xref: /linux/fs/gfs2/lock_dlm.c (revision a90f1b6ad6649d553c9d76f50a42e4ba5783164b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret;
123 
124 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
125 	if (__lockref_is_dead(&gl->gl_lockref) &&
126 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 		return;
128 
129 	gfs2_update_reply_times(gl);
130 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131 
132 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134 
135 	switch (gl->gl_lksb.sb_status) {
136 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 		if (gl->gl_ops->go_unlocked)
138 			gl->gl_ops->go_unlocked(gl);
139 		gfs2_glock_free(gl);
140 		return;
141 	case -DLM_ECANCEL: /* Cancel while getting lock */
142 		ret = LM_OUT_CANCELED;
143 		goto out;
144 	case -EAGAIN: /* Try lock fails */
145 		ret = LM_OUT_TRY_AGAIN;
146 		goto out;
147 	case -EDEADLK: /* Deadlock detected */
148 		ret = LM_OUT_DEADLOCK;
149 		goto out;
150 	case -ETIMEDOUT: /* Canceled due to timeout */
151 		ret = LM_OUT_ERROR;
152 		goto out;
153 	case 0: /* Success */
154 		break;
155 	default: /* Something unexpected */
156 		BUG();
157 	}
158 
159 	ret = gl->gl_req;
160 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
161 		if (gl->gl_req == LM_ST_SHARED)
162 			ret = LM_ST_DEFERRED;
163 		else if (gl->gl_req == LM_ST_DEFERRED)
164 			ret = LM_ST_SHARED;
165 		else
166 			BUG();
167 	}
168 
169 	/*
170 	 * The GLF_INITIAL flag is initially set for new glocks.  Upon the
171 	 * first successful new (non-conversion) request, we clear this flag to
172 	 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
173 	 * identifier to use for identifying it.
174 	 *
175 	 * Any failed initial requests do not create a DLM lock, so we ignore
176 	 * the gl->gl_lksb.sb_lkid values that come with such requests.
177 	 */
178 
179 	clear_bit(GLF_INITIAL, &gl->gl_flags);
180 	gfs2_glock_complete(gl, ret);
181 	return;
182 out:
183 	if (test_bit(GLF_INITIAL, &gl->gl_flags))
184 		gl->gl_lksb.sb_lkid = 0;
185 	gfs2_glock_complete(gl, ret);
186 }
187 
gdlm_bast(void * arg,int mode)188 static void gdlm_bast(void *arg, int mode)
189 {
190 	struct gfs2_glock *gl = arg;
191 
192 	if (__lockref_is_dead(&gl->gl_lockref))
193 		return;
194 
195 	switch (mode) {
196 	case DLM_LOCK_EX:
197 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
198 		break;
199 	case DLM_LOCK_CW:
200 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
201 		break;
202 	case DLM_LOCK_PR:
203 		gfs2_glock_cb(gl, LM_ST_SHARED);
204 		break;
205 	default:
206 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
207 		BUG();
208 	}
209 }
210 
211 /* convert gfs lock-state to dlm lock-mode */
212 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)213 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
214 {
215 	switch (lmstate) {
216 	case LM_ST_UNLOCKED:
217 		return DLM_LOCK_NL;
218 	case LM_ST_EXCLUSIVE:
219 		return DLM_LOCK_EX;
220 	case LM_ST_DEFERRED:
221 		return DLM_LOCK_CW;
222 	case LM_ST_SHARED:
223 		return DLM_LOCK_PR;
224 	}
225 	fs_err(sdp, "unknown LM state %d\n", lmstate);
226 	BUG();
227 	return -1;
228 }
229 
230 /* Taken from fs/dlm/lock.c. */
231 
middle_conversion(int cur,int req)232 static bool middle_conversion(int cur, int req)
233 {
234 	return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
235 	       (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
236 }
237 
down_conversion(int cur,int req)238 static bool down_conversion(int cur, int req)
239 {
240 	return !middle_conversion(cur, req) && req < cur;
241 }
242 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int cur,const int req)243 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
244 		      const int cur, const int req)
245 {
246 	u32 lkf = 0;
247 
248 	if (gl->gl_lksb.sb_lvbptr)
249 		lkf |= DLM_LKF_VALBLK;
250 
251 	if (gfs_flags & LM_FLAG_TRY)
252 		lkf |= DLM_LKF_NOQUEUE;
253 
254 	if (gfs_flags & LM_FLAG_TRY_1CB) {
255 		lkf |= DLM_LKF_NOQUEUE;
256 		lkf |= DLM_LKF_NOQUEUEBAST;
257 	}
258 
259 	if (gfs_flags & LM_FLAG_ANY) {
260 		if (req == DLM_LOCK_PR)
261 			lkf |= DLM_LKF_ALTCW;
262 		else if (req == DLM_LOCK_CW)
263 			lkf |= DLM_LKF_ALTPR;
264 		else
265 			BUG();
266 	}
267 
268 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
269 		lkf |= DLM_LKF_CONVERT;
270 
271 		/*
272 		 * The DLM_LKF_QUECVT flag needs to be set for "first come,
273 		 * first served" semantics, but it must only be set for
274 		 * "upward" lock conversions or else DLM will reject the
275 		 * request as invalid.
