xref: /linux/arch/x86/include/asm/kvm_host.h (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45 
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47 
48 /*
49  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51  */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57 
58 /*
59  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60  * might be larger than the actual number of VCPUs because the
61  * APIC ID encodes CPU topology information.
62  *
63  * In the worst case, we'll need less than one extra bit for the
64  * Core ID, and less than one extra bit for the Package (Die) ID,
65  * so ratio of 4 should be enough.
66  */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69 
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72 
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74 
75 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
76 
77 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 					KVM_DIRTY_LOG_INITIALLY_SET)
79 
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
81 						 KVM_BUS_LOCK_DETECTION_EXIT)
82 
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 						 KVM_X86_NOTIFY_VMEXIT_USER)
85 
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
123 #define KVM_REQ_RECALC_INTERCEPTS	KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 	KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132 
133 #define CR0_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137 
138 #define CR4_RESERVED_BITS                                               \
139 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
141 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 			  | X86_CR4_LAM_SUP | X86_CR4_CET))
146 
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148 
149 
150 
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153 
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162 
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171 
172 #define ASYNC_PF_PER_VCPU 64
173 
174 enum kvm_reg {
175 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 	VCPU_REGS_R8  = __VCPU_REGS_R8,
185 	VCPU_REGS_R9  = __VCPU_REGS_R9,
186 	VCPU_REGS_R10 = __VCPU_REGS_R10,
187 	VCPU_REGS_R11 = __VCPU_REGS_R11,
188 	VCPU_REGS_R12 = __VCPU_REGS_R12,
189 	VCPU_REGS_R13 = __VCPU_REGS_R13,
190 	VCPU_REGS_R14 = __VCPU_REGS_R14,
191 	VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 	VCPU_REGS_RIP,
194 	NR_VCPU_REGS,
195 
196 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 	VCPU_EXREG_CR0,
198 	VCPU_EXREG_CR3,
199 	VCPU_EXREG_CR4,
200 	VCPU_EXREG_RFLAGS,
201 	VCPU_EXREG_SEGMENTS,
202 	VCPU_EXREG_EXIT_INFO_1,
203 	VCPU_EXREG_EXIT_INFO_2,
204 };
205 
206 enum {
207 	VCPU_SREG_ES,
208 	VCPU_SREG_CS,
209 	VCPU_SREG_SS,
210 	VCPU_SREG_DS,
211 	VCPU_SREG_FS,
212 	VCPU_SREG_GS,
213 	VCPU_SREG_TR,
214 	VCPU_SREG_LDTR,
215 };
216 
217 enum exit_fastpath_completion {
218 	EXIT_FASTPATH_NONE,
219 	EXIT_FASTPATH_REENTER_GUEST,
220 	EXIT_FASTPATH_EXIT_HANDLED,
221 	EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224 
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230 
231 #define KVM_NR_DB_REGS	4
232 
233 #define DR6_BUS_LOCK   (1 << 11)
234 #define DR6_BD		(1 << 13)
235 #define DR6_BS		(1 << 14)
236 #define DR6_BT		(1 << 15)
237 #define DR6_RTM		(1 << 16)
238 /*
239  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241  * they will never be 0 for now, but when they are defined
242  * in the future it will require no code change.
243  *
244  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245  */
246 #define DR6_ACTIVE_LOW	0xffff0ff0
247 #define DR6_VOLATILE	0x0001e80f
248 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249 
250 #define DR7_BP_EN_MASK	0x000000ff
251 #define DR7_GE		(1 << 9)
252 #define DR7_GD		(1 << 13)
253 #define DR7_VOLATILE	0xffff2bff
254 
255 #define KVM_GUESTDBG_VALID_MASK \
256 	(KVM_GUESTDBG_ENABLE | \
257 	KVM_GUESTDBG_SINGLESTEP | \
258 	KVM_GUESTDBG_USE_HW_BP | \
259 	KVM_GUESTDBG_USE_SW_BP | \
260 	KVM_GUESTDBG_INJECT_BP | \
261 	KVM_GUESTDBG_INJECT_DB | \
262 	KVM_GUESTDBG_BLOCKIRQ)
263 
264 #define PFERR_PRESENT_MASK	BIT(0)
265 #define PFERR_WRITE_MASK	BIT(1)
266 #define PFERR_USER_MASK		BIT(2)
267 #define PFERR_RSVD_MASK		BIT(3)
268 #define PFERR_FETCH_MASK	BIT(4)
269 #define PFERR_PK_MASK		BIT(5)
270 #define PFERR_SS_MASK		BIT(6)
271 #define PFERR_SGX_MASK		BIT(15)
272 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
273 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
274 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
275 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
276 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
277 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
278 
279 /*
280  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
281  * when emulating instructions that triggers implicit access.
282  */
283 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
284 /*
285  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
286  * when the guest was accessing private memory.
287  */
288 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
289 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
290 
291 /* apic attention bits */
292 #define KVM_APIC_CHECK_VAPIC	0
293 /*
294  * The following bit is set with PV-EOI, unset on EOI.
295  * We detect PV-EOI changes by guest by comparing
296  * this bit with PV-EOI in guest memory.
297  * See the implementation in apic_update_pv_eoi.
298  */
299 #define KVM_APIC_PV_EOI_PENDING	1
300 
301 struct kvm_kernel_irqfd;
302 struct kvm_kernel_irq_routing_entry;
303 
304 /*
305  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
306  * also includes TDP pages) to determine whether or not a page can be used in
307  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
308  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
309  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
310  *
311  * Upper-level shadow pages having gptes are tracked for write-protection via
312  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
313  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
314  * otherwise gfn_write_track will overflow and explosions will ensue.
315  *
316  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
317  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
318  * incorporates various mode bits and properties of the SP.  Roughly speaking,
319  * the number of unique SPs that can theoretically be created is 2^n, where n
320  * is the number of bits that are used to compute the role.
321  *
322  * But, even though there are 20 bits in the mask below, not all combinations
323  * of modes and flags are possible:
324  *
325  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
326  *     so the bits are effectively 18.
327  *
328  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
329  *     execonly and ad_disabled are only used for nested EPT which has
330  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
331  *
332  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
333  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
334  *     paging has exactly one upper level, making level completely redundant
335  *     when has_4_byte_gpte=1.
336  *
337  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
338  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
339  *
340  * Therefore, the maximum number of possible upper-level shadow pages for a
341  * single gfn is a bit less than 2^13.
342  */
343 union kvm_mmu_page_role {
344 	u32 word;
345 	struct {
346 		unsigned level:4;
347 		unsigned has_4_byte_gpte:1;
348 		unsigned quadrant:2;
349 		unsigned direct:1;
350 		unsigned access:3;
351 		unsigned invalid:1;
352 		unsigned efer_nx:1;
353 		unsigned cr0_wp:1;
354 		unsigned smep_andnot_wp:1;
355 		unsigned smap_andnot_wp:1;
356 		unsigned ad_disabled:1;
357 		unsigned guest_mode:1;
358 		unsigned passthrough:1;
359 		unsigned is_mirror:1;
360 		unsigned :4;
361 
362 		/*
363 		 * This is left at the top of the word so that
364 		 * kvm_memslots_for_spte_role can extract it with a
365 		 * simple shift.  While there is room, give it a whole
366 		 * byte so it is also faster to load it from memory.
367 		 */
368 		unsigned smm:8;
369 	};
370 };
371 
372 /*
373  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
374  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
375  * including on nested transitions, if nothing in the full role changes then
376  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
377  * don't treat all-zero structure as valid data.
378  *
379  * The properties that are tracked in the extended role but not the page role
380  * are for things that either (a) do not affect the validity of the shadow page
381  * or (b) are indirectly reflected in the shadow page's role.  For example,
382  * CR4.PKE only affects permission checks for software walks of the guest page
383  * tables (because KVM doesn't support Protection Keys with shadow paging), and
384  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
385  *
386  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
387  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
388  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
389  * SMAP aware regardless of CR0.WP.
390  */
391 union kvm_mmu_extended_role {
392 	u32 word;
393 	struct {
394 		unsigned int valid:1;
395 		unsigned int execonly:1;
396 		unsigned int cr4_pse:1;
397 		unsigned int cr4_pke:1;
398 		unsigned int cr4_smap:1;
399 		unsigned int cr4_smep:1;
400 		unsigned int cr4_la57:1;
401 		unsigned int efer_lma:1;
402 	};
403 };
404 
405 union kvm_cpu_role {
406 	u64 as_u64;
407 	struct {
408 		union kvm_mmu_page_role base;
409 		union kvm_mmu_extended_role ext;
410 	};
411 };
412 
413 struct kvm_rmap_head {
414 	atomic_long_t val;
415 };
416 
417 struct kvm_pio_request {
418 	unsigned long count;
419 	int in;
420 	int port;
421 	int size;
422 };
423 
424 #define PT64_ROOT_MAX_LEVEL 5
425 
426 struct rsvd_bits_validate {
427 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
428 	u64 bad_mt_xwr;
429 };
430 
431 struct kvm_mmu_root_info {
432 	gpa_t pgd;
433 	hpa_t hpa;
434 };
435 
436 #define KVM_MMU_ROOT_INFO_INVALID \
437 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
438 
439 #define KVM_MMU_NUM_PREV_ROOTS 3
440 
441 #define KVM_MMU_ROOT_CURRENT		BIT(0)
442 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
443 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
444 
445 #define KVM_HAVE_MMU_RWLOCK
446 
447 struct kvm_mmu_page;
448 struct kvm_page_fault;
449 
450 /*
451  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
452  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
453  * current mmu mode.
