1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/bitmap.h>
9 #include <linux/cleanup.h>
10 #include <linux/cpu.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/intel_rapl.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/nospec.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/powercap.h>
22 #include <linux/processor.h>
23 #include <linux/slab.h>
24 #include <linux/suspend.h>
25 #include <linux/sysfs.h>
26 #include <linux/types.h>
27
28 #include <asm/cpu_device_id.h>
29 #include <asm/intel-family.h>
30 #include <asm/iosf_mbi.h>
31 #include <asm/msr.h>
32
33 /* bitmasks for RAPL MSRs, used by primitive access functions */
34 #define ENERGY_STATUS_MASK 0xffffffff
35
36 #define POWER_LIMIT1_MASK 0x7FFF
37 #define POWER_LIMIT1_ENABLE BIT(15)
38 #define POWER_LIMIT1_CLAMP BIT(16)
39
40 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
41 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
42 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
43 #define POWER_HIGH_LOCK BIT_ULL(63)
44 #define POWER_LOW_LOCK BIT(31)
45
46 #define POWER_LIMIT4_MASK 0x1FFF
47
48 #define TIME_WINDOW1_MASK (0x7FULL<<17)
49 #define TIME_WINDOW2_MASK (0x7FULL<<49)
50
51 #define POWER_UNIT_OFFSET 0
52 #define POWER_UNIT_MASK 0x0F
53
54 #define ENERGY_UNIT_OFFSET 0x08
55 #define ENERGY_UNIT_MASK 0x1F00
56
57 #define TIME_UNIT_OFFSET 0x10
58 #define TIME_UNIT_MASK 0xF0000
59
60 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
61 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
62 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
63 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
64
65 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
66 #define PP_POLICY_MASK 0x1F
67
68 /*
69 * SPR has different layout for Psys Domain PowerLimit registers.
70 * There are 17 bits of PL1 and PL2 instead of 15 bits.
71 * The Enable bits and TimeWindow bits are also shifted as a result.
72 */
73 #define PSYS_POWER_LIMIT1_MASK 0x1FFFF
74 #define PSYS_POWER_LIMIT1_ENABLE BIT(17)
75
76 #define PSYS_POWER_LIMIT2_MASK (0x1FFFFULL<<32)
77 #define PSYS_POWER_LIMIT2_ENABLE BIT_ULL(49)
78
79 #define PSYS_TIME_WINDOW1_MASK (0x7FULL<<19)
80 #define PSYS_TIME_WINDOW2_MASK (0x7FULL<<51)
81
82 /* bitmasks for RAPL TPMI, used by primitive access functions */
83 #define TPMI_POWER_LIMIT_MASK 0x3FFFF
84 #define TPMI_POWER_LIMIT_ENABLE BIT_ULL(62)
85 #define TPMI_TIME_WINDOW_MASK (0x7FULL<<18)
86 #define TPMI_INFO_SPEC_MASK 0x3FFFF
87 #define TPMI_INFO_MIN_MASK (0x3FFFFULL << 18)
88 #define TPMI_INFO_MAX_MASK (0x3FFFFULL << 36)
89 #define TPMI_INFO_MAX_TIME_WIN_MASK (0x7FULL << 54)
90
91 /* Non HW constants */
92 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
93 #define RAPL_PRIMITIVE_DUMMY BIT(2)
94
95 #define TIME_WINDOW_MAX_MSEC 40000
96 #define TIME_WINDOW_MIN_MSEC 250
97 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
98 enum unit_type {
99 ARBITRARY_UNIT, /* no translation */
100 POWER_UNIT,
101 ENERGY_UNIT,
102 TIME_UNIT,
103 };
104
105 /* per domain data, some are optional */
106 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
107
108 #define DOMAIN_STATE_INACTIVE BIT(0)
109 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
110
111 static const char *pl_names[NR_POWER_LIMITS] = {
112 [POWER_LIMIT1] = "long_term",
113 [POWER_LIMIT2] = "short_term",
114 [POWER_LIMIT4] = "peak_power",
115 };
116
117 enum pl_prims {
118 PL_ENABLE,
119 PL_CLAMP,
120 PL_LIMIT,
121 PL_TIME_WINDOW,
122 PL_MAX_POWER,
123 PL_LOCK,
124 };
125
is_pl_valid(struct rapl_domain * rd,int pl)126 static bool is_pl_valid(struct rapl_domain *rd, int pl)
127 {
128 if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
129 return false;
130 return rd->rpl[pl].name ? true : false;
131 }
132
get_pl_lock_prim(struct rapl_domain * rd,int pl)133 static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
134 {
135 if (rd->rp->priv->type == RAPL_IF_TPMI) {
136 if (pl == POWER_LIMIT1)
137 return PL1_LOCK;
138 if (pl == POWER_LIMIT2)
139 return PL2_LOCK;
140 if (pl == POWER_LIMIT4)
141 return PL4_LOCK;
142 }
143
144 /* MSR/MMIO Interface doesn't have Lock bit for PL4 */
145 if (pl == POWER_LIMIT4)
146 return -EINVAL;
147
148 /*
149 * Power Limit register that supports two power limits has a different
150 * bit position for the Lock bit.
151 */
152 if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
153 return FW_HIGH_LOCK;
154 return FW_LOCK;
155 }
156
get_pl_prim(struct rapl_domain * rd,int pl,enum pl_prims prim)157 static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
158 {
159 switch (pl) {
160 case POWER_LIMIT1:
161 if (prim == PL_ENABLE)
162 return PL1_ENABLE;
163 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
164 return PL1_CLAMP;
165 if (prim == PL_LIMIT)
166 return POWER_LIMIT1;
167 if (prim == PL_TIME_WINDOW)
168 return TIME_WINDOW1;
169 if (prim == PL_MAX_POWER)
170 return THERMAL_SPEC_POWER;
171 if (prim == PL_LOCK)
172 return get_pl_lock_prim(rd, pl);
173 return -EINVAL;
174 case POWER_LIMIT2:
175 if (prim == PL_ENABLE)
176 return PL2_ENABLE;
177 if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
178 return PL2_CLAMP;
179 if (prim == PL_LIMIT)
180 return POWER_LIMIT2;
181 if (prim == PL_TIME_WINDOW)
182 return TIME_WINDOW2;
183 if (prim == PL_MAX_POWER)
184 return MAX_POWER;
185 if (prim == PL_LOCK)
186 return get_pl_lock_prim(rd, pl);
187 return -EINVAL;
188 case POWER_LIMIT4:
189 if (prim == PL_LIMIT)
190 return POWER_LIMIT4;
191 if (prim == PL_ENABLE)
192 return PL4_ENABLE;
193 /* PL4 would be around two times PL2, use same prim as PL2. */
194 if (prim == PL_MAX_POWER)
195 return MAX_POWER;
196 if (prim == PL_LOCK)
197 return get_pl_lock_prim(rd, pl);
198 return -EINVAL;
199 default:
200 return -EINVAL;
201 }
202 }
203
204 #define power_zone_to_rapl_domain(_zone) \
205 container_of(_zone, struct rapl_domain, power_zone)
206
207 struct rapl_defaults {
208 u8 floor_freq_reg_addr;
209 int (*check_unit)(struct rapl_domain *rd);
210 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
211 u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
212 bool to_raw);
213 unsigned int dram_domain_energy_unit;
214 unsigned int psys_domain_energy_unit;
215 bool spr_psys_bits;
216 };
217 static struct rapl_defaults *defaults_msr;
218 static const struct rapl_defaults defaults_tpmi;
219
get_defaults(struct rapl_package * rp)220 static struct rapl_defaults *get_defaults(struct rapl_package *rp)
221 {
222 return rp->priv->defaults;
223 }
224
225 /* Sideband MBI registers */
226 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
227 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
228
229 #define PACKAGE_PLN_INT_SAVED BIT(0)
230 #define MAX_PRIM_NAME (32)
231
232 /* per domain data. used to describe individual knobs such that access function
233 * can be consolidated into one instead of many inline functions.
234 */
235 struct rapl_primitive_info {
236 const char *name;
237 u64 mask;
238 int shift;
239 enum rapl_domain_reg_id id;
240 enum unit_type unit;
241 u32 flag;
242 };
243
244 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
245 .name = #p, \
246 .mask = m, \
247 .shift = s, \
248 .id = i, \
249 .unit = u, \
250 .flag = f \
251 }
252
253 static void rapl_init_domains(struct rapl_package *rp);
254 static int rapl_read_data_raw(struct rapl_domain *rd,
255 enum rapl_primitives prim,
256 bool xlate, u64 *data);
257 static int rapl_write_data_raw(struct rapl_domain *rd,
258 enum rapl_primitives prim,
259 unsigned long long value);
260 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
261 enum pl_prims pl_prim,
262 bool xlate, u64 *data);
263 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
264 enum pl_prims pl_prim,
265 unsigned long long value);
266 static u64 rapl_unit_xlate(struct rapl_domain *rd,
267 enum unit_type type, u64 value, int to_raw);
268 static void package_power_limit_irq_save(struct rapl_package *rp);
269
270 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
271
272 static const char *const rapl_domain_names[] = {
273 "package",
274 "core",
275 "uncore",
276 "dram",
277 "psys",
278 };
279
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)280 static int get_energy_counter(struct powercap_zone *power_zone,
281 u64 *energy_raw)
282 {
283 struct rapl_domain *rd;
284 u64 energy_now;
285
286 /* prevent CPU hotplug, make sure the RAPL domain does not go
287 * away while reading the counter.
