xref: /linux/drivers/powercap/intel_rapl_common.c (revision 53edfecef66bfa65882ae065ed1a52f466c88979)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Common code for Intel Running Average Power Limit (RAPL) support.
4  * Copyright (c) 2019, Intel Corporation.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27 
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 #include <asm/msr.h>
32 
33 /* bitmasks for RAPL MSRs, used by primitive access functions */
34 #define ENERGY_STATUS_MASK      0xffffffff
35 
36 #define POWER_LIMIT1_MASK       0x7FFF
37 #define POWER_LIMIT1_ENABLE     BIT(15)
38 #define POWER_LIMIT1_CLAMP      BIT(16)
39 
40 #define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
41 #define POWER_LIMIT2_ENABLE     BIT_ULL(47)
42 #define POWER_LIMIT2_CLAMP      BIT_ULL(48)
43 #define POWER_HIGH_LOCK         BIT_ULL(63)
44 #define POWER_LOW_LOCK          BIT(31)
45 
46 #define POWER_LIMIT4_MASK		0x1FFF
47 
48 #define TIME_WINDOW1_MASK       (0x7FULL<<17)
49 #define TIME_WINDOW2_MASK       (0x7FULL<<49)
50 
51 #define POWER_UNIT_OFFSET	0
52 #define POWER_UNIT_MASK		0x0F
53 
54 #define ENERGY_UNIT_OFFSET	0x08
55 #define ENERGY_UNIT_MASK	0x1F00
56 
57 #define TIME_UNIT_OFFSET	0x10
58 #define TIME_UNIT_MASK		0xF0000
59 
60 #define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
61 #define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
62 #define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
63 #define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
64 
65 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
66 #define PP_POLICY_MASK         0x1F
67 
68 /*
69  * SPR has different layout for Psys Domain PowerLimit registers.
70  * There are 17 bits of PL1 and PL2 instead of 15 bits.
71  * The Enable bits and TimeWindow bits are also shifted as a result.
72  */
73 #define PSYS_POWER_LIMIT1_MASK       0x1FFFF
74 #define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
75 
76 #define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
77 #define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
78 
79 #define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
80 #define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
81 
82 /* bitmasks for RAPL TPMI, used by primitive access functions */
83 #define TPMI_POWER_LIMIT_MASK	0x3FFFF
84 #define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
85 #define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
86 #define TPMI_INFO_SPEC_MASK	0x3FFFF
87 #define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
88 #define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
89 #define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
90 
91 /* Non HW constants */
92 #define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
93 #define RAPL_PRIMITIVE_DUMMY         BIT(2)
94 
95 #define TIME_WINDOW_MAX_MSEC 40000
96 #define TIME_WINDOW_MIN_MSEC 250
97 #define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
98 enum unit_type {
99 	ARBITRARY_UNIT,		/* no translation */
100 	POWER_UNIT,
101 	ENERGY_UNIT,
102 	TIME_UNIT,
103 };
104 
105 /* per domain data, some are optional */
106 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
107 
108 #define	DOMAIN_STATE_INACTIVE           BIT(0)
109 #define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
110 
111 static const char *pl_names[NR_POWER_LIMITS] = {
112 	[POWER_LIMIT1] = "long_term",
113 	[POWER_LIMIT2] = "short_term",
114 	[POWER_LIMIT4] = "peak_power",
115 };
116 
117 enum pl_prims {
118 	PL_ENABLE,
119 	PL_CLAMP,
120 	PL_LIMIT,
121 	PL_TIME_WINDOW,
122 	PL_MAX_POWER,
123 	PL_LOCK,
124 };
125 
is_pl_valid(struct rapl_domain * rd,int pl)126 static bool is_pl_valid(struct rapl_domain *rd, int pl)
127 {
128 	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
129 		return false;
130 	return rd->rpl[pl].name ? true : false;
131 }
132 
get_pl_lock_prim(struct rapl_domain * rd,int pl)133 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
134 {
135 	if (rd->rp->priv->type == RAPL_IF_TPMI) {
136 		if (pl == POWER_LIMIT1)
137 			return PL1_LOCK;
138 		if (pl == POWER_LIMIT2)
139 			return PL2_LOCK;
140 		if (pl == POWER_LIMIT4)
141 			return PL4_LOCK;
142 	}
143 
144 	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
145 	if (pl == POWER_LIMIT4)
146 		return -EINVAL;
147 
148 	/*
149 	 * Power Limit register that supports two power limits has a different
150 	 * bit position for the Lock bit.
151 	 */
152 	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
153 		return FW_HIGH_LOCK;
154 	return FW_LOCK;
155 }
156 
get_pl_prim(struct rapl_domain * rd,int pl,enum pl_prims prim)157 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
158 {
159 	switch (pl) {
160 	case POWER_LIMIT1:
161 		if (prim == PL_ENABLE)
162 			return PL1_ENABLE;
163 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
164 			return PL1_CLAMP;
165 		if (prim == PL_LIMIT)
166 			return POWER_LIMIT1;
167 		if (prim == PL_TIME_WINDOW)
168 			return TIME_WINDOW1;
169 		if (prim == PL_MAX_POWER)
170 			return THERMAL_SPEC_POWER;
171 		if (prim == PL_LOCK)
172 			return get_pl_lock_prim(rd, pl);
173 		return -EINVAL;
174 	case POWER_LIMIT2:
175 		if (prim == PL_ENABLE)
176 			return PL2_ENABLE;
177 		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
178 			return PL2_CLAMP;
179 		if (prim == PL_LIMIT)
180 			return POWER_LIMIT2;
181 		if (prim == PL_TIME_WINDOW)
182 			return TIME_WINDOW2;
183 		if (prim == PL_MAX_POWER)
184 			return MAX_POWER;
185 		if (prim == PL_LOCK)
186 			return get_pl_lock_prim(rd, pl);
187 		return -EINVAL;
188 	case POWER_LIMIT4:
189 		if (prim == PL_LIMIT)
190 			return POWER_LIMIT4;
191 		if (prim == PL_ENABLE)
192 			return PL4_ENABLE;
193 		/* PL4 would be around two times PL2, use same prim as PL2. */
194 		if (prim == PL_MAX_POWER)
195 			return MAX_POWER;
196 		if (prim == PL_LOCK)
197 			return get_pl_lock_prim(rd, pl);
198 		return -EINVAL;
199 	default:
200 		return -EINVAL;
201 	}
202 }
203 
204 #define power_zone_to_rapl_domain(_zone) \
205 	container_of(_zone, struct rapl_domain, power_zone)
206 
207 struct rapl_defaults {
208 	u8 floor_freq_reg_addr;
209 	int (*check_unit)(struct rapl_domain *rd);
210 	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
211 	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
212 				    bool to_raw);
213 	unsigned int dram_domain_energy_unit;
214 	unsigned int psys_domain_energy_unit;
215 	bool spr_psys_bits;
216 };
217 static struct rapl_defaults *defaults_msr;
218 static const struct rapl_defaults defaults_tpmi;
219 
get_defaults(struct rapl_package * rp)220 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
221 {
222 	return rp->priv->defaults;
223 }
224 
225 /* Sideband MBI registers */
226 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
227 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
228 
229 #define PACKAGE_PLN_INT_SAVED   BIT(0)
230 #define MAX_PRIM_NAME (32)
231 
232 /* per domain data. used to describe individual knobs such that access function
233  * can be consolidated into one instead of many inline functions.
234  */
235 struct rapl_primitive_info {
236 	const char *name;
237 	u64 mask;
238 	int shift;
239 	enum rapl_domain_reg_id id;
240 	enum unit_type unit;
241 	u32 flag;
242 };
243 
244 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
245 		.name = #p,			\
246 		.mask = m,			\
247 		.shift = s,			\
248 		.id = i,			\
249 		.unit = u,			\
250 		.flag = f			\
251 	}
252 
253 static void rapl_init_domains(struct rapl_package *rp);
254 static int rapl_read_data_raw(struct rapl_domain *rd,
255 			      enum rapl_primitives prim,
256 			      bool xlate, u64 *data);
257 static int rapl_write_data_raw(struct rapl_domain *rd,
258 			       enum rapl_primitives prim,
259 			       unsigned long long value);
260 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
261 			      enum pl_prims pl_prim,
262 			      bool xlate, u64 *data);
263 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
264 			       enum pl_prims pl_prim,
265 			       unsigned long long value);
266 static u64 rapl_unit_xlate(struct rapl_domain *rd,
267 			   enum unit_type type, u64 value, int to_raw);
268 static void package_power_limit_irq_save(struct rapl_package *rp);
269 
270 static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
271 
272 static const char *const rapl_domain_names[] = {
273 	"package",
274 	"core",
275 	"uncore",
276 	"dram",
277 	"psys",
278 };
279 
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)280 static int get_energy_counter(struct powercap_zone *power_zone,
281 			      u64 *energy_raw)
282 {
283 	struct rapl_domain *rd;
284 	u64 energy_now;
285 
286 	/* prevent CPU hotplug, make sure the RAPL domain does not go
287 	 * away while reading the counter.
