1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 /*
205 * The vfs inode keeps clean during commit, but the f2fs inode
206 * doesn't. So clear the dirty state after commit and let
207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state.
208 */
209 f2fs_inode_synced(inode);
210 f2fs_mark_inode_dirty_sync(inode, true);
211 }
212 stat_dec_atomic_inode(inode);
213
214 F2FS_I(inode)->atomic_write_task = NULL;
215
216 if (clean) {
217 f2fs_i_size_write(inode, fi->original_i_size);
218 fi->original_i_size = 0;
219 }
220 /* avoid stale dirty inode during eviction */
221 sync_inode_metadata(inode, 0);
222 }
223
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
225 block_t new_addr, block_t *old_addr, bool recover)
226 {
227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
228 struct dnode_of_data dn;
229 struct node_info ni;
230 int err;
231
232 retry:
233 set_new_dnode(&dn, inode, NULL, NULL, 0);
234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
235 if (err) {
236 if (err == -ENOMEM) {
237 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
238 goto retry;
239 }
240 return err;
241 }
242
243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
244 if (err) {
245 f2fs_put_dnode(&dn);
246 return err;
247 }
248
249 if (recover) {
250 /* dn.data_blkaddr is always valid */
251 if (!__is_valid_data_blkaddr(new_addr)) {
252 if (new_addr == NULL_ADDR)
253 dec_valid_block_count(sbi, inode, 1);
254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1);
255 f2fs_update_data_blkaddr(&dn, new_addr);
256 } else {
257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
258 new_addr, ni.version, true, true);
259 }
260 } else {
261 blkcnt_t count = 1;
262
263 err = inc_valid_block_count(sbi, inode, &count, true);
264 if (err) {
265 f2fs_put_dnode(&dn);
266 return err;
267 }
268
269 *old_addr = dn.data_blkaddr;
270 f2fs_truncate_data_blocks_range(&dn, 1);
271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
272
273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
274 ni.version, true, false);
275 }
276
277 f2fs_put_dnode(&dn);
278
279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
280 index, old_addr ? *old_addr : 0, new_addr, recover);
281 return 0;
282 }
283
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)284 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
285 bool revoke)
286 {
287 struct revoke_entry *cur, *tmp;
288 pgoff_t start_index = 0;
289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
290
291 list_for_each_entry_safe(cur, tmp, head, list) {
292 if (revoke) {
293 __replace_atomic_write_block(inode, cur->index,
294 cur->old_addr, NULL, true);
295 } else if (truncate) {
296 f2fs_truncate_hole(inode, start_index, cur->index);
297 start_index = cur->index + 1;
298 }
299
300 list_del(&cur->list);
301 kmem_cache_free(revoke_entry_slab, cur);
302 }
303
304 if (!revoke && truncate)
305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
306 }
307
__f2fs_commit_atomic_write(struct inode * inode)308 static int __f2fs_commit_atomic_write(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct inode *cow_inode = fi->cow_inode;
313 struct revoke_entry *new;
314 struct list_head revoke_list;
315 block_t blkaddr;
316 struct dnode_of_data dn;
317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
318 pgoff_t off = 0, blen, index;
319 int ret = 0, i;
320
321 INIT_LIST_HEAD(&revoke_list);
322
323 while (len) {
324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
325
326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
328 if (ret && ret != -ENOENT) {
329 goto out;
330 } else if (ret == -ENOENT) {
331 ret = 0;
332 if (dn.max_level == 0)
333 goto out;
334 goto next;
335 }
336
337 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_folio, cow_inode),
338 len);
339 index = off;
340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
341 blkaddr = f2fs_data_blkaddr(&dn);
342
343 if (!__is_valid_data_blkaddr(blkaddr)) {
344 continue;
345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
346 DATA_GENERIC_ENHANCE)) {
347 f2fs_put_dnode(&dn);
348 ret = -EFSCORRUPTED;
349 goto out;
350 }
351
352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
353 true, NULL);
354
355 ret = __replace_atomic_write_block(inode, index, blkaddr,
356 &new->old_addr, false);
357 if (ret) {
358 f2fs_put_dnode(&dn);
359 kmem_cache_free(revoke_entry_slab, new);
360 goto out;
361 }
362
363 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
364 new->index = index;
365 list_add_tail(&new->list, &revoke_list);
366 }
367 f2fs_put_dnode(&dn);
368 next:
369 off += blen;
370 len -= blen;
371 }
372
373 out:
374 if (time_to_inject(sbi, FAULT_TIMEOUT))
375 f2fs_io_schedule_timeout_killable(DEFAULT_FAULT_TIMEOUT);
376
377 if (ret) {
378 sbi->revoked_atomic_block += fi->atomic_write_cnt;
379 } else {
380 sbi->committed_atomic_block += fi->atomic_write_cnt;
381 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
382
383 /*
384 * inode may has no FI_ATOMIC_DIRTIED flag due to no write
385 * before commit.
386 */
387 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
388 /* clear atomic dirty status and set vfs dirty status */
389 clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
390 f2fs_mark_inode_dirty_sync(inode, true);
391 }
392 }
393
394 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
395
396 return ret;
397 }
398
f2fs_commit_atomic_write(struct inode * inode)399 int f2fs_commit_atomic_write(struct inode *inode)
400 {
401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 struct f2fs_inode_info *fi = F2FS_I(inode);
403 int err;
404
405 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
406 if (err)
407 return err;
408
409 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
410 f2fs_lock_op(sbi);
411
412 err = __f2fs_commit_atomic_write(inode);
413
414 f2fs_unlock_op(sbi);
415 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
416
417 return err;
418 }
419
420 /*
421 * This function balances dirty node and dentry pages.
422 * In addition, it controls garbage collection.
423 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)424 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
425 {
426 if (f2fs_cp_error(sbi))
427 return;
428
429 if (time_to_inject(sbi, FAULT_CHECKPOINT))
430 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
431
432 /* balance_fs_bg is able to be pending */
433 if (need && excess_cached_nats(sbi))
434 f2fs_balance_fs_bg(sbi, false);
435
436 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
437 return;
438
439 /*
440 * We should do GC or end up with checkpoint, if there are so many dirty
441 * dir/node pages without enough free segments.
442 */
443 if (has_enough_free_secs(sbi, 0, 0))
444 return;
445
446 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
447 sbi->gc_thread->f2fs_gc_task) {
448 DEFINE_WAIT(wait);
449
450 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
451 TASK_UNINTERRUPTIBLE);
452 wake_up(&sbi->gc_thread->gc_wait_queue_head);
453 io_schedule();
454 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
455 } else {
456 struct f2fs_gc_control gc_control = {
457 .victim_segno = NULL_SEGNO,
458 .init_gc_type = f2fs_sb_has_blkzoned(sbi) ?
459 FG_GC : BG_GC,
460 .no_bg_gc = true,
461 .should_migrate_blocks = false,
462 .err_gc_skipped = false,
463 .nr_free_secs = 1 };
464 f2fs_down_write(&sbi->gc_lock);
465 stat_inc_gc_call_count(sbi, FOREGROUND);
466 f2fs_gc(sbi, &gc_control);
467 }
468 }
469
excess_dirty_threshold(struct f2fs_sb_info * sbi)470 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
471 {
472 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
473 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
474 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
475 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
476 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
477 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
478 unsigned int threshold =
479 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
480 unsigned int global_threshold = threshold * 3 / 2;
481
482 if (dents >= threshold || qdata >= threshold ||
483 nodes >= threshold || meta >= threshold ||
484 imeta >= threshold)
485 return true;
486 return dents + qdata + nodes + meta + imeta > global_threshold;
487 }
488
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)489 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
490 {
491 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
492 return;
493
494 /* try to shrink extent cache when there is no enough memory */
495 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
496 f2fs_shrink_read_extent_tree(sbi,
497 READ_EXTENT_CACHE_SHRINK_NUMBER);
498
499 /* try to shrink age extent cache when there is no enough memory */
500 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
501 f2fs_shrink_age_extent_tree(sbi,
502 AGE_EXTENT_CACHE_SHRINK_NUMBER);
503
504 /* check the # of cached NAT entries */
505 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
506 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
507
508 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
509 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
510 else
511 f2fs_build_free_nids(sbi, false, false);
512
513 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
514 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
515 goto do_sync;
516
517 /* there is background inflight IO or foreground operation recently */
518 if (is_inflight_io(sbi, REQ_TIME) ||
519 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
520 return;
521
522 /* exceed periodical checkpoint timeout threshold */
523 if (f2fs_time_over(sbi, CP_TIME))
524 goto do_sync;
525
526 /* checkpoint is the only way to shrink partial cached entries */
527 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
528 f2fs_available_free_memory(sbi, INO_ENTRIES))
529 return;
530
531 do_sync:
532 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
533 struct blk_plug plug;
534
535 mutex_lock(&sbi->flush_lock);
536
537 blk_start_plug(&plug);
538 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
539 blk_finish_plug(&plug);
540
541 mutex_unlock(&sbi->flush_lock);
542 }
543 stat_inc_cp_call_count(sbi, BACKGROUND);
544 f2fs_sync_fs(sbi->sb, 1);
545 }
546
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)547 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
548 struct block_device *bdev)
549 {
550 int ret = blkdev_issue_flush(bdev);
551
552 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
553 test_opt(sbi, FLUSH_MERGE), ret);
554 if (!ret)
555 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
556 return ret;
557 }
558
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)559 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
560 {
561 int ret = 0;
562 int i;
563
564 if (!f2fs_is_multi_device(sbi))
565 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
566
567 for (i = 0; i < sbi->s_ndevs; i++) {
568 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
569 continue;
570 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
571 if (ret)
572 break;
573 }
574 return ret;
575 }
576
issue_flush_thread(void * data)577 static int issue_flush_thread(void *data)
578 {
579 struct f2fs_sb_info *sbi = data;
580 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
581 wait_queue_head_t *q = &fcc->flush_wait_queue;
582 repeat:
583 if (kthread_should_stop())
584 return 0;
585
586 if (!llist_empty(&fcc->issue_list)) {
587 struct flush_cmd *cmd, *next;
588 int ret;
589
590 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
591 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
592
593 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
594
595 ret = submit_flush_wait(sbi, cmd->ino);
596 atomic_inc(&fcc->issued_flush);
597
598 llist_for_each_entry_safe(cmd, next,
599 fcc->dispatch_list, llnode) {
600 cmd->ret = ret;
601 complete(&cmd->wait);
602 }
603 fcc->dispatch_list = NULL;
604 }
605
606 wait_event_interruptible(*q,
607 kthread_should_stop() || !llist_empty(&fcc->issue_list));
608 goto repeat;
609 }
610
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)611 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
612 {
613 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 struct flush_cmd cmd;
615 int ret;
616
617 if (test_opt(sbi, NOBARRIER))
618 return 0;
619
620 if (!test_opt(sbi, FLUSH_MERGE)) {
621 atomic_inc(&fcc->queued_flush);
622 ret = submit_flush_wait(sbi, ino);
623 atomic_dec(&fcc->queued_flush);
624 atomic_inc(&fcc->issued_flush);
625 return ret;
626 }
627
628 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
629 f2fs_is_multi_device(sbi)) {
630 ret = submit_flush_wait(sbi, ino);
631 atomic_dec(&fcc->queued_flush);
632
633 atomic_inc(&fcc->issued_flush);
634 return ret;
635 }
636
637 cmd.ino = ino;
638 init_completion(&cmd.wait);
639
640 llist_add(&cmd.llnode, &fcc->issue_list);
641
642 /*
643 * update issue_list before we wake up issue_flush thread, this
644 * smp_mb() pairs with another barrier in ___wait_event(), see
645 * more details in comments of waitqueue_active().
646 */
647 smp_mb();
648
649 if (waitqueue_active(&fcc->flush_wait_queue))
650 wake_up(&fcc->flush_wait_queue);
651
652 if (fcc->f2fs_issue_flush) {
653 wait_for_completion(&cmd.wait);
654 atomic_dec(&fcc->queued_flush);
655 } else {
656 struct llist_node *list;
657
658 list = llist_del_all(&fcc->issue_list);
659 if (!list) {
660 wait_for_completion(&cmd.wait);
661 atomic_dec(&fcc->queued_flush);
662 } else {
663 struct flush_cmd *tmp, *next;
664
665 ret = submit_flush_wait(sbi, ino);
666
667 llist_for_each_entry_safe(tmp, next, list, llnode) {
668 if (tmp == &cmd) {
669 cmd.ret = ret;
670 atomic_dec(&fcc->queued_flush);
671 continue;
672 }
673 tmp->ret = ret;
674 complete(&tmp->wait);
675 }
676 }
677 }
678
679 return cmd.ret;
680 }
681
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)682 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
683 {
684 dev_t dev = sbi->sb->s_bdev->bd_dev;
685 struct flush_cmd_control *fcc;
686
687 if (SM_I(sbi)->fcc_info) {
688 fcc = SM_I(sbi)->fcc_info;
689 if (fcc->f2fs_issue_flush)
690 return 0;
691 goto init_thread;
692 }
693
694 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
695 if (!fcc)
696 return -ENOMEM;
697 atomic_set(&fcc->issued_flush, 0);
698 atomic_set(&fcc->queued_flush, 0);
699 init_waitqueue_head(&fcc->flush_wait_queue);
700 init_llist_head(&fcc->issue_list);
701 SM_I(sbi)->fcc_info = fcc;
702 if (!test_opt(sbi, FLUSH_MERGE))
703 return 0;
704
705 init_thread:
706 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
707 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
708 if (IS_ERR(fcc->f2fs_issue_flush)) {
709 int err = PTR_ERR(fcc->f2fs_issue_flush);
710
711 fcc->f2fs_issue_flush = NULL;
712 return err;
713 }
714
715 return 0;
716 }
717
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)718 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
719 {
720 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
721
722 if (fcc && fcc->f2fs_issue_flush) {
723 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
724
725 fcc->f2fs_issue_flush = NULL;
726 kthread_stop(flush_thread);
727 }
728 if (free) {
729 kfree(fcc);
730 SM_I(sbi)->fcc_info = NULL;
731 }
732 }
733
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)734 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
735 {
736 int ret = 0, i;
737
738 if (!f2fs_is_multi_device(sbi))
739 return 0;
740
741 if (test_opt(sbi, NOBARRIER))
742 return 0;
743
744 for (i = 1; i < sbi->s_ndevs; i++) {
745 int count = DEFAULT_RETRY_IO_COUNT;
746
747 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
748 continue;
749
750 do {
751 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
752 if (ret)
753 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
754 } while (ret && --count);
755
756 if (ret) {
757 f2fs_stop_checkpoint(sbi, false,
758 STOP_CP_REASON_FLUSH_FAIL);
759 break;
760 }
761
762 spin_lock(&sbi->dev_lock);
763 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
764 spin_unlock(&sbi->dev_lock);
765 }
766
767 return ret;
768 }
769
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 enum dirty_type dirty_type)
772 {
773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774
775 /* need not be added */
776 if (is_curseg(sbi, segno))
777 return;
778
779 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
780 dirty_i->nr_dirty[dirty_type]++;
781
782 if (dirty_type == DIRTY) {
783 struct seg_entry *sentry = get_seg_entry(sbi, segno);
784 enum dirty_type t = sentry->type;
785
786 if (unlikely(t >= DIRTY)) {
787 f2fs_bug_on(sbi, 1);
788 return;
789 }
790 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
791 dirty_i->nr_dirty[t]++;
792
793 if (__is_large_section(sbi)) {
794 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
795 block_t valid_blocks =
796 get_valid_blocks(sbi, segno, true);
797
798 f2fs_bug_on(sbi,
799 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
800 !valid_blocks) ||
801 valid_blocks == CAP_BLKS_PER_SEC(sbi));
802
803 if (!is_cursec(sbi, secno))
804 set_bit(secno, dirty_i->dirty_secmap);
805 }
806 }
807 }
808
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)809 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
810 enum dirty_type dirty_type)
811 {
812 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
813 block_t valid_blocks;
814
815 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 dirty_i->nr_dirty[dirty_type]--;
817
818 if (dirty_type == DIRTY) {
819 struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 enum dirty_type t = sentry->type;
821
822 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
823 dirty_i->nr_dirty[t]--;
824
825 valid_blocks = get_valid_blocks(sbi, segno, true);
826 if (valid_blocks == 0) {
827 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
828 dirty_i->victim_secmap);
829 #ifdef CONFIG_F2FS_CHECK_FS
830 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
831 #endif
832 }
833 if (__is_large_section(sbi)) {
834 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
835
836 if (!valid_blocks ||
837 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
838 clear_bit(secno, dirty_i->dirty_secmap);
839 return;
840 }
841
842 if (!is_cursec(sbi, secno))
843 set_bit(secno, dirty_i->dirty_secmap);
844 }
845 }
846 }
847
848 /*
849 * Should not occur error such as -ENOMEM.
850 * Adding dirty entry into seglist is not critical operation.
851 * If a given segment is one of current working segments, it won't be added.