276 		 */
277 		if (!down_conversion(cur, req))
278 			lkf |= DLM_LKF_QUECVT;
279 	}
280 
281 	return lkf;
282 }
283 
gfs2_reverse_hex(char * c,u64 value)284 static void gfs2_reverse_hex(char *c, u64 value)
285 {
286 	*c = '0';
287 	while (value) {
288 		*c-- = hex_asc[value & 0x0f];
289 		value >>= 4;
290 	}
291 }
292 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)293 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
294 		     unsigned int flags)
295 {
296 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
297 	int cur, req;
298 	u32 lkf;
299 	char strname[GDLM_STRNAME_BYTES] = "";
300 	int error;
301 
302 	cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
303 	req = make_mode(gl->gl_name.ln_sbd, req_state);
304 	lkf = make_flags(gl, flags, cur, req);
305 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
306 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
307 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
308 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
309 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
310 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
311 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
312 		gl->gl_dstamp = ktime_get_real();
313 	} else {
314 		gfs2_update_request_times(gl);
315 	}
316 	/*
317 	 * Submit the actual lock request.
318 	 */
319 
320 again:
321 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
322 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
323 	if (error == -EBUSY) {
324 		msleep(20);
325 		goto again;
326 	}
327 	return error;
328 }
329 
gdlm_put_lock(struct gfs2_glock * gl)330 static void gdlm_put_lock(struct gfs2_glock *gl)
331 {
332 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
333 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
334 	uint32_t flags = 0;
335 	int error;
336 
337 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
338 
339 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
340 		gfs2_glock_free(gl);
341 		return;
342 	}
343 
344 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
345 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
346 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
347 	gfs2_update_request_times(gl);
348 
349 	/* don't want to call dlm if we've unmounted the lock protocol */
350 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
351 		gfs2_glock_free(gl);
352 		return;
353 	}
354 
355 	/*
356 	 * When the lockspace is released, all remaining glocks will be
357 	 * unlocked automatically.  This is more efficient than unlocking them
358 	 * individually, but when the lock is held in DLM_LOCK_EX or
359 	 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost.
360 	 */
361 
362 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
363 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
364 		gfs2_glock_free_later(gl);
365 		return;
366 	}
367 
368 	if (gl->gl_lksb.sb_lvbptr)
369 		flags |= DLM_LKF_VALBLK;
370 
371 again:
372 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags,
373 			   NULL, gl);
374 	if (error == -EBUSY) {
375 		msleep(20);
376 		goto again;
377 	}
378 
379 	if (error) {
380 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
381 		       gl->gl_name.ln_type,
382 		       (unsigned long long)gl->gl_name.ln_number, error);
383 	}
384 }
385 
gdlm_cancel(struct gfs2_glock * gl)386 static void gdlm_cancel(struct gfs2_glock *gl)
387 {
388 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
389 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
390 }
391 
392 /*
393  * dlm/gfs2 recovery coordination using dlm_recover callbacks
394  *
395  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
396  *  1. dlm_controld sees lockspace members change
397  *  2. dlm_controld blocks dlm-kernel locking activity
398  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
399  *  4. dlm_controld starts and finishes its own user level recovery
400  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
401  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
402  *  7. dlm_recoverd does its own lock recovery
403  *  8. dlm_recoverd unblocks dlm-kernel locking activity
404  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
405  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
406  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
407  * 12. gfs2_recover dequeues and recovers journals of failed nodes
408  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
409  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
410  * 15. gfs2_control unblocks normal locking when all journals are recovered
411  *
412  * - failures during recovery
413  *
414  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
415  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
416  * recovering for a prior failure.  gfs2_control needs a way to detect
417  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
418  * the recover_block and recover_start values.
419  *
420  * recover_done() provides a new lockspace generation number each time it
421  * is called (step 9).  This generation number is saved as recover_start.
422  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
423  * recover_block = recover_start.  So, while recover_block is equal to
424  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
425  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
426  *
427  * - more specific gfs2 steps in sequence above
428  *
429  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
430  *  6. recover_slot records any failed jids (maybe none)
431  *  9. recover_done sets recover_start = new generation number
432  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
433  * 12. gfs2_recover does journal recoveries for failed jids identified above
434  * 14. gfs2_control clears control_lock lvb bits for recovered jids
435  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
436  *     again) then do nothing, otherwise if recover_start > recover_block
437  *     then clear BLOCK_LOCKS.
438  *
439  * - parallel recovery steps across all nodes
440  *
441  * All nodes attempt to update the control_lock lvb with the new generation
442  * number and jid bits, but only the first to get the control_lock EX will
443  * do so; others will see that it's already done (lvb already contains new
444  * generation number.)
445  *
446  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
447  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
448  * . One node gets control_lock first and writes the lvb, others see it's done
449  * . All nodes attempt to recover jids for which they see control_lock bits set
450  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
451  * . All nodes will eventually see all lvb bits clear and unblock locks
452  *
453  * - is there a problem with clearing an lvb bit that should be set
454  *   and missing a journal recovery?