288 	 */
289 	cpus_read_lock();
290 	rd = power_zone_to_rapl_domain(power_zone);
291 
292 	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
293 		*energy_raw = energy_now;
294 		cpus_read_unlock();
295 
296 		return 0;
297 	}
298 	cpus_read_unlock();
299 
300 	return -EIO;
301 }
302 
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)303 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
304 {
305 	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
306 
307 	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
308 	return 0;
309 }
310 
release_zone(struct powercap_zone * power_zone)311 static int release_zone(struct powercap_zone *power_zone)
312 {
313 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
314 	struct rapl_package *rp = rd->rp;
315 
316 	/* package zone is the last zone of a package, we can free
317 	 * memory here since all children has been unregistered.
318 	 */
319 	if (rd->id == RAPL_DOMAIN_PACKAGE) {
320 		kfree(rd);
321 		rp->domains = NULL;
322 	}
323 
324 	return 0;
325 
326 }
327 
find_nr_power_limit(struct rapl_domain * rd)328 static int find_nr_power_limit(struct rapl_domain *rd)
329 {
330 	int i, nr_pl = 0;
331 
332 	for (i = 0; i < NR_POWER_LIMITS; i++) {
333 		if (is_pl_valid(rd, i))
334 			nr_pl++;
335 	}
336 
337 	return nr_pl;
338 }
339 
set_domain_enable(struct powercap_zone * power_zone,bool mode)340 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
341 {
342 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
343 	struct rapl_defaults *defaults = get_defaults(rd->rp);
344 	u64 val;
345 	int ret;
346 
347 	cpus_read_lock();
348 	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
349 	if (ret)
350 		goto end;
351 
352 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, false, &val);
353 	if (ret)
354 		goto end;
355 
356 	if (mode != val) {
357 		pr_debug("%s cannot be %s\n", power_zone->name,
358 			 str_enabled_disabled(mode));
359 		goto end;
360 	}
361 
362 	if (defaults->set_floor_freq)
363 		defaults->set_floor_freq(rd, mode);
364 
365 end:
366 	cpus_read_unlock();
367 
368 	return ret;
369 }
370 
get_domain_enable(struct powercap_zone * power_zone,bool * mode)371 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
372 {
373 	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
374 	u64 val;
375 	int ret;
376 
377 	if (rd->rpl[POWER_LIMIT1].locked) {
378 		*mode = false;
379 		return 0;
380 	}
381 	cpus_read_lock();
382 	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
383 	if (!ret)
384 		*mode = val;
385 	cpus_read_unlock();
386 
387 	return ret;
388 }
389 
390 /* per RAPL domain ops, in the order of rapl_domain_type */
391 static const struct powercap_zone_ops zone_ops[] = {
392 	/* RAPL_DOMAIN_PACKAGE */
393 	{
394 	 .get_energy_uj = get_energy_counter,
395 	 .get_max_energy_range_uj = get_max_energy_counter,
396 	 .release = release_zone,
397 	 .set_enable = set_domain_enable,
398 	 .get_enable = get_domain_enable,
399 	 },
400 	/* RAPL_DOMAIN_PP0 */
401 	{
402 	 .get_energy_uj = get_energy_counter,
403 	 .get_max_energy_range_uj = get_max_energy_counter,
404 	 .release = release_zone,
405 	 .set_enable = set_domain_enable,
406 	 .get_enable = get_domain_enable,
407 	 },
408 	/* RAPL_DOMAIN_PP1 */
409 	{
410 	 .get_energy_uj = get_energy_counter,
411 	 .get_max_energy_range_uj = get_max_energy_counter,
412 	 .release = release_zone,
413 	 .set_enable = set_domain_enable,
414 	 .get_enable = get_domain_enable,
415 	 },
416 	/* RAPL_DOMAIN_DRAM */
417 	{
418 	 .get_energy_uj = get_energy_counter,
419 	 .get_max_energy_range_uj = get_max_energy_counter,
420 	 .release = release_zone,
421 	 .set_enable = set_domain_enable,
422 	 .get_enable = get_domain_enable,
423 	 },
424 	/* RAPL_DOMAIN_PLATFORM */
425 	{
426 	 .get_energy_uj = get_energy_counter,
427 	 .get_max_energy_range_uj = get_max_energy_counter,
428 	 .release = release_zone,
429 	 .set_enable = set_domain_enable,
430 	 .get_enable = get_domain_enable,
431 	 },
432 };
433 
434 /*
435  * Constraint index used by powercap can be different than power limit (PL)
436  * index in that some  PLs maybe missing due to non-existent MSRs. So we
437  * need to convert here by finding the valid PLs only (name populated).
438  */
contraint_to_pl(struct rapl_domain * rd,int cid)439 static int contraint_to_pl(struct rapl_domain *rd, int cid)
440 {
441 	int i, j;
442 
443 	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
444 		if (is_pl_valid(rd, i) && j++ == cid) {
445 			pr_debug("%s: index %d\n", __func__, i);
446 			return i;
447 		}
448 	}
449 	pr_err("Cannot find matching power limit for constraint %d\n", cid);
450 
451 	return -EINVAL;
452 }
453 
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)454 static int set_power_limit(struct powercap_zone *power_zone, int cid,
455 			   u64 power_limit)
456 {
457 	struct rapl_domain *rd;
458 	struct rapl_package *rp;
459 	int ret = 0;
460 	int id;
461 
462 	cpus_read_lock();
463 	rd = power_zone_to_rapl_domain(power_zone);
464 	id = contraint_to_pl(rd, cid);
465 	rp = rd->rp;
466 
467 	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
468 	if (!ret)
469 		package_power_limit_irq_save(rp);
470 	cpus_read_unlock();
471 	return ret;
472 }
473 
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)474 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
475 				   u64 *data)
476 {
477 	struct rapl_domain *rd;
478 	u64 val;
479 	int ret = 0;
480 	int id;
481 
482 	cpus_read_lock();
483 	rd = power_zone_to_rapl_domain(power_zone);
484 	id = contraint_to_pl(rd, cid);
485 
486 	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
487 	if (!ret)
488 		*data = val;
489 
490 	cpus_read_unlock();
491 
492 	return ret;
493 }
494 
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)495 static int set_time_window(struct powercap_zone *power_zone, int cid,
496 			   u64 window)
497 {
498 	struct rapl_domain *rd;
499 	int ret = 0;
500 	int id;
501 
502 	cpus_read_lock();
503 	rd = power_zone_to_rapl_domain(power_zone);
504 	id = contraint_to_pl(rd, cid);
505 
506 	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
507 
508 	cpus_read_unlock();
509 	return ret;
510 }
511 
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)512 static int get_time_window(struct powercap_zone *power_zone, int cid,
513 			   u64 *data)
514 {
515 	struct rapl_domain *rd;
516 	u64 val;
517 	int ret = 0;
518 	int id;
519 
520 	cpus_read_lock();
521 	rd = power_zone_to_rapl_domain(power_zone);
522 	id = contraint_to_pl(rd, cid);
523 
524 	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
525 	if (!ret)
526 		*data = val;
527 
528 	cpus_read_unlock();
529 
530 	return ret;
531 }
532 
get_constraint_name(struct powercap_zone * power_zone,int cid)533 static const char *get_constraint_name(struct powercap_zone *power_zone,
534 				       int cid)
535 {
536 	struct rapl_domain *rd;
537 	int id;
538 
539 	rd = power_zone_to_rapl_domain(power_zone);
540 	id = contraint_to_pl(rd, cid);
541 	if (id >= 0)
542 		return rd->rpl[id].name;
543 
544 	return NULL;
545 }
546 
get_max_power(struct powercap_zone * power_zone,int cid,u64 * data)547 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
548 {
549 	struct rapl_domain *rd;
550 	u64 val;
551 	int ret = 0;
552 	int id;
553 
554 	cpus_read_lock();
555 	rd = power_zone_to_rapl_domain(power_zone);
556 	id = contraint_to_pl(rd, cid);
557 
558 	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
559 	if (!ret)
560 		*data = val;
561 
562 	/* As a generalization rule, PL4 would be around two times PL2. */
563 	if (id == POWER_LIMIT4)
564 		*data = *data * 2;
565 
566 	cpus_read_unlock();
567 
568 	return ret;
569 }
570 
571 static const struct powercap_zone_constraint_ops constraint_ops = {
572 	.set_power_limit_uw = set_power_limit,
573 	.get_power_limit_uw = get_current_power_limit,
574 	.set_time_window_us = set_time_window,
575 	.get_time_window_us = get_time_window,
576 	.get_max_power_uw = get_max_power,
577 	.get_name = get_constraint_name,
578 };
579 
580 /* Return the id used for read_raw/write_raw callback */
get_rid(struct rapl_package * rp)581 static int get_rid(struct rapl_package *rp)
582 {
583 	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
584 }
585 
586 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)587 static void rapl_init_domains(struct rapl_package *rp)
588 {
589 	enum rapl_domain_type i;
590 	enum rapl_domain_reg_id j;
591 	struct rapl_domain *rd = rp->domains;
592 
593 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
594 		unsigned int mask = rp->domain_map & (1 << i);
595 		int t;
596 
597 		if (!mask)
598 			continue;
599 
600 		rd->rp = rp;
601 
602 		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
603 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
604 				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
605 				rp->id);
606 		} else {
607 			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
608 				rapl_domain_names[i]);
609 		}
610 
611 		rd->id = i;
612 
613 		/* PL1 is supported by default */
614 		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
615 
616 		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
617 			if (rp->priv->limits[i] & BIT(t))
618 				rd->rpl[t].name = pl_names[t];
619 		}
620 
621 		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
622 			rd->regs[j] = rp->priv->regs[i][j];
623 
624 		rd++;
625 	}
626 }
627 
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)628 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
629 			   u64 value, int to_raw)
630 {
631 	u64 units = 1;
632 	struct rapl_defaults *defaults = get_defaults(rd->rp);
633 	u64 scale = 1;
634 
635 	switch (type) {
636 	case POWER_UNIT:
637 		units = rd->power_unit;
638 		break;
639 	case ENERGY_UNIT:
640 		scale = ENERGY_UNIT_SCALE;
641 		units = rd->energy_unit;
642 		break;
643 	case TIME_UNIT:
644 		return defaults->compute_time_window(rd, value, to_raw);
645 	case ARBITRARY_UNIT:
646 	default:
647 		return value;
648 	}
649 
650 	if (to_raw)
651 		return div64_u64(value, units) * scale;
652 
653 	value *= units;
654 
655 	return div64_u64(value, scale);
656 }
657 
658 /* RAPL primitives for MSR and MMIO I/F */
659 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
660 	/* name, mask, shift, msr index, unit divisor */
661 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
662 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
663 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
664 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
665 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