288 */
289 cpus_read_lock();
290 rd = power_zone_to_rapl_domain(power_zone);
291
292 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
293 *energy_raw = energy_now;
294 cpus_read_unlock();
295
296 return 0;
297 }
298 cpus_read_unlock();
299
300 return -EIO;
301 }
302
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)303 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
304 {
305 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
306
307 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
308 return 0;
309 }
310
release_zone(struct powercap_zone * power_zone)311 static int release_zone(struct powercap_zone *power_zone)
312 {
313 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
314 struct rapl_package *rp = rd->rp;
315
316 /* package zone is the last zone of a package, we can free
317 * memory here since all children has been unregistered.
318 */
319 if (rd->id == RAPL_DOMAIN_PACKAGE) {
320 kfree(rd);
321 rp->domains = NULL;
322 }
323
324 return 0;
325
326 }
327
find_nr_power_limit(struct rapl_domain * rd)328 static int find_nr_power_limit(struct rapl_domain *rd)
329 {
330 int i, nr_pl = 0;
331
332 for (i = 0; i < NR_POWER_LIMITS; i++) {
333 if (is_pl_valid(rd, i))
334 nr_pl++;
335 }
336
337 return nr_pl;
338 }
339
set_domain_enable(struct powercap_zone * power_zone,bool mode)340 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
341 {
342 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
343 struct rapl_defaults *defaults = get_defaults(rd->rp);
344 u64 val;
345 int ret;
346
347 cpus_read_lock();
348 ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
349 if (ret)
350 goto end;
351
352 ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, false, &val);
353 if (ret)
354 goto end;
355
356 if (mode != val) {
357 pr_debug("%s cannot be %s\n", power_zone->name,
358 str_enabled_disabled(mode));
359 goto end;
360 }
361
362 if (defaults->set_floor_freq)
363 defaults->set_floor_freq(rd, mode);
364
365 end:
366 cpus_read_unlock();
367
368 return ret;
369 }
370
get_domain_enable(struct powercap_zone * power_zone,bool * mode)371 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
372 {
373 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
374 u64 val;
375 int ret;
376
377 if (rd->rpl[POWER_LIMIT1].locked) {
378 *mode = false;
379 return 0;
380 }
381 cpus_read_lock();
382 ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
383 if (!ret)
384 *mode = val;
385 cpus_read_unlock();
386
387 return ret;
388 }
389
390 /* per RAPL domain ops, in the order of rapl_domain_type */
391 static const struct powercap_zone_ops zone_ops[] = {
392 /* RAPL_DOMAIN_PACKAGE */
393 {
394 .get_energy_uj = get_energy_counter,
395 .get_max_energy_range_uj = get_max_energy_counter,
396 .release = release_zone,
397 .set_enable = set_domain_enable,
398 .get_enable = get_domain_enable,
399 },
400 /* RAPL_DOMAIN_PP0 */
401 {
402 .get_energy_uj = get_energy_counter,
403 .get_max_energy_range_uj = get_max_energy_counter,
404 .release = release_zone,
405 .set_enable = set_domain_enable,
406 .get_enable = get_domain_enable,
407 },
408 /* RAPL_DOMAIN_PP1 */
409 {
410 .get_energy_uj = get_energy_counter,
411 .get_max_energy_range_uj = get_max_energy_counter,
412 .release = release_zone,
413 .set_enable = set_domain_enable,
414 .get_enable = get_domain_enable,
415 },
416 /* RAPL_DOMAIN_DRAM */
417 {
418 .get_energy_uj = get_energy_counter,
419 .get_max_energy_range_uj = get_max_energy_counter,
420 .release = release_zone,
421 .set_enable = set_domain_enable,
422 .get_enable = get_domain_enable,
423 },
424 /* RAPL_DOMAIN_PLATFORM */
425 {
426 .get_energy_uj = get_energy_counter,
427 .get_max_energy_range_uj = get_max_energy_counter,
428 .release = release_zone,
429 .set_enable = set_domain_enable,
430 .get_enable = get_domain_enable,
431 },
432 };
433
434 /*
435 * Constraint index used by powercap can be different than power limit (PL)
436 * index in that some PLs maybe missing due to non-existent MSRs. So we
437 * need to convert here by finding the valid PLs only (name populated).
438 */
contraint_to_pl(struct rapl_domain * rd,int cid)439 static int contraint_to_pl(struct rapl_domain *rd, int cid)
440 {
441 int i, j;
442
443 for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
444 if (is_pl_valid(rd, i) && j++ == cid) {
445 pr_debug("%s: index %d\n", __func__, i);
446 return i;
447 }
448 }
449 pr_err("Cannot find matching power limit for constraint %d\n", cid);
450
451 return -EINVAL;
452 }
453
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)454 static int set_power_limit(struct powercap_zone *power_zone, int cid,
455 u64 power_limit)
456 {
457 struct rapl_domain *rd;
458 struct rapl_package *rp;
459 int ret = 0;
460 int id;
461
462 cpus_read_lock();
463 rd = power_zone_to_rapl_domain(power_zone);
464 id = contraint_to_pl(rd, cid);
465 rp = rd->rp;
466
467 ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
468 if (!ret)
469 package_power_limit_irq_save(rp);
470 cpus_read_unlock();
471 return ret;
472 }
473
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)474 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
475 u64 *data)
476 {
477 struct rapl_domain *rd;
478 u64 val;
479 int ret = 0;
480 int id;
481
482 cpus_read_lock();
483 rd = power_zone_to_rapl_domain(power_zone);
484 id = contraint_to_pl(rd, cid);
485
486 ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
487 if (!ret)
488 *data = val;
489
490 cpus_read_unlock();
491
492 return ret;
493 }
494
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)495 static int set_time_window(struct powercap_zone *power_zone, int cid,
496 u64 window)
497 {
498 struct rapl_domain *rd;
499 int ret = 0;
500 int id;
501
502 cpus_read_lock();
503 rd = power_zone_to_rapl_domain(power_zone);
504 id = contraint_to_pl(rd, cid);
505
506 ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
507
508 cpus_read_unlock();
509 return ret;
510 }
511
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)512 static int get_time_window(struct powercap_zone *power_zone, int cid,
513 u64 *data)
514 {
515 struct rapl_domain *rd;
516 u64 val;
517 int ret = 0;
518 int id;
519
520 cpus_read_lock();
521 rd = power_zone_to_rapl_domain(power_zone);
522 id = contraint_to_pl(rd, cid);
523
524 ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
525 if (!ret)
526 *data = val;
527
528 cpus_read_unlock();
529
530 return ret;
531 }
532
get_constraint_name(struct powercap_zone * power_zone,int cid)533 static const char *get_constraint_name(struct powercap_zone *power_zone,
534 int cid)
535 {
536 struct rapl_domain *rd;
537 int id;
538
539 rd = power_zone_to_rapl_domain(power_zone);
540 id = contraint_to_pl(rd, cid);
541 if (id >= 0)
542 return rd->rpl[id].name;
543
544 return NULL;
545 }
546
get_max_power(struct powercap_zone * power_zone,int cid,u64 * data)547 static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
548 {
549 struct rapl_domain *rd;
550 u64 val;
551 int ret = 0;
552 int id;
553
554 cpus_read_lock();
555 rd = power_zone_to_rapl_domain(power_zone);
556 id = contraint_to_pl(rd, cid);
557
558 ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
559 if (!ret)
560 *data = val;
561
562 /* As a generalization rule, PL4 would be around two times PL2. */
563 if (id == POWER_LIMIT4)
564 *data = *data * 2;
565
566 cpus_read_unlock();
567
568 return ret;
569 }
570
571 static const struct powercap_zone_constraint_ops constraint_ops = {
572 .set_power_limit_uw = set_power_limit,
573 .get_power_limit_uw = get_current_power_limit,
574 .set_time_window_us = set_time_window,
575 .get_time_window_us = get_time_window,
576 .get_max_power_uw = get_max_power,
577 .get_name = get_constraint_name,
578 };
579
580 /* Return the id used for read_raw/write_raw callback */
get_rid(struct rapl_package * rp)581 static int get_rid(struct rapl_package *rp)
582 {
583 return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
584 }
585
586 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)587 static void rapl_init_domains(struct rapl_package *rp)
588 {
589 enum rapl_domain_type i;
590 enum rapl_domain_reg_id j;
591 struct rapl_domain *rd = rp->domains;
592
593 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
594 unsigned int mask = rp->domain_map & (1 << i);
595 int t;
596
597 if (!mask)
598 continue;
599
600 rd->rp = rp;
601
602 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
603 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
604 rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
605 rp->id);
606 } else {
607 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
608 rapl_domain_names[i]);
609 }
610
611 rd->id = i;
612
613 /* PL1 is supported by default */
614 rp->priv->limits[i] |= BIT(POWER_LIMIT1);
615
616 for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
617 if (rp->priv->limits[i] & BIT(t))
618 rd->rpl[t].name = pl_names[t];
619 }
620
621 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
622 rd->regs[j] = rp->priv->regs[i][j];
623
624 rd++;
625 }
626 }
627
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)628 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
629 u64 value, int to_raw)
630 {
631 u64 units = 1;
632 struct rapl_defaults *defaults = get_defaults(rd->rp);
633 u64 scale = 1;
634
635 switch (type) {
636 case POWER_UNIT:
637 units = rd->power_unit;
638 break;
639 case ENERGY_UNIT:
640 scale = ENERGY_UNIT_SCALE;
641 units = rd->energy_unit;
642 break;
643 case TIME_UNIT:
644 return defaults->compute_time_window(rd, value, to_raw);
645 case ARBITRARY_UNIT:
646 default:
647 return value;
648 }
649
650 if (to_raw)
651 return div64_u64(value, units) * scale;
652
653 value *= units;
654
655 return div64_u64(value, scale);
656 }
657
658 /* RAPL primitives for MSR and MMIO I/F */
659 static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
660 /* name, mask, shift, msr index, unit divisor */
661 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
662 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
663 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
664 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
665 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
666 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
667 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
668 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
669 [FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
670 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
671 [FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
672 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
673 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
674 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
675 [PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
676 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
677 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
678 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
679 [PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
680 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
681 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
682 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
683 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
684 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
685 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
686 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
687 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
688 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
689 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
690 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
691 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
692 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
693 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
694 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
695 [PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
696 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
697 [PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
