err(sdp, "unknown LM state %d\n", lmstate);
226 BUG();
227 return -1;
228 }
229
230 /* Taken from fs/dlm/lock.c. */
231
middle_conversion(int cur,int req)232 static bool middle_conversion(int cur, int req)
233 {
234 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
235 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
236 }
237
down_conversion(int cur,int req)238 static bool down_conversion(int cur, int req)
239 {
240 return !middle_conversion(cur, req) && req < cur;
241 }
242
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int cur,const int req)243 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
244 const int cur, const int req)
245 {
246 u32 lkf = 0;
247
248 if (gl->gl_lksb.sb_lvbptr)
249 lkf |= DLM_LKF_VALBLK;
250
251 if (gfs_flags & LM_FLAG_TRY)
252 lkf |= DLM_LKF_NOQUEUE;
253
254 if (gfs_flags & LM_FLAG_TRY_1CB) {
255 lkf |= DLM_LKF_NOQUEUE;
256 lkf |= DLM_LKF_NOQUEUEBAST;
257 }
258
259 if (gfs_flags & LM_FLAG_ANY) {
260 if (req == DLM_LOCK_PR)
261 lkf |= DLM_LKF_ALTCW;
262 else if (req == DLM_LOCK_CW)
263 lkf |= DLM_LKF_ALTPR;
264 else
265 BUG();
266 }
267
268 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
269 lkf |= DLM_LKF_CONVERT;
270
271 /*
272 * The DLM_LKF_QUECVT flag needs to be set for "first come,
273 * first served" semantics, but it must only be set for
274 * "upward" lock conversions or else DLM will reject the
275 * request as invalid.
276 */
277 if (!down_conversion(cur, req))
278 lkf |= DLM_LKF_QUECVT;
279 }
280
281 return lkf;
282 }
283
gfs2_reverse_hex(char * c,u64 value)284 static void gfs2_reverse_hex(char *c, u64 value)
285 {
286 *c = '0';
287 while (value) {
288 *c-- = hex_asc[value & 0x0f];
289 value >>= 4;
290 }
291 }
292
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)293 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
294 unsigned int flags)
295 {
296 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
297 int cur, req;
298 u32 lkf;
299 char strname[GDLM_STRNAME_BYTES] = "";
300 int error;
301
302 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
303 req = make_mode(gl->gl_name.ln_sbd, req_state);
304 lkf = make_flags(gl, flags, cur, req);
305 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
306 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
307 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
308 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
309 strname[GDLM_STRNAME_BYTES - 1] = '\0';
310 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
311 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
312 gl->gl_dstamp = ktime_get_real();
313 } else {
314 gfs2_update_request_times(gl);
315 }
316 /*
317 * Submit the actual lock request.
318 */
319
320 again:
321 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
322 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
323 if (error == -EBUSY) {
324 msleep(20);
325 goto again;
326 }
327 return error;
328 }
329
gdlm_put_lock(struct gfs2_glock * gl)330 static void gdlm_put_lock(struct gfs2_glock *gl)
331 {
332 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
333 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
334 uint32_t flags = 0;
335 int error;
336
337 BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
338
339 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
340 gfs2_glock_free(gl);
341 return;
342 }
343
344 clear_bit(GLF_BLOCKING, &gl->gl_flags);
345 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
346 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
347 gfs2_update_request_times(gl);
348
349 /* don't want to call dlm if we've unmounted the lock protocol */
350 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
351 gfs2_glock_free(gl);
352 return;
353 }
354
355 /*
356 * When the lockspace is released, all remaining glocks will be
357 * unlocked automatically. This is more efficient than unlocking them
358 * individually, but when the lock is held in DLM_LOCK_EX or
359 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost.
360 */
361
362 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
363 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
364 gfs2_glock_free_later(gl);
365 return;
366 }
367
368 if (gl->gl_lksb.sb_lvbptr)
369 flags |= DLM_LKF_VALBLK;
370
371 again:
372 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags,
373 NULL, gl);
374 if (error == -EBUSY) {
375 msleep(20);
376 goto again;
377 }
378
379 if (error) {
380 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
381 gl->gl_name.ln_type,
382 (unsigned long long)gl->gl_name.ln_number, error);
383 }
384 }
385
gdlm_cancel(struct gfs2_glock * gl)386 static void gdlm_cancel(struct gfs2_glock *gl)
387 {
388 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
389 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
390 }
391
392 /*
393 * dlm/gfs2 recovery coordination using dlm_recover callbacks
394 *
395 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
396 * 1. dlm_controld sees lockspace members change
397 * 2. dlm_controld blocks dlm-kernel locking activity
398 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
399 * 4. dlm_controld starts and finishes its own user level recovery
400 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
401 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
402 * 7. dlm_recoverd does its own lock recovery
403 * 8. dlm_recoverd unblocks dlm-kernel locking activity
404 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
405 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
406 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
407 * 12. gfs2_recover dequeues and recovers journals of failed nodes
408 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
409 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
410 * 15. gfs2_control unblocks normal locking when all journals are recovered
411 *
412 * - failures during recovery
413 *
414 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
415 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
416 * recovering for a prior failure. gfs2_control needs a way to detect
417 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
418 * the recover_block and recover_start values.