666 				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
667 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
668 			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
669 	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
670 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
671 	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
672 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
673 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
674 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
675 	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
676 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
677 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
678 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
679 	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
680 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
681 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
682 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
683 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
684 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
685 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
686 			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
687 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
688 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
689 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
690 			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
691 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
692 			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
693 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
694 			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
695 	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
696 			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
697 	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
698 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
699 	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
700 			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
701 	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
702 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
703 	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
704 			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
705 	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
706 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
707 	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
708 			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
709 	/* non-hardware */
710 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
711 			    RAPL_PRIMITIVE_DERIVED),
712 };
713 
714 /* RAPL primitives for TPMI I/F */
715 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
716 	/* name, mask, shift, msr index, unit divisor */
717 	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
718 		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
719 	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
720 		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
721 	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
722 		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
723 	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
724 		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
725 	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
726 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
727 	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
728 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
729 	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
730 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
731 	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
732 		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
733 	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
734 		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
735 	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
736 		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
737 	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
738 		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
739 	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
740 		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
741 	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
742 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
743 	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
744 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
745 	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
746 		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
747 	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
748 		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
749 	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
750 		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
751 	/* non-hardware */
752 	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
753 		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
754 };
755 
get_rpi(struct rapl_package * rp,int prim)756 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
757 {
758 	struct rapl_primitive_info *rpi = rp->priv->rpi;
759 
760 	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
761 		return NULL;
762 
763 	return &rpi[prim];
764 }
765 
rapl_config(struct rapl_package * rp)766 static int rapl_config(struct rapl_package *rp)
767 {
768 	switch (rp->priv->type) {
769 	/* MMIO I/F shares the same register layout as MSR registers */
770 	case RAPL_IF_MMIO:
771 	case RAPL_IF_MSR:
772 		rp->priv->defaults = (void *)defaults_msr;
773 		rp->priv->rpi = (void *)rpi_msr;
774 		break;
775 	case RAPL_IF_TPMI:
776 		rp->priv->defaults = (void *)&defaults_tpmi;
777 		rp->priv->rpi = (void *)rpi_tpmi;
778 		break;
779 	default:
780 		return -EINVAL;
781 	}
782 
783 	/* defaults_msr can be NULL on unsupported platforms */
784 	if (!rp->priv->defaults || !rp->priv->rpi)
785 		return -ENODEV;
786 
787 	return 0;
788 }
789 
790 static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)791 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
792 {
793 	struct rapl_defaults *defaults = get_defaults(rd->rp);
794 
795 	if (!defaults->spr_psys_bits)
796 		return prim;
797 
798 	if (rd->id != RAPL_DOMAIN_PLATFORM)
799 		return prim;
800 
801 	switch (prim) {
802 	case POWER_LIMIT1:
803 		return PSYS_POWER_LIMIT1;
804 	case POWER_LIMIT2:
805 		return PSYS_POWER_LIMIT2;
806 	case PL1_ENABLE:
807 		return PSYS_PL1_ENABLE;
808 	case PL2_ENABLE:
809 		return PSYS_PL2_ENABLE;
810 	case TIME_WINDOW1:
811 		return PSYS_TIME_WINDOW1;
812 	case TIME_WINDOW2:
813 		return PSYS_TIME_WINDOW2;
814 	default:
815 		return prim;
816 	}
817 }
818 
819 /* Read primitive data based on its related struct rapl_primitive_info.
820  * if xlate flag is set, return translated data based on data units, i.e.
821  * time, energy, and power.
822  * RAPL MSRs are non-architectual and are laid out not consistently across
823  * domains. Here we use primitive info to allow writing consolidated access
824  * functions.
825  * For a given primitive, it is processed by MSR mask and shift. Unit conversion
826  * is pre-assigned based on RAPL unit MSRs read at init time.
827  * 63-------------------------- 31--------------------------- 0
828  * |                           xxxxx (mask)                   |
829  * |                                |<- shift ----------------|
830  * 63-------------------------- 31--------------------------- 0
831  */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)832 static int rapl_read_data_raw(struct rapl_domain *rd,
833 			      enum rapl_primitives prim, bool xlate, u64 *data)
834 {
835 	u64 value;
836 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
837 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
838 	struct reg_action ra;
839 
840 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
841 		return -EINVAL;
842 
843 	ra.reg = rd->regs[rpi->id];
844 	if (!ra.reg.val)
845 		return -EINVAL;
846 
847 	/* non-hardware data are collected by the polling thread */
848 	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
849 		*data = rd->rdd.primitives[prim];
850 		return 0;
851 	}
852 
853 	ra.mask = rpi->mask;
854 
855 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
856 		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
857 		return -EIO;
858 	}
859 
860 	value = ra.value >> rpi->shift;
861 
862 	if (xlate)
863 		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
864 	else
865 		*data = value;
866 
867 	return 0;
868 }
869 
870 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)871 static int rapl_write_data_raw(struct rapl_domain *rd,
872 			       enum rapl_primitives prim,
873 			       unsigned long long value)
874 {
875 	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
876 	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
877 	u64 bits;
878 	struct reg_action ra;
879 	int ret;
880 
881 	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
882 		return -EINVAL;
883 
884 	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
885 	bits <<= rpi->shift;
886 	bits &= rpi->mask;
887 
888 	memset(&ra, 0, sizeof(ra));
889 
890 	ra.reg = rd->regs[rpi->id];
891 	ra.mask = rpi->mask;
892 	ra.value = bits;
893 
894 	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
895 
896 	return ret;
897 }
898 
rapl_read_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,bool xlate,u64 * data)899 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
900 			      enum pl_prims pl_prim, bool xlate, u64 *data)
901 {
902 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
903 
904 	if (!is_pl_valid(rd, pl))
905 		return -EINVAL;
906 
907 	return rapl_read_data_raw(rd, prim, xlate, data);
908 }
909 
rapl_write_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,unsigned long long value)910 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
911 			       enum pl_prims pl_prim,
912 			       unsigned long long value)
913 {
914 	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
915 
916 	if (!is_pl_valid(rd, pl))
917 		return -EINVAL;
918 
919 	if (rd->rpl[pl].locked) {
920 		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
921 		return -EACCES;
922 	}
923 
924 	return rapl_write_data_raw(rd, prim, value);
925 }
926 /*
927  * Raw RAPL data stored in MSRs are in certain scales. We need to
928  * convert them into standard units based on the units reported in
929  * the RAPL unit MSRs. This is specific to CPUs as the method to
930  * calculate units differ on different CPUs.
931  * We convert the units to below format based on CPUs.
932  * i.e.