698 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
699 [PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
700 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
701 [PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
702 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
703 [PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
704 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
705 [PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
706 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
707 [PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
708 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
709 /* non-hardware */
710 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
711 RAPL_PRIMITIVE_DERIVED),
712 };
713
714 /* RAPL primitives for TPMI I/F */
715 static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
716 /* name, mask, shift, msr index, unit divisor */
717 [POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
718 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
719 [POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
720 RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
721 [POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
722 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
723 [ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
724 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
725 [PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
726 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
727 [PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
728 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
729 [PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
730 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
731 [PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
732 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
733 [PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
734 RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
735 [PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
736 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
737 [TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
738 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
739 [TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
740 RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
741 [THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
742 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
743 [MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
744 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
745 [MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
746 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
747 [MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
748 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
749 [THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
750 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
751 /* non-hardware */
752 [AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
753 POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
754 };
755
get_rpi(struct rapl_package * rp,int prim)756 static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
757 {
758 struct rapl_primitive_info *rpi = rp->priv->rpi;
759
760 if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
761 return NULL;
762
763 return &rpi[prim];
764 }
765
rapl_config(struct rapl_package * rp)766 static int rapl_config(struct rapl_package *rp)
767 {
768 switch (rp->priv->type) {
769 /* MMIO I/F shares the same register layout as MSR registers */
770 case RAPL_IF_MMIO:
771 case RAPL_IF_MSR:
772 rp->priv->defaults = (void *)defaults_msr;
773 rp->priv->rpi = (void *)rpi_msr;
774 break;
775 case RAPL_IF_TPMI:
776 rp->priv->defaults = (void *)&defaults_tpmi;
777 rp->priv->rpi = (void *)rpi_tpmi;
778 break;
779 default:
780 return -EINVAL;
781 }
782
783 /* defaults_msr can be NULL on unsupported platforms */
784 if (!rp->priv->defaults || !rp->priv->rpi)
785 return -ENODEV;
786
787 return 0;
788 }
789
790 static enum rapl_primitives
prim_fixups(struct rapl_domain * rd,enum rapl_primitives prim)791 prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
792 {
793 struct rapl_defaults *defaults = get_defaults(rd->rp);
794
795 if (!defaults->spr_psys_bits)
796 return prim;
797
798 if (rd->id != RAPL_DOMAIN_PLATFORM)
799 return prim;
800
801 switch (prim) {
802 case POWER_LIMIT1:
803 return PSYS_POWER_LIMIT1;
804 case POWER_LIMIT2:
805 return PSYS_POWER_LIMIT2;
806 case PL1_ENABLE:
807 return PSYS_PL1_ENABLE;
808 case PL2_ENABLE:
809 return PSYS_PL2_ENABLE;
810 case TIME_WINDOW1:
811 return PSYS_TIME_WINDOW1;
812 case TIME_WINDOW2:
813 return PSYS_TIME_WINDOW2;
814 default:
815 return prim;
816 }
817 }
818
819 /* Read primitive data based on its related struct rapl_primitive_info.
820 * if xlate flag is set, return translated data based on data units, i.e.
821 * time, energy, and power.
822 * RAPL MSRs are non-architectual and are laid out not consistently across
823 * domains. Here we use primitive info to allow writing consolidated access
824 * functions.
825 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
826 * is pre-assigned based on RAPL unit MSRs read at init time.
827 * 63-------------------------- 31--------------------------- 0
828 * | xxxxx (mask) |
829 * | |<- shift ----------------|
830 * 63-------------------------- 31--------------------------- 0
831 */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)832 static int rapl_read_data_raw(struct rapl_domain *rd,
833 enum rapl_primitives prim, bool xlate, u64 *data)
834 {
835 u64 value;
836 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
837 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
838 struct reg_action ra;
839
840 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
841 return -EINVAL;
842
843 ra.reg = rd->regs[rpi->id];
844 if (!ra.reg.val)
845 return -EINVAL;
846
847 /* non-hardware data are collected by the polling thread */
848 if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
849 *data = rd->rdd.primitives[prim];
850 return 0;
851 }
852
853 ra.mask = rpi->mask;
854
855 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
856 pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
857 return -EIO;
858 }
859
860 value = ra.value >> rpi->shift;
861
862 if (xlate)
863 *data = rapl_unit_xlate(rd, rpi->unit, value, 0);
864 else
865 *data = value;
866
867 return 0;
868 }
869
870 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)871 static int rapl_write_data_raw(struct rapl_domain *rd,
872 enum rapl_primitives prim,
873 unsigned long long value)
874 {
875 enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
876 struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
877 u64 bits;
878 struct reg_action ra;
879 int ret;
880
881 if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
882 return -EINVAL;
883
884 bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
885 bits <<= rpi->shift;
886 bits &= rpi->mask;
887
888 memset(&ra, 0, sizeof(ra));
889
890 ra.reg = rd->regs[rpi->id];
891 ra.mask = rpi->mask;
892 ra.value = bits;
893
894 ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
895
896 return ret;
897 }
898
rapl_read_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,bool xlate,u64 * data)899 static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
900 enum pl_prims pl_prim, bool xlate, u64 *data)
901 {
902 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
903
904 if (!is_pl_valid(rd, pl))
905 return -EINVAL;
906
907 return rapl_read_data_raw(rd, prim, xlate, data);
908 }
909
rapl_write_pl_data(struct rapl_domain * rd,int pl,enum pl_prims pl_prim,unsigned long long value)910 static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
911 enum pl_prims pl_prim,
912 unsigned long long value)
913 {
914 enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
915
916 if (!is_pl_valid(rd, pl))
917 return -EINVAL;
918
919 if (rd->rpl[pl].locked) {
920 pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
921 return -EACCES;
922 }
923
924 return rapl_write_data_raw(rd, prim, value);
925 }
926 /*
927 * Raw RAPL data stored in MSRs are in certain scales. We need to
928 * convert them into standard units based on the units reported in
929 * the RAPL unit MSRs. This is specific to CPUs as the method to
930 * calculate units differ on different CPUs.
931 * We convert the units to below format based on CPUs.
932 * i.e.
933 * energy unit: picoJoules : Represented in picoJoules by default
934 * power unit : microWatts : Represented in milliWatts by default
935 * time unit : microseconds: Represented in seconds by default
936 */
rapl_check_unit_core(struct rapl_domain * rd)937 static int rapl_check_unit_core(struct rapl_domain *rd)
938 {
939 struct reg_action ra;
940 u32 value;
941
942 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
943 ra.mask = ~0;
944 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
945 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
946 ra.reg.val, rd->rp->name, rd->name);
947 return -ENODEV;
948 }
949
950 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
951 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
952
953 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
954 rd->power_unit = 1000000 / (1 << value);
955
956 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
957 rd->time_unit = 1000000 / (1 << value);
958
959 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
960 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
961
962 return 0;
963 }
964
rapl_check_unit_atom(struct rapl_domain * rd)965 static int rapl_check_unit_atom(struct rapl_domain *rd)
966 {
967 struct reg_action ra;
968 u32 value;
969
970 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
971 ra.mask = ~0;
972 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
973 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
974 ra.reg.val, rd->rp->name, rd->name);
975 return -ENODEV;
976 }
977
978 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
979 rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
980
981 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
982 rd->power_unit = (1 << value) * 1000;
983
984 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
985 rd->time_unit = 1000000 / (1 << value);
986
987 pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
988 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
989
990 return 0;
991 }
992
power_limit_irq_save_cpu(void * info)993 static void power_limit_irq_save_cpu(void *info)
994 {
995 u32 l, h = 0;
996 struct rapl_package *rp = (struct rapl_package *)info;
997
998 /* save the state of PLN irq mask bit before disabling it */
999 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1000 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
1001 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
1002 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
1003 }
1004 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1005 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1006 }
1007
1008 /* REVISIT:
1009 * When package power limit is set artificially low by RAPL, LVT
1010 * thermal interrupt for package power limit should be ignored
1011 * since we are not really exceeding the real limit. The intention
1012 * is to avoid excessive interrupts while we are trying to save power.
1013 * A useful feature might be routing the package_power_limit interrupt
1014 * to userspace via eventfd. once we have a usecase, this is simple
1015 * to do by adding an atomic notifier.
1016 */
1017
package_power_limit_irq_save(struct rapl_package * rp)1018 static void package_power_limit_irq_save(struct rapl_package *rp)
1019 {
1020 if (rp->lead_cpu < 0)
1021 return;
1022
1023 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024 return;
1025
1026 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1027 }
1028
1029 /*
1030 * Restore per package power limit interrupt enable state. Called from cpu
1031 * hotplug code on package removal.
