xref: /linux/net/core/skbuff.c (revision 0a80e38d0fe1fe7b59c1e93ad908c4148a15926a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/skbuff_ref.h>
55 #include <linux/splice.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/scatterlist.h>
60 #include <linux/errqueue.h>
61 #include <linux/prefetch.h>
62 #include <linux/bitfield.h>
63 #include <linux/if_vlan.h>
64 #include <linux/mpls.h>
65 #include <linux/kcov.h>
66 #include <linux/iov_iter.h>
67 #include <linux/crc32.h>
68 
69 #include <net/protocol.h>
70 #include <net/dst.h>
71 #include <net/sock.h>
72 #include <net/checksum.h>
73 #include <net/gro.h>
74 #include <net/gso.h>
75 #include <net/hotdata.h>
76 #include <net/ip6_checksum.h>
77 #include <net/xfrm.h>
78 #include <net/mpls.h>
79 #include <net/mptcp.h>
80 #include <net/mctp.h>
81 #include <net/page_pool/helpers.h>
82 #include <net/psp/types.h>
83 #include <net/dropreason.h>
84 #include <net/xdp_sock.h>
85 
86 #include <linux/uaccess.h>
87 #include <trace/events/skb.h>
88 #include <linux/highmem.h>
89 #include <linux/capability.h>
90 #include <linux/user_namespace.h>
91 #include <linux/indirect_call_wrapper.h>
92 #include <linux/textsearch.h>
93 
94 #include "dev.h"
95 #include "devmem.h"
96 #include "netmem_priv.h"
97 #include "sock_destructor.h"
98 
99 #ifdef CONFIG_SKB_EXTENSIONS
100 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
101 #endif
102 
103 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN)
104 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \
105 					       GRO_MAX_HEAD_PAD))
106 
107 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
108  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
109  * size, and we can differentiate heads from skb_small_head_cache
110  * vs system slabs by looking at their size (skb_end_offset()).
111  */
112 #define SKB_SMALL_HEAD_CACHE_SIZE					\
113 	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
114 		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
115 		SKB_SMALL_HEAD_SIZE)
116 
117 #define SKB_SMALL_HEAD_HEADROOM						\
118 	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
119 
120 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
121  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
122  * netmem is a page.
123  */
124 static_assert(offsetof(struct bio_vec, bv_page) ==
125 	      offsetof(skb_frag_t, netmem));
126 static_assert(sizeof_field(struct bio_vec, bv_page) ==
127 	      sizeof_field(skb_frag_t, netmem));
128 
129 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
130 static_assert(sizeof_field(struct bio_vec, bv_len) ==
131 	      sizeof_field(skb_frag_t, len));
132 
133 static_assert(offsetof(struct bio_vec, bv_offset) ==
134 	      offsetof(skb_frag_t, offset));
135 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
136 	      sizeof_field(skb_frag_t, offset));
137 
138 #undef FN
139 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
140 static const char * const drop_reasons[] = {
141 	[SKB_CONSUMED] = "CONSUMED",
142 	DEFINE_DROP_REASON(FN, FN)
143 };
144 
145 static const struct drop_reason_list drop_reasons_core = {
146 	.reasons = drop_reasons,
147 	.n_reasons = ARRAY_SIZE(drop_reasons),
148 };
149 
150 const struct drop_reason_list __rcu *
151 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
152 	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
153 };
154 EXPORT_SYMBOL(drop_reasons_by_subsys);
155 
156 /**
157  * drop_reasons_register_subsys - register another drop reason subsystem
158  * @subsys: the subsystem to register, must not be the core
159  * @list: the list of drop reasons within the subsystem, must point to
160  *	a statically initialized list
161  */
drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,const struct drop_reason_list * list)162 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
163 				  const struct drop_reason_list *list)
164 {
165 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
166 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
167 		 "invalid subsystem %d\n", subsys))
168 		return;
169 
170 	/* must point to statically allocated memory, so INIT is OK */
171 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
172 }
173 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
174 
175 /**
176  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
177  * @subsys: the subsystem to remove, must not be the core
178  *
179  * Note: This will synchronize_rcu() to ensure no users when it returns.
180  */
drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)181 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
182 {
183 	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
184 		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
185 		 "invalid subsystem %d\n", subsys))
186 		return;
187 
188 	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
189 
190 	synchronize_rcu();
191 }
192 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
193 
194 /**
195  *	skb_panic - private function for out-of-line support
196  *	@skb:	buffer
197  *	@sz:	size
198  *	@addr:	address
199  *	@msg:	skb_over_panic or skb_under_panic
200  *
201  *	Out-of-line support for skb_put() and skb_push().
202  *	Called via the wrapper skb_over_panic() or skb_under_panic().
203  *	Keep out of line to prevent kernel bloat.
204  *	__builtin_return_address is not used because it is not always reliable.
205  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])206 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
207 		      const char msg[])
208 {
209 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
210 		 msg, addr, skb->len, sz, skb->head, skb->data,
211 		 (unsigned long)skb->tail, (unsigned long)skb->end,
212 		 skb->dev ? skb->dev->name : "<NULL>");
213 	BUG();
214 }
215 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)216 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
217 {
218 	skb_panic(skb, sz, addr, __func__);
219 }
220 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)221 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
222 {
223 	skb_panic(skb, sz, addr, __func__);
224 }
225 
226 #define NAPI_SKB_CACHE_SIZE	128
227 #define NAPI_SKB_CACHE_BULK	32
228 #define NAPI_SKB_CACHE_FREE	32
229 
230 struct napi_alloc_cache {
231 	local_lock_t bh_lock;
232 	struct page_frag_cache page;
233 	unsigned int skb_count;
234 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
235 };
236 
237 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
238 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
239 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
240 };
241 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)242 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
243 {
244 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
245 	void *data;
246 
247 	fragsz = SKB_DATA_ALIGN(fragsz);
248 
249 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
250 	data = __page_frag_alloc_align(&nc->page, fragsz,
251 				       GFP_ATOMIC | __GFP_NOWARN, align_mask);
252 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
253 	return data;
254 
255 }
256 EXPORT_SYMBOL(__napi_alloc_frag_align);
257 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)258 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
259 {
260 	void *data;
261 
262 	if (in_hardirq() || irqs_disabled()) {
263 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
264 
265 		fragsz = SKB_DATA_ALIGN(fragsz);
266 		data = __page_frag_alloc_align(nc, fragsz,
267 					       GFP_ATOMIC | __GFP_NOWARN,
268 					       align_mask);
269 	} else {
270 		local_bh_disable();
271 		data = __napi_alloc_frag_align(fragsz, align_mask);
272 		local_bh_enable();
273 	}
274 	return data;
275 }
276 EXPORT_SYMBOL(__netdev_alloc_frag_align);
277 
278 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler
279  * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset.
280  */
281 static u32 skbuff_cache_size __read_mostly;
282 
napi_skb_cache_get(bool alloc)283 static struct sk_buff *napi_skb_cache_get(bool alloc)
284 {
285 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
286 	struct sk_buff *skb;
287 
288 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
289 	if (unlikely(!nc->skb_count)) {
290 		if (alloc)
291 			nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
292 						GFP_ATOMIC | __GFP_NOWARN,
293 						NAPI_SKB_CACHE_BULK,
294 						nc->skb_cache);
295 		if (unlikely(!nc->skb_count)) {
296 			local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
297 			return NULL;
298 		}
299 	}
300 
301 	skb = nc->skb_cache[--nc->skb_count];
302 	if (nc->skb_count)
303 		prefetch(nc->skb_cache[nc->skb_count - 1]);
304 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
305 	kasan_mempool_unpoison_object(skb, skbuff_cache_size);
306 
307 	return skb;
308 }
309 
310 /**
311  * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache
312  * @skbs: pointer to an at least @n-sized array to fill with skb pointers
313  * @n: number of entries to provide
314  *
315  * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes
316  * the pointers into the provided array @skbs. If there are less entries
317  * available, tries to replenish the cache and bulk-allocates the diff from
318  * the MM layer if needed.
319  * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are
320  * ready for {,__}build_skb_around() and don't have any data buffers attached.
321  * Must be called *only* from the BH context.
322  *
323  * Return: number of successfully allocated skbs (@n if no actual allocation
324  *	   needed or kmem_cache_alloc_bulk() didn't fail).