419 *
420 * recover_done() provides a new lockspace generation number each time it
421 * is called (step 9). This generation number is saved as recover_start.
422 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
423 * recover_block = recover_start. So, while recover_block is equal to
424 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
425 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
426 *
427 * - more specific gfs2 steps in sequence above
428 *
429 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
430 * 6. recover_slot records any failed jids (maybe none)
431 * 9. recover_done sets recover_start = new generation number
432 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
433 * 12. gfs2_recover does journal recoveries for failed jids identified above
434 * 14. gfs2_control clears control_lock lvb bits for recovered jids
435 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
436 * again) then do nothing, otherwise if recover_start > recover_block
437 * then clear BLOCK_LOCKS.
438 *
439 * - parallel recovery steps across all nodes
440 *
441 * All nodes attempt to update the control_lock lvb with the new generation
442 * number and jid bits, but only the first to get the control_lock EX will
443 * do so; others will see that it's already done (lvb already contains new
444 * generation number.)
445 *
446 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
447 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
448 * . One node gets control_lock first and writes the lvb, others see it's done
449 * . All nodes attempt to recover jids for which they see control_lock bits set
450 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
451 * . All nodes will eventually see all lvb bits clear and unblock locks
452 *
453 * - is there a problem with clearing an lvb bit that should be set
454 * and missing a journal recovery?
455 *
456 * 1. jid fails
457 * 2. lvb bit set for step 1
458 * 3. jid recovered for step 1
459 * 4. jid taken again (new mount)
460 * 5. jid fails (for step 4)
461 * 6. lvb bit set for step 5 (will already be set)
462 * 7. lvb bit cleared for step 3
463 *
464 * This is not a problem because the failure in step 5 does not
465 * require recovery, because the mount in step 4 could not have
466 * progressed far enough to unblock locks and access the fs. The
467 * control_mount() function waits for all recoveries to be complete
468 * for the latest lockspace generation before ever unblocking locks
469 * and returning. The mount in step 4 waits until the recovery in
470 * step 1 is done.
471 *
472 * - special case of first mounter: first node to mount the fs
473 *
474 * The first node to mount a gfs2 fs needs to check all the journals
475 * and recover any that need recovery before other nodes are allowed
476 * to mount the fs. (Others may begin mounting, but they must wait
477 * for the first mounter to be done before taking locks on the fs
478 * or accessing the fs.) This has two parts:
479 *
480 * 1. The mounted_lock tells a node it's the first to mount the fs.
481 * Each node holds the mounted_lock in PR while it's mounted.
482 * Each node tries to acquire the mounted_lock in EX when it mounts.
483 * If a node is granted the mounted_lock EX it means there are no
484 * other mounted nodes (no PR locks exist), and it is the first mounter.
485 * The mounted_lock is demoted to PR when first recovery is done, so
486 * others will fail to get an EX lock, but will get a PR lock.
487 *
488 * 2. The control_lock blocks others in control_mount() while the first
489 * mounter is doing first mount recovery of all journals.
490 * A mounting node needs to acquire control_lock in EX mode before
491 * it can proceed. The first mounter holds control_lock in EX while doing
492 * the first mount recovery, blocking mounts from other nodes, then demotes
493 * control_lock to NL when it's done (others_may_mount/first_done),
494 * allowing other nodes to continue mounting.
495 *
496 * first mounter:
497 * control_lock EX/NOQUEUE success
498 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
499 * set first=1
500 * do first mounter recovery
501 * mounted_lock EX->PR
502 * control_lock EX->NL, write lvb generation
503 *
504 * other mounter:
505 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
506 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
507 * mounted_lock PR/NOQUEUE success
508 * read lvb generation
509 * control_lock EX->NL
510 * set first=0
511 *
512 * - mount during recovery
513 *
514 * If a node mounts while others are doing recovery (not first mounter),
515 * the mounting node will get its initial recover_done() callback without
516 * having seen any previous failures/callbacks.