1032 */
package_power_limit_irq_restore(struct rapl_package * rp)1033 static void package_power_limit_irq_restore(struct rapl_package *rp)
1034 {
1035 u32 l, h;
1036
1037 if (rp->lead_cpu < 0)
1038 return;
1039
1040 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1041 return;
1042
1043 /* irq enable state not saved, nothing to restore */
1044 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1045 return;
1046
1047 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1048
1049 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1050 l |= PACKAGE_THERM_INT_PLN_ENABLE;
1051 else
1052 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1053
1054 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1055 }
1056
set_floor_freq_default(struct rapl_domain * rd,bool mode)1057 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1058 {
1059 int i;
1060
1061 /* always enable clamp such that p-state can go below OS requested
1062 * range. power capping priority over guranteed frequency.
1063 */
1064 rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1065
1066 for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1067 rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1068 rapl_write_pl_data(rd, i, PL_CLAMP, mode);
1069 }
1070 }
1071
set_floor_freq_atom(struct rapl_domain * rd,bool enable)1072 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1073 {
1074 static u32 power_ctrl_orig_val;
1075 struct rapl_defaults *defaults = get_defaults(rd->rp);
1076 u32 mdata;
1077
1078 if (!defaults->floor_freq_reg_addr) {
1079 pr_err("Invalid floor frequency config register\n");
1080 return;
1081 }
1082
1083 if (!power_ctrl_orig_val)
1084 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1085 defaults->floor_freq_reg_addr,
1086 &power_ctrl_orig_val);
1087 mdata = power_ctrl_orig_val;
1088 if (enable) {
1089 mdata &= ~(0x7f << 8);
1090 mdata |= 1 << 8;
1091 }
1092 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1093 defaults->floor_freq_reg_addr, mdata);
1094 }
1095
rapl_compute_time_window_core(struct rapl_domain * rd,u64 value,bool to_raw)1096 static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1097 bool to_raw)
1098 {
1099 u64 f, y; /* fraction and exp. used for time unit */
1100
1101 /*
1102 * Special processing based on 2^Y*(1+F/4), refer
1103 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1104 */
1105 if (!to_raw) {
1106 f = (value & 0x60) >> 5;
1107 y = value & 0x1f;
1108 value = (1 << y) * (4 + f) * rd->time_unit / 4;
1109 } else {
1110 if (value < rd->time_unit)
1111 return 0;
1112
1113 do_div(value, rd->time_unit);
1114 y = ilog2(value);
1115
1116 /*
1117 * The target hardware field is 7 bits wide, so return all ones
1118 * if the exponent is too large.
1119 */
1120 if (y > 0x1f)
1121 return 0x7f;
1122
1123 f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1124 value = (y & 0x1f) | ((f & 0x3) << 5);
1125 }
1126 return value;
1127 }
1128
rapl_compute_time_window_atom(struct rapl_domain * rd,u64 value,bool to_raw)1129 static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1130 bool to_raw)
1131 {
1132 /*
1133 * Atom time unit encoding is straight forward val * time_unit,
1134 * where time_unit is default to 1 sec. Never 0.
1135 */
1136 if (!to_raw)
1137 return (value) ? value * rd->time_unit : rd->time_unit;
1138
1139 value = div64_u64(value, rd->time_unit);
1140
1141 return value;
1142 }
1143
1144 /* TPMI Unit register has different layout */
1145 #define TPMI_POWER_UNIT_OFFSET POWER_UNIT_OFFSET
1146 #define TPMI_POWER_UNIT_MASK POWER_UNIT_MASK
1147 #define TPMI_ENERGY_UNIT_OFFSET 0x06
1148 #define TPMI_ENERGY_UNIT_MASK 0x7C0
1149 #define TPMI_TIME_UNIT_OFFSET 0x0C
1150 #define TPMI_TIME_UNIT_MASK 0xF000
1151
rapl_check_unit_tpmi(struct rapl_domain * rd)1152 static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1153 {
1154 struct reg_action ra;
1155 u32 value;
1156
1157 ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1158 ra.mask = ~0;
1159 if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1160 pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1161 ra.reg.val, rd->rp->name, rd->name);
1162 return -ENODEV;
1163 }
1164
1165 value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1166 rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1167
1168 value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1169 rd->power_unit = 1000000 / (1 << value);
1170
1171 value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1172 rd->time_unit = 1000000 / (1 << value);
1173
1174 pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1175 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1176
1177 return 0;
1178 }
1179
1180 static const struct rapl_defaults defaults_tpmi = {
1181 .check_unit = rapl_check_unit_tpmi,
1182 /* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1183 .set_floor_freq = set_floor_freq_default,
1184 .compute_time_window = rapl_compute_time_window_core,
1185 };
1186
1187 static const struct rapl_defaults rapl_defaults_core = {
1188 .floor_freq_reg_addr = 0,
1189 .check_unit = rapl_check_unit_core,
1190 .set_floor_freq = set_floor_freq_default,
1191 .compute_time_window = rapl_compute_time_window_core,
1192 };
1193
1194 static const struct rapl_defaults rapl_defaults_hsw_server = {
1195 .check_unit = rapl_check_unit_core,
1196 .set_floor_freq = set_floor_freq_default,
1197 .compute_time_window = rapl_compute_time_window_core,
1198 .dram_domain_energy_unit = 15300,
1199 };
1200
1201 static const struct rapl_defaults rapl_defaults_spr_server = {
1202 .check_unit = rapl_check_unit_core,
1203 .set_floor_freq = set_floor_freq_default,
1204 .compute_time_window = rapl_compute_time_window_core,
1205 .psys_domain_energy_unit = 1000000000,
1206 .spr_psys_bits = true,
1207 };
1208
1209 static const struct rapl_defaults rapl_defaults_byt = {
1210 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1211 .check_unit = rapl_check_unit_atom,
1212 .set_floor_freq = set_floor_freq_atom,
1213 .compute_time_window = rapl_compute_time_window_atom,
1214 };
1215
1216 static const struct rapl_defaults rapl_defaults_tng = {
1217 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1218 .check_unit = rapl_check_unit_atom,
1219 .set_floor_freq = set_floor_freq_atom,
1220 .compute_time_window = rapl_compute_time_window_atom,
1221 };
1222
1223 static const struct rapl_defaults rapl_defaults_ann = {
1224 .floor_freq_reg_addr = 0,
1225 .check_unit = rapl_check_unit_atom,
1226 .set_floor_freq = NULL,
1227 .compute_time_window = rapl_compute_time_window_atom,
1228 };
1229
1230 static const struct rapl_defaults rapl_defaults_cht = {
1231 .floor_freq_reg_addr = 0,
1232 .check_unit = rapl_check_unit_atom,
1233 .set_floor_freq = NULL,
1234 .compute_time_window = rapl_compute_time_window_atom,
1235 };
1236
1237 static const struct rapl_defaults rapl_defaults_amd = {
1238 .check_unit = rapl_check_unit_core,
1239 };
1240
1241 static const struct x86_cpu_id rapl_ids[] __initconst = {
1242 X86_MATCH_VFM(INTEL_SANDYBRIDGE, &rapl_defaults_core),
1243 X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &rapl_defaults_core),
1244
1245 X86_MATCH_VFM(INTEL_IVYBRIDGE, &rapl_defaults_core),
1246 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &rapl_defaults_core),
1247
1248 X86_MATCH_VFM(INTEL_HASWELL, &rapl_defaults_core),
1249 X86_MATCH_VFM(INTEL_HASWELL_L, &rapl_defaults_core),
1250 X86_MATCH_VFM(INTEL_HASWELL_G, &rapl_defaults_core),
1251 X86_MATCH_VFM(INTEL_HASWELL_X, &rapl_defaults_hsw_server),
1252
1253 X86_MATCH_VFM(INTEL_BROADWELL, &rapl_defaults_core),
1254 X86_MATCH_VFM(INTEL_BROADWELL_G, &rapl_defaults_core),
1255 X86_MATCH_VFM(INTEL_BROADWELL_D, &rapl_defaults_core),
1256 X86_MATCH_VFM(INTEL_BROADWELL_X, &rapl_defaults_hsw_server),
1257
1258 X86_MATCH_VFM(INTEL_SKYLAKE, &rapl_defaults_core),
1259 X86_MATCH_VFM(INTEL_SKYLAKE_L, &rapl_defaults_core),
1260 X86_MATCH_VFM(INTEL_SKYLAKE_X, &rapl_defaults_hsw_server),
1261 X86_MATCH_VFM(INTEL_KABYLAKE_L, &rapl_defaults_core),
1262 X86_MATCH_VFM(INTEL_KABYLAKE, &rapl_defaults_core),
1263 X86_MATCH_VFM(INTEL_CANNONLAKE_L, &rapl_defaults_core),
1264 X86_MATCH_VFM(INTEL_ICELAKE_L, &rapl_defaults_core),
1265 X86_MATCH_VFM(INTEL_ICELAKE, &rapl_defaults_core),
1266 X86_MATCH_VFM(INTEL_ICELAKE_NNPI, &rapl_defaults_core),
1267 X86_MATCH_VFM(INTEL_ICELAKE_X, &rapl_defaults_hsw_server),
1268 X86_MATCH_VFM(INTEL_ICELAKE_D, &rapl_defaults_hsw_server),
1269 X86_MATCH_VFM(INTEL_COMETLAKE_L, &rapl_defaults_core),
1270 X86_MATCH_VFM(INTEL_COMETLAKE, &rapl_defaults_core),
1271 X86_MATCH_VFM(INTEL_TIGERLAKE_L, &rapl_defaults_core),
1272 X86_MATCH_VFM(INTEL_TIGERLAKE, &rapl_defaults_core),
1273 X86_MATCH_VFM(INTEL_ROCKETLAKE, &rapl_defaults_core),
1274 X86_MATCH_VFM(INTEL_ALDERLAKE, &rapl_defaults_core),
1275 X86_MATCH_VFM(INTEL_ALDERLAKE_L, &rapl_defaults_core),
1276 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, &rapl_defaults_core),
1277 X86_MATCH_VFM(INTEL_RAPTORLAKE, &rapl_defaults_core),
1278 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, &rapl_defaults_core),