325  */
napi_skb_cache_get_bulk(void ** skbs,u32 n)326 u32 napi_skb_cache_get_bulk(void **skbs, u32 n)
327 {
328 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
329 	u32 bulk, total = n;
330 
331 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
332 
333 	if (nc->skb_count >= n)
334 		goto get;
335 
336 	/* No enough cached skbs. Try refilling the cache first */
337 	bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK);
338 	nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
339 					       GFP_ATOMIC | __GFP_NOWARN, bulk,
340 					       &nc->skb_cache[nc->skb_count]);
341 	if (likely(nc->skb_count >= n))
342 		goto get;
343 
344 	/* Still not enough. Bulk-allocate the missing part directly, zeroed */
345 	n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
346 				   GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN,
347 				   n - nc->skb_count, &skbs[nc->skb_count]);
348 	if (likely(nc->skb_count >= n))
349 		goto get;
350 
351 	/* kmem_cache didn't allocate the number we need, limit the output */
352 	total -= n - nc->skb_count;
353 	n = nc->skb_count;
354 
355 get:
356 	for (u32 base = nc->skb_count - n, i = 0; i < n; i++) {
357 		skbs[i] = nc->skb_cache[base + i];
358 
359 		kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size);
360 		memset(skbs[i], 0, offsetof(struct sk_buff, tail));
361 	}
362 
363 	nc->skb_count -= n;
364 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
365 
366 	return total;
367 }
368 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk);
369 
__finalize_skb_around(struct sk_buff * skb,void * data,unsigned int size)370 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
371 					 unsigned int size)
372 {
373 	struct skb_shared_info *shinfo;
374 
375 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
376 
377 	/* Assumes caller memset cleared SKB */
378 	skb->truesize = SKB_TRUESIZE(size);
379 	refcount_set(&skb->users, 1);
380 	skb->head = data;
381 	skb->data = data;
382 	skb_reset_tail_pointer(skb);
383 	skb_set_end_offset(skb, size);
384 	skb->mac_header = (typeof(skb->mac_header))~0U;
385 	skb->transport_header = (typeof(skb->transport_header))~0U;
386 	skb->alloc_cpu = raw_smp_processor_id();
387 	/* make sure we initialize shinfo sequentially */
388 	shinfo = skb_shinfo(skb);
389 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
390 	atomic_set(&shinfo->dataref, 1);
391 
392 	skb_set_kcov_handle(skb, kcov_common_handle());
393 }
394 
__slab_build_skb(void * data,unsigned int * size)395 static inline void *__slab_build_skb(void *data, unsigned int *size)
396 {
397 	void *resized;
398 
399 	/* Must find the allocation size (and grow it to match). */
400 	*size = ksize(data);
401 	/* krealloc() will immediately return "data" when
402 	 * "ksize(data)" is requested: it is the existing upper
403 	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
404 	 * that this "new" pointer needs to be passed back to the
405 	 * caller for use so the __alloc_size hinting will be
406 	 * tracked correctly.
407 	 */
408 	resized = krealloc(data, *size, GFP_ATOMIC);
409 	WARN_ON_ONCE(resized != data);
410 	return resized;
411 }
412 
413 /* build_skb() variant which can operate on slab buffers.
414  * Note that this should be used sparingly as slab buffers
415  * cannot be combined efficiently by GRO!
416  */
slab_build_skb(void * data)417 struct sk_buff *slab_build_skb(void *data)
418 {
419 	struct sk_buff *skb;
420 	unsigned int size;
421 
422 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
423 			       GFP_ATOMIC | __GFP_NOWARN);
424 	if (unlikely(!skb))
425 		return NULL;
426 
427 	memset(skb, 0, offsetof(struct sk_buff, tail));
428 	data = __slab_build_skb(data, &size);
429 	__finalize_skb_around(skb, data, size);
430 
431 	return skb;
432 }
433 EXPORT_SYMBOL(slab_build_skb);
434 
435 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)436 static void __build_skb_around(struct sk_buff *skb, void *data,
437 			       unsigned int frag_size)
438 {
439 	unsigned int size = frag_size;
440 
441 	/* frag_size == 0 is considered deprecated now. Callers
442 	 * using slab buffer should use slab_build_skb() instead.
443 	 */
444 	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
445 		data = __slab_build_skb(data, &size);
446 
447 	__finalize_skb_around(skb, data, size);
448 }
449 
450 /**
451  * __build_skb - build a network buffer
452  * @data: data buffer provided by caller
453  * @frag_size: size of data (must not be 0)
454  *
455  * Allocate a new &sk_buff. Caller provides space holding head and
456  * skb_shared_info. @data must have been allocated from the page
457  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
458  * allocation is deprecated, and callers should use slab_build_skb()
459  * instead.)
460  * The return is the new skb buffer.
461  * On a failure the return is %NULL, and @data is not freed.
462  * Notes :
463  *  Before IO, driver allocates only data buffer where NIC put incoming frame
464  *  Driver should add room at head (NET_SKB_PAD) and
465  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
466  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
467  *  before giving packet to stack.
468  *  RX rings only contains data buffers, not full skbs.
469  */
__build_skb(void * data,unsigned int frag_size)470 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
471 {
472 	struct sk_buff *skb;
473 
474 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache,
475 			       GFP_ATOMIC | __GFP_NOWARN);
476 	if (unlikely(!skb))
477 		return NULL;
478 
479 	memset(skb, 0, offsetof(struct sk_buff, tail));
480 	__build_skb_around(skb, data, frag_size);
481 
482 	return skb;
483 }
484 
485 /* build_skb() is wrapper over __build_skb(), that specifically
486  * takes care of skb->head and skb->pfmemalloc
487  */
build_skb(void * data,unsigned int frag_size)488 struct sk_buff *build_skb(void *data, unsigned int frag_size)
489 {
490 	struct sk_buff *skb = __build_skb(data, frag_size);
491 
492 	if (likely(skb && frag_size)) {
493 		skb->head_frag = 1;
494 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
495 	}
496 	return skb;
497 }
498 EXPORT_SYMBOL(build_skb);
499 
500 /**
501  * build_skb_around - build a network buffer around provided skb
502  * @skb: sk_buff provide by caller, must be memset cleared
503  * @data: data buffer provided by caller
504  * @frag_size: size of data
505  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)506 struct sk_buff *build_skb_around(struct sk_buff *skb,
507 				 void *data, unsigned int frag_size)
508 {
509 	if (unlikely(!skb))
510 		return NULL;
511 
512 	__build_skb_around(skb, data, frag_size);
513 
514 	if (frag_size) {
515 		skb->head_frag = 1;
516 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
517 	}
518 	return skb;
519 }
520 EXPORT_SYMBOL(build_skb_around);
521 
522 /**
523  * __napi_build_skb - build a network buffer
524  * @data: data buffer provided by caller
525  * @frag_size: size of data
526  *
527  * Version of __build_skb() that uses NAPI percpu caches to obtain
528  * skbuff_head instead of inplace allocation.
529  *
530  * Returns a new &sk_buff on success, %NULL on allocation failure.
531  */
__napi_build_skb(void * data,unsigned int frag_size)532 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
533 {
534 	struct sk_buff *skb;
535 
536 	skb = napi_skb_cache_get(true);
537 	if (unlikely(!skb))
538 		return NULL;
539 
540 	memset(skb, 0, offsetof(struct sk_buff, tail));
541 	__build_skb_around(skb, data, frag_size);
542 
543 	return skb;
544 }
545 
546 /**
547  * napi_build_skb - build a network buffer
548  * @data: data buffer provided by caller
549  * @frag_size: size of data
550  *
551  * Version of __napi_build_skb() that takes care of skb->head_frag
552  * and skb->pfmemalloc when the data is a page or page fragment.
553  *
554  * Returns a new &sk_buff on success, %NULL on allocation failure.
555  */
napi_build_skb(void * data,unsigned int frag_size)556 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
557 {
558 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
559 
560 	if (likely(skb) && frag_size) {
561 		skb->head_frag = 1;
562 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
563 	}
564 
565 	return skb;
566 }
567 EXPORT_SYMBOL(napi_build_skb);
568 
569 /*
570  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
571  * the caller if emergency pfmemalloc reserves are being used. If it is and
572  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
573  * may be used. Otherwise, the packet data may be discarded until enough
574  * memory is free
575  */
kmalloc_reserve(unsigned int * size,gfp_t flags,int node,bool * pfmemalloc)576 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
577 			     bool *pfmemalloc)
578 {
579 	bool ret_pfmemalloc = false;
580 	size_t obj_size;
581 	void *obj;
582 
583 	obj_size = SKB_HEAD_ALIGN(*size);
584 	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
585 	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
586 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
587 				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
588 				node);
589 		*size = SKB_SMALL_HEAD_CACHE_SIZE;
590 		if (obj || !(gfp_pfmemalloc_allowed(flags)))
591 			goto out;
592 		/* Try again but now we are using pfmemalloc reserves */
593 		ret_pfmemalloc = true;
594 		obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
595 		goto out;
596 	}
597 
598 	obj_size = kmalloc_size_roundup(obj_size);
599 	/* The following cast might truncate high-order bits of obj_size, this
600 	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
601 	 */
602 	*size = (unsigned int)obj_size;
603 
604 	/*
605 	 * Try a regular allocation, when that fails and we're not entitled
606 	 * to the reserves, fail.
607 	 */
608 	obj = kmalloc_node_track_caller(obj_size,
609 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
610 					node);
611 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
612 		goto out;
613 
614 	/* Try again but now we are using pfmemalloc reserves */
615 	ret_pfmemalloc = true;
616 	obj = kmalloc_node_track_caller(obj_size, flags, node);
617 
618 out:
619 	if (pfmemalloc)
620 		*pfmemalloc = ret_pfmemalloc;
621 
622 	return obj;
623 }
624 
625 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
626  *	'private' fields and also do memory statistics to find all the
627  *	[BEEP] leaks.
