1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_type.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
ice_get_rxq_count(struct ice_pf * pf)160 static u16 ice_get_rxq_count(struct ice_pf *pf)
161 {
162 return min(ice_get_avail_rxq_count(pf), num_online_cpus());
163 }
164
ice_get_txq_count(struct ice_pf * pf)165 static u16 ice_get_txq_count(struct ice_pf *pf)
166 {
167 return min(ice_get_avail_txq_count(pf), num_online_cpus());
168 }
169
170 /**
171 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
172 * @vsi: the VSI being configured
173 *
174 * Return 0 on success and a negative value on error
175 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)176 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
177 {
178 enum ice_vsi_type vsi_type = vsi->type;
179 struct ice_pf *pf = vsi->back;
180 struct ice_vf *vf = vsi->vf;
181
182 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
183 return;
184
185 switch (vsi_type) {
186 case ICE_VSI_PF:
187 if (vsi->req_txq) {
188 vsi->alloc_txq = vsi->req_txq;
189 vsi->num_txq = vsi->req_txq;
190 } else {
191 vsi->alloc_txq = ice_get_txq_count(pf);
192 }
193
194 pf->num_lan_tx = vsi->alloc_txq;
195
196 /* only 1 Rx queue unless RSS is enabled */
197 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
198 vsi->alloc_rxq = 1;
199 } else {
200 if (vsi->req_rxq) {
201 vsi->alloc_rxq = vsi->req_rxq;
202 vsi->num_rxq = vsi->req_rxq;
203 } else {
204 vsi->alloc_rxq = ice_get_rxq_count(pf);
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = max(vsi->alloc_rxq, vsi->alloc_txq);
211 break;
212 case ICE_VSI_SF:
213 vsi->alloc_txq = 1;
214 vsi->alloc_rxq = 1;
215 vsi->num_q_vectors = 1;
216 vsi->irq_dyn_alloc = true;
217 break;
218 case ICE_VSI_VF:
219 if (vf->num_req_qs)
220 vf->num_vf_qs = vf->num_req_qs;
221 vsi->alloc_txq = vf->num_vf_qs;
222 vsi->alloc_rxq = vf->num_vf_qs;
223 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
224 * data queue interrupts). Since vsi->num_q_vectors is number
225 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
226 * original vector count
227 */
228 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
229 break;
230 case ICE_VSI_CTRL:
231 vsi->alloc_txq = 1;
232 vsi->alloc_rxq = 1;
233 vsi->num_q_vectors = 1;
234 break;
235 case ICE_VSI_CHNL:
236 vsi->alloc_txq = 0;
237 vsi->alloc_rxq = 0;
238 break;
239 case ICE_VSI_LB:
240 vsi->alloc_txq = 1;
241 vsi->alloc_rxq = 1;
242 break;
243 default:
244 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
245 break;
246 }
247
248 ice_vsi_set_num_desc(vsi);
249 }
250
251 /**
252 * ice_get_free_slot - get the next non-NULL location index in array
253 * @array: array to search
254 * @size: size of the array
255 * @curr: last known occupied index to be used as a search hint
256 *
257 * void * is being used to keep the functionality generic. This lets us use this
258 * function on any array of pointers.
259 */
ice_get_free_slot(void * array,int size,int curr)260 static int ice_get_free_slot(void *array, int size, int curr)
261 {
262 int **tmp_array = (int **)array;
263 int next;
264
265 if (curr < (size - 1) && !tmp_array[curr + 1]) {
266 next = curr + 1;
267 } else {
268 int i = 0;
269
270 while ((i < size) && (tmp_array[i]))
271 i++;
272 if (i == size)
273 next = ICE_NO_VSI;
274 else
275 next = i;
276 }
277 return next;
278 }
279
280 /**
281 * ice_vsi_delete_from_hw - delete a VSI from the switch
282 * @vsi: pointer to VSI being removed
283 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)284 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
285 {
286 struct ice_pf *pf = vsi->back;
287 struct ice_vsi_ctx *ctxt;
288 int status;
289
290 ice_fltr_remove_all(vsi);
291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
292 if (!ctxt)
293 return;
294
295 if (vsi->type == ICE_VSI_VF)
296 ctxt->vf_num = vsi->vf->vf_id;
297 ctxt->vsi_num = vsi->vsi_num;
298
299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
300
301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
302 if (status)
303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
304 vsi->vsi_num, status);
305
306 kfree(ctxt);
307 }
308
309 /**
310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
311 * @vsi: pointer to VSI being cleared
312 */
ice_vsi_free_arrays(struct ice_vsi * vsi)313 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
314 {
315 struct ice_pf *pf = vsi->back;
316 struct device *dev;
317
318 dev = ice_pf_to_dev(pf);
319
320 /* free the ring and vector containers */
321 devm_kfree(dev, vsi->q_vectors);
322 vsi->q_vectors = NULL;
323 devm_kfree(dev, vsi->tx_rings);
324 vsi->tx_rings = NULL;
325 devm_kfree(dev, vsi->rx_rings);
326 vsi->rx_rings = NULL;
327 devm_kfree(dev, vsi->txq_map);
328 vsi->txq_map = NULL;
329 devm_kfree(dev, vsi->rxq_map);
330 vsi->rxq_map = NULL;
331 }
332
333 /**
334 * ice_vsi_free_stats - Free the ring statistics structures
335 * @vsi: VSI pointer
336 */
ice_vsi_free_stats(struct ice_vsi * vsi)337 static void ice_vsi_free_stats(struct ice_vsi *vsi)
338 {
339 struct ice_vsi_stats *vsi_stat;
340 struct ice_pf *pf = vsi->back;
341 int i;
342
343 if (vsi->type == ICE_VSI_CHNL)
344 return;
345 if (!pf->vsi_stats)
346 return;
347
348 vsi_stat = pf->vsi_stats[vsi->idx];
349 if (!vsi_stat)
350 return;
351
352 ice_for_each_alloc_txq(vsi, i) {
353 if (vsi_stat->tx_ring_stats[i]) {
354 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
355 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
356 }
357 }
358
359 ice_for_each_alloc_rxq(vsi, i) {
360 if (vsi_stat->rx_ring_stats[i]) {
361 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
362 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
363 }
364 }
365
366 kfree(vsi_stat->tx_ring_stats);
367 kfree(vsi_stat->rx_ring_stats);
368 kfree(vsi_stat);
369 pf->vsi_stats[vsi->idx] = NULL;
370 }
371
372 /**
373 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
374 * @vsi: VSI which is having stats allocated
375 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)376 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
377 {
378 struct ice_ring_stats **tx_ring_stats;
379 struct ice_ring_stats **rx_ring_stats;
380 struct ice_vsi_stats *vsi_stats;
381 struct ice_pf *pf = vsi->back;
382 u16 i;
383
384 vsi_stats = pf->vsi_stats[vsi->idx];
385 tx_ring_stats = vsi_stats->tx_ring_stats;
386 rx_ring_stats = vsi_stats->rx_ring_stats;
387
388 /* Allocate Tx ring stats */
389 ice_for_each_alloc_txq(vsi, i) {
390 struct ice_ring_stats *ring_stats;
391 struct ice_tx_ring *ring;
392
393 ring = vsi->tx_rings[i];
394 ring_stats = tx_ring_stats[i];
395
396 if (!ring_stats) {
397 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
398 if (!ring_stats)
399 goto err_out;
400
401 WRITE_ONCE(tx_ring_stats[i], ring_stats);
402 }
403
404 ring->ring_stats = ring_stats;
405 }
406
407 /* Allocate Rx ring stats */
408 ice_for_each_alloc_rxq(vsi, i) {
409 struct ice_ring_stats *ring_stats;
410 struct ice_rx_ring *ring;
411
412 ring = vsi->rx_rings[i];
413 ring_stats = rx_ring_stats[i];
414
415 if (!ring_stats) {
416 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
417 if (!ring_stats)
418 goto err_out;
419
420 WRITE_ONCE(rx_ring_stats[i], ring_stats);
421 }
422
423 ring->ring_stats = ring_stats;
424 }
425
426 return 0;
427
428 err_out:
429 ice_vsi_free_stats(vsi);
430 return -ENOMEM;
431 }
432
433 /**
434 * ice_vsi_free - clean up and deallocate the provided VSI
435 * @vsi: pointer to VSI being cleared
436 *
437 * This deallocates the VSI's queue resources, removes it from the PF's
438 * VSI array if necessary, and deallocates the VSI
439 */
ice_vsi_free(struct ice_vsi * vsi)440 void ice_vsi_free(struct ice_vsi *vsi)
441 {
442 struct ice_pf *pf = NULL;
443 struct device *dev;
444
445 if (!vsi || !vsi->back)
446 return;
447
448 pf = vsi->back;
449 dev = ice_pf_to_dev(pf);
450
451 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
452 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
453 return;
454 }
455
456 mutex_lock(&pf->sw_mutex);
457 /* updates the PF for this cleared VSI */
458
459 pf->vsi[vsi->idx] = NULL;
460 pf->next_vsi = vsi->idx;
461
462 ice_vsi_free_stats(vsi);
463 ice_vsi_free_arrays(vsi);
464 mutex_destroy(&vsi->xdp_state_lock);
465 mutex_unlock(&pf->sw_mutex);
466 devm_kfree(dev, vsi);
467 }
468
ice_vsi_delete(struct ice_vsi * vsi)469 void ice_vsi_delete(struct ice_vsi *vsi)
470 {
471 ice_vsi_delete_from_hw(vsi);
472 ice_vsi_free(vsi);
473 }
474
475 /**
476 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
477 * @irq: interrupt number
478 * @data: pointer to a q_vector
479 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)480 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
481 {
482 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
483
484 if (!q_vector->tx.tx_ring)
485 return IRQ_HANDLED;
486
487 ice_clean_ctrl_rx_irq(q_vector->rx.rx_ring);
488 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
489
490 return IRQ_HANDLED;
491 }
492
493 /**
494 * ice_msix_clean_rings - MSIX mode Interrupt Handler
495 * @irq: interrupt number
496 * @data: pointer to a q_vector
497 */
ice_msix_clean_rings(int __always_unused irq,void * data)498 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
499 {
500 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
501
502 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
503 return IRQ_HANDLED;
504
505 q_vector->total_events++;
506
507 napi_schedule(&q_vector->napi);
508
509 return IRQ_HANDLED;
510 }
511
512 /**
513 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
514 * @vsi: VSI pointer
515 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)516 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
517 {
518 struct ice_vsi_stats *vsi_stat;
519 struct ice_pf *pf = vsi->back;
520
521 if (vsi->type == ICE_VSI_CHNL)
522 return 0;
523 if (!pf->vsi_stats)
524 return -ENOENT;
525
526 if (pf->vsi_stats[vsi->idx])
527 /* realloc will happen in rebuild path */
528 return 0;
529
530 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
531 if (!vsi_stat)
532 return -ENOMEM;
533
534 vsi_stat->tx_ring_stats =
535 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
536 GFP_KERNEL);
537 if (!vsi_stat->tx_ring_stats)
538 goto err_alloc_tx;
539
540 vsi_stat->rx_ring_stats =
541 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
542 GFP_KERNEL);
543 if (!vsi_stat->rx_ring_stats)
544 goto err_alloc_rx;
545
546 pf->vsi_stats[vsi->idx] = vsi_stat;
547
548 return 0;
549
550 err_alloc_rx:
551 kfree(vsi_stat->rx_ring_stats);
552 err_alloc_tx:
553 kfree(vsi_stat->tx_ring_stats);
554 kfree(vsi_stat);
555 pf->vsi_stats[vsi->idx] = NULL;
556 return -ENOMEM;
557 }
558
559 /**
560 * ice_vsi_alloc_def - set default values for already allocated VSI
561 * @vsi: ptr to VSI
562 * @ch: ptr to channel
563 */
564 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)565 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
566 {
567 if (vsi->type != ICE_VSI_CHNL) {
568 ice_vsi_set_num_qs(vsi);
569 if (ice_vsi_alloc_arrays(vsi))
570 return -ENOMEM;
571 }
572
573 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev);
574
575 switch (vsi->type) {
576 case ICE_VSI_PF:
577 case ICE_VSI_SF:
578 /* Setup default MSIX irq handler for VSI */
579 vsi->irq_handler = ice_msix_clean_rings;
580 break;
581 case ICE_VSI_CTRL:
582 /* Setup ctrl VSI MSIX irq handler */
583 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
584 break;
585 case ICE_VSI_CHNL:
586 if (!ch)
587 return -EINVAL;
588
589 vsi->num_rxq = ch->num_rxq;
590 vsi->num_txq = ch->num_txq;
591 vsi->next_base_q = ch->base_q;
592 break;
593 case ICE_VSI_VF:
594 case ICE_VSI_LB:
595 break;
596 default:
597 ice_vsi_free_arrays(vsi);
598 return -EINVAL;
599 }
600
601 return 0;
602 }
603
604 /**
605 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
606 * @pf: board private structure
607 *
608 * Reserves a VSI index from the PF and allocates an empty VSI structure
609 * without a type. The VSI structure must later be initialized by calling
610 * ice_vsi_cfg().
611 *
612 * returns a pointer to a VSI on success, NULL on failure.