455  *
456  * 1. jid fails
457  * 2. lvb bit set for step 1
458  * 3. jid recovered for step 1
459  * 4. jid taken again (new mount)
460  * 5. jid fails (for step 4)
461  * 6. lvb bit set for step 5 (will already be set)
462  * 7. lvb bit cleared for step 3
463  *
464  * This is not a problem because the failure in step 5 does not
465  * require recovery, because the mount in step 4 could not have
466  * progressed far enough to unblock locks and access the fs.  The
467  * control_mount() function waits for all recoveries to be complete
468  * for the latest lockspace generation before ever unblocking locks
469  * and returning.  The mount in step 4 waits until the recovery in
470  * step 1 is done.
471  *
472  * - special case of first mounter: first node to mount the fs
473  *
474  * The first node to mount a gfs2 fs needs to check all the journals
475  * and recover any that need recovery before other nodes are allowed
476  * to mount the fs.  (Others may begin mounting, but they must wait
477  * for the first mounter to be done before taking locks on the fs
478  * or accessing the fs.)  This has two parts:
479  *
480  * 1. The mounted_lock tells a node it's the first to mount the fs.
481  * Each node holds the mounted_lock in PR while it's mounted.
482  * Each node tries to acquire the mounted_lock in EX when it mounts.
483  * If a node is granted the mounted_lock EX it means there are no
484  * other mounted nodes (no PR locks exist), and it is the first mounter.
485  * The mounted_lock is demoted to PR when first recovery is done, so
486  * others will fail to get an EX lock, but will get a PR lock.
487  *
488  * 2. The control_lock blocks others in control_mount() while the first
489  * mounter is doing first mount recovery of all journals.
490  * A mounting node needs to acquire control_lock in EX mode before
491  * it can proceed.  The first mounter holds control_lock in EX while doing
492  * the first mount recovery, blocking mounts from other nodes, then demotes
493  * control_lock to NL when it's done (others_may_mount/first_done),
494  * allowing other nodes to continue mounting.
495  *
496  * first mounter:
497  * control_lock EX/NOQUEUE success
498  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
499  * set first=1
500  * do first mounter recovery
501  * mounted_lock EX->PR
502  * control_lock EX->NL, write lvb generation
503  *
504  * other mounter:
505  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
506  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
507  * mounted_lock PR/NOQUEUE success
508  * read lvb generation
509  * control_lock EX->NL
510  * set first=0
511  *
512  * - mount during recovery
513  *
514  * If a node mounts while others are doing recovery (not first mounter),
515  * the mounting node will get its initial recover_done() callback without
516  * having seen any previous failures/callbacks.
517  *
518  * It must wait for all recoveries preceding its mount to be finished
519  * before it unblocks locks.  It does this by repeating the "other mounter"
520  * steps above until the lvb generation number is >= its mount generation
521  * number (from initial recover_done) and all lvb bits are clear.
522  *
523  * - control_lock lvb format
524  *
525  * 4 bytes generation number: the latest dlm lockspace generation number
526  * from recover_done callback.  Indicates the jid bitmap has been updated
527  * to reflect all slot failures through that generation.
528  * 4 bytes unused.
529  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
530  * that jid N needs recovery.
531  */
532 
533 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
534 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)535 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
536 			     char *lvb_bits)
537 {
538 	__le32 gen;
539 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
540 	memcpy(&gen, lvb_bits, sizeof(__le32));
541 	*lvb_gen = le32_to_cpu(gen);
542 }
543 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)544 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
545 			      char *lvb_bits)
546 {
547 	__le32 gen;
548 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
549 	gen = cpu_to_le32(lvb_gen);
550 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
551 }
552 
all_jid_bits_clear(char * lvb)553 static int all_jid_bits_clear(char *lvb)
554 {
555 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
556 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
557 }
558 
sync_wait_cb(void * arg)559 static void sync_wait_cb(void *arg)
560 {
561 	struct lm_lockstruct *ls = arg;
562 	complete(&ls->ls_sync_wait);
563 }
564 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)565 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
566 {
567 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
568 	int error;
569 
570 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
571 	if (error) {
572 		fs_err(sdp, "%s lkid %x error %d\n",
573 		       name, lksb->sb_lkid, error);
574 		return error;
575 	}
576 
577 	wait_for_completion(&ls->ls_sync_wait);
578 
579 	if (lksb->sb_status != -DLM_EUNLOCK) {
580 		fs_err(sdp, "%s lkid %x status %d\n",
581 		       name, lksb->sb_lkid, lksb->sb_status);
582 		return -1;
583 	}
584 	return 0;
585 }
586 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)587 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
588 		     unsigned int num, struct dlm_lksb *lksb, char *name)
589 {
590 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
591 	char strname[GDLM_STRNAME_BYTES];
592 	int error, status;
593 
594 	memset(strname, 0, GDLM_STRNAME_BYTES);
595 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
596 
597 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
598 			 strname, GDLM_STRNAME_BYTES - 1,
599 			 0, sync_wait_cb, ls, NULL);
600 	if (error) {
601 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
602 		       name, lksb->sb_lkid, flags, mode, error);
603 		return error;