517 *
518 * It must wait for all recoveries preceding its mount to be finished
519 * before it unblocks locks. It does this by repeating the "other mounter"
520 * steps above until the lvb generation number is >= its mount generation
521 * number (from initial recover_done) and all lvb bits are clear.
522 *
523 * - control_lock lvb format
524 *
525 * 4 bytes generation number: the latest dlm lockspace generation number
526 * from recover_done callback. Indicates the jid bitmap has been updated
527 * to reflect all slot failures through that generation.
528 * 4 bytes unused.
529 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
530 * that jid N needs recovery.
531 */
532
533 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
534
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)535 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
536 char *lvb_bits)
537 {
538 __le32 gen;
539 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
540 memcpy(&gen, lvb_bits, sizeof(__le32));
541 *lvb_gen = le32_to_cpu(gen);
542 }
543
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)544 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
545 char *lvb_bits)
546 {
547 __le32 gen;
548 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
549 gen = cpu_to_le32(lvb_gen);
550 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
551 }
552
all_jid_bits_clear(char * lvb)553 static int all_jid_bits_clear(char *lvb)
554 {
555 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
556 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
557 }
558
sync_wait_cb(void * arg)559 static void sync_wait_cb(void *arg)
560 {
561 struct lm_lockstruct *ls = arg;
562 complete(&ls->ls_sync_wait);
563 }
564
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)565 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
566 {
567 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 int error;
569
570 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
571 if (error) {
572 fs_err(sdp, "%s lkid %x error %d\n",
573 name, lksb->sb_lkid, error);
574 return error;
575 }
576
577 wait_for_completion(&ls->ls_sync_wait);
578
579 if (lksb->sb_status != -DLM_EUNLOCK) {
580 fs_err(sdp, "%s lkid %x status %d\n",
581 name, lksb->sb_lkid, lksb->sb_status);
582 return -1;
583 }
584 return 0;
585 }
586
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)587 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
588 unsigned int num, struct dlm_lksb *lksb, char *name)
589 {
590 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
591 char strname[GDLM_STRNAME_BYTES];
592 int error, status;
593
594 memset(strname, 0, GDLM_STRNAME_BYTES);
595 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
596
597 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
598 strname, GDLM_STRNAME_BYTES - 1,
599 0, sync_wait_cb, ls, NULL);
600 if (error) {
601 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
602 name, lksb->sb_lkid, flags, mode, error);
603 return error;
604 }
605
606 wait_for_completion(&ls->ls_sync_wait);
607
608 status = lksb->sb_status;
609
610 if (status && status != -EAGAIN) {
611 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
612 name, lksb->sb_lkid, flags, mode, status);
613 }
614
615 return status;
616 }
617
mounted_unlock(struct gfs2_sbd * sdp)618 static int mounted_unlock(struct gfs2_sbd *sdp)
619 {
620 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
621 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
622 }
623
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)624 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
625 {
626 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
627 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
628 &ls->ls_mounted_lksb, "mounted_lock");
629 }
630
control_unlock(struct gfs2_sbd * sdp)631 static int control_unlock(struct gfs2_sbd *sdp)
632 {
633 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
634 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
635 }
636
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)637 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
638 {
639 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
640 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
641 &ls->ls_control_lksb, "control_lock");
642 }
643
644 /**
645 * remote_withdraw - react to a node withdrawing from the file system
646 * @sdp: The superblock
647 */
remote_withdraw(struct gfs2_sbd * sdp)648 static void remote_withdraw(struct gfs2_sbd *sdp)
649 {
650 struct gfs2_jdesc *jd;
651 int ret = 0, count = 0;
652
653 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
654 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
655 continue;
656 ret = gfs2_recover_journal(jd, true);
657 if (ret)
658 break;
659 count++;
660 }
661
662 /* Now drop the additional reference we acquired */
663 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
664 }
665
gfs2_control_func(struct work_struct * work)666 static void gfs2_control_func(struct work_struct *work)
667 {
668 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
669 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
670 uint32_t block_gen, start_gen, lvb_gen, flags;
671 int recover_set = 0;
672 int write_lvb = 0;
673 int recover_size;
674 int i, error;
675
676 /* First check for other nodes that may have done a withdraw. */
677 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
678 remote_withdraw(sdp);
679 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
680 return;
681 }
682
683 spin_lock(&ls->ls_recover_spin);
684 /*
685 * No MOUNT_DONE means we're still mounting; control_mount()
686 * will set this flag, after which this thread will take over
687 * all further clearing of BLOCK_LOCKS.