628  *
629  */
630 
631 /**
632  *	__alloc_skb	-	allocate a network buffer
633  *	@size: size to allocate
634  *	@gfp_mask: allocation mask
635  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
636  *		instead of head cache and allocate a cloned (child) skb.
637  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
638  *		allocations in case the data is required for writeback
639  *	@node: numa node to allocate memory on
640  *
641  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
642  *	tail room of at least size bytes. The object has a reference count
643  *	of one. The return is the buffer. On a failure the return is %NULL.
644  *
645  *	Buffers may only be allocated from interrupts using a @gfp_mask of
646  *	%GFP_ATOMIC.
647  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)648 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
649 			    int flags, int node)
650 {
651 	struct sk_buff *skb = NULL;
652 	struct kmem_cache *cache;
653 	bool pfmemalloc;
654 	u8 *data;
655 
656 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
657 		gfp_mask |= __GFP_MEMALLOC;
658 
659 	if (flags & SKB_ALLOC_FCLONE) {
660 		cache = net_hotdata.skbuff_fclone_cache;
661 		goto fallback;
662 	}
663 	cache = net_hotdata.skbuff_cache;
664 	if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id()))
665 		goto fallback;
666 
667 	if (flags & SKB_ALLOC_NAPI) {
668 		skb = napi_skb_cache_get(true);
669 		if (unlikely(!skb))
670 			return NULL;
671 	} else if (!in_hardirq() && !irqs_disabled()) {
672 		local_bh_disable();
673 		skb = napi_skb_cache_get(false);
674 		local_bh_enable();
675 	}
676 
677 	if (!skb) {
678 fallback:
679 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
680 		if (unlikely(!skb))
681 			return NULL;
682 	}
683 	prefetchw(skb);
684 
685 	/* We do our best to align skb_shared_info on a separate cache
686 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
687 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
688 	 * Both skb->head and skb_shared_info are cache line aligned.
689 	 */
690 	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
691 	if (unlikely(!data))
692 		goto nodata;
693 	/* kmalloc_size_roundup() might give us more room than requested.
694 	 * Put skb_shared_info exactly at the end of allocated zone,
695 	 * to allow max possible filling before reallocation.
696 	 */
697 	prefetchw(data + SKB_WITH_OVERHEAD(size));
698 
699 	/*
700 	 * Only clear those fields we need to clear, not those that we will
701 	 * actually initialise below. Hence, don't put any more fields after
702 	 * the tail pointer in struct sk_buff!
703 	 */
704 	memset(skb, 0, offsetof(struct sk_buff, tail));
705 	__build_skb_around(skb, data, size);
706 	skb->pfmemalloc = pfmemalloc;
707 
708 	if (flags & SKB_ALLOC_FCLONE) {
709 		struct sk_buff_fclones *fclones;
710 
711 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
712 
713 		skb->fclone = SKB_FCLONE_ORIG;
714 		refcount_set(&fclones->fclone_ref, 1);
715 	}
716 
717 	return skb;
718 
719 nodata:
720 	kmem_cache_free(cache, skb);
721 	return NULL;
722 }
723 EXPORT_SYMBOL(__alloc_skb);
724 
725 /**
726  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
727  *	@dev: network device to receive on
728  *	@len: length to allocate
729  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
730  *
731  *	Allocate a new &sk_buff and assign it a usage count of one. The
732  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
733  *	the headroom they think they need without accounting for the
734  *	built in space. The built in space is used for optimisations.
735  *
736  *	%NULL is returned if there is no free memory.
737  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)738 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
739 				   gfp_t gfp_mask)
740 {
741 	struct page_frag_cache *nc;
742 	struct sk_buff *skb;
743 	bool pfmemalloc;
744 	void *data;
745 
746 	len += NET_SKB_PAD;
747 
748 	/* If requested length is either too small or too big,
749 	 * we use kmalloc() for skb->head allocation.
750 	 */
751 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
752 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
753 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
754 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
755 		if (!skb)
756 			goto skb_fail;
757 		goto skb_success;
758 	}
759 
760 	len = SKB_HEAD_ALIGN(len);
761 
762 	if (sk_memalloc_socks())
763 		gfp_mask |= __GFP_MEMALLOC;
764 
765 	if (in_hardirq() || irqs_disabled()) {
766 		nc = this_cpu_ptr(&netdev_alloc_cache);
767 		data = page_frag_alloc(nc, len, gfp_mask);
768 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
769 	} else {
770 		local_bh_disable();
771 		local_lock_nested_bh(&napi_alloc_cache.bh_lock);
772 
773 		nc = this_cpu_ptr(&napi_alloc_cache.page);
774 		data = page_frag_alloc(nc, len, gfp_mask);
775 		pfmemalloc = page_frag_cache_is_pfmemalloc(nc);
776 
777 		local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
778 		local_bh_enable();
779 	}
780 
781 	if (unlikely(!data))
782 		return NULL;
783 
784 	skb = __build_skb(data, len);
785 	if (unlikely(!skb)) {
786 		skb_free_frag(data);
787 		return NULL;
788 	}
789 
790 	if (pfmemalloc)
791 		skb->pfmemalloc = 1;
792 	skb->head_frag = 1;
793 
794 skb_success:
795 	skb_reserve(skb, NET_SKB_PAD);
796 	skb->dev = dev;
797 
798 skb_fail:
799 	return skb;
800 }
801 EXPORT_SYMBOL(__netdev_alloc_skb);
802 
803 /**
804  *	napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
805  *	@napi: napi instance this buffer was allocated for
806  *	@len: length to allocate
807  *
808  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
809  *	attempt to allocate the head from a special reserved region used
810  *	only for NAPI Rx allocation.  By doing this we can save several
811  *	CPU cycles by avoiding having to disable and re-enable IRQs.
812  *
813  *	%NULL is returned if there is no free memory.
814  */
napi_alloc_skb(struct napi_struct * napi,unsigned int len)815 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
816 {
817 	gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
818 	struct napi_alloc_cache *nc;
819 	struct sk_buff *skb;
820 	bool pfmemalloc;
821 	void *data;
822 
823 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
824 	len += NET_SKB_PAD + NET_IP_ALIGN;
825 
826 	/* If requested length is either too small or too big,
827 	 * we use kmalloc() for skb->head allocation.
828 	 */
829 	if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) ||
830 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
831 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
832 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
833 				  NUMA_NO_NODE);
834 		if (!skb)
835 			goto skb_fail;
836 		goto skb_success;
837 	}
838 
839 	len = SKB_HEAD_ALIGN(len);
840 
841 	if (sk_memalloc_socks())
842 		gfp_mask |= __GFP_MEMALLOC;
843 
844 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
845 	nc = this_cpu_ptr(&napi_alloc_cache);
846 
847 	data = page_frag_alloc(&nc->page, len, gfp_mask);
848 	pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page);
849 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
850 
851 	if (unlikely(!data))
852 		return NULL;
853 
854 	skb = __napi_build_skb(data, len);
855 	if (unlikely(!skb)) {
856 		skb_free_frag(data);
857 		return NULL;
858 	}
859 
860 	if (pfmemalloc)
861 		skb->pfmemalloc = 1;
862 	skb->head_frag = 1;
863 
864 skb_success:
865 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
866 	skb->dev = napi->dev;
867 
868 skb_fail:
869 	return skb;
870 }
871 EXPORT_SYMBOL(napi_alloc_skb);
872 
skb_add_rx_frag_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size,unsigned int truesize)873 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
874 			    int off, int size, unsigned int truesize)
875 {
876 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
877 
878 	skb_fill_netmem_desc(skb, i, netmem, off, size);
879 	skb->len += size;
880 	skb->data_len += size;
881 	skb->truesize += truesize;
882 }
883 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
884 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)885 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
886 			  unsigned int truesize)
887 {
888 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
889 
890 	DEBUG_NET_WARN_ON_ONCE(size > truesize);
891 
892 	skb_frag_size_add(frag, size);
893 	skb->len += size;
894 	skb->data_len += size;
895 	skb->truesize += truesize;
896 }
897 EXPORT_SYMBOL(skb_coalesce_rx_frag);
898 
skb_drop_list(struct sk_buff ** listp)899 static void skb_drop_list(struct sk_buff **listp)
900 {
901 	kfree_skb_list(*listp);
902 	*listp = NULL;
903 }
904 
skb_drop_fraglist(struct sk_buff * skb)905 static inline void skb_drop_fraglist(struct sk_buff *skb)
906 {
907 	skb_drop_list(&skb_shinfo(skb)->frag_list);
908 }
909 
skb_clone_fraglist(struct sk_buff * skb)910 static void skb_clone_fraglist(struct sk_buff *skb)
911 {
912 	struct sk_buff *list;
913 
914 	skb_walk_frags(skb, list)
915 		skb_get(list);
916 }
917 
skb_pp_cow_data(struct page_pool * pool,struct sk_buff ** pskb,unsigned int headroom)918 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
919 		    unsigned int headroom)
920 {
921 #if IS_ENABLED(CONFIG_PAGE_POOL)
922 	u32 size, truesize, len, max_head_size, off;
923 	struct sk_buff *skb = *pskb, *nskb;
924 	int err, i, head_off;
925 	void *data;
926 
927 	/* XDP does not support fraglist so we need to linearize
928 	 * the skb.