604 	}
605 
606 	wait_for_completion(&ls->ls_sync_wait);
607 
608 	status = lksb->sb_status;
609 
610 	if (status && status != -EAGAIN) {
611 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
612 		       name, lksb->sb_lkid, flags, mode, status);
613 	}
614 
615 	return status;
616 }
617 
mounted_unlock(struct gfs2_sbd * sdp)618 static int mounted_unlock(struct gfs2_sbd *sdp)
619 {
620 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
621 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
622 }
623 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)624 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
625 {
626 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
627 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
628 			 &ls->ls_mounted_lksb, "mounted_lock");
629 }
630 
control_unlock(struct gfs2_sbd * sdp)631 static int control_unlock(struct gfs2_sbd *sdp)
632 {
633 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
634 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
635 }
636 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)637 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
638 {
639 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
640 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
641 			 &ls->ls_control_lksb, "control_lock");
642 }
643 
644 /**
645  * remote_withdraw - react to a node withdrawing from the file system
646  * @sdp: The superblock
647  */
remote_withdraw(struct gfs2_sbd * sdp)648 static void remote_withdraw(struct gfs2_sbd *sdp)
649 {
650 	struct gfs2_jdesc *jd;
651 	int ret = 0, count = 0;
652 
653 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
654 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
655 			continue;
656 		ret = gfs2_recover_journal(jd, true);
657 		if (ret)
658 			break;
659 		count++;
660 	}
661 
662 	/* Now drop the additional reference we acquired */
663 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
664 }
665 
gfs2_control_func(struct work_struct * work)666 static void gfs2_control_func(struct work_struct *work)
667 {
668 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
669 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
670 	uint32_t block_gen, start_gen, lvb_gen, flags;
671 	int recover_set = 0;
672 	int write_lvb = 0;
673 	int recover_size;
674 	int i, error;
675 
676 	/* First check for other nodes that may have done a withdraw. */
677 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
678 		remote_withdraw(sdp);
679 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
680 		return;
681 	}
682 
683 	spin_lock(&ls->ls_recover_spin);
684 	/*
685 	 * No MOUNT_DONE means we're still mounting; control_mount()
686 	 * will set this flag, after which this thread will take over
687 	 * all further clearing of BLOCK_LOCKS.
688 	 *
689 	 * FIRST_MOUNT means this node is doing first mounter recovery,
690 	 * for which recovery control is handled by
691 	 * control_mount()/control_first_done(), not this thread.
692 	 */
693 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
694 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
695 		spin_unlock(&ls->ls_recover_spin);
696 		return;
697 	}
698 	block_gen = ls->ls_recover_block;
699 	start_gen = ls->ls_recover_start;
700 	spin_unlock(&ls->ls_recover_spin);
701 
702 	/*
703 	 * Equal block_gen and start_gen implies we are between
704 	 * recover_prep and recover_done callbacks, which means
705 	 * dlm recovery is in progress and dlm locking is blocked.
706 	 * There's no point trying to do any work until recover_done.
707 	 */
708 
709 	if (block_gen == start_gen)
710 		return;
711 
712 	/*
713 	 * Propagate recover_submit[] and recover_result[] to lvb:
714 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
715 	 * gfs2_recover adds to recover_result[] journal recovery results
716 	 *
717 	 * set lvb bit for jids in recover_submit[] if the lvb has not
718 	 * yet been updated for the generation of the failure
719 	 *
720 	 * clear lvb bit for jids in recover_result[] if the result of
721 	 * the journal recovery is SUCCESS
722 	 */
723 
724 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
725 	if (error) {
726 		fs_err(sdp, "control lock EX error %d\n", error);
727 		return;
728 	}
729 
730 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
731 
732 	spin_lock(&ls->ls_recover_spin);
733 	if (block_gen != ls->ls_recover_block ||
734 	    start_gen != ls->ls_recover_start) {
735 		fs_info(sdp, "recover generation %u block1 %u %u\n",
736 			start_gen, block_gen, ls->ls_recover_block);
737 		spin_unlock(&ls->ls_recover_spin);
738 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
739 		return;
740 	}
741 
742 	recover_size = ls->ls_recover_size;
743 
744 	if (lvb_gen <= start_gen) {
745 		/*
746 		 * Clear lvb bits for jids we've successfully recovered.
747 		 * Because all nodes attempt to recover failed journals,
748 		 * a journal can be recovered multiple times successfully
749 		 * in succession.  Only the first will really do recovery,
750 		 * the others find it clean, but still report a successful
751 		 * recovery.  So, another node may have already recovered
752 		 * the jid and cleared the lvb bit for it.
753 		 */
754 		for (i = 0; i < recover_size; i++) {
755 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
756 				continue;
757 
758 			ls->ls_recover_result[i] = 0;
759 
760 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
761 				continue;
762 
763 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
764 			write_lvb = 1;
765 		}
766 	}
767 
768 	if (lvb_gen == start_gen) {
769 		/*
770 		 * Failed slots before start_gen are already set in lvb.
771 		 */
772 		for (i = 0; i < recover_size; i++) {
773 			if (!ls->ls_recover_submit[i])
774 				continue;
775 			if (ls->ls_recover_submit[i] < lvb_gen)
776 				ls->ls_recover_submit[i] = 0;
777 		}
778 	} else if (lvb_gen < start_gen) {
779 		/*
780 		 * Failed slots before start_gen are not yet set in lvb.