1279 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, &rapl_defaults_core),
1280 X86_MATCH_VFM(INTEL_BARTLETTLAKE, &rapl_defaults_core),
1281 X86_MATCH_VFM(INTEL_METEORLAKE, &rapl_defaults_core),
1282 X86_MATCH_VFM(INTEL_METEORLAKE_L, &rapl_defaults_core),
1283 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1284 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &rapl_defaults_spr_server),
1285 X86_MATCH_VFM(INTEL_LUNARLAKE_M, &rapl_defaults_core),
1286 X86_MATCH_VFM(INTEL_PANTHERLAKE_L, &rapl_defaults_core),
1287 X86_MATCH_VFM(INTEL_ARROWLAKE_H, &rapl_defaults_core),
1288 X86_MATCH_VFM(INTEL_ARROWLAKE, &rapl_defaults_core),
1289 X86_MATCH_VFM(INTEL_ARROWLAKE_U, &rapl_defaults_core),
1290 X86_MATCH_VFM(INTEL_LAKEFIELD, &rapl_defaults_core),
1291
1292 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT, &rapl_defaults_byt),
1293 X86_MATCH_VFM(INTEL_ATOM_AIRMONT, &rapl_defaults_cht),
1294 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1295 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID2,&rapl_defaults_ann),
1296 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT, &rapl_defaults_core),
1297 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1298 X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D, &rapl_defaults_core),
1299 X86_MATCH_VFM(INTEL_ATOM_TREMONT, &rapl_defaults_core),
1300 X86_MATCH_VFM(INTEL_ATOM_TREMONT_D, &rapl_defaults_core),
1301 X86_MATCH_VFM(INTEL_ATOM_TREMONT_L, &rapl_defaults_core),
1302
1303 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &rapl_defaults_hsw_server),
1304 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &rapl_defaults_hsw_server),
1305
1306 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1307 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1308 X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1309 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1310 {}
1311 };
1312 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1313
1314 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1315 static void rapl_update_domain_data(struct rapl_package *rp)
1316 {
1317 int dmn, prim;
1318 u64 val;
1319
1320 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1321 pr_debug("update %s domain %s data\n", rp->name,
1322 rp->domains[dmn].name);
1323 /* exclude non-raw primitives */
1324 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1325 struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1326
1327 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1328 rpi->unit, &val))
1329 rp->domains[dmn].rdd.primitives[prim] = val;
1330 }
1331 }
1332
1333 }
1334
rapl_package_register_powercap(struct rapl_package * rp)1335 static int rapl_package_register_powercap(struct rapl_package *rp)
1336 {
1337 struct rapl_domain *rd;
1338 struct powercap_zone *power_zone = NULL;
1339 int nr_pl, ret;
1340
1341 /* Update the domain data of the new package */
1342 rapl_update_domain_data(rp);
1343
1344 /* first we register package domain as the parent zone */
1345 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1346 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1347 nr_pl = find_nr_power_limit(rd);
1348 pr_debug("register package domain %s\n", rp->name);
1349 power_zone = powercap_register_zone(&rd->power_zone,
1350 rp->priv->control_type, rp->name,
1351 NULL, &zone_ops[rd->id], nr_pl,
1352 &constraint_ops);
1353 if (IS_ERR(power_zone)) {
1354 pr_debug("failed to register power zone %s\n",
1355 rp->name);
1356 return PTR_ERR(power_zone);
1357 }
1358 /* track parent zone in per package/socket data */
1359 rp->power_zone = power_zone;
1360 /* done, only one package domain per socket */
1361 break;
1362 }
1363 }
1364 if (!power_zone) {
1365 pr_err("no package domain found, unknown topology!\n");
1366 return -ENODEV;
1367 }
1368 /* now register domains as children of the socket/package */
1369 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1370 struct powercap_zone *parent = rp->power_zone;
1371
1372 if (rd->id == RAPL_DOMAIN_PACKAGE)
1373 continue;
1374 if (rd->id == RAPL_DOMAIN_PLATFORM)
1375 parent = NULL;
1376 /* number of power limits per domain varies */
1377 nr_pl = find_nr_power_limit(rd);
1378 power_zone = powercap_register_zone(&rd->power_zone,
1379 rp->priv->control_type,
1380 rd->name, parent,
1381 &zone_ops[rd->id], nr_pl,
1382 &constraint_ops);
1383
1384 if (IS_ERR(power_zone)) {
1385 pr_debug("failed to register power_zone, %s:%s\n",
1386 rp->name, rd->name);
1387 ret = PTR_ERR(power_zone);
1388 goto err_cleanup;
1389 }
1390 }
1391 return 0;
1392
1393 err_cleanup:
1394 /*
1395 * Clean up previously initialized domains within the package if we
1396 * failed after the first domain setup.
1397 */
1398 while (--rd >= rp->domains) {
1399 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1400 powercap_unregister_zone(rp->priv->control_type,
1401 &rd->power_zone);
1402 }
1403
1404 return ret;
1405 }
1406
rapl_check_domain(int domain,struct rapl_package * rp)1407 static int rapl_check_domain(int domain, struct rapl_package *rp)
1408 {
1409 struct reg_action ra;
1410
1411 switch (domain) {
1412 case RAPL_DOMAIN_PACKAGE:
1413 case RAPL_DOMAIN_PP0:
1414 case RAPL_DOMAIN_PP1:
1415 case RAPL_DOMAIN_DRAM:
1416 case RAPL_DOMAIN_PLATFORM:
1417 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1418 break;
1419 default:
1420 pr_err("invalid domain id %d\n", domain);
1421 return -EINVAL;
1422 }
1423 /* make sure domain counters are available and contains non-zero
1424 * values, otherwise skip it.
1425 */
1426
1427 ra.mask = ENERGY_STATUS_MASK;
1428 if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1429 return -ENODEV;
1430
1431 return 0;
1432 }
1433
1434 /*
1435 * Get per domain energy/power/time unit.
1436 * RAPL Interfaces without per domain unit register will use the package
1437 * scope unit register to set per domain units.
1438 */
rapl_get_domain_unit(struct rapl_domain * rd)1439 static int rapl_get_domain_unit(struct rapl_domain *rd)
1440 {
1441 struct rapl_defaults *defaults = get_defaults(rd->rp);
1442 int ret;
1443
1444 if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1445 if (!rd->rp->priv->reg_unit.val) {
1446 pr_err("No valid Unit register found\n");
1447 return -ENODEV;
1448 }
1449 rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1450 }
1451
1452 if (!defaults->check_unit) {
1453 pr_err("missing .check_unit() callback\n");
1454 return -ENODEV;
1455 }
1456
1457 ret = defaults->check_unit(rd);
1458 if (ret)
1459 return ret;
1460
1461 if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1462 rd->energy_unit = defaults->dram_domain_energy_unit;
1463 if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1464 rd->energy_unit = defaults->psys_domain_energy_unit;
1465 return 0;
1466 }
1467
1468 /*
1469 * Check if power limits are available. Two cases when they are not available:
1470 * 1. Locked by BIOS, in this case we still provide read-only access so that
1471 * users can see what limit is set by the BIOS.
1472 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1473 * exist at all. In this case, we do not show the constraints in powercap.
1474 *
1475 * Called after domains are detected and initialized.
1476 */
rapl_detect_powerlimit(struct rapl_domain * rd)1477 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1478 {
1479 u64 val64;
1480 int i;
1481
1482 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1483 if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1484 if (val64) {
1485 rd->rpl[i].locked = true;
1486 pr_info("%s:%s:%s locked by BIOS\n",
1487 rd->rp->name, rd->name, pl_names[i]);
1488 }
1489 }
1490
1491 if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1492 rd->rpl[i].name = NULL;
1493 }
1494 }
1495
1496 /* Detect active and valid domains for the given CPU, caller must
1497 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1498 */
rapl_detect_domains(struct rapl_package * rp)1499 static int rapl_detect_domains(struct rapl_package *rp)
1500 {
1501 struct rapl_domain *rd;
1502 int i;
1503
1504 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1505 /* use physical package id to read counters */
1506 if (!rapl_check_domain(i, rp)) {
1507 rp->domain_map |= 1 << i;
1508 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1509 }
1510 }
1511 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1512 if (!rp->nr_domains) {
1513 pr_debug("no valid rapl domains found in %s\n", rp->name);
1514 return -ENODEV;
1515 }
1516 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1517
1518 rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1519 GFP_KERNEL);
1520 if (!rp->domains)
1521 return -ENOMEM;
1522
1523 rapl_init_domains(rp);
1524
1525 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1526 rapl_get_domain_unit(rd);
1527 rapl_detect_powerlimit(rd);
1528 }
1529
1530 return 0;
1531 }
1532
1533 #ifdef CONFIG_PERF_EVENTS
1534
1535 /*
1536 * Support for RAPL PMU
1537 *
1538 * Register a PMU if any of the registered RAPL Packages have the requirement
1539 * of exposing its energy counters via Perf PMU.