613 */
ice_vsi_alloc(struct ice_pf * pf)614 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
615 {
616 struct device *dev = ice_pf_to_dev(pf);
617 struct ice_vsi *vsi = NULL;
618
619 /* Need to protect the allocation of the VSIs at the PF level */
620 mutex_lock(&pf->sw_mutex);
621
622 /* If we have already allocated our maximum number of VSIs,
623 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
624 * is available to be populated
625 */
626 if (pf->next_vsi == ICE_NO_VSI) {
627 dev_dbg(dev, "out of VSI slots!\n");
628 goto unlock_pf;
629 }
630
631 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
632 if (!vsi)
633 goto unlock_pf;
634
635 vsi->back = pf;
636 set_bit(ICE_VSI_DOWN, vsi->state);
637
638 /* fill slot and make note of the index */
639 vsi->idx = pf->next_vsi;
640 pf->vsi[pf->next_vsi] = vsi;
641
642 /* prepare pf->next_vsi for next use */
643 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
644 pf->next_vsi);
645
646 mutex_init(&vsi->xdp_state_lock);
647
648 unlock_pf:
649 mutex_unlock(&pf->sw_mutex);
650 return vsi;
651 }
652
653 /**
654 * ice_alloc_fd_res - Allocate FD resource for a VSI
655 * @vsi: pointer to the ice_vsi
656 *
657 * This allocates the FD resources
658 *
659 * Returns 0 on success, -EPERM on no-op or -EIO on failure
660 */
ice_alloc_fd_res(struct ice_vsi * vsi)661 static int ice_alloc_fd_res(struct ice_vsi *vsi)
662 {
663 struct ice_pf *pf = vsi->back;
664 u32 g_val, b_val;
665
666 /* Flow Director filters are only allocated/assigned to the PF VSI or
667 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
668 * add/delete filters so resources are not allocated to it
669 */
670 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
671 return -EPERM;
672
673 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
674 vsi->type == ICE_VSI_CHNL))
675 return -EPERM;
676
677 /* FD filters from guaranteed pool per VSI */
678 g_val = pf->hw.func_caps.fd_fltr_guar;
679 if (!g_val)
680 return -EPERM;
681
682 /* FD filters from best effort pool */
683 b_val = pf->hw.func_caps.fd_fltr_best_effort;
684 if (!b_val)
685 return -EPERM;
686
687 /* PF main VSI gets only 64 FD resources from guaranteed pool
688 * when ADQ is configured.
689 */
690 #define ICE_PF_VSI_GFLTR 64
691
692 /* determine FD filter resources per VSI from shared(best effort) and
693 * dedicated pool
694 */
695 if (vsi->type == ICE_VSI_PF) {
696 vsi->num_gfltr = g_val;
697 /* if MQPRIO is configured, main VSI doesn't get all FD
698 * resources from guaranteed pool. PF VSI gets 64 FD resources
699 */
700 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
701 if (g_val < ICE_PF_VSI_GFLTR)
702 return -EPERM;
703 /* allow bare minimum entries for PF VSI */
704 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
705 }
706
707 /* each VSI gets same "best_effort" quota */
708 vsi->num_bfltr = b_val;
709 } else if (vsi->type == ICE_VSI_VF) {
710 vsi->num_gfltr = 0;
711
712 /* each VSI gets same "best_effort" quota */
713 vsi->num_bfltr = b_val;
714 } else {
715 struct ice_vsi *main_vsi;
716 int numtc;
717
718 main_vsi = ice_get_main_vsi(pf);
719 if (!main_vsi)
720 return -EPERM;
721
722 if (!main_vsi->all_numtc)
723 return -EINVAL;
724
725 /* figure out ADQ numtc */
726 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
727
728 /* only one TC but still asking resources for channels,
729 * invalid config
730 */
731 if (numtc < ICE_CHNL_START_TC)
732 return -EPERM;
733
734 g_val -= ICE_PF_VSI_GFLTR;
735 /* channel VSIs gets equal share from guaranteed pool */
736 vsi->num_gfltr = g_val / numtc;
737
738 /* each VSI gets same "best_effort" quota */
739 vsi->num_bfltr = b_val;
740 }
741
742 return 0;
743 }
744
745 /**
746 * ice_vsi_get_qs - Assign queues from PF to VSI
747 * @vsi: the VSI to assign queues to
748 *
749 * Returns 0 on success and a negative value on error
750 */
ice_vsi_get_qs(struct ice_vsi * vsi)751 static int ice_vsi_get_qs(struct ice_vsi *vsi)
752 {
753 struct ice_pf *pf = vsi->back;
754 struct ice_qs_cfg tx_qs_cfg = {
755 .qs_mutex = &pf->avail_q_mutex,
756 .pf_map = pf->avail_txqs,
757 .pf_map_size = pf->max_pf_txqs,
758 .q_count = vsi->alloc_txq,
759 .scatter_count = ICE_MAX_SCATTER_TXQS,
760 .vsi_map = vsi->txq_map,
761 .vsi_map_offset = 0,
762 .mapping_mode = ICE_VSI_MAP_CONTIG
763 };
764 struct ice_qs_cfg rx_qs_cfg = {
765 .qs_mutex = &pf->avail_q_mutex,
766 .pf_map = pf->avail_rxqs,
767 .pf_map_size = pf->max_pf_rxqs,
768 .q_count = vsi->alloc_rxq,
769 .scatter_count = ICE_MAX_SCATTER_RXQS,
770 .vsi_map = vsi->rxq_map,
771 .vsi_map_offset = 0,
772 .mapping_mode = ICE_VSI_MAP_CONTIG
773 };
774 int ret;
775
776 if (vsi->type == ICE_VSI_CHNL)
777 return 0;
778
779 ret = __ice_vsi_get_qs(&tx_qs_cfg);
780 if (ret)
781 return ret;
782 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
783
784 ret = __ice_vsi_get_qs(&rx_qs_cfg);
785 if (ret)
786 return ret;
787 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
788
789 return 0;
790 }
791
792 /**
793 * ice_vsi_put_qs - Release queues from VSI to PF
794 * @vsi: the VSI that is going to release queues
795 */
ice_vsi_put_qs(struct ice_vsi * vsi)796 static void ice_vsi_put_qs(struct ice_vsi *vsi)
797 {
798 struct ice_pf *pf = vsi->back;
799 int i;
800
801 mutex_lock(&pf->avail_q_mutex);
802
803 ice_for_each_alloc_txq(vsi, i) {
804 clear_bit(vsi->txq_map[i], pf->avail_txqs);
805 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
806 }
807
808 ice_for_each_alloc_rxq(vsi, i) {
809 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
810 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
811 }
812
813 mutex_unlock(&pf->avail_q_mutex);
814 }
815
816 /**
817 * ice_is_safe_mode
818 * @pf: pointer to the PF struct
819 *
820 * returns true if driver is in safe mode, false otherwise
821 */
ice_is_safe_mode(struct ice_pf * pf)822 bool ice_is_safe_mode(struct ice_pf *pf)
823 {
824 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
825 }
826
827 /**
828 * ice_is_rdma_ena
829 * @pf: pointer to the PF struct
830 *
831 * returns true if RDMA is currently supported, false otherwise
832 */
ice_is_rdma_ena(struct ice_pf * pf)833 bool ice_is_rdma_ena(struct ice_pf *pf)
834 {
835 union devlink_param_value value;
836 int err;
837
838 err = devl_param_driverinit_value_get(priv_to_devlink(pf),
839 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
840 &value);
841 return err ? test_bit(ICE_FLAG_RDMA_ENA, pf->flags) : value.vbool;
842 }
843
844 /**
845 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
846 * @vsi: the VSI being cleaned up
847 *
848 * This function deletes RSS input set for all flows that were configured
849 * for this VSI
850 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)851 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
852 {
853 struct ice_pf *pf = vsi->back;
854 int status;
855
856 if (ice_is_safe_mode(pf))
857 return;
858
859 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
860 if (status)
861 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
862 vsi->vsi_num, status);
863 }
864
865 /**
866 * ice_rss_clean - Delete RSS related VSI structures and configuration
867 * @vsi: the VSI being removed
868 */
ice_rss_clean(struct ice_vsi * vsi)869 static void ice_rss_clean(struct ice_vsi *vsi)
870 {
871 struct ice_pf *pf = vsi->back;
872 struct device *dev;
873
874 dev = ice_pf_to_dev(pf);
875
876 devm_kfree(dev, vsi->rss_hkey_user);
877 devm_kfree(dev, vsi->rss_lut_user);
878
879 ice_vsi_clean_rss_flow_fld(vsi);
880 /* remove RSS replay list */
881 if (!ice_is_safe_mode(pf))
882 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
883 }
884
885 /**
886 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
887 * @vsi: the VSI being configured
888 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)889 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
890 {
891 struct ice_hw_common_caps *cap;
892 struct ice_pf *pf = vsi->back;
893 u16 max_rss_size;
894
895 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
896 vsi->rss_size = 1;
897 return;
898 }
899
900 cap = &pf->hw.func_caps.common_cap;
901 max_rss_size = BIT(cap->rss_table_entry_width);
902 switch (vsi->type) {
903 case ICE_VSI_CHNL:
904 case ICE_VSI_PF:
905 /* PF VSI will inherit RSS instance of PF */
906 vsi->rss_table_size = (u16)cap->rss_table_size;
907 if (vsi->type == ICE_VSI_CHNL)
908 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
909 else
910 vsi->rss_size = min_t(u16, num_online_cpus(),
911 max_rss_size);
912 vsi->rss_lut_type = ICE_LUT_PF;
913 break;
914 case ICE_VSI_SF:
915 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
916 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
917 vsi->rss_lut_type = ICE_LUT_VSI;
918 break;
919 case ICE_VSI_VF:
920 /* VF VSI will get a small RSS table.
921 * For VSI_LUT, LUT size should be set to 64 bytes.
922 */
923 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
924 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
925 vsi->rss_lut_type = ICE_LUT_VSI;
926 break;
927 case ICE_VSI_LB:
928 break;
929 default:
930 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
931 ice_vsi_type_str(vsi->type));
932 break;
933 }
934 }
935
936 /**
937 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
938 * @hw: HW structure used to determine the VLAN mode of the device
939 * @ctxt: the VSI context being set
940 *
941 * This initializes a default VSI context for all sections except the Queues.
942 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)943 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
944 {
945 u32 table = 0;
946
947 memset(&ctxt->info, 0, sizeof(ctxt->info));
948 /* VSI's should be allocated from shared pool */
949 ctxt->alloc_from_pool = true;
950 /* Src pruning enabled by default */
951 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
952 /* Traffic from VSI can be sent to LAN */
953 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
954 /* allow all untagged/tagged packets by default on Tx */
955 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
956 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
957 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
958 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
959 *
960 * DVM - leave inner VLAN in packet by default
961 */
962 if (ice_is_dvm_ena(hw)) {
963 ctxt->info.inner_vlan_flags |=
964 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
965 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
966 ctxt->info.outer_vlan_flags =
967 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
968 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
969 ctxt->info.outer_vlan_flags |=
970 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
971 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
972 ctxt->info.outer_vlan_flags |=
973 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
974 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
975 }
976 /* Have 1:1 UP mapping for both ingress/egress tables */
977 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
978 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
979 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
980 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
981 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
982 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
983 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
984 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
985 ctxt->info.ingress_table = cpu_to_le32(table);
986 ctxt->info.egress_table = cpu_to_le32(table);
987 /* Have 1:1 UP mapping for outer to inner UP table */
988 ctxt->info.outer_up_table = cpu_to_le32(table);
989 /* No Outer tag support outer_tag_flags remains to zero */
990 }
991
992 /**
993 * ice_vsi_setup_q_map - Setup a VSI queue map
994 * @vsi: the VSI being configured
995 * @ctxt: VSI context structure
996 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)997 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
998 {
999 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1000 u16 num_txq_per_tc, num_rxq_per_tc;
1001 u16 qcount_tx = vsi->alloc_txq;
1002 u16 qcount_rx = vsi->alloc_rxq;
1003 u8 netdev_tc = 0;
1004 int i;
1005
1006 if (!vsi->tc_cfg.numtc) {
1007 /* at least TC0 should be enabled by default */
1008 vsi->tc_cfg.numtc = 1;
1009 vsi->tc_cfg.ena_tc = 1;
1010 }
1011
1012 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1013 if (!num_rxq_per_tc)
1014 num_rxq_per_tc = 1;
1015 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1016 if (!num_txq_per_tc)
1017 num_txq_per_tc = 1;
1018
1019 /* find the (rounded up) power-of-2 of qcount */
1020 pow = (u16)order_base_2(num_rxq_per_tc);
1021
1022 /* TC mapping is a function of the number of Rx queues assigned to the
1023 * VSI for each traffic class and the offset of these queues.
1024 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1025 * queues allocated to TC0. No:of queues is a power-of-2.
1026 *
1027 * If TC is not enabled, the queue offset is set to 0, and allocate one
1028 * queue, this way, traffic for the given TC will be sent to the default
1029 * queue.
1030 *
1031 * Setup number and offset of Rx queues for all TCs for the VSI
1032 */
1033 ice_for_each_traffic_class(i) {
1034 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1035 /* TC is not enabled */
1036 vsi->tc_cfg.tc_info[i].qoffset = 0;
1037 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1038 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1039 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1040 ctxt->info.tc_mapping[i] = 0;
1041 continue;
1042 }
1043
1044 /* TC is enabled */
1045 vsi->tc_cfg.tc_info[i].qoffset = offset;
1046 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1047 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1048 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1049
1050 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1051 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1052 offset += num_rxq_per_tc;
1053 tx_count += num_txq_per_tc;
1054 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1055 }
1056
1057 /* if offset is non-zero, means it is calculated correctly based on
1058 * enabled TCs for a given VSI otherwise qcount_rx will always
1059 * be correct and non-zero because it is based off - VSI's
1060 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1061 * at least 1)
1062 */
1063 if (offset)
1064 rx_count = offset;
1065 else
1066 rx_count = num_rxq_per_tc;
1067
1068 if (rx_count > vsi->alloc_rxq) {
1069 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1070 rx_count, vsi->alloc_rxq);
1071 return -EINVAL;
1072 }
1073
1074 if (tx_count > vsi->alloc_txq) {
1075 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1076 tx_count, vsi->alloc_txq);
1077 return -EINVAL;
1078 }
1079
1080 vsi->num_txq = tx_count;
1081 vsi->num_rxq = rx_count;
1082
1083 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1084 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1085 /* since there is a chance that num_rxq could have been changed
1086 * in the above for loop, make num_txq equal to num_rxq.