781 		 */
782 		for (i = 0; i < recover_size; i++) {
783 			if (!ls->ls_recover_submit[i])
784 				continue;
785 			if (ls->ls_recover_submit[i] < start_gen) {
786 				ls->ls_recover_submit[i] = 0;
787 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
788 			}
789 		}
790 		/* even if there are no bits to set, we need to write the
791 		   latest generation to the lvb */
792 		write_lvb = 1;
793 	} else {
794 		/*
795 		 * we should be getting a recover_done() for lvb_gen soon
796 		 */
797 	}
798 	spin_unlock(&ls->ls_recover_spin);
799 
800 	if (write_lvb) {
801 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
802 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
803 	} else {
804 		flags = DLM_LKF_CONVERT;
805 	}
806 
807 	error = control_lock(sdp, DLM_LOCK_NL, flags);
808 	if (error) {
809 		fs_err(sdp, "control lock NL error %d\n", error);
810 		return;
811 	}
812 
813 	/*
814 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
815 	 * and clear a jid bit in the lvb if the recovery is a success.
816 	 * Eventually all journals will be recovered, all jid bits will
817 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
818 	 */
819 
820 	for (i = 0; i < recover_size; i++) {
821 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
822 			fs_info(sdp, "recover generation %u jid %d\n",
823 				start_gen, i);
824 			gfs2_recover_set(sdp, i);
825 			recover_set++;
826 		}
827 	}
828 	if (recover_set)
829 		return;
830 
831 	/*
832 	 * No more jid bits set in lvb, all recovery is done, unblock locks
833 	 * (unless a new recover_prep callback has occured blocking locks
834 	 * again while working above)
835 	 */
836 
837 	spin_lock(&ls->ls_recover_spin);
838 	if (ls->ls_recover_block == block_gen &&
839 	    ls->ls_recover_start == start_gen) {
840 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
841 		spin_unlock(&ls->ls_recover_spin);
842 		fs_info(sdp, "recover generation %u done\n", start_gen);
843 		gfs2_glock_thaw(sdp);
844 	} else {
845 		fs_info(sdp, "recover generation %u block2 %u %u\n",
846 			start_gen, block_gen, ls->ls_recover_block);
847 		spin_unlock(&ls->ls_recover_spin);
848 	}
849 }
850 
control_mount(struct gfs2_sbd * sdp)851 static int control_mount(struct gfs2_sbd *sdp)
852 {
853 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
854 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
855 	int mounted_mode;
856 	int retries = 0;
857 	int error;
858 
859 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
860 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
861 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
862 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
863 	init_completion(&ls->ls_sync_wait);
864 
865 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
866 
867 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
868 	if (error) {
869 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
870 		return error;
871 	}
872 
873 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
874 	if (error) {
875 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
876 		control_unlock(sdp);
877 		return error;
878 	}
879 	mounted_mode = DLM_LOCK_NL;
880 
881 restart:
882 	if (retries++ && signal_pending(current)) {
883 		error = -EINTR;
884 		goto fail;
885 	}
886 
887 	/*
888 	 * We always start with both locks in NL. control_lock is
889 	 * demoted to NL below so we don't need to do it here.
890 	 */
891 
892 	if (mounted_mode != DLM_LOCK_NL) {
893 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
894 		if (error)
895 			goto fail;
896 		mounted_mode = DLM_LOCK_NL;
897 	}
898 
899 	/*
900 	 * Other nodes need to do some work in dlm recovery and gfs2_control
901 	 * before the recover_done and control_lock will be ready for us below.
902 	 * A delay here is not required but often avoids having to retry.
903 	 */
904 
905 	msleep_interruptible(500);
906 
907 	/*
908 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
909 	 * control_lock lvb keeps track of any pending journal recoveries.
910 	 * mounted_lock indicates if any other nodes have the fs mounted.
911 	 */
912 
913 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
914 	if (error == -EAGAIN) {
915 		goto restart;
916 	} else if (error) {
917 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
918 		goto fail;
919 	}
920 
921 	/**
922 	 * If we're a spectator, we don't want to take the lock in EX because
923 	 * we cannot do the first-mount responsibility it implies: recovery.
924 	 */
925 	if (sdp->sd_args.ar_spectator)
926 		goto locks_done;
927 
928 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
929 	if (!error) {
930 		mounted_mode = DLM_LOCK_EX;
931 		goto locks_done;
932 	} else if (error != -EAGAIN) {
933 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
934 		goto fail;
935 	}
936 
937 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
938 	if (!error) {
939 		mounted_mode = DLM_LOCK_PR;
940 		goto locks_done;
941 	} else {
942 		/* not even -EAGAIN should happen here */
943 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
944 		goto fail;
945 	}
946 
947 locks_done:
948 	/*
949 	 * If we got both locks above in EX, then we're the first mounter.
950 	 * If not, then we need to wait for the control_lock lvb to be
951 	 * updated by other mounted nodes to reflect our mount generation.
952 	 *
953 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
954 	 * but in cases where all existing nodes leave/fail before mounting
955 	 * nodes finish control_mount, then all nodes will be mounting and
956 	 * lvb_gen will be non-zero.