454  */
455 struct kvm_mmu {
456 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
457 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
458 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
459 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
460 				  struct x86_exception *fault);
461 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
462 			    gpa_t gva_or_gpa, u64 access,
463 			    struct x86_exception *exception);
464 	int (*sync_spte)(struct kvm_vcpu *vcpu,
465 			 struct kvm_mmu_page *sp, int i);
466 	struct kvm_mmu_root_info root;
467 	hpa_t mirror_root_hpa;
468 	union kvm_cpu_role cpu_role;
469 	union kvm_mmu_page_role root_role;
470 
471 	/*
472 	* The pkru_mask indicates if protection key checks are needed.  It
473 	* consists of 16 domains indexed by page fault error code bits [4:1],
474 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
475 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
476 	*/
477 	u32 pkru_mask;
478 
479 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
480 
481 	/*
482 	 * Bitmap; bit set = permission fault
483 	 * Byte index: page fault error code [4:1]
484 	 * Bit index: pte permissions in ACC_* format
485 	 */
486 	u8 permissions[16];
487 
488 	u64 *pae_root;
489 	u64 *pml4_root;
490 	u64 *pml5_root;
491 
492 	/*
493 	 * check zero bits on shadow page table entries, these
494 	 * bits include not only hardware reserved bits but also
495 	 * the bits spte never used.
496 	 */
497 	struct rsvd_bits_validate shadow_zero_check;
498 
499 	struct rsvd_bits_validate guest_rsvd_check;
500 
501 	u64 pdptrs[4]; /* pae */
502 };
503 
504 enum pmc_type {
505 	KVM_PMC_GP = 0,
506 	KVM_PMC_FIXED,
507 };
508 
509 struct kvm_pmc {
510 	enum pmc_type type;
511 	u8 idx;
512 	bool is_paused;
513 	bool intr;
514 	/*
515 	 * Base value of the PMC counter, relative to the *consumed* count in
516 	 * the associated perf_event.  This value includes counter updates from
517 	 * the perf_event and emulated_count since the last time the counter
518 	 * was reprogrammed, but it is *not* the current value as seen by the
519 	 * guest or userspace.
520 	 *
521 	 * The count is relative to the associated perf_event so that KVM
522 	 * doesn't need to reprogram the perf_event every time the guest writes
523 	 * to the counter.
524 	 */
525 	u64 counter;
526 	/*
527 	 * PMC events triggered by KVM emulation that haven't been fully
528 	 * processed, i.e. haven't undergone overflow detection.
529 	 */
530 	u64 emulated_counter;
531 	u64 eventsel;
532 	struct perf_event *perf_event;
533 	struct kvm_vcpu *vcpu;
534 	/*
535 	 * only for creating or reusing perf_event,
536 	 * eventsel value for general purpose counters,
537 	 * ctrl value for fixed counters.
538 	 */
539 	u64 current_config;
540 };
541 
542 /* More counters may conflict with other existing Architectural MSRs */
543 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
544 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
545 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
546 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
547 						KVM_MAX_NR_AMD_GP_COUNTERS)
548 
549 #define KVM_MAX_NR_INTEL_FIXED_COUNTERS	3
550 #define KVM_MAX_NR_AMD_FIXED_COUNTERS	0
551 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUNTERS, \
552 						KVM_MAX_NR_AMD_FIXED_COUNTERS)
553 
554 struct kvm_pmu {
555 	u8 version;
556 	unsigned nr_arch_gp_counters;
557 	unsigned nr_arch_fixed_counters;
558 	unsigned available_event_types;
559 	u64 fixed_ctr_ctrl;
560 	u64 fixed_ctr_ctrl_rsvd;
561 	u64 global_ctrl;
562 	u64 global_status;
563 	u64 counter_bitmask[2];
564 	u64 global_ctrl_rsvd;
565 	u64 global_status_rsvd;
566 	u64 reserved_bits;
567 	u64 raw_event_mask;
568 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
569 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
570 
571 	/*
572 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
573 	 * set in a single access, e.g. to reprogram all counters when the PMU
574 	 * filter changes.
575 	 */
576 	union {
577 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
578 		atomic64_t __reprogram_pmi;
579 	};
580 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
581 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
582 
583 	DECLARE_BITMAP(pmc_counting_instructions, X86_PMC_IDX_MAX);
584 	DECLARE_BITMAP(pmc_counting_branches, X86_PMC_IDX_MAX);
585 
586 	u64 ds_area;
587 	u64 pebs_enable;
588 	u64 pebs_enable_rsvd;
589 	u64 pebs_data_cfg;
590 	u64 pebs_data_cfg_rsvd;
591 
592 	/*
593 	 * If a guest counter is cross-mapped to host counter with different
594 	 * index, its PEBS capability will be temporarily disabled.
595 	 *
596 	 * The user should make sure that this mask is updated
597 	 * after disabling interrupts and before perf_guest_get_msrs();
598 	 */
599 	u64 host_cross_mapped_mask;
600 
601 	/*
602 	 * The gate to release perf_events not marked in
603 	 * pmc_in_use only once in a vcpu time slice.
604 	 */
605 	bool need_cleanup;
606 
607 	/*
608 	 * The total number of programmed perf_events and it helps to avoid
609 	 * redundant check before cleanup if guest don't use vPMU at all.
610 	 */
611 	u8 event_count;
612 };
613 
614 struct kvm_pmu_ops;
615 
616 enum {
617 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
618 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
619 	/*
620 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
621 	 * hardware on exit from or enter to guest. KVM needn't switch them.
622 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
623 	 * exit, host values need to be restored.
624 	 */
625 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
626 };
627 
628 struct kvm_mtrr {
629 	u64 var[KVM_NR_VAR_MTRR * 2];
630 	u64 fixed_64k;
631 	u64 fixed_16k[2];
632 	u64 fixed_4k[8];
633 	u64 deftype;
634 };
635 
636 /* Hyper-V SynIC timer */
637 struct kvm_vcpu_hv_stimer {
638 	struct hrtimer timer;
639 	int index;
640 	union hv_stimer_config config;
641 	u64 count;
642 	u64 exp_time;
643 	struct hv_message msg;
644 	bool msg_pending;
645 };
646 
647 /* Hyper-V synthetic interrupt controller (SynIC)*/
648 struct kvm_vcpu_hv_synic {
649 	u64 version;
650 	u64 control;
651 	u64 msg_page;
652 	u64 evt_page;
653 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
654 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
655 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
656 	DECLARE_BITMAP(vec_bitmap, 256);
657 	bool active;
658 	bool dont_zero_synic_pages;
659 };
660 
661 /* The maximum number of entries on the TLB flush fifo. */
662 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
663 /*
664  * Note: the following 'magic' entry is made up by KVM to avoid putting
665  * anything besides GVA on the TLB flush fifo. It is theoretically possible
666  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
667  * which will look identical. KVM's action to 'flush everything' instead of
668  * flushing these particular addresses is, however, fully legitimate as
669  * flushing more than requested is always OK.
670  */
671 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
672 
673 enum hv_tlb_flush_fifos {
674 	HV_L1_TLB_FLUSH_FIFO,
675 	HV_L2_TLB_FLUSH_FIFO,
676 	HV_NR_TLB_FLUSH_FIFOS,
677 };
678 
679 struct kvm_vcpu_hv_tlb_flush_fifo {
680 	spinlock_t write_lock;
681 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
682 };
683 
684 /* Hyper-V per vcpu emulation context */
685 struct kvm_vcpu_hv {
686 	struct kvm_vcpu *vcpu;
687 	u32 vp_index;
688 	u64 hv_vapic;
689 	s64 runtime_offset;
690 	struct kvm_vcpu_hv_synic synic;
691 	struct kvm_hyperv_exit exit;
692 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
693 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
694 	bool enforce_cpuid;
695 	struct {
696 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
697 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
698 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
699 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
700 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
701 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
702 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
703 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
704 	} cpuid_cache;
705 
706 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
707 
708 	/*
709 	 * Preallocated buffers for handling hypercalls that pass sparse vCPU
710 	 * sets (for high vCPU counts, they're too large to comfortably fit on
711 	 * the stack).