1087 */
1088 vsi->num_txq = vsi->num_rxq;
1089 }
1090
1091 /* Rx queue mapping */
1092 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1093 /* q_mapping buffer holds the info for the first queue allocated for
1094 * this VSI in the PF space and also the number of queues associated
1095 * with this VSI.
1096 */
1097 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1098 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1099
1100 return 0;
1101 }
1102
1103 /**
1104 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1105 * @ctxt: the VSI context being set
1106 * @vsi: the VSI being configured
1107 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1108 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1109 {
1110 u8 dflt_q_group, dflt_q_prio;
1111 u16 dflt_q, report_q, val;
1112
1113 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1114 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1115 return;
1116
1117 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1118 ctxt->info.valid_sections |= cpu_to_le16(val);
1119 dflt_q = 0;
1120 dflt_q_group = 0;
1121 report_q = 0;
1122 dflt_q_prio = 0;
1123
1124 /* enable flow director filtering/programming */
1125 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1126 ctxt->info.fd_options = cpu_to_le16(val);
1127 /* max of allocated flow director filters */
1128 ctxt->info.max_fd_fltr_dedicated =
1129 cpu_to_le16(vsi->num_gfltr);
1130 /* max of shared flow director filters any VSI may program */
1131 ctxt->info.max_fd_fltr_shared =
1132 cpu_to_le16(vsi->num_bfltr);
1133 /* default queue index within the VSI of the default FD */
1134 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1135 /* target queue or queue group to the FD filter */
1136 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1137 ctxt->info.fd_def_q = cpu_to_le16(val);
1138 /* queue index on which FD filter completion is reported */
1139 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1140 /* priority of the default qindex action */
1141 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1142 ctxt->info.fd_report_opt = cpu_to_le16(val);
1143 }
1144
1145 /**
1146 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1147 * @ctxt: the VSI context being set
1148 * @vsi: the VSI being configured
1149 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1150 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1151 {
1152 u8 lut_type, hash_type;
1153 struct device *dev;
1154 struct ice_pf *pf;
1155
1156 pf = vsi->back;
1157 dev = ice_pf_to_dev(pf);
1158
1159 switch (vsi->type) {
1160 case ICE_VSI_CHNL:
1161 case ICE_VSI_PF:
1162 /* PF VSI will inherit RSS instance of PF */
1163 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1164 break;
1165 case ICE_VSI_VF:
1166 case ICE_VSI_SF:
1167 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1168 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1169 break;
1170 default:
1171 dev_dbg(dev, "Unsupported VSI type %s\n",
1172 ice_vsi_type_str(vsi->type));
1173 return;
1174 }
1175
1176 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1177 vsi->rss_hfunc = hash_type;
1178
1179 ctxt->info.q_opt_rss =
1180 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1181 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1182 }
1183
1184 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1185 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1186 {
1187 u16 qcount, qmap;
1188 u8 offset = 0;
1189 int pow;
1190
1191 qcount = vsi->num_rxq;
1192
1193 pow = order_base_2(qcount);
1194 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1195 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1196
1197 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1198 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1199 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1200 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1201 }
1202
1203 /**
1204 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1205 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1206 *
1207 * returns true if Rx VLAN pruning is enabled and false otherwise.
1208 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1209 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1210 {
1211 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1212 }
1213
1214 /**
1215 * ice_vsi_init - Create and initialize a VSI
1216 * @vsi: the VSI being configured
1217 * @vsi_flags: VSI configuration flags
1218 *
1219 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1220 * reconfigure an existing context.
1221 *
1222 * This initializes a VSI context depending on the VSI type to be added and
1223 * passes it down to the add_vsi aq command to create a new VSI.
1224 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1225 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1226 {
1227 struct ice_pf *pf = vsi->back;
1228 struct ice_hw *hw = &pf->hw;
1229 struct ice_vsi_ctx *ctxt;
1230 struct device *dev;
1231 int ret = 0;
1232
1233 dev = ice_pf_to_dev(pf);
1234 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1235 if (!ctxt)
1236 return -ENOMEM;
1237
1238 switch (vsi->type) {
1239 case ICE_VSI_CTRL:
1240 case ICE_VSI_LB:
1241 case ICE_VSI_PF:
1242 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1243 break;
1244 case ICE_VSI_SF:
1245 case ICE_VSI_CHNL:
1246 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1247 break;
1248 case ICE_VSI_VF:
1249 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1250 /* VF number here is the absolute VF number (0-255) */
1251 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1252 break;
1253 default:
1254 ret = -ENODEV;
1255 goto out;
1256 }
1257
1258 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1259 * prune enabled
1260 */
1261 if (vsi->type == ICE_VSI_CHNL) {
1262 struct ice_vsi *main_vsi;
1263
1264 main_vsi = ice_get_main_vsi(pf);
1265 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1266 ctxt->info.sw_flags2 |=
1267 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1268 else
1269 ctxt->info.sw_flags2 &=
1270 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1271 }
1272
1273 ice_set_dflt_vsi_ctx(hw, ctxt);
1274 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1275 ice_set_fd_vsi_ctx(ctxt, vsi);
1276 /* if the switch is in VEB mode, allow VSI loopback */
1277 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1278 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1279
1280 /* Set LUT type and HASH type if RSS is enabled */
1281 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1282 vsi->type != ICE_VSI_CTRL) {
1283 ice_set_rss_vsi_ctx(ctxt, vsi);
1284 /* if updating VSI context, make sure to set valid_section:
1285 * to indicate which section of VSI context being updated
1286 */
1287 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1288 ctxt->info.valid_sections |=
1289 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1290 }
1291
1292 ctxt->info.sw_id = vsi->port_info->sw_id;
1293 if (vsi->type == ICE_VSI_CHNL) {
1294 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1295 } else {
1296 ret = ice_vsi_setup_q_map(vsi, ctxt);
1297 if (ret)
1298 goto out;
1299
1300 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1301 /* means VSI being updated */
1302 /* must to indicate which section of VSI context are
1303 * being modified
1304 */
1305 ctxt->info.valid_sections |=
1306 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1307 }
1308
1309 /* Allow control frames out of main VSI */
1310 if (vsi->type == ICE_VSI_PF) {
1311 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1312 ctxt->info.valid_sections |=
1313 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1314 }
1315
1316 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1317 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1318 if (ret) {
1319 dev_err(dev, "Add VSI failed, err %d\n", ret);
1320 ret = -EIO;
1321 goto out;
1322 }
1323 } else {
1324 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1325 if (ret) {
1326 dev_err(dev, "Update VSI failed, err %d\n", ret);
1327 ret = -EIO;
1328 goto out;
1329 }
1330 }
1331
1332 /* keep context for update VSI operations */
1333 vsi->info = ctxt->info;
1334
1335 /* record VSI number returned */
1336 vsi->vsi_num = ctxt->vsi_num;
1337
1338 out:
1339 kfree(ctxt);
1340 return ret;
1341 }
1342
1343 /**
1344 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1345 * @vsi: the VSI having rings deallocated
1346 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1347 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1348 {
1349 int i;
1350
1351 /* Avoid stale references by clearing map from vector to ring */
1352 if (vsi->q_vectors) {
1353 ice_for_each_q_vector(vsi, i) {
1354 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1355
1356 if (q_vector) {
1357 q_vector->tx.tx_ring = NULL;
1358 q_vector->rx.rx_ring = NULL;
1359 }
1360 }
1361 }
1362
1363 if (vsi->tx_rings) {
1364 ice_for_each_alloc_txq(vsi, i) {
1365 if (vsi->tx_rings[i]) {
1366 kfree_rcu(vsi->tx_rings[i], rcu);
1367 WRITE_ONCE(vsi->tx_rings[i], NULL);
1368 }
1369 }
1370 }
1371 if (vsi->rx_rings) {
1372 ice_for_each_alloc_rxq(vsi, i) {
1373 if (vsi->rx_rings[i]) {
1374 kfree_rcu(vsi->rx_rings[i], rcu);
1375 WRITE_ONCE(vsi->rx_rings[i], NULL);
1376 }
1377 }
1378 }
1379 }
1380
1381 /**
1382 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1383 * @vsi: VSI which is having rings allocated
1384 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1385 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1386 {
1387 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1388 struct ice_pf *pf = vsi->back;
1389 struct device *dev;
1390 u16 i;
1391
1392 dev = ice_pf_to_dev(pf);
1393 /* Allocate Tx rings */
1394 ice_for_each_alloc_txq(vsi, i) {
1395 struct ice_tx_ring *ring;
1396
1397 /* allocate with kzalloc(), free with kfree_rcu() */
1398 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1399
1400 if (!ring)
1401 goto err_out;
1402
1403 ring->q_index = i;
1404 ring->reg_idx = vsi->txq_map[i];
1405 ring->vsi = vsi;
1406 ring->tx_tstamps = &pf->ptp.port.tx;
1407 ring->dev = dev;
1408 ring->count = vsi->num_tx_desc;
1409 ring->txq_teid = ICE_INVAL_TEID;
1410 if (dvm_ena)
1411 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1412 else
1413 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1414 WRITE_ONCE(vsi->tx_rings[i], ring);
1415 }
1416
1417 /* Allocate Rx rings */
1418 ice_for_each_alloc_rxq(vsi, i) {
1419 struct ice_rx_ring *ring;
1420
1421 /* allocate with kzalloc(), free with kfree_rcu() */
1422 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1423 if (!ring)
1424 goto err_out;
1425
1426 ring->q_index = i;
1427 ring->reg_idx = vsi->rxq_map[i];
1428 ring->vsi = vsi;
1429 ring->netdev = vsi->netdev;
1430 ring->dev = dev;
1431 ring->count = vsi->num_rx_desc;
1432 ring->cached_phctime = pf->ptp.cached_phc_time;
1433
1434 if (ice_is_feature_supported(pf, ICE_F_GCS))
1435 ring->flags |= ICE_RX_FLAGS_RING_GCS;
1436
1437 WRITE_ONCE(vsi->rx_rings[i], ring);
1438 }
1439
1440 return 0;
1441
1442 err_out:
1443 ice_vsi_clear_rings(vsi);
1444 return -ENOMEM;
1445 }
1446
1447 /**
1448 * ice_vsi_manage_rss_lut - disable/enable RSS
1449 * @vsi: the VSI being changed
1450 * @ena: boolean value indicating if this is an enable or disable request
1451 *
1452 * In the event of disable request for RSS, this function will zero out RSS
1453 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1454 * LUT.
1455 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1456 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1457 {
1458 u8 *lut;
1459
1460 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1461 if (!lut)
1462 return;
1463
1464 if (ena) {
1465 if (vsi->rss_lut_user)
1466 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1467 else
1468 ice_fill_rss_lut(lut, vsi->rss_table_size,
1469 vsi->rss_size);
1470 }
1471
1472 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1473 kfree(lut);
1474 }
1475
1476 /**
1477 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1478 * @vsi: VSI to be configured
1479 * @disable: set to true to have FCS / CRC in the frame data
1480 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1481 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1482 {
1483 int i;
1484
1485 ice_for_each_rxq(vsi, i)
1486 if (disable)
1487 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1488 else
1489 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1490 }
1491
1492 /**
1493 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1494 * @vsi: VSI to be configured
1495 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1496 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1497 {
1498 struct ice_pf *pf = vsi->back;
1499 struct device *dev;
1500 u8 *lut, *key;
1501 int err;
1502
1503 dev = ice_pf_to_dev(pf);
1504 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1505 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1506 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1507 } else {
1508 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1509
1510 /* If orig_rss_size is valid and it is less than determined
1511 * main VSI's rss_size, update main VSI's rss_size to be
1512 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1513 * RSS table gets programmed to be correct (whatever it was
1514 * to begin with (prior to setup-tc for ADQ config)
1515 */
1516 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1517 vsi->orig_rss_size <= vsi->num_rxq) {
1518 vsi->rss_size = vsi->orig_rss_size;
1519 /* now orig_rss_size is used, reset it to zero */
1520 vsi->orig_rss_size = 0;
1521 }
1522 }
1523
1524 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1525 if (!lut)
1526 return -ENOMEM;
1527
1528 if (vsi->rss_lut_user)
1529 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1530 else
1531 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1532
1533 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1534 if (err) {
1535 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1536 goto ice_vsi_cfg_rss_exit;
1537 }
1538
1539 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1540 if (!key) {
1541 err = -ENOMEM;
1542 goto ice_vsi_cfg_rss_exit;
1543 }
1544
1545 if (vsi->rss_hkey_user)
1546 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1547 else
1548 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1549
1550 err = ice_set_rss_key(vsi, key);
1551 if (err)
1552 dev_err(dev, "set_rss_key failed, error %d\n", err);
1553
1554 kfree(key);
1555 ice_vsi_cfg_rss_exit:
1556 kfree(lut);
1557 return err;
1558 }
1559
1560 /**
1561 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1562 * @vsi: VSI to be configured
1563 *
1564 * This function will only be called during the VF VSI setup. Upon successful
1565 * completion of package download, this function will configure default RSS
1566 * input sets for VF VSI.