852 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)853 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
854 {
855 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
856 unsigned short valid_blocks, ckpt_valid_blocks;
857 unsigned int usable_blocks;
858
859 if (segno == NULL_SEGNO || is_curseg(sbi, segno))
860 return;
861
862 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
863 mutex_lock(&dirty_i->seglist_lock);
864
865 valid_blocks = get_valid_blocks(sbi, segno, false);
866 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
867
868 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
869 ckpt_valid_blocks == usable_blocks)) {
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 } else if (valid_blocks < usable_blocks) {
873 __locate_dirty_segment(sbi, segno, DIRTY);
874 } else {
875 /* Recovery routine with SSR needs this */
876 __remove_dirty_segment(sbi, segno, DIRTY);
877 }
878
879 mutex_unlock(&dirty_i->seglist_lock);
880 }
881
882 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)883 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
884 {
885 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
886 unsigned int segno;
887
888 mutex_lock(&dirty_i->seglist_lock);
889 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 if (get_valid_blocks(sbi, segno, false))
891 continue;
892 if (is_curseg(sbi, segno))
893 continue;
894 __locate_dirty_segment(sbi, segno, PRE);
895 __remove_dirty_segment(sbi, segno, DIRTY);
896 }
897 mutex_unlock(&dirty_i->seglist_lock);
898 }
899
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)900 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
901 {
902 int ovp_hole_segs =
903 (overprovision_segments(sbi) - reserved_segments(sbi));
904 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 block_t holes[2] = {0, 0}; /* DATA and NODE */
907 block_t unusable;
908 struct seg_entry *se;
909 unsigned int segno;
910
911 mutex_lock(&dirty_i->seglist_lock);
912 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
913 se = get_seg_entry(sbi, segno);
914 if (IS_NODESEG(se->type))
915 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
916 se->valid_blocks;
917 else
918 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
919 se->valid_blocks;
920 }
921 mutex_unlock(&dirty_i->seglist_lock);
922
923 unusable = max(holes[DATA], holes[NODE]);
924 if (unusable > ovp_holes)
925 return unusable - ovp_holes;
926 return 0;
927 }
928
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)929 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
930 {
931 int ovp_hole_segs =
932 (overprovision_segments(sbi) - reserved_segments(sbi));
933
934 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
935 return 0;
936 if (unusable > F2FS_OPTION(sbi).unusable_cap)
937 return -EAGAIN;
938 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
939 dirty_segments(sbi) > ovp_hole_segs)
940 return -EAGAIN;
941 if (has_not_enough_free_secs(sbi, 0, 0))
942 return -EAGAIN;
943 return 0;
944 }
945
946 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)947 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
948 {
949 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
950 unsigned int segno = 0;
951
952 mutex_lock(&dirty_i->seglist_lock);
953 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
954 if (get_valid_blocks(sbi, segno, false))
955 continue;
956 if (get_ckpt_valid_blocks(sbi, segno, false))
957 continue;
958 mutex_unlock(&dirty_i->seglist_lock);
959 return segno;
960 }
961 mutex_unlock(&dirty_i->seglist_lock);
962 return NULL_SEGNO;
963 }
964
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)965 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
966 struct block_device *bdev, block_t lstart,
967 block_t start, block_t len)
968 {
969 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
970 struct list_head *pend_list;
971 struct discard_cmd *dc;
972
973 f2fs_bug_on(sbi, !len);
974
975 pend_list = &dcc->pend_list[plist_idx(len)];
976
977 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
978 INIT_LIST_HEAD(&dc->list);
979 dc->bdev = bdev;
980 dc->di.lstart = lstart;
981 dc->di.start = start;
982 dc->di.len = len;
983 dc->ref = 0;
984 dc->state = D_PREP;
985 dc->queued = 0;
986 dc->error = 0;
987 init_completion(&dc->wait);
988 list_add_tail(&dc->list, pend_list);
989 spin_lock_init(&dc->lock);
990 dc->bio_ref = 0;
991 atomic_inc(&dcc->discard_cmd_cnt);
992 dcc->undiscard_blks += len;
993
994 return dc;
995 }
996
f2fs_check_discard_tree(struct f2fs_sb_info * sbi)997 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
998 {
999 #ifdef CONFIG_F2FS_CHECK_FS
1000 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1001 struct rb_node *cur = rb_first_cached(&dcc->root), *next;
1002 struct discard_cmd *cur_dc, *next_dc;
1003
1004 while (cur) {
1005 next = rb_next(cur);
1006 if (!next)
1007 return true;
1008
1009 cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
1010 next_dc = rb_entry(next, struct discard_cmd, rb_node);
1011
1012 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
1013 f2fs_info(sbi, "broken discard_rbtree, "
1014 "cur(%u, %u) next(%u, %u)",
1015 cur_dc->di.lstart, cur_dc->di.len,
1016 next_dc->di.lstart, next_dc->di.len);
1017 return false;
1018 }
1019 cur = next;
1020 }
1021 #endif
1022 return true;
1023 }
1024
__lookup_discard_cmd(struct f2fs_sb_info * sbi,block_t blkaddr)1025 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1026 block_t blkaddr)
1027 {
1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 struct rb_node *node = dcc->root.rb_root.rb_node;
1030 struct discard_cmd *dc;
1031
1032 while (node) {
1033 dc = rb_entry(node, struct discard_cmd, rb_node);
1034
1035 if (blkaddr < dc->di.lstart)
1036 node = node->rb_left;
1037 else if (blkaddr >= dc->di.lstart + dc->di.len)
1038 node = node->rb_right;
1039 else
1040 return dc;
1041 }
1042 return NULL;
1043 }
1044
__lookup_discard_cmd_ret(struct rb_root_cached * root,block_t blkaddr,struct discard_cmd ** prev_entry,struct discard_cmd ** next_entry,struct rb_node *** insert_p,struct rb_node ** insert_parent)1045 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1046 block_t blkaddr,
1047 struct discard_cmd **prev_entry,
1048 struct discard_cmd **next_entry,
1049 struct rb_node ***insert_p,
1050 struct rb_node **insert_parent)
1051 {
1052 struct rb_node **pnode = &root->rb_root.rb_node;
1053 struct rb_node *parent = NULL, *tmp_node;
1054 struct discard_cmd *dc;
1055
1056 *insert_p = NULL;
1057 *insert_parent = NULL;
1058 *prev_entry = NULL;
1059 *next_entry = NULL;
1060
1061 if (RB_EMPTY_ROOT(&root->rb_root))
1062 return NULL;
1063
1064 while (*pnode) {
1065 parent = *pnode;
1066 dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1067
1068 if (blkaddr < dc->di.lstart)
1069 pnode = &(*pnode)->rb_left;
1070 else if (blkaddr >= dc->di.lstart + dc->di.len)
1071 pnode = &(*pnode)->rb_right;
1072 else
1073 goto lookup_neighbors;
1074 }
1075
1076 *insert_p = pnode;
1077 *insert_parent = parent;
1078
1079 dc = rb_entry(parent, struct discard_cmd, rb_node);
1080 tmp_node = parent;
1081 if (parent && blkaddr > dc->di.lstart)
1082 tmp_node = rb_next(parent);
1083 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1084
1085 tmp_node = parent;
1086 if (parent && blkaddr < dc->di.lstart)
1087 tmp_node = rb_prev(parent);
1088 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1089 return NULL;
1090
1091 lookup_neighbors:
1092 /* lookup prev node for merging backward later */
1093 tmp_node = rb_prev(&dc->rb_node);
1094 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1095
1096 /* lookup next node for merging frontward later */
1097 tmp_node = rb_next(&dc->rb_node);
1098 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1099 return dc;
1100 }
1101
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1102 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1103 struct discard_cmd *dc)
1104 {
1105 if (dc->state == D_DONE)
1106 atomic_sub(dc->queued, &dcc->queued_discard);
1107
1108 list_del(&dc->list);
1109 rb_erase_cached(&dc->rb_node, &dcc->root);
1110 dcc->undiscard_blks -= dc->di.len;
1111
1112 kmem_cache_free(discard_cmd_slab, dc);
1113
1114 atomic_dec(&dcc->discard_cmd_cnt);
1115 }
1116
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1117 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1118 struct discard_cmd *dc)
1119 {
1120 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121 unsigned long flags;
1122
1123 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1124
1125 spin_lock_irqsave(&dc->lock, flags);
1126 if (dc->bio_ref) {
1127 spin_unlock_irqrestore(&dc->lock, flags);
1128 return;
1129 }
1130 spin_unlock_irqrestore(&dc->lock, flags);
1131
1132 f2fs_bug_on(sbi, dc->ref);
1133
1134 if (dc->error == -EOPNOTSUPP)
1135 dc->error = 0;
1136
1137 if (dc->error)
1138 f2fs_info_ratelimited(sbi,
1139 "Issue discard(%u, %u, %u) failed, ret: %d",
1140 dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1141 __detach_discard_cmd(dcc, dc);
1142 }
1143
f2fs_submit_discard_endio(struct bio * bio)1144 static void f2fs_submit_discard_endio(struct bio *bio)
1145 {
1146 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&dc->lock, flags);
1150 if (!dc->error)
1151 dc->error = blk_status_to_errno(bio->bi_status);
1152 dc->bio_ref--;
1153 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1154 dc->state = D_DONE;
1155 complete_all(&dc->wait);
1156 }
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158 bio_put(bio);
1159 }
1160
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1161 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1162 block_t start, block_t end)
1163 {
1164 #ifdef CONFIG_F2FS_CHECK_FS
1165 struct seg_entry *sentry;
1166 unsigned int segno;
1167 block_t blk = start;
1168 unsigned long offset, size, *map;
1169
1170 while (blk < end) {
1171 segno = GET_SEGNO(sbi, blk);
1172 sentry = get_seg_entry(sbi, segno);
1173 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1174
1175 if (end < START_BLOCK(sbi, segno + 1))
1176 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1177 else
1178 size = BLKS_PER_SEG(sbi);
1179 map = (unsigned long *)(sentry->cur_valid_map);
1180 offset = __find_rev_next_bit(map, size, offset);
1181 f2fs_bug_on(sbi, offset != size);
1182 blk = START_BLOCK(sbi, segno + 1);
1183 }
1184 #endif
1185 }
1186
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1187 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1188 struct discard_policy *dpolicy,
1189 int discard_type, unsigned int granularity)
1190 {
1191 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1192
1193 /* common policy */
1194 dpolicy->type = discard_type;
1195 dpolicy->sync = true;
1196 dpolicy->ordered = false;
1197 dpolicy->granularity = granularity;
1198
1199 dpolicy->max_requests = dcc->max_discard_request;
1200 dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1201 dpolicy->timeout = false;
1202
1203 if (discard_type == DPOLICY_BG) {
1204 dpolicy->min_interval = dcc->min_discard_issue_time;
1205 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206 dpolicy->max_interval = dcc->max_discard_issue_time;
1207 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1208 dpolicy->io_aware = true;
1209 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1210 dpolicy->io_aware = false;
1211 dpolicy->sync = false;
1212 dpolicy->ordered = true;
1213 if (utilization(sbi) > dcc->discard_urgent_util) {
1214 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1215 if (atomic_read(&dcc->discard_cmd_cnt))
1216 dpolicy->max_interval =
1217 dcc->min_discard_issue_time;
1218 }
1219 } else if (discard_type == DPOLICY_FORCE) {
1220 dpolicy->min_interval = dcc->min_discard_issue_time;
1221 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1222 dpolicy->max_interval = dcc->max_discard_issue_time;
1223 dpolicy->io_aware = false;
1224 } else if (discard_type == DPOLICY_FSTRIM) {
1225 dpolicy->io_aware = false;
1226 } else if (discard_type == DPOLICY_UMOUNT) {
1227 dpolicy->io_aware = false;
1228 /* we need to issue all to keep CP_TRIMMED_FLAG */
1229 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1230 dpolicy->timeout = true;
1231 }
1232 }
1233
1234 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1235 struct block_device *bdev, block_t lstart,
1236 block_t start, block_t len);
1237
1238 #ifdef CONFIG_BLK_DEV_ZONED
__submit_zone_reset_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,blk_opf_t flag,struct list_head * wait_list,unsigned int * issued)1239 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1240 struct discard_cmd *dc, blk_opf_t flag,
1241 struct list_head *wait_list,
1242 unsigned int *issued)
1243 {
1244 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1245 struct block_device *bdev = dc->bdev;
1246 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1247 unsigned long flags;
1248
1249 trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1250
1251 spin_lock_irqsave(&dc->lock, flags);
1252 dc->state = D_SUBMIT;
1253 dc->bio_ref++;
1254 spin_unlock_irqrestore(&dc->lock, flags);
1255
1256 if (issued)
1257 (*issued)++;
1258
1259 atomic_inc(&dcc->queued_discard);
1260 dc->queued++;
1261 list_move_tail(&dc->list, wait_list);
1262
1263 /* sanity check on discard range */
1264 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1265
1266 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1267 bio->bi_private = dc;
1268 bio->bi_end_io = f2fs_submit_discard_endio;
1269 submit_bio(bio);
1270
1271 atomic_inc(&dcc->issued_discard);
1272 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1273 }
1274 #endif
1275
1276 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,int * issued)1277 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1278 struct discard_policy *dpolicy,
1279 struct discard_cmd *dc, int *issued)
1280 {
1281 struct block_device *bdev = dc->bdev;
1282 unsigned int max_discard_blocks =
1283 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1284 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1285 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1286 &(dcc->fstrim_list) : &(dcc->wait_list);
1287 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1288 block_t lstart, start, len, total_len;
1289 int err = 0;
1290
1291 if (dc->state != D_PREP)
1292 return 0;
1293
1294 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1295 return 0;
1296
1297 #ifdef CONFIG_BLK_DEV_ZONED
1298 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1299 int devi = f2fs_bdev_index(sbi, bdev);
1300
1301 if (devi < 0)
1302 return -EINVAL;
1303
1304 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1305 __submit_zone_reset_cmd(sbi, dc, flag,
1306 wait_list, issued);
1307 return 0;
1308 }
1309 }
1310 #endif
1311
1312 /*
1313 * stop issuing discard for any of below cases:
1314 * 1. device is conventional zone, but it doesn't support discard.
1315 * 2. device is regulare device, after snapshot it doesn't support
1316 * discard.
1317 */
1318 if (!bdev_max_discard_sectors(bdev))
1319 return -EOPNOTSUPP;
1320
1321 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1322
1323 lstart = dc->di.lstart;
1324 start = dc->di.start;
1325 len = dc->di.len;
1326 total_len = len;
1327
1328 dc->di.len = 0;
1329
1330 while (total_len && *issued < dpolicy->max_requests && !err) {
1331 struct bio *bio = NULL;
1332 unsigned long flags;
1333 bool last = true;
1334
1335 if (len > max_discard_blocks) {
1336 len = max_discard_blocks;
1337 last = false;
1338 }
1339
1340 (*issued)++;
1341 if (*issued == dpolicy->max_requests)
1342 last = true;
1343
1344 dc->di.len += len;
1345
1346 if (time_to_inject(sbi, FAULT_DISCARD)) {
1347 err = -EIO;
1348 } else {
1349 err = __blkdev_issue_discard(bdev,
1350 SECTOR_FROM_BLOCK(start),
1351 SECTOR_FROM_BLOCK(len),
1352 GFP_NOFS, &bio);
1353 }
1354 if (err) {
1355 spin_lock_irqsave(&dc->lock, flags);
1356 if (dc->state == D_PARTIAL)
1357 dc->state = D_SUBMIT;
1358 spin_unlock_irqrestore(&dc->lock, flags);
1359
1360 break;
1361 }
1362
1363 f2fs_bug_on(sbi, !bio);
1364
1365 /*
1366 * should keep before submission to avoid D_DONE
1367 * right away
1368 */
1369 spin_lock_irqsave(&dc->lock, flags);
1370 if (last)
1371 dc->state = D_SUBMIT;
1372 else
1373 dc->state = D_PARTIAL;
1374 dc->bio_ref++;
1375 spin_unlock_irqrestore(&dc->lock, flags);
1376
1377 atomic_inc(&dcc->queued_discard);
1378 dc->queued++;
1379 list_move_tail(&dc->list, wait_list);
1380
1381 /* sanity check on discard range */
1382 __check_sit_bitmap(sbi, lstart, lstart + len);
1383
1384 bio->bi_private = dc;
1385 bio->bi_end_io = f2fs_submit_discard_endio;
1386 bio->bi_opf |= flag;
1387 submit_bio(bio);
1388
1389 atomic_inc(&dcc->issued_discard);
1390
1391 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1392
1393 lstart += len;
1394 start += len;
1395 total_len -= len;
1396 len = total_len;
1397 }
1398
1399 if (!err && len) {
1400 dcc->undiscard_blks -= len;
1401 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1402 }
1403 return err;
1404 }
1405
__insert_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1406 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1407 struct block_device *bdev, block_t lstart,
1408 block_t start, block_t len)
1409 {
1410 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1411 struct rb_node **p = &dcc->root.rb_root.rb_node;
1412 struct rb_node *parent = NULL;
1413 struct discard_cmd *dc;
1414 bool leftmost = true;
1415
1416 /* look up rb tree to find parent node */
1417 while (*p) {
1418 parent = *p;
1419 dc = rb_entry(parent, struct discard_cmd, rb_node);
1420
1421 if (lstart < dc->di.lstart) {
1422 p = &(*p)->rb_left;
1423 } else if (lstart >= dc->di.lstart + dc->di.len) {
1424 p = &(*p)->rb_right;
1425 leftmost = false;
1426 } else {
1427 /* Let's skip to add, if exists */
1428 return;
1429 }
1430 }
1431
1432 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1433
1434 rb_link_node(&dc->rb_node, parent, p);
1435 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1436 }
1437
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1438 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1439 struct discard_cmd *dc)
1440 {
1441 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1442 }
1443
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1444 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1445 struct discard_cmd *dc, block_t blkaddr)
1446 {
1447 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1448 struct discard_info di = dc->di;
1449 bool modified = false;
1450
1451 if (dc->state == D_DONE || dc->di.len == 1) {
1452 __remove_discard_cmd(sbi, dc);
1453 return;
1454 }
1455
1456 dcc->undiscard_blks -= di.len;
1457
1458 if (blkaddr > di.lstart) {
1459 dc->di.len = blkaddr - dc->di.lstart;
1460 dcc->undiscard_blks += dc->di.len;
1461 __relocate_discard_cmd(dcc, dc);
1462 modified = true;
1463 }
1464
1465 if (blkaddr < di.lstart + di.len - 1) {
1466 if (modified) {
1467 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1468 di.start + blkaddr + 1 - di.lstart,
1469 di.lstart + di.len - 1 - blkaddr);
1470 } else {
1471 dc->di.lstart++;
1472 dc->di.len--;
1473 dc->di.start++;
1474 dcc->undiscard_blks += dc->di.len;
1475 __relocate_discard_cmd(dcc, dc);
1476 }
1477 }
1478 }
1479
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1480 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1481 struct block_device *bdev, block_t lstart,
1482 block_t start, block_t len)
1483 {
1484 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1485 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1486 struct discard_cmd *dc;
1487 struct discard_info di = {0};
1488 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1489 unsigned int max_discard_blocks =
1490 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1491 block_t end = lstart + len;
1492
1493 dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1494 &prev_dc, &next_dc, &insert_p, &insert_parent);
1495 if (dc)
1496 prev_dc = dc;
1497
1498 if (!prev_dc) {
1499 di.lstart = lstart;
1500 di.len = next_dc ? next_dc->di.lstart - lstart : len;
1501 di.len = min(di.len, len);
1502 di.start = start;
1503 }
1504
1505 while (1) {
1506 struct rb_node *node;
1507 bool merged = false;
1508 struct discard_cmd *tdc = NULL;
1509
1510 if (prev_dc) {
1511 di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1512 if (di.lstart < lstart)
1513 di.lstart = lstart;
1514 if (di.lstart >= end)
1515 break;
1516
1517 if (!next_dc || next_dc->di.lstart > end)
1518 di.len = end - di.lstart;
1519 else
1520 di.len = next_dc->di.lstart - di.lstart;
1521 di.start = start + di.lstart - lstart;
1522 }
1523
1524 if (!di.len)
1525 goto next;
1526
1527 if (prev_dc && prev_dc->state == D_PREP &&
1528 prev_dc->bdev == bdev &&
1529 __is_discard_back_mergeable(&di, &prev_dc->di,
1530 max_discard_blocks)) {
1531 prev_dc->di.len += di.len;
1532 dcc->undiscard_blks += di.len;
1533 __relocate_discard_cmd(dcc, prev_dc);
1534 di = prev_dc->di;
1535 tdc = prev_dc;
1536 merged = true;
1537 }
1538
1539 if (next_dc && next_dc->state == D_PREP &&
1540 next_dc->bdev == bdev &&
1541 __is_discard_front_mergeable(&di, &next_dc->di,
1542 max_discard_blocks)) {
1543 next_dc->di.lstart = di.lstart;
1544 next_dc->di.len += di.len;
1545 next_dc->di.start = di.start;
1546 dcc->undiscard_blks += di.len;
1547 __relocate_discard_cmd(dcc, next_dc);
1548 if (tdc)
1549 __remove_discard_cmd(sbi, tdc);
1550 merged = true;
1551 }
1552
1553 if (!merged)
1554 __insert_discard_cmd(sbi, bdev,
1555 di.lstart, di.start, di.len);
1556 next:
1557 prev_dc = next_dc;
1558 if (!prev_dc)
1559 break;
1560
1561 node = rb_next(&prev_dc->rb_node);
1562 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1563 }
1564 }
1565
1566 #ifdef CONFIG_BLK_DEV_ZONED
__queue_zone_reset_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t lblkstart,block_t blklen)1567 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1568 struct block_device *bdev, block_t blkstart, block_t lblkstart,
1569 block_t blklen)
1570 {
1571 trace_f2fs_queue_reset_zone(bdev, blkstart);
1572
1573 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1574 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1575 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1576 }
1577 #endif
1578
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1579 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1580 struct block_device *bdev, block_t blkstart, block_t blklen)
1581 {
1582 block_t lblkstart = blkstart;
1583
1584 if (!f2fs_bdev_support_discard(bdev))
1585 return;
1586
1587 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1588
1589 if (f2fs_is_multi_device(sbi)) {
1590 int devi = f2fs_target_device_index(sbi, blkstart);
1591
1592 blkstart -= FDEV(devi).start_blk;
1593 }
1594 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1595 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1596 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1597 }
1598
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int * issued)1599 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1600 struct discard_policy *dpolicy, int *issued)
1601 {
1602 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1604 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1605 struct discard_cmd *dc;
1606 struct blk_plug plug;
1607 bool io_interrupted = false;
1608
1609 mutex_lock(&dcc->cmd_lock);
1610 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1611 &prev_dc, &next_dc, &insert_p, &insert_parent);
1612 if (!dc)
1613 dc = next_dc;
1614
1615 blk_start_plug(&plug);
1616
1617 while (dc) {
1618 struct rb_node *node;
1619 int err = 0;
1620
1621 if (dc->state != D_PREP)
1622 goto next;
1623
1624 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1625 io_interrupted = true;
1626 break;
1627 }
1628
1629 dcc->next_pos = dc->di.lstart + dc->di.len;
1630 err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1631
1632 if (*issued >= dpolicy->max_requests)
1633 break;
1634 next:
1635 node = rb_next(&dc->rb_node);
1636 if (err)
1637 __remove_discard_cmd(sbi, dc);
1638 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1639 }
1640
1641 blk_finish_plug(&plug);
1642
1643 if (!dc)
1644 dcc->next_pos = 0;
1645
1646 mutex_unlock(&dcc->cmd_lock);