1540 *
1541 * PMU Name:
1542 * power
1543 *
1544 * Events:
1545 * Name Event id RAPL Domain
1546 * energy_cores 0x01 RAPL_DOMAIN_PP0
1547 * energy_pkg 0x02 RAPL_DOMAIN_PACKAGE
1548 * energy_ram 0x03 RAPL_DOMAIN_DRAM
1549 * energy_gpu 0x04 RAPL_DOMAIN_PP1
1550 * energy_psys 0x05 RAPL_DOMAIN_PLATFORM
1551 *
1552 * Unit:
1553 * Joules
1554 *
1555 * Scale:
1556 * 2.3283064365386962890625e-10
1557 * The same RAPL domain in different RAPL Packages may have different
1558 * energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1559 * the fixed unit for all energy counters, and covert each hardware
1560 * counter increase to N times of PMU event counter increases.
1561 *
1562 * This is fully compatible with the current MSR RAPL PMU. This means that
1563 * userspace programs like turbostat can use the same code to handle RAPL Perf
1564 * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1565 * underlying on the platform.
1566 *
1567 * Note that RAPL Packages can be probed/removed dynamically, and the events
1568 * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1569 * support is done on demand, which means
1570 * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1571 * unsupported counters are not exposed.
1572 * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1573 * supports new counters that are not supported by current PMU.
1574 * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1575 */
1576
1577 struct rapl_pmu {
1578 struct pmu pmu; /* Perf PMU structure */
1579 u64 timer_ms; /* Maximum expiration time to avoid counter overflow */
1580 unsigned long domain_map; /* Events supported by current registered PMU */
1581 bool registered; /* Whether the PMU has been registered or not */
1582 };
1583
1584 static struct rapl_pmu rapl_pmu;
1585
1586 /* PMU helpers */
1587
get_pmu_cpu(struct rapl_package * rp)1588 static int get_pmu_cpu(struct rapl_package *rp)
1589 {
1590 int cpu;
1591
1592 if (!rp->has_pmu)
1593 return nr_cpu_ids;
1594
1595 /* Only TPMI RAPL is supported for now */
1596 if (rp->priv->type != RAPL_IF_TPMI)
1597 return nr_cpu_ids;
1598
1599 /* TPMI RAPL uses any CPU in the package for PMU */
1600 for_each_online_cpu(cpu)
1601 if (topology_physical_package_id(cpu) == rp->id)
1602 return cpu;
1603
1604 return nr_cpu_ids;
1605 }
1606
is_rp_pmu_cpu(struct rapl_package * rp,int cpu)1607 static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1608 {
1609 if (!rp->has_pmu)
1610 return false;
1611
1612 /* Only TPMI RAPL is supported for now */
1613 if (rp->priv->type != RAPL_IF_TPMI)
1614 return false;
1615
1616 /* TPMI RAPL uses any CPU in the package for PMU */
1617 return topology_physical_package_id(cpu) == rp->id;
1618 }
1619
event_to_pmu_data(struct perf_event * event)1620 static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1621 {
1622 struct rapl_package *rp = event->pmu_private;
1623
1624 return &rp->pmu_data;
1625 }
1626
1627 /* PMU event callbacks */
1628
event_read_counter(struct perf_event * event)1629 static u64 event_read_counter(struct perf_event *event)
1630 {
1631 struct rapl_package *rp = event->pmu_private;
1632 u64 val;
1633 int ret;
1634
1635 /* Return 0 for unsupported events */
1636 if (event->hw.idx < 0)
1637 return 0;
1638
1639 ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1640
1641 /* Return 0 for failed read */
1642 if (ret)
1643 return 0;
1644
1645 return val;
1646 }
1647
__rapl_pmu_event_start(struct perf_event * event)1648 static void __rapl_pmu_event_start(struct perf_event *event)
1649 {
1650 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1651
1652 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1653 return;
1654
1655 event->hw.state = 0;
1656
1657 list_add_tail(&event->active_entry, &data->active_list);
1658
1659 local64_set(&event->hw.prev_count, event_read_counter(event));
1660 if (++data->n_active == 1)
1661 hrtimer_start(&data->hrtimer, data->timer_interval,
1662 HRTIMER_MODE_REL_PINNED);
1663 }
1664
rapl_pmu_event_start(struct perf_event * event,int mode)1665 static void rapl_pmu_event_start(struct perf_event *event, int mode)
1666 {
1667 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1668 unsigned long flags;
1669
1670 raw_spin_lock_irqsave(&data->lock, flags);
1671 __rapl_pmu_event_start(event);
1672 raw_spin_unlock_irqrestore(&data->lock, flags);
1673 }
1674
rapl_event_update(struct perf_event * event)1675 static u64 rapl_event_update(struct perf_event *event)
1676 {
1677 struct hw_perf_event *hwc = &event->hw;
1678 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1679 u64 prev_raw_count, new_raw_count;
1680 s64 delta, sdelta;
1681
1682 /*
1683 * Follow the generic code to drain hwc->prev_count.
1684 * The loop is not expected to run for multiple times.
1685 */
1686 prev_raw_count = local64_read(&hwc->prev_count);
1687 do {
1688 new_raw_count = event_read_counter(event);
1689 } while (!local64_try_cmpxchg(&hwc->prev_count,
1690 &prev_raw_count, new_raw_count));
1691
1692
1693 /*
1694 * Now we have the new raw value and have updated the prev
1695 * timestamp already. We can now calculate the elapsed delta
1696 * (event-)time and add that to the generic event.
1697 */
1698 delta = new_raw_count - prev_raw_count;
1699
1700 /*
1701 * Scale delta to smallest unit (2^-32)
1702 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1703 * or use ldexp(count, -32).
1704 * Watts = Joules/Time delta
1705 */
1706 sdelta = delta * data->scale[event->hw.flags];
1707
1708 local64_add(sdelta, &event->count);
1709
1710 return new_raw_count;
1711 }
1712
rapl_pmu_event_stop(struct perf_event * event,int mode)1713 static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1714 {
1715 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1716 struct hw_perf_event *hwc = &event->hw;
1717 unsigned long flags;
1718
1719 raw_spin_lock_irqsave(&data->lock, flags);
1720
1721 /* Mark event as deactivated and stopped */
1722 if (!(hwc->state & PERF_HES_STOPPED)) {
1723 WARN_ON_ONCE(data->n_active <= 0);
1724 if (--data->n_active == 0)
1725 hrtimer_cancel(&data->hrtimer);
1726
1727 list_del(&event->active_entry);
1728
1729 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1730 hwc->state |= PERF_HES_STOPPED;
1731 }
1732
1733 /* Check if update of sw counter is necessary */
1734 if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1735 /*
1736 * Drain the remaining delta count out of a event
1737 * that we are disabling:
1738 */
1739 rapl_event_update(event);
1740 hwc->state |= PERF_HES_UPTODATE;
1741 }
1742
1743 raw_spin_unlock_irqrestore(&data->lock, flags);
1744 }
1745
rapl_pmu_event_add(struct perf_event * event,int mode)1746 static int rapl_pmu_event_add(struct perf_event *event, int mode)
1747 {
1748 struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1749 struct hw_perf_event *hwc = &event->hw;
1750 unsigned long flags;
1751
1752 raw_spin_lock_irqsave(&data->lock, flags);
1753
1754 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1755
1756 if (mode & PERF_EF_START)
1757 __rapl_pmu_event_start(event);
1758
1759 raw_spin_unlock_irqrestore(&data->lock, flags);
1760
1761 return 0;
1762 }
1763
rapl_pmu_event_del(struct perf_event * event,int flags)1764 static void rapl_pmu_event_del(struct perf_event *event, int flags)
1765 {
1766 rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1767 }
1768
1769 /* RAPL PMU event ids, same as shown in sysfs */
1770 enum perf_rapl_events {
1771 PERF_RAPL_PP0 = 1, /* all cores */
1772 PERF_RAPL_PKG, /* entire package */
1773 PERF_RAPL_RAM, /* DRAM */
1774 PERF_RAPL_PP1, /* gpu */
1775 PERF_RAPL_PSYS, /* psys */
1776 PERF_RAPL_MAX
1777 };
1778 #define RAPL_EVENT_MASK GENMASK(7, 0)
1779
1780 static const int event_to_domain[PERF_RAPL_MAX] = {
1781 [PERF_RAPL_PP0] = RAPL_DOMAIN_PP0,
1782 [PERF_RAPL_PKG] = RAPL_DOMAIN_PACKAGE,
1783 [PERF_RAPL_RAM] = RAPL_DOMAIN_DRAM,
1784 [PERF_RAPL_PP1] = RAPL_DOMAIN_PP1,
1785 [PERF_RAPL_PSYS] = RAPL_DOMAIN_PLATFORM,
1786 };
1787
rapl_pmu_event_init(struct perf_event * event)1788 static int rapl_pmu_event_init(struct perf_event *event)
1789 {
1790 struct rapl_package *pos, *rp = NULL;
1791 u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1792 int domain, idx;
1793
1794 /* Only look at RAPL events */
1795 if (event->attr.type != event->pmu->type)
1796 return -ENOENT;
1797
1798 /* Check for supported events only */
1799 if (!cfg || cfg >= PERF_RAPL_MAX)
1800 return -EINVAL;
1801
1802 if (event->cpu < 0)
1803 return -EINVAL;
1804
1805 /* Find out which Package the event belongs to */
1806 list_for_each_entry(pos, &rapl_packages, plist) {
1807 if (is_rp_pmu_cpu(pos, event->cpu)) {
1808 rp = pos;
1809 break;
1810 }
1811 }
1812 if (!rp)
1813 return -ENODEV;
1814
1815 /* Find out which RAPL Domain the event belongs to */
1816 domain = event_to_domain[cfg];
1817
1818 event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1819 event->pmu_private = rp; /* Which package */
1820 event->hw.flags = domain; /* Which domain */
1821
1822 event->hw.idx = -1;
1823 /* Find out the index in rp->domains[] to get domain pointer */
1824 for (idx = 0; idx < rp->nr_domains; idx++) {
1825 if (rp->domains[idx].id == domain) {
1826 event->hw.idx = idx;
1827 break;
1828 }
1829 }
1830
1831 return 0;
1832 }
1833
rapl_pmu_event_read(struct perf_event * event)1834 static void rapl_pmu_event_read(struct perf_event *event)
1835 {
1836 rapl_event_update(event);
1837 }
1838
rapl_hrtimer_handle(struct hrtimer * hrtimer)1839 static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1840 {
1841 struct rapl_package_pmu_data *data =
1842 container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1843 struct perf_event *event;
1844 unsigned long flags;
1845
1846 if (!data->n_active)
1847 return HRTIMER_NORESTART;
1848
1849 raw_spin_lock_irqsave(&data->lock, flags);
1850
1851 list_for_each_entry(event, &data->active_list, active_entry)
1852 rapl_event_update(event);
1853
1854 raw_spin_unlock_irqrestore(&data->lock, flags);
1855
1856 hrtimer_forward_now(hrtimer, data->timer_interval);
1857
1858 return HRTIMER_RESTART;
1859 }
1860
1861 /* PMU sysfs attributes */
1862
1863 /*
1864 * There are no default events, but we need to create "events" group (with
1865 * empty attrs) before updating it with detected events.