957 	 */
958 
959 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
960 
961 	if (lvb_gen == 0xFFFFFFFF) {
962 		/* special value to force mount attempts to fail */
963 		fs_err(sdp, "control_mount control_lock disabled\n");
964 		error = -EINVAL;
965 		goto fail;
966 	}
967 
968 	if (mounted_mode == DLM_LOCK_EX) {
969 		/* first mounter, keep both EX while doing first recovery */
970 		spin_lock(&ls->ls_recover_spin);
971 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
972 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
973 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
974 		spin_unlock(&ls->ls_recover_spin);
975 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
976 		return 0;
977 	}
978 
979 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
980 	if (error)
981 		goto fail;
982 
983 	/*
984 	 * We are not first mounter, now we need to wait for the control_lock
985 	 * lvb generation to be >= the generation from our first recover_done
986 	 * and all lvb bits to be clear (no pending journal recoveries.)
987 	 */
988 
989 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
990 		/* journals need recovery, wait until all are clear */
991 		fs_info(sdp, "control_mount wait for journal recovery\n");
992 		goto restart;
993 	}
994 
995 	spin_lock(&ls->ls_recover_spin);
996 	block_gen = ls->ls_recover_block;
997 	start_gen = ls->ls_recover_start;
998 	mount_gen = ls->ls_recover_mount;
999 
1000 	if (lvb_gen < mount_gen) {
1001 		/* wait for mounted nodes to update control_lock lvb to our
1002 		   generation, which might include new recovery bits set */
1003 		if (sdp->sd_args.ar_spectator) {
1004 			fs_info(sdp, "Recovery is required. Waiting for a "
1005 				"non-spectator to mount.\n");
1006 			spin_unlock(&ls->ls_recover_spin);
1007 			msleep_interruptible(1000);
1008 		} else {
1009 			fs_info(sdp, "control_mount wait1 block %u start %u "
1010 				"mount %u lvb %u flags %lx\n", block_gen,
1011 				start_gen, mount_gen, lvb_gen,
1012 				ls->ls_recover_flags);
1013 			spin_unlock(&ls->ls_recover_spin);
1014 		}
1015 		goto restart;
1016 	}
1017 
1018 	if (lvb_gen != start_gen) {
1019 		/* wait for mounted nodes to update control_lock lvb to the
1020 		   latest recovery generation */
1021 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1022 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1023 			lvb_gen, ls->ls_recover_flags);
1024 		spin_unlock(&ls->ls_recover_spin);
1025 		goto restart;
1026 	}
1027 
1028 	if (block_gen == start_gen) {
1029 		/* dlm recovery in progress, wait for it to finish */
1030 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1031 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1032 			lvb_gen, ls->ls_recover_flags);
1033 		spin_unlock(&ls->ls_recover_spin);
1034 		goto restart;
1035 	}
1036 
1037 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1038 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1039 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1040 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1041 	spin_unlock(&ls->ls_recover_spin);
1042 	return 0;
1043 
1044 fail:
1045 	mounted_unlock(sdp);
1046 	control_unlock(sdp);
1047 	return error;
1048 }
1049 
control_first_done(struct gfs2_sbd * sdp)1050 static int control_first_done(struct gfs2_sbd *sdp)
1051 {
1052 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1053 	uint32_t start_gen, block_gen;
1054 	int error;
1055 
1056 restart:
1057 	spin_lock(&ls->ls_recover_spin);
1058 	start_gen = ls->ls_recover_start;
1059 	block_gen = ls->ls_recover_block;
1060 
1061 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1062 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1063 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1064 		/* sanity check, should not happen */
1065 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1066 		       start_gen, block_gen, ls->ls_recover_flags);
1067 		spin_unlock(&ls->ls_recover_spin);
1068 		control_unlock(sdp);
1069 		return -1;
1070 	}
1071 
1072 	if (start_gen == block_gen) {
1073 		/*
1074 		 * Wait for the end of a dlm recovery cycle to switch from
1075 		 * first mounter recovery.  We can ignore any recover_slot
1076 		 * callbacks between the recover_prep and next recover_done
1077 		 * because we are still the first mounter and any failed nodes
1078 		 * have not fully mounted, so they don't need recovery.