1647
1648 if (!(*issued) && io_interrupted)
1649 *issued = -1;
1650 }
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652 struct discard_policy *dpolicy);
1653
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1654 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1655 struct discard_policy *dpolicy)
1656 {
1657 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1658 struct list_head *pend_list;
1659 struct discard_cmd *dc, *tmp;
1660 struct blk_plug plug;
1661 int i, issued;
1662 bool io_interrupted = false;
1663
1664 if (dpolicy->timeout)
1665 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1666
1667 retry:
1668 issued = 0;
1669 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1670 if (dpolicy->timeout &&
1671 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1672 break;
1673
1674 if (i + 1 < dpolicy->granularity)
1675 break;
1676
1677 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1678 __issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1679 return issued;
1680 }
1681
1682 pend_list = &dcc->pend_list[i];
1683
1684 mutex_lock(&dcc->cmd_lock);
1685 if (list_empty(pend_list))
1686 goto next;
1687 if (unlikely(dcc->rbtree_check))
1688 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1689 blk_start_plug(&plug);
1690 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1691 f2fs_bug_on(sbi, dc->state != D_PREP);
1692
1693 if (dpolicy->timeout &&
1694 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1695 break;
1696
1697 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1698 !is_idle(sbi, DISCARD_TIME)) {
1699 io_interrupted = true;
1700 break;
1701 }
1702
1703 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1704
1705 if (issued >= dpolicy->max_requests)
1706 break;
1707 }
1708 blk_finish_plug(&plug);
1709 next:
1710 mutex_unlock(&dcc->cmd_lock);
1711
1712 if (issued >= dpolicy->max_requests || io_interrupted)
1713 break;
1714 }
1715
1716 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1717 __wait_all_discard_cmd(sbi, dpolicy);
1718 goto retry;
1719 }
1720
1721 if (!issued && io_interrupted)
1722 issued = -1;
1723
1724 return issued;
1725 }
1726
__drop_discard_cmd(struct f2fs_sb_info * sbi)1727 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1728 {
1729 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1730 struct list_head *pend_list;
1731 struct discard_cmd *dc, *tmp;
1732 int i;
1733 bool dropped = false;
1734
1735 mutex_lock(&dcc->cmd_lock);
1736 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1737 pend_list = &dcc->pend_list[i];
1738 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1739 f2fs_bug_on(sbi, dc->state != D_PREP);
1740 __remove_discard_cmd(sbi, dc);
1741 dropped = true;
1742 }
1743 }
1744 mutex_unlock(&dcc->cmd_lock);
1745
1746 return dropped;
1747 }
1748
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1749 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1750 {
1751 __drop_discard_cmd(sbi);
1752 }
1753
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1754 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1755 struct discard_cmd *dc)
1756 {
1757 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1758 unsigned int len = 0;
1759
1760 wait_for_completion_io(&dc->wait);
1761 mutex_lock(&dcc->cmd_lock);
1762 f2fs_bug_on(sbi, dc->state != D_DONE);
1763 dc->ref--;
1764 if (!dc->ref) {
1765 if (!dc->error)
1766 len = dc->di.len;
1767 __remove_discard_cmd(sbi, dc);
1768 }
1769 mutex_unlock(&dcc->cmd_lock);
1770
1771 return len;
1772 }
1773
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1774 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1775 struct discard_policy *dpolicy,
1776 block_t start, block_t end)
1777 {
1778 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1779 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1780 &(dcc->fstrim_list) : &(dcc->wait_list);
1781 struct discard_cmd *dc = NULL, *iter, *tmp;
1782 unsigned int trimmed = 0;
1783
1784 next:
1785 dc = NULL;
1786
1787 mutex_lock(&dcc->cmd_lock);
1788 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1789 if (iter->di.lstart + iter->di.len <= start ||
1790 end <= iter->di.lstart)
1791 continue;
1792 if (iter->di.len < dpolicy->granularity)
1793 continue;
1794 if (iter->state == D_DONE && !iter->ref) {
1795 wait_for_completion_io(&iter->wait);
1796 if (!iter->error)
1797 trimmed += iter->di.len;
1798 __remove_discard_cmd(sbi, iter);
1799 } else {
1800 iter->ref++;
1801 dc = iter;
1802 break;
1803 }
1804 }
1805 mutex_unlock(&dcc->cmd_lock);
1806
1807 if (dc) {
1808 trimmed += __wait_one_discard_bio(sbi, dc);
1809 goto next;
1810 }
1811
1812 return trimmed;
1813 }
1814
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1815 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1816 struct discard_policy *dpolicy)
1817 {
1818 struct discard_policy dp;
1819 unsigned int discard_blks;
1820
1821 if (dpolicy)
1822 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1823
1824 /* wait all */
1825 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1826 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1827 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1828 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1829
1830 return discard_blks;
1831 }
1832
1833 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1834 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1835 {
1836 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1837 struct discard_cmd *dc;
1838 bool need_wait = false;
1839
1840 mutex_lock(&dcc->cmd_lock);
1841 dc = __lookup_discard_cmd(sbi, blkaddr);
1842 #ifdef CONFIG_BLK_DEV_ZONED
1843 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1844 int devi = f2fs_bdev_index(sbi, dc->bdev);
1845
1846 if (devi < 0) {
1847 mutex_unlock(&dcc->cmd_lock);
1848 return;
1849 }
1850
1851 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1852 /* force submit zone reset */
1853 if (dc->state == D_PREP)
1854 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1855 &dcc->wait_list, NULL);
1856 dc->ref++;
1857 mutex_unlock(&dcc->cmd_lock);
1858 /* wait zone reset */
1859 __wait_one_discard_bio(sbi, dc);
1860 return;
1861 }
1862 }
1863 #endif
1864 if (dc) {
1865 if (dc->state == D_PREP) {
1866 __punch_discard_cmd(sbi, dc, blkaddr);
1867 } else {
1868 dc->ref++;
1869 need_wait = true;
1870 }
1871 }
1872 mutex_unlock(&dcc->cmd_lock);
1873
1874 if (need_wait)
1875 __wait_one_discard_bio(sbi, dc);
1876 }
1877
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1878 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1879 {
1880 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1881
1882 if (dcc && dcc->f2fs_issue_discard) {
1883 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1884
1885 dcc->f2fs_issue_discard = NULL;
1886 kthread_stop(discard_thread);
1887 }
1888 }
1889
1890 /**
1891 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1892 * @sbi: the f2fs_sb_info data for discard cmd to issue
1893 *
1894 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1895 *
1896 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1897 */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1898 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1899 {
1900 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1901 struct discard_policy dpolicy;
1902 bool dropped;
1903
1904 if (!atomic_read(&dcc->discard_cmd_cnt))
1905 return true;
1906
1907 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1908 dcc->discard_granularity);
1909 __issue_discard_cmd(sbi, &dpolicy);
1910 dropped = __drop_discard_cmd(sbi);
1911
1912 /* just to make sure there is no pending discard commands */
1913 __wait_all_discard_cmd(sbi, NULL);
1914
1915 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1916 return !dropped;
1917 }
1918
issue_discard_thread(void * data)1919 static int issue_discard_thread(void *data)
1920 {
1921 struct f2fs_sb_info *sbi = data;
1922 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1923 wait_queue_head_t *q = &dcc->discard_wait_queue;
1924 struct discard_policy dpolicy;
1925 unsigned int wait_ms = dcc->min_discard_issue_time;
1926 int issued;
1927
1928 set_freezable();
1929
1930 do {
1931 wait_event_freezable_timeout(*q,
1932 kthread_should_stop() || dcc->discard_wake,
1933 msecs_to_jiffies(wait_ms));
1934
1935 if (sbi->gc_mode == GC_URGENT_HIGH ||
1936 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1937 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1938 MIN_DISCARD_GRANULARITY);
1939 else
1940 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1941 dcc->discard_granularity);
1942
1943 if (dcc->discard_wake)
1944 dcc->discard_wake = false;
1945
1946 /* clean up pending candidates before going to sleep */
1947 if (atomic_read(&dcc->queued_discard))
1948 __wait_all_discard_cmd(sbi, NULL);
1949
1950 if (f2fs_readonly(sbi->sb))
1951 continue;
1952 if (kthread_should_stop())
1953 return 0;
1954 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1955 !atomic_read(&dcc->discard_cmd_cnt)) {
1956 wait_ms = dpolicy.max_interval;
1957 continue;
1958 }
1959
1960 sb_start_intwrite(sbi->sb);
1961
1962 issued = __issue_discard_cmd(sbi, &dpolicy);
1963 if (issued > 0) {
1964 __wait_all_discard_cmd(sbi, &dpolicy);
1965 wait_ms = dpolicy.min_interval;
1966 } else if (issued == -1) {
1967 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1968 if (!wait_ms)
1969 wait_ms = dpolicy.mid_interval;
1970 } else {
1971 wait_ms = dpolicy.max_interval;
1972 }
1973 if (!atomic_read(&dcc->discard_cmd_cnt))
1974 wait_ms = dpolicy.max_interval;
1975
1976 sb_end_intwrite(sbi->sb);
1977
1978 } while (!kthread_should_stop());
1979 return 0;
1980 }
1981
1982 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1983 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1984 struct block_device *bdev, block_t blkstart, block_t blklen)
1985 {
1986 sector_t sector, nr_sects;
1987 block_t lblkstart = blkstart;
1988 int devi = 0;
1989 u64 remainder = 0;
1990
1991 if (f2fs_is_multi_device(sbi)) {
1992 devi = f2fs_target_device_index(sbi, blkstart);
1993 if (blkstart < FDEV(devi).start_blk ||
1994 blkstart > FDEV(devi).end_blk) {
1995 f2fs_err(sbi, "Invalid block %x", blkstart);
1996 return -EIO;
1997 }
1998 blkstart -= FDEV(devi).start_blk;
1999 }
2000
2001 /* For sequential zones, reset the zone write pointer */
2002 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
2003 sector = SECTOR_FROM_BLOCK(blkstart);
2004 nr_sects = SECTOR_FROM_BLOCK(blklen);
2005 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
2006
2007 if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
2008 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
2009 devi, sbi->s_ndevs ? FDEV(devi).path : "",
2010 blkstart, blklen);
2011 return -EIO;
2012 }
2013
2014 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
2015 unsigned int nofs_flags;
2016 int ret;
2017
2018 trace_f2fs_issue_reset_zone(bdev, blkstart);
2019 nofs_flags = memalloc_nofs_save();
2020 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2021 sector, nr_sects);
2022 memalloc_nofs_restore(nofs_flags);
2023 return ret;
2024 }
2025
2026 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2027 return 0;
2028 }
2029
2030 /* For conventional zones, use regular discard if supported */
2031 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2032 return 0;
2033 }
2034 #endif
2035
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)2036 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2037 struct block_device *bdev, block_t blkstart, block_t blklen)
2038 {
2039 #ifdef CONFIG_BLK_DEV_ZONED
2040 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2041 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2042 #endif
2043 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
2044 return 0;
2045 }
2046
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)2047 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2048 block_t blkstart, block_t blklen)
2049 {
2050 sector_t start = blkstart, len = 0;
2051 struct block_device *bdev;
2052 struct seg_entry *se;
2053 unsigned int offset;
2054 block_t i;
2055 int err = 0;
2056
2057 bdev = f2fs_target_device(sbi, blkstart, NULL);
2058
2059 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2060 if (i != start) {
2061 struct block_device *bdev2 =
2062 f2fs_target_device(sbi, i, NULL);
2063
2064 if (bdev2 != bdev) {
2065 err = __issue_discard_async(sbi, bdev,
2066 start, len);
2067 if (err)
2068 return err;
2069 bdev = bdev2;
2070 start = i;
2071 len = 0;
2072 }
2073 }
2074
2075 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2076 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2077
2078 if (f2fs_block_unit_discard(sbi) &&
2079 !f2fs_test_and_set_bit(offset, se->discard_map))
2080 sbi->discard_blks--;
2081 }
2082
2083 if (len)
2084 err = __issue_discard_async(sbi, bdev, start, len);
2085 return err;
2086 }
2087
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2088 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2089 bool check_only)
2090 {
2091 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2092 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2093 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2094 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2095 unsigned long *discard_map = (unsigned long *)se->discard_map;
2096 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2097 unsigned int start = 0, end = -1;
2098 bool force = (cpc->reason & CP_DISCARD);
2099 struct discard_entry *de = NULL;
2100 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2101 int i;
2102
2103 if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2104 !f2fs_hw_support_discard(sbi) ||
2105 !f2fs_block_unit_discard(sbi))
2106 return false;
2107
2108 if (!force) {
2109 if (!f2fs_realtime_discard_enable(sbi) ||
2110 (!se->valid_blocks &&
2111 !is_curseg(sbi, cpc->trim_start)) ||
2112 SM_I(sbi)->dcc_info->nr_discards >=
2113 SM_I(sbi)->dcc_info->max_discards)
2114 return false;
2115 }
2116
2117 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2118 for (i = 0; i < entries; i++)
2119 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2120 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2121
2122 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2123 SM_I(sbi)->dcc_info->max_discards) {
2124 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2125 if (start >= BLKS_PER_SEG(sbi))
2126 break;
2127
2128 end = __find_rev_next_zero_bit(dmap,
2129 BLKS_PER_SEG(sbi), start + 1);
2130 if (force && start && end != BLKS_PER_SEG(sbi) &&
2131 (end - start) < cpc->trim_minlen)
2132 continue;
2133
2134 if (check_only)
2135 return true;
2136
2137 if (!de) {
2138 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2139 GFP_F2FS_ZERO, true, NULL);
2140 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2141 list_add_tail(&de->list, head);
2142 }
2143
2144 for (i = start; i < end; i++)
2145 __set_bit_le(i, (void *)de->discard_map);
2146
2147 SM_I(sbi)->dcc_info->nr_discards += end - start;
2148 }
2149 return false;
2150 }
2151
release_discard_addr(struct discard_entry * entry)2152 static void release_discard_addr(struct discard_entry *entry)
2153 {
2154 list_del(&entry->list);
2155 kmem_cache_free(discard_entry_slab, entry);
2156 }
2157
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2158 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2159 {
2160 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2161 struct discard_entry *entry, *this;
2162
2163 /* drop caches */
2164 list_for_each_entry_safe(entry, this, head, list)
2165 release_discard_addr(entry);
2166 }
2167
2168 /*
2169 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2170 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2171 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2172 {
2173 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2174 unsigned int segno;
2175
2176 mutex_lock(&dirty_i->seglist_lock);
2177 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2178 __set_test_and_free(sbi, segno, false);
2179 mutex_unlock(&dirty_i->seglist_lock);
2180 }
2181
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2182 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2183 struct cp_control *cpc)
2184 {
2185 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2186 struct list_head *head = &dcc->entry_list;
2187 struct discard_entry *entry, *this;
2188 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2189 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2190 unsigned int start = 0, end = -1;
2191 unsigned int secno, start_segno;
2192 bool force = (cpc->reason & CP_DISCARD);
2193 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2194 DISCARD_UNIT_SECTION;
2195
2196 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2197 section_alignment = true;
2198
2199 mutex_lock(&dirty_i->seglist_lock);
2200
2201 while (1) {
2202 int i;
2203
2204 if (section_alignment && end != -1)
2205 end--;
2206 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2207 if (start >= MAIN_SEGS(sbi))
2208 break;
2209 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2210 start + 1);
2211
2212 if (section_alignment) {
2213 start = rounddown(start, SEGS_PER_SEC(sbi));
2214 end = roundup(end, SEGS_PER_SEC(sbi));
2215 }
2216
2217 for (i = start; i < end; i++) {
2218 if (test_and_clear_bit(i, prefree_map))
2219 dirty_i->nr_dirty[PRE]--;
2220 }
2221
2222 if (!f2fs_realtime_discard_enable(sbi))
2223 continue;
2224
2225 if (force && start >= cpc->trim_start &&
2226 (end - 1) <= cpc->trim_end)
2227 continue;
2228
2229 /* Should cover 2MB zoned device for zone-based reset */
2230 if (!f2fs_sb_has_blkzoned(sbi) &&
2231 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2232 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2233 SEGS_TO_BLKS(sbi, end - start));
2234 continue;
2235 }
2236 next:
2237 secno = GET_SEC_FROM_SEG(sbi, start);
2238 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2239 if (!is_cursec(sbi, secno) &&
2240 !get_valid_blocks(sbi, start, true))
2241 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2242 BLKS_PER_SEC(sbi));
2243
2244 start = start_segno + SEGS_PER_SEC(sbi);
2245 if (start < end)
2246 goto next;
2247 else
2248 end = start - 1;
2249 }
2250 mutex_unlock(&dirty_i->seglist_lock);
2251
2252 if (!f2fs_block_unit_discard(sbi))
2253 goto wakeup;
2254
2255 /* send small discards */
2256 list_for_each_entry_safe(entry, this, head, list) {
2257 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2258 bool is_valid = test_bit_le(0, entry->discard_map);
2259
2260 find_next:
2261 if (is_valid) {
2262 next_pos = find_next_zero_bit_le(entry->discard_map,
2263 BLKS_PER_SEG(sbi), cur_pos);
2264 len = next_pos - cur_pos;
2265
2266 if (f2fs_sb_has_blkzoned(sbi) ||
2267 (force && len < cpc->trim_minlen))
2268 goto skip;
2269
2270 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2271 len);
2272 total_len += len;
2273 } else {
2274 next_pos = find_next_bit_le(entry->discard_map,
2275 BLKS_PER_SEG(sbi), cur_pos);
2276 }
2277 skip:
2278 cur_pos = next_pos;
2279 is_valid = !is_valid;
2280
2281 if (cur_pos < BLKS_PER_SEG(sbi))
2282 goto find_next;
2283
2284 release_discard_addr(entry);
2285 dcc->nr_discards -= total_len;
2286 }
2287
2288 wakeup:
2289 wake_up_discard_thread(sbi, false);
2290 }
2291
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2292 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2293 {
2294 dev_t dev = sbi->sb->s_bdev->bd_dev;
2295 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2296 int err = 0;
2297
2298 if (f2fs_sb_has_readonly(sbi)) {
2299 f2fs_info(sbi,
2300 "Skip to start discard thread for readonly image");
2301 return 0;
2302 }
2303
2304 if (!f2fs_realtime_discard_enable(sbi))
2305 return 0;
2306
2307 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2308 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2309 if (IS_ERR(dcc->f2fs_issue_discard)) {
2310 err = PTR_ERR(dcc->f2fs_issue_discard);
2311 dcc->f2fs_issue_discard = NULL;
2312 }
2313
2314 return err;
2315 }
2316
create_discard_cmd_control(struct f2fs_sb_info * sbi)2317 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2318 {
2319 struct discard_cmd_control *dcc;
2320 int err = 0, i;
2321
2322 if (SM_I(sbi)->dcc_info) {
2323 dcc = SM_I(sbi)->dcc_info;
2324 goto init_thread;
2325 }
2326
2327 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2328 if (!dcc)
2329 return -ENOMEM;
2330
2331 dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2332 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2333 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2334 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2335 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT ||
2336 F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2337 dcc->discard_granularity = BLKS_PER_SEG(sbi);
2338
2339 INIT_LIST_HEAD(&dcc->entry_list);
2340 for (i = 0; i < MAX_PLIST_NUM; i++)
2341 INIT_LIST_HEAD(&dcc->pend_list[i]);
2342 INIT_LIST_HEAD(&dcc->wait_list);
2343 INIT_LIST_HEAD(&dcc->fstrim_list);
2344 mutex_init(&dcc->cmd_lock);
2345 atomic_set(&dcc->issued_discard, 0);
2346 atomic_set(&dcc->queued_discard, 0);
2347 atomic_set(&dcc->discard_cmd_cnt, 0);
2348 dcc->nr_discards = 0;
2349 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2350 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2351 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2352 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2353 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2354 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2355 dcc->undiscard_blks = 0;
2356 dcc->next_pos = 0;
2357 dcc->root = RB_ROOT_CACHED;
2358 dcc->rbtree_check = false;
2359
2360 init_waitqueue_head(&dcc->discard_wait_queue);
2361 SM_I(sbi)->dcc_info = dcc;
2362 init_thread:
2363 err = f2fs_start_discard_thread(sbi);
2364 if (err) {
2365 kfree(dcc);
2366 SM_I(sbi)->dcc_info = NULL;
2367 }
2368
2369 return err;
2370 }
2371
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2372 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2373 {
2374 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2375
2376 if (!dcc)
2377 return;
2378
2379 f2fs_stop_discard_thread(sbi);
2380
2381 /*
2382 * Recovery can cache discard commands, so in error path of
2383 * fill_super(), it needs to give a chance to handle them.
2384 */
2385 f2fs_issue_discard_timeout(sbi);
2386
2387 kfree(dcc);
2388 SM_I(sbi)->dcc_info = NULL;
2389 }
2390
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2391 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2392 {
2393 struct sit_info *sit_i = SIT_I(sbi);
2394
2395 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2396 sit_i->dirty_sentries++;
2397 return false;
2398 }
2399
2400 return true;
2401 }
2402
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2403 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2404 unsigned int segno, int modified)
2405 {
2406 struct seg_entry *se = get_seg_entry(sbi, segno);
2407
2408 se->type = type;
2409 if (modified)
2410 __mark_sit_entry_dirty(sbi, segno);
2411 }
2412
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2413 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2414 block_t blkaddr)
2415 {
2416 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2417
2418 if (segno == NULL_SEGNO)
2419 return 0;
2420 return get_seg_entry(sbi, segno)->mtime;
2421 }
2422
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2423 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2424 unsigned long long old_mtime)
2425 {
2426 struct seg_entry *se;
2427 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2428 unsigned long long ctime = get_mtime(sbi, false);
2429 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2430
2431 if (segno == NULL_SEGNO)
2432 return;
2433
2434 se = get_seg_entry(sbi, segno);
2435
2436 if (!se->mtime)
2437 se->mtime = mtime;
2438 else
2439 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2440 se->valid_blocks + 1);
2441
2442 if (ctime > SIT_I(sbi)->max_mtime)
2443 SIT_I(sbi)->max_mtime = ctime;
2444 }
2445
2446 /*
2447 * NOTE: when updating multiple blocks at the same time, please ensure
2448 * that the consecutive input blocks belong to the same segment.