1866 */
1867 static struct attribute *attrs_empty[] = {
1868 NULL,
1869 };
1870
1871 static struct attribute_group pmu_events_group = {
1872 .name = "events",
1873 .attrs = attrs_empty,
1874 };
1875
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)1876 static ssize_t cpumask_show(struct device *dev,
1877 struct device_attribute *attr, char *buf)
1878 {
1879 struct rapl_package *rp;
1880 cpumask_var_t cpu_mask;
1881 int cpu;
1882 int ret;
1883
1884 if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1885 return -ENOMEM;
1886
1887 cpus_read_lock();
1888
1889 cpumask_clear(cpu_mask);
1890
1891 /* Choose a cpu for each RAPL Package */
1892 list_for_each_entry(rp, &rapl_packages, plist) {
1893 cpu = get_pmu_cpu(rp);
1894 if (cpu < nr_cpu_ids)
1895 cpumask_set_cpu(cpu, cpu_mask);
1896 }
1897 cpus_read_unlock();
1898
1899 ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1900
1901 free_cpumask_var(cpu_mask);
1902
1903 return ret;
1904 }
1905
1906 static DEVICE_ATTR_RO(cpumask);
1907
1908 static struct attribute *pmu_cpumask_attrs[] = {
1909 &dev_attr_cpumask.attr,
1910 NULL
1911 };
1912
1913 static struct attribute_group pmu_cpumask_group = {
1914 .attrs = pmu_cpumask_attrs,
1915 };
1916
1917 PMU_FORMAT_ATTR(event, "config:0-7");
1918 static struct attribute *pmu_format_attr[] = {
1919 &format_attr_event.attr,
1920 NULL
1921 };
1922
1923 static struct attribute_group pmu_format_group = {
1924 .name = "format",
1925 .attrs = pmu_format_attr,
1926 };
1927
1928 static const struct attribute_group *pmu_attr_groups[] = {
1929 &pmu_events_group,
1930 &pmu_cpumask_group,
1931 &pmu_format_group,
1932 NULL
1933 };
1934
1935 #define RAPL_EVENT_ATTR_STR(_name, v, str) \
1936 static struct perf_pmu_events_attr event_attr_##v = { \
1937 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1938 .event_str = str, \
1939 }
1940
1941 RAPL_EVENT_ATTR_STR(energy-cores, rapl_cores, "event=0x01");
1942 RAPL_EVENT_ATTR_STR(energy-pkg, rapl_pkg, "event=0x02");
1943 RAPL_EVENT_ATTR_STR(energy-ram, rapl_ram, "event=0x03");
1944 RAPL_EVENT_ATTR_STR(energy-gpu, rapl_gpu, "event=0x04");
1945 RAPL_EVENT_ATTR_STR(energy-psys, rapl_psys, "event=0x05");
1946
1947 RAPL_EVENT_ATTR_STR(energy-cores.unit, rapl_unit_cores, "Joules");
1948 RAPL_EVENT_ATTR_STR(energy-pkg.unit, rapl_unit_pkg, "Joules");
1949 RAPL_EVENT_ATTR_STR(energy-ram.unit, rapl_unit_ram, "Joules");
1950 RAPL_EVENT_ATTR_STR(energy-gpu.unit, rapl_unit_gpu, "Joules");
1951 RAPL_EVENT_ATTR_STR(energy-psys.unit, rapl_unit_psys, "Joules");
1952
1953 RAPL_EVENT_ATTR_STR(energy-cores.scale, rapl_scale_cores, "2.3283064365386962890625e-10");
1954 RAPL_EVENT_ATTR_STR(energy-pkg.scale, rapl_scale_pkg, "2.3283064365386962890625e-10");
1955 RAPL_EVENT_ATTR_STR(energy-ram.scale, rapl_scale_ram, "2.3283064365386962890625e-10");
1956 RAPL_EVENT_ATTR_STR(energy-gpu.scale, rapl_scale_gpu, "2.3283064365386962890625e-10");
1957 RAPL_EVENT_ATTR_STR(energy-psys.scale, rapl_scale_psys, "2.3283064365386962890625e-10");
1958
1959 #define RAPL_EVENT_GROUP(_name, domain) \
1960 static struct attribute *pmu_attr_##_name[] = { \
1961 &event_attr_rapl_##_name.attr.attr, \
1962 &event_attr_rapl_unit_##_name.attr.attr, \
1963 &event_attr_rapl_scale_##_name.attr.attr, \
1964 NULL \
1965 }; \
1966 static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event) \
1967 { \
1968 return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0; \
1969 } \
1970 static struct attribute_group pmu_group_##_name = { \
1971 .name = "events", \
1972 .attrs = pmu_attr_##_name, \
1973 .is_visible = is_visible_##_name, \
1974 }
1975
1976 RAPL_EVENT_GROUP(cores, RAPL_DOMAIN_PP0);
1977 RAPL_EVENT_GROUP(pkg, RAPL_DOMAIN_PACKAGE);
1978 RAPL_EVENT_GROUP(ram, RAPL_DOMAIN_DRAM);
1979 RAPL_EVENT_GROUP(gpu, RAPL_DOMAIN_PP1);
1980 RAPL_EVENT_GROUP(psys, RAPL_DOMAIN_PLATFORM);
1981
1982 static const struct attribute_group *pmu_attr_update[] = {
1983 &pmu_group_cores,
1984 &pmu_group_pkg,
1985 &pmu_group_ram,
1986 &pmu_group_gpu,
1987 &pmu_group_psys,
1988 NULL
1989 };
1990
rapl_pmu_update(struct rapl_package * rp)1991 static int rapl_pmu_update(struct rapl_package *rp)
1992 {
1993 int ret = 0;
1994
1995 /* Return if PMU already covers all events supported by current RAPL Package */
1996 if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1997 goto end;
1998
1999 /* Unregister previous registered PMU */
2000 if (rapl_pmu.registered)
2001 perf_pmu_unregister(&rapl_pmu.pmu);
2002
2003 rapl_pmu.registered = false;
2004 rapl_pmu.domain_map |= rp->domain_map;
2005
2006 memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
2007 rapl_pmu.pmu.attr_groups = pmu_attr_groups;
2008 rapl_pmu.pmu.attr_update = pmu_attr_update;
2009 rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
2010 rapl_pmu.pmu.event_init = rapl_pmu_event_init;
2011 rapl_pmu.pmu.add = rapl_pmu_event_add;
2012 rapl_pmu.pmu.del = rapl_pmu_event_del;
2013 rapl_pmu.pmu.start = rapl_pmu_event_start;
2014 rapl_pmu.pmu.stop = rapl_pmu_event_stop;
2015 rapl_pmu.pmu.read = rapl_pmu_event_read;
2016 rapl_pmu.pmu.module = THIS_MODULE;
2017 rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
2018 ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2019 if (ret) {
2020 pr_info("Failed to register PMU\n");
2021 return ret;
2022 }
2023
2024 rapl_pmu.registered = true;
2025 end:
2026 rp->has_pmu = true;
2027 return ret;
2028 }
2029
rapl_package_add_pmu(struct rapl_package * rp)2030 int rapl_package_add_pmu(struct rapl_package *rp)
2031 {
2032 struct rapl_package_pmu_data *data = &rp->pmu_data;
2033 int idx;
2034
2035 if (rp->has_pmu)
2036 return -EEXIST;
2037
2038 guard(cpus_read_lock)();
2039
2040 for (idx = 0; idx < rp->nr_domains; idx++) {
2041 struct rapl_domain *rd = &rp->domains[idx];
2042 int domain = rd->id;
2043 u64 val;
2044
2045 if (!test_bit(domain, &rp->domain_map))
2046 continue;
2047
2048 /*
2049 * The RAPL PMU granularity is 2^-32 Joules
2050 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2051 */
2052 val = rd->energy_unit * (1ULL << 32);
2053 do_div(val, ENERGY_UNIT_SCALE * 1000000);
2054 data->scale[domain] = val;
2055
2056 if (!rapl_pmu.timer_ms) {
2057 struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2058
2059 /*
2060 * Calculate the timer rate:
2061 * Use reference of 200W for scaling the timeout to avoid counter
2062 * overflows.