929 	 */
930 	if (skb_has_frag_list(skb))
931 		return -EOPNOTSUPP;
932 
933 	max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
934 	if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
935 		return -ENOMEM;
936 
937 	size = min_t(u32, skb->len, max_head_size);
938 	truesize = SKB_HEAD_ALIGN(size) + headroom;
939 	data = page_pool_dev_alloc_va(pool, &truesize);
940 	if (!data)
941 		return -ENOMEM;
942 
943 	nskb = napi_build_skb(data, truesize);
944 	if (!nskb) {
945 		page_pool_free_va(pool, data, true);
946 		return -ENOMEM;
947 	}
948 
949 	skb_reserve(nskb, headroom);
950 	skb_copy_header(nskb, skb);
951 	skb_mark_for_recycle(nskb);
952 
953 	err = skb_copy_bits(skb, 0, nskb->data, size);
954 	if (err) {
955 		consume_skb(nskb);
956 		return err;
957 	}
958 	skb_put(nskb, size);
959 
960 	head_off = skb_headroom(nskb) - skb_headroom(skb);
961 	skb_headers_offset_update(nskb, head_off);
962 
963 	off = size;
964 	len = skb->len - off;
965 	for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
966 		struct page *page;
967 		u32 page_off;
968 
969 		size = min_t(u32, len, PAGE_SIZE);
970 		truesize = size;
971 
972 		page = page_pool_dev_alloc(pool, &page_off, &truesize);
973 		if (!page) {
974 			consume_skb(nskb);
975 			return -ENOMEM;
976 		}
977 
978 		skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
979 		err = skb_copy_bits(skb, off, page_address(page) + page_off,
980 				    size);
981 		if (err) {
982 			consume_skb(nskb);
983 			return err;
984 		}
985 
986 		len -= size;
987 		off += size;
988 	}
989 
990 	consume_skb(skb);
991 	*pskb = nskb;
992 
993 	return 0;
994 #else
995 	return -EOPNOTSUPP;
996 #endif
997 }
998 EXPORT_SYMBOL(skb_pp_cow_data);
999 
skb_cow_data_for_xdp(struct page_pool * pool,struct sk_buff ** pskb,const struct bpf_prog * prog)1000 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1001 			 const struct bpf_prog *prog)
1002 {
1003 	if (!prog->aux->xdp_has_frags)
1004 		return -EINVAL;
1005 
1006 	return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1007 }
1008 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1009 
1010 #if IS_ENABLED(CONFIG_PAGE_POOL)
napi_pp_put_page(netmem_ref netmem)1011 bool napi_pp_put_page(netmem_ref netmem)
1012 {
1013 	netmem = netmem_compound_head(netmem);
1014 
1015 	if (unlikely(!netmem_is_pp(netmem)))
1016 		return false;
1017 
1018 	page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false);
1019 
1020 	return true;
1021 }
1022 EXPORT_SYMBOL(napi_pp_put_page);
1023 #endif
1024 
skb_pp_recycle(struct sk_buff * skb,void * data)1025 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1026 {
1027 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1028 		return false;
1029 	return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1030 }
1031 
1032 /**
1033  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1034  * @skb:	page pool aware skb
1035  *
1036  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1037  * intended to gain fragment references only for page pool aware skbs,
1038  * i.e. when skb->pp_recycle is true, and not for fragments in a
1039  * non-pp-recycling skb. It has a fallback to increase references on normal
1040  * pages, as page pool aware skbs may also have normal page fragments.
1041  */
skb_pp_frag_ref(struct sk_buff * skb)1042 static int skb_pp_frag_ref(struct sk_buff *skb)
1043 {
1044 	struct skb_shared_info *shinfo;
1045 	netmem_ref head_netmem;
1046 	int i;
1047 
1048 	if (!skb->pp_recycle)
1049 		return -EINVAL;
1050 
1051 	shinfo = skb_shinfo(skb);
1052 
1053 	for (i = 0; i < shinfo->nr_frags; i++) {
1054 		head_netmem = netmem_compound_head(shinfo->frags[i].netmem);
1055 		if (likely(netmem_is_pp(head_netmem)))
1056 			page_pool_ref_netmem(head_netmem);
1057 		else
1058 			page_ref_inc(netmem_to_page(head_netmem));
1059 	}
1060 	return 0;
1061 }
1062 
skb_kfree_head(void * head,unsigned int end_offset)1063 static void skb_kfree_head(void *head, unsigned int end_offset)
1064 {
1065 	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1066 		kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1067 	else
1068 		kfree(head);
1069 }
1070 
skb_free_head(struct sk_buff * skb)1071 static void skb_free_head(struct sk_buff *skb)
1072 {
1073 	unsigned char *head = skb->head;
1074 
1075 	if (skb->head_frag) {
1076 		if (skb_pp_recycle(skb, head))
1077 			return;
1078 		skb_free_frag(head);
1079 	} else {
1080 		skb_kfree_head(head, skb_end_offset(skb));
1081 	}
1082 }
1083 
skb_release_data(struct sk_buff * skb,enum skb_drop_reason reason)1084 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1085 {
1086 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1087 	int i;
1088 
1089 	if (!skb_data_unref(skb, shinfo))
1090 		goto exit;
1091 
1092 	if (skb_zcopy(skb)) {
1093 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1094 
1095 		skb_zcopy_clear(skb, true);
1096 		if (skip_unref)
1097 			goto free_head;
1098 	}
1099 
1100 	for (i = 0; i < shinfo->nr_frags; i++)
1101 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1102 
1103 free_head:
1104 	if (shinfo->frag_list)
1105 		kfree_skb_list_reason(shinfo->frag_list, reason);
1106 
1107 	skb_free_head(skb);
1108 exit:
1109 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
1110 	 * bit is only set on the head though, so in order to avoid races
1111 	 * while trying to recycle fragments on __skb_frag_unref() we need
1112 	 * to make one SKB responsible for triggering the recycle path.
1113 	 * So disable the recycling bit if an SKB is cloned and we have
1114 	 * additional references to the fragmented part of the SKB.
1115 	 * Eventually the last SKB will have the recycling bit set and it's
1116 	 * dataref set to 0, which will trigger the recycling
1117 	 */
1118 	skb->pp_recycle = 0;
1119 }
1120 
1121 /*
1122  *	Free an skbuff by memory without cleaning the state.
1123  */
kfree_skbmem(struct sk_buff * skb)1124 static void kfree_skbmem(struct sk_buff *skb)
1125 {
1126 	struct sk_buff_fclones *fclones;
1127 
1128 	switch (skb->fclone) {
1129 	case SKB_FCLONE_UNAVAILABLE:
1130 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
1131 		return;
1132 
1133 	case SKB_FCLONE_ORIG:
1134 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1135 
1136 		/* We usually free the clone (TX completion) before original skb
1137 		 * This test would have no chance to be true for the clone,
1138 		 * while here, branch prediction will be good.
1139 		 */
1140 		if (refcount_read(&fclones->fclone_ref) == 1)
1141 			goto fastpath;
1142 		break;
1143 
1144 	default: /* SKB_FCLONE_CLONE */
1145 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1146 		break;
1147 	}
1148 	if (!refcount_dec_and_test(&fclones->fclone_ref))
1149 		return;
1150 fastpath:
1151 	kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1152 }
1153 
skb_release_head_state(struct sk_buff * skb)1154 void skb_release_head_state(struct sk_buff *skb)
1155 {
1156 	skb_dst_drop(skb);
1157 	if (skb->destructor) {
1158 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1159 #ifdef CONFIG_INET
1160 		INDIRECT_CALL_4(skb->destructor,
1161 				tcp_wfree, __sock_wfree, sock_wfree,
1162 				xsk_destruct_skb,
1163 				skb);
1164 #else
1165 		INDIRECT_CALL_2(skb->destructor,
1166 				sock_wfree, xsk_destruct_skb,
1167 				skb);
1168 
1169 #endif
1170 		skb->destructor = NULL;
1171 		skb->sk = NULL;
1172 	}
1173 	nf_reset_ct(skb);
1174 	skb_ext_reset(skb);
1175 }
1176 
1177 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb,enum skb_drop_reason reason)1178 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1179 {
1180 	skb_release_head_state(skb);
1181 	if (likely(skb->head))
1182 		skb_release_data(skb, reason);
1183 }
1184 
1185 /**
1186  *	__kfree_skb - private function
1187  *	@skb: buffer
1188  *
1189  *	Free an sk_buff. Release anything attached to the buffer.