688 *
689 * FIRST_MOUNT means this node is doing first mounter recovery,
690 * for which recovery control is handled by
691 * control_mount()/control_first_done(), not this thread.
692 */
693 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
694 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
695 spin_unlock(&ls->ls_recover_spin);
696 return;
697 }
698 block_gen = ls->ls_recover_block;
699 start_gen = ls->ls_recover_start;
700 spin_unlock(&ls->ls_recover_spin);
701
702 /*
703 * Equal block_gen and start_gen implies we are between
704 * recover_prep and recover_done callbacks, which means
705 * dlm recovery is in progress and dlm locking is blocked.
706 * There's no point trying to do any work until recover_done.
707 */
708
709 if (block_gen == start_gen)
710 return;
711
712 /*
713 * Propagate recover_submit[] and recover_result[] to lvb:
714 * dlm_recoverd adds to recover_submit[] jids needing recovery
715 * gfs2_recover adds to recover_result[] journal recovery results
716 *
717 * set lvb bit for jids in recover_submit[] if the lvb has not
718 * yet been updated for the generation of the failure
719 *
720 * clear lvb bit for jids in recover_result[] if the result of
721 * the journal recovery is SUCCESS
722 */
723
724 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
725 if (error) {
726 fs_err(sdp, "control lock EX error %d\n", error);
727 return;
728 }
729
730 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
731
732 spin_lock(&ls->ls_recover_spin);
733 if (block_gen != ls->ls_recover_block ||
734 start_gen != ls->ls_recover_start) {
735 fs_info(sdp, "recover generation %u block1 %u %u\n",
736 start_gen, block_gen, ls->ls_recover_block);
737 spin_unlock(&ls->ls_recover_spin);
738 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
739 return;
740 }
741
742 recover_size = ls->ls_recover_size;
743
744 if (lvb_gen <= start_gen) {
745 /*
746 * Clear lvb bits for jids we've successfully recovered.
747 * Because all nodes attempt to recover failed journals,
748 * a journal can be recovered multiple times successfully
749 * in succession. Only the first will really do recovery,
750 * the others find it clean, but still report a successful
751 * recovery. So, another node may have already recovered
752 * the jid and cleared the lvb bit for it.
753 */
754 for (i = 0; i < recover_size; i++) {
755 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
756 continue;
757
758 ls->ls_recover_result[i] = 0;
759
760 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
761 continue;
762
763 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
764 write_lvb = 1;
765 }
766 }
767
768 if (lvb_gen == start_gen) {
769 /*
770 * Failed slots before start_gen are already set in lvb.
771 */
772 for (i = 0; i < recover_size; i++) {
773 if (!ls->ls_recover_submit[i])
774 continue;
775 if (ls->ls_recover_submit[i] < lvb_gen)
776 ls->ls_recover_submit[i] = 0;
777 }
778 } else if (lvb_gen < start_gen) {
779 /*
780 * Failed slots before start_gen are not yet set in lvb.
781 */
782 for (i = 0; i < recover_size; i++) {
783 if (!ls->ls_recover_submit[i])
784 continue;
785 if (ls->ls_recover_submit[i] < start_gen) {
786 ls->ls_recover_submit[i] = 0;
787 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
788 }
789 }
790 /* even if there are no bits to set, we need to write the
791 latest generation to the lvb */
792 write_lvb = 1;
793 } else {
794 /*
795 * we should be getting a recover_done() for lvb_gen soon
796 */
797 }
798 spin_unlock(&ls->ls_recover_spin);
799
800 if (write_lvb) {
801 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
802 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
803 } else {
804 flags = DLM_LKF_CONVERT;
805 }
806
807 error = control_lock(sdp, DLM_LOCK_NL, flags);
808 if (error) {
809 fs_err(sdp, "control lock NL error %d\n", error);
810 return;
811 }
812
813 /*
814 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
815 * and clear a jid bit in the lvb if the recovery is a success.