2063 *
2064 * max_count = rpi->mask >> rpi->shift + 1
2065 * max_energy_pj = max_count * rd->energy_unit
2066 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2067 *
2068 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2069 */
2070 val = (rpi->mask >> rpi->shift) + 1;
2071 val *= rd->energy_unit;
2072 do_div(val, 1000000 * 200 * 2);
2073 rapl_pmu.timer_ms = val;
2074
2075 pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2076 }
2077
2078 pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2079 }
2080
2081 /* Initialize per package PMU data */
2082 raw_spin_lock_init(&data->lock);
2083 INIT_LIST_HEAD(&data->active_list);
2084 data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2085 hrtimer_setup(&data->hrtimer, rapl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2086
2087 return rapl_pmu_update(rp);
2088 }
2089 EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2090
rapl_package_remove_pmu(struct rapl_package * rp)2091 void rapl_package_remove_pmu(struct rapl_package *rp)
2092 {
2093 struct rapl_package *pos;
2094
2095 if (!rp->has_pmu)
2096 return;
2097
2098 guard(cpus_read_lock)();
2099
2100 list_for_each_entry(pos, &rapl_packages, plist) {
2101 /* PMU is still needed */
2102 if (pos->has_pmu && pos != rp)
2103 return;
2104 }
2105
2106 perf_pmu_unregister(&rapl_pmu.pmu);
2107 memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2108 }
2109 EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2110 #endif
2111
2112 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package_cpuslocked(struct rapl_package * rp)2113 void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2114 {
2115 struct rapl_domain *rd, *rd_package = NULL;
2116
2117 package_power_limit_irq_restore(rp);
2118
2119 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2120 int i;
2121
2122 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2123 rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2124 rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2125 }
2126
2127 if (rd->id == RAPL_DOMAIN_PACKAGE) {
2128 rd_package = rd;
2129 continue;
2130 }
2131 pr_debug("remove package, undo power limit on %s: %s\n",
2132 rp->name, rd->name);
2133 powercap_unregister_zone(rp->priv->control_type,
2134 &rd->power_zone);
2135 }
2136 /* do parent zone last */
2137 powercap_unregister_zone(rp->priv->control_type,
2138 &rd_package->power_zone);
2139 list_del(&rp->plist);
2140 kfree(rp);
2141 }
2142 EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2143
rapl_remove_package(struct rapl_package * rp)2144 void rapl_remove_package(struct rapl_package *rp)
2145 {
2146 guard(cpus_read_lock)();
2147 rapl_remove_package_cpuslocked(rp);
2148 }
2149 EXPORT_SYMBOL_GPL(rapl_remove_package);
2150
2151 /*
2152 * RAPL Package energy counter scope:
2153 * 1. AMD/HYGON platforms use per-PKG package energy counter
2154 * 2. For Intel platforms
2155 * 2.1 CLX-AP platform has per-DIE package energy counter
2156 * 2.2 Other platforms that uses MSR RAPL are single die systems so the
2157 * package energy counter can be considered as per-PKG/per-DIE,
2158 * here it is considered as per-DIE.
2159 * 2.3 New platforms that use TPMI RAPL doesn't care about the
2160 * scope because they are not MSR/CPU based.
2161 */
2162 #define rapl_msrs_are_pkg_scope() \
2163 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || \
2164 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2165
2166 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2167 struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2168 bool id_is_cpu)
2169 {
2170 struct rapl_package *rp;
2171 int uid;
2172
2173 if (id_is_cpu) {
2174 uid = rapl_msrs_are_pkg_scope() ?
2175 topology_physical_package_id(id) : topology_logical_die_id(id);
2176 if (uid < 0) {
2177 pr_err("topology_logical_(package/die)_id() returned a negative value");
2178 return NULL;
2179 }
2180 }
2181 else
2182 uid = id;
2183
2184 list_for_each_entry(rp, &rapl_packages, plist) {
2185 if (rp->id == uid
2186 && rp->priv->control_type == priv->control_type)
2187 return rp;
2188 }
2189
2190 return NULL;
2191 }
2192 EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2193
rapl_find_package_domain(int id,struct rapl_if_priv * priv,bool id_is_cpu)2194 struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2195 {
2196 guard(cpus_read_lock)();
2197 return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2198 }
2199 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2200
2201 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package_cpuslocked(int id,struct rapl_if_priv * priv,bool id_is_cpu)2202 struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2203 {
2204 struct rapl_package *rp;
2205 int ret;
2206
2207 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2208 if (!rp)
2209 return ERR_PTR(-ENOMEM);
2210
2211 if (id_is_cpu) {
2212 rp->id = rapl_msrs_are_pkg_scope() ?
2213 topology_physical_package_id(id) : topology_logical_die_id(id);
2214 if ((int)(rp->id) < 0) {
2215 pr_err("topology_logical_(package/die)_id() returned a negative value");
2216 return ERR_PTR(-EINVAL);
2217 }
2218 rp->lead_cpu = id;
2219 if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2220 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2221 topology_physical_package_id(id), topology_die_id(id));
2222 else
2223 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2224 topology_physical_package_id(id));
2225 } else {
2226 rp->id = id;
2227 rp->lead_cpu = -1;
2228 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2229 }
2230
2231 rp->priv = priv;
2232 ret = rapl_config(rp);
2233 if (ret)
2234 goto err_free_package;
2235
2236 /* check if the package contains valid domains */
2237 if (rapl_detect_domains(rp)) {
2238 ret = -ENODEV;
2239 goto err_free_package;
2240 }
2241 ret = rapl_package_register_powercap(rp);
2242 if (!ret) {
2243 INIT_LIST_HEAD(&rp->plist);
2244 list_add(&rp->plist, &rapl_packages);
2245 return rp;
2246 }
2247
2248 err_free_package:
2249 kfree(rp->domains);
2250 kfree(rp);
2251 return ERR_PTR(ret);
2252 }
2253 EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2254
rapl_add_package(int id,struct rapl_if_priv * priv,bool id_is_cpu)2255 struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2256 {
2257 guard(cpus_read_lock)();
2258 return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2259 }
2260 EXPORT_SYMBOL_GPL(rapl_add_package);
2261
power_limit_state_save(void)2262 static void power_limit_state_save(void)
2263 {
2264 struct rapl_package *rp;
2265 struct rapl_domain *rd;
2266 int ret, i;
2267
2268 cpus_read_lock();
2269 list_for_each_entry(rp, &rapl_packages, plist) {
2270 if (!rp->power_zone)
2271 continue;
2272 rd = power_zone_to_rapl_domain(rp->power_zone);
2273 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2274 ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
2275 &rd->rpl[i].last_power_limit);
2276 if (ret)
2277 rd->rpl[i].last_power_limit = 0;
2278 }
2279 }
2280 cpus_read_unlock();
2281 }
2282
power_limit_state_restore(void)2283 static void power_limit_state_restore(void)
2284 {
2285 struct rapl_package *rp;
2286 struct rapl_domain *rd;
2287 int i;
2288
2289 cpus_read_lock();
2290 list_for_each_entry(rp, &rapl_packages, plist) {
2291 if (!rp->power_zone)
2292 continue;
2293 rd = power_zone_to_rapl_domain(rp->power_zone);
2294 for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2295 if (rd->rpl[i].last_power_limit)
2296 rapl_write_pl_data(rd, i, PL_LIMIT,
2297 rd->rpl[i].last_power_limit);
2298 }
2299 cpus_read_unlock();
2300 }
2301
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)2302 static int rapl_pm_callback(struct notifier_block *nb,
2303 unsigned long mode, void *_unused)
2304 {
2305 switch (mode) {
2306 case PM_SUSPEND_PREPARE:
2307 power_limit_state_save();
2308 break;
2309 case PM_POST_SUSPEND:
2310 power_limit_state_restore();
2311 break;
2312 }
2313 return NOTIFY_OK;
2314 }
2315
2316 static struct notifier_block rapl_pm_notifier = {
2317 .notifier_call = rapl_pm_callback,
2318 };
2319
2320 static struct platform_device *rapl_msr_platdev;
2321
rapl_init(void)2322 static int __init rapl_init(void)
2323 {
2324 const struct x86_cpu_id *id;
2325 int ret;
2326
2327 id = x86_match_cpu(rapl_ids);
2328 if (id) {
2329 defaults_msr = (struct rapl_defaults *)id->driver_data;
2330
2331 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2332 if (!rapl_msr_platdev)
2333 return -ENOMEM;
2334
2335 ret = platform_device_add(rapl_msr_platdev);
2336 if (ret) {
2337 platform_device_put(rapl_msr_platdev);
2338 return ret;
2339 }
2340 }
2341
2342 ret = register_pm_notifier(&rapl_pm_notifier);
2343 if (ret && rapl_msr_platdev) {
2344 platform_device_del(rapl_msr_platdev);
2345 platform_device_put(rapl_msr_platdev);
2346 }
2347
2348 return ret;
2349 }
2350
rapl_exit(void)2351 static void __exit rapl_exit(void)
2352 {
2353 platform_device_unregister(rapl_msr_platdev);
2354 unregister_pm_notifier(&rapl_pm_notifier);
2355 }
2356
2357 fs_initcall(rapl_init);
2358 module_exit(rapl_exit);
2359
2360 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2361 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2362 MODULE_LICENSE("GPL v2");
2363