1567 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1568 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1569 {
1570 struct ice_pf *pf = vsi->back;
1571 struct device *dev;
1572 int status;
1573
1574 dev = ice_pf_to_dev(pf);
1575 if (ice_is_safe_mode(pf)) {
1576 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1577 vsi->vsi_num);
1578 return;
1579 }
1580
1581 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HASHCFG);
1582 if (status)
1583 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1584 vsi->vsi_num, status);
1585 }
1586
1587 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1588 /* configure RSS for IPv4 with input set IP src/dst */
1589 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1590 /* configure RSS for IPv6 with input set IPv6 src/dst */
1591 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1592 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1593 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1594 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1595 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1596 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1597 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1598 /* configure RSS for sctp4 with input set IP src/dst - only support
1599 * RSS on SCTPv4 on outer headers (non-tunneled)
1600 */
1601 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1602 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1603 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1604 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1605 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1606 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1607 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1608 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1609 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1610 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1611 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1612 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1613 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1614 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1615 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1616 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1617 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1618 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1619 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1620 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1621
1622 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1623 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1624 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1625 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1626 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1627 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1628 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1629 * RSS on SCTPv6 on outer headers (non-tunneled)
1630 */
1631 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1632 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1633 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1634 {ICE_FLOW_SEG_HDR_ESP,
1635 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1636 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1637 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1638 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1639 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1640 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1641 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1642 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1643 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1644 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1645 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1646 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1647 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1648 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1649 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1650 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1651 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1652 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1653 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1654 };
1655
1656 /**
1657 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1658 * @vsi: VSI to be configured
1659 *
1660 * This function will only be called after successful download package call
1661 * during initialization of PF. Since the downloaded package will erase the
1662 * RSS section, this function will configure RSS input sets for different
1663 * flow types. The last profile added has the highest priority, therefore 2
1664 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1665 * (i.e. IPv4 src/dst TCP src/dst port).
1666 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1667 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1668 {
1669 u16 vsi_num = vsi->vsi_num;
1670 struct ice_pf *pf = vsi->back;
1671 struct ice_hw *hw = &pf->hw;
1672 struct device *dev;
1673 int status;
1674 u32 i;
1675
1676 dev = ice_pf_to_dev(pf);
1677 if (ice_is_safe_mode(pf)) {
1678 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1679 vsi_num);
1680 return;
1681 }
1682 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1683 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1684
1685 status = ice_add_rss_cfg(hw, vsi, cfg);
1686 if (status)
1687 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1688 cfg->addl_hdrs, cfg->hash_flds,
1689 cfg->hdr_type, cfg->symm);
1690 }
1691 }
1692
1693 /**
1694 * ice_pf_state_is_nominal - checks the PF for nominal state
1695 * @pf: pointer to PF to check
1696 *
1697 * Check the PF's state for a collection of bits that would indicate
1698 * the PF is in a state that would inhibit normal operation for
1699 * driver functionality.
1700 *
1701 * Returns true if PF is in a nominal state, false otherwise
1702 */
ice_pf_state_is_nominal(struct ice_pf * pf)1703 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1704 {
1705 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1706
1707 if (!pf)
1708 return false;
1709
1710 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1711 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1712 return false;
1713
1714 return true;
1715 }
1716
1717 #define ICE_FW_MODE_REC_M BIT(1)
ice_is_recovery_mode(struct ice_hw * hw)1718 bool ice_is_recovery_mode(struct ice_hw *hw)
1719 {
1720 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M;
1721 }
1722
1723 /**
1724 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1725 * @vsi: the VSI to be updated
1726 */
ice_update_eth_stats(struct ice_vsi * vsi)1727 void ice_update_eth_stats(struct ice_vsi *vsi)
1728 {
1729 struct ice_eth_stats *prev_es, *cur_es;
1730 struct ice_hw *hw = &vsi->back->hw;
1731 struct ice_pf *pf = vsi->back;
1732 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1733
1734 prev_es = &vsi->eth_stats_prev;
1735 cur_es = &vsi->eth_stats;
1736
1737 if (ice_is_reset_in_progress(pf->state))
1738 vsi->stat_offsets_loaded = false;
1739
1740 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1741 &prev_es->rx_bytes, &cur_es->rx_bytes);
1742
1743 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1744 &prev_es->rx_unicast, &cur_es->rx_unicast);
1745
1746 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1747 &prev_es->rx_multicast, &cur_es->rx_multicast);
1748
1749 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1750 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1751
1752 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1753 &prev_es->rx_discards, &cur_es->rx_discards);
1754
1755 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1756 &prev_es->tx_bytes, &cur_es->tx_bytes);
1757
1758 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1759 &prev_es->tx_unicast, &cur_es->tx_unicast);
1760
1761 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1762 &prev_es->tx_multicast, &cur_es->tx_multicast);
1763
1764 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1765 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1766
1767 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1768 &prev_es->tx_errors, &cur_es->tx_errors);
1769
1770 vsi->stat_offsets_loaded = true;
1771 }
1772
1773 /**
1774 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1775 * @hw: HW pointer
1776 * @pf_q: index of the Rx queue in the PF's queue space
1777 * @rxdid: flexible descriptor RXDID
1778 * @prio: priority for the RXDID for this queue
1779 * @ena_ts: true to enable timestamp and false to disable timestamp
1780 */
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1781 void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1782 bool ena_ts)
1783 {
1784 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1785
1786 /* clear any previous values */
1787 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1788 QRXFLXP_CNTXT_RXDID_PRIO_M |
1789 QRXFLXP_CNTXT_TS_M);
1790
1791 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1792 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1793
1794 if (ena_ts)
1795 /* Enable TimeSync on this queue */
1796 regval |= QRXFLXP_CNTXT_TS_M;
1797
1798 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1799 }
1800
1801 /**
1802 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1803 * @intrl: interrupt rate limit in usecs
1804 * @gran: interrupt rate limit granularity in usecs
1805 *
1806 * This function converts a decimal interrupt rate limit in usecs to the format
1807 * expected by firmware.
1808 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1809 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1810 {
1811 u32 val = intrl / gran;
1812
1813 if (val)
1814 return val | GLINT_RATE_INTRL_ENA_M;
1815 return 0;
1816 }
1817
1818 /**
1819 * ice_write_intrl - write throttle rate limit to interrupt specific register
1820 * @q_vector: pointer to interrupt specific structure
1821 * @intrl: throttle rate limit in microseconds to write
1822 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1823 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1824 {
1825 struct ice_hw *hw = &q_vector->vsi->back->hw;
1826
1827 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1828 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1829 }
1830
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1831 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1832 {
1833 switch (rc->type) {
1834 case ICE_RX_CONTAINER:
1835 if (rc->rx_ring)
1836 return rc->rx_ring->q_vector;
1837 break;
1838 case ICE_TX_CONTAINER:
1839 if (rc->tx_ring)
1840 return rc->tx_ring->q_vector;
1841 break;
1842 default:
1843 break;
1844 }
1845
1846 return NULL;
1847 }
1848
1849 /**
1850 * __ice_write_itr - write throttle rate to register
1851 * @q_vector: pointer to interrupt data structure
1852 * @rc: pointer to ring container
1853 * @itr: throttle rate in microseconds to write
1854 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1855 static void __ice_write_itr(struct ice_q_vector *q_vector,
1856 struct ice_ring_container *rc, u16 itr)
1857 {
1858 struct ice_hw *hw = &q_vector->vsi->back->hw;
1859
1860 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1861 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1862 }
1863
1864 /**
1865 * ice_write_itr - write throttle rate to queue specific register
1866 * @rc: pointer to ring container
1867 * @itr: throttle rate in microseconds to write
1868 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1869 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1870 {
1871 struct ice_q_vector *q_vector;
1872
1873 q_vector = ice_pull_qvec_from_rc(rc);
1874 if (!q_vector)
1875 return;
1876
1877 __ice_write_itr(q_vector, rc, itr);
1878 }
1879
1880 /**
1881 * ice_set_q_vector_intrl - set up interrupt rate limiting
1882 * @q_vector: the vector to be configured
1883 *
1884 * Interrupt rate limiting is local to the vector, not per-queue so we must
1885 * detect if either ring container has dynamic moderation enabled to decide
1886 * what to set the interrupt rate limit to via INTRL settings. In the case that
1887 * dynamic moderation is disabled on both, write the value with the cached
1888 * setting to make sure INTRL register matches the user visible value.
1889 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1890 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1891 {
1892 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1893 /* in the case of dynamic enabled, cap each vector to no more
1894 * than (4 us) 250,000 ints/sec, which allows low latency
1895 * but still less than 500,000 interrupts per second, which
1896 * reduces CPU a bit in the case of the lowest latency
1897 * setting. The 4 here is a value in microseconds.
1898 */
1899 ice_write_intrl(q_vector, 4);
1900 } else {
1901 ice_write_intrl(q_vector, q_vector->intrl);
1902 }
1903 }
1904
1905 /**
1906 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1907 * @vsi: the VSI being configured
1908 *
1909 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1910 * for the VF VSI.
1911 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1912 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1913 {
1914 struct ice_pf *pf = vsi->back;
1915 struct ice_hw *hw = &pf->hw;
1916 u16 txq = 0, rxq = 0;
1917 int i, q;
1918
1919 ice_for_each_q_vector(vsi, i) {
1920 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1921 u16 reg_idx = q_vector->reg_idx;
1922
1923 ice_cfg_itr(hw, q_vector);
1924
1925 /* Both Transmit Queue Interrupt Cause Control register
1926 * and Receive Queue Interrupt Cause control register
1927 * expects MSIX_INDX field to be the vector index
1928 * within the function space and not the absolute
1929 * vector index across PF or across device.
1930 * For SR-IOV VF VSIs queue vector index always starts
1931 * with 1 since first vector index(0) is used for OICR
1932 * in VF space. Since VMDq and other PF VSIs are within
1933 * the PF function space, use the vector index that is
1934 * tracked for this PF.
1935 */
1936 for (q = 0; q < q_vector->num_ring_tx; q++) {
1937 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1938 q_vector->tx.itr_idx);
1939 txq++;
1940 }
1941
1942 for (q = 0; q < q_vector->num_ring_rx; q++) {
1943 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1944 q_vector->rx.itr_idx);
1945 rxq++;
1946 }
1947 }
1948 }
1949
1950 /**
1951 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1952 * @vsi: the VSI whose rings are to be enabled
1953 *
1954 * Returns 0 on success and a negative value on error
1955 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1956 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1957 {
1958 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1959 }
1960
1961 /**
1962 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1963 * @vsi: the VSI whose rings are to be disabled
1964 *
1965 * Returns 0 on success and a negative value on error
1966 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1967 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1968 {
1969 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1970 }
1971
1972 /**
1973 * ice_vsi_stop_tx_rings - Disable Tx rings
1974 * @vsi: the VSI being configured
1975 * @rst_src: reset source
1976 * @rel_vmvf_num: Relative ID of VF/VM
1977 * @rings: Tx ring array to be stopped
1978 * @count: number of Tx ring array elements
1979 */
1980 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1981 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1982 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1983 {
1984 u16 q_idx;
1985
1986 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1987 return -EINVAL;
1988
1989 for (q_idx = 0; q_idx < count; q_idx++) {
1990 struct ice_txq_meta txq_meta = { };
1991 int status;
1992
1993 if (!rings || !rings[q_idx])
1994 return -EINVAL;
1995
1996 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1997 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1998 rings[q_idx], &txq_meta);
1999
2000 if (status)
2001 return status;
2002 }
2003
2004 return 0;
2005 }
2006
2007 /**
2008 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2009 * @vsi: the VSI being configured
2010 * @rst_src: reset source
2011 * @rel_vmvf_num: Relative ID of VF/VM
2012 */
2013 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2014 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2015 u16 rel_vmvf_num)
2016 {
2017 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2018 }
2019
2020 /**
2021 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2022 * @vsi: the VSI being configured
2023 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2024 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2025 {
2026 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2027 }
2028
2029 /**
2030 * ice_vsi_is_rx_queue_active
2031 * @vsi: the VSI being configured
2032 *
2033 * Return true if at least one queue is active.
2034 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2035 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2036 {
2037 struct ice_pf *pf = vsi->back;
2038 struct ice_hw *hw = &pf->hw;
2039 int i;
2040
2041 ice_for_each_rxq(vsi, i) {
2042 u32 rx_reg;
2043 int pf_q;
2044
2045 pf_q = vsi->rxq_map[i];
2046 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2047 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2048 return true;
2049 }
2050
2051 return false;
2052 }
2053
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2054 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2055 {
2056 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2057 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2058 vsi->tc_cfg.numtc = 1;
2059 return;
2060 }
2061
2062 /* set VSI TC information based on DCB config */
2063 ice_vsi_set_dcb_tc_cfg(vsi);
2064 }
2065
2066 /**
2067 * ice_vsi_cfg_sw_lldp - Config switch rules for LLDP packet handling
2068 * @vsi: the VSI being configured
2069 * @tx: bool to determine Tx or Rx rule
2070 * @create: bool to determine create or remove Rule
2071 *
2072 * Adding an ethtype Tx rule to the uplink VSI results in it being applied
2073 * to the whole port, so LLDP transmission for VFs will be blocked too.
2074 */
ice_vsi_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2075 void ice_vsi_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2076 {
2077 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2078 enum ice_sw_fwd_act_type act);
2079 struct ice_pf *pf = vsi->back;
2080 struct device *dev;
2081 int status;
2082
2083 dev = ice_pf_to_dev(pf);
2084 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2085
2086 if (tx) {
2087 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2088 ICE_DROP_PACKET);
2089 } else {
2090 if (!test_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags)) {
2091 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2092 ICE_FWD_TO_VSI);
2093 if (!status || !create)
2094 goto report;
2095
2096 dev_info(dev,
2097 "Failed to add generic LLDP Rx filter on VSI %i error: %d, falling back to specialized AQ control\n",
2098 vsi->vsi_num, status);
2099 }
2100
2101 status = ice_lldp_fltr_add_remove(&pf->hw, vsi, create);
2102 if (!status)
2103 set_bit(ICE_FLAG_LLDP_AQ_FLTR, pf->flags);
2104
2105 }
2106
2107 report:
2108 if (status)
2109 dev_warn(dev, "Failed to %s %s LLDP rule on VSI %i error: %d\n",
2110 create ? "add" : "remove", tx ? "Tx" : "Rx",
2111 vsi->vsi_num, status);
2112 }
2113
2114 /**
2115 * ice_cfg_sw_rx_lldp - Enable/disable software handling of LLDP
2116 * @pf: the PF being configured
2117 * @enable: enable or disable
2118 *
2119 * Configure switch rules to enable/disable LLDP handling by software
2120 * across PF.