933  * energy unit: picoJoules  : Represented in picoJoules by default
934  * power unit : microWatts  : Represented in milliWatts by default
935  * time unit  : microseconds: Represented in seconds by default
936  */
rapl_check_unit_core(struct rapl_domain * rd)937 static int rapl_check_unit_core(struct rapl_domain *rd)
938 {
939 	struct reg_action ra;
940 	u32 value;
941 
942 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
943 	ra.mask = ~0;
944 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
945 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
946 			ra.reg.val, rd->rp->name, rd->name);
947 		return -ENODEV;
948 	}
949 
950 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
951 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
952 
953 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
954 	rd->power_unit = 1000000 / (1 << value);
955 
956 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
957 	rd->time_unit = 1000000 / (1 << value);
958 
959 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
960 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
961 
962 	return 0;
963 }
964 
rapl_check_unit_atom(struct rapl_domain * rd)965 static int rapl_check_unit_atom(struct rapl_domain *rd)
966 {
967 	struct reg_action ra;
968 	u32 value;
969 
970 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
971 	ra.mask = ~0;
972 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
973 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
974 			ra.reg.val, rd->rp->name, rd->name);
975 		return -ENODEV;
976 	}
977 
978 	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
979 	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
980 
981 	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
982 	rd->power_unit = (1 << value) * 1000;
983 
984 	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
985 	rd->time_unit = 1000000 / (1 << value);
986 
987 	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
988 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
989 
990 	return 0;
991 }
992 
power_limit_irq_save_cpu(void * info)993 static void power_limit_irq_save_cpu(void *info)
994 {
995 	u32 l, h = 0;
996 	struct rapl_package *rp = (struct rapl_package *)info;
997 
998 	/* save the state of PLN irq mask bit before disabling it */
999 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1000 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
1001 		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
1002 		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
1003 	}
1004 	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1005 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1006 }
1007 
1008 /* REVISIT:
1009  * When package power limit is set artificially low by RAPL, LVT
1010  * thermal interrupt for package power limit should be ignored
1011  * since we are not really exceeding the real limit. The intention
1012  * is to avoid excessive interrupts while we are trying to save power.
1013  * A useful feature might be routing the package_power_limit interrupt
1014  * to userspace via eventfd. once we have a usecase, this is simple
1015  * to do by adding an atomic notifier.
1016  */
1017 
package_power_limit_irq_save(struct rapl_package * rp)1018 static void package_power_limit_irq_save(struct rapl_package *rp)
1019 {
1020 	if (rp->lead_cpu < 0)
1021 		return;
1022 
1023 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024 		return;
1025 
1026 	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1027 }
1028 
1029 /*
1030  * Restore per package power limit interrupt enable state. Called from cpu
1031  * hotplug code on package removal.
1032  */
package_power_limit_irq_restore(struct rapl_package * rp)1033 static void package_power_limit_irq_restore(struct rapl_package *rp)
1034 {
1035 	u32 l, h;
1036 
1037 	if (rp->lead_cpu < 0)
1038 		return;
1039 
1040 	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1041 		return;
1042 
1043 	/* irq enable state not saved, nothing to restore */
1044 	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1045 		return;
1046 
1047 	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1048 
1049 	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1050 		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1051 	else
1052 		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1053 
1054 	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1055 }
1056 
set_floor_freq_default(struct rapl_domain * rd,bool mode)1057 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1058 {
1059 	int i;
1060 
1061 	/* always enable clamp such that p-state can go below OS requested
1062 	 * range. power capping priority over guranteed frequency.
1063 	 */
1064 	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1065 
1066 	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1067 		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1068 		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1069 	}
1070 }
1071 
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1072 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1073 {
1074 	static u32 power_ctrl_orig_val;
1075 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1076 	u32 mdata;
1077 
1078 	if (!defaults->floor_freq_reg_addr) {
1079 		pr_err("Invalid floor frequency config register\n");
1080 		return;
1081 	}
1082 
1083 	if (!power_ctrl_orig_val)
1084 		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1085 			      defaults->floor_freq_reg_addr,
1086 			      &power_ctrl_orig_val);
1087 	mdata = power_ctrl_orig_val;
1088 	if (enable) {
1089 		mdata &= ~(0x7f << 8);
1090 		mdata |= 1 << 8;
1091 	}
1092 	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1093 		       defaults->floor_freq_reg_addr, mdata);
1094 }
1095 
rapl_compute_time_window_core(struct rapl_domain * rd,u64 value,bool to_raw)1096 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1097 					 bool to_raw)
1098 {
1099 	u64 f, y;		/* fraction and exp. used for time unit */
1100 
1101 	/*
1102 	 * Special processing based on 2^Y*(1+F/4), refer
1103 	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1104 	 */
1105 	if (!to_raw) {
1106 		f = (value & 0x60) >> 5;
1107 		y = value & 0x1f;
1108 		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1109 	} else {
1110 		if (value < rd->time_unit)
1111 			return 0;
1112 
1113 		do_div(value, rd->time_unit);
1114 		y = ilog2(value);
1115 
1116 		/*
1117 		 * The target hardware field is 7 bits wide, so return all ones
1118 		 * if the exponent is too large.
1119 		 */
1120 		if (y > 0x1f)
1121 			return 0x7f;
1122 
1123 		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1124 		value = (y & 0x1f) | ((f & 0x3) << 5);
1125 	}
1126 	return value;
1127 }
1128 
rapl_compute_time_window_atom(struct rapl_domain * rd,u64 value,bool to_raw)1129 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1130 					 bool to_raw)
1131 {
1132 	/*
1133 	 * Atom time unit encoding is straight forward val * time_unit,
1134 	 * where time_unit is default to 1 sec. Never 0.
1135 	 */
1136 	if (!to_raw)
1137 		return (value) ? value * rd->time_unit : rd->time_unit;
1138 
1139 	value = div64_u64(value, rd->time_unit);
1140 
1141 	return value;
1142 }
1143 
1144 /* TPMI Unit register has different layout */
1145 #define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1146 #define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1147 #define TPMI_ENERGY_UNIT_OFFSET	0x06
1148 #define TPMI_ENERGY_UNIT_MASK	0x7C0
1149 #define TPMI_TIME_UNIT_OFFSET	0x0C
1150 #define TPMI_TIME_UNIT_MASK	0xF000
1151 
rapl_check_unit_tpmi(struct rapl_domain * rd)1152 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1153 {
1154 	struct reg_action ra;
1155 	u32 value;
1156 
1157 	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1158 	ra.mask = ~0;
1159 	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1160 		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1161 			ra.reg.val, rd->rp->name, rd->name);
1162 		return -ENODEV;
1163 	}
1164 
1165 	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1166 	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1167 
1168 	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1169 	rd->power_unit = 1000000 / (1 << value);
1170 
1171 	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1172 	rd->time_unit = 1000000 / (1 << value);
1173 
1174 	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1175 		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1176 
1177 	return 0;
1178 }
1179 
1180 static const struct rapl_defaults defaults_tpmi = {
1181 	.check_unit = rapl_check_unit_tpmi,
1182 	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1183 	.set_floor_freq = set_floor_freq_default,
1184 	.compute_time_window = rapl_compute_time_window_core,
1185 };
1186 
1187 static const struct rapl_defaults rapl_defaults_core = {
1188 	.floor_freq_reg_addr = 0,
1189 	.check_unit = rapl_check_unit_core,
1190 	.set_floor_freq = set_floor_freq_default,
1191 	.compute_time_window = rapl_compute_time_window_core,
1192 };
1193 
1194 static const struct rapl_defaults rapl_defaults_hsw_server = {
1195 	.check_unit = rapl_check_unit_core,
1196 	.set_floor_freq = set_floor_freq_default,
1197 	.compute_time_window = rapl_compute_time_window_core,
1198 	.dram_domain_energy_unit = 15300,
1199 };
1200 
1201 static const struct rapl_defaults rapl_defaults_spr_server = {
1202 	.check_unit = rapl_check_unit_core,
1203 	.set_floor_freq = set_floor_freq_default,
1204 	.compute_time_window = rapl_compute_time_window_core,
1205 	.psys_domain_energy_unit = 1000000000,
1206 	.spr_psys_bits = true,
1207 };
1208 
1209 static const struct rapl_defaults rapl_defaults_byt = {
1210 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1211 	.check_unit = rapl_check_unit_atom,
1212 	.set_floor_freq = set_floor_freq_atom,
1213 	.compute_time_window = rapl_compute_time_window_atom,
1214 };
1215 
1216 static const struct rapl_defaults rapl_defaults_tng = {
1217 	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1218 	.check_unit = rapl_check_unit_atom,
1219 	.set_floor_freq = set_floor_freq_atom,
1220 	.compute_time_window = rapl_compute_time_window_atom,
1221 };
1222 
1223 static const struct rapl_defaults rapl_defaults_ann = {
1224 	.floor_freq_reg_addr = 0,
1225 	.check_unit = rapl_check_unit_atom,
1226 	.set_floor_freq = NULL,
1227 	.compute_time_window = rapl_compute_time_window_atom,
1228 };
1229 
1230 static const struct rapl_defaults rapl_defaults_cht = {
1231 	.floor_freq_reg_addr = 0,
1232 	.check_unit = rapl_check_unit_atom,
1233 	.set_floor_freq = NULL,
1234 	.compute_time_window = rapl_compute_time_window_atom,
1235 };
1236 
1237 static const struct rapl_defaults rapl_defaults_amd = {
1238 	.check_unit = rapl_check_unit_core,
1239 };
1240 
1241 static const struct x86_cpu_id rapl_ids[] __initconst = {
1242 	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1243 	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
1244 
1245 	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1246 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