712 	 */
713 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
714 	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
715 
716 	struct hv_vp_assist_page vp_assist_page;
717 
718 	struct {
719 		u64 pa_page_gpa;
720 		u64 vm_id;
721 		u32 vp_id;
722 	} nested;
723 };
724 
725 struct kvm_hypervisor_cpuid {
726 	u32 base;
727 	u32 limit;
728 };
729 
730 #ifdef CONFIG_KVM_XEN
731 /* Xen HVM per vcpu emulation context */
732 struct kvm_vcpu_xen {
733 	u64 hypercall_rip;
734 	u32 current_runstate;
735 	u8 upcall_vector;
736 	struct gfn_to_pfn_cache vcpu_info_cache;
737 	struct gfn_to_pfn_cache vcpu_time_info_cache;
738 	struct gfn_to_pfn_cache runstate_cache;
739 	struct gfn_to_pfn_cache runstate2_cache;
740 	u64 last_steal;
741 	u64 runstate_entry_time;
742 	u64 runstate_times[4];
743 	unsigned long evtchn_pending_sel;
744 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
745 	u32 timer_virq;
746 	u64 timer_expires; /* In guest epoch */
747 	atomic_t timer_pending;
748 	struct hrtimer timer;
749 	int poll_evtchn;
750 	struct timer_list poll_timer;
751 	struct kvm_hypervisor_cpuid cpuid;
752 };
753 #endif
754 
755 struct kvm_queued_exception {
756 	bool pending;
757 	bool injected;
758 	bool has_error_code;
759 	u8 vector;
760 	u32 error_code;
761 	unsigned long payload;
762 	bool has_payload;
763 };
764 
765 /*
766  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
767  * unknown to the kernel, but need to be directly used by KVM.  Note, these
768  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
769  */
770 enum kvm_only_cpuid_leafs {
771 	CPUID_12_EAX	 = NCAPINTS,
772 	CPUID_7_1_EDX,
773 	CPUID_8000_0007_EDX,
774 	CPUID_8000_0022_EAX,
775 	CPUID_7_2_EDX,
776 	CPUID_24_0_EBX,
777 	CPUID_8000_0021_ECX,
778 	CPUID_7_1_ECX,
779 	NR_KVM_CPU_CAPS,
780 
781 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
782 };
783 
784 struct kvm_vcpu_arch {
785 	/*
786 	 * rip and regs accesses must go through
787 	 * kvm_{register,rip}_{read,write} functions.
788 	 */
789 	unsigned long regs[NR_VCPU_REGS];
790 	u32 regs_avail;
791 	u32 regs_dirty;
792 
793 	unsigned long cr0;
794 	unsigned long cr0_guest_owned_bits;
795 	unsigned long cr2;
796 	unsigned long cr3;
797 	unsigned long cr4;
798 	unsigned long cr4_guest_owned_bits;
799 	unsigned long cr4_guest_rsvd_bits;
800 	unsigned long cr8;
801 	u32 host_pkru;
802 	u32 pkru;
803 	u32 hflags;
804 	u64 efer;
805 	u64 host_debugctl;
806 	u64 apic_base;
807 	struct kvm_lapic *apic;    /* kernel irqchip context */
808 	bool load_eoi_exitmap_pending;
809 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
810 	unsigned long apic_attention;
811 	int32_t apic_arb_prio;
812 	int mp_state;
813 	u64 ia32_misc_enable_msr;
814 	u64 smbase;
815 	u64 smi_count;
816 	bool at_instruction_boundary;
817 	bool tpr_access_reporting;
818 	bool xfd_no_write_intercept;
819 	u64 microcode_version;
820 	u64 arch_capabilities;
821 	u64 perf_capabilities;
822 
823 	/*
824 	 * Paging state of the vcpu
825 	 *
826 	 * If the vcpu runs in guest mode with two level paging this still saves
827 	 * the paging mode of the l1 guest. This context is always used to
828 	 * handle faults.
829 	 */
830 	struct kvm_mmu *mmu;
831 
832 	/* Non-nested MMU for L1 */
833 	struct kvm_mmu root_mmu;
834 
835 	/* L1 MMU when running nested */
836 	struct kvm_mmu guest_mmu;
837 
838 	/*
839 	 * Paging state of an L2 guest (used for nested npt)
840 	 *
841 	 * This context will save all necessary information to walk page tables
842 	 * of an L2 guest. This context is only initialized for page table
843 	 * walking and not for faulting since we never handle l2 page faults on
844 	 * the host.
845 	 */
846 	struct kvm_mmu nested_mmu;
847 
848 	/*
849 	 * Pointer to the mmu context currently used for
850 	 * gva_to_gpa translations.
851 	 */
852 	struct kvm_mmu *walk_mmu;
853 
854 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
855 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
856 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
857 	struct kvm_mmu_memory_cache mmu_page_header_cache;
858 	/*
859 	 * This cache is to allocate external page table. E.g. private EPT used
860 	 * by the TDX module.
861 	 */
862 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
863 
864 	/*
865 	 * QEMU userspace and the guest each have their own FPU state.
866 	 * In vcpu_run, we switch between the user and guest FPU contexts.
867 	 * While running a VCPU, the VCPU thread will have the guest FPU
868 	 * context.
869 	 *
870 	 * Note that while the PKRU state lives inside the fpu registers,
871 	 * it is switched out separately at VMENTER and VMEXIT time. The
872 	 * "guest_fpstate" state here contains the guest FPU context, with the
873 	 * host PRKU bits.
874 	 */
875 	struct fpu_guest guest_fpu;
876 
877 	u64 xcr0;
878 	u64 guest_supported_xcr0;
879 	u64 ia32_xss;
880 	u64 guest_supported_xss;
881 
882 	struct kvm_pio_request pio;
883 	void *pio_data;
884 	void *sev_pio_data;
885 	unsigned sev_pio_count;
886 
887 	u8 event_exit_inst_len;
888 
889 	bool exception_from_userspace;
890 
891 	/* Exceptions to be injected to the guest. */
892 	struct kvm_queued_exception exception;
893 	/* Exception VM-Exits to be synthesized to L1. */
894 	struct kvm_queued_exception exception_vmexit;
895 
896 	struct kvm_queued_interrupt {
897 		bool injected;
898 		bool soft;
899 		u8 nr;
900 	} interrupt;
901 
902 	int halt_request; /* real mode on Intel only */
903 
904 	int cpuid_nent;
905 	struct kvm_cpuid_entry2 *cpuid_entries;
906 	bool cpuid_dynamic_bits_dirty;
907 	bool is_amd_compatible;
908 
909 	/*
910 	 * cpu_caps holds the effective guest capabilities, i.e. the features
911 	 * the vCPU is allowed to use.  Typically, but not always, features can
912 	 * be used by the guest if and only if both KVM and userspace want to
913 	 * expose the feature to the guest.
914 	 *
915 	 * A common exception is for virtualization holes, i.e. when KVM can't
916 	 * prevent the guest from using a feature, in which case the vCPU "has"
917 	 * the feature regardless of what KVM or userspace desires.
918 	 *
919 	 * Note, features that don't require KVM involvement in any way are
920 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
921 	 * guest CPUID provided by userspace.