2121 */
ice_cfg_sw_rx_lldp(struct ice_pf * pf,bool enable)2122 void ice_cfg_sw_rx_lldp(struct ice_pf *pf, bool enable)
2123 {
2124 struct ice_vsi *vsi;
2125 struct ice_vf *vf;
2126 unsigned int bkt;
2127
2128 vsi = ice_get_main_vsi(pf);
2129 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2130
2131 if (!test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
2132 return;
2133
2134 ice_for_each_vf(pf, bkt, vf) {
2135 vsi = ice_get_vf_vsi(vf);
2136
2137 if (WARN_ON(!vsi))
2138 continue;
2139
2140 if (ice_vf_is_lldp_ena(vf))
2141 ice_vsi_cfg_sw_lldp(vsi, false, enable);
2142 }
2143 }
2144
2145 /**
2146 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2147 * @vsi: pointer to the VSI
2148 *
2149 * This function will allocate new scheduler aggregator now if needed and will
2150 * move specified VSI into it.
2151 */
ice_set_agg_vsi(struct ice_vsi * vsi)2152 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2153 {
2154 struct device *dev = ice_pf_to_dev(vsi->back);
2155 struct ice_agg_node *agg_node_iter = NULL;
2156 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2157 struct ice_agg_node *agg_node = NULL;
2158 int node_offset, max_agg_nodes = 0;
2159 struct ice_port_info *port_info;
2160 struct ice_pf *pf = vsi->back;
2161 u32 agg_node_id_start = 0;
2162 int status;
2163
2164 /* create (as needed) scheduler aggregator node and move VSI into
2165 * corresponding aggregator node
2166 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2167 * - VF aggregator nodes will contain VF VSI
2168 */
2169 port_info = pf->hw.port_info;
2170 if (!port_info)
2171 return;
2172
2173 switch (vsi->type) {
2174 case ICE_VSI_CTRL:
2175 case ICE_VSI_CHNL:
2176 case ICE_VSI_LB:
2177 case ICE_VSI_PF:
2178 case ICE_VSI_SF:
2179 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2180 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2181 agg_node_iter = &pf->pf_agg_node[0];
2182 break;
2183 case ICE_VSI_VF:
2184 /* user can create 'n' VFs on a given PF, but since max children
2185 * per aggregator node can be only 64. Following code handles
2186 * aggregator(s) for VF VSIs, either selects a agg_node which
2187 * was already created provided num_vsis < 64, otherwise
2188 * select next available node, which will be created
2189 */
2190 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2191 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2192 agg_node_iter = &pf->vf_agg_node[0];
2193 break;
2194 default:
2195 /* other VSI type, handle later if needed */
2196 dev_dbg(dev, "unexpected VSI type %s\n",
2197 ice_vsi_type_str(vsi->type));
2198 return;
2199 }
2200
2201 /* find the appropriate aggregator node */
2202 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2203 /* see if we can find space in previously created
2204 * node if num_vsis < 64, otherwise skip
2205 */
2206 if (agg_node_iter->num_vsis &&
2207 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2208 agg_node_iter++;
2209 continue;
2210 }
2211
2212 if (agg_node_iter->valid &&
2213 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2214 agg_id = agg_node_iter->agg_id;
2215 agg_node = agg_node_iter;
2216 break;
2217 }
2218
2219 /* find unclaimed agg_id */
2220 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2221 agg_id = node_offset + agg_node_id_start;
2222 agg_node = agg_node_iter;
2223 break;
2224 }
2225 /* move to next agg_node */
2226 agg_node_iter++;
2227 }
2228
2229 if (!agg_node)
2230 return;
2231
2232 /* if selected aggregator node was not created, create it */
2233 if (!agg_node->valid) {
2234 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2235 (u8)vsi->tc_cfg.ena_tc);
2236 if (status) {
2237 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2238 agg_id);
2239 return;
2240 }
2241 /* aggregator node is created, store the needed info */
2242 agg_node->valid = true;
2243 agg_node->agg_id = agg_id;
2244 }
2245
2246 /* move VSI to corresponding aggregator node */
2247 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2248 (u8)vsi->tc_cfg.ena_tc);
2249 if (status) {
2250 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2251 vsi->idx, agg_id);
2252 return;
2253 }
2254
2255 /* keep active children count for aggregator node */
2256 agg_node->num_vsis++;
2257
2258 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2259 * to aggregator node
2260 */
2261 vsi->agg_node = agg_node;
2262 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2263 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2264 vsi->agg_node->num_vsis);
2265 }
2266
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2267 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2268 {
2269 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2270 struct device *dev = ice_pf_to_dev(pf);
2271 int ret, i;
2272
2273 /* configure VSI nodes based on number of queues and TC's */
2274 ice_for_each_traffic_class(i) {
2275 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2276 continue;
2277
2278 if (vsi->type == ICE_VSI_CHNL) {
2279 if (!vsi->alloc_txq && vsi->num_txq)
2280 max_txqs[i] = vsi->num_txq;
2281 else
2282 max_txqs[i] = pf->num_lan_tx;
2283 } else {
2284 max_txqs[i] = vsi->alloc_txq;
2285 }
2286
2287 if (vsi->type == ICE_VSI_PF)
2288 max_txqs[i] += vsi->num_xdp_txq;
2289 }
2290
2291 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2292 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2293 max_txqs);
2294 if (ret) {
2295 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2296 vsi->vsi_num, ret);
2297 return ret;
2298 }
2299
2300 return 0;
2301 }
2302
2303 /**
2304 * ice_vsi_cfg_def - configure default VSI based on the type
2305 * @vsi: pointer to VSI
2306 */
ice_vsi_cfg_def(struct ice_vsi * vsi)2307 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2308 {
2309 struct device *dev = ice_pf_to_dev(vsi->back);
2310 struct ice_pf *pf = vsi->back;
2311 int ret;
2312
2313 vsi->vsw = pf->first_sw;
2314
2315 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2316 if (ret)
2317 return ret;
2318
2319 /* allocate memory for Tx/Rx ring stat pointers */
2320 ret = ice_vsi_alloc_stat_arrays(vsi);
2321 if (ret)
2322 goto unroll_vsi_alloc;
2323
2324 ice_alloc_fd_res(vsi);
2325
2326 ret = ice_vsi_get_qs(vsi);
2327 if (ret) {
2328 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2329 vsi->idx);
2330 goto unroll_vsi_alloc_stat;
2331 }
2332
2333 /* set RSS capabilities */
2334 ice_vsi_set_rss_params(vsi);
2335
2336 /* set TC configuration */
2337 ice_vsi_set_tc_cfg(vsi);
2338
2339 /* create the VSI */
2340 ret = ice_vsi_init(vsi, vsi->flags);
2341 if (ret)
2342 goto unroll_get_qs;
2343
2344 ice_vsi_init_vlan_ops(vsi);
2345
2346 switch (vsi->type) {
2347 case ICE_VSI_CTRL:
2348 case ICE_VSI_SF:
2349 case ICE_VSI_PF:
2350 ret = ice_vsi_alloc_q_vectors(vsi);
2351 if (ret)
2352 goto unroll_vsi_init;
2353
2354 ret = ice_vsi_alloc_rings(vsi);
2355 if (ret)
2356 goto unroll_vector_base;
2357
2358 ret = ice_vsi_alloc_ring_stats(vsi);
2359 if (ret)
2360 goto unroll_vector_base;
2361
2362 if (ice_is_xdp_ena_vsi(vsi)) {
2363 ret = ice_vsi_determine_xdp_res(vsi);
2364 if (ret)
2365 goto unroll_vector_base;
2366 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2367 ICE_XDP_CFG_PART);
2368 if (ret)
2369 goto unroll_vector_base;
2370 }
2371
2372 ice_vsi_map_rings_to_vectors(vsi);
2373
2374 vsi->stat_offsets_loaded = false;
2375
2376 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2377 if (vsi->type != ICE_VSI_CTRL)
2378 /* Do not exit if configuring RSS had an issue, at
2379 * least receive traffic on first queue. Hence no
2380 * need to capture return value
2381 */
2382 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2383 ice_vsi_cfg_rss_lut_key(vsi);
2384 ice_vsi_set_rss_flow_fld(vsi);
2385 }
2386 ice_init_arfs(vsi);
2387 break;
2388 case ICE_VSI_CHNL:
2389 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2390 ice_vsi_cfg_rss_lut_key(vsi);
2391 ice_vsi_set_rss_flow_fld(vsi);
2392 }
2393 break;
2394 case ICE_VSI_VF:
2395 /* VF driver will take care of creating netdev for this type and
2396 * map queues to vectors through Virtchnl, PF driver only
2397 * creates a VSI and corresponding structures for bookkeeping
2398 * purpose
2399 */
2400 ret = ice_vsi_alloc_q_vectors(vsi);
2401 if (ret)
2402 goto unroll_vsi_init;
2403
2404 ret = ice_vsi_alloc_rings(vsi);
2405 if (ret)
2406 goto unroll_alloc_q_vector;
2407
2408 ret = ice_vsi_alloc_ring_stats(vsi);
2409 if (ret)
2410 goto unroll_vector_base;
2411
2412 vsi->stat_offsets_loaded = false;
2413
2414 /* Do not exit if configuring RSS had an issue, at least
2415 * receive traffic on first queue. Hence no need to capture
2416 * return value
2417 */
2418 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2419 ice_vsi_cfg_rss_lut_key(vsi);
2420 ice_vsi_set_vf_rss_flow_fld(vsi);
2421 }
2422 break;
2423 case ICE_VSI_LB:
2424 ret = ice_vsi_alloc_rings(vsi);
2425 if (ret)
2426 goto unroll_vsi_init;
2427
2428 ret = ice_vsi_alloc_ring_stats(vsi);
2429 if (ret)
2430 goto unroll_vector_base;
2431
2432 break;
2433 default:
2434 /* clean up the resources and exit */
2435 ret = -EINVAL;
2436 goto unroll_vsi_init;
2437 }
2438
2439 return 0;
2440
2441 unroll_vector_base:
2442 /* reclaim SW interrupts back to the common pool */
2443 unroll_alloc_q_vector:
2444 ice_vsi_free_q_vectors(vsi);
2445 unroll_vsi_init:
2446 ice_vsi_delete_from_hw(vsi);
2447 unroll_get_qs:
2448 ice_vsi_put_qs(vsi);
2449 unroll_vsi_alloc_stat:
2450 ice_vsi_free_stats(vsi);
2451 unroll_vsi_alloc:
2452 ice_vsi_free_arrays(vsi);
2453 return ret;
2454 }
2455
2456 /**
2457 * ice_vsi_cfg - configure a previously allocated VSI
2458 * @vsi: pointer to VSI
2459 */
ice_vsi_cfg(struct ice_vsi * vsi)2460 int ice_vsi_cfg(struct ice_vsi *vsi)
2461 {
2462 struct ice_pf *pf = vsi->back;
2463 int ret;
2464
2465 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2466 return -EINVAL;
2467
2468 ret = ice_vsi_cfg_def(vsi);
2469 if (ret)
2470 return ret;
2471
2472 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2473 if (ret)
2474 ice_vsi_decfg(vsi);
2475
2476 if (vsi->type == ICE_VSI_CTRL) {
2477 if (vsi->vf) {
2478 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2479 vsi->vf->ctrl_vsi_idx = vsi->idx;
2480 } else {
2481 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2482 pf->ctrl_vsi_idx = vsi->idx;
2483 }
2484 }
2485
2486 return ret;
2487 }
2488
2489 /**
2490 * ice_vsi_decfg - remove all VSI configuration
2491 * @vsi: pointer to VSI
2492 */
ice_vsi_decfg(struct ice_vsi * vsi)2493 void ice_vsi_decfg(struct ice_vsi *vsi)
2494 {
2495 struct ice_pf *pf = vsi->back;
2496 int err;
2497
2498 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2499 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2500 if (err)
2501 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2502 vsi->vsi_num, err);
2503
2504 if (vsi->xdp_rings)
2505 /* return value check can be skipped here, it always returns
2506 * 0 if reset is in progress
2507 */
2508 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2509
2510 ice_vsi_clear_rings(vsi);
2511 ice_vsi_free_q_vectors(vsi);
2512 ice_vsi_put_qs(vsi);
2513 ice_vsi_free_arrays(vsi);
2514
2515 /* SR-IOV determines needed MSIX resources all at once instead of per
2516 * VSI since when VFs are spawned we know how many VFs there are and how
2517 * many interrupts each VF needs. SR-IOV MSIX resources are also
2518 * cleared in the same manner.
2519 */
2520
2521 if (vsi->type == ICE_VSI_VF &&
2522 vsi->agg_node && vsi->agg_node->valid)
2523 vsi->agg_node->num_vsis--;
2524 }
2525
2526 /**
2527 * ice_vsi_setup - Set up a VSI by a given type
2528 * @pf: board private structure
2529 * @params: parameters to use when creating the VSI
2530 *
2531 * This allocates the sw VSI structure and its queue resources.
2532 *
2533 * Returns pointer to the successfully allocated and configured VSI sw struct on
2534 * success, NULL on failure.
2535 */
2536 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2537 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2538 {
2539 struct device *dev = ice_pf_to_dev(pf);
2540 struct ice_vsi *vsi;
2541 int ret;
2542
2543 /* ice_vsi_setup can only initialize a new VSI, and we must have
2544 * a port_info structure for it.