1247 
1248 	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1249 	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1250 	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1251 	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1252 
1253 	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1254 	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1255 	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1256 	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1257 
1258 	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1259 	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1260 	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1261 	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1262 	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1263 	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1264 	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1265 	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1266 	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1267 	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1268 	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1269 	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1270 	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1271 	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1272 	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1273 	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1274 	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1275 	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1276 	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1277 	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1278 	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1279 	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1280 	X86_MATCH_VFM(INTEL_BARTLETTLAKE,	&rapl_defaults_core),
1281 	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1282 	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1283 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1284 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1285 	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1286 	X86_MATCH_VFM(INTEL_PANTHERLAKE_L,	&rapl_defaults_core),
1287 	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1288 	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1289 	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1290 	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1291 
1292 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1293 	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1294 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1295 	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID2,&rapl_defaults_ann),
1296 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1297 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1298 	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1299 	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1300 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1301 	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1302 
1303 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1304 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1305 
1306 	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1307 	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1308 	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1309 	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1310 	{}
1311 };
1312 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1313 
1314 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1315 static void rapl_update_domain_data(struct rapl_package *rp)
1316 {
1317 	int dmn, prim;
1318 	u64 val;
1319 
1320 	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1321 		pr_debug("update %s domain %s data\n", rp->name,
1322 			 rp->domains[dmn].name);
1323 		/* exclude non-raw primitives */
1324 		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1325 			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1326 
1327 			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1328 						rpi->unit, &val))
1329 				rp->domains[dmn].rdd.primitives[prim] = val;
1330 		}
1331 	}
1332 
1333 }
1334 
rapl_package_register_powercap(struct rapl_package * rp)1335 static int rapl_package_register_powercap(struct rapl_package *rp)
1336 {
1337 	struct rapl_domain *rd;
1338 	struct powercap_zone *power_zone = NULL;
1339 	int nr_pl, ret;
1340 
1341 	/* Update the domain data of the new package */
1342 	rapl_update_domain_data(rp);
1343 
1344 	/* first we register package domain as the parent zone */
1345 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1346 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1347 			nr_pl = find_nr_power_limit(rd);
1348 			pr_debug("register package domain %s\n", rp->name);
1349 			power_zone = powercap_register_zone(&rd->power_zone,
1350 					    rp->priv->control_type, rp->name,
1351 					    NULL, &zone_ops[rd->id], nr_pl,
1352 					    &constraint_ops);
1353 			if (IS_ERR(power_zone)) {
1354 				pr_debug("failed to register power zone %s\n",
1355 					 rp->name);
1356 				return PTR_ERR(power_zone);
1357 			}
1358 			/* track parent zone in per package/socket data */
1359 			rp->power_zone = power_zone;
1360 			/* done, only one package domain per socket */
1361 			break;
1362 		}
1363 	}
1364 	if (!power_zone) {
1365 		pr_err("no package domain found, unknown topology!\n");
1366 		return -ENODEV;
1367 	}
1368 	/* now register domains as children of the socket/package */
1369 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1370 		struct powercap_zone *parent = rp->power_zone;
1371 
1372 		if (rd->id == RAPL_DOMAIN_PACKAGE)
1373 			continue;
1374 		if (rd->id == RAPL_DOMAIN_PLATFORM)
1375 			parent = NULL;
1376 		/* number of power limits per domain varies */
1377 		nr_pl = find_nr_power_limit(rd);
1378 		power_zone = powercap_register_zone(&rd->power_zone,
1379 						    rp->priv->control_type,
1380 						    rd->name, parent,
1381 						    &zone_ops[rd->id], nr_pl,
1382 						    &constraint_ops);
1383 
1384 		if (IS_ERR(power_zone)) {
1385 			pr_debug("failed to register power_zone, %s:%s\n",
1386 				 rp->name, rd->name);
1387 			ret = PTR_ERR(power_zone);
1388 			goto err_cleanup;
1389 		}
1390 	}
1391 	return 0;
1392 
1393 err_cleanup:
1394 	/*
1395 	 * Clean up previously initialized domains within the package if we
1396 	 * failed after the first domain setup.
1397 	 */
1398 	while (--rd >= rp->domains) {
1399 		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1400 		powercap_unregister_zone(rp->priv->control_type,
1401 					 &rd->power_zone);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
rapl_check_domain(int domain,struct rapl_package * rp)1407 static int rapl_check_domain(int domain, struct rapl_package *rp)
1408 {
1409 	struct reg_action ra;
1410 
1411 	switch (domain) {
1412 	case RAPL_DOMAIN_PACKAGE:
1413 	case RAPL_DOMAIN_PP0:
1414 	case RAPL_DOMAIN_PP1:
1415 	case RAPL_DOMAIN_DRAM:
1416 	case RAPL_DOMAIN_PLATFORM:
1417 		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1418 		break;
1419 	default:
1420 		pr_err("invalid domain id %d\n", domain);
1421 		return -EINVAL;
1422 	}
1423 	/* make sure domain counters are available and contains non-zero
1424 	 * values, otherwise skip it.
1425 	 */
1426 
1427 	ra.mask = ENERGY_STATUS_MASK;
1428 	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1429 		return -ENODEV;
1430 
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Get per domain energy/power/time unit.
1436  * RAPL Interfaces without per domain unit register will use the package
1437  * scope unit register to set per domain units.
1438  */
rapl_get_domain_unit(struct rapl_domain * rd)1439 static int rapl_get_domain_unit(struct rapl_domain *rd)
1440 {
1441 	struct rapl_defaults *defaults = get_defaults(rd->rp);
1442 	int ret;
1443 
1444 	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1445 		if (!rd->rp->priv->reg_unit.val) {
1446 			pr_err("No valid Unit register found\n");
1447 			return -ENODEV;
1448 		}
1449 		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1450 	}
1451 
1452 	if (!defaults->check_unit) {
1453 		pr_err("missing .check_unit() callback\n");
1454 		return -ENODEV;
1455 	}
1456 
1457 	ret = defaults->check_unit(rd);
1458 	if (ret)
1459 		return ret;
1460 
1461 	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1462 		rd->energy_unit = defaults->dram_domain_energy_unit;
1463 	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1464 		rd->energy_unit = defaults->psys_domain_energy_unit;
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Check if power limits are available. Two cases when they are not available:
1470  * 1. Locked by BIOS, in this case we still provide read-only access so that
1471  *    users can see what limit is set by the BIOS.
1472  * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1473  *    exist at all. In this case, we do not show the constraints in powercap.
1474  *
1475  * Called after domains are detected and initialized.
1476  */
rapl_detect_powerlimit(struct rapl_domain * rd)1477 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1478 {
1479 	u64 val64;
1480 	int i;
1481 
1482 	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1483 		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1484 			if (val64) {
1485 				rd->rpl[i].locked = true;
1486 				pr_info("%s:%s:%s locked by BIOS\n",
1487 					rd->rp->name, rd->name, pl_names[i]);
1488 			}
1489 		}
1490 
1491 		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1492 			rd->rpl[i].name = NULL;
1493 	}
1494 }
1495 
1496 /* Detect active and valid domains for the given CPU, caller must
1497  * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1498  */
rapl_detect_domains(struct rapl_package * rp)1499 static int rapl_detect_domains(struct rapl_package *rp)
1500 {
1501 	struct rapl_domain *rd;
1502 	int i;
1503 
1504 	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1505 		/* use physical package id to read counters */
1506 		if (!rapl_check_domain(i, rp)) {
1507 			rp->domain_map |= 1 << i;
1508 			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1509 		}
1510 	}
1511 	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1512 	if (!rp->nr_domains) {
1513 		pr_debug("no valid rapl domains found in %s\n", rp->name);
1514 		return -ENODEV;
1515 	}
1516 	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1517 
1518 	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1519 			      GFP_KERNEL);
1520 	if (!rp->domains)
1521 		return -ENOMEM;
1522 
1523 	rapl_init_domains(rp);
1524 
1525 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1526 		rapl_get_domain_unit(rd);
1527 		rapl_detect_powerlimit(rd);
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 #ifdef CONFIG_PERF_EVENTS
1534 
1535 /*
1536  * Support for RAPL PMU
1537  *
1538  * Register a PMU if any of the registered RAPL Packages have the requirement
1539  * of exposing its energy counters via Perf PMU.