922 	 */
923 	u32 cpu_caps[NR_KVM_CPU_CAPS];
924 
925 	u64 reserved_gpa_bits;
926 	int maxphyaddr;
927 
928 	/* emulate context */
929 
930 	struct x86_emulate_ctxt *emulate_ctxt;
931 	bool emulate_regs_need_sync_to_vcpu;
932 	bool emulate_regs_need_sync_from_vcpu;
933 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
934 	unsigned long cui_linear_rip;
935 	int cui_rdmsr_imm_reg;
936 
937 	gpa_t time;
938 	s8  pvclock_tsc_shift;
939 	u32 pvclock_tsc_mul;
940 	unsigned int hw_tsc_khz;
941 	struct gfn_to_pfn_cache pv_time;
942 	/* set guest stopped flag in pvclock flags field */
943 	bool pvclock_set_guest_stopped_request;
944 
945 	struct {
946 		u8 preempted;
947 		u64 msr_val;
948 		u64 last_steal;
949 		struct gfn_to_hva_cache cache;
950 	} st;
951 
952 	u64 l1_tsc_offset;
953 	u64 tsc_offset; /* current tsc offset */
954 	u64 last_guest_tsc;
955 	u64 last_host_tsc;
956 	u64 tsc_offset_adjustment;
957 	u64 this_tsc_nsec;
958 	u64 this_tsc_write;
959 	u64 this_tsc_generation;
960 	bool tsc_catchup;
961 	bool tsc_always_catchup;
962 	s8 virtual_tsc_shift;
963 	u32 virtual_tsc_mult;
964 	u32 virtual_tsc_khz;
965 	s64 ia32_tsc_adjust_msr;
966 	u64 msr_ia32_power_ctl;
967 	u64 l1_tsc_scaling_ratio;
968 	u64 tsc_scaling_ratio; /* current scaling ratio */
969 
970 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
971 	/* Number of NMIs pending injection, not including hardware vNMIs. */
972 	unsigned int nmi_pending;
973 	bool nmi_injected;    /* Trying to inject an NMI this entry */
974 	bool smi_pending;    /* SMI queued after currently running handler */
975 	u8 handling_intr_from_guest;
976 
977 	struct kvm_mtrr mtrr_state;
978 	u64 pat;
979 
980 	unsigned switch_db_regs;
981 	unsigned long db[KVM_NR_DB_REGS];
982 	unsigned long dr6;
983 	unsigned long dr7;
984 	unsigned long eff_db[KVM_NR_DB_REGS];
985 	unsigned long guest_debug_dr7;
986 	u64 msr_platform_info;
987 	u64 msr_misc_features_enables;
988 
989 	u64 mcg_cap;
990 	u64 mcg_status;
991 	u64 mcg_ctl;
992 	u64 mcg_ext_ctl;
993 	u64 *mce_banks;
994 	u64 *mci_ctl2_banks;
995 
996 	/* Cache MMIO info */
997 	u64 mmio_gva;
998 	unsigned mmio_access;
999 	gfn_t mmio_gfn;
1000 	u64 mmio_gen;
1001 
1002 	struct kvm_pmu pmu;
1003 
1004 	/* used for guest single stepping over the given code position */
1005 	unsigned long singlestep_rip;
1006 
1007 #ifdef CONFIG_KVM_HYPERV
1008 	bool hyperv_enabled;
1009 	struct kvm_vcpu_hv *hyperv;
1010 #endif
1011 #ifdef CONFIG_KVM_XEN
1012 	struct kvm_vcpu_xen xen;
1013 #endif
1014 	cpumask_var_t wbinvd_dirty_mask;
1015 
1016 	unsigned long last_retry_eip;
1017 	unsigned long last_retry_addr;
1018 
1019 	struct {
1020 		bool halted;
1021 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1022 		struct gfn_to_hva_cache data;
1023 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1024 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1025 		u16 vec;
1026 		u32 id;
1027 		u32 host_apf_flags;
1028 		bool send_always;
1029 		bool delivery_as_pf_vmexit;
1030 		bool pageready_pending;
1031 	} apf;
1032 
1033 	/* OSVW MSRs (AMD only) */
1034 	struct {
1035 		u64 length;
1036 		u64 status;
1037 	} osvw;
1038 
1039 	struct {
1040 		u64 msr_val;
1041 		struct gfn_to_hva_cache data;
1042 	} pv_eoi;
1043 
1044 	u64 msr_kvm_poll_control;
1045 
1046 	/* pv related host specific info */
1047 	struct {
1048 		bool pv_unhalted;
1049 	} pv;
1050 
1051 	int pending_ioapic_eoi;
1052 	int pending_external_vector;
1053 	int highest_stale_pending_ioapic_eoi;
1054 
1055 	/* be preempted when it's in kernel-mode(cpl=0) */
1056 	bool preempted_in_kernel;
1057 
1058 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1059 	bool l1tf_flush_l1d;
1060 
1061 	/* Host CPU on which VM-entry was most recently attempted */
1062 	int last_vmentry_cpu;
1063 
1064 	/* AMD MSRC001_0015 Hardware Configuration */
1065 	u64 msr_hwcr;
1066 
1067 	/* pv related cpuid info */
1068 	struct {
1069 		/*
1070 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1071 		 * leaf.
1072 		 */
1073 		u32 features;
1074 
1075 		/*
1076 		 * indicates whether pv emulation should be disabled if features
1077 		 * are not present in the guest's cpuid
1078 		 */
1079 		bool enforce;
1080 	} pv_cpuid;
1081 
1082 	/* Protected Guests */
1083 	bool guest_state_protected;
1084 	bool guest_tsc_protected;
1085 
1086 	/*
1087 	 * Set when PDPTS were loaded directly by the userspace without
1088 	 * reading the guest memory
1089 	 */
1090 	bool pdptrs_from_userspace;
1091 
1092 #if IS_ENABLED(CONFIG_HYPERV)
1093 	hpa_t hv_root_tdp;
1094 #endif
1095 };
1096 
1097 struct kvm_lpage_info {
1098 	int disallow_lpage;
1099 };
1100 
1101 struct kvm_arch_memory_slot {
1102 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1103 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1104 	unsigned short *gfn_write_track;
1105 };
1106 
1107 /*
1108  * Track the mode of the optimized logical map, as the rules for decoding the
1109  * destination vary per mode.  Enabling the optimized logical map requires all
1110  * software-enabled local APIs to be in the same mode, each addressable APIC to
1111  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1112  */
1113 enum kvm_apic_logical_mode {
1114 	/* All local APICs are software disabled. */
1115 	KVM_APIC_MODE_SW_DISABLED,
1116 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1117 	KVM_APIC_MODE_XAPIC_CLUSTER,
1118 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1119 	KVM_APIC_MODE_XAPIC_FLAT,
1120 	/* All software enabled local APICs in x2APIC mode. */
1121 	KVM_APIC_MODE_X2APIC,
1122 	/*
1123 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1124 	 * mode, same logical ID assigned to multiple APICs, etc.
1125 	 */
1126 	KVM_APIC_MODE_MAP_DISABLED,
1127 };
1128 
1129 struct kvm_apic_map {
1130 	struct rcu_head rcu;
1131 	enum kvm_apic_logical_mode logical_mode;
1132 	u32 max_apic_id;
1133 	union {
1134 		struct kvm_lapic *xapic_flat_map[8];
1135 		struct kvm_lapic *xapic_cluster_map[16][4];
1136 	};
1137 	struct kvm_lapic *phys_map[];
1138 };
1139 
1140 /* Hyper-V synthetic debugger (SynDbg)*/
1141 struct kvm_hv_syndbg {
1142 	struct {
1143 		u64 control;
1144 		u64 status;
1145 		u64 send_page;
1146 		u64 recv_page;
1147 		u64 pending_page;
1148 	} control;
1149 	u64 options;
1150 };
1151 
1152 /* Current state of Hyper-V TSC page clocksource */
1153 enum hv_tsc_page_status {
1154 	/* TSC page was not set up or disabled */
1155 	HV_TSC_PAGE_UNSET = 0,
1156 	/* TSC page MSR was written by the guest, update pending */
1157 	HV_TSC_PAGE_GUEST_CHANGED,
1158 	/* TSC page update was triggered from the host side */
1159 	HV_TSC_PAGE_HOST_CHANGED,
1160 	/* TSC page was properly set up and is currently active  */
1161 	HV_TSC_PAGE_SET,
1162 	/* TSC page was set up with an inaccessible GPA */
1163 	HV_TSC_PAGE_BROKEN,
1164 };
1165 
1166 #ifdef CONFIG_KVM_HYPERV
1167 /* Hyper-V emulation context */
1168 struct kvm_hv {
1169 	struct mutex hv_lock;
1170 	u64 hv_guest_os_id;
1171 	u64 hv_hypercall;
1172 	u64 hv_tsc_page;
1173 	enum hv_tsc_page_status hv_tsc_page_status;
1174 
1175 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1176 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1177 	u64 hv_crash_ctl;
1178 
1179 	struct ms_hyperv_tsc_page tsc_ref;
1180 
1181 	struct idr conn_to_evt;
1182 
1183 	u64 hv_reenlightenment_control;
1184 	u64 hv_tsc_emulation_control;
1185 	u64 hv_tsc_emulation_status;
1186 	u64 hv_invtsc_control;
1187 
1188 	/* How many vCPUs have VP index != vCPU index */
1189 	atomic_t num_mismatched_vp_indexes;
1190 
1191 	/*
1192 	 * How many SynICs use 'AutoEOI' feature
1193 	 * (protected by arch.apicv_update_lock)
1194 	 */
1195 	unsigned int synic_auto_eoi_used;
1196 
1197 	struct kvm_hv_syndbg hv_syndbg;
1198 
1199 	bool xsaves_xsavec_checked;
1200 };
1201 #endif
1202 
1203 struct msr_bitmap_range {
1204 	u32 flags;
1205 	u32 nmsrs;
1206 	u32 base;
1207 	unsigned long *bitmap;
1208 };
1209 
1210 #ifdef CONFIG_KVM_XEN
1211 /* Xen emulation context */
1212 struct kvm_xen {
1213 	struct mutex xen_lock;
1214 	u32 xen_version;
1215 	bool long_mode;
1216 	bool runstate_update_flag;
1217 	u8 upcall_vector;
1218 	struct gfn_to_pfn_cache shinfo_cache;
1219 	struct idr evtchn_ports;
1220 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1221 
1222 	struct kvm_xen_hvm_config hvm_config;
1223 };
1224 #endif
1225 
1226 enum kvm_irqchip_mode {
1227 	KVM_IRQCHIP_NONE,
1228 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1229 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1230 };
1231 
1232 struct kvm_x86_msr_filter {
1233 	u8 count;
1234 	bool default_allow:1;
1235 	struct msr_bitmap_range ranges[16];
1236 };
1237 
1238 struct kvm_x86_pmu_event_filter {
1239 	__u32 action;
1240 	__u32 nevents;
1241 	__u32 fixed_counter_bitmap;
1242 	__u32 flags;
1243 	__u32 nr_includes;
1244 	__u32 nr_excludes;
1245 	__u64 *includes;
1246 	__u64 *excludes;
1247 	__u64 events[];
1248 };
1249 
1250 enum kvm_apicv_inhibit {
1251 
1252 	/********************************************************************/
1253 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1254 	/********************************************************************/
1255 
1256 	/*
1257 	 * APIC acceleration is disabled by a module parameter
1258 	 * and/or not supported in hardware.