2545 */
2546 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2547 WARN_ON(!params->port_info))
2548 return NULL;
2549
2550 vsi = ice_vsi_alloc(pf);
2551 if (!vsi) {
2552 dev_err(dev, "could not allocate VSI\n");
2553 return NULL;
2554 }
2555
2556 vsi->params = *params;
2557 ret = ice_vsi_cfg(vsi);
2558 if (ret)
2559 goto err_vsi_cfg;
2560
2561 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2562 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2563 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2564 * The rule is added once for PF VSI in order to create appropriate
2565 * recipe, since VSI/VSI list is ignored with drop action...
2566 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2567 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2568 * settings in the HW.
2569 */
2570 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2571 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2572 ICE_DROP_PACKET);
2573 ice_vsi_cfg_sw_lldp(vsi, true, true);
2574 }
2575
2576 if (!vsi->agg_node)
2577 ice_set_agg_vsi(vsi);
2578
2579 return vsi;
2580
2581 err_vsi_cfg:
2582 ice_vsi_free(vsi);
2583
2584 return NULL;
2585 }
2586
2587 /**
2588 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2589 * @vsi: the VSI being cleaned up
2590 */
ice_vsi_release_msix(struct ice_vsi * vsi)2591 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2592 {
2593 struct ice_pf *pf = vsi->back;
2594 struct ice_hw *hw = &pf->hw;
2595 u32 txq = 0;
2596 u32 rxq = 0;
2597 int i, q;
2598
2599 ice_for_each_q_vector(vsi, i) {
2600 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2601
2602 ice_write_intrl(q_vector, 0);
2603 for (q = 0; q < q_vector->num_ring_tx; q++) {
2604 ice_write_itr(&q_vector->tx, 0);
2605 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2606 if (vsi->xdp_rings) {
2607 u32 xdp_txq = txq + vsi->num_xdp_txq;
2608
2609 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2610 }
2611 txq++;
2612 }
2613
2614 for (q = 0; q < q_vector->num_ring_rx; q++) {
2615 ice_write_itr(&q_vector->rx, 0);
2616 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2617 rxq++;
2618 }
2619 }
2620
2621 ice_flush(hw);
2622 }
2623
2624 /**
2625 * ice_vsi_free_irq - Free the IRQ association with the OS
2626 * @vsi: the VSI being configured
2627 */
ice_vsi_free_irq(struct ice_vsi * vsi)2628 void ice_vsi_free_irq(struct ice_vsi *vsi)
2629 {
2630 struct ice_pf *pf = vsi->back;
2631 int i;
2632
2633 if (!vsi->q_vectors || !vsi->irqs_ready)
2634 return;
2635
2636 ice_vsi_release_msix(vsi);
2637 if (vsi->type == ICE_VSI_VF)
2638 return;
2639
2640 vsi->irqs_ready = false;
2641
2642 ice_for_each_q_vector(vsi, i) {
2643 int irq_num;
2644
2645 irq_num = vsi->q_vectors[i]->irq.virq;
2646
2647 /* free only the irqs that were actually requested */
2648 if (!vsi->q_vectors[i] ||
2649 !(vsi->q_vectors[i]->num_ring_tx ||
2650 vsi->q_vectors[i]->num_ring_rx))
2651 continue;
2652
2653 synchronize_irq(irq_num);
2654 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2655 }
2656 }
2657
2658 /**
2659 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2660 * @vsi: the VSI having resources freed
2661 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2662 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2663 {
2664 int i;
2665
2666 if (!vsi->tx_rings)
2667 return;
2668
2669 ice_for_each_txq(vsi, i)
2670 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2671 ice_free_tx_ring(vsi->tx_rings[i]);
2672 }
2673
2674 /**
2675 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2676 * @vsi: the VSI having resources freed
2677 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2678 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2679 {
2680 int i;
2681
2682 if (!vsi->rx_rings)
2683 return;
2684
2685 ice_for_each_rxq(vsi, i)
2686 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2687 ice_free_rx_ring(vsi->rx_rings[i]);
2688 }
2689
2690 /**
2691 * ice_vsi_close - Shut down a VSI
2692 * @vsi: the VSI being shut down
2693 */
ice_vsi_close(struct ice_vsi * vsi)2694 void ice_vsi_close(struct ice_vsi *vsi)
2695 {
2696 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2697 ice_down(vsi);
2698
2699 ice_vsi_clear_napi_queues(vsi);
2700 ice_vsi_free_irq(vsi);
2701 ice_vsi_free_tx_rings(vsi);
2702 ice_vsi_free_rx_rings(vsi);
2703 }
2704
2705 /**
2706 * ice_ena_vsi - resume a VSI
2707 * @vsi: the VSI being resume
2708 * @locked: is the rtnl_lock already held
2709 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2710 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2711 {
2712 int err = 0;
2713
2714 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2715 return 0;
2716
2717 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2718
2719 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2720 vsi->type == ICE_VSI_SF)) {
2721 if (netif_running(vsi->netdev)) {
2722 if (!locked)
2723 rtnl_lock();
2724
2725 err = ice_open_internal(vsi->netdev);
2726
2727 if (!locked)
2728 rtnl_unlock();
2729 }
2730 } else if (vsi->type == ICE_VSI_CTRL) {
2731 err = ice_vsi_open_ctrl(vsi);
2732 }
2733
2734 return err;
2735 }
2736
2737 /**
2738 * ice_dis_vsi - pause a VSI
2739 * @vsi: the VSI being paused
2740 * @locked: is the rtnl_lock already held
2741 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2742 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2743 {
2744 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2745
2746 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2747
2748 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2749 vsi->type == ICE_VSI_SF)) {
2750 if (netif_running(vsi->netdev)) {
2751 if (!locked)
2752 rtnl_lock();
2753 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2754 if (!already_down)
2755 ice_vsi_close(vsi);
2756
2757 if (!locked)
2758 rtnl_unlock();
2759 } else if (!already_down) {
2760 ice_vsi_close(vsi);
2761 }
2762 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2763 ice_vsi_close(vsi);
2764 }
2765 }
2766
2767 /**
2768 * ice_vsi_set_napi_queues - associate netdev queues with napi
2769 * @vsi: VSI pointer
2770 *
2771 * Associate queue[s] with napi for all vectors.
2772 * The caller must hold rtnl_lock.
2773 */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2774 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2775 {
2776 struct net_device *netdev = vsi->netdev;
2777 int q_idx, v_idx;
2778
2779 if (!netdev)
2780 return;
2781
2782 ice_for_each_rxq(vsi, q_idx)
2783 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2784 &vsi->rx_rings[q_idx]->q_vector->napi);
2785
2786 ice_for_each_txq(vsi, q_idx)
2787 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2788 &vsi->tx_rings[q_idx]->q_vector->napi);
2789 /* Also set the interrupt number for the NAPI */
2790 ice_for_each_q_vector(vsi, v_idx) {
2791 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2792
2793 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2794 }
2795 }
2796
2797 /**
2798 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2799 * @vsi: VSI pointer
2800 *
2801 * Clear the association between all VSI queues queue[s] and napi.
2802 * The caller must hold rtnl_lock.
2803 */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2804 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2805 {
2806 struct net_device *netdev = vsi->netdev;
2807 int q_idx, v_idx;
2808
2809 if (!netdev)
2810 return;
2811
2812 /* Clear the NAPI's interrupt number */
2813 ice_for_each_q_vector(vsi, v_idx) {
2814 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2815
2816 netif_napi_set_irq(&q_vector->napi, -1);
2817 }
2818
2819 ice_for_each_txq(vsi, q_idx)
2820 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2821
2822 ice_for_each_rxq(vsi, q_idx)
2823 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2824 }
2825
2826 /**
2827 * ice_napi_add - register NAPI handler for the VSI
2828 * @vsi: VSI for which NAPI handler is to be registered
2829 *
2830 * This function is only called in the driver's load path. Registering the NAPI
2831 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2832 * reset/rebuild, etc.)
2833 */
ice_napi_add(struct ice_vsi * vsi)2834 void ice_napi_add(struct ice_vsi *vsi)
2835 {
2836 int v_idx;
2837
2838 if (!vsi->netdev)
2839 return;
2840
2841 ice_for_each_q_vector(vsi, v_idx)
2842 netif_napi_add_config(vsi->netdev,
2843 &vsi->q_vectors[v_idx]->napi,
2844 ice_napi_poll,
2845 v_idx);
2846 }
2847
2848 /**
2849 * ice_vsi_release - Delete a VSI and free its resources
2850 * @vsi: the VSI being removed
2851 *
2852 * Returns 0 on success or < 0 on error
2853 */
ice_vsi_release(struct ice_vsi * vsi)2854 int ice_vsi_release(struct ice_vsi *vsi)
2855 {
2856 struct ice_pf *pf;
2857
2858 if (!vsi->back)
2859 return -ENODEV;
2860 pf = vsi->back;
2861
2862 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2863 ice_rss_clean(vsi);
2864
2865 ice_vsi_close(vsi);
2866
2867 /* The Rx rule will only exist to remove if the LLDP FW
2868 * engine is currently stopped
2869 */
2870 if (!ice_is_safe_mode(pf) &&
2871 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags) &&
2872 (vsi->type == ICE_VSI_PF || (vsi->type == ICE_VSI_VF &&
2873 ice_vf_is_lldp_ena(vsi->vf))))
2874 ice_vsi_cfg_sw_lldp(vsi, false, false);
2875
2876 ice_vsi_decfg(vsi);
2877
2878 /* retain SW VSI data structure since it is needed to unregister and
2879 * free VSI netdev when PF is not in reset recovery pending state,\
2880 * for ex: during rmmod.
2881 */
2882 if (!ice_is_reset_in_progress(pf->state))
2883 ice_vsi_delete(vsi);
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2890 * @vsi: VSI connected with q_vectors
2891 * @coalesce: array of struct with stored coalesce
2892 *
2893 * Returns array size.
2894 */
2895 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2896 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2897 struct ice_coalesce_stored *coalesce)
2898 {
2899 int i;
2900
2901 ice_for_each_q_vector(vsi, i) {
2902 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2903
2904 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2905 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2906 coalesce[i].intrl = q_vector->intrl;
2907
2908 if (i < vsi->num_txq)
2909 coalesce[i].tx_valid = true;
2910 if (i < vsi->num_rxq)
2911 coalesce[i].rx_valid = true;
2912 }
2913
2914 return vsi->num_q_vectors;
2915 }
2916
2917 /**
2918 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2919 * @vsi: VSI connected with q_vectors
2920 * @coalesce: pointer to array of struct with stored coalesce
2921 * @size: size of coalesce array
2922 *
2923 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2924 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2925 * to default value.
2926 */
2927 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2928 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2929 struct ice_coalesce_stored *coalesce, int size)
2930 {
2931 struct ice_ring_container *rc;
2932 int i;
2933
2934 if ((size && !coalesce) || !vsi)
2935 return;
2936
2937 /* There are a couple of cases that have to be handled here:
2938 * 1. The case where the number of queue vectors stays the same, but
2939 * the number of Tx or Rx rings changes (the first for loop)
2940 * 2. The case where the number of queue vectors increased (the
2941 * second for loop)
2942 */
2943 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2944 /* There are 2 cases to handle here and they are the same for
2945 * both Tx and Rx:
2946 * if the entry was valid previously (coalesce[i].[tr]x_valid
2947 * and the loop variable is less than the number of rings
2948 * allocated, then write the previous values
2949 *
2950 * if the entry was not valid previously, but the number of
2951 * rings is less than are allocated (this means the number of
2952 * rings increased from previously), then write out the
2953 * values in the first element
2954 *
2955 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2956 * as there is no harm because the dynamic algorithm
2957 * will just overwrite.