1190  *	Clean the state. This is an internal helper function. Users should
1191  *	always call kfree_skb
1192  */
1193 
__kfree_skb(struct sk_buff * skb)1194 void __kfree_skb(struct sk_buff *skb)
1195 {
1196 	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1197 	kfree_skbmem(skb);
1198 }
1199 EXPORT_SYMBOL(__kfree_skb);
1200 
1201 static __always_inline
__sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1202 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1203 			  enum skb_drop_reason reason)
1204 {
1205 	if (unlikely(!skb_unref(skb)))
1206 		return false;
1207 
1208 	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1209 			       u32_get_bits(reason,
1210 					    SKB_DROP_REASON_SUBSYS_MASK) >=
1211 				SKB_DROP_REASON_SUBSYS_NUM);
1212 
1213 	if (reason == SKB_CONSUMED)
1214 		trace_consume_skb(skb, __builtin_return_address(0));
1215 	else
1216 		trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1217 	return true;
1218 }
1219 
1220 /**
1221  *	sk_skb_reason_drop - free an sk_buff with special reason
1222  *	@sk: the socket to receive @skb, or NULL if not applicable
1223  *	@skb: buffer to free
1224  *	@reason: reason why this skb is dropped
1225  *
1226  *	Drop a reference to the buffer and free it if the usage count has hit
1227  *	zero. Meanwhile, pass the receiving socket and drop reason to
1228  *	'kfree_skb' tracepoint.
1229  */
1230 void __fix_address
sk_skb_reason_drop(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)1231 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1232 {
1233 	if (__sk_skb_reason_drop(sk, skb, reason))
1234 		__kfree_skb(skb);
1235 }
1236 EXPORT_SYMBOL(sk_skb_reason_drop);
1237 
1238 #define KFREE_SKB_BULK_SIZE	16
1239 
1240 struct skb_free_array {
1241 	unsigned int skb_count;
1242 	void *skb_array[KFREE_SKB_BULK_SIZE];
1243 };
1244 
kfree_skb_add_bulk(struct sk_buff * skb,struct skb_free_array * sa,enum skb_drop_reason reason)1245 static void kfree_skb_add_bulk(struct sk_buff *skb,
1246 			       struct skb_free_array *sa,
1247 			       enum skb_drop_reason reason)
1248 {
1249 	/* if SKB is a clone, don't handle this case */
1250 	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1251 		__kfree_skb(skb);
1252 		return;
1253 	}
1254 
1255 	skb_release_all(skb, reason);
1256 	sa->skb_array[sa->skb_count++] = skb;
1257 
1258 	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1259 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1260 				     sa->skb_array);
1261 		sa->skb_count = 0;
1262 	}
1263 }
1264 
1265 void __fix_address
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)1266 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1267 {
1268 	struct skb_free_array sa;
1269 
1270 	sa.skb_count = 0;
1271 
1272 	while (segs) {
1273 		struct sk_buff *next = segs->next;
1274 
1275 		if (__sk_skb_reason_drop(NULL, segs, reason)) {
1276 			skb_poison_list(segs);
1277 			kfree_skb_add_bulk(segs, &sa, reason);
1278 		}
1279 
1280 		segs = next;
1281 	}
1282 
1283 	if (sa.skb_count)
1284 		kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1285 }
1286 EXPORT_SYMBOL(kfree_skb_list_reason);
1287 
1288 /* Dump skb information and contents.
1289  *
1290  * Must only be called from net_ratelimit()-ed paths.
1291  *
1292  * Dumps whole packets if full_pkt, only headers otherwise.
1293  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)1294 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1295 {
1296 	struct skb_shared_info *sh = skb_shinfo(skb);
1297 	struct net_device *dev = skb->dev;
1298 	struct sock *sk = skb->sk;
1299 	struct sk_buff *list_skb;
1300 	bool has_mac, has_trans;
1301 	int headroom, tailroom;
1302 	int i, len, seg_len;
1303 
1304 	if (full_pkt)
1305 		len = skb->len;
1306 	else
1307 		len = min_t(int, skb->len, MAX_HEADER + 128);
1308 
1309 	headroom = skb_headroom(skb);
1310 	tailroom = skb_tailroom(skb);
1311 
1312 	has_mac = skb_mac_header_was_set(skb);
1313 	has_trans = skb_transport_header_was_set(skb);
1314 
1315 	printk("%sskb len=%u data_len=%u headroom=%u headlen=%u tailroom=%u\n"
1316 	       "end-tail=%u mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1317 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1318 	       "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1319 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1320 	       "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1321 	       "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1322 	       level, skb->len, skb->data_len, headroom, skb_headlen(skb),
1323 	       tailroom, skb->end - skb->tail,
1324 	       has_mac ? skb->mac_header : -1,
1325 	       has_mac ? skb_mac_header_len(skb) : -1,
1326 	       skb->mac_len,
1327 	       skb->network_header,
1328 	       has_trans ? skb_network_header_len(skb) : -1,
1329 	       has_trans ? skb->transport_header : -1,
1330 	       sh->tx_flags, sh->nr_frags,
1331 	       sh->gso_size, sh->gso_type, sh->gso_segs,
1332 	       skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1333 	       skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1334 	       skb->hash, skb->sw_hash, skb->l4_hash,
1335 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1336 	       skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1337 	       skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1338 	       skb->inner_network_header, skb->inner_transport_header);
1339 
1340 	if (dev)
1341 		printk("%sdev name=%s feat=%pNF\n",
1342 		       level, dev->name, &dev->features);
1343 	if (sk)
1344 		printk("%ssk family=%hu type=%u proto=%u\n",
1345 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1346 
1347 	if (full_pkt && headroom)
1348 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1349 			       16, 1, skb->head, headroom, false);
1350 
1351 	seg_len = min_t(int, skb_headlen(skb), len);
1352 	if (seg_len)
1353 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1354 			       16, 1, skb->data, seg_len, false);
1355 	len -= seg_len;
1356 
1357 	if (full_pkt && tailroom)
1358 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1359 			       16, 1, skb_tail_pointer(skb), tailroom, false);
1360 
1361 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1362 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1363 		u32 p_off, p_len, copied;
1364 		struct page *p;
1365 		u8 *vaddr;
1366 
1367 		if (skb_frag_is_net_iov(frag)) {
1368 			printk("%sskb frag %d: not readable\n", level, i);
1369 			len -= skb_frag_size(frag);
1370 			if (!len)
1371 				break;
1372 			continue;
1373 		}
1374 
1375 		skb_frag_foreach_page(frag, skb_frag_off(frag),
1376 				      skb_frag_size(frag), p, p_off, p_len,
1377 				      copied) {
1378 			seg_len = min_t(int, p_len, len);
1379 			vaddr = kmap_atomic(p);
1380 			print_hex_dump(level, "skb frag:     ",
1381 				       DUMP_PREFIX_OFFSET,
1382 				       16, 1, vaddr + p_off, seg_len, false);
1383 			kunmap_atomic(vaddr);
1384 			len -= seg_len;
1385 			if (!len)
1386 				break;
1387 		}
1388 	}
1389 
1390 	if (full_pkt && skb_has_frag_list(skb)) {
1391 		printk("skb fraglist:\n");
1392 		skb_walk_frags(skb, list_skb)
1393 			skb_dump(level, list_skb, true);
1394 	}
1395 }
1396 EXPORT_SYMBOL(skb_dump);
1397 
1398 /**
1399  *	skb_tx_error - report an sk_buff xmit error
1400  *	@skb: buffer that triggered an error
1401  *
1402  *	Report xmit error if a device callback is tracking this skb.
1403  *	skb must be freed afterwards.