2449 */
update_sit_entry_for_release(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2450 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se,
2451 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2452 {
2453 bool exist;
2454 #ifdef CONFIG_F2FS_CHECK_FS
2455 bool mir_exist;
2456 #endif
2457 int i;
2458 int del_count = -del;
2459
2460 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1));
2461
2462 for (i = 0; i < del_count; i++) {
2463 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map);
2464 #ifdef CONFIG_F2FS_CHECK_FS
2465 mir_exist = f2fs_test_and_clear_bit(offset + i,
2466 se->cur_valid_map_mir);
2467 if (unlikely(exist != mir_exist)) {
2468 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2469 blkaddr + i, exist);
2470 f2fs_bug_on(sbi, 1);
2471 }
2472 #endif
2473 if (unlikely(!exist)) {
2474 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i);
2475 f2fs_bug_on(sbi, 1);
2476 se->valid_blocks++;
2477 del += 1;
2478 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2479 /*
2480 * If checkpoints are off, we must not reuse data that
2481 * was used in the previous checkpoint. If it was used
2482 * before, we must track that to know how much space we
2483 * really have.
2484 */
2485 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2486 spin_lock(&sbi->stat_lock);
2487 sbi->unusable_block_count++;
2488 spin_unlock(&sbi->stat_lock);
2489 }
2490 }
2491
2492 if (f2fs_block_unit_discard(sbi) &&
2493 f2fs_test_and_clear_bit(offset + i, se->discard_map))
2494 sbi->discard_blks++;
2495
2496 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) {
2497 se->ckpt_valid_blocks -= 1;
2498 if (__is_large_section(sbi))
2499 get_sec_entry(sbi, segno)->ckpt_valid_blocks -= 1;
2500 }
2501 }
2502
2503 if (__is_large_section(sbi))
2504 sanity_check_valid_blocks(sbi, segno);
2505
2506 return del;
2507 }
2508
update_sit_entry_for_alloc(struct f2fs_sb_info * sbi,struct seg_entry * se,unsigned int segno,block_t blkaddr,unsigned int offset,int del)2509 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se,
2510 unsigned int segno, block_t blkaddr, unsigned int offset, int del)
2511 {
2512 bool exist;
2513 #ifdef CONFIG_F2FS_CHECK_FS
2514 bool mir_exist;
2515 #endif
2516
2517 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2518 #ifdef CONFIG_F2FS_CHECK_FS
2519 mir_exist = f2fs_test_and_set_bit(offset,
2520 se->cur_valid_map_mir);
2521 if (unlikely(exist != mir_exist)) {
2522 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2523 blkaddr, exist);
2524 f2fs_bug_on(sbi, 1);
2525 }
2526 #endif
2527 if (unlikely(exist)) {
2528 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr);
2529 f2fs_bug_on(sbi, 1);
2530 se->valid_blocks--;
2531 del = 0;
2532 }
2533
2534 if (f2fs_block_unit_discard(sbi) &&
2535 !f2fs_test_and_set_bit(offset, se->discard_map))
2536 sbi->discard_blks--;
2537
2538 /*
2539 * SSR should never reuse block which is checkpointed
2540 * or newly invalidated.
2541 */
2542 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2543 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) {
2544 se->ckpt_valid_blocks++;
2545 if (__is_large_section(sbi))
2546 get_sec_entry(sbi, segno)->ckpt_valid_blocks++;
2547 }
2548 }
2549
2550 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) {
2551 se->ckpt_valid_blocks += del;
2552 if (__is_large_section(sbi))
2553 get_sec_entry(sbi, segno)->ckpt_valid_blocks += del;
2554 }
2555
2556 if (__is_large_section(sbi))
2557 sanity_check_valid_blocks(sbi, segno);
2558
2559 return del;
2560 }
2561
2562 /*
2563 * If releasing blocks, this function supports updating multiple consecutive blocks
2564 * at one time, but please note that these consecutive blocks need to belong to the
2565 * same segment.
2566 */
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2567 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2568 {
2569 struct seg_entry *se;
2570 unsigned int segno, offset;
2571 long int new_vblocks;
2572
2573 segno = GET_SEGNO(sbi, blkaddr);
2574 if (segno == NULL_SEGNO)
2575 return;
2576
2577 se = get_seg_entry(sbi, segno);
2578 new_vblocks = se->valid_blocks + del;
2579 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2580
2581 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2582 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2583
2584 se->valid_blocks = new_vblocks;
2585
2586 /* Update valid block bitmap */
2587 if (del > 0) {
2588 del = update_sit_entry_for_alloc(sbi, se, segno, blkaddr, offset, del);
2589 } else {
2590 del = update_sit_entry_for_release(sbi, se, segno, blkaddr, offset, del);
2591 }
2592
2593 __mark_sit_entry_dirty(sbi, segno);
2594
2595 /* update total number of valid blocks to be written in ckpt area */
2596 SIT_I(sbi)->written_valid_blocks += del;
2597
2598 if (__is_large_section(sbi))
2599 get_sec_entry(sbi, segno)->valid_blocks += del;
2600 }
2601
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr,unsigned int len)2602 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
2603 unsigned int len)
2604 {
2605 unsigned int segno = GET_SEGNO(sbi, addr);
2606 struct sit_info *sit_i = SIT_I(sbi);
2607 block_t addr_start = addr, addr_end = addr + len - 1;
2608 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1;
2609 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt;
2610
2611 f2fs_bug_on(sbi, addr == NULL_ADDR);
2612 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2613 return;
2614
2615 f2fs_invalidate_internal_cache(sbi, addr, len);
2616
2617 /* add it into sit main buffer */
2618 down_write(&sit_i->sentry_lock);
2619
2620 if (seg_num == 1)
2621 cnt = len;
2622 else
2623 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr);
2624
2625 do {
2626 update_segment_mtime(sbi, addr_start, 0);
2627 update_sit_entry(sbi, addr_start, -cnt);
2628
2629 /* add it into dirty seglist */
2630 locate_dirty_segment(sbi, segno);
2631
2632 /* update @addr_start and @cnt and @segno */
2633 addr_start = START_BLOCK(sbi, ++segno);
2634 if (++i == seg_num)
2635 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1;
2636 else
2637 cnt = max_blocks;
2638 } while (i <= seg_num);
2639
2640 up_write(&sit_i->sentry_lock);
2641 }
2642
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2643 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2644 {
2645 struct sit_info *sit_i = SIT_I(sbi);
2646 unsigned int segno, offset;
2647 struct seg_entry *se;
2648 bool is_cp = false;
2649
2650 if (!__is_valid_data_blkaddr(blkaddr))
2651 return true;
2652
2653 down_read(&sit_i->sentry_lock);
2654
2655 segno = GET_SEGNO(sbi, blkaddr);
2656 se = get_seg_entry(sbi, segno);
2657 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2658
2659 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2660 is_cp = true;
2661
2662 up_read(&sit_i->sentry_lock);
2663
2664 return is_cp;
2665 }
2666
f2fs_curseg_valid_blocks(struct f2fs_sb_info * sbi,int type)2667 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2668 {
2669 struct curseg_info *curseg = CURSEG_I(sbi, type);
2670
2671 if (sbi->ckpt->alloc_type[type] == SSR)
2672 return BLKS_PER_SEG(sbi);
2673 return curseg->next_blkoff;
2674 }
2675
2676 /*
2677 * Calculate the number of current summary pages for writing
2678 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2679 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2680 {
2681 int valid_sum_count = 0;
2682 int i, sum_in_page;
2683
2684 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2685 if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2686 valid_sum_count +=
2687 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2688 else
2689 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2690 }
2691
2692 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2693 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2694 if (valid_sum_count <= sum_in_page)
2695 return 1;
2696 else if ((valid_sum_count - sum_in_page) <=
2697 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2698 return 2;
2699 return 3;
2700 }
2701
2702 /*
2703 * Caller should put this summary folio
2704 */
f2fs_get_sum_folio(struct f2fs_sb_info * sbi,unsigned int segno)2705 struct folio *f2fs_get_sum_folio(struct f2fs_sb_info *sbi, unsigned int segno)
2706 {
2707 if (unlikely(f2fs_cp_error(sbi)))
2708 return ERR_PTR(-EIO);
2709 return f2fs_get_meta_folio_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2710 }
2711
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2712 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2713 void *src, block_t blk_addr)
2714 {
2715 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2716
2717 memcpy(folio_address(folio), src, PAGE_SIZE);
2718 folio_mark_dirty(folio);
2719 f2fs_folio_put(folio, true);
2720 }
2721
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2722 static void write_sum_page(struct f2fs_sb_info *sbi,
2723 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2724 {
2725 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2726 }
2727
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2728 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2729 int type, block_t blk_addr)
2730 {
2731 struct curseg_info *curseg = CURSEG_I(sbi, type);
2732 struct folio *folio = f2fs_grab_meta_folio(sbi, blk_addr);
2733 struct f2fs_summary_block *src = curseg->sum_blk;
2734 struct f2fs_summary_block *dst;
2735
2736 dst = folio_address(folio);
2737 memset(dst, 0, PAGE_SIZE);
2738
2739 mutex_lock(&curseg->curseg_mutex);
2740
2741 down_read(&curseg->journal_rwsem);
2742 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2743 up_read(&curseg->journal_rwsem);
2744
2745 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2746 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2747
2748 mutex_unlock(&curseg->curseg_mutex);
2749
2750 folio_mark_dirty(folio);
2751 f2fs_folio_put(folio, true);
2752 }
2753
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg)2754 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2755 struct curseg_info *curseg)
2756 {
2757 unsigned int segno = curseg->segno + 1;
2758 struct free_segmap_info *free_i = FREE_I(sbi);
2759
2760 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2761 return !test_bit(segno, free_i->free_segmap);
2762 return 0;
2763 }
2764
2765 /*
2766 * Find a new segment from the free segments bitmap to right order
2767 * This function should be returned with success, otherwise BUG
2768 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,bool pinning)2769 static int get_new_segment(struct f2fs_sb_info *sbi,
2770 unsigned int *newseg, bool new_sec, bool pinning)
2771 {
2772 struct free_segmap_info *free_i = FREE_I(sbi);
2773 unsigned int segno, secno, zoneno;
2774 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2775 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2776 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2777 bool init = true;
2778 int i;
2779 int ret = 0;
2780
2781 spin_lock(&free_i->segmap_lock);
2782
2783 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2784 ret = -ENOSPC;
2785 goto out_unlock;
2786 }
2787
2788 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2789 segno = find_next_zero_bit(free_i->free_segmap,
2790 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2791 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2792 goto got_it;
2793 }
2794
2795 #ifdef CONFIG_BLK_DEV_ZONED
2796 /*
2797 * If we format f2fs on zoned storage, let's try to get pinned sections
2798 * from beginning of the storage, which should be a conventional one.
2799 */
2800 if (f2fs_sb_has_blkzoned(sbi)) {
2801 /* Prioritize writing to conventional zones */
2802 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2803 segno = 0;
2804 else
2805 segno = max(sbi->first_seq_zone_segno, *newseg);
2806 hint = GET_SEC_FROM_SEG(sbi, segno);
2807 }
2808 #endif
2809
2810 find_other_zone:
2811 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2812
2813 #ifdef CONFIG_BLK_DEV_ZONED
2814 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2815 /* Write only to sequential zones */
2816 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2817 hint = GET_SEC_FROM_SEG(sbi, sbi->first_seq_zone_segno);
2818 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2819 } else
2820 secno = find_first_zero_bit(free_i->free_secmap,
2821 MAIN_SECS(sbi));
2822 if (secno >= MAIN_SECS(sbi)) {
2823 ret = -ENOSPC;
2824 f2fs_bug_on(sbi, 1);
2825 goto out_unlock;
2826 }
2827 }
2828 #endif
2829
2830 if (secno >= MAIN_SECS(sbi)) {
2831 secno = find_first_zero_bit(free_i->free_secmap,
2832 MAIN_SECS(sbi));
2833 if (secno >= MAIN_SECS(sbi)) {
2834 ret = -ENOSPC;
2835 f2fs_bug_on(sbi, !pinning);
2836 goto out_unlock;
2837 }
2838 }
2839 segno = GET_SEG_FROM_SEC(sbi, secno);
2840 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2841
2842 /* give up on finding another zone */
2843 if (!init)
2844 goto got_it;
2845 if (sbi->secs_per_zone == 1)
2846 goto got_it;
2847 if (zoneno == old_zoneno)
2848 goto got_it;
2849 for (i = 0; i < NR_CURSEG_TYPE; i++)
2850 if (CURSEG_I(sbi, i)->zone == zoneno)
2851 break;
2852
2853 if (i < NR_CURSEG_TYPE) {
2854 /* zone is in user, try another */
2855 if (zoneno + 1 >= total_zones)
2856 hint = 0;
2857 else
2858 hint = (zoneno + 1) * sbi->secs_per_zone;
2859 init = false;
2860 goto find_other_zone;
2861 }
2862 got_it:
2863 /* set it as dirty segment in free segmap */
2864 if (test_bit(segno, free_i->free_segmap)) {
2865 ret = -EFSCORRUPTED;
2866 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_CORRUPTED_FREE_BITMAP);
2867 goto out_unlock;
2868 }
2869
2870 /* no free section in conventional device or conventional zone */
2871 if (new_sec && pinning &&
2872 f2fs_is_sequential_zone_area(sbi, START_BLOCK(sbi, segno))) {
2873 ret = -EAGAIN;
2874 goto out_unlock;
2875 }
2876 __set_inuse(sbi, segno);
2877 *newseg = segno;
2878 out_unlock:
2879 spin_unlock(&free_i->segmap_lock);
2880
2881 if (ret == -ENOSPC && !pinning)
2882 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2883 return ret;
2884 }
2885
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2886 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2887 {
2888 struct curseg_info *curseg = CURSEG_I(sbi, type);
2889 struct summary_footer *sum_footer;
2890 unsigned short seg_type = curseg->seg_type;
2891
2892 /* only happen when get_new_segment() fails */
2893 if (curseg->next_segno == NULL_SEGNO)
2894 return;
2895
2896 curseg->inited = true;
2897 curseg->segno = curseg->next_segno;
2898 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2899 curseg->next_blkoff = 0;
2900 curseg->next_segno = NULL_SEGNO;
2901
2902 sum_footer = &(curseg->sum_blk->footer);
2903 memset(sum_footer, 0, sizeof(struct summary_footer));
2904
2905 sanity_check_seg_type(sbi, seg_type);
2906
2907 if (IS_DATASEG(seg_type))
2908 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2909 if (IS_NODESEG(seg_type))
2910 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2911 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2912 }
2913
__get_next_segno(struct f2fs_sb_info * sbi,int type)2914 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2915 {
2916 struct curseg_info *curseg = CURSEG_I(sbi, type);
2917 unsigned short seg_type = curseg->seg_type;
2918
2919 sanity_check_seg_type(sbi, seg_type);
2920 if (__is_large_section(sbi)) {
2921 if (f2fs_need_rand_seg(sbi)) {
2922 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2923
2924 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2925 return curseg->segno;
2926 return get_random_u32_inclusive(curseg->segno + 1,
2927 GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2928 }
2929 return curseg->segno;
2930 } else if (f2fs_need_rand_seg(sbi)) {
2931 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2932 }
2933
2934 /* inmem log may not locate on any segment after mount */
2935 if (!curseg->inited)
2936 return 0;
2937
2938 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2939 return 0;
2940
2941 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2942 return 0;
2943
2944 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2945 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2946
2947 /* find segments from 0 to reuse freed segments */
2948 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2949 return 0;
2950
2951 return curseg->segno;
2952 }
2953
reset_curseg_fields(struct curseg_info * curseg)2954 static void reset_curseg_fields(struct curseg_info *curseg)
2955 {
2956 curseg->inited = false;
2957 curseg->segno = NULL_SEGNO;
2958 curseg->next_segno = 0;
2959 }
2960
2961 /*
2962 * Allocate a current working segment.
2963 * This function always allocates a free segment in LFS manner.