1540  *
1541  * PMU Name:
1542  *	power
1543  *
1544  * Events:
1545  *	Name		Event id	RAPL Domain
1546  *	energy_cores	0x01		RAPL_DOMAIN_PP0
1547  *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1548  *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1549  *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1550  *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1551  *
1552  * Unit:
1553  *	Joules
1554  *
1555  * Scale:
1556  *	2.3283064365386962890625e-10
1557  *	The same RAPL domain in different RAPL Packages may have different
1558  *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1559  *	the fixed unit for all energy counters, and covert each hardware
1560  *	counter increase to N times of PMU event counter increases.
1561  *
1562  * This is fully compatible with the current MSR RAPL PMU. This means that
1563  * userspace programs like turbostat can use the same code to handle RAPL Perf
1564  * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1565  * underlying on the platform.
1566  *
1567  * Note that RAPL Packages can be probed/removed dynamically, and the events
1568  * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1569  * support is done on demand, which means
1570  * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1571  *    unsupported counters are not exposed.
1572  * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1573  *    supports new counters that are not supported by current PMU.
1574  * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1575  */
1576 
1577 struct rapl_pmu {
1578 	struct pmu pmu;			/* Perf PMU structure */
1579 	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1580 	unsigned long domain_map;	/* Events supported by current registered PMU */
1581 	bool registered;		/* Whether the PMU has been registered or not */
1582 };
1583 
1584 static struct rapl_pmu rapl_pmu;
1585 
1586 /* PMU helpers */
1587 
get_pmu_cpu(struct rapl_package * rp)1588 static int get_pmu_cpu(struct rapl_package *rp)
1589 {
1590 	int cpu;
1591 
1592 	if (!rp->has_pmu)
1593 		return nr_cpu_ids;
1594 
1595 	/* Only TPMI RAPL is supported for now */
1596 	if (rp->priv->type != RAPL_IF_TPMI)
1597 		return nr_cpu_ids;
1598 
1599 	/* TPMI RAPL uses any CPU in the package for PMU */
1600 	for_each_online_cpu(cpu)
1601 		if (topology_physical_package_id(cpu) == rp->id)
1602 			return cpu;
1603 
1604 	return nr_cpu_ids;
1605 }
1606 
is_rp_pmu_cpu(struct rapl_package * rp,int cpu)1607 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1608 {
1609 	if (!rp->has_pmu)
1610 		return false;
1611 
1612 	/* Only TPMI RAPL is supported for now */
1613 	if (rp->priv->type != RAPL_IF_TPMI)
1614 		return false;
1615 
1616 	/* TPMI RAPL uses any CPU in the package for PMU */
1617 	return topology_physical_package_id(cpu) == rp->id;
1618 }
1619 
event_to_pmu_data(struct perf_event * event)1620 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1621 {
1622 	struct rapl_package *rp = event->pmu_private;
1623 
1624 	return &rp->pmu_data;
1625 }
1626 
1627 /* PMU event callbacks */
1628 
event_read_counter(struct perf_event * event)1629 static u64 event_read_counter(struct perf_event *event)
1630 {
1631 	struct rapl_package *rp = event->pmu_private;
1632 	u64 val;
1633 	int ret;
1634 
1635 	/* Return 0 for unsupported events */
1636 	if (event->hw.idx < 0)
1637 		return 0;
1638 
1639 	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1640 
1641 	/* Return 0 for failed read */
1642 	if (ret)
1643 		return 0;
1644 
1645 	return val;
1646 }
1647 
__rapl_pmu_event_start(struct perf_event * event)1648 static void __rapl_pmu_event_start(struct perf_event *event)
1649 {
1650 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1651 
1652 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1653 		return;
1654 
1655 	event->hw.state = 0;
1656 
1657 	list_add_tail(&event->active_entry, &data->active_list);
1658 
1659 	local64_set(&event->hw.prev_count, event_read_counter(event));
1660 	if (++data->n_active == 1)
1661 		hrtimer_start(&data->hrtimer, data->timer_interval,
1662 			      HRTIMER_MODE_REL_PINNED);
1663 }
1664 
rapl_pmu_event_start(struct perf_event * event,int mode)1665 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1666 {
1667 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1668 	unsigned long flags;
1669 
1670 	raw_spin_lock_irqsave(&data->lock, flags);
1671 	__rapl_pmu_event_start(event);
1672 	raw_spin_unlock_irqrestore(&data->lock, flags);
1673 }
1674 
rapl_event_update(struct perf_event * event)1675 static u64 rapl_event_update(struct perf_event *event)
1676 {
1677 	struct hw_perf_event *hwc = &event->hw;
1678 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1679 	u64 prev_raw_count, new_raw_count;
1680 	s64 delta, sdelta;
1681 
1682 	/*
1683 	 * Follow the generic code to drain hwc->prev_count.
1684 	 * The loop is not expected to run for multiple times.
1685 	 */
1686 	prev_raw_count = local64_read(&hwc->prev_count);
1687 	do {
1688 		new_raw_count = event_read_counter(event);
1689 	} while (!local64_try_cmpxchg(&hwc->prev_count,
1690 		&prev_raw_count, new_raw_count));
1691 
1692 
1693 	/*
1694 	 * Now we have the new raw value and have updated the prev
1695 	 * timestamp already. We can now calculate the elapsed delta
1696 	 * (event-)time and add that to the generic event.
1697 	 */
1698 	delta = new_raw_count - prev_raw_count;
1699 
1700 	/*
1701 	 * Scale delta to smallest unit (2^-32)
1702 	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1703 	 * or use ldexp(count, -32).
1704 	 * Watts = Joules/Time delta
1705 	 */
1706 	sdelta = delta * data->scale[event->hw.flags];
1707 
1708 	local64_add(sdelta, &event->count);
1709 
1710 	return new_raw_count;
1711 }
1712 
rapl_pmu_event_stop(struct perf_event * event,int mode)1713 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1714 {
1715 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1716 	struct hw_perf_event *hwc = &event->hw;
1717 	unsigned long flags;
1718 
1719 	raw_spin_lock_irqsave(&data->lock, flags);
1720 
1721 	/* Mark event as deactivated and stopped */
1722 	if (!(hwc->state & PERF_HES_STOPPED)) {
1723 		WARN_ON_ONCE(data->n_active <= 0);
1724 		if (--data->n_active == 0)
1725 			hrtimer_cancel(&data->hrtimer);
1726 
1727 		list_del(&event->active_entry);
1728 
1729 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1730 		hwc->state |= PERF_HES_STOPPED;
1731 	}
1732 
1733 	/* Check if update of sw counter is necessary */
1734 	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1735 		/*
1736 		 * Drain the remaining delta count out of a event
1737 		 * that we are disabling:
1738 		 */
1739 		rapl_event_update(event);
1740 		hwc->state |= PERF_HES_UPTODATE;
1741 	}
1742 
1743 	raw_spin_unlock_irqrestore(&data->lock, flags);
1744 }
1745 
rapl_pmu_event_add(struct perf_event * event,int mode)1746 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1747 {
1748 	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1749 	struct hw_perf_event *hwc = &event->hw;
1750 	unsigned long flags;
1751 
1752 	raw_spin_lock_irqsave(&data->lock, flags);
1753 
1754 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1755 
1756 	if (mode & PERF_EF_START)
1757 		__rapl_pmu_event_start(event);
1758 
1759 	raw_spin_unlock_irqrestore(&data->lock, flags);
1760 
1761 	return 0;
1762 }
1763 
rapl_pmu_event_del(struct perf_event * event,int flags)1764 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1765 {
1766 	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1767 }
1768 
1769 /* RAPL PMU event ids, same as shown in sysfs */
1770 enum perf_rapl_events {
1771 	PERF_RAPL_PP0 = 1,	/* all cores */
1772 	PERF_RAPL_PKG,		/* entire package */
1773 	PERF_RAPL_RAM,		/* DRAM */
1774 	PERF_RAPL_PP1,		/* gpu */
1775 	PERF_RAPL_PSYS,		/* psys */
1776 	PERF_RAPL_MAX
1777 };
1778 #define RAPL_EVENT_MASK GENMASK(7, 0)
1779 
1780 static const int event_to_domain[PERF_RAPL_MAX] = {
1781 	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1782 	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1783 	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1784 	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1785 	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1786 };
1787 
rapl_pmu_event_init(struct perf_event * event)1788 static int rapl_pmu_event_init(struct perf_event *event)
1789 {
1790 	struct rapl_package *pos, *rp = NULL;
1791 	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1792 	int domain, idx;
1793 
1794 	/* Only look at RAPL events */
1795 	if (event->attr.type != event->pmu->type)
1796 		return -ENOENT;
1797 
1798 	/* Check for supported events only */
1799 	if (!cfg || cfg >= PERF_RAPL_MAX)
1800 		return -EINVAL;
1801 
1802 	if (event->cpu < 0)
1803 		return -EINVAL;
1804 
1805 	/* Find out which Package the event belongs to */
1806 	list_for_each_entry(pos, &rapl_packages, plist) {
1807 		if (is_rp_pmu_cpu(pos, event->cpu)) {
1808 			rp = pos;
1809 			break;
1810 		}
1811 	}
1812 	if (!rp)
1813 		return -ENODEV;
1814 
1815 	/* Find out which RAPL Domain the event belongs to */
1816 	domain = event_to_domain[cfg];
1817 
1818 	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1819 	event->pmu_private = rp;	/* Which package */
1820 	event->hw.flags = domain;	/* Which domain */
1821 
1822 	event->hw.idx = -1;
1823 	/* Find out the index in rp->domains[] to get domain pointer */
1824 	for (idx = 0; idx < rp->nr_domains; idx++) {
1825 		if (rp->domains[idx].id == domain) {
1826 			event->hw.idx = idx;
1827 			break;
1828 		}
1829 	}
1830 
1831 	return 0;
1832 }
1833 
rapl_pmu_event_read(struct perf_event * event)1834 static void rapl_pmu_event_read(struct perf_event *event)
1835 {
1836 	rapl_event_update(event);
1837 }
1838 
rapl_hrtimer_handle(struct hrtimer * hrtimer)1839 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1840 {
1841 	struct rapl_package_pmu_data *data =
1842 		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1843 	struct perf_event *event;
1844 	unsigned long flags;
1845 
1846 	if (!data->n_active)
1847 		return HRTIMER_NORESTART;
1848 
1849 	raw_spin_lock_irqsave(&data->lock, flags);
1850 
1851 	list_for_each_entry(event, &data->active_list, active_entry)
1852 		rapl_event_update(event);
1853 
1854 	raw_spin_unlock_irqrestore(&data->lock, flags);
1855 
1856 	hrtimer_forward_now(hrtimer, data->timer_interval);
1857 
1858 	return HRTIMER_RESTART;
1859 }
1860 
1861 /* PMU sysfs attributes */
1862 
1863 /*
1864  * There are no default events, but we need to create "events" group (with
1865  * empty attrs) before updating it with detected events.