2958 */
2959 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2960 rc = &vsi->q_vectors[i]->rx;
2961 rc->itr_settings = coalesce[i].itr_rx;
2962 ice_write_itr(rc, rc->itr_setting);
2963 } else if (i < vsi->alloc_rxq) {
2964 rc = &vsi->q_vectors[i]->rx;
2965 rc->itr_settings = coalesce[0].itr_rx;
2966 ice_write_itr(rc, rc->itr_setting);
2967 }
2968
2969 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2970 rc = &vsi->q_vectors[i]->tx;
2971 rc->itr_settings = coalesce[i].itr_tx;
2972 ice_write_itr(rc, rc->itr_setting);
2973 } else if (i < vsi->alloc_txq) {
2974 rc = &vsi->q_vectors[i]->tx;
2975 rc->itr_settings = coalesce[0].itr_tx;
2976 ice_write_itr(rc, rc->itr_setting);
2977 }
2978
2979 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2980 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2981 }
2982
2983 /* the number of queue vectors increased so write whatever is in
2984 * the first element
2985 */
2986 for (; i < vsi->num_q_vectors; i++) {
2987 /* transmit */
2988 rc = &vsi->q_vectors[i]->tx;
2989 rc->itr_settings = coalesce[0].itr_tx;
2990 ice_write_itr(rc, rc->itr_setting);
2991
2992 /* receive */
2993 rc = &vsi->q_vectors[i]->rx;
2994 rc->itr_settings = coalesce[0].itr_rx;
2995 ice_write_itr(rc, rc->itr_setting);
2996
2997 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2998 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2999 }
3000 }
3001
3002 /**
3003 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
3004 * @vsi: VSI pointer
3005 */
3006 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)3007 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
3008 {
3009 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
3010 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
3011 struct ice_ring_stats **tx_ring_stats;
3012 struct ice_ring_stats **rx_ring_stats;
3013 struct ice_vsi_stats *vsi_stat;
3014 struct ice_pf *pf = vsi->back;
3015 u16 prev_txq = vsi->alloc_txq;
3016 u16 prev_rxq = vsi->alloc_rxq;
3017 int i;
3018
3019 vsi_stat = pf->vsi_stats[vsi->idx];
3020
3021 if (req_txq < prev_txq) {
3022 for (i = req_txq; i < prev_txq; i++) {
3023 if (vsi_stat->tx_ring_stats[i]) {
3024 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
3025 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
3026 }
3027 }
3028 }
3029
3030 tx_ring_stats = vsi_stat->tx_ring_stats;
3031 vsi_stat->tx_ring_stats =
3032 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
3033 sizeof(*vsi_stat->tx_ring_stats),
3034 GFP_KERNEL | __GFP_ZERO);
3035 if (!vsi_stat->tx_ring_stats) {
3036 vsi_stat->tx_ring_stats = tx_ring_stats;
3037 return -ENOMEM;
3038 }
3039
3040 if (req_rxq < prev_rxq) {
3041 for (i = req_rxq; i < prev_rxq; i++) {
3042 if (vsi_stat->rx_ring_stats[i]) {
3043 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3044 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3045 }
3046 }
3047 }
3048
3049 rx_ring_stats = vsi_stat->rx_ring_stats;
3050 vsi_stat->rx_ring_stats =
3051 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3052 sizeof(*vsi_stat->rx_ring_stats),
3053 GFP_KERNEL | __GFP_ZERO);
3054 if (!vsi_stat->rx_ring_stats) {
3055 vsi_stat->rx_ring_stats = rx_ring_stats;
3056 return -ENOMEM;
3057 }
3058
3059 return 0;
3060 }
3061
3062 /**
3063 * ice_vsi_rebuild - Rebuild VSI after reset
3064 * @vsi: VSI to be rebuild
3065 * @vsi_flags: flags used for VSI rebuild flow
3066 *
3067 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3068 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3069 *
3070 * Returns 0 on success and negative value on failure
3071 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3072 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3073 {
3074 struct ice_coalesce_stored *coalesce;
3075 int prev_num_q_vectors;
3076 struct ice_pf *pf;
3077 int ret;
3078
3079 if (!vsi)
3080 return -EINVAL;
3081
3082 vsi->flags = vsi_flags;
3083 pf = vsi->back;
3084 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3085 return -EINVAL;
3086
3087 mutex_lock(&vsi->xdp_state_lock);
3088
3089 ret = ice_vsi_realloc_stat_arrays(vsi);
3090 if (ret)
3091 goto unlock;
3092
3093 ice_vsi_decfg(vsi);
3094 ret = ice_vsi_cfg_def(vsi);
3095 if (ret)
3096 goto unlock;
3097
3098 coalesce = kcalloc(vsi->num_q_vectors,
3099 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3100 if (!coalesce) {
3101 ret = -ENOMEM;
3102 goto decfg;
3103 }
3104
3105 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3106
3107 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3108 if (ret) {
3109 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3110 ret = -EIO;
3111 goto free_coalesce;
3112 }
3113
3114 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3115 goto free_coalesce;
3116 }
3117
3118 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3119 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3120
3121 free_coalesce:
3122 kfree(coalesce);
3123 decfg:
3124 if (ret)
3125 ice_vsi_decfg(vsi);
3126 unlock:
3127 mutex_unlock(&vsi->xdp_state_lock);
3128 return ret;
3129 }
3130
3131 /**
3132 * ice_is_reset_in_progress - check for a reset in progress
3133 * @state: PF state field
3134 */
ice_is_reset_in_progress(unsigned long * state)3135 bool ice_is_reset_in_progress(unsigned long *state)
3136 {
3137 return test_bit(ICE_RESET_OICR_RECV, state) ||
3138 test_bit(ICE_PFR_REQ, state) ||
3139 test_bit(ICE_CORER_REQ, state) ||
3140 test_bit(ICE_GLOBR_REQ, state);
3141 }
3142
3143 /**
3144 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3145 * @pf: pointer to the PF structure
3146 * @timeout: length of time to wait, in jiffies
3147 *
3148 * Wait (sleep) for a short time until the driver finishes cleaning up from
3149 * a device reset. The caller must be able to sleep. Use this to delay
3150 * operations that could fail while the driver is cleaning up after a device
3151 * reset.
3152 *
3153 * Returns 0 on success, -EBUSY if the reset is not finished within the
3154 * timeout, and -ERESTARTSYS if the thread was interrupted.
3155 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3156 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3157 {
3158 long ret;
3159
3160 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3161 !ice_is_reset_in_progress(pf->state),
3162 timeout);
3163 if (ret < 0)
3164 return ret;
3165 else if (!ret)
3166 return -EBUSY;
3167 else
3168 return 0;
3169 }
3170
3171 /**
3172 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3173 * @vsi: VSI being configured
3174 * @ctx: the context buffer returned from AQ VSI update command
3175 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3176 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3177 {
3178 vsi->info.mapping_flags = ctx->info.mapping_flags;
3179 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3180 sizeof(vsi->info.q_mapping));
3181 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3182 sizeof(vsi->info.tc_mapping));
3183 }
3184
3185 /**
3186 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3187 * @vsi: the VSI being configured
3188 * @ena_tc: TC map to be enabled
3189 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3190 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3191 {
3192 struct net_device *netdev = vsi->netdev;
3193 struct ice_pf *pf = vsi->back;
3194 int numtc = vsi->tc_cfg.numtc;
3195 struct ice_dcbx_cfg *dcbcfg;
3196 u8 netdev_tc;
3197 int i;
3198
3199 if (!netdev)
3200 return;
3201
3202 /* CHNL VSI doesn't have its own netdev, hence, no netdev_tc */
3203 if (vsi->type == ICE_VSI_CHNL)
3204 return;
3205
3206 if (!ena_tc) {
3207 netdev_reset_tc(netdev);
3208 return;
3209 }
3210
3211 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3212 numtc = vsi->all_numtc;
3213
3214 if (netdev_set_num_tc(netdev, numtc))
3215 return;
3216
3217 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3218
3219 ice_for_each_traffic_class(i)
3220 if (vsi->tc_cfg.ena_tc & BIT(i))
3221 netdev_set_tc_queue(netdev,
3222 vsi->tc_cfg.tc_info[i].netdev_tc,
3223 vsi->tc_cfg.tc_info[i].qcount_tx,
3224 vsi->tc_cfg.tc_info[i].qoffset);
3225 /* setup TC queue map for CHNL TCs */
3226 ice_for_each_chnl_tc(i) {
3227 if (!(vsi->all_enatc & BIT(i)))
3228 break;
3229 if (!vsi->mqprio_qopt.qopt.count[i])
3230 break;
3231 netdev_set_tc_queue(netdev, i,
3232 vsi->mqprio_qopt.qopt.count[i],
3233 vsi->mqprio_qopt.qopt.offset[i]);
3234 }
3235
3236 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3237 return;
3238
3239 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3240 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3241
3242 /* Get the mapped netdev TC# for the UP */
3243 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3244 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3245 }
3246 }
3247
3248 /**
3249 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3250 * @vsi: the VSI being configured,
3251 * @ctxt: VSI context structure
3252 * @ena_tc: number of traffic classes to enable
3253 *
3254 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3255 */
3256 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3257 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3258 u8 ena_tc)
3259 {
3260 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3261 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3262 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3263 u16 new_txq, new_rxq;
3264 u8 netdev_tc = 0;
3265 int i;
3266
3267 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3268
3269 pow = order_base_2(tc0_qcount);
3270 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3271 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3272
3273 ice_for_each_traffic_class(i) {
3274 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3275 /* TC is not enabled */
3276 vsi->tc_cfg.tc_info[i].qoffset = 0;
3277 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3278 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3279 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3280 ctxt->info.tc_mapping[i] = 0;
3281 continue;
3282 }
3283
3284 offset = vsi->mqprio_qopt.qopt.offset[i];
3285 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3286 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3287 vsi->tc_cfg.tc_info[i].qoffset = offset;
3288 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3289 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3290 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3291 }
3292
3293 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3294 ice_for_each_chnl_tc(i) {
3295 if (!(vsi->all_enatc & BIT(i)))
3296 continue;
3297 offset = vsi->mqprio_qopt.qopt.offset[i];
3298 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3299 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3300 }
3301 }
3302
3303 new_txq = offset + qcount_tx;
3304 if (new_txq > vsi->alloc_txq) {
3305 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3306 new_txq, vsi->alloc_txq);
3307 return -EINVAL;
3308 }
3309
3310 new_rxq = offset + qcount_rx;
3311 if (new_rxq > vsi->alloc_rxq) {
3312 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3313 new_rxq, vsi->alloc_rxq);
3314 return -EINVAL;
3315 }
3316
3317 /* Set actual Tx/Rx queue pairs */
3318 vsi->num_txq = new_txq;
3319 vsi->num_rxq = new_rxq;
3320
3321 /* Setup queue TC[0].qmap for given VSI context */
3322 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3323 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3324 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3325
3326 /* Find queue count available for channel VSIs and starting offset
3327 * for channel VSIs
3328 */
3329 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3330 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3331 vsi->next_base_q = tc0_qcount;
3332 }
3333 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3334 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3335 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3336 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3337
3338 return 0;
3339 }
3340
3341 /**
3342 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3343 * @vsi: VSI to be configured
3344 * @ena_tc: TC bitmap
3345 *
3346 * VSI queues expected to be quiesced before calling this function
3347 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3348 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3349 {
3350 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3351 struct ice_pf *pf = vsi->back;
3352 struct ice_tc_cfg old_tc_cfg;
3353 struct ice_vsi_ctx *ctx;
3354 struct device *dev;
3355 int i, ret = 0;
3356 u8 num_tc = 0;
3357
3358 dev = ice_pf_to_dev(pf);
3359 if (vsi->tc_cfg.ena_tc == ena_tc &&
3360 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3361 return 0;
3362
3363 ice_for_each_traffic_class(i) {
3364 /* build bitmap of enabled TCs */
3365 if (ena_tc & BIT(i))
3366 num_tc++;
3367 /* populate max_txqs per TC */
3368 max_txqs[i] = vsi->alloc_txq;
3369 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3370 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3371 */
3372 if (vsi->type == ICE_VSI_CHNL &&
3373 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3374 max_txqs[i] = vsi->num_txq;
3375 }
3376
3377 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3378 vsi->tc_cfg.ena_tc = ena_tc;
3379 vsi->tc_cfg.numtc = num_tc;
3380
3381 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3382 if (!ctx)
3383 return -ENOMEM;
3384
3385 ctx->vf_num = 0;
3386 ctx->info = vsi->info;
3387
3388 if (vsi->type == ICE_VSI_PF &&
3389 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3390 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3391 else
3392 ret = ice_vsi_setup_q_map(vsi, ctx);
3393
3394 if (ret) {
3395 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3396 goto out;
3397 }
3398
3399 /* must to indicate which section of VSI context are being modified */
3400 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3401 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3402 if (ret) {
3403 dev_info(dev, "Failed VSI Update\n");
3404 goto out;
3405 }
3406
3407 if (vsi->type == ICE_VSI_PF &&
3408 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3409 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3410 else
3411 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3412 vsi->tc_cfg.ena_tc, max_txqs);
3413
3414 if (ret) {
3415 dev_err(dev, "VSI %d failed TC config, error %d\n",
3416 vsi->vsi_num, ret);
3417 goto out;
3418 }
3419 ice_vsi_update_q_map(vsi, ctx);
3420 vsi->info.valid_sections = 0;
3421
3422 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3423 out:
3424 kfree(ctx);
3425 return ret;
3426 }
3427
3428 /**
3429 * ice_update_ring_stats - Update ring statistics
3430 * @stats: stats to be updated
3431 * @pkts: number of processed packets
3432 * @bytes: number of processed bytes
3433 *
3434 * This function assumes that caller has acquired a u64_stats_sync lock.
3435 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3436 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3437 {
3438 stats->bytes += bytes;
3439 stats->pkts += pkts;
3440 }
3441
3442 /**
3443 * ice_update_tx_ring_stats - Update Tx ring specific counters
3444 * @tx_ring: ring to update
3445 * @pkts: number of processed packets
3446 * @bytes: number of processed bytes
3447 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3448 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3449 {
3450 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3451 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3452 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3453 }
3454
3455 /**
3456 * ice_update_rx_ring_stats - Update Rx ring specific counters
3457 * @rx_ring: ring to update
3458 * @pkts: number of processed packets
3459 * @bytes: number of processed bytes
3460 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3461 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3462 {
3463 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3464 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3465 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3466 }
3467
3468 /**
3469 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3470 * @pi: port info of the switch with default VSI
3471 *
3472 * Return true if the there is a single VSI in default forwarding VSI list
3473 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3474 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3475 {
3476 bool exists = false;
3477
3478 ice_check_if_dflt_vsi(pi, 0, &exists);
3479 return exists;
3480 }
3481
3482 /**
3483 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3484 * @vsi: VSI to compare against default forwarding VSI
3485 *
3486 * If this VSI passed in is the default forwarding VSI then return true, else
3487 * return false
3488 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3489 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3490 {
3491 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3492 }
3493
3494 /**
3495 * ice_set_dflt_vsi - set the default forwarding VSI
3496 * @vsi: VSI getting set as the default forwarding VSI on the switch
3497 *
3498 * If the VSI passed in is already the default VSI and it's enabled just return
3499 * success.
3500 *
3501 * Otherwise try to set the VSI passed in as the switch's default VSI and
3502 * return the result.