2964 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2965 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2966 {
2967 struct curseg_info *curseg = CURSEG_I(sbi, type);
2968 unsigned int segno = curseg->segno;
2969 bool pinning = type == CURSEG_COLD_DATA_PINNED;
2970 int ret;
2971
2972 if (curseg->inited)
2973 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2974
2975 segno = __get_next_segno(sbi, type);
2976 ret = get_new_segment(sbi, &segno, new_sec, pinning);
2977 if (ret) {
2978 if (ret == -ENOSPC)
2979 reset_curseg_fields(curseg);
2980 return ret;
2981 }
2982
2983 curseg->next_segno = segno;
2984 reset_curseg(sbi, type, 1);
2985 curseg->alloc_type = LFS;
2986 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2987 curseg->fragment_remained_chunk =
2988 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2989 return 0;
2990 }
2991
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2992 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2993 int segno, block_t start)
2994 {
2995 struct seg_entry *se = get_seg_entry(sbi, segno);
2996 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2997 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2998 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2999 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
3000 int i;
3001
3002 for (i = 0; i < entries; i++)
3003 target_map[i] = ckpt_map[i] | cur_map[i];
3004
3005 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
3006 }
3007
f2fs_find_next_ssr_block(struct f2fs_sb_info * sbi,struct curseg_info * seg)3008 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
3009 struct curseg_info *seg)
3010 {
3011 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
3012 }
3013
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)3014 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
3015 {
3016 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
3017 }
3018
3019 /*
3020 * This function always allocates a used segment(from dirty seglist) by SSR
3021 * manner, so it should recover the existing segment information of valid blocks
3022 */
change_curseg(struct f2fs_sb_info * sbi,int type)3023 static int change_curseg(struct f2fs_sb_info *sbi, int type)
3024 {
3025 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3026 struct curseg_info *curseg = CURSEG_I(sbi, type);
3027 unsigned int new_segno = curseg->next_segno;
3028 struct f2fs_summary_block *sum_node;
3029 struct folio *sum_folio;
3030
3031 if (curseg->inited)
3032 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
3033
3034 __set_test_and_inuse(sbi, new_segno);
3035
3036 mutex_lock(&dirty_i->seglist_lock);
3037 __remove_dirty_segment(sbi, new_segno, PRE);
3038 __remove_dirty_segment(sbi, new_segno, DIRTY);
3039 mutex_unlock(&dirty_i->seglist_lock);
3040
3041 reset_curseg(sbi, type, 1);
3042 curseg->alloc_type = SSR;
3043 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
3044
3045 sum_folio = f2fs_get_sum_folio(sbi, new_segno);
3046 if (IS_ERR(sum_folio)) {
3047 /* GC won't be able to use stale summary pages by cp_error */
3048 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
3049 return PTR_ERR(sum_folio);
3050 }
3051 sum_node = folio_address(sum_folio);
3052 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
3053 f2fs_folio_put(sum_folio, true);
3054 return 0;
3055 }
3056
3057 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3058 int alloc_mode, unsigned long long age);
3059
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)3060 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
3061 int target_type, int alloc_mode,
3062 unsigned long long age)
3063 {
3064 struct curseg_info *curseg = CURSEG_I(sbi, type);
3065 int ret = 0;
3066
3067 curseg->seg_type = target_type;
3068
3069 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
3070 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
3071
3072 curseg->seg_type = se->type;
3073 ret = change_curseg(sbi, type);
3074 } else {
3075 /* allocate cold segment by default */
3076 curseg->seg_type = CURSEG_COLD_DATA;
3077 ret = new_curseg(sbi, type, true);
3078 }
3079 stat_inc_seg_type(sbi, curseg);
3080 return ret;
3081 }
3082
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi,bool force)3083 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
3084 {
3085 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
3086 int ret = 0;
3087
3088 if (!sbi->am.atgc_enabled && !force)
3089 return 0;
3090
3091 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3092
3093 mutex_lock(&curseg->curseg_mutex);
3094 down_write(&SIT_I(sbi)->sentry_lock);
3095
3096 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
3097 CURSEG_COLD_DATA, SSR, 0);
3098
3099 up_write(&SIT_I(sbi)->sentry_lock);
3100 mutex_unlock(&curseg->curseg_mutex);
3101
3102 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3103 return ret;
3104 }
3105
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)3106 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3107 {
3108 return __f2fs_init_atgc_curseg(sbi, false);
3109 }
3110
f2fs_reinit_atgc_curseg(struct f2fs_sb_info * sbi)3111 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3112 {
3113 int ret;
3114
3115 if (!test_opt(sbi, ATGC))
3116 return 0;
3117 if (sbi->am.atgc_enabled)
3118 return 0;
3119 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3120 sbi->am.age_threshold)
3121 return 0;
3122
3123 ret = __f2fs_init_atgc_curseg(sbi, true);
3124 if (!ret) {
3125 sbi->am.atgc_enabled = true;
3126 f2fs_info(sbi, "reenabled age threshold GC");
3127 }
3128 return ret;
3129 }
3130
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)3131 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3132 {
3133 struct curseg_info *curseg = CURSEG_I(sbi, type);
3134
3135 mutex_lock(&curseg->curseg_mutex);
3136 if (!curseg->inited)
3137 goto out;
3138
3139 if (get_valid_blocks(sbi, curseg->segno, false)) {
3140 write_sum_page(sbi, curseg->sum_blk,
3141 GET_SUM_BLOCK(sbi, curseg->segno));
3142 } else {
3143 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3144 __set_test_and_free(sbi, curseg->segno, true);
3145 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3146 }
3147 out:
3148 mutex_unlock(&curseg->curseg_mutex);
3149 }
3150
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)3151 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3152 {
3153 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3154
3155 if (sbi->am.atgc_enabled)
3156 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3157 }
3158
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)3159 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3160 {
3161 struct curseg_info *curseg = CURSEG_I(sbi, type);
3162
3163 mutex_lock(&curseg->curseg_mutex);
3164 if (!curseg->inited)
3165 goto out;
3166 if (get_valid_blocks(sbi, curseg->segno, false))
3167 goto out;
3168
3169 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3170 __set_test_and_inuse(sbi, curseg->segno);
3171 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3172 out:
3173 mutex_unlock(&curseg->curseg_mutex);
3174 }
3175
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)3176 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3177 {
3178 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3179
3180 if (sbi->am.atgc_enabled)
3181 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3182 }
3183
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)3184 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3185 int alloc_mode, unsigned long long age)
3186 {
3187 struct curseg_info *curseg = CURSEG_I(sbi, type);
3188 unsigned segno = NULL_SEGNO;
3189 unsigned short seg_type = curseg->seg_type;
3190 int i, cnt;
3191 bool reversed = false;
3192
3193 sanity_check_seg_type(sbi, seg_type);
3194
3195 /* f2fs_need_SSR() already forces to do this */
3196 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3197 alloc_mode, age, false)) {
3198 curseg->next_segno = segno;
3199 return 1;
3200 }
3201
3202 /* For node segments, let's do SSR more intensively */
3203 if (IS_NODESEG(seg_type)) {
3204 if (seg_type >= CURSEG_WARM_NODE) {
3205 reversed = true;
3206 i = CURSEG_COLD_NODE;
3207 } else {
3208 i = CURSEG_HOT_NODE;
3209 }
3210 cnt = NR_CURSEG_NODE_TYPE;
3211 } else {
3212 if (seg_type >= CURSEG_WARM_DATA) {
3213 reversed = true;
3214 i = CURSEG_COLD_DATA;
3215 } else {
3216 i = CURSEG_HOT_DATA;
3217 }
3218 cnt = NR_CURSEG_DATA_TYPE;
3219 }
3220
3221 for (; cnt-- > 0; reversed ? i-- : i++) {
3222 if (i == seg_type)
3223 continue;
3224 if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3225 alloc_mode, age, false)) {
3226 curseg->next_segno = segno;
3227 return 1;
3228 }
3229 }
3230
3231 /* find valid_blocks=0 in dirty list */
3232 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3233 segno = get_free_segment(sbi);
3234 if (segno != NULL_SEGNO) {
3235 curseg->next_segno = segno;
3236 return 1;
3237 }
3238 }
3239 return 0;
3240 }
3241
need_new_seg(struct f2fs_sb_info * sbi,int type)3242 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3243 {
3244 struct curseg_info *curseg = CURSEG_I(sbi, type);
3245
3246 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3247 curseg->seg_type == CURSEG_WARM_NODE)
3248 return true;
3249 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3250 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3251 return true;
3252 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3253 return true;
3254 return false;
3255 }
3256
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3257 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3258 unsigned int start, unsigned int end)
3259 {
3260 struct curseg_info *curseg = CURSEG_I(sbi, type);
3261 unsigned int segno;
3262 int ret = 0;
3263
3264 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3265 mutex_lock(&curseg->curseg_mutex);
3266 down_write(&SIT_I(sbi)->sentry_lock);
3267
3268 segno = CURSEG_I(sbi, type)->segno;
3269 if (segno < start || segno > end)
3270 goto unlock;
3271
3272 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3273 ret = change_curseg(sbi, type);
3274 else
3275 ret = new_curseg(sbi, type, true);
3276
3277 stat_inc_seg_type(sbi, curseg);
3278
3279 locate_dirty_segment(sbi, segno);
3280 unlock:
3281 up_write(&SIT_I(sbi)->sentry_lock);
3282
3283 if (segno != curseg->segno)
3284 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3285 type, segno, curseg->segno);
3286
3287 mutex_unlock(&curseg->curseg_mutex);
3288 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3289 return ret;
3290 }
3291
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)3292 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3293 bool new_sec, bool force)
3294 {
3295 struct curseg_info *curseg = CURSEG_I(sbi, type);
3296 unsigned int old_segno;
3297 int err = 0;
3298
3299 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3300 goto allocate;
3301
3302 if (!force && curseg->inited &&
3303 !curseg->next_blkoff &&
3304 !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3305 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3306 return 0;
3307
3308 allocate:
3309 old_segno = curseg->segno;
3310 err = new_curseg(sbi, type, true);
3311 if (err)
3312 return err;
3313 stat_inc_seg_type(sbi, curseg);
3314 locate_dirty_segment(sbi, old_segno);
3315 return 0;
3316 }
3317
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3318 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3319 {
3320 int ret;
3321
3322 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3323 down_write(&SIT_I(sbi)->sentry_lock);
3324 ret = __allocate_new_segment(sbi, type, true, force);
3325 up_write(&SIT_I(sbi)->sentry_lock);
3326 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3327
3328 return ret;
3329 }
3330
f2fs_allocate_pinning_section(struct f2fs_sb_info * sbi)3331 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3332 {
3333 int err;
3334 bool gc_required = true;
3335
3336 retry:
3337 f2fs_lock_op(sbi);
3338 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3339 f2fs_unlock_op(sbi);
3340
3341 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3342 f2fs_down_write(&sbi->gc_lock);
3343 err = f2fs_gc_range(sbi, 0, sbi->first_seq_zone_segno - 1,
3344 true, ZONED_PIN_SEC_REQUIRED_COUNT);
3345 f2fs_up_write(&sbi->gc_lock);
3346
3347 gc_required = false;
3348 if (!err)
3349 goto retry;
3350 }
3351
3352 return err;
3353 }
3354
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3355 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3356 {
3357 int i;
3358 int err = 0;
3359
3360 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3361 down_write(&SIT_I(sbi)->sentry_lock);
3362 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3363 err += __allocate_new_segment(sbi, i, false, false);
3364 up_write(&SIT_I(sbi)->sentry_lock);
3365 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3366
3367 return err;
3368 }
3369
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3370 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3371 struct cp_control *cpc)
3372 {
3373 __u64 trim_start = cpc->trim_start;
3374 bool has_candidate = false;
3375
3376 down_write(&SIT_I(sbi)->sentry_lock);
3377 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3378 if (add_discard_addrs(sbi, cpc, true)) {
3379 has_candidate = true;
3380 break;
3381 }
3382 }
3383 up_write(&SIT_I(sbi)->sentry_lock);
3384
3385 cpc->trim_start = trim_start;
3386 return has_candidate;
3387 }
3388
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3389 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3390 struct discard_policy *dpolicy,
3391 unsigned int start, unsigned int end)
3392 {
3393 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3394 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3395 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3396 struct discard_cmd *dc;
3397 struct blk_plug plug;
3398 int issued;
3399 unsigned int trimmed = 0;
3400
3401 next:
3402 issued = 0;
3403
3404 mutex_lock(&dcc->cmd_lock);
3405 if (unlikely(dcc->rbtree_check))
3406 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3407
3408 dc = __lookup_discard_cmd_ret(&dcc->root, start,
3409 &prev_dc, &next_dc, &insert_p, &insert_parent);
3410 if (!dc)
3411 dc = next_dc;
3412
3413 blk_start_plug(&plug);
3414
3415 while (dc && dc->di.lstart <= end) {
3416 struct rb_node *node;
3417 int err = 0;
3418
3419 if (dc->di.len < dpolicy->granularity)
3420 goto skip;
3421
3422 if (dc->state != D_PREP) {
3423 list_move_tail(&dc->list, &dcc->fstrim_list);
3424 goto skip;
3425 }
3426
3427 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3428
3429 if (issued >= dpolicy->max_requests) {
3430 start = dc->di.lstart + dc->di.len;
3431
3432 if (err)
3433 __remove_discard_cmd(sbi, dc);
3434
3435 blk_finish_plug(&plug);
3436 mutex_unlock(&dcc->cmd_lock);
3437 trimmed += __wait_all_discard_cmd(sbi, NULL);
3438 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3439 goto next;
3440 }
3441 skip:
3442 node = rb_next(&dc->rb_node);
3443 if (err)
3444 __remove_discard_cmd(sbi, dc);
3445 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3446
3447 if (fatal_signal_pending(current))
3448 break;
3449 }
3450
3451 blk_finish_plug(&plug);
3452 mutex_unlock(&dcc->cmd_lock);
3453
3454 return trimmed;
3455 }
3456
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3457 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3458 {
3459 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3460 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3461 unsigned int start_segno, end_segno;
3462 block_t start_block, end_block;
3463 struct cp_control cpc;
3464 struct discard_policy dpolicy;
3465 unsigned long long trimmed = 0;
3466 int err = 0;
3467 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3468
3469 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3470 return -EINVAL;
3471
3472 if (end < MAIN_BLKADDR(sbi))
3473 goto out;
3474
3475 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3476 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3477 return -EFSCORRUPTED;
3478 }
3479
3480 /* start/end segment number in main_area */
3481 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3482 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3483 GET_SEGNO(sbi, end);
3484 if (need_align) {
3485 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3486 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3487 }
3488
3489 cpc.reason = CP_DISCARD;
3490 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3491 cpc.trim_start = start_segno;
3492 cpc.trim_end = end_segno;
3493
3494 if (sbi->discard_blks == 0)
3495 goto out;
3496
3497 f2fs_down_write(&sbi->gc_lock);
3498 stat_inc_cp_call_count(sbi, TOTAL_CALL);
3499 err = f2fs_write_checkpoint(sbi, &cpc);
3500 f2fs_up_write(&sbi->gc_lock);
3501 if (err)
3502 goto out;
3503
3504 /*
3505 * We filed discard candidates, but actually we don't need to wait for
3506 * all of them, since they'll be issued in idle time along with runtime
3507 * discard option. User configuration looks like using runtime discard
3508 * or periodic fstrim instead of it.
3509 */
3510 if (f2fs_realtime_discard_enable(sbi))
3511 goto out;
3512
3513 start_block = START_BLOCK(sbi, start_segno);
3514 end_block = START_BLOCK(sbi, end_segno + 1);
3515
3516 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3517 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3518 start_block, end_block);
3519
3520 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3521 start_block, end_block);
3522 out:
3523 if (!err)
3524 range->len = F2FS_BLK_TO_BYTES(trimmed);
3525 return err;
3526 }
3527
f2fs_rw_hint_to_seg_type(struct f2fs_sb_info * sbi,enum rw_hint hint)3528 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3529 {
3530 if (F2FS_OPTION(sbi).active_logs == 2)
3531 return CURSEG_HOT_DATA;
3532 else if (F2FS_OPTION(sbi).active_logs == 4)
3533 return CURSEG_COLD_DATA;
3534
3535 /* active_log == 6 */
3536 switch (hint) {
3537 case WRITE_LIFE_SHORT:
3538 return CURSEG_HOT_DATA;
3539 case WRITE_LIFE_EXTREME:
3540 return CURSEG_COLD_DATA;
3541 default:
3542 return CURSEG_WARM_DATA;
3543 }
3544 }
3545
3546 /*
3547 * This returns write hints for each segment type. This hints will be
3548 * passed down to block layer as below by default.
3549 *
3550 * User F2FS Block
3551 * ---- ---- -----
3552 * META WRITE_LIFE_NONE|REQ_META
3553 * HOT_NODE WRITE_LIFE_NONE
3554 * WARM_NODE WRITE_LIFE_MEDIUM
3555 * COLD_NODE WRITE_LIFE_LONG
3556 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3557 * extension list " "
3558 *
3559 * -- buffered io
3560 * COLD_DATA WRITE_LIFE_EXTREME
3561 * HOT_DATA WRITE_LIFE_SHORT
3562 * WARM_DATA WRITE_LIFE_NOT_SET
3563 *
3564 * -- direct io
3565 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3566 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3567 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3568 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3569 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3570 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3571 */
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3572 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3573 enum page_type type, enum temp_type temp)
3574 {
3575 switch (type) {
3576 case DATA:
3577 switch (temp) {
3578 case WARM:
3579 return WRITE_LIFE_NOT_SET;
3580 case HOT:
3581 return WRITE_LIFE_SHORT;
3582 case COLD:
3583 return WRITE_LIFE_EXTREME;
3584 default:
3585 return WRITE_LIFE_NONE;
3586 }
3587 case NODE:
3588 switch (temp) {
3589 case WARM:
3590 return WRITE_LIFE_MEDIUM;
3591 case HOT:
3592 return WRITE_LIFE_NONE;
3593 case COLD:
3594 return WRITE_LIFE_LONG;
3595 default:
3596 return WRITE_LIFE_NONE;
3597 }
3598 case META:
3599 return WRITE_LIFE_NONE;
3600 default:
3601 return WRITE_LIFE_NONE;
3602 }
3603 }
3604
__get_segment_type_2(struct f2fs_io_info * fio)3605 static int __get_segment_type_2(struct f2fs_io_info *fio)
3606 {
3607 if (fio->type == DATA)
3608 return CURSEG_HOT_DATA;
3609 else
3610 return CURSEG_HOT_NODE;
3611 }
3612
__get_segment_type_4(struct f2fs_io_info * fio)3613 static int __get_segment_type_4(struct f2fs_io_info *fio)
3614 {
3615 if (fio->type == DATA) {
3616 struct inode *inode = fio_inode(fio);
3617
3618 if (S_ISDIR(inode->i_mode))
3619 return CURSEG_HOT_DATA;
3620 else
3621 return CURSEG_COLD_DATA;
3622 } else {
3623 if (IS_DNODE(fio->folio) && is_cold_node(fio->folio))
3624 return CURSEG_WARM_NODE;
3625 else
3626 return CURSEG_COLD_NODE;
3627 }
3628 }
3629
__get_age_segment_type(struct inode * inode,pgoff_t pgofs)3630 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3631 {
3632 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3633 struct extent_info ei = {};
3634
3635 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3636 if (!ei.age)
3637 return NO_CHECK_TYPE;
3638 if (ei.age <= sbi->hot_data_age_threshold)
3639 return CURSEG_HOT_DATA;
3640 if (ei.age <= sbi->warm_data_age_threshold)
3641 return CURSEG_WARM_DATA;
3642 return CURSEG_COLD_DATA;
3643 }
3644 return NO_CHECK_TYPE;
3645 }
3646
__get_segment_type_6(struct f2fs_io_info * fio)3647 static int __get_segment_type_6(struct f2fs_io_info *fio)
3648 {
3649 if (fio->type == DATA) {
3650 struct inode *inode = fio_inode(fio);
3651 int type;
3652
3653 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3654 return CURSEG_COLD_DATA_PINNED;
3655
3656 if (page_private_gcing(fio->page)) {
3657 if (fio->sbi->am.atgc_enabled &&
3658 (fio->io_type == FS_DATA_IO) &&
3659 (fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3660 __is_valid_data_blkaddr(fio->old_blkaddr) &&
3661 !is_inode_flag_set(inode, FI_OPU_WRITE))
3662 return CURSEG_ALL_DATA_ATGC;
3663 else
3664 return CURSEG_COLD_DATA;
3665 }
3666 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3667 return CURSEG_COLD_DATA;
3668
3669 type = __get_age_segment_type(inode, fio->folio->index);
3670 if (type != NO_CHECK_TYPE)
3671 return type;
3672
3673 if (file_is_hot(inode) ||
3674 is_inode_flag_set(inode, FI_HOT_DATA) ||
3675 f2fs_is_cow_file(inode))
3676 return CURSEG_HOT_DATA;
3677 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3678 inode->i_write_hint);
3679 } else {
3680 if (IS_DNODE(fio->folio))
3681 return is_cold_node(fio->folio) ? CURSEG_WARM_NODE :
3682 CURSEG_HOT_NODE;
3683 return CURSEG_COLD_NODE;
3684 }
3685 }
3686
f2fs_get_segment_temp(struct f2fs_sb_info * sbi,enum log_type type)3687 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3688 enum log_type type)
3689 {
3690 struct curseg_info *curseg = CURSEG_I(sbi, type);
3691 enum temp_type temp = COLD;
3692
3693 switch (curseg->seg_type) {
3694 case CURSEG_HOT_NODE:
3695 case CURSEG_HOT_DATA:
3696 temp = HOT;
3697 break;
3698 case CURSEG_WARM_NODE:
3699 case CURSEG_WARM_DATA:
3700 temp = WARM;
3701 break;
3702 case CURSEG_COLD_NODE:
3703 case CURSEG_COLD_DATA:
3704 temp = COLD;
3705 break;
3706 default:
3707 f2fs_bug_on(sbi, 1);
3708 }
3709
3710 return temp;
3711 }
3712
__get_segment_type(struct f2fs_io_info * fio)3713 static int __get_segment_type(struct f2fs_io_info *fio)
3714 {
3715 enum log_type type = CURSEG_HOT_DATA;
3716
3717 switch (F2FS_OPTION(fio->sbi).active_logs) {
3718 case 2:
3719 type = __get_segment_type_2(fio);
3720 break;
3721 case 4:
3722 type = __get_segment_type_4(fio);
3723 break;
3724 case 6:
3725 type = __get_segment_type_6(fio);
3726 break;
3727 default:
3728 f2fs_bug_on(fio->sbi, true);
3729 }
3730
3731 fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3732
3733 return type;
3734 }
3735
f2fs_randomize_chunk(struct f2fs_sb_info * sbi,struct curseg_info * seg)3736 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3737 struct curseg_info *seg)
3738 {
3739 /* To allocate block chunks in different sizes, use random number */
3740 if (--seg->fragment_remained_chunk > 0)
3741 return;
3742
3743 seg->fragment_remained_chunk =
3744 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3745 seg->next_blkoff +=
3746 get_random_u32_inclusive(1, sbi->max_fragment_hole);
3747 }
3748
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct folio * folio,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3749 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct folio *folio,
3750 block_t old_blkaddr, block_t *new_blkaddr,
3751 struct f2fs_summary *sum, int type,
3752 struct f2fs_io_info *fio)
3753 {
3754 struct sit_info *sit_i = SIT_I(sbi);
3755 struct curseg_info *curseg = CURSEG_I(sbi, type);
3756 unsigned long long old_mtime;
3757 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3758 struct seg_entry *se = NULL;
3759 bool segment_full = false;
3760 int ret = 0;
3761
3762 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3763
3764 mutex_lock(&curseg->curseg_mutex);
3765 down_write(&sit_i->sentry_lock);
3766
3767 if (curseg->segno == NULL_SEGNO) {
3768 ret = -ENOSPC;
3769 goto out_err;
3770 }
3771
3772 if (from_gc) {
3773 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3774 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3775 sanity_check_seg_type(sbi, se->type);
3776 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3777 }
3778 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3779
3780 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3781
3782 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3783
3784 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3785 if (curseg->alloc_type == SSR) {
3786 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3787 } else {
3788 curseg->next_blkoff++;
3789 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3790 f2fs_randomize_chunk(sbi, curseg);
3791 }
3792 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3793 segment_full = true;
3794 stat_inc_block_count(sbi, curseg);
3795
3796 if (from_gc) {
3797 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3798 } else {
3799 update_segment_mtime(sbi, old_blkaddr, 0);
3800 old_mtime = 0;
3801 }
3802 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3803
3804 /*
3805 * SIT information should be updated before segment allocation,
3806 * since SSR needs latest valid block information.