1404  */
skb_tx_error(struct sk_buff * skb)1405 void skb_tx_error(struct sk_buff *skb)
1406 {
1407 	if (skb) {
1408 		skb_zcopy_downgrade_managed(skb);
1409 		skb_zcopy_clear(skb, true);
1410 	}
1411 }
1412 EXPORT_SYMBOL(skb_tx_error);
1413 
1414 #ifdef CONFIG_TRACEPOINTS
1415 /**
1416  *	consume_skb - free an skbuff
1417  *	@skb: buffer to free
1418  *
1419  *	Drop a ref to the buffer and free it if the usage count has hit zero
1420  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1421  *	is being dropped after a failure and notes that
1422  */
consume_skb(struct sk_buff * skb)1423 void consume_skb(struct sk_buff *skb)
1424 {
1425 	if (!skb_unref(skb))
1426 		return;
1427 
1428 	trace_consume_skb(skb, __builtin_return_address(0));
1429 	__kfree_skb(skb);
1430 }
1431 EXPORT_SYMBOL(consume_skb);
1432 #endif
1433 
1434 /**
1435  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1436  *	@skb: buffer to free
1437  *
1438  *	Alike consume_skb(), but this variant assumes that this is the last
1439  *	skb reference and all the head states have been already dropped
1440  */
__consume_stateless_skb(struct sk_buff * skb)1441 void __consume_stateless_skb(struct sk_buff *skb)
1442 {
1443 	trace_consume_skb(skb, __builtin_return_address(0));
1444 	skb_release_data(skb, SKB_CONSUMED);
1445 	kfree_skbmem(skb);
1446 }
1447 
napi_skb_cache_put(struct sk_buff * skb)1448 static void napi_skb_cache_put(struct sk_buff *skb)
1449 {
1450 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1451 
1452 	if (!kasan_mempool_poison_object(skb))
1453 		return;
1454 
1455 	local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1456 	nc->skb_cache[nc->skb_count++] = skb;
1457 
1458 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1459 		u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE;
1460 
1461 		for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++)
1462 			kasan_mempool_unpoison_object(nc->skb_cache[i],
1463 						skbuff_cache_size);
1464 
1465 		kmem_cache_free_bulk(net_hotdata.skbuff_cache,
1466 				     NAPI_SKB_CACHE_FREE,
1467 				     nc->skb_cache + remaining);
1468 		nc->skb_count = remaining;
1469 	}
1470 	local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1471 }
1472 
__napi_kfree_skb(struct sk_buff * skb,enum skb_drop_reason reason)1473 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1474 {
1475 	skb_release_all(skb, reason);
1476 	napi_skb_cache_put(skb);
1477 }
1478 
napi_skb_free_stolen_head(struct sk_buff * skb)1479 void napi_skb_free_stolen_head(struct sk_buff *skb)
1480 {
1481 	if (unlikely(skb->slow_gro)) {
1482 		nf_reset_ct(skb);
1483 		skb_dst_drop(skb);
1484 		skb_ext_put(skb);
1485 		skb_orphan(skb);
1486 		skb->slow_gro = 0;
1487 	}
1488 	napi_skb_cache_put(skb);
1489 }
1490 
napi_consume_skb(struct sk_buff * skb,int budget)1491 void napi_consume_skb(struct sk_buff *skb, int budget)
1492 {
1493 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1494 	if (unlikely(!budget || !skb)) {
1495 		dev_consume_skb_any(skb);
1496 		return;
1497 	}
1498 
1499 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1500 
1501 	if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) {
1502 		skb_release_head_state(skb);
1503 		return skb_attempt_defer_free(skb);
1504 	}
1505 
1506 	if (!skb_unref(skb))
1507 		return;
1508 
1509 	/* if reaching here SKB is ready to free */
1510 	trace_consume_skb(skb, __builtin_return_address(0));
1511 
1512 	/* if SKB is a clone, don't handle this case */
1513 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1514 		__kfree_skb(skb);
1515 		return;
1516 	}
1517 
1518 	skb_release_all(skb, SKB_CONSUMED);
1519 	napi_skb_cache_put(skb);
1520 }
1521 EXPORT_SYMBOL(napi_consume_skb);
1522 
1523 /* Make sure a field is contained by headers group */
1524 #define CHECK_SKB_FIELD(field) \
1525 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1526 		     offsetof(struct sk_buff, headers.field));	\
1527 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1528 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1529 {
1530 	new->tstamp		= old->tstamp;
1531 	/* We do not copy old->sk */
1532 	new->dev		= old->dev;
1533 	memcpy(new->cb, old->cb, sizeof(old->cb));
1534 	skb_dst_copy(new, old);
1535 	__skb_ext_copy(new, old);
1536 	__nf_copy(new, old, false);
1537 
1538 	/* Note : this field could be in the headers group.
1539 	 * It is not yet because we do not want to have a 16 bit hole
1540 	 */
1541 	new->queue_mapping = old->queue_mapping;
1542 
1543 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1544 	CHECK_SKB_FIELD(protocol);
1545 	CHECK_SKB_FIELD(csum);
1546 	CHECK_SKB_FIELD(hash);
1547 	CHECK_SKB_FIELD(priority);
1548 	CHECK_SKB_FIELD(skb_iif);
1549 	CHECK_SKB_FIELD(vlan_proto);
1550 	CHECK_SKB_FIELD(vlan_tci);
1551 	CHECK_SKB_FIELD(transport_header);
1552 	CHECK_SKB_FIELD(network_header);
1553 	CHECK_SKB_FIELD(mac_header);
1554 	CHECK_SKB_FIELD(inner_protocol);
1555 	CHECK_SKB_FIELD(inner_transport_header);
1556 	CHECK_SKB_FIELD(inner_network_header);
1557 	CHECK_SKB_FIELD(inner_mac_header);
1558 	CHECK_SKB_FIELD(mark);
1559 #ifdef CONFIG_NETWORK_SECMARK
1560 	CHECK_SKB_FIELD(secmark);
1561 #endif
1562 #ifdef CONFIG_NET_RX_BUSY_POLL
1563 	CHECK_SKB_FIELD(napi_id);
1564 #endif
1565 	CHECK_SKB_FIELD(alloc_cpu);
1566 #ifdef CONFIG_XPS
1567 	CHECK_SKB_FIELD(sender_cpu);
1568 #endif
1569 #ifdef CONFIG_NET_SCHED
1570 	CHECK_SKB_FIELD(tc_index);
1571 #endif
1572 
1573 }
1574 
1575 /*
1576  * You should not add any new code to this function.  Add it to
1577  * __copy_skb_header above instead.
1578  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1579 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1580 {
1581 #define C(x) n->x = skb->x
1582 
1583 	n->next = n->prev = NULL;
1584 	n->sk = NULL;
1585 	__copy_skb_header(n, skb);
1586 
1587 	C(len);
1588 	C(data_len);
1589 	C(mac_len);
1590 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1591 	n->cloned = 1;
1592 	n->nohdr = 0;
1593 	n->peeked = 0;
1594 	C(pfmemalloc);
1595 	C(pp_recycle);
1596 	n->destructor = NULL;
1597 	C(tail);
1598 	C(end);
1599 	C(head);
1600 	C(head_frag);
1601 	C(data);
1602 	C(truesize);
1603 	refcount_set(&n->users, 1);
1604 
1605 	atomic_inc(&(skb_shinfo(skb)->dataref));
1606 	skb->cloned = 1;
1607 
1608 	return n;
1609 #undef C
1610 }
1611 
1612 /**
1613  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1614  * @first: first sk_buff of the msg
1615  */
alloc_skb_for_msg(struct sk_buff * first)1616 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1617 {
1618 	struct sk_buff *n;
1619 
1620 	n = alloc_skb(0, GFP_ATOMIC);
1621 	if (!n)
1622 		return NULL;
1623 
1624 	n->len = first->len;
1625 	n->data_len = first->len;
1626 	n->truesize = first->truesize;
1627 
1628 	skb_shinfo(n)->frag_list = first;
1629 
1630 	__copy_skb_header(n, first);
1631 	n->destructor = NULL;
1632 
1633 	return n;
1634 }
1635 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1636 
1637 /**
1638  *	skb_morph	-	morph one skb into another
1639  *	@dst: the skb to receive the contents
1640  *	@src: the skb to supply the contents
1641  *
1642  *	This is identical to skb_clone except that the target skb is
1643  *	supplied by the user.
1644  *
1645  *	The target skb is returned upon exit.