1866  */
1867 static struct attribute *attrs_empty[] = {
1868 	NULL,
1869 };
1870 
1871 static struct attribute_group pmu_events_group = {
1872 	.name = "events",
1873 	.attrs = attrs_empty,
1874 };
1875 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)1876 static ssize_t cpumask_show(struct device *dev,
1877 			    struct device_attribute *attr, char *buf)
1878 {
1879 	struct rapl_package *rp;
1880 	cpumask_var_t cpu_mask;
1881 	int cpu;
1882 	int ret;
1883 
1884 	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1885 		return -ENOMEM;
1886 
1887 	cpus_read_lock();
1888 
1889 	cpumask_clear(cpu_mask);
1890 
1891 	/* Choose a cpu for each RAPL Package */
1892 	list_for_each_entry(rp, &rapl_packages, plist) {
1893 		cpu = get_pmu_cpu(rp);
1894 		if (cpu < nr_cpu_ids)
1895 			cpumask_set_cpu(cpu, cpu_mask);
1896 	}
1897 	cpus_read_unlock();
1898 
1899 	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1900 
1901 	free_cpumask_var(cpu_mask);
1902 
1903 	return ret;
1904 }
1905 
1906 static DEVICE_ATTR_RO(cpumask);
1907 
1908 static struct attribute *pmu_cpumask_attrs[] = {
1909 	&dev_attr_cpumask.attr,
1910 	NULL
1911 };
1912 
1913 static struct attribute_group pmu_cpumask_group = {
1914 	.attrs = pmu_cpumask_attrs,
1915 };
1916 
1917 PMU_FORMAT_ATTR(event, "config:0-7");
1918 static struct attribute *pmu_format_attr[] = {
1919 	&format_attr_event.attr,
1920 	NULL
1921 };
1922 
1923 static struct attribute_group pmu_format_group = {
1924 	.name = "format",
1925 	.attrs = pmu_format_attr,
1926 };
1927 
1928 static const struct attribute_group *pmu_attr_groups[] = {
1929 	&pmu_events_group,
1930 	&pmu_cpumask_group,
1931 	&pmu_format_group,
1932 	NULL
1933 };
1934 
1935 #define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1936 static struct perf_pmu_events_attr event_attr_##v = {				\
1937 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1938 	.event_str	= str,							\
1939 }
1940 
1941 RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1942 RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1943 RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1944 RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1945 RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1946 
1947 RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1948 RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1949 RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1950 RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1951 RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1952 
1953 RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1954 RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1955 RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1956 RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1957 RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1958 
1959 #define RAPL_EVENT_GROUP(_name, domain)			\
1960 static struct attribute *pmu_attr_##_name[] = {		\
1961 	&event_attr_rapl_##_name.attr.attr,		\
1962 	&event_attr_rapl_unit_##_name.attr.attr,	\
1963 	&event_attr_rapl_scale_##_name.attr.attr,	\
1964 	NULL						\
1965 };							\
1966 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1967 {											\
1968 	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1969 }							\
1970 static struct attribute_group pmu_group_##_name = {	\
1971 	.name  = "events",				\
1972 	.attrs = pmu_attr_##_name,			\
1973 	.is_visible = is_visible_##_name,		\
1974 }
1975 
1976 RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1977 RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1978 RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1979 RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1980 RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1981 
1982 static const struct attribute_group *pmu_attr_update[] = {
1983 	&pmu_group_cores,
1984 	&pmu_group_pkg,
1985 	&pmu_group_ram,
1986 	&pmu_group_gpu,
1987 	&pmu_group_psys,
1988 	NULL
1989 };
1990 
rapl_pmu_update(struct rapl_package * rp)1991 static int rapl_pmu_update(struct rapl_package *rp)
1992 {
1993 	int ret = 0;
1994 
1995 	/* Return if PMU already covers all events supported by current RAPL Package */
1996 	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1997 		goto end;
1998 
1999 	/* Unregister previous registered PMU */
2000 	if (rapl_pmu.registered)
2001 		perf_pmu_unregister(&rapl_pmu.pmu);
2002 
2003 	rapl_pmu.registered = false;
2004 	rapl_pmu.domain_map |= rp->domain_map;
2005 
2006 	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
2007 	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
2008 	rapl_pmu.pmu.attr_update = pmu_attr_update;
2009 	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
2010 	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
2011 	rapl_pmu.pmu.add = rapl_pmu_event_add;
2012 	rapl_pmu.pmu.del = rapl_pmu_event_del;
2013 	rapl_pmu.pmu.start = rapl_pmu_event_start;
2014 	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
2015 	rapl_pmu.pmu.read = rapl_pmu_event_read;
2016 	rapl_pmu.pmu.module = THIS_MODULE;
2017 	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
2018 	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2019 	if (ret) {
2020 		pr_info("Failed to register PMU\n");
2021 		return ret;
2022 	}
2023 
2024 	rapl_pmu.registered = true;
2025 end:
2026 	rp->has_pmu = true;
2027 	return ret;
2028 }
2029 
rapl_package_add_pmu(struct rapl_package * rp)2030 int rapl_package_add_pmu(struct rapl_package *rp)
2031 {
2032 	struct rapl_package_pmu_data *data = &rp->pmu_data;
2033 	int idx;
2034 
2035 	if (rp->has_pmu)
2036 		return -EEXIST;
2037 
2038 	guard(cpus_read_lock)();
2039 
2040 	for (idx = 0; idx < rp->nr_domains; idx++) {
2041 		struct rapl_domain *rd = &rp->domains[idx];
2042 		int domain = rd->id;
2043 		u64 val;
2044 
2045 		if (!test_bit(domain, &rp->domain_map))
2046 			continue;
2047 
2048 		/*
2049 		 * The RAPL PMU granularity is 2^-32 Joules
2050 		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2051 		 */
2052 		val = rd->energy_unit * (1ULL << 32);
2053 		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2054 		data->scale[domain] = val;
2055 
2056 		if (!rapl_pmu.timer_ms) {
2057 			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2058 
2059 			/*
2060 			 * Calculate the timer rate:
2061 			 * Use reference of 200W for scaling the timeout to avoid counter
2062 			 * overflows.