3807 */
3808 update_sit_entry(sbi, *new_blkaddr, 1);
3809 update_sit_entry(sbi, old_blkaddr, -1);
3810
3811 /*
3812 * If the current segment is full, flush it out and replace it with a
3813 * new segment.
3814 */
3815 if (segment_full) {
3816 if (type == CURSEG_COLD_DATA_PINNED &&
3817 !((curseg->segno + 1) % sbi->segs_per_sec)) {
3818 write_sum_page(sbi, curseg->sum_blk,
3819 GET_SUM_BLOCK(sbi, curseg->segno));
3820 reset_curseg_fields(curseg);
3821 goto skip_new_segment;
3822 }
3823
3824 if (from_gc) {
3825 ret = get_atssr_segment(sbi, type, se->type,
3826 AT_SSR, se->mtime);
3827 } else {
3828 if (need_new_seg(sbi, type))
3829 ret = new_curseg(sbi, type, false);
3830 else
3831 ret = change_curseg(sbi, type);
3832 stat_inc_seg_type(sbi, curseg);
3833 }
3834
3835 if (ret)
3836 goto out_err;
3837 }
3838
3839 skip_new_segment:
3840 /*
3841 * segment dirty status should be updated after segment allocation,
3842 * so we just need to update status only one time after previous
3843 * segment being closed.
3844 */
3845 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3846 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3847
3848 if (IS_DATASEG(curseg->seg_type))
3849 atomic64_inc(&sbi->allocated_data_blocks);
3850
3851 up_write(&sit_i->sentry_lock);
3852
3853 if (folio && IS_NODESEG(curseg->seg_type)) {
3854 fill_node_footer_blkaddr(folio, NEXT_FREE_BLKADDR(sbi, curseg));
3855
3856 f2fs_inode_chksum_set(sbi, folio);
3857 }
3858
3859 if (fio) {
3860 struct f2fs_bio_info *io;
3861
3862 INIT_LIST_HEAD(&fio->list);
3863 fio->in_list = 1;
3864 io = sbi->write_io[fio->type] + fio->temp;
3865 spin_lock(&io->io_lock);
3866 list_add_tail(&fio->list, &io->io_list);
3867 spin_unlock(&io->io_lock);
3868 }
3869
3870 mutex_unlock(&curseg->curseg_mutex);
3871 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3872 return 0;
3873
3874 out_err:
3875 *new_blkaddr = NULL_ADDR;
3876 up_write(&sit_i->sentry_lock);
3877 mutex_unlock(&curseg->curseg_mutex);
3878 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3879 return ret;
3880 }
3881
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3882 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3883 block_t blkaddr, unsigned int blkcnt)
3884 {
3885 if (!f2fs_is_multi_device(sbi))
3886 return;
3887
3888 while (1) {
3889 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3890 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3891
3892 /* update device state for fsync */
3893 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3894
3895 /* update device state for checkpoint */
3896 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3897 spin_lock(&sbi->dev_lock);
3898 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3899 spin_unlock(&sbi->dev_lock);
3900 }
3901
3902 if (blkcnt <= blks)
3903 break;
3904 blkcnt -= blks;
3905 blkaddr += blks;
3906 }
3907 }
3908
log_type_to_seg_type(enum log_type type)3909 static int log_type_to_seg_type(enum log_type type)
3910 {
3911 int seg_type = CURSEG_COLD_DATA;
3912
3913 switch (type) {
3914 case CURSEG_HOT_DATA:
3915 case CURSEG_WARM_DATA:
3916 case CURSEG_COLD_DATA:
3917 case CURSEG_HOT_NODE:
3918 case CURSEG_WARM_NODE:
3919 case CURSEG_COLD_NODE:
3920 seg_type = (int)type;
3921 break;
3922 case CURSEG_COLD_DATA_PINNED:
3923 case CURSEG_ALL_DATA_ATGC:
3924 seg_type = CURSEG_COLD_DATA;
3925 break;
3926 default:
3927 break;
3928 }
3929 return seg_type;
3930 }
3931
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3932 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3933 {
3934 struct folio *folio = fio->folio;
3935 enum log_type type = __get_segment_type(fio);
3936 int seg_type = log_type_to_seg_type(type);
3937 bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3938 seg_type == CURSEG_COLD_DATA);
3939
3940 if (keep_order)
3941 f2fs_down_read(&fio->sbi->io_order_lock);
3942
3943 if (f2fs_allocate_data_block(fio->sbi, folio, fio->old_blkaddr,
3944 &fio->new_blkaddr, sum, type, fio)) {
3945 if (fscrypt_inode_uses_fs_layer_crypto(folio->mapping->host))
3946 fscrypt_finalize_bounce_page(&fio->encrypted_page);
3947 folio_end_writeback(folio);
3948 if (f2fs_in_warm_node_list(fio->sbi, folio))
3949 f2fs_del_fsync_node_entry(fio->sbi, folio);
3950 f2fs_bug_on(fio->sbi, !is_set_ckpt_flags(fio->sbi,
3951 CP_ERROR_FLAG));
3952 goto out;
3953 }
3954
3955 f2fs_bug_on(fio->sbi, !f2fs_is_valid_blkaddr_raw(fio->sbi,
3956 fio->new_blkaddr, DATA_GENERIC_ENHANCE));
3957
3958 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3959 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1);
3960
3961 /* writeout dirty page into bdev */
3962 f2fs_submit_page_write(fio);
3963
3964 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3965 out:
3966 if (keep_order)
3967 f2fs_up_read(&fio->sbi->io_order_lock);
3968 }
3969
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct folio * folio,enum iostat_type io_type)3970 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3971 enum iostat_type io_type)
3972 {
3973 struct f2fs_io_info fio = {
3974 .sbi = sbi,
3975 .type = META,
3976 .temp = HOT,
3977 .op = REQ_OP_WRITE,
3978 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3979 .old_blkaddr = folio->index,
3980 .new_blkaddr = folio->index,
3981 .folio = folio,
3982 .encrypted_page = NULL,
3983 .in_list = 0,
3984 };
3985
3986 if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3987 fio.op_flags &= ~REQ_META;
3988
3989 folio_start_writeback(folio);
3990 f2fs_submit_page_write(&fio);
3991
3992 stat_inc_meta_count(sbi, folio->index);
3993 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3994 }
3995
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3996 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3997 {
3998 struct f2fs_summary sum;
3999
4000 set_summary(&sum, nid, 0, 0);
4001 do_write_page(&sum, fio);
4002
4003 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
4004 }
4005
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)4006 void f2fs_outplace_write_data(struct dnode_of_data *dn,
4007 struct f2fs_io_info *fio)
4008 {
4009 struct f2fs_sb_info *sbi = fio->sbi;
4010 struct f2fs_summary sum;
4011
4012 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
4013 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
4014 f2fs_update_age_extent_cache(dn);
4015 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
4016 do_write_page(&sum, fio);
4017 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
4018
4019 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
4020 }
4021
f2fs_inplace_write_data(struct f2fs_io_info * fio)4022 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
4023 {
4024 int err;
4025 struct f2fs_sb_info *sbi = fio->sbi;
4026 unsigned int segno;
4027
4028 fio->new_blkaddr = fio->old_blkaddr;
4029 /* i/o temperature is needed for passing down write hints */
4030 __get_segment_type(fio);
4031
4032 segno = GET_SEGNO(sbi, fio->new_blkaddr);
4033
4034 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
4035 set_sbi_flag(sbi, SBI_NEED_FSCK);
4036 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
4037 __func__, segno);
4038 err = -EFSCORRUPTED;
4039 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4040 goto drop_bio;
4041 }
4042
4043 if (f2fs_cp_error(sbi)) {
4044 err = -EIO;
4045 goto drop_bio;
4046 }
4047
4048 if (fio->meta_gc)
4049 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
4050
4051 stat_inc_inplace_blocks(fio->sbi);
4052
4053 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
4054 err = f2fs_merge_page_bio(fio);
4055 else
4056 err = f2fs_submit_page_bio(fio);
4057 if (!err) {
4058 f2fs_update_device_state(fio->sbi, fio->ino,
4059 fio->new_blkaddr, 1);
4060 f2fs_update_iostat(fio->sbi, fio_inode(fio),
4061 fio->io_type, F2FS_BLKSIZE);
4062 }
4063
4064 return err;
4065 drop_bio:
4066 if (fio->bio && *(fio->bio)) {
4067 struct bio *bio = *(fio->bio);
4068
4069 bio->bi_status = BLK_STS_IOERR;
4070 bio_endio(bio);
4071 *(fio->bio) = NULL;
4072 }
4073 return err;
4074 }
4075
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)4076 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
4077 unsigned int segno)
4078 {
4079 int i;
4080
4081 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
4082 if (CURSEG_I(sbi, i)->segno == segno)
4083 break;
4084 }
4085 return i;
4086 }
4087
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)4088 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
4089 block_t old_blkaddr, block_t new_blkaddr,
4090 bool recover_curseg, bool recover_newaddr,
4091 bool from_gc)
4092 {
4093 struct sit_info *sit_i = SIT_I(sbi);
4094 struct curseg_info *curseg;
4095 unsigned int segno, old_cursegno;
4096 struct seg_entry *se;
4097 int type;
4098 unsigned short old_blkoff;
4099 unsigned char old_alloc_type;
4100
4101 segno = GET_SEGNO(sbi, new_blkaddr);
4102 se = get_seg_entry(sbi, segno);
4103 type = se->type;
4104
4105 f2fs_down_write(&SM_I(sbi)->curseg_lock);
4106
4107 if (!recover_curseg) {
4108 /* for recovery flow */
4109 if (se->valid_blocks == 0 && !is_curseg(sbi, segno)) {
4110 if (old_blkaddr == NULL_ADDR)
4111 type = CURSEG_COLD_DATA;
4112 else
4113 type = CURSEG_WARM_DATA;
4114 }
4115 } else {
4116 if (is_curseg(sbi, segno)) {
4117 /* se->type is volatile as SSR allocation */
4118 type = __f2fs_get_curseg(sbi, segno);
4119 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4120 } else {
4121 type = CURSEG_WARM_DATA;
4122 }
4123 }
4124
4125 curseg = CURSEG_I(sbi, type);
4126 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4127
4128 mutex_lock(&curseg->curseg_mutex);
4129 down_write(&sit_i->sentry_lock);
4130
4131 old_cursegno = curseg->segno;
4132 old_blkoff = curseg->next_blkoff;
4133 old_alloc_type = curseg->alloc_type;
4134
4135 /* change the current segment */
4136 if (segno != curseg->segno) {
4137 curseg->next_segno = segno;
4138 if (change_curseg(sbi, type))
4139 goto out_unlock;
4140 }
4141
4142 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4143 curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4144
4145 if (!recover_curseg || recover_newaddr) {
4146 if (!from_gc)
4147 update_segment_mtime(sbi, new_blkaddr, 0);
4148 update_sit_entry(sbi, new_blkaddr, 1);
4149 }
4150 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4151 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1);
4152 if (!from_gc)
4153 update_segment_mtime(sbi, old_blkaddr, 0);
4154 update_sit_entry(sbi, old_blkaddr, -1);
4155 }
4156
4157 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4158 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4159
4160 locate_dirty_segment(sbi, old_cursegno);
4161
4162 if (recover_curseg) {
4163 if (old_cursegno != curseg->segno) {
4164 curseg->next_segno = old_cursegno;
4165 if (change_curseg(sbi, type))
4166 goto out_unlock;
4167 }
4168 curseg->next_blkoff = old_blkoff;
4169 curseg->alloc_type = old_alloc_type;
4170 }
4171
4172 out_unlock:
4173 up_write(&sit_i->sentry_lock);
4174 mutex_unlock(&curseg->curseg_mutex);
4175 f2fs_up_write(&SM_I(sbi)->curseg_lock);
4176 }
4177
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)4178 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4179 block_t old_addr, block_t new_addr,
4180 unsigned char version, bool recover_curseg,
4181 bool recover_newaddr)
4182 {
4183 struct f2fs_summary sum;
4184
4185 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4186
4187 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4188 recover_curseg, recover_newaddr, false);
4189
4190 f2fs_update_data_blkaddr(dn, new_addr);
4191 }
4192
f2fs_folio_wait_writeback(struct folio * folio,enum page_type type,bool ordered,bool locked)4193 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
4194 bool ordered, bool locked)
4195 {
4196 if (folio_test_writeback(folio)) {
4197 struct f2fs_sb_info *sbi = F2FS_F_SB(folio);
4198
4199 /* submit cached LFS IO */
4200 f2fs_submit_merged_write_cond(sbi, NULL, folio, 0, type);
4201 /* submit cached IPU IO */
4202 f2fs_submit_merged_ipu_write(sbi, NULL, folio);
4203 if (ordered) {
4204 folio_wait_writeback(folio);
4205 f2fs_bug_on(sbi, locked && folio_test_writeback(folio));
4206 } else {
4207 folio_wait_stable(folio);
4208 }
4209 }
4210 }
4211
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)4212 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
4213 {
4214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4215 struct folio *cfolio;
4216
4217 if (!f2fs_meta_inode_gc_required(inode))
4218 return;
4219
4220 if (!__is_valid_data_blkaddr(blkaddr))
4221 return;
4222
4223 cfolio = filemap_lock_folio(META_MAPPING(sbi), blkaddr);
4224 if (!IS_ERR(cfolio)) {
4225 f2fs_folio_wait_writeback(cfolio, DATA, true, true);
4226 f2fs_folio_put(cfolio, true);
4227 }
4228 }
4229
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)4230 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4231 block_t len)
4232 {
4233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4234 block_t i;
4235
4236 if (!f2fs_meta_inode_gc_required(inode))
4237 return;
4238
4239 for (i = 0; i < len; i++)
4240 f2fs_wait_on_block_writeback(inode, blkaddr + i);
4241
4242 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4243 }
4244
read_compacted_summaries(struct f2fs_sb_info * sbi)4245 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4246 {
4247 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4248 struct curseg_info *seg_i;
4249 unsigned char *kaddr;
4250 struct folio *folio;
4251 block_t start;
4252 int i, j, offset;
4253
4254 start = start_sum_block(sbi);
4255
4256 folio = f2fs_get_meta_folio(sbi, start++);
4257 if (IS_ERR(folio))
4258 return PTR_ERR(folio);
4259 kaddr = folio_address(folio);
4260
4261 /* Step 1: restore nat cache */
4262 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4263 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4264
4265 /* Step 2: restore sit cache */
4266 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4267 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4268 offset = 2 * SUM_JOURNAL_SIZE;
4269
4270 /* Step 3: restore summary entries */
4271 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4272 unsigned short blk_off;
4273 unsigned int segno;
4274
4275 seg_i = CURSEG_I(sbi, i);
4276 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4277 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4278 seg_i->next_segno = segno;
4279 reset_curseg(sbi, i, 0);
4280 seg_i->alloc_type = ckpt->alloc_type[i];
4281 seg_i->next_blkoff = blk_off;
4282
4283 if (seg_i->alloc_type == SSR)
4284 blk_off = BLKS_PER_SEG(sbi);
4285
4286 for (j = 0; j < blk_off; j++) {
4287 struct f2fs_summary *s;
4288
4289 s = (struct f2fs_summary *)(kaddr + offset);
4290 seg_i->sum_blk->entries[j] = *s;
4291 offset += SUMMARY_SIZE;
4292 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4293 SUM_FOOTER_SIZE)
4294 continue;
4295
4296 f2fs_folio_put(folio, true);
4297
4298 folio = f2fs_get_meta_folio(sbi, start++);
4299 if (IS_ERR(folio))
4300 return PTR_ERR(folio);
4301 kaddr = folio_address(folio);
4302 offset = 0;
4303 }
4304 }
4305 f2fs_folio_put(folio, true);
4306 return 0;
4307 }
4308
read_normal_summaries(struct f2fs_sb_info * sbi,int type)4309 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4310 {
4311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4312 struct f2fs_summary_block *sum;
4313 struct curseg_info *curseg;
4314 struct folio *new;
4315 unsigned short blk_off;
4316 unsigned int segno = 0;
4317 block_t blk_addr = 0;
4318 int err = 0;
4319
4320 /* get segment number and block addr */
4321 if (IS_DATASEG(type)) {
4322 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4323 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4324 CURSEG_HOT_DATA]);
4325 if (__exist_node_summaries(sbi))
4326 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4327 else
4328 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4329 } else {
4330 segno = le32_to_cpu(ckpt->cur_node_segno[type -
4331 CURSEG_HOT_NODE]);
4332 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4333 CURSEG_HOT_NODE]);
4334 if (__exist_node_summaries(sbi))
4335 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4336 type - CURSEG_HOT_NODE);
4337 else
4338 blk_addr = GET_SUM_BLOCK(sbi, segno);
4339 }
4340
4341 new = f2fs_get_meta_folio(sbi, blk_addr);
4342 if (IS_ERR(new))
4343 return PTR_ERR(new);
4344 sum = folio_address(new);
4345
4346 if (IS_NODESEG(type)) {
4347 if (__exist_node_summaries(sbi)) {
4348 struct f2fs_summary *ns = &sum->entries[0];
4349 int i;
4350
4351 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4352 ns->version = 0;
4353 ns->ofs_in_node = 0;
4354 }
4355 } else {
4356 err = f2fs_restore_node_summary(sbi, segno, sum);
4357 if (err)
4358 goto out;
4359 }
4360 }
4361
4362 /* set uncompleted segment to curseg */
4363 curseg = CURSEG_I(sbi, type);
4364 mutex_lock(&curseg->curseg_mutex);
4365
4366 /* update journal info */
4367 down_write(&curseg->journal_rwsem);
4368 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4369 up_write(&curseg->journal_rwsem);
4370
4371 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4372 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4373 curseg->next_segno = segno;
4374 reset_curseg(sbi, type, 0);
4375 curseg->alloc_type = ckpt->alloc_type[type];
4376 curseg->next_blkoff = blk_off;
4377 mutex_unlock(&curseg->curseg_mutex);
4378 out:
4379 f2fs_folio_put(new, true);
4380 return err;
4381 }
4382
restore_curseg_summaries(struct f2fs_sb_info * sbi)4383 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4384 {
4385 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4386 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4387 int type = CURSEG_HOT_DATA;
4388 int err;
4389
4390 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4391 int npages = f2fs_npages_for_summary_flush(sbi, true);
4392
4393 if (npages >= 2)
4394 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4395 META_CP, true);
4396
4397 /* restore for compacted data summary */
4398 err = read_compacted_summaries(sbi);
4399 if (err)
4400 return err;
4401 type = CURSEG_HOT_NODE;
4402 }
4403
4404 if (__exist_node_summaries(sbi))
4405 f2fs_ra_meta_pages(sbi,
4406 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4407 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4408
4409 for (; type <= CURSEG_COLD_NODE; type++) {
4410 err = read_normal_summaries(sbi, type);
4411 if (err)
4412 return err;
4413 }
4414
4415 /* sanity check for summary blocks */
4416 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4417 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4418 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4419 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4420 return -EINVAL;
4421 }
4422
4423 return 0;
4424 }
4425
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4426 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4427 {
4428 struct folio *folio;
4429 unsigned char *kaddr;
4430 struct f2fs_summary *summary;
4431 struct curseg_info *seg_i;
4432 int written_size = 0;
4433 int i, j;
4434
4435 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4436 kaddr = folio_address(folio);
4437 memset(kaddr, 0, PAGE_SIZE);
4438
4439 /* Step 1: write nat cache */
4440 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4441 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4442 written_size += SUM_JOURNAL_SIZE;
4443
4444 /* Step 2: write sit cache */
4445 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4446 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4447 written_size += SUM_JOURNAL_SIZE;
4448
4449 /* Step 3: write summary entries */
4450 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4451 seg_i = CURSEG_I(sbi, i);
4452 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4453 if (!folio) {
4454 folio = f2fs_grab_meta_folio(sbi, blkaddr++);
4455 kaddr = folio_address(folio);
4456 memset(kaddr, 0, PAGE_SIZE);
4457 written_size = 0;
4458 }
4459 summary = (struct f2fs_summary *)(kaddr + written_size);
4460 *summary = seg_i->sum_blk->entries[j];
4461 written_size += SUMMARY_SIZE;
4462
4463 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4464 SUM_FOOTER_SIZE)
4465 continue;
4466
4467 folio_mark_dirty(folio);
4468 f2fs_folio_put(folio, true);
4469 folio = NULL;
4470 }
4471 }
4472 if (folio) {
4473 folio_mark_dirty(folio);
4474 f2fs_folio_put(folio, true);
4475 }
4476 }
4477
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4478 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4479 block_t blkaddr, int type)
4480 {
4481 int i, end;
4482
4483 if (IS_DATASEG(type))
4484 end = type + NR_CURSEG_DATA_TYPE;
4485 else
4486 end = type + NR_CURSEG_NODE_TYPE;
4487
4488 for (i = type; i < end; i++)
4489 write_current_sum_page(sbi, i, blkaddr + (i - type));
4490 }
4491
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4492 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4493 {
4494 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4495 write_compacted_summaries(sbi, start_blk);
4496 else
4497 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4498 }
4499
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4500 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4501 {
4502 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4503 }
4504
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4505 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4506 unsigned int val, int alloc)
4507 {
4508 int i;
4509
4510 if (type == NAT_JOURNAL) {
4511 for (i = 0; i < nats_in_cursum(journal); i++) {
4512 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4513 return i;
4514 }
4515 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4516 return update_nats_in_cursum(journal, 1);
4517 } else if (type == SIT_JOURNAL) {
4518 for (i = 0; i < sits_in_cursum(journal); i++)
4519 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4520 return i;
4521 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4522 return update_sits_in_cursum(journal, 1);
4523 }
4524 return -1;
4525 }
4526
get_current_sit_folio(struct f2fs_sb_info * sbi,unsigned int segno)4527 static struct folio *get_current_sit_folio(struct f2fs_sb_info *sbi,
4528 unsigned int segno)
4529 {
4530 return f2fs_get_meta_folio(sbi, current_sit_addr(sbi, segno));
4531 }
4532
get_next_sit_folio(struct f2fs_sb_info * sbi,unsigned int start)4533 static struct folio *get_next_sit_folio(struct f2fs_sb_info *sbi,
4534 unsigned int start)
4535 {
4536 struct sit_info *sit_i = SIT_I(sbi);
4537 struct folio *folio;
4538 pgoff_t src_off, dst_off;
4539
4540 src_off = current_sit_addr(sbi, start);
4541 dst_off = next_sit_addr(sbi, src_off);
4542
4543 folio = f2fs_grab_meta_folio(sbi, dst_off);
4544 seg_info_to_sit_folio(sbi, folio, start);
4545
4546 folio_mark_dirty(folio);
4547 set_to_next_sit(sit_i, start);
4548
4549 return folio;
4550 }
4551
grab_sit_entry_set(void)4552 static struct sit_entry_set *grab_sit_entry_set(void)
4553 {
4554 struct sit_entry_set *ses =
4555 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4556 GFP_NOFS, true, NULL);
4557
4558 ses->entry_cnt = 0;
4559 INIT_LIST_HEAD(&ses->set_list);
4560 return ses;
4561 }
4562
release_sit_entry_set(struct sit_entry_set * ses)4563 static void release_sit_entry_set(struct sit_entry_set *ses)
4564 {
4565 list_del(&ses->set_list);
4566 kmem_cache_free(sit_entry_set_slab, ses);
4567 }
4568
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4569 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4570 struct list_head *head)
4571 {
4572 struct sit_entry_set *next = ses;
4573
4574 if (list_is_last(&ses->set_list, head))
4575 return;
4576
4577 list_for_each_entry_continue(next, head, set_list)
4578 if (ses->entry_cnt <= next->entry_cnt) {
4579 list_move_tail(&ses->set_list, &next->set_list);
4580 return;
4581 }
4582
4583 list_move_tail(&ses->set_list, head);
4584 }
4585
add_sit_entry(unsigned int segno,struct list_head * head)4586 static void add_sit_entry(unsigned int segno, struct list_head *head)
4587 {
4588 struct sit_entry_set *ses;
4589 unsigned int start_segno = START_SEGNO(segno);
4590
4591 list_for_each_entry(ses, head, set_list) {
4592 if (ses->start_segno == start_segno) {
4593 ses->entry_cnt++;
4594 adjust_sit_entry_set(ses, head);
4595 return;
4596 }
4597 }
4598
4599 ses = grab_sit_entry_set();
4600
4601 ses->start_segno = start_segno;
4602 ses->entry_cnt++;
4603 list_add(&ses->set_list, head);
4604 }
4605
add_sits_in_set(struct f2fs_sb_info * sbi)4606 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4607 {
4608 struct f2fs_sm_info *sm_info = SM_I(sbi);
4609 struct list_head *set_list = &sm_info->sit_entry_set;
4610 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4611 unsigned int segno;
4612
4613 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4614 add_sit_entry(segno, set_list);
4615 }
4616
remove_sits_in_journal(struct f2fs_sb_info * sbi)4617 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4618 {
4619 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4620 struct f2fs_journal *journal = curseg->journal;
4621 int i;
4622
4623 down_write(&curseg->journal_rwsem);
4624 for (i = 0; i < sits_in_cursum(journal); i++) {
4625 unsigned int segno;
4626 bool dirtied;
4627
4628 segno = le32_to_cpu(segno_in_journal(journal, i));
4629 dirtied = __mark_sit_entry_dirty(sbi, segno);
4630
4631 if (!dirtied)
4632 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4633 }
4634 update_sits_in_cursum(journal, -i);
4635 up_write(&curseg->journal_rwsem);
4636 }
4637
4638 /*
4639 * CP calls this function, which flushes SIT entries including sit_journal,
4640 * and moves prefree segs to free segs.