1259 	 */
1260 	APICV_INHIBIT_REASON_DISABLED,
1261 
1262 	/*
1263 	 * APIC acceleration is inhibited because AutoEOI feature is
1264 	 * being used by a HyperV guest.
1265 	 */
1266 	APICV_INHIBIT_REASON_HYPERV,
1267 
1268 	/*
1269 	 * APIC acceleration is inhibited because the userspace didn't yet
1270 	 * enable the kernel/split irqchip.
1271 	 */
1272 	APICV_INHIBIT_REASON_ABSENT,
1273 
1274 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1275 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1276 	 * was enabled, to avoid AVIC/APICv bypassing it.
1277 	 */
1278 	APICV_INHIBIT_REASON_BLOCKIRQ,
1279 
1280 	/*
1281 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1282 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1283 	 */
1284 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1285 
1286 	/*
1287 	 * For simplicity, the APIC acceleration is inhibited
1288 	 * first time either APIC ID or APIC base are changed by the guest
1289 	 * from their reset values.
1290 	 */
1291 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1292 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1293 
1294 	/******************************************************/
1295 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1296 	/******************************************************/
1297 
1298 	/*
1299 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1300 	 *
1301 	 * This is needed because unlike APICv, the peers of this vCPU
1302 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1303 	 * a vCPU runs nested.
1304 	 */
1305 	APICV_INHIBIT_REASON_NESTED,
1306 
1307 	/*
1308 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1309 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1310 	 * is inhibited while KVM waits for IRQ window.
1311 	 */
1312 	APICV_INHIBIT_REASON_IRQWIN,
1313 
1314 	/*
1315 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1316 	 * which AVIC doesn't support for edge triggered interrupts.
1317 	 */
1318 	APICV_INHIBIT_REASON_PIT_REINJ,
1319 
1320 	/*
1321 	 * AVIC is disabled because SEV doesn't support it.
1322 	 */
1323 	APICV_INHIBIT_REASON_SEV,
1324 
1325 	/*
1326 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1327 	 * mapping between logical ID and vCPU.
1328 	 */
1329 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1330 
1331 	/*
1332 	 * AVIC is disabled because the vCPU's APIC ID is beyond the max
1333 	 * supported by AVIC/x2AVIC, i.e. the vCPU is unaddressable.
1334 	 */
1335 	APICV_INHIBIT_REASON_PHYSICAL_ID_TOO_BIG,
1336 
1337 	NR_APICV_INHIBIT_REASONS,
1338 };
1339 
1340 #define __APICV_INHIBIT_REASON(reason)			\
1341 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1342 
1343 #define APICV_INHIBIT_REASONS				\
1344 	__APICV_INHIBIT_REASON(DISABLED),		\
1345 	__APICV_INHIBIT_REASON(HYPERV),			\
1346 	__APICV_INHIBIT_REASON(ABSENT),			\
1347 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1348 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1349 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1350 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1351 	__APICV_INHIBIT_REASON(NESTED),			\
1352 	__APICV_INHIBIT_REASON(IRQWIN),			\
1353 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1354 	__APICV_INHIBIT_REASON(SEV),			\
1355 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED),	\
1356 	__APICV_INHIBIT_REASON(PHYSICAL_ID_TOO_BIG)
1357 
1358 struct kvm_possible_nx_huge_pages {
1359 	/*
1360 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1361 	 * replaced by an NX huge page.  A shadow page is on this list if its
1362 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1363 	 * and there are no other conditions that prevent a huge page, e.g.
1364 	 * the backing host page is huge, dirtly logging is not enabled for its
1365 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1366 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1367 	 * guest attempts to execute from the region then KVM obviously can't
1368 	 * create an NX huge page (without hanging the guest).
1369 	 */
1370 	struct list_head pages;
1371 	u64 nr_pages;
1372 };
1373 
1374 enum kvm_mmu_type {
1375 	KVM_SHADOW_MMU,
1376 #ifdef CONFIG_X86_64
1377 	KVM_TDP_MMU,
1378 #endif
1379 	KVM_NR_MMU_TYPES,
1380 };
1381 
1382 struct kvm_arch {
1383 	unsigned long n_used_mmu_pages;
1384 	unsigned long n_requested_mmu_pages;
1385 	unsigned long n_max_mmu_pages;
1386 	unsigned int indirect_shadow_pages;
1387 	u8 mmu_valid_gen;
1388 	u8 vm_type;
1389 	bool has_private_mem;
1390 	bool has_protected_state;
1391 	bool has_protected_eoi;
1392 	bool pre_fault_allowed;
1393 	struct hlist_head *mmu_page_hash;
1394 	struct list_head active_mmu_pages;
1395 	struct kvm_possible_nx_huge_pages possible_nx_huge_pages[KVM_NR_MMU_TYPES];
1396 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1397 	struct kvm_page_track_notifier_head track_notifier_head;
1398 #endif
1399 	/*
1400 	 * Protects marking pages unsync during page faults, as TDP MMU page
1401 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1402 	 * pages lock is always taken when marking pages unsync regardless of
1403 	 * whether mmu_lock is held for read or write.
1404 	 */
1405 	spinlock_t mmu_unsync_pages_lock;
1406 
1407 	u64 shadow_mmio_value;
1408 
1409 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1410 	atomic_t noncoherent_dma_count;
1411 	unsigned long nr_possible_bypass_irqs;
1412 
1413 #ifdef CONFIG_KVM_IOAPIC
1414 	struct kvm_pic *vpic;
1415 	struct kvm_ioapic *vioapic;
1416 	struct kvm_pit *vpit;
1417 #endif
1418 	atomic_t vapics_in_nmi_mode;
1419 	struct mutex apic_map_lock;
1420 	struct kvm_apic_map __rcu *apic_map;
1421 	atomic_t apic_map_dirty;
1422 
1423 	bool apic_access_memslot_enabled;
1424 	bool apic_access_memslot_inhibited;
1425 
1426 	/* Protects apicv_inhibit_reasons */
1427 	struct rw_semaphore apicv_update_lock;
1428 	unsigned long apicv_inhibit_reasons;
1429 
1430 	gpa_t wall_clock;
1431 
1432 	u64 disabled_exits;
1433 
1434 	s64 kvmclock_offset;
1435 
1436 	/*
1437 	 * This also protects nr_vcpus_matched_tsc which is read from a
1438 	 * preemption-disabled region, so it must be a raw spinlock.
1439 	 */
1440 	raw_spinlock_t tsc_write_lock;
1441 	u64 last_tsc_nsec;
1442 	u64 last_tsc_write;
1443 	u32 last_tsc_khz;
1444 	u64 last_tsc_offset;
1445 	u64 cur_tsc_nsec;
1446 	u64 cur_tsc_write;
1447 	u64 cur_tsc_offset;
1448 	u64 cur_tsc_generation;
1449 	int nr_vcpus_matched_tsc;
1450 
1451 	u32 default_tsc_khz;
1452 	bool user_set_tsc;
1453 	u64 apic_bus_cycle_ns;
1454 
1455 	seqcount_raw_spinlock_t pvclock_sc;
1456 	bool use_master_clock;
1457 	u64 master_kernel_ns;
1458 	u64 master_cycle_now;
1459 	struct delayed_work kvmclock_update_work;
1460 	struct delayed_work kvmclock_sync_work;
1461 
1462 #ifdef CONFIG_KVM_HYPERV
1463 	struct kvm_hv hyperv;
1464 #endif
1465 
1466 #ifdef CONFIG_KVM_XEN
1467 	struct kvm_xen xen;
1468 #endif
1469 
1470 	bool backwards_tsc_observed;
1471 	bool boot_vcpu_runs_old_kvmclock;
1472 	u32 bsp_vcpu_id;
1473 
1474 	u64 disabled_quirks;
1475 
1476 	enum kvm_irqchip_mode irqchip_mode;
1477 	u8 nr_reserved_ioapic_pins;
1478 
1479 	bool disabled_lapic_found;
1480 
1481 	bool x2apic_format;
1482 	bool x2apic_broadcast_quirk_disabled;
1483 
1484 	bool has_mapped_host_mmio;
1485 	bool guest_can_read_msr_platform_info;
1486 	bool exception_payload_enabled;
1487 
1488 	bool triple_fault_event;
1489 
1490 	bool bus_lock_detection_enabled;
1491 	bool enable_pmu;
1492 
1493 	u32 notify_window;
1494 	u32 notify_vmexit_flags;
1495 	/*
1496 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1497 	 * emulator fails to emulate an instruction, allow userspace
1498 	 * the opportunity to look at it.