1079 		 */
1080 		spin_unlock(&ls->ls_recover_spin);
1081 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1082 
1083 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1084 			    TASK_UNINTERRUPTIBLE);
1085 		goto restart;
1086 	}
1087 
1088 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1089 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1090 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1091 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1092 	spin_unlock(&ls->ls_recover_spin);
1093 
1094 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1095 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1096 
1097 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1098 	if (error)
1099 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1100 
1101 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1102 	if (error)
1103 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1104 
1105 	return error;
1106 }
1107 
1108 /*
1109  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1110  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1111  * gfs2 jids start at 0, so jid = slot - 1)
1112  */
1113 
1114 #define RECOVER_SIZE_INC 16
1115 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1116 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1117 			    int num_slots)
1118 {
1119 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1120 	uint32_t *submit = NULL;
1121 	uint32_t *result = NULL;
1122 	uint32_t old_size, new_size;
1123 	int i, max_jid;
1124 
1125 	if (!ls->ls_lvb_bits) {
1126 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1127 		if (!ls->ls_lvb_bits)
1128 			return -ENOMEM;
1129 	}
1130 
1131 	max_jid = 0;
1132 	for (i = 0; i < num_slots; i++) {
1133 		if (max_jid < slots[i].slot - 1)
1134 			max_jid = slots[i].slot - 1;
1135 	}
1136 
1137 	old_size = ls->ls_recover_size;
1138 	new_size = old_size;
1139 	while (new_size < max_jid + 1)
1140 		new_size += RECOVER_SIZE_INC;
1141 	if (new_size == old_size)
1142 		return 0;
1143 
1144 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1145 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1146 	if (!submit || !result) {
1147 		kfree(submit);
1148 		kfree(result);
1149 		return -ENOMEM;
1150 	}
1151 
1152 	spin_lock(&ls->ls_recover_spin);
1153 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1154 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1155 	kfree(ls->ls_recover_submit);
1156 	kfree(ls->ls_recover_result);
1157 	ls->ls_recover_submit = submit;
1158 	ls->ls_recover_result = result;
1159 	ls->ls_recover_size = new_size;
1160 	spin_unlock(&ls->ls_recover_spin);
1161 	return 0;
1162 }
1163 
free_recover_size(struct lm_lockstruct * ls)1164 static void free_recover_size(struct lm_lockstruct *ls)
1165 {
1166 	kfree(ls->ls_lvb_bits);
1167 	kfree(ls->ls_recover_submit);
1168 	kfree(ls->ls_recover_result);
1169 	ls->ls_recover_submit = NULL;
1170 	ls->ls_recover_result = NULL;
1171 	ls->ls_recover_size = 0;
1172 	ls->ls_lvb_bits = NULL;
1173 }
1174 
1175 /* dlm calls before it does lock recovery */
1176 
gdlm_recover_prep(void * arg)1177 static void gdlm_recover_prep(void *arg)
1178 {
1179 	struct gfs2_sbd *sdp = arg;
1180 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1181 
1182 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1183 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1184 		return;
1185 	}
1186 	spin_lock(&ls->ls_recover_spin);
1187 	ls->ls_recover_block = ls->ls_recover_start;
1188 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1189 
1190 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1191 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1192 		spin_unlock(&ls->ls_recover_spin);
1193 		return;
1194 	}
1195 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1196 	spin_unlock(&ls->ls_recover_spin);
1197 }
1198 
1199 /* dlm calls after recover_prep has been completed on all lockspace members;
1200    identifies slot/jid of failed member */
1201 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1202 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1203 {
1204 	struct gfs2_sbd *sdp = arg;
1205 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1206 	int jid = slot->slot - 1;
1207 
1208 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1209 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1210 		       jid);
1211 		return;
1212 	}
1213 	spin_lock(&ls->ls_recover_spin);
1214 	if (ls->ls_recover_size < jid + 1) {
1215 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1216 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1217 		spin_unlock(&ls->ls_recover_spin);
1218 		return;
1219 	}
1220 
1221 	if (ls->ls_recover_submit[jid]) {
1222 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1223 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1224 	}
1225 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1226 	spin_unlock(&ls->ls_recover_spin);
1227 }
1228 
1229 /* dlm calls after recover_slot and after it completes lock recovery */
1230 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1231 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1232 			      int our_slot, uint32_t generation)
1233 {
1234 	struct gfs2_sbd *sdp = arg;
1235 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1236 
1237 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1238 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1239 		return;
1240 	}
1241 	/* ensure the ls jid arrays are large enough */
1242 	set_recover_size(sdp, slots, num_slots);
1243 
1244 	spin_lock(&ls->ls_recover_spin);
1245 	ls->ls_recover_start = generation;
1246 
1247 	if (!ls->ls_recover_mount) {
1248 		ls->ls_recover_mount = generation;
1249 		ls->ls_jid = our_slot - 1;
1250 	}
1251 
1252 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1253 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1254 
1255 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1256 	smp_mb__after_atomic();
1257 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1258 	spin_unlock(&ls->ls_recover_spin);
1259 }
1260 
1261 /* gfs2_recover thread has a journal recovery result */