2063 			 *
2064 			 * max_count = rpi->mask >> rpi->shift + 1
2065 			 * max_energy_pj = max_count * rd->energy_unit
2066 			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2067 			 *
2068 			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2069 			 */
2070 			val = (rpi->mask >> rpi->shift) + 1;
2071 			val *= rd->energy_unit;
2072 			do_div(val, 1000000 * 200 * 2);
2073 			rapl_pmu.timer_ms = val;
2074 
2075 			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2076 		}
2077 
2078 		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2079 	}
2080 
2081 	/* Initialize per package PMU data */
2082 	raw_spin_lock_init(&data->lock);
2083 	INIT_LIST_HEAD(&data->active_list);
2084 	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2085 	hrtimer_setup(&data->hrtimer, rapl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2086 
2087 	return rapl_pmu_update(rp);
2088 }
2089 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2090 
rapl_package_remove_pmu(struct rapl_package * rp)2091 void rapl_package_remove_pmu(struct rapl_package *rp)
2092 {
2093 	struct rapl_package *pos;
2094 
2095 	if (!rp->has_pmu)
2096 		return;
2097 
2098 	guard(cpus_read_lock)();
2099 
2100 	list_for_each_entry(pos, &rapl_packages, plist) {
2101 		/* PMU is still needed */
2102 		if (pos->has_pmu && pos != rp)
2103 			return;
2104 	}
2105 
2106 	perf_pmu_unregister(&rapl_pmu.pmu);
2107 	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2108 }
2109 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2110 #endif
2111 
2112 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package_cpuslocked(struct rapl_package * rp)2113 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2114 {
2115 	struct rapl_domain *rd, *rd_package = NULL;
2116 
2117 	package_power_limit_irq_restore(rp);
2118 
2119 	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2120 		int i;
2121 
2122 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2123 			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2124 			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2125 		}
2126 
2127 		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2128 			rd_package = rd;
2129 			continue;
2130 		}
2131 		pr_debug("remove package, undo power limit on %s: %s\n",
2132 			 rp->name, rd->name);
2133 		powercap_unregister_zone(rp->priv->control_type,
2134 					 &rd->power_zone);
2135 	}
2136 	/* do parent zone last */
2137 	powercap_unregister_zone(rp->priv->control_type,
2138 				 &rd_package->power_zone);
2139 	list_del(&rp->plist);
2140 	kfree(rp);
2141 }
2142 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2143 
rapl_remove_package(struct rapl_package * rp)2144 void rapl_remove_package(struct rapl_package *rp)
2145 {
2146 	guard(cpus_read_lock)();
2147 	rapl_remove_package_cpuslocked(rp);
2148 }
2149 EXPORT_SYMBOL_GPL(rapl_remove_package);
2150 
2151 /*
2152  * RAPL Package energy counter scope:
2153  * 1. AMD/HYGON platforms use per-PKG package energy counter
2154  * 2. For Intel platforms
2155  *	2.1 CLX-AP platform has per-DIE package energy counter
2156  *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2157  *          package energy counter can be considered as per-PKG/per-DIE,
2158  *          here it is considered as per-DIE.
2159  *	2.3 New platforms that use TPMI RAPL doesn't care about the
2160  *	    scope because they are not MSR/CPU based.
2161  */
2162 #define rapl_msrs_are_pkg_scope()				\
2163 	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2164 	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2165 
2166 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2167 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2168 							 bool id_is_cpu)
2169 {
2170 	struct rapl_package *rp;
2171 	int uid;
2172 
2173 	if (id_is_cpu) {
2174 		uid = rapl_msrs_are_pkg_scope() ?
2175 		      topology_physical_package_id(id) : topology_logical_die_id(id);
2176 		if (uid < 0) {
2177 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2178 			return NULL;
2179 		}
2180 	}
2181 	else
2182 		uid = id;
2183 
2184 	list_for_each_entry(rp, &rapl_packages, plist) {
2185 		if (rp->id == uid
2186 		    && rp->priv->control_type == priv->control_type)
2187 			return rp;
2188 	}
2189 
2190 	return NULL;
2191 }
2192 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2193 
rapl_find_package_domain(int id,struct rapl_if_priv * priv,bool id_is_cpu)2194 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2195 {
2196 	guard(cpus_read_lock)();
2197 	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2198 }
2199 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2200 
2201 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2202 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2203 {
2204 	struct rapl_package *rp;
2205 	int ret;
2206 
2207 	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2208 	if (!rp)
2209 		return ERR_PTR(-ENOMEM);
2210 
2211 	if (id_is_cpu) {
2212 		rp->id = rapl_msrs_are_pkg_scope() ?
2213 			 topology_physical_package_id(id) : topology_logical_die_id(id);
2214 		if ((int)(rp->id) < 0) {
2215 			pr_err("topology_logical_(package/die)_id() returned a negative value");
2216 			return ERR_PTR(-EINVAL);
2217 		}
2218 		rp->lead_cpu = id;
2219 		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2220 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2221 				 topology_physical_package_id(id), topology_die_id(id));
2222 		else
2223 			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2224 				 topology_physical_package_id(id));
2225 	} else {
2226 		rp->id = id;
2227 		rp->lead_cpu = -1;
2228 		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2229 	}
2230 
2231 	rp->priv = priv;
2232 	ret = rapl_config(rp);
2233 	if (ret)
2234 		goto err_free_package;
2235 
2236 	/* check if the package contains valid domains */
2237 	if (rapl_detect_domains(rp)) {
2238 		ret = -ENODEV;
2239 		goto err_free_package;
2240 	}
2241 	ret = rapl_package_register_powercap(rp);
2242 	if (!ret) {
2243 		INIT_LIST_HEAD(&rp->plist);
2244 		list_add(&rp->plist, &rapl_packages);
2245 		return rp;
2246 	}
2247 
2248 err_free_package:
2249 	kfree(rp->domains);
2250 	kfree(rp);
2251 	return ERR_PTR(ret);
2252 }
2253 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2254 
rapl_add_package(int id,struct rapl_if_priv * priv,bool id_is_cpu)2255 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2256 {
2257 	guard(cpus_read_lock)();
2258 	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2259 }
2260 EXPORT_SYMBOL_GPL(rapl_add_package);
2261 
power_limit_state_save(void)2262 static void power_limit_state_save(void)
2263 {
2264 	struct rapl_package *rp;
2265 	struct rapl_domain *rd;
2266 	int ret, i;
2267 
2268 	cpus_read_lock();
2269 	list_for_each_entry(rp, &rapl_packages, plist) {
2270 		if (!rp->power_zone)
2271 			continue;
2272 		rd = power_zone_to_rapl_domain(rp->power_zone);
2273 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2274 			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2275 						 &rd->rpl[i].last_power_limit);
2276 			if (ret)
2277 				rd->rpl[i].last_power_limit = 0;
2278 		}
2279 	}
2280 	cpus_read_unlock();
2281 }
2282 
power_limit_state_restore(void)2283 static void power_limit_state_restore(void)
2284 {
2285 	struct rapl_package *rp;
2286 	struct rapl_domain *rd;
2287 	int i;
2288 
2289 	cpus_read_lock();
2290 	list_for_each_entry(rp, &rapl_packages, plist) {
2291 		if (!rp->power_zone)
2292 			continue;
2293 		rd = power_zone_to_rapl_domain(rp->power_zone);
2294 		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2295 			if (rd->rpl[i].last_power_limit)
2296 				rapl_write_pl_data(rd, i, PL_LIMIT,
2297 					       rd->rpl[i].last_power_limit);
2298 	}
2299 	cpus_read_unlock();
2300 }
2301 
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)2302 static int rapl_pm_callback(struct notifier_block *nb,
2303 			    unsigned long mode, void *_unused)
2304 {
2305 	switch (mode) {
2306 	case PM_SUSPEND_PREPARE:
2307 		power_limit_state_save();
2308 		break;
2309 	case PM_POST_SUSPEND:
2310 		power_limit_state_restore();
2311 		break;
2312 	}
2313 	return NOTIFY_OK;
2314 }
2315 
2316 static struct notifier_block rapl_pm_notifier = {
2317 	.notifier_call = rapl_pm_callback,
2318 };
2319 
2320 static struct platform_device *rapl_msr_platdev;
2321 
rapl_init(void)2322 static int __init rapl_init(void)
2323 {
2324 	const struct x86_cpu_id *id;
2325 	int ret;
2326 
2327 	id = x86_match_cpu(rapl_ids);
2328 	if (id) {
2329 		defaults_msr = (struct rapl_defaults *)id->driver_data;
2330 
2331 		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2332 		if (!rapl_msr_platdev)
2333 			return -ENOMEM;
2334 
2335 		ret = platform_device_add(rapl_msr_platdev);
2336 		if (ret) {
2337 			platform_device_put(rapl_msr_platdev);
2338 			return ret;
2339 		}
2340 	}
2341 
2342 	ret = register_pm_notifier(&rapl_pm_notifier);
2343 	if (ret && rapl_msr_platdev) {
2344 		platform_device_del(rapl_msr_platdev);
2345 		platform_device_put(rapl_msr_platdev);
2346 	}
2347 
2348 	return ret;
2349 }
2350 
rapl_exit(void)2351 static void __exit rapl_exit(void)
2352 {
2353 	platform_device_unregister(rapl_msr_platdev);
2354 	unregister_pm_notifier(&rapl_pm_notifier);
2355 }
2356 
2357 fs_initcall(rapl_init);
2358 module_exit(rapl_exit);
2359 
2360 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2361 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2362 MODULE_LICENSE("GPL v2");
2363