1499 	 */
1500 	bool exit_on_emulation_error;
1501 
1502 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1503 	u32 user_space_msr_mask;
1504 	struct kvm_x86_msr_filter __rcu *msr_filter;
1505 
1506 	u32 hypercall_exit_enabled;
1507 
1508 	/* Guest can access the SGX PROVISIONKEY. */
1509 	bool sgx_provisioning_allowed;
1510 
1511 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1512 	struct vhost_task *nx_huge_page_recovery_thread;
1513 	u64 nx_huge_page_last;
1514 	struct once nx_once;
1515 
1516 #ifdef CONFIG_X86_64
1517 #ifdef CONFIG_KVM_PROVE_MMU
1518 	/*
1519 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1520 	 * check that KVM isn't leaking TDP MMU pages.
1521 	 */
1522 	atomic64_t tdp_mmu_pages;
1523 #endif
1524 
1525 	/*
1526 	 * List of struct kvm_mmu_pages being used as roots.
1527 	 * All struct kvm_mmu_pages in the list should have
1528 	 * tdp_mmu_page set.
1529 	 *
1530 	 * For reads, this list is protected by:
1531 	 *	RCU alone or
1532 	 *	the MMU lock in read mode + RCU or
1533 	 *	the MMU lock in write mode
1534 	 *
1535 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1536 	 * below for the details.
1537 	 *
1538 	 * Roots will remain in the list until their tdp_mmu_root_count
1539 	 * drops to zero, at which point the thread that decremented the
1540 	 * count to zero should removed the root from the list and clean
1541 	 * it up, freeing the root after an RCU grace period.
1542 	 */
1543 	struct list_head tdp_mmu_roots;
1544 
1545 	/*
1546 	 * Protects accesses to the following fields when the MMU lock
1547 	 * is held in read mode:
1548 	 *  - tdp_mmu_roots (above)
1549 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1550 	 *  - possible_nx_huge_pages[KVM_TDP_MMU];
1551 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1552 	 *    by the TDP MMU
1553 	 * Because the lock is only taken within the MMU lock, strictly
1554 	 * speaking it is redundant to acquire this lock when the thread
1555 	 * holds the MMU lock in write mode.  However it often simplifies
1556 	 * the code to do so.
1557 	 */
1558 	spinlock_t tdp_mmu_pages_lock;
1559 #endif /* CONFIG_X86_64 */
1560 
1561 	/*
1562 	 * If set, at least one shadow root has been allocated. This flag
1563 	 * is used as one input when determining whether certain memslot
1564 	 * related allocations are necessary.
1565 	 */
1566 	bool shadow_root_allocated;
1567 
1568 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1569 	/*
1570 	 * If set, the VM has (or had) an external write tracking user, and
1571 	 * thus all write tracking metadata has been allocated, even if KVM
1572 	 * itself isn't using write tracking.
1573 	 */
1574 	bool external_write_tracking_enabled;
1575 #endif
1576 
1577 #if IS_ENABLED(CONFIG_HYPERV)
1578 	hpa_t	hv_root_tdp;
1579 	spinlock_t hv_root_tdp_lock;
1580 	struct hv_partition_assist_pg *hv_pa_pg;
1581 #endif
1582 	/*
1583 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1584 	 * that increase along with the maximum vCPU ID, in which case, using
1585 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1586 	 */
1587 	u32 max_vcpu_ids;
1588 
1589 	bool disable_nx_huge_pages;
1590 
1591 	/*
1592 	 * Memory caches used to allocate shadow pages when performing eager
1593 	 * page splitting. No need for a shadowed_info_cache since eager page
1594 	 * splitting only allocates direct shadow pages.
1595 	 *
1596 	 * Protected by kvm->slots_lock.
1597 	 */
1598 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1599 	struct kvm_mmu_memory_cache split_page_header_cache;
1600 
1601 	/*
1602 	 * Memory cache used to allocate pte_list_desc structs while splitting
1603 	 * huge pages. In the worst case, to split one huge page, 512
1604 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1605 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1606 	 * page table.
1607 	 *
1608 	 * Protected by kvm->slots_lock.
1609 	 */
1610 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1611 	struct kvm_mmu_memory_cache split_desc_cache;
1612 
1613 	gfn_t gfn_direct_bits;
1614 
1615 	/*
1616 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1617 	 * value indicates CPU dirty logging is unsupported or disabled in
1618 	 * current VM.
1619 	 */
1620 	int cpu_dirty_log_size;
1621 };
1622 
1623 struct kvm_vm_stat {
1624 	struct kvm_vm_stat_generic generic;
1625 	u64 mmu_shadow_zapped;
1626 	u64 mmu_pte_write;
1627 	u64 mmu_pde_zapped;
1628 	u64 mmu_flooded;
1629 	u64 mmu_recycled;
1630 	u64 mmu_cache_miss;
1631 	u64 mmu_unsync;
1632 	union {
1633 		struct {
1634 			atomic64_t pages_4k;
1635 			atomic64_t pages_2m;
1636 			atomic64_t pages_1g;
1637 		};
1638 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1639 	};
1640 	u64 nx_lpage_splits;
1641 	u64 max_mmu_page_hash_collisions;
1642 	u64 max_mmu_rmap_size;
1643 };
1644 
1645 struct kvm_vcpu_stat {
1646 	struct kvm_vcpu_stat_generic generic;
1647 	u64 pf_taken;
1648 	u64 pf_fixed;
1649 	u64 pf_emulate;
1650 	u64 pf_spurious;
1651 	u64 pf_fast;
1652 	u64 pf_mmio_spte_created;
1653 	u64 pf_guest;
1654 	u64 tlb_flush;
1655 	u64 invlpg;
1656 
1657 	u64 exits;
1658 	u64 io_exits;
1659 	u64 mmio_exits;
1660 	u64 signal_exits;
1661 	u64 irq_window_exits;
1662 	u64 nmi_window_exits;
1663 	u64 l1d_flush;
1664 	u64 halt_exits;
1665 	u64 request_irq_exits;
1666 	u64 irq_exits;
1667 	u64 host_state_reload;
1668 	u64 fpu_reload;
1669 	u64 insn_emulation;
1670 	u64 insn_emulation_fail;
1671 	u64 hypercalls;
1672 	u64 irq_injections;
1673 	u64 nmi_injections;
1674 	u64 req_event;
1675 	u64 nested_run;
1676 	u64 directed_yield_attempted;
1677 	u64 directed_yield_successful;
1678 	u64 preemption_reported;
1679 	u64 preemption_other;
1680 	u64 guest_mode;
1681 	u64 notify_window_exits;
1682 };
1683 
1684 struct x86_instruction_info;
1685 
1686 struct msr_data {
1687 	bool host_initiated;
1688 	u32 index;
1689 	u64 data;
1690 };
1691 
1692 struct kvm_lapic_irq {
1693 	u32 vector;
1694 	u16 delivery_mode;
1695 	u16 dest_mode;
1696 	bool level;
1697 	u16 trig_mode;
1698 	u32 shorthand;
1699 	u32 dest_id;
1700 	bool msi_redir_hint;
1701 };
1702 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1703 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1704 {
1705 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1706 }
1707 
1708 enum kvm_x86_run_flags {
1709 	KVM_RUN_FORCE_IMMEDIATE_EXIT	= BIT(0),
1710 	KVM_RUN_LOAD_GUEST_DR6		= BIT(1),
1711 	KVM_RUN_LOAD_DEBUGCTL		= BIT(2),
1712 };
1713 
1714 struct kvm_x86_ops {
1715 	const char *name;
1716 
1717 	int (*check_processor_compatibility)(void);
1718 
1719 	int (*enable_virtualization_cpu)(void);
1720 	void (*disable_virtualization_cpu)(void);
1721 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1722 
1723 	void (*hardware_unsetup)(void);
1724 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1725 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1726 
1727 	unsigned int vm_size;
1728 	int (*vm_init)(struct kvm *kvm);
1729 	void (*vm_destroy)(struct kvm *kvm);
1730 	void (*vm_pre_destroy)(struct kvm *kvm);
1731 
1732 	/* Create, but do not attach this VCPU */
1733 	int (*vcpu_precreate)(struct kvm *kvm);
1734 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1735 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1736 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1737 
1738 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1739 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1740 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1741 
1742 	/*
1743 	 * Mask of DEBUGCTL bits that are owned by the host, i.e. that need to
1744 	 * match the host's value even while the guest is active.
1745 	 */
1746 	const u64 HOST_OWNED_DEBUGCTL;
1747 
1748 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1749 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1750 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1751 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1752 	void (*get_segment)(struct kvm_vcpu *vcpu,
1753 			    struct kvm_segment *var, int seg);
1754 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1755 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1756 	void (*set_segment)(struct kvm_vcpu *vcpu,
1757 			    struct kvm_segment *var, int seg);
1758 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1759 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1760 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1761 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1762 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1763 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1764 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1765 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1766 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1767 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1768 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1769 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1770 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1771 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1772 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1773 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1774 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1775 
1776 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1777 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1778 #if IS_ENABLED(CONFIG_HYPERV)
1779 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1780 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1781 					gfn_t nr_pages);
1782 #endif
1783 
1784 	/*
1785 	 * Flush any TLB entries associated with the given GVA.