4641 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4642 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4643 {
4644 struct sit_info *sit_i = SIT_I(sbi);
4645 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4646 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4647 struct f2fs_journal *journal = curseg->journal;
4648 struct sit_entry_set *ses, *tmp;
4649 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4650 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4651 struct seg_entry *se;
4652
4653 down_write(&sit_i->sentry_lock);
4654
4655 if (!sit_i->dirty_sentries)
4656 goto out;
4657
4658 /*
4659 * add and account sit entries of dirty bitmap in sit entry
4660 * set temporarily
4661 */
4662 add_sits_in_set(sbi);
4663
4664 /*
4665 * if there are no enough space in journal to store dirty sit
4666 * entries, remove all entries from journal and add and account
4667 * them in sit entry set.
4668 */
4669 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4670 !to_journal)
4671 remove_sits_in_journal(sbi);
4672
4673 /*
4674 * there are two steps to flush sit entries:
4675 * #1, flush sit entries to journal in current cold data summary block.
4676 * #2, flush sit entries to sit page.
4677 */
4678 list_for_each_entry_safe(ses, tmp, head, set_list) {
4679 struct folio *folio = NULL;
4680 struct f2fs_sit_block *raw_sit = NULL;
4681 unsigned int start_segno = ses->start_segno;
4682 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4683 (unsigned long)MAIN_SEGS(sbi));
4684 unsigned int segno = start_segno;
4685
4686 if (to_journal &&
4687 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4688 to_journal = false;
4689
4690 if (to_journal) {
4691 down_write(&curseg->journal_rwsem);
4692 } else {
4693 folio = get_next_sit_folio(sbi, start_segno);
4694 raw_sit = folio_address(folio);
4695 }
4696
4697 /* flush dirty sit entries in region of current sit set */
4698 for_each_set_bit_from(segno, bitmap, end) {
4699 int offset, sit_offset;
4700
4701 se = get_seg_entry(sbi, segno);
4702 #ifdef CONFIG_F2FS_CHECK_FS
4703 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4704 SIT_VBLOCK_MAP_SIZE))
4705 f2fs_bug_on(sbi, 1);
4706 #endif
4707
4708 /* add discard candidates */
4709 if (!(cpc->reason & CP_DISCARD)) {
4710 cpc->trim_start = segno;
4711 add_discard_addrs(sbi, cpc, false);
4712 }
4713
4714 if (to_journal) {
4715 offset = f2fs_lookup_journal_in_cursum(journal,
4716 SIT_JOURNAL, segno, 1);
4717 f2fs_bug_on(sbi, offset < 0);
4718 segno_in_journal(journal, offset) =
4719 cpu_to_le32(segno);
4720 seg_info_to_raw_sit(se,
4721 &sit_in_journal(journal, offset));
4722 check_block_count(sbi, segno,
4723 &sit_in_journal(journal, offset));
4724 } else {
4725 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4726 seg_info_to_raw_sit(se,
4727 &raw_sit->entries[sit_offset]);
4728 check_block_count(sbi, segno,
4729 &raw_sit->entries[sit_offset]);
4730 }
4731
4732 /* update ckpt_valid_block */
4733 if (__is_large_section(sbi)) {
4734 set_ckpt_valid_blocks(sbi, segno);
4735 sanity_check_valid_blocks(sbi, segno);
4736 }
4737
4738 __clear_bit(segno, bitmap);
4739 sit_i->dirty_sentries--;
4740 ses->entry_cnt--;
4741 }
4742
4743 if (to_journal)
4744 up_write(&curseg->journal_rwsem);
4745 else
4746 f2fs_folio_put(folio, true);
4747
4748 f2fs_bug_on(sbi, ses->entry_cnt);
4749 release_sit_entry_set(ses);
4750 }
4751
4752 f2fs_bug_on(sbi, !list_empty(head));
4753 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4754 out:
4755 if (cpc->reason & CP_DISCARD) {
4756 __u64 trim_start = cpc->trim_start;
4757
4758 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4759 add_discard_addrs(sbi, cpc, false);
4760
4761 cpc->trim_start = trim_start;
4762 }
4763 up_write(&sit_i->sentry_lock);
4764
4765 set_prefree_as_free_segments(sbi);
4766 }
4767
build_sit_info(struct f2fs_sb_info * sbi)4768 static int build_sit_info(struct f2fs_sb_info *sbi)
4769 {
4770 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4771 struct sit_info *sit_i;
4772 unsigned int sit_segs, start;
4773 char *src_bitmap, *bitmap;
4774 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4775 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4776
4777 /* allocate memory for SIT information */
4778 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4779 if (!sit_i)
4780 return -ENOMEM;
4781
4782 SM_I(sbi)->sit_info = sit_i;
4783
4784 sit_i->sentries =
4785 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4786 MAIN_SEGS(sbi)),
4787 GFP_KERNEL);
4788 if (!sit_i->sentries)
4789 return -ENOMEM;
4790
4791 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4792 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4793 GFP_KERNEL);
4794 if (!sit_i->dirty_sentries_bitmap)
4795 return -ENOMEM;
4796
4797 #ifdef CONFIG_F2FS_CHECK_FS
4798 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4799 #else
4800 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4801 #endif
4802 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803 if (!sit_i->bitmap)
4804 return -ENOMEM;
4805
4806 bitmap = sit_i->bitmap;
4807
4808 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4809 sit_i->sentries[start].cur_valid_map = bitmap;
4810 bitmap += SIT_VBLOCK_MAP_SIZE;
4811
4812 sit_i->sentries[start].ckpt_valid_map = bitmap;
4813 bitmap += SIT_VBLOCK_MAP_SIZE;
4814
4815 #ifdef CONFIG_F2FS_CHECK_FS
4816 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4817 bitmap += SIT_VBLOCK_MAP_SIZE;
4818 #endif
4819
4820 if (discard_map) {
4821 sit_i->sentries[start].discard_map = bitmap;
4822 bitmap += SIT_VBLOCK_MAP_SIZE;
4823 }
4824 }
4825
4826 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4827 if (!sit_i->tmp_map)
4828 return -ENOMEM;
4829
4830 if (__is_large_section(sbi)) {
4831 sit_i->sec_entries =
4832 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4833 MAIN_SECS(sbi)),
4834 GFP_KERNEL);
4835 if (!sit_i->sec_entries)
4836 return -ENOMEM;
4837 }
4838
4839 /* get information related with SIT */
4840 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4841
4842 /* setup SIT bitmap from ckeckpoint pack */
4843 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4844 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4845
4846 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4847 if (!sit_i->sit_bitmap)
4848 return -ENOMEM;
4849
4850 #ifdef CONFIG_F2FS_CHECK_FS
4851 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4852 sit_bitmap_size, GFP_KERNEL);
4853 if (!sit_i->sit_bitmap_mir)
4854 return -ENOMEM;
4855
4856 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4857 main_bitmap_size, GFP_KERNEL);
4858 if (!sit_i->invalid_segmap)
4859 return -ENOMEM;
4860 #endif
4861
4862 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4863 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4864 sit_i->written_valid_blocks = 0;
4865 sit_i->bitmap_size = sit_bitmap_size;
4866 sit_i->dirty_sentries = 0;
4867 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4868 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4869 sit_i->mounted_time = ktime_get_boottime_seconds();
4870 init_rwsem(&sit_i->sentry_lock);
4871 return 0;
4872 }
4873
build_free_segmap(struct f2fs_sb_info * sbi)4874 static int build_free_segmap(struct f2fs_sb_info *sbi)
4875 {
4876 struct free_segmap_info *free_i;
4877 unsigned int bitmap_size, sec_bitmap_size;
4878
4879 /* allocate memory for free segmap information */
4880 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4881 if (!free_i)
4882 return -ENOMEM;
4883
4884 SM_I(sbi)->free_info = free_i;
4885
4886 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4887 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4888 if (!free_i->free_segmap)
4889 return -ENOMEM;
4890
4891 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4892 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4893 if (!free_i->free_secmap)
4894 return -ENOMEM;
4895
4896 /* set all segments as dirty temporarily */
4897 memset(free_i->free_segmap, 0xff, bitmap_size);
4898 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4899
4900 /* init free segmap information */
4901 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4902 free_i->free_segments = 0;
4903 free_i->free_sections = 0;
4904 spin_lock_init(&free_i->segmap_lock);
4905 return 0;
4906 }
4907
build_curseg(struct f2fs_sb_info * sbi)4908 static int build_curseg(struct f2fs_sb_info *sbi)
4909 {
4910 struct curseg_info *array;
4911 int i;
4912
4913 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4914 sizeof(*array)), GFP_KERNEL);
4915 if (!array)
4916 return -ENOMEM;
4917
4918 SM_I(sbi)->curseg_array = array;
4919
4920 for (i = 0; i < NO_CHECK_TYPE; i++) {
4921 mutex_init(&array[i].curseg_mutex);
4922 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4923 if (!array[i].sum_blk)
4924 return -ENOMEM;
4925 init_rwsem(&array[i].journal_rwsem);
4926 array[i].journal = f2fs_kzalloc(sbi,
4927 sizeof(struct f2fs_journal), GFP_KERNEL);
4928 if (!array[i].journal)
4929 return -ENOMEM;
4930 array[i].seg_type = log_type_to_seg_type(i);
4931 reset_curseg_fields(&array[i]);
4932 }
4933 return restore_curseg_summaries(sbi);
4934 }
4935
build_sit_entries(struct f2fs_sb_info * sbi)4936 static int build_sit_entries(struct f2fs_sb_info *sbi)
4937 {
4938 struct sit_info *sit_i = SIT_I(sbi);
4939 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4940 struct f2fs_journal *journal = curseg->journal;
4941 struct seg_entry *se;
4942 struct f2fs_sit_entry sit;
4943 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4944 unsigned int i, start, end;
4945 unsigned int readed, start_blk = 0;
4946 int err = 0;
4947 block_t sit_valid_blocks[2] = {0, 0};
4948
4949 do {
4950 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4951 META_SIT, true);
4952
4953 start = start_blk * sit_i->sents_per_block;
4954 end = (start_blk + readed) * sit_i->sents_per_block;
4955
4956 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4957 struct f2fs_sit_block *sit_blk;
4958 struct folio *folio;
4959
4960 se = &sit_i->sentries[start];
4961 folio = get_current_sit_folio(sbi, start);
4962 if (IS_ERR(folio))
4963 return PTR_ERR(folio);
4964 sit_blk = folio_address(folio);
4965 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4966 f2fs_folio_put(folio, true);
4967
4968 err = check_block_count(sbi, start, &sit);
4969 if (err)
4970 return err;
4971 seg_info_from_raw_sit(se, &sit);
4972
4973 if (se->type >= NR_PERSISTENT_LOG) {
4974 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4975 se->type, start);
4976 f2fs_handle_error(sbi,
4977 ERROR_INCONSISTENT_SUM_TYPE);
4978 return -EFSCORRUPTED;
4979 }
4980
4981 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4982
4983 if (!f2fs_block_unit_discard(sbi))
4984 goto init_discard_map_done;
4985
4986 /* build discard map only one time */
4987 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4988 memset(se->discard_map, 0xff,
4989 SIT_VBLOCK_MAP_SIZE);
4990 goto init_discard_map_done;
4991 }
4992 memcpy(se->discard_map, se->cur_valid_map,
4993 SIT_VBLOCK_MAP_SIZE);
4994 sbi->discard_blks += BLKS_PER_SEG(sbi) -
4995 se->valid_blocks;
4996 init_discard_map_done:
4997 if (__is_large_section(sbi))
4998 get_sec_entry(sbi, start)->valid_blocks +=
4999 se->valid_blocks;
5000 }
5001 start_blk += readed;
5002 } while (start_blk < sit_blk_cnt);
5003
5004 down_read(&curseg->journal_rwsem);
5005 for (i = 0; i < sits_in_cursum(journal); i++) {
5006 unsigned int old_valid_blocks;
5007
5008 start = le32_to_cpu(segno_in_journal(journal, i));
5009 if (start >= MAIN_SEGS(sbi)) {
5010 f2fs_err(sbi, "Wrong journal entry on segno %u",
5011 start);
5012 err = -EFSCORRUPTED;
5013 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
5014 break;
5015 }
5016
5017 se = &sit_i->sentries[start];
5018 sit = sit_in_journal(journal, i);
5019
5020 old_valid_blocks = se->valid_blocks;
5021
5022 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
5023
5024 err = check_block_count(sbi, start, &sit);
5025 if (err)
5026 break;
5027 seg_info_from_raw_sit(se, &sit);
5028
5029 if (se->type >= NR_PERSISTENT_LOG) {
5030 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
5031 se->type, start);
5032 err = -EFSCORRUPTED;
5033 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
5034 break;
5035 }
5036
5037 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
5038
5039 if (f2fs_block_unit_discard(sbi)) {
5040 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
5041 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
5042 } else {
5043 memcpy(se->discard_map, se->cur_valid_map,
5044 SIT_VBLOCK_MAP_SIZE);
5045 sbi->discard_blks += old_valid_blocks;
5046 sbi->discard_blks -= se->valid_blocks;
5047 }
5048 }
5049
5050 if (__is_large_section(sbi)) {
5051 get_sec_entry(sbi, start)->valid_blocks +=
5052 se->valid_blocks;
5053 get_sec_entry(sbi, start)->valid_blocks -=
5054 old_valid_blocks;
5055 }
5056 }
5057 up_read(&curseg->journal_rwsem);
5058
5059 /* update ckpt_valid_block */
5060 if (__is_large_section(sbi)) {
5061 unsigned int segno;
5062
5063 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5064 set_ckpt_valid_blocks(sbi, segno);
5065 sanity_check_valid_blocks(sbi, segno);
5066 }
5067 }
5068
5069 if (err)
5070 return err;
5071
5072 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
5073 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
5074 sit_valid_blocks[NODE], valid_node_count(sbi));
5075 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
5076 return -EFSCORRUPTED;
5077 }
5078
5079 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
5080 valid_user_blocks(sbi)) {
5081 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
5082 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
5083 valid_user_blocks(sbi));
5084 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
5085 return -EFSCORRUPTED;
5086 }
5087
5088 return 0;
5089 }
5090
init_free_segmap(struct f2fs_sb_info * sbi)5091 static void init_free_segmap(struct f2fs_sb_info *sbi)
5092 {
5093 unsigned int start;
5094 int type;
5095 struct seg_entry *sentry;
5096
5097 for (start = 0; start < MAIN_SEGS(sbi); start++) {
5098 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
5099 continue;
5100 sentry = get_seg_entry(sbi, start);
5101 if (!sentry->valid_blocks)
5102 __set_free(sbi, start);
5103 else
5104 SIT_I(sbi)->written_valid_blocks +=
5105 sentry->valid_blocks;
5106 }
5107
5108 /* set use the current segments */
5109 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
5110 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
5111
5112 __set_test_and_inuse(sbi, curseg_t->segno);
5113 }
5114 }
5115
init_dirty_segmap(struct f2fs_sb_info * sbi)5116 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5117 {
5118 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5119 struct free_segmap_info *free_i = FREE_I(sbi);
5120 unsigned int segno = 0, offset = 0, secno;
5121 block_t valid_blocks, usable_blks_in_seg;
5122
5123 while (1) {
5124 /* find dirty segment based on free segmap */
5125 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5126 if (segno >= MAIN_SEGS(sbi))
5127 break;
5128 offset = segno + 1;
5129 valid_blocks = get_valid_blocks(sbi, segno, false);
5130 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5131 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5132 continue;
5133 if (valid_blocks > usable_blks_in_seg) {
5134 f2fs_bug_on(sbi, 1);
5135 continue;
5136 }
5137 mutex_lock(&dirty_i->seglist_lock);
5138 __locate_dirty_segment(sbi, segno, DIRTY);
5139 mutex_unlock(&dirty_i->seglist_lock);
5140 }
5141
5142 if (!__is_large_section(sbi))
5143 return;
5144
5145 mutex_lock(&dirty_i->seglist_lock);
5146 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5147 valid_blocks = get_valid_blocks(sbi, segno, true);
5148 secno = GET_SEC_FROM_SEG(sbi, segno);
5149
5150 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5151 continue;
5152 if (is_cursec(sbi, secno))
5153 continue;
5154 set_bit(secno, dirty_i->dirty_secmap);
5155 }
5156 mutex_unlock(&dirty_i->seglist_lock);
5157 }
5158
init_victim_secmap(struct f2fs_sb_info * sbi)5159 static int init_victim_secmap(struct f2fs_sb_info *sbi)
5160 {
5161 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5162 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5163
5164 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5165 if (!dirty_i->victim_secmap)
5166 return -ENOMEM;
5167
5168 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5169 if (!dirty_i->pinned_secmap)
5170 return -ENOMEM;
5171
5172 dirty_i->pinned_secmap_cnt = 0;
5173 dirty_i->enable_pin_section = true;
5174 return 0;
5175 }
5176
build_dirty_segmap(struct f2fs_sb_info * sbi)5177 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5178 {
5179 struct dirty_seglist_info *dirty_i;
5180 unsigned int bitmap_size, i;
5181
5182 /* allocate memory for dirty segments list information */
5183 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5184 GFP_KERNEL);
5185 if (!dirty_i)
5186 return -ENOMEM;
5187
5188 SM_I(sbi)->dirty_info = dirty_i;
5189 mutex_init(&dirty_i->seglist_lock);
5190
5191 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5192
5193 for (i = 0; i < NR_DIRTY_TYPE; i++) {
5194 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5195 GFP_KERNEL);
5196 if (!dirty_i->dirty_segmap[i])
5197 return -ENOMEM;
5198 }
5199
5200 if (__is_large_section(sbi)) {
5201 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5202 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5203 bitmap_size, GFP_KERNEL);
5204 if (!dirty_i->dirty_secmap)
5205 return -ENOMEM;
5206 }
5207
5208 init_dirty_segmap(sbi);
5209 return init_victim_secmap(sbi);
5210 }
5211
sanity_check_curseg(struct f2fs_sb_info * sbi)5212 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5213 {
5214 int i;
5215
5216 /*
5217 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5218 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5219 */
5220 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5221 struct curseg_info *curseg = CURSEG_I(sbi, i);
5222 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5223 unsigned int blkofs = curseg->next_blkoff;
5224
5225 if (f2fs_sb_has_readonly(sbi) &&
5226 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5227 continue;
5228
5229 sanity_check_seg_type(sbi, curseg->seg_type);
5230
5231 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5232 f2fs_err(sbi,
5233 "Current segment has invalid alloc_type:%d",
5234 curseg->alloc_type);
5235 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5236 return -EFSCORRUPTED;
5237 }
5238
5239 if (f2fs_test_bit(blkofs, se->cur_valid_map))
5240 goto out;
5241
5242 if (curseg->alloc_type == SSR)
5243 continue;
5244
5245 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5246 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5247 continue;
5248 out:
5249 f2fs_err(sbi,
5250 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5251 i, curseg->segno, curseg->alloc_type,
5252 curseg->next_blkoff, blkofs);
5253 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5254 return -EFSCORRUPTED;
5255 }
5256 }
5257 return 0;
5258 }
5259
5260 #ifdef CONFIG_BLK_DEV_ZONED
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)5261 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5262 struct f2fs_dev_info *fdev,
5263 struct blk_zone *zone)
5264 {
5265 unsigned int zone_segno;
5266 block_t zone_block, valid_block_cnt;
5267 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5268 int ret;
5269 unsigned int nofs_flags;
5270
5271 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5272 return 0;
5273
5274 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5275 zone_segno = GET_SEGNO(sbi, zone_block);
5276
5277 /*
5278 * Skip check of zones cursegs point to, since
5279 * fix_curseg_write_pointer() checks them.