816 * Eventually all journals will be recovered, all jid bits will
817 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
818 */
819
820 for (i = 0; i < recover_size; i++) {
821 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
822 fs_info(sdp, "recover generation %u jid %d\n",
823 start_gen, i);
824 gfs2_recover_set(sdp, i);
825 recover_set++;
826 }
827 }
828 if (recover_set)
829 return;
830
831 /*
832 * No more jid bits set in lvb, all recovery is done, unblock locks
833 * (unless a new recover_prep callback has occured blocking locks
834 * again while working above)
835 */
836
837 spin_lock(&ls->ls_recover_spin);
838 if (ls->ls_recover_block == block_gen &&
839 ls->ls_recover_start == start_gen) {
840 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
841 spin_unlock(&ls->ls_recover_spin);
842 fs_info(sdp, "recover generation %u done\n", start_gen);
843 gfs2_glock_thaw(sdp);
844 } else {
845 fs_info(sdp, "recover generation %u block2 %u %u\n",
846 start_gen, block_gen, ls->ls_recover_block);
847 spin_unlock(&ls->ls_recover_spin);
848 }
849 }
850
control_mount(struct gfs2_sbd * sdp)851 static int control_mount(struct gfs2_sbd *sdp)
852 {
853 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
854 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
855 int mounted_mode;
856 int retries = 0;
857 int error;
858
859 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
860 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
861 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
862 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
863 init_completion(&ls->ls_sync_wait);
864
865 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
866
867 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
868 if (error) {
869 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
870 return error;
871 }
872
873 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
874 if (error) {
875 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
876 control_unlock(sdp);
877 return error;
878 }
879 mounted_mode = DLM_LOCK_NL;
880
881 restart:
882 if (retries++ && signal_pending(current)) {
883 error = -EINTR;
884 goto fail;
885 }
886
887 /*
888 * We always start with both locks in NL. control_lock is
889 * demoted to NL below so we don't need to do it here.
890 */
891
892 if (mounted_mode != DLM_LOCK_NL) {
893 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
894 if (error)
895 goto fail;
896 mounted_mode = DLM_LOCK_NL;
897 }
898
899 /*
900 * Other nodes need to do some work in dlm recovery and gfs2_control
901 * before the recover_done and control_lock will be ready for us below.
902 * A delay here is not required but often avoids having to retry.
903 */
904
905 msleep_interruptible(500);
906
907 /*
908 * Acquire control_lock in EX and mounted_lock in either EX or PR.
909 * control_lock lvb keeps track of any pending journal recoveries.
910 * mounted_lock indicates if any other nodes have the fs mounted.
911 */
912
913 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
914 if (error == -EAGAIN) {
915 goto restart;
916 } else if (error) {
917 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
918 goto fail;
919 }
920
921 /**
922 * If we're a spectator, we don't want to take the lock in EX because
923 * we cannot do the first-mount responsibility it implies: recovery.
924 */
925 if (sdp->sd_args.ar_spectator)
926 goto locks_done;
927
928 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
929 if (!error) {
930 mounted_mode = DLM_LOCK_EX;
931 goto locks_done;
932 } else if (error != -EAGAIN) {
933 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
934 goto fail;
935 }
936
937 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
938 if (!error) {
939 mounted_mode = DLM_LOCK_PR;
940 goto locks_done;
941 } else {
942 /* not even -EAGAIN should happen here */
943 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
944 goto fail;
945 }
946
947 locks_done:
948 /*
949 * If we got both locks above in EX, then we're the first mounter.
950 * If not, then we need to wait for the control_lock lvb to be
951 * updated by other mounted nodes to reflect our mount generation.
952 *
953 * In simple first mounter cases, first mounter will see zero lvb_gen,
954 * but in cases where all existing nodes leave/fail before mounting
955 * nodes finish control_mount, then all nodes will be mounting and
956 * lvb_gen will be non-zero.
957 */
958
959 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
960
961 if (lvb_gen == 0xFFFFFFFF) {
962 /* special value to force mount attempts to fail */
963 fs_err(sdp, "control_mount control_lock disabled\n");
964 error = -EINVAL;
965 goto fail;
966 }
967
968 if (mounted_mode == DLM_LOCK_EX) {
969 /* first mounter, keep both EX while doing first recovery */
970 spin_lock(&ls->ls_recover_spin);
971 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
972 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
973 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
974 spin_unlock(&ls->ls_recover_spin);
975 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
976 return 0;
977 }
978
979 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
980 if (error)
981 goto fail;
982
983 /*
984 * We are not first mounter, now we need to wait for the control_lock
985 * lvb generation to be >= the generation from our first recover_done
986 * and all lvb bits to be clear (no pending journal recoveries.)