1786 	 * Does not need to flush GPA->HPA mappings.
1787 	 * Can potentially get non-canonical addresses through INVLPGs, which
1788 	 * the implementation may choose to ignore if appropriate.
1789 	 */
1790 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1791 
1792 	/*
1793 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1794 	 * does not need to flush GPA->HPA mappings.
1795 	 */
1796 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1797 
1798 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1799 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1800 						  u64 run_flags);
1801 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1802 		enum exit_fastpath_completion exit_fastpath);
1803 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1804 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1805 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1806 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1807 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1808 				unsigned char *hypercall_addr);
1809 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1810 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1811 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1812 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1813 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1814 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1815 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1816 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1817 	/* Whether or not a virtual NMI is pending in hardware. */
1818 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1819 	/*
1820 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1821 	 * to allow using static_call_ret0 as the fallback.
1822 	 */
1823 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1824 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1825 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1826 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1827 
1828 	const bool x2apic_icr_is_split;
1829 	const unsigned long required_apicv_inhibits;
1830 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1831 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1832 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1833 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1834 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1835 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1836 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1837 				  int trig_mode, int vector);
1838 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1839 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1840 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1841 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1842 
1843 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1844 			     int root_level);
1845 
1846 	/* Update external mapping with page table link. */
1847 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1848 				void *external_spt);
1849 	/* Update the external page table from spte getting set. */
1850 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1851 				 kvm_pfn_t pfn_for_gfn);
1852 
1853 	/* Update external page tables for page table about to be freed. */
1854 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1855 				 void *external_spt);
1856 
1857 	/* Update external page table from spte getting removed, and flush TLB. */
1858 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1859 				    kvm_pfn_t pfn_for_gfn);
1860 
1861 	bool (*has_wbinvd_exit)(void);
1862 
1863 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1864 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1865 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1866 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1867 
1868 	/*
1869 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1870 	 * be used only from within tracepoints or error paths.
1871 	 */
1872 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1873 			      u64 *info1, u64 *info2,
1874 			      u32 *intr_info, u32 *error_code);
1875 
1876 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1877 			       u32 *intr_info, u32 *error_code);
1878 
1879 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1880 			       struct x86_instruction_info *info,
1881 			       enum x86_intercept_stage stage,
1882 			       struct x86_exception *exception);
1883 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1884 
1885 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1886 
1887 	const struct kvm_x86_nested_ops *nested_ops;
1888 
1889 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1890 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1891 
1892 	int (*pi_update_irte)(struct kvm_kernel_irqfd *irqfd, struct kvm *kvm,
1893 			      unsigned int host_irq, uint32_t guest_irq,
1894 			      struct kvm_vcpu *vcpu, u32 vector);
1895 	void (*pi_start_bypass)(struct kvm *kvm);
1896 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1897 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1898 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1899 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1900 
1901 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1902 			    bool *expired);
1903 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1904 
1905 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1906 
1907 #ifdef CONFIG_KVM_SMM
1908 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1909 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1910 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1911 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1912 #endif
1913 
1914 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1915 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1916 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1917 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1918 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1919 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1920 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1921 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1922 
1923 	int (*get_feature_msr)(u32 msr, u64 *data);
1924 
1925 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1926 					 void *insn, int insn_len);
1927 
1928 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1929 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1930 
1931 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1932 	void (*recalc_intercepts)(struct kvm_vcpu *vcpu);
1933 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1934 
1935 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1936 
1937 	/*
1938 	 * Returns vCPU specific APICv inhibit reasons
1939 	 */
1940 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1941 
1942 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1943 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1944 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1945 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1946 	int (*gmem_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn, bool is_private);
1947 };
1948 
1949 struct kvm_x86_nested_ops {
1950 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1951 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1952 				    u32 error_code);
1953 	int (*check_events)(struct kvm_vcpu *vcpu);
1954 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1955 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1956 	int (*get_state)(struct kvm_vcpu *vcpu,
1957 			 struct kvm_nested_state __user *user_kvm_nested_state,
1958 			 unsigned user_data_size);
1959 	int (*set_state)(struct kvm_vcpu *vcpu,
1960 			 struct kvm_nested_state __user *user_kvm_nested_state,
1961 			 struct kvm_nested_state *kvm_state);
1962 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1963 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1964 
1965 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1966 			    uint16_t *vmcs_version);
1967 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1968 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1969 };
1970 
1971 struct kvm_x86_init_ops {
1972 	int (*hardware_setup)(void);
1973 	unsigned int (*handle_intel_pt_intr)(void);
1974 
1975 	struct kvm_x86_ops *runtime_ops;
1976 	struct kvm_pmu_ops *pmu_ops;
1977 };
1978 
1979 struct kvm_arch_async_pf {
1980 	u32 token;
1981 	gfn_t gfn;
1982 	unsigned long cr3;
1983 	bool direct_map;
1984 	u64 error_code;
1985 };
1986 
1987 extern u32 __read_mostly kvm_nr_uret_msrs;
1988 extern bool __read_mostly allow_smaller_maxphyaddr;
1989 extern bool __read_mostly enable_apicv;
1990 extern bool __read_mostly enable_ipiv;
1991 extern bool __read_mostly enable_device_posted_irqs;
1992 extern struct kvm_x86_ops kvm_x86_ops;
1993 
1994 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1995 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1996 
1997 #define KVM_X86_OP(func) \
1998 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1999 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
2000 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
2001 #include <asm/kvm-x86-ops.h>
2002 
2003 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
2004 void kvm_x86_vendor_exit(void);
2005 
2006 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)2007 static inline struct kvm *kvm_arch_alloc_vm(void)
2008 {
2009 	return kvzalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT);
2010 }
2011 
2012 #define __KVM_HAVE_ARCH_VM_FREE
2013 void kvm_arch_free_vm(struct kvm *kvm);
2014 
2015 #if IS_ENABLED(CONFIG_HYPERV)
2016 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)2017 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
2018 {
2019 	if (kvm_x86_ops.flush_remote_tlbs &&
2020 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
2021 		return 0;
2022 	else
2023 		return -ENOTSUPP;
2024 }
2025 
2026 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)2027 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
2028 						   u64 nr_pages)
2029 {
2030 	if (!kvm_x86_ops.flush_remote_tlbs_range)
2031 		return -EOPNOTSUPP;
2032 
2033 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
2034 }
2035 #endif /* CONFIG_HYPERV */
2036 
2037 enum kvm_intr_type {
2038 	/* Values are arbitrary, but must be non-zero. */
2039 	KVM_HANDLING_IRQ = 1,
2040 	KVM_HANDLING_NMI,
2041 };
2042 
2043 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2044 #define kvm_arch_pmi_in_guest(vcpu) \
2045 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2046 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2047 
2048 void __init kvm_mmu_x86_module_init(void);
2049 int kvm_mmu_vendor_module_init(void);
2050 void kvm_mmu_vendor_module_exit(void);
2051 
2052 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2053 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2054 int kvm_mmu_init_vm(struct kvm *kvm);
2055 void kvm_mmu_uninit_vm(struct kvm *kvm);
2056 
2057 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2058 					    struct kvm_memory_slot *slot);
2059 
2060 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2061 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2062 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2063 				      const struct kvm_memory_slot *memslot,
2064 				      int start_level);
2065 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2066 				       const struct kvm_memory_slot *memslot,
2067 				       int target_level);
2068 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2069 				  const struct kvm_memory_slot *memslot,
2070 				  u64 start, u64 end,
2071 				  int target_level);
2072 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2073 				const struct kvm_memory_slot *memslot);
2074 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2075 				   const struct kvm_memory_slot *memslot);
2076 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2077 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2078 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2079 
2080 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2081 
2082 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2083 			  const void *val, int bytes);
2084 
2085 extern bool tdp_enabled;
2086 
2087 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2088 
2089 /*
2090  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2091  *			userspace I/O) to indicate that the emulation context
2092  *			should be reused as is, i.e. skip initialization of
2093  *			emulation context, instruction fetch and decode.
2094  *
2095  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2096  *		      Indicates that only select instructions (tagged with
2097  *		      EmulateOnUD) should be emulated (to minimize the emulator
2098  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2099  *
2100  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2101  *		   decode the instruction length.  For use *only* by
2102  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2103  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2104  *
2105  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2106  *			     retry native execution under certain conditions,
2107  *			     Can only be set in conjunction with EMULTYPE_PF.
2108  *
2109  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2110  *			     triggered by KVM's magic "force emulation" prefix,
2111  *			     which is opt in via module param (off by default).
2112  *			     Bypasses EmulateOnUD restriction despite emulating
2113  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2114  *			     Used to test the full emulator from userspace.
2115  *
2116  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2117  *			backdoor emulation, which is opt in via module param.