3503 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3504 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3505 {
3506 struct device *dev;
3507 int status;
3508
3509 if (!vsi)
3510 return -EINVAL;
3511
3512 dev = ice_pf_to_dev(vsi->back);
3513
3514 if (ice_lag_is_switchdev_running(vsi->back)) {
3515 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3516 vsi->vsi_num);
3517 return 0;
3518 }
3519
3520 /* the VSI passed in is already the default VSI */
3521 if (ice_is_vsi_dflt_vsi(vsi)) {
3522 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3523 vsi->vsi_num);
3524 return 0;
3525 }
3526
3527 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3528 if (status) {
3529 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3530 vsi->vsi_num, status);
3531 return status;
3532 }
3533
3534 return 0;
3535 }
3536
3537 /**
3538 * ice_clear_dflt_vsi - clear the default forwarding VSI
3539 * @vsi: VSI to remove from filter list
3540 *
3541 * If the switch has no default VSI or it's not enabled then return error.
3542 *
3543 * Otherwise try to clear the default VSI and return the result.
3544 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3545 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3546 {
3547 struct device *dev;
3548 int status;
3549
3550 if (!vsi)
3551 return -EINVAL;
3552
3553 dev = ice_pf_to_dev(vsi->back);
3554
3555 /* there is no default VSI configured */
3556 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3557 return -ENODEV;
3558
3559 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3560 ICE_FLTR_RX);
3561 if (status) {
3562 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3563 vsi->vsi_num, status);
3564 return -EIO;
3565 }
3566
3567 return 0;
3568 }
3569
3570 /**
3571 * ice_get_link_speed_mbps - get link speed in Mbps
3572 * @vsi: the VSI whose link speed is being queried
3573 *
3574 * Return current VSI link speed and 0 if the speed is unknown.
3575 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3576 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3577 {
3578 unsigned int link_speed;
3579
3580 link_speed = vsi->port_info->phy.link_info.link_speed;
3581
3582 return (int)ice_get_link_speed(fls(link_speed) - 1);
3583 }
3584
3585 /**
3586 * ice_get_link_speed_kbps - get link speed in Kbps
3587 * @vsi: the VSI whose link speed is being queried
3588 *
3589 * Return current VSI link speed and 0 if the speed is unknown.
3590 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3591 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3592 {
3593 int speed_mbps;
3594
3595 speed_mbps = ice_get_link_speed_mbps(vsi);
3596
3597 return speed_mbps * 1000;
3598 }
3599
3600 /**
3601 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3602 * @vsi: VSI to be configured
3603 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3604 *
3605 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3606 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3607 * on TC 0.
3608 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3609 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3610 {
3611 struct ice_pf *pf = vsi->back;
3612 struct device *dev;
3613 int status;
3614 int speed;
3615
3616 dev = ice_pf_to_dev(pf);
3617 if (!vsi->port_info) {
3618 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3619 vsi->idx, vsi->type);
3620 return -EINVAL;
3621 }
3622
3623 speed = ice_get_link_speed_kbps(vsi);
3624 if (min_tx_rate > (u64)speed) {
3625 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3626 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3627 speed);
3628 return -EINVAL;
3629 }
3630
3631 /* Configure min BW for VSI limit */
3632 if (min_tx_rate) {
3633 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3634 ICE_MIN_BW, min_tx_rate);
3635 if (status) {
3636 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3637 min_tx_rate, ice_vsi_type_str(vsi->type),
3638 vsi->idx);
3639 return status;
3640 }
3641
3642 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3643 min_tx_rate, ice_vsi_type_str(vsi->type));
3644 } else {
3645 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3646 vsi->idx, 0,
3647 ICE_MIN_BW);
3648 if (status) {
3649 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3650 ice_vsi_type_str(vsi->type), vsi->idx);
3651 return status;
3652 }
3653
3654 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3655 ice_vsi_type_str(vsi->type), vsi->idx);
3656 }
3657
3658 return 0;
3659 }
3660
3661 /**
3662 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3663 * @vsi: VSI to be configured
3664 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3665 *
3666 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3667 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3668 * on TC 0.
3669 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3670 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3671 {
3672 struct ice_pf *pf = vsi->back;
3673 struct device *dev;
3674 int status;
3675 int speed;
3676
3677 dev = ice_pf_to_dev(pf);
3678 if (!vsi->port_info) {
3679 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3680 vsi->idx, vsi->type);
3681 return -EINVAL;
3682 }
3683
3684 speed = ice_get_link_speed_kbps(vsi);
3685 if (max_tx_rate > (u64)speed) {
3686 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3687 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3688 speed);
3689 return -EINVAL;
3690 }
3691
3692 /* Configure max BW for VSI limit */
3693 if (max_tx_rate) {
3694 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3695 ICE_MAX_BW, max_tx_rate);
3696 if (status) {
3697 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3698 max_tx_rate, ice_vsi_type_str(vsi->type),
3699 vsi->idx);
3700 return status;
3701 }
3702
3703 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3704 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3705 } else {
3706 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3707 vsi->idx, 0,
3708 ICE_MAX_BW);
3709 if (status) {
3710 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3711 ice_vsi_type_str(vsi->type), vsi->idx);
3712 return status;
3713 }
3714
3715 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3716 ice_vsi_type_str(vsi->type), vsi->idx);
3717 }
3718
3719 return 0;
3720 }
3721
3722 /**
3723 * ice_set_link - turn on/off physical link
3724 * @vsi: VSI to modify physical link on
3725 * @ena: turn on/off physical link
3726 */
ice_set_link(struct ice_vsi * vsi,bool ena)3727 int ice_set_link(struct ice_vsi *vsi, bool ena)
3728 {
3729 struct device *dev = ice_pf_to_dev(vsi->back);
3730 struct ice_port_info *pi = vsi->port_info;
3731 struct ice_hw *hw = pi->hw;
3732 int status;
3733
3734 if (vsi->type != ICE_VSI_PF)
3735 return -EINVAL;
3736
3737 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3738
3739 /* if link is owned by manageability, FW will return LIBIE_AQ_RC_EMODE.
3740 * this is not a fatal error, so print a warning message and return
3741 * a success code. Return an error if FW returns an error code other
3742 * than LIBIE_AQ_RC_EMODE
3743 */
3744 if (status == -EIO) {
3745 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_EMODE)
3746 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3747 (ena ? "ON" : "OFF"), status,
3748 libie_aq_str(hw->adminq.sq_last_status));
3749 } else if (status) {
3750 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3751 (ena ? "ON" : "OFF"), status,
3752 libie_aq_str(hw->adminq.sq_last_status));
3753 return status;
3754 }
3755
3756 return 0;
3757 }
3758
3759 /**
3760 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3761 * @vsi: VSI used to add VLAN filters
3762 *
3763 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3764 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3765 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3766 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3767 *
3768 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3769 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3770 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3771 *
3772 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3773 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3774 * part of filtering.
3775 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3776 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3777 {
3778 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3779 struct ice_vlan vlan;
3780 int err;
3781
3782 vlan = ICE_VLAN(0, 0, 0);
3783 err = vlan_ops->add_vlan(vsi, &vlan);
3784 if (err && err != -EEXIST)
3785 return err;
3786
3787 /* in SVM both VLAN 0 filters are identical */
3788 if (!ice_is_dvm_ena(&vsi->back->hw))
3789 return 0;
3790
3791 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3792 err = vlan_ops->add_vlan(vsi, &vlan);
3793 if (err && err != -EEXIST)
3794 return err;
3795
3796 return 0;
3797 }
3798
3799 /**
3800 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3801 * @vsi: VSI used to add VLAN filters
3802 *
3803 * Delete the VLAN 0 filters in the same manner that they were added in
3804 * ice_vsi_add_vlan_zero.
3805 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3806 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3807 {
3808 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3809 struct ice_vlan vlan;
3810 int err;
3811
3812 vlan = ICE_VLAN(0, 0, 0);
3813 err = vlan_ops->del_vlan(vsi, &vlan);
3814 if (err && err != -EEXIST)
3815 return err;
3816
3817 /* in SVM both VLAN 0 filters are identical */
3818 if (!ice_is_dvm_ena(&vsi->back->hw))
3819 return 0;
3820
3821 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3822 err = vlan_ops->del_vlan(vsi, &vlan);
3823 if (err && err != -EEXIST)
3824 return err;
3825
3826 /* when deleting the last VLAN filter, make sure to disable the VLAN
3827 * promisc mode so the filter isn't left by accident
3828 */
3829 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3830 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3831 }
3832
3833 /**
3834 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3835 * @vsi: VSI used to get the VLAN mode
3836 *
3837 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3838 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3839 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3840 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3841 {
3842 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3843 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3844 /* no VLAN 0 filter is created when a port VLAN is active */
3845 if (vsi->type == ICE_VSI_VF) {
3846 if (WARN_ON(!vsi->vf))
3847 return 0;
3848
3849 if (ice_vf_is_port_vlan_ena(vsi->vf))
3850 return 0;
3851 }
3852
3853 if (ice_is_dvm_ena(&vsi->back->hw))
3854 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3855 else
3856 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3857 }
3858
3859 /**
3860 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3861 * @vsi: VSI used to determine if any non-zero VLANs have been added
3862 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3863 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3864 {
3865 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3866 }
3867
3868 /**
3869 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3870 * @vsi: VSI used to get the number of non-zero VLANs added
3871 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3872 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3873 {
3874 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3875 }
3876
3877 /**
3878 * ice_is_feature_supported
3879 * @pf: pointer to the struct ice_pf instance
3880 * @f: feature enum to be checked
3881 *
3882 * returns true if feature is supported, false otherwise
3883 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3884 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3885 {
3886 if (f < 0 || f >= ICE_F_MAX)
3887 return false;
3888
3889 return test_bit(f, pf->features);
3890 }
3891
3892 /**
3893 * ice_set_feature_support
3894 * @pf: pointer to the struct ice_pf instance
3895 * @f: feature enum to set
3896 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3897 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3898 {
3899 if (f < 0 || f >= ICE_F_MAX)
3900 return;
3901
3902 set_bit(f, pf->features);
3903 }
3904
3905 /**
3906 * ice_clear_feature_support
3907 * @pf: pointer to the struct ice_pf instance
3908 * @f: feature enum to clear
3909 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3910 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3911 {
3912 if (f < 0 || f >= ICE_F_MAX)
3913 return;
3914
3915 clear_bit(f, pf->features);
3916 }
3917
3918 /**
3919 * ice_init_feature_support
3920 * @pf: pointer to the struct ice_pf instance
3921 *
3922 * called during init to setup supported feature
3923 */
ice_init_feature_support(struct ice_pf * pf)3924 void ice_init_feature_support(struct ice_pf *pf)
3925 {
3926 switch (pf->hw.device_id) {
3927 case ICE_DEV_ID_E810C_BACKPLANE:
3928 case ICE_DEV_ID_E810C_QSFP:
3929 case ICE_DEV_ID_E810C_SFP:
3930 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3931 case ICE_DEV_ID_E810_XXV_QSFP:
3932 case ICE_DEV_ID_E810_XXV_SFP:
3933 ice_set_feature_support(pf, ICE_F_DSCP);
3934 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3935 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3936 /* If we don't own the timer - don't enable other caps */
3937 if (!ice_pf_src_tmr_owned(pf))
3938 break;
3939 if (ice_is_cgu_in_netlist(&pf->hw))
3940 ice_set_feature_support(pf, ICE_F_CGU);
3941 if (ice_is_clock_mux_in_netlist(&pf->hw))
3942 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3943 if (ice_gnss_is_module_present(&pf->hw))
3944 ice_set_feature_support(pf, ICE_F_GNSS);
3945 break;
3946 default:
3947 break;
3948 }
3949
3950 if (pf->hw.mac_type == ICE_MAC_E830) {
3951 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3952 ice_set_feature_support(pf, ICE_F_GCS);
3953 }
3954 }
3955
3956 /**
3957 * ice_vsi_update_security - update security block in VSI
3958 * @vsi: pointer to VSI structure
3959 * @fill: function pointer to fill ctx
3960 */
3961 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))3962 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3963 {
3964 struct ice_vsi_ctx ctx = { 0 };
3965
3966 ctx.info = vsi->info;
3967 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3968 fill(&ctx);
3969
3970 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3971 return -ENODEV;
3972
3973 vsi->info = ctx.info;
3974 return 0;
3975 }
3976
3977 /**
3978 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3979 * @ctx: pointer to VSI ctx structure
3980 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)3981 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3982 {
3983 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3984 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3985 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3986 }
3987
3988 /**
3989 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3990 * @ctx: pointer to VSI ctx structure
3991 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)3992 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3993 {
3994 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3995 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3996 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3997 }
3998
3999 /**
4000 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
4001 * @vsi: pointer to VSI structure
4002 * @set: set or unset the bit
4003 */
4004 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)4005 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
4006 {
4007 struct ice_vsi_ctx ctx = {
4008 .info = vsi->info,
4009 };
4010
4011 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4012 if (set)
4013 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4014 else
4015 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
4016
4017 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
4018 return -ENODEV;
4019
4020 vsi->info = ctx.info;
4021 return 0;
4022 }
4023
4024 /**
4025 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
4026 * @vsi: VSI used to update l2tsel on
4027 * @l2tsel: l2tsel setting requested
4028 *
4029 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
4030 * This will modify which descriptor field the first offloaded VLAN will be
4031 * stripped into.
4032 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)4033 void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
4034 {
4035 struct ice_hw *hw = &vsi->back->hw;
4036 u32 l2tsel_bit;
4037 int i;
4038
4039 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
4040 l2tsel_bit = 0;
4041 else
4042 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
4043
4044 for (i = 0; i < vsi->alloc_rxq; i++) {
4045 u16 pfq = vsi->rxq_map[i];
4046 u32 qrx_context_offset;
4047 u32 regval;
4048
4049 qrx_context_offset =
4050 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
4051
4052 regval = rd32(hw, qrx_context_offset);
4053 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
4054 regval |= l2tsel_bit;
4055 wr32(hw, qrx_context_offset, regval);
4056 }
4057 }
4058