987 */
988
989 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
990 /* journals need recovery, wait until all are clear */
991 fs_info(sdp, "control_mount wait for journal recovery\n");
992 goto restart;
993 }
994
995 spin_lock(&ls->ls_recover_spin);
996 block_gen = ls->ls_recover_block;
997 start_gen = ls->ls_recover_start;
998 mount_gen = ls->ls_recover_mount;
999
1000 if (lvb_gen < mount_gen) {
1001 /* wait for mounted nodes to update control_lock lvb to our
1002 generation, which might include new recovery bits set */
1003 if (sdp->sd_args.ar_spectator) {
1004 fs_info(sdp, "Recovery is required. Waiting for a "
1005 "non-spectator to mount.\n");
1006 spin_unlock(&ls->ls_recover_spin);
1007 msleep_interruptible(1000);
1008 } else {
1009 fs_info(sdp, "control_mount wait1 block %u start %u "
1010 "mount %u lvb %u flags %lx\n", block_gen,
1011 start_gen, mount_gen, lvb_gen,
1012 ls->ls_recover_flags);
1013 spin_unlock(&ls->ls_recover_spin);
1014 }
1015 goto restart;
1016 }
1017
1018 if (lvb_gen != start_gen) {
1019 /* wait for mounted nodes to update control_lock lvb to the
1020 latest recovery generation */
1021 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1022 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1023 lvb_gen, ls->ls_recover_flags);
1024 spin_unlock(&ls->ls_recover_spin);
1025 goto restart;
1026 }
1027
1028 if (block_gen == start_gen) {
1029 /* dlm recovery in progress, wait for it to finish */
1030 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1031 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1032 lvb_gen, ls->ls_recover_flags);
1033 spin_unlock(&ls->ls_recover_spin);
1034 goto restart;
1035 }
1036
1037 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1038 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1039 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1040 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1041 spin_unlock(&ls->ls_recover_spin);
1042 return 0;
1043
1044 fail:
1045 mounted_unlock(sdp);
1046 control_unlock(sdp);
1047 return error;
1048 }
1049
control_first_done(struct gfs2_sbd * sdp)1050 static int control_first_done(struct gfs2_sbd *sdp)
1051 {
1052 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1053 uint32_t start_gen, block_gen;
1054 int error;
1055
1056 restart:
1057 spin_lock(&ls->ls_recover_spin);
1058 start_gen = ls->ls_recover_start;
1059 block_gen = ls->ls_recover_block;
1060
1061 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1062 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1063 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1064 /* sanity check, should not happen */
1065 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1066 start_gen, block_gen, ls->ls_recover_flags);
1067 spin_unlock(&ls->ls_recover_spin);
1068 control_unlock(sdp);
1069 return -1;
1070 }
1071
1072 if (start_gen == block_gen) {
1073 /*
1074 * Wait for the end of a dlm recovery cycle to switch from
1075 * first mounter recovery. We can ignore any recover_slot
1076 * callbacks between the recover_prep and next recover_done
1077 * because we are still the first mounter and any failed nodes
1078 * have not fully mounted, so they don't need recovery.
1079 */
1080 spin_unlock(&ls->ls_recover_spin);
1081 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1082
1083 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1084 TASK_UNINTERRUPTIBLE);
1085 goto restart;
1086 }
1087
1088 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1089 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1090 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1091 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1092 spin_unlock(&ls->ls_recover_spin);
1093
1094 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1095 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1096
1097 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1098 if (error)
1099 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1100
1101 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1102 if (error)
1103 fs_err(sdp, "control_first_done control NL error %d\n", error);
1104
1105 return error;
1106 }
1107
1108 /*
1109 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1110 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1111 * gfs2 jids start at 0, so jid = slot - 1)
1112 */
1113
1114 #define RECOVER_SIZE_INC 16
1115
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1116 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1117 int num_slots)
1118 {
1119 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1120 uint32_t *submit = NULL;
1121 uint32_t *result = NULL;
1122 uint32_t old_size, new_size;
1123 int i, max_jid;
1124
1125 if (!ls->ls_lvb_bits) {
1126 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1127 if (!ls->ls_lvb_bits)
1128 return -ENOMEM;
1129 }
1130
1131 max_jid = 0;
1132 for (i = 0; i < num_slots; i++) {
1133 if (max_jid < slots[i].slot - 1)
1134 max_jid = slots[i].slot - 1;
1135 }
1136
1137 old_size = ls->ls_recover_size;