1646  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1647 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1648 {
1649 	skb_release_all(dst, SKB_CONSUMED);
1650 	return __skb_clone(dst, src);
1651 }
1652 EXPORT_SYMBOL_GPL(skb_morph);
1653 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1654 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1655 {
1656 	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1657 	struct user_struct *user;
1658 
1659 	if (capable(CAP_IPC_LOCK) || !size)
1660 		return 0;
1661 
1662 	rlim = rlimit(RLIMIT_MEMLOCK);
1663 	if (rlim == RLIM_INFINITY)
1664 		return 0;
1665 
1666 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1667 	max_pg = rlim >> PAGE_SHIFT;
1668 	user = mmp->user ? : current_user();
1669 
1670 	old_pg = atomic_long_read(&user->locked_vm);
1671 	do {
1672 		new_pg = old_pg + num_pg;
1673 		if (new_pg > max_pg)
1674 			return -ENOBUFS;
1675 	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1676 
1677 	if (!mmp->user) {
1678 		mmp->user = get_uid(user);
1679 		mmp->num_pg = num_pg;
1680 	} else {
1681 		mmp->num_pg += num_pg;
1682 	}
1683 
1684 	return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1687 
mm_unaccount_pinned_pages(struct mmpin * mmp)1688 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1689 {
1690 	if (mmp->user) {
1691 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1692 		free_uid(mmp->user);
1693 	}
1694 }
1695 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1696 
msg_zerocopy_alloc(struct sock * sk,size_t size,bool devmem)1697 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size,
1698 					    bool devmem)
1699 {
1700 	struct ubuf_info_msgzc *uarg;
1701 	struct sk_buff *skb;
1702 
1703 	WARN_ON_ONCE(!in_task());
1704 
1705 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1706 	if (!skb)
1707 		return NULL;
1708 
1709 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1710 	uarg = (void *)skb->cb;
1711 	uarg->mmp.user = NULL;
1712 
1713 	if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) {
1714 		kfree_skb(skb);
1715 		return NULL;
1716 	}
1717 
1718 	uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1719 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1720 	uarg->len = 1;
1721 	uarg->bytelen = size;
1722 	uarg->zerocopy = 1;
1723 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1724 	refcount_set(&uarg->ubuf.refcnt, 1);
1725 	sock_hold(sk);
1726 
1727 	return &uarg->ubuf;
1728 }
1729 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1730 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1731 {
1732 	return container_of((void *)uarg, struct sk_buff, cb);
1733 }
1734 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg,bool devmem)1735 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1736 				       struct ubuf_info *uarg, bool devmem)
1737 {
1738 	if (uarg) {
1739 		struct ubuf_info_msgzc *uarg_zc;
1740 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1741 		u32 bytelen, next;
1742 
1743 		/* there might be non MSG_ZEROCOPY users */
1744 		if (uarg->ops != &msg_zerocopy_ubuf_ops)
1745 			return NULL;
1746 
1747 		/* realloc only when socket is locked (TCP, UDP cork),
1748 		 * so uarg->len and sk_zckey access is serialized
1749 		 */
1750 		if (!sock_owned_by_user(sk)) {
1751 			WARN_ON_ONCE(1);
1752 			return NULL;
1753 		}
1754 
1755 		uarg_zc = uarg_to_msgzc(uarg);
1756 		bytelen = uarg_zc->bytelen + size;
1757 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1758 			/* TCP can create new skb to attach new uarg */
1759 			if (sk->sk_type == SOCK_STREAM)
1760 				goto new_alloc;
1761 			return NULL;
1762 		}
1763 
1764 		next = (u32)atomic_read(&sk->sk_zckey);
1765 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1766 			if (likely(!devmem) &&
1767 			    mm_account_pinned_pages(&uarg_zc->mmp, size))
1768 				return NULL;
1769 			uarg_zc->len++;
1770 			uarg_zc->bytelen = bytelen;
1771 			atomic_set(&sk->sk_zckey, ++next);
1772 
1773 			/* no extra ref when appending to datagram (MSG_MORE) */
1774 			if (sk->sk_type == SOCK_STREAM)
1775 				net_zcopy_get(uarg);
1776 
1777 			return uarg;
1778 		}
1779 	}
1780 
1781 new_alloc:
1782 	return msg_zerocopy_alloc(sk, size, devmem);
1783 }
1784 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1785 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1786 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1787 {
1788 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1789 	u32 old_lo, old_hi;
1790 	u64 sum_len;
1791 
1792 	old_lo = serr->ee.ee_info;
1793 	old_hi = serr->ee.ee_data;
1794 	sum_len = old_hi - old_lo + 1ULL + len;
1795 
1796 	if (sum_len >= (1ULL << 32))
1797 		return false;
1798 
1799 	if (lo != old_hi + 1)
1800 		return false;
1801 
1802 	serr->ee.ee_data += len;
1803 	return true;
1804 }
1805 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1806 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1807 {
1808 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1809 	struct sock_exterr_skb *serr;
1810 	struct sock *sk = skb->sk;
1811 	struct sk_buff_head *q;
1812 	unsigned long flags;
1813 	bool is_zerocopy;
1814 	u32 lo, hi;
1815 	u16 len;
1816 
1817 	mm_unaccount_pinned_pages(&uarg->mmp);
1818 
1819 	/* if !len, there was only 1 call, and it was aborted
1820 	 * so do not queue a completion notification
1821 	 */
1822 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1823 		goto release;
1824 
1825 	len = uarg->len;
1826 	lo = uarg->id;
1827 	hi = uarg->id + len - 1;
1828 	is_zerocopy = uarg->zerocopy;
1829 
1830 	serr = SKB_EXT_ERR(skb);
1831 	memset(serr, 0, sizeof(*serr));
1832 	serr->ee.ee_errno = 0;
1833 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1834 	serr->ee.ee_data = hi;
1835 	serr->ee.ee_info = lo;
1836 	if (!is_zerocopy)
1837 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1838 
1839 	q = &sk->sk_error_queue;
1840 	spin_lock_irqsave(&q->lock, flags);
1841 	tail = skb_peek_tail(q);
1842 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1843 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1844 		__skb_queue_tail(q, skb);
1845 		skb = NULL;
1846 	}
1847 	spin_unlock_irqrestore(&q->lock, flags);
1848 
1849 	sk_error_report(sk);
1850 
1851 release:
1852 	consume_skb(skb);
1853 	sock_put(sk);
1854 }
1855 
msg_zerocopy_complete(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1856 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1857 				  bool success)
1858 {
1859 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1860 
1861 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1862 
1863 	if (refcount_dec_and_test(&uarg->refcnt))
1864 		__msg_zerocopy_callback(uarg_zc);
1865 }
1866 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1867 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1868 {
1869 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1870 
1871 	atomic_dec(&sk->sk_zckey);
1872 	uarg_to_msgzc(uarg)->len--;
1873 
1874 	if (have_uref)
1875 		msg_zerocopy_complete(NULL, uarg, true);
1876 }
1877 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1878 
1879 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1880 	.complete = msg_zerocopy_complete,
1881 };
1882 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1883 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg,struct net_devmem_dmabuf_binding * binding)1884 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1885 			     struct msghdr *msg, int len,
1886 			     struct ubuf_info *uarg,
1887 			     struct net_devmem_dmabuf_binding *binding)
1888 {
1889 	int err, orig_len = skb->len;
1890 
1891 	if (uarg->ops->link_skb) {
1892 		err = uarg->ops->link_skb(skb, uarg);
1893 		if (err)
1894 			return err;
1895 	} else {
1896 		struct ubuf_info *orig_uarg = skb_zcopy(skb);
1897 
1898 		/* An skb can only point to one uarg. This edge case happens
1899 		 * when TCP appends to an skb, but zerocopy_realloc triggered
1900 		 * a new alloc.
1901 		 */
1902 		if (orig_uarg && uarg != orig_uarg)
1903 			return -EEXIST;
1904 	}
1905 
1906 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len,
1907 				      binding);
1908 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1909 		struct sock *save_sk = skb->sk;
1910 
1911 		/* Streams do not free skb on error. Reset to prev state. */
1912 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1913 		skb->sk = sk;
1914 		___pskb_trim(skb, orig_len);
1915 		skb->sk = save_sk;
1916 		return err;
1917 	}
1918 
1919 	skb_zcopy_set(skb, uarg, NULL);
1920 	return skb->len - orig_len;
1921 }
1922 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1923 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1924 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1925 {
1926 	int i;
1927 
1928 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1929 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1930 		skb_frag_ref(skb, i);
1931 }
1932 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1933 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1934 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1935 			      gfp_t gfp_mask)
1936 {
1937 	if (skb_zcopy(orig)) {
1938 		if (skb_zcopy(nskb)) {
1939 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1940 			if (!gfp_mask) {
1941 				WARN_ON_ONCE(1);
1942 				return -ENOMEM;
1943 			}
1944 			if (skb_uarg(nskb) == skb_uarg(orig))
1945 				return 0;
1946 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1947 				return -EIO;
1948 		}
1949 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1950 	}
1951 	return 0;
1952 }
1953 
1954 /**
1955  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1956  *	@skb: the skb to modify
1957  *	@gfp_mask: allocation priority
1958  *
1959  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1960  *	It will copy all frags into kernel and drop the reference
1961  *	to userspace pages.
1962  *
1963  *	If this function is called from an interrupt gfp_mask() must be
1964  *	%GFP_ATOMIC.
1965  *
1966  *	Returns 0 on success or a negative error code on failure
1967  *	to allocate kernel memory to copy to.
1968  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1969 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1970 {
1971 	int num_frags = skb_shinfo(skb)->nr_frags;
1972 	struct page *page, *head = NULL;
1973 	int i, order, psize, new_frags;
1974 	u32 d_off;
1975 
1976 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1977 		return -EINVAL;
1978 
1979 	if (!skb_frags_readable(skb))
1980 		return -EFAULT;
1981 
1982 	if (!num_frags)
1983 		goto release;
1984 
1985 	/* We might have to allocate high order pages, so compute what minimum
1986 	 * page order is needed.
1987 	 */
1988 	order = 0;
1989 	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1990 		order++;
1991 	psize = (PAGE_SIZE << order);
1992 
1993 	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1994 	for (i = 0; i < new_frags; i++) {
1995 		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1996 		if (!page) {
1997 			while (head) {
1998 				struct page *next = (struct page *)page_private(head);
1999 				put_page(head);
2000 				head = next;
2001 			}
2002 			return -ENOMEM;
2003 		}
2004 		set_page_private(page, (unsigned long)head);
2005 		head = page;
2006 	}
2007 
2008 	page = head;
2009 	d_off = 0;
2010 	for (i = 0; i < num_frags; i++) {
2011 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2012 		u32 p_off, p_len, copied;
2013 		struct page *p;
2014 		u8 *vaddr;
2015 
2016 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2017 				      p, p_off, p_len, copied) {
2018 			u32 copy, done = 0;
2019 			vaddr = kmap_atomic(p);
2020 
2021 			while (done < p_len) {
2022 				if (d_off == psize) {
2023 					d_off = 0;
2024 					page = (struct page *)page_private(page);
2025 				}
2026 				copy = min_t(u32, psize - d_off, p_len - done);
2027 				memcpy(page_address(page) + d_off,
2028 				       vaddr + p_off + done, copy);
2029 				done += copy;
2030 				d_off += copy;
2031 			}
2032 			kunmap_atomic(vaddr);
2033 		}
2034 	}
2035 
2036 	/* skb frags release userspace buffers */
2037 	for (i = 0; i < num_frags; i++)
2038 		skb_frag_unref(skb, i);
2039 
2040 	/* skb frags point to kernel buffers */
2041 	for (i = 0; i < new_frags - 1; i++) {
2042 		__skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2043 		head = (struct page *)page_private(head);
2044 	}
2045 	__skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2046 			       d_off);
2047 	skb_shinfo(skb)->nr_frags = new_frags;
2048 
2049 release:
2050 	skb_zcopy_clear(skb, false);
2051 	return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2054 
2055 /**
2056  *	skb_clone	-	duplicate an sk_buff
2057  *	@skb: buffer to clone
2058  *	@gfp_mask: allocation priority
2059  *
2060  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
2061  *	copies share the same packet data but not structure. The new
2062  *	buffer has a reference count of 1. If the allocation fails the
2063  *	function returns %NULL otherwise the new buffer is returned.