5280 */
5281 if (zone_segno >= MAIN_SEGS(sbi))
5282 return 0;
5283
5284 /*
5285 * Get # of valid block of the zone.
5286 */
5287 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5288 if (is_cursec(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5289 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5290 zone_segno, valid_block_cnt,
5291 blk_zone_cond_str(zone->cond));
5292 return 0;
5293 }
5294
5295 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5296 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5297 return 0;
5298
5299 if (!valid_block_cnt) {
5300 f2fs_notice(sbi, "Zone without valid block has non-zero write "
5301 "pointer. Reset the write pointer: cond[%s]",
5302 blk_zone_cond_str(zone->cond));
5303 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5304 zone->len >> log_sectors_per_block);
5305 if (ret)
5306 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5307 fdev->path, ret);
5308 return ret;
5309 }
5310
5311 /*
5312 * If there are valid blocks and the write pointer doesn't match
5313 * with them, we need to report the inconsistency and fill
5314 * the zone till the end to close the zone. This inconsistency
5315 * does not cause write error because the zone will not be
5316 * selected for write operation until it get discarded.
5317 */
5318 f2fs_notice(sbi, "Valid blocks are not aligned with write "
5319 "pointer: valid block[0x%x,0x%x] cond[%s]",
5320 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5321
5322 nofs_flags = memalloc_nofs_save();
5323 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5324 zone->start, zone->len);
5325 memalloc_nofs_restore(nofs_flags);
5326 if (ret == -EOPNOTSUPP) {
5327 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5328 zone->len - (zone->wp - zone->start),
5329 GFP_NOFS, 0);
5330 if (ret)
5331 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5332 fdev->path, ret);
5333 } else if (ret) {
5334 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5335 fdev->path, ret);
5336 }
5337
5338 return ret;
5339 }
5340
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)5341 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5342 block_t zone_blkaddr)
5343 {
5344 int i;
5345
5346 for (i = 0; i < sbi->s_ndevs; i++) {
5347 if (!bdev_is_zoned(FDEV(i).bdev))
5348 continue;
5349 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5350 zone_blkaddr <= FDEV(i).end_blk))
5351 return &FDEV(i);
5352 }
5353
5354 return NULL;
5355 }
5356
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)5357 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5358 void *data)
5359 {
5360 memcpy(data, zone, sizeof(struct blk_zone));
5361 return 0;
5362 }
5363
do_fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)5364 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5365 {
5366 struct curseg_info *cs = CURSEG_I(sbi, type);
5367 struct f2fs_dev_info *zbd;
5368 struct blk_zone zone;
5369 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5370 block_t cs_zone_block, wp_block;
5371 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5372 sector_t zone_sector;
5373 int err;
5374
5375 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5376 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5377
5378 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5379 if (!zbd)
5380 return 0;
5381
5382 /* report zone for the sector the curseg points to */
5383 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5384 << log_sectors_per_block;
5385 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5386 report_one_zone_cb, &zone);
5387 if (err != 1) {
5388 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5389 zbd->path, err);
5390 return err;
5391 }
5392
5393 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5394 return 0;
5395
5396 /*
5397 * When safely unmounted in the previous mount, we could use current
5398 * segments. Otherwise, allocate new sections.
5399 */
5400 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5401 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5402 wp_segno = GET_SEGNO(sbi, wp_block);
5403 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5404 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5405
5406 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5407 wp_sector_off == 0)
5408 return 0;
5409
5410 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5411 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5412 cs->next_blkoff, wp_segno, wp_blkoff);
5413 }
5414
5415 /* Allocate a new section if it's not new. */
5416 if (cs->next_blkoff ||
5417 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5418 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5419
5420 f2fs_allocate_new_section(sbi, type, true);
5421 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5422 "[0x%x,0x%x] -> [0x%x,0x%x]",
5423 type, old_segno, old_blkoff,
5424 cs->segno, cs->next_blkoff);
5425 }
5426
5427 /* check consistency of the zone curseg pointed to */
5428 if (check_zone_write_pointer(sbi, zbd, &zone))
5429 return -EIO;
5430
5431 /* check newly assigned zone */
5432 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5433 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5434
5435 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5436 if (!zbd)
5437 return 0;
5438
5439 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5440 << log_sectors_per_block;
5441 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5442 report_one_zone_cb, &zone);
5443 if (err != 1) {
5444 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5445 zbd->path, err);
5446 return err;
5447 }
5448
5449 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5450 return 0;
5451
5452 if (zone.wp != zone.start) {
5453 f2fs_notice(sbi,
5454 "New zone for curseg[%d] is not yet discarded. "
5455 "Reset the zone: curseg[0x%x,0x%x]",
5456 type, cs->segno, cs->next_blkoff);
5457 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block,
5458 zone.len >> log_sectors_per_block);
5459 if (err) {
5460 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5461 zbd->path, err);
5462 return err;
5463 }
5464 }
5465
5466 return 0;
5467 }
5468
fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5469 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5470 {
5471 int i, ret;
5472
5473 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5474 ret = do_fix_curseg_write_pointer(sbi, i);
5475 if (ret)
5476 return ret;
5477 }
5478
5479 return 0;
5480 }
5481
5482 struct check_zone_write_pointer_args {
5483 struct f2fs_sb_info *sbi;
5484 struct f2fs_dev_info *fdev;
5485 };
5486
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5487 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5488 void *data)
5489 {
5490 struct check_zone_write_pointer_args *args;
5491
5492 args = (struct check_zone_write_pointer_args *)data;
5493
5494 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5495 }
5496
check_write_pointer(struct f2fs_sb_info * sbi)5497 static int check_write_pointer(struct f2fs_sb_info *sbi)
5498 {
5499 int i, ret;
5500 struct check_zone_write_pointer_args args;
5501
5502 for (i = 0; i < sbi->s_ndevs; i++) {
5503 if (!bdev_is_zoned(FDEV(i).bdev))
5504 continue;
5505
5506 args.sbi = sbi;
5507 args.fdev = &FDEV(i);
5508 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5509 check_zone_write_pointer_cb, &args);
5510 if (ret < 0)
5511 return ret;
5512 }
5513
5514 return 0;
5515 }
5516
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5517 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5518 {
5519 int ret;
5520
5521 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) ||
5522 f2fs_hw_is_readonly(sbi))
5523 return 0;
5524
5525 f2fs_notice(sbi, "Checking entire write pointers");
5526 ret = fix_curseg_write_pointer(sbi);
5527 if (!ret)
5528 ret = check_write_pointer(sbi);
5529 return ret;
5530 }
5531
5532 /*
5533 * Return the number of usable blocks in a segment. The number of blocks
5534 * returned is always equal to the number of blocks in a segment for
5535 * segments fully contained within a sequential zone capacity or a
5536 * conventional zone. For segments partially contained in a sequential
5537 * zone capacity, the number of usable blocks up to the zone capacity
5538 * is returned. 0 is returned in all other cases.
5539 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5540 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5541 struct f2fs_sb_info *sbi, unsigned int segno)
5542 {
5543 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5544 unsigned int secno;
5545
5546 if (!sbi->unusable_blocks_per_sec)
5547 return BLKS_PER_SEG(sbi);
5548
5549 secno = GET_SEC_FROM_SEG(sbi, segno);
5550 seg_start = START_BLOCK(sbi, segno);
5551 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5552 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5553
5554 /*
5555 * If segment starts before zone capacity and spans beyond
5556 * zone capacity, then usable blocks are from seg start to
5557 * zone capacity. If the segment starts after the zone capacity,
5558 * then there are no usable blocks.
5559 */
5560 if (seg_start >= sec_cap_blkaddr)
5561 return 0;
5562 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5563 return sec_cap_blkaddr - seg_start;
5564
5565 return BLKS_PER_SEG(sbi);
5566 }
5567 #else
f2fs_check_and_fix_write_pointer(struct f2fs_sb_info * sbi)5568 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5569 {
5570 return 0;
5571 }
5572
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5573 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5574 unsigned int segno)
5575 {
5576 return 0;
5577 }
5578
5579 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5580 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5581 unsigned int segno)
5582 {
5583 if (f2fs_sb_has_blkzoned(sbi))
5584 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5585
5586 return BLKS_PER_SEG(sbi);
5587 }
5588
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi)5589 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5590 {
5591 if (f2fs_sb_has_blkzoned(sbi))
5592 return CAP_SEGS_PER_SEC(sbi);
5593
5594 return SEGS_PER_SEC(sbi);
5595 }
5596
f2fs_get_section_mtime(struct f2fs_sb_info * sbi,unsigned int segno)5597 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5598 unsigned int segno)
5599 {
5600 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5601 unsigned int secno = 0, start = 0;
5602 unsigned int total_valid_blocks = 0;
5603 unsigned long long mtime = 0;
5604 unsigned int i = 0;
5605
5606 secno = GET_SEC_FROM_SEG(sbi, segno);
5607 start = GET_SEG_FROM_SEC(sbi, secno);
5608
5609 if (!__is_large_section(sbi)) {
5610 mtime = get_seg_entry(sbi, start + i)->mtime;
5611 goto out;
5612 }
5613
5614 for (i = 0; i < usable_segs_per_sec; i++) {
5615 /* for large section, only check the mtime of valid segments */
5616 struct seg_entry *se = get_seg_entry(sbi, start+i);
5617
5618 mtime += se->mtime * se->valid_blocks;
5619 total_valid_blocks += se->valid_blocks;
5620 }
5621
5622 if (total_valid_blocks == 0)
5623 return INVALID_MTIME;
5624
5625 mtime = div_u64(mtime, total_valid_blocks);
5626 out:
5627 if (unlikely(mtime == INVALID_MTIME))
5628 mtime -= 1;
5629 return mtime;
5630 }
5631
5632 /*
5633 * Update min, max modified time for cost-benefit GC algorithm
5634 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5635 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5636 {
5637 struct sit_info *sit_i = SIT_I(sbi);
5638 unsigned int segno;
5639
5640 down_write(&sit_i->sentry_lock);
5641
5642 sit_i->min_mtime = ULLONG_MAX;
5643
5644 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5645 unsigned long long mtime = 0;
5646
5647 mtime = f2fs_get_section_mtime(sbi, segno);
5648
5649 if (sit_i->min_mtime > mtime)
5650 sit_i->min_mtime = mtime;
5651 }
5652 sit_i->max_mtime = get_mtime(sbi, false);
5653 sit_i->dirty_max_mtime = 0;
5654 up_write(&sit_i->sentry_lock);
5655 }
5656
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5657 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5658 {
5659 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5660 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5661 struct f2fs_sm_info *sm_info;
5662 int err;
5663
5664 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5665 if (!sm_info)
5666 return -ENOMEM;
5667
5668 /* init sm info */
5669 sbi->sm_info = sm_info;
5670 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5671 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5672 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5673 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5674 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5675 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5676 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5677 sm_info->rec_prefree_segments = sm_info->main_segments *
5678 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5679 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5680 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5681
5682 if (!f2fs_lfs_mode(sbi))
5683 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5684 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5685 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5686 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5687 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5688 sm_info->min_ssr_sections = reserved_sections(sbi);
5689
5690 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5691
5692 init_f2fs_rwsem(&sm_info->curseg_lock);
5693
5694 err = f2fs_create_flush_cmd_control(sbi);
5695 if (err)
5696 return err;
5697
5698 err = create_discard_cmd_control(sbi);
5699 if (err)
5700 return err;
5701
5702 err = build_sit_info(sbi);
5703 if (err)
5704 return err;
5705 err = build_free_segmap(sbi);
5706 if (err)
5707 return err;
5708 err = build_curseg(sbi);
5709 if (err)
5710 return err;
5711
5712 /* reinit free segmap based on SIT */
5713 err = build_sit_entries(sbi);
5714 if (err)
5715 return err;
5716
5717 init_free_segmap(sbi);
5718 err = build_dirty_segmap(sbi);
5719 if (err)
5720 return err;
5721
5722 err = sanity_check_curseg(sbi);
5723 if (err)
5724 return err;
5725
5726 init_min_max_mtime(sbi);
5727 return 0;
5728 }
5729
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5730 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5731 enum dirty_type dirty_type)
5732 {
5733 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5734
5735 mutex_lock(&dirty_i->seglist_lock);
5736 kvfree(dirty_i->dirty_segmap[dirty_type]);
5737 dirty_i->nr_dirty[dirty_type] = 0;
5738 mutex_unlock(&dirty_i->seglist_lock);
5739 }
5740
destroy_victim_secmap(struct f2fs_sb_info * sbi)5741 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5742 {
5743 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5744
5745 kvfree(dirty_i->pinned_secmap);
5746 kvfree(dirty_i->victim_secmap);
5747 }
5748
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5749 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5750 {
5751 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5752 int i;
5753
5754 if (!dirty_i)
5755 return;
5756
5757 /* discard pre-free/dirty segments list */
5758 for (i = 0; i < NR_DIRTY_TYPE; i++)
5759 discard_dirty_segmap(sbi, i);
5760
5761 if (__is_large_section(sbi)) {
5762 mutex_lock(&dirty_i->seglist_lock);
5763 kvfree(dirty_i->dirty_secmap);
5764 mutex_unlock(&dirty_i->seglist_lock);
5765 }
5766
5767 destroy_victim_secmap(sbi);
5768 SM_I(sbi)->dirty_info = NULL;
5769 kfree(dirty_i);
5770 }
5771
destroy_curseg(struct f2fs_sb_info * sbi)5772 static void destroy_curseg(struct f2fs_sb_info *sbi)
5773 {
5774 struct curseg_info *array = SM_I(sbi)->curseg_array;
5775 int i;
5776
5777 if (!array)
5778 return;
5779 SM_I(sbi)->curseg_array = NULL;
5780 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5781 kfree(array[i].sum_blk);
5782 kfree(array[i].journal);
5783 }
5784 kfree(array);
5785 }
5786
destroy_free_segmap(struct f2fs_sb_info * sbi)5787 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5788 {
5789 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5790
5791 if (!free_i)
5792 return;
5793 SM_I(sbi)->free_info = NULL;
5794 kvfree(free_i->free_segmap);
5795 kvfree(free_i->free_secmap);
5796 kfree(free_i);
5797 }
5798
destroy_sit_info(struct f2fs_sb_info * sbi)5799 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5800 {
5801 struct sit_info *sit_i = SIT_I(sbi);
5802
5803 if (!sit_i)
5804 return;
5805
5806 if (sit_i->sentries)
5807 kvfree(sit_i->bitmap);
5808 kfree(sit_i->tmp_map);
5809
5810 kvfree(sit_i->sentries);
5811 kvfree(sit_i->sec_entries);
5812 kvfree(sit_i->dirty_sentries_bitmap);
5813
5814 SM_I(sbi)->sit_info = NULL;
5815 kfree(sit_i->sit_bitmap);
5816 #ifdef CONFIG_F2FS_CHECK_FS
5817 kfree(sit_i->sit_bitmap_mir);
5818 kvfree(sit_i->invalid_segmap);
5819 #endif
5820 kfree(sit_i);
5821 }
5822
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5823 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5824 {
5825 struct f2fs_sm_info *sm_info = SM_I(sbi);
5826
5827 if (!sm_info)
5828 return;
5829 f2fs_destroy_flush_cmd_control(sbi, true);
5830 destroy_discard_cmd_control(sbi);
5831 destroy_dirty_segmap(sbi);
5832 destroy_curseg(sbi);
5833 destroy_free_segmap(sbi);
5834 destroy_sit_info(sbi);
5835 sbi->sm_info = NULL;
5836 kfree(sm_info);
5837 }
5838
f2fs_create_segment_manager_caches(void)5839 int __init f2fs_create_segment_manager_caches(void)
5840 {
5841 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5842 sizeof(struct discard_entry));
5843 if (!discard_entry_slab)
5844 goto fail;
5845
5846 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5847 sizeof(struct discard_cmd));
5848 if (!discard_cmd_slab)
5849 goto destroy_discard_entry;
5850
5851 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5852 sizeof(struct sit_entry_set));
5853 if (!sit_entry_set_slab)
5854 goto destroy_discard_cmd;
5855
5856 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5857 sizeof(struct revoke_entry));
5858 if (!revoke_entry_slab)
5859 goto destroy_sit_entry_set;
5860 return 0;
5861
5862 destroy_sit_entry_set:
5863 kmem_cache_destroy(sit_entry_set_slab);
5864 destroy_discard_cmd:
5865 kmem_cache_destroy(discard_cmd_slab);
5866 destroy_discard_entry:
5867 kmem_cache_destroy(discard_entry_slab);
5868 fail:
5869 return -ENOMEM;
5870 }
5871
f2fs_destroy_segment_manager_caches(void)5872 void f2fs_destroy_segment_manager_caches(void)
5873 {
5874 kmem_cache_destroy(sit_entry_set_slab);
5875 kmem_cache_destroy(discard_cmd_slab);
5876 kmem_cache_destroy(discard_entry_slab);
5877 kmem_cache_destroy(revoke_entry_slab);
5878 }
5879