1138 new_size = old_size;
1139 while (new_size < max_jid + 1)
1140 new_size += RECOVER_SIZE_INC;
1141 if (new_size == old_size)
1142 return 0;
1143
1144 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1145 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1146 if (!submit || !result) {
1147 kfree(submit);
1148 kfree(result);
1149 return -ENOMEM;
1150 }
1151
1152 spin_lock(&ls->ls_recover_spin);
1153 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1154 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1155 kfree(ls->ls_recover_submit);
1156 kfree(ls->ls_recover_result);
1157 ls->ls_recover_submit = submit;
1158 ls->ls_recover_result = result;
1159 ls->ls_recover_size = new_size;
1160 spin_unlock(&ls->ls_recover_spin);
1161 return 0;
1162 }
1163
free_recover_size(struct lm_lockstruct * ls)1164 static void free_recover_size(struct lm_lockstruct *ls)
1165 {
1166 kfree(ls->ls_lvb_bits);
1167 kfree(ls->ls_recover_submit);
1168 kfree(ls->ls_recover_result);
1169 ls->ls_recover_submit = NULL;
1170 ls->ls_recover_result = NULL;
1171 ls->ls_recover_size = 0;
1172 ls->ls_lvb_bits = NULL;
1173 }
1174
1175 /* dlm calls before it does lock recovery */
1176
gdlm_recover_prep(void * arg)1177 static void gdlm_recover_prep(void *arg)
1178 {
1179 struct gfs2_sbd *sdp = arg;
1180 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1181
1182 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1183 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1184 return;
1185 }
1186 spin_lock(&ls->ls_recover_spin);
1187 ls->ls_recover_block = ls->ls_recover_start;
1188 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1189
1190 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1191 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1192 spin_unlock(&ls->ls_recover_spin);
1193 return;
1194 }
1195 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1196 spin_unlock(&ls->ls_recover_spin);
1197 }
1198
1199 /* dlm calls after recover_prep has been completed on all lockspace members;
1200 identifies slot/jid of failed member */
1201
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1202 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1203 {
1204 struct gfs2_sbd *sdp = arg;
1205 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1206 int jid = slot->slot - 1;
1207
1208 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1209 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1210 jid);
1211 return;
1212 }
1213 spin_lock(&ls->ls_recover_spin);
1214 if (ls->ls_recover_size < jid + 1) {
1215 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1216 jid, ls->ls_recover_block, ls->ls_recover_size);
1217 spin_unlock(&ls->ls_recover_spin);
1218 return;
1219 }
1220
1221 if (ls->ls_recover_submit[jid]) {
1222 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1223 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1224 }
1225 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1226 spin_unlock(&ls->ls_recover_spin);
1227 }
1228
1229 /* dlm calls after recover_slot and after it completes lock recovery */
1230
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1231 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1232 int our_slot, uint32_t generation)
1233 {
1234 struct gfs2_sbd *sdp = arg;
1235 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1236
1237 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1238 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1239 return;
1240 }
1241 /* ensure the ls jid arrays are large enough */
1242 set_recover_size(sdp, slots, num_slots);
1243
1244 spin_lock(&ls->ls_recover_spin);
1245 ls->ls_recover_start = generation;
1246
1247 if (!ls->ls_recover_mount) {
1248 ls->ls_recover_mount = generation;
1249 ls->ls_jid = our_slot - 1;
1250 }
1251
1252 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1253 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1254
1255 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1256 smp_mb__after_atomic();
1257 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1258 spin_unlock(&ls->ls_recover_spin);
1259 }
1260
1261 /* gfs2_recover thread has a journal recovery result */
1262
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1263 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1264 unsigned int result)
1265 {
1266 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1267
1268 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1269 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1270 jid);
1271 return;
1272 }
1273 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1274 return;
1275
1276 /* don't care about the recovery of own journal during mount */
1277 if (jid == ls->ls_jid)
1278 return;
1279
1280 spin_lock(&ls->ls_recover_spin);
1281 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1282 spin_unlock(&ls->ls_recover_spin);
1283 return;
1284 }
1285 if (ls->ls_recover_size < jid + 1) {
1286 fs_err(sdp, "recovery_result jid %d short size %d\n",
1287 jid, ls->ls_recover_size);
1288 spin_unlock(&ls->ls_recover_spin);