1262 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1263 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1264 				 unsigned int result)
1265 {
1266 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1267 
1268 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1269 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1270 		       jid);
1271 		return;
1272 	}
1273 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1274 		return;
1275 
1276 	/* don't care about the recovery of own journal during mount */
1277 	if (jid == ls->ls_jid)
1278 		return;
1279 
1280 	spin_lock(&ls->ls_recover_spin);
1281 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1282 		spin_unlock(&ls->ls_recover_spin);
1283 		return;
1284 	}
1285 	if (ls->ls_recover_size < jid + 1) {
1286 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1287 		       jid, ls->ls_recover_size);
1288 		spin_unlock(&ls->ls_recover_spin);
1289 		return;
1290 	}
1291 
1292 	fs_info(sdp, "recover jid %d result %s\n", jid,
1293 		result == LM_RD_GAVEUP ? "busy" : "success");
1294 
1295 	ls->ls_recover_result[jid] = result;
1296 
1297 	/* GAVEUP means another node is recovering the journal; delay our
1298 	   next attempt to recover it, to give the other node a chance to
1299 	   finish before trying again */
1300 
1301 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1302 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1303 				   result == LM_RD_GAVEUP ? HZ : 0);
1304 	spin_unlock(&ls->ls_recover_spin);
1305 }
1306 
1307 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1308 	.recover_prep = gdlm_recover_prep,
1309 	.recover_slot = gdlm_recover_slot,
1310 	.recover_done = gdlm_recover_done,
1311 };
1312 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1313 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1314 {
1315 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1316 	char cluster[GFS2_LOCKNAME_LEN];
1317 	const char *fsname;
1318 	uint32_t flags;
1319 	int error, ops_result;
1320 
1321 	/*
1322 	 * initialize everything
1323 	 */
1324 
1325 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1326 	spin_lock_init(&ls->ls_recover_spin);
1327 	ls->ls_recover_flags = 0;
1328 	ls->ls_recover_mount = 0;
1329 	ls->ls_recover_start = 0;
1330 	ls->ls_recover_block = 0;
1331 	ls->ls_recover_size = 0;
1332 	ls->ls_recover_submit = NULL;
1333 	ls->ls_recover_result = NULL;
1334 	ls->ls_lvb_bits = NULL;
1335 
1336 	error = set_recover_size(sdp, NULL, 0);
1337 	if (error)
1338 		goto fail;
1339 
1340 	/*
1341 	 * prepare dlm_new_lockspace args
1342 	 */
1343 
1344 	fsname = strchr(table, ':');
1345 	if (!fsname) {
1346 		fs_info(sdp, "no fsname found\n");
1347 		error = -EINVAL;
1348 		goto fail_free;
1349 	}
1350 	memset(cluster, 0, sizeof(cluster));
1351 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1352 	fsname++;
1353 
1354 	flags = DLM_LSFL_NEWEXCL;
1355 
1356 	/*
1357 	 * create/join lockspace
1358 	 */
1359 
1360 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1361 				  &gdlm_lockspace_ops, sdp, &ops_result,
1362 				  &ls->ls_dlm);
1363 	if (error) {
1364 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1365 		goto fail_free;
1366 	}
1367 
1368 	if (ops_result < 0) {
1369 		/*
1370 		 * dlm does not support ops callbacks,
1371 		 * old dlm_controld/gfs_controld are used, try without ops.
1372 		 */
1373 		fs_info(sdp, "dlm lockspace ops not used\n");
1374 		free_recover_size(ls);
1375 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1376 		return 0;
1377 	}
1378 
1379 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1380 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1381 		error = -EINVAL;
1382 		goto fail_release;
1383 	}
1384 
1385 	/*
1386 	 * control_mount() uses control_lock to determine first mounter,
1387 	 * and for later mounts, waits for any recoveries to be cleared.
1388 	 */
1389 
1390 	error = control_mount(sdp);
1391 	if (error) {
1392 		fs_err(sdp, "mount control error %d\n", error);
1393 		goto fail_release;
1394 	}
1395 
1396 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1397 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1398 	smp_mb__after_atomic();
1399 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1400 	return 0;
1401 
1402 fail_release:
1403 	dlm_release_lockspace(ls->ls_dlm, 2);
1404 fail_free:
1405 	free_recover_size(ls);
1406 fail:
1407 	return error;
1408 }
1409 
gdlm_first_done(struct gfs2_sbd * sdp)1410 static void gdlm_first_done(struct gfs2_sbd *sdp)
1411 {
1412 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1413 	int error;
1414 
1415 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1416 		return;
1417 
1418 	error = control_first_done(sdp);
1419 	if (error)
1420 		fs_err(sdp, "mount first_done error %d\n", error);
1421 }
1422 
gdlm_unmount(struct gfs2_sbd * sdp)1423 static void gdlm_unmount(struct gfs2_sbd *sdp)
1424 {
1425 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1426 
1427 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1428 		goto release;
1429 
1430 	/* wait for gfs2_control_wq to be done with this mount */
1431 
1432 	spin_lock(&ls->ls_recover_spin);
1433 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1434 	spin_unlock(&ls->ls_recover_spin);
1435 	flush_delayed_work(&sdp->sd_control_work);
1436 
1437 	/* mounted_lock and control_lock will be purged in dlm recovery */
1438 release:
1439 	if (ls->ls_dlm) {
1440 		dlm_release_lockspace(ls->ls_dlm, 2);
1441 		ls->ls_dlm = NULL;
1442 	}
1443 
1444 	free_recover_size(ls);
1445 }
1446 
1447 static const match_table_t dlm_tokens = {
1448 	{ Opt_jid, "jid=%d"},
1449 	{ Opt_id, "id=%d"},
1450 	{ Opt_first, "first=%d"},
1451 	{ Opt_nodir, "nodir=%d"},
1452 	{ Opt_err, NULL },
1453 };
1454 
1455 const struct lm_lockops gfs2_dlm_ops = {
1456 	.lm_proto_name = "lock_dlm",
1457 	.lm_mount = gdlm_mount,
1458 	.lm_first_done = gdlm_first_done,
1459 	.lm_recovery_result = gdlm_recovery_result,
1460 	.lm_unmount = gdlm_unmount,
1461 	.lm_put_lock = gdlm_put_lock,
1462 	.lm_lock = gdlm_lock,
1463 	.lm_cancel = gdlm_cancel,
1464 	.lm_tokens = &dlm_tokens,
1465 };
1466 
1467