2118  *			VMware backdoor emulation handles select instructions
2119  *			and reinjects the #GP for all other cases.
2120  *
2121  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2122  *		 the CR2/GPA value pass on the stack is valid.
2123  *
2124  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2125  *				 state and inject single-step #DBs after skipping
2126  *				 an instruction (after completing userspace I/O).
2127  *
2128  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2129  *			     is attempting to write a gfn that contains one or
2130  *			     more of the PTEs used to translate the write itself,
2131  *			     and the owning page table is being shadowed by KVM.
2132  *			     If emulation of the faulting instruction fails and
2133  *			     this flag is set, KVM will exit to userspace instead
2134  *			     of retrying emulation as KVM cannot make forward
2135  *			     progress.
2136  *
2137  *			     If emulation fails for a write to guest page tables,
2138  *			     KVM unprotects (zaps) the shadow page for the target
2139  *			     gfn and resumes the guest to retry the non-emulatable
2140  *			     instruction (on hardware).  Unprotecting the gfn
2141  *			     doesn't allow forward progress for a self-changing
2142  *			     access because doing so also zaps the translation for
2143  *			     the gfn, i.e. retrying the instruction will hit a
2144  *			     !PRESENT fault, which results in a new shadow page
2145  *			     and sends KVM back to square one.
2146  */
2147 #define EMULTYPE_NO_DECODE	    (1 << 0)
2148 #define EMULTYPE_TRAP_UD	    (1 << 1)
2149 #define EMULTYPE_SKIP		    (1 << 2)
2150 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2151 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2152 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2153 #define EMULTYPE_PF		    (1 << 6)
2154 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2155 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2156 
kvm_can_emulate_event_vectoring(int emul_type)2157 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2158 {
2159 	return !(emul_type & EMULTYPE_PF);
2160 }
2161 
2162 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2163 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2164 					void *insn, int insn_len);
2165 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2166 					  u64 *data, u8 ndata);
2167 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2168 
2169 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2170 
2171 void kvm_enable_efer_bits(u64);
2172 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2173 int kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2174 int kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2175 int __kvm_emulate_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2176 int __kvm_emulate_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2177 int kvm_msr_read(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2178 int kvm_msr_write(struct kvm_vcpu *vcpu, u32 index, u64 data);
2179 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2180 int kvm_emulate_rdmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2181 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2182 int kvm_emulate_wrmsr_imm(struct kvm_vcpu *vcpu, u32 msr, int reg);
2183 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2184 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2185 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2186 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2187 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2188 
2189 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2190 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2191 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2192 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2193 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2194 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2195 
2196 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2197 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2198 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2199 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2200 
2201 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2202 		    int reason, bool has_error_code, u32 error_code);
2203 
2204 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2205 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2206 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2207 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2208 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2210 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2211 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2212 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2213 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2214 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
2215 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2216 
2217 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2218 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2219 
2220 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2221 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2222 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2223 
2224 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2225 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2226 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2227 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2228 			   bool has_error_code, u32 error_code);
2229 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2230 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2231 				    struct x86_exception *fault);
2232 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2233 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2234 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2235 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2236 				       int irq_source_id, int level)
2237 {
2238 	/* Logical OR for level trig interrupt */
2239 	if (level)
2240 		__set_bit(irq_source_id, irq_state);
2241 	else
2242 		__clear_bit(irq_source_id, irq_state);
2243 
2244 	return !!(*irq_state);
2245 }
2246 
2247 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2248 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2249 
2250 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2251 
2252 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2253 				       bool always_retry);
2254 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2255 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2256 						   gpa_t cr2_or_gpa)
2257 {
2258 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2259 }
2260 
2261 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2262 			ulong roots_to_free);
2263 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2264 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2265 			      struct x86_exception *exception);
2266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2267 			       struct x86_exception *exception);
2268 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2269 				struct x86_exception *exception);
2270 
2271 bool kvm_apicv_activated(struct kvm *kvm);
2272 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2273 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2274 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2275 				      enum kvm_apicv_inhibit reason, bool set);
2276 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2277 				    enum kvm_apicv_inhibit reason, bool set);
2278 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2279 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2280 					 enum kvm_apicv_inhibit reason)
2281 {
2282 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2283 }
2284 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2285 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2286 					   enum kvm_apicv_inhibit reason)
2287 {
2288 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2289 }
2290 
2291 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2292 		       void *insn, int insn_len);
2293 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2294 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2295 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2296 			     u64 addr, unsigned long roots);
2297 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2298 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2299 
2300 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2301 		       int tdp_max_root_level, int tdp_huge_page_level);
2302 
2303 
2304 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2305 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2306 #endif
2307 
2308 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2309 
kvm_read_ldt(void)2310 static inline u16 kvm_read_ldt(void)
2311 {
2312 	u16 ldt;
2313 	asm("sldt %0" : "=g"(ldt));
2314 	return ldt;
2315 }
2316 
kvm_load_ldt(u16 sel)2317 static inline void kvm_load_ldt(u16 sel)
2318 {
2319 	asm("lldt %0" : : "rm"(sel));
2320 }
2321 
2322 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2323 static inline unsigned long read_msr(unsigned long msr)
2324 {
2325 	u64 value;
2326 
2327 	rdmsrq(msr, value);
2328 	return value;
2329 }
2330 #endif
2331 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2332 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2333 {
2334 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2335 }
2336 
2337 #define TSS_IOPB_BASE_OFFSET 0x66
2338 #define TSS_BASE_SIZE 0x68
2339 #define TSS_IOPB_SIZE (65536 / 8)
2340 #define TSS_REDIRECTION_SIZE (256 / 8)
2341 #define RMODE_TSS_SIZE							\
2342 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2343 
2344 enum {
2345 	TASK_SWITCH_CALL = 0,
2346 	TASK_SWITCH_IRET = 1,
2347 	TASK_SWITCH_JMP = 2,
2348 	TASK_SWITCH_GATE = 3,
2349 };
2350 
2351 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2352 
2353 #ifdef CONFIG_KVM_SMM
2354 #define HF_SMM_MASK		(1 << 1)
2355 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2356 
2357 # define KVM_MAX_NR_ADDRESS_SPACES	2
2358 /* SMM is currently unsupported for guests with private memory. */
2359 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2360 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2361 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2362 #else
2363 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2364 #endif
2365 
2366 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2367 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2368 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2369 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2370 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2371 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2372 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2373 
2374 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2375 		    unsigned long ipi_bitmap_high, u32 min,
2376 		    unsigned long icr, int op_64_bit);
2377 
2378 int kvm_add_user_return_msr(u32 msr);
2379 int kvm_find_user_return_msr(u32 msr);
2380 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2381 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2382 u64 kvm_get_user_return_msr(unsigned int slot);
2383 
kvm_is_supported_user_return_msr(u32 msr)2384 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2385 {
2386 	return kvm_find_user_return_msr(msr) >= 0;
2387 }
2388 
2389 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2390 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2391 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2392 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2393 
2394 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2395 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2396 
2397 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2398 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2399 				       unsigned long *vcpu_bitmap);
2400 
2401 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2402 				     struct kvm_async_pf *work);
2403 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2404 				 struct kvm_async_pf *work);
2405 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2406 			       struct kvm_async_pf *work);
2407 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2408 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2409 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2410 
2411 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2412 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2413 
2414 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2415 				     u32 size);
2416 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2417 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2418 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2419 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2420 {
2421 	/* We can only post Fixed and LowPrio IRQs */
2422 	return (irq->delivery_mode == APIC_DM_FIXED ||
2423 		irq->delivery_mode == APIC_DM_LOWEST);
2424 }
2425 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2426 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2427 {
2428 	kvm_x86_call(vcpu_blocking)(vcpu);
2429 }
2430 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2431 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2432 {
2433 	kvm_x86_call(vcpu_unblocking)(vcpu);
2434 }
2435 
kvm_cpu_get_apicid(int mps_cpu)2436 static inline int kvm_cpu_get_apicid(int mps_cpu)
2437 {
2438 #ifdef CONFIG_X86_LOCAL_APIC
2439 	return default_cpu_present_to_apicid(mps_cpu);
2440 #else
2441 	WARN_ON_ONCE(1);
2442 	return BAD_APICID;
2443 #endif
2444 }
2445 
2446 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2447 
2448 #define KVM_CLOCK_VALID_FLAGS						\
2449 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2450 
2451 #define KVM_X86_VALID_QUIRKS			\
2452 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2453 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2454 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2455 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2456 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2457 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2458 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2459 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2460 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2461 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2462 
2463 #define KVM_X86_CONDITIONAL_QUIRKS		\
2464 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2465 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2466 
2467 /*
2468  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2469  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2470  * remaining 31 lower bits must be 0 to preserve ABI.
2471  */
2472 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2473 
kvm_arch_has_irq_bypass(void)2474 static inline bool kvm_arch_has_irq_bypass(void)
2475 {
2476 	return enable_device_posted_irqs;
2477 }
2478 
2479 #endif /* _ASM_X86_KVM_HOST_H */
2480