1289 return;
1290 }
1291
1292 fs_info(sdp, "recover jid %d result %s\n", jid,
1293 result == LM_RD_GAVEUP ? "busy" : "success");
1294
1295 ls->ls_recover_result[jid] = result;
1296
1297 /* GAVEUP means another node is recovering the journal; delay our
1298 next attempt to recover it, to give the other node a chance to
1299 finish before trying again */
1300
1301 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1302 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1303 result == LM_RD_GAVEUP ? HZ : 0);
1304 spin_unlock(&ls->ls_recover_spin);
1305 }
1306
1307 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1308 .recover_prep = gdlm_recover_prep,
1309 .recover_slot = gdlm_recover_slot,
1310 .recover_done = gdlm_recover_done,
1311 };
1312
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1313 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1314 {
1315 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1316 char cluster[GFS2_LOCKNAME_LEN];
1317 const char *fsname;
1318 uint32_t flags;
1319 int error, ops_result;
1320
1321 /*
1322 * initialize everything
1323 */
1324
1325 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1326 spin_lock_init(&ls->ls_recover_spin);
1327 ls->ls_recover_flags = 0;
1328 ls->ls_recover_mount = 0;
1329 ls->ls_recover_start = 0;
1330 ls->ls_recover_block = 0;
1331 ls->ls_recover_size = 0;
1332 ls->ls_recover_submit = NULL;
1333 ls->ls_recover_result = NULL;
1334 ls->ls_lvb_bits = NULL;
1335
1336 error = set_recover_size(sdp, NULL, 0);
1337 if (error)
1338 goto fail;
1339
1340 /*
1341 * prepare dlm_new_lockspace args
1342 */
1343
1344 fsname = strchr(table, ':');
1345 if (!fsname) {
1346 fs_info(sdp, "no fsname found\n");
1347 error = -EINVAL;
1348 goto fail_free;
1349 }
1350 memset(cluster, 0, sizeof(cluster));
1351 memcpy(cluster, table, strlen(table) - strlen(fsname));
1352 fsname++;
1353
1354 flags = DLM_LSFL_NEWEXCL;
1355
1356 /*
1357 * create/join lockspace
1358 */
1359
1360 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1361 &gdlm_lockspace_ops, sdp, &ops_result,
1362 &ls->ls_dlm);
1363 if (error) {
1364 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1365 goto fail_free;
1366 }
1367
1368 if (ops_result < 0) {
1369 /*
1370 * dlm does not support ops callbacks,
1371 * old dlm_controld/gfs_controld are used, try without ops.
1372 */
1373 fs_info(sdp, "dlm lockspace ops not used\n");
1374 free_recover_size(ls);
1375 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1376 return 0;
1377 }
1378
1379 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1380 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1381 error = -EINVAL;
1382 goto fail_release;
1383 }
1384
1385 /*
1386 * control_mount() uses control_lock to determine first mounter,
1387 * and for later mounts, waits for any recoveries to be cleared.
1388 */
1389
1390 error = control_mount(sdp);
1391 if (error) {
1392 fs_err(sdp, "mount control error %d\n", error);
1393 goto fail_release;
1394 }
1395
1396 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1397 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1398 smp_mb__after_atomic();
1399 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1400 return 0;
1401
1402 fail_release:
1403 dlm_release_lockspace(ls->ls_dlm, 2);
1404 fail_free:
1405 free_recover_size(ls);
1406 fail:
1407 return error;
1408 }
1409
gdlm_first_done(struct gfs2_sbd * sdp)1410 static void gdlm_first_done(struct gfs2_sbd *sdp)
1411 {
1412 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1413 int error;
1414
1415 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1416 return;
1417
1418 error = control_first_done(sdp);
1419 if (error)
1420 fs_err(sdp, "mount first_done error %d\n", error);
1421 }
1422
gdlm_unmount(struct gfs2_sbd * sdp)1423 static void gdlm_unmount(struct gfs2_sbd *sdp)
1424 {
1425 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1426
1427 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1428 goto release;
1429
1430 /* wait for gfs2_control_wq to be done with this mount */
1431
1432 spin_lock(&ls->ls_recover_spin);
1433 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1434 spin_unlock(&ls->ls_recover_spin);
1435 flush_delayed_work(&sdp->sd_control_work);
1436
1437 /* mounted_lock and control_lock will be purged in dlm recovery */
1438 release:
1439 if (ls->ls_dlm) {
1440 dlm_release_lockspace(ls->ls_dlm, 2);
1441 ls->ls_dlm = NULL;
1442 }
1443
1444 free_recover_size(ls);
1445 }
1446
1447 static const match_table_t dlm_tokens = {
1448 { Opt_jid, "jid=%d"},
1449 { Opt_id, "id=%d"},
1450 { Opt_first, "first=%d"},
1451 { Opt_nodir, "nodir=%d"},
1452 { Opt_err, NULL },
1453 };
1454
1455 const struct lm_lockops gfs2_dlm_ops = {
1456 .lm_proto_name = "lock_dlm",
1457 .lm_mount = gdlm_mount,
1458 .lm_first_done = gdlm_first_done,
1459 .lm_recovery_result = gdlm_recovery_result,
1460 .lm_unmount = gdlm_unmount,
1461 .lm_put_lock = gdlm_put_lock,
1462 .lm_lock = gdlm_lock,
1463 .lm_cancel = gdlm_cancel,
1464 .lm_tokens = &dlm_tokens,
1465 };
1466
1467