2064  *
2065  *	If this function is called from an interrupt gfp_mask() must be
2066  *	%GFP_ATOMIC.
2067  */
2068 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)2069 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2070 {
2071 	struct sk_buff_fclones *fclones = container_of(skb,
2072 						       struct sk_buff_fclones,
2073 						       skb1);
2074 	struct sk_buff *n;
2075 
2076 	if (skb_orphan_frags(skb, gfp_mask))
2077 		return NULL;
2078 
2079 	if (skb->fclone == SKB_FCLONE_ORIG &&
2080 	    refcount_read(&fclones->fclone_ref) == 1) {
2081 		n = &fclones->skb2;
2082 		refcount_set(&fclones->fclone_ref, 2);
2083 		n->fclone = SKB_FCLONE_CLONE;
2084 	} else {
2085 		if (skb_pfmemalloc(skb))
2086 			gfp_mask |= __GFP_MEMALLOC;
2087 
2088 		n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2089 		if (!n)
2090 			return NULL;
2091 
2092 		n->fclone = SKB_FCLONE_UNAVAILABLE;
2093 	}
2094 
2095 	return __skb_clone(n, skb);
2096 }
2097 EXPORT_SYMBOL(skb_clone);
2098 
skb_headers_offset_update(struct sk_buff * skb,int off)2099 void skb_headers_offset_update(struct sk_buff *skb, int off)
2100 {
2101 	/* Only adjust this if it actually is csum_start rather than csum */
2102 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2103 		skb->csum_start += off;
2104 	/* {transport,network,mac}_header and tail are relative to skb->head */
2105 	skb->transport_header += off;
2106 	skb->network_header   += off;
2107 	if (skb_mac_header_was_set(skb))
2108 		skb->mac_header += off;
2109 	skb->inner_transport_header += off;
2110 	skb->inner_network_header += off;
2111 	skb->inner_mac_header += off;
2112 }
2113 EXPORT_SYMBOL(skb_headers_offset_update);
2114 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)2115 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2116 {
2117 	__copy_skb_header(new, old);
2118 
2119 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2120 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2121 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2122 }
2123 EXPORT_SYMBOL(skb_copy_header);
2124 
skb_alloc_rx_flag(const struct sk_buff * skb)2125 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2126 {
2127 	if (skb_pfmemalloc(skb))
2128 		return SKB_ALLOC_RX;
2129 	return 0;
2130 }
2131 
2132 /**
2133  *	skb_copy	-	create private copy of an sk_buff
2134  *	@skb: buffer to copy
2135  *	@gfp_mask: allocation priority
2136  *
2137  *	Make a copy of both an &sk_buff and its data. This is used when the
2138  *	caller wishes to modify the data and needs a private copy of the
2139  *	data to alter. Returns %NULL on failure or the pointer to the buffer
2140  *	on success. The returned buffer has a reference count of 1.
2141  *
2142  *	As by-product this function converts non-linear &sk_buff to linear
2143  *	one, so that &sk_buff becomes completely private and caller is allowed
2144  *	to modify all the data of returned buffer. This means that this
2145  *	function is not recommended for use in circumstances when only
2146  *	header is going to be modified. Use pskb_copy() instead.
2147  */
2148 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)2149 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2150 {
2151 	struct sk_buff *n;
2152 	unsigned int size;
2153 	int headerlen;
2154 
2155 	if (!skb_frags_readable(skb))
2156 		return NULL;
2157 
2158 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2159 		return NULL;
2160 
2161 	headerlen = skb_headroom(skb);
2162 	size = skb_end_offset(skb) + skb->data_len;
2163 	n = __alloc_skb(size, gfp_mask,
2164 			skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2165 	if (!n)
2166 		return NULL;
2167 
2168 	/* Set the data pointer */
2169 	skb_reserve(n, headerlen);
2170 	/* Set the tail pointer and length */
2171 	skb_put(n, skb->len);
2172 
2173 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2174 
2175 	skb_copy_header(n, skb);
2176 	return n;
2177 }
2178 EXPORT_SYMBOL(skb_copy);
2179 
2180 /**
2181  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
2182  *	@skb: buffer to copy
2183  *	@headroom: headroom of new skb
2184  *	@gfp_mask: allocation priority
2185  *	@fclone: if true allocate the copy of the skb from the fclone
2186  *	cache instead of the head cache; it is recommended to set this
2187  *	to true for the cases where the copy will likely be cloned
2188  *
2189  *	Make a copy of both an &sk_buff and part of its data, located
2190  *	in header. Fragmented data remain shared. This is used when
2191  *	the caller wishes to modify only header of &sk_buff and needs
2192  *	private copy of the header to alter. Returns %NULL on failure
2193  *	or the pointer to the buffer on success.
2194  *	The returned buffer has a reference count of 1.
2195  */
2196 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)2197 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2198 				   gfp_t gfp_mask, bool fclone)
2199 {
2200 	unsigned int size = skb_headlen(skb) + headroom;
2201 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2202 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2203 
2204 	if (!n)
2205 		goto out;
2206 
2207 	/* Set the data pointer */
2208 	skb_reserve(n, headroom);
2209 	/* Set the tail pointer and length */
2210 	skb_put(n, skb_headlen(skb));
2211 	/* Copy the bytes */
2212 	skb_copy_from_linear_data(skb, n->data, n->len);
2213 
2214 	n->truesize += skb->data_len;
2215 	n->data_len  = skb->data_len;
2216 	n->len	     = skb->len;
2217 
2218 	if (skb_shinfo(skb)->nr_frags) {
2219 		int i;
2220 
2221 		if (skb_orphan_frags(skb, gfp_mask) ||
2222 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2223 			kfree_skb(n);
2224 			n = NULL;
2225 			goto out;
2226 		}
2227 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2228 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2229 			skb_frag_ref(skb, i);
2230 		}
2231 		skb_shinfo(n)->nr_frags = i;
2232 	}
2233 
2234 	if (skb_has_frag_list(skb)) {
2235 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2236 		skb_clone_fraglist(n);
2237 	}
2238 
2239 	skb_copy_header(n, skb);
2240 out:
2241 	return n;
2242 }
2243 EXPORT_SYMBOL(__pskb_copy_fclone);
2244 
2245 /**
2246  *	pskb_expand_head - reallocate header of &sk_buff
2247  *	@skb: buffer to reallocate
2248  *	@nhead: room to add at head
2249  *	@ntail: room to add at tail
2250  *	@gfp_mask: allocation priority
2251  *
2252  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2253  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2254  *	reference count of 1. Returns zero in the case of success or error,
2255  *	if expansion failed. In the last case, &sk_buff is not changed.
2256  *
2257  *	All the pointers pointing into skb header may change and must be
2258  *	reloaded after call to this function.
2259  *
2260  *	Note: If you skb_push() the start of the buffer after reallocating the
2261  *	header, call skb_postpush_data_move() first to move the metadata out of
2262  *	the way before writing to &sk_buff->data.
2263  */
2264 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)2265 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2266 		     gfp_t gfp_mask)
2267 {
2268 	unsigned int osize = skb_end_offset(skb);
2269 	unsigned int size = osize + nhead + ntail;
2270 	long off;
2271 	u8 *data;
2272 	int i;
2273 
2274 	BUG_ON(nhead < 0);
2275 
2276 	BUG_ON(skb_shared(skb));
2277 
2278 	skb_zcopy_downgrade_managed(skb);
2279 
2280 	if (skb_pfmemalloc(skb))
2281 		gfp_mask |= __GFP_MEMALLOC;
2282 
2283 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2284 	if (!data)
2285 		goto nodata;
2286 	size = SKB_WITH_OVERHEAD(size);
2287 
2288 	/* Copy only real data... and, alas, header. This should be
2289 	 * optimized for the cases when header is void.
2290 	 */
2291 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2292 
2293 	memcpy((struct skb_shared_info *)(data + size),
2294 	       skb_shinfo(skb),
2295 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2296 
2297 	/*
2298 	 * if shinfo is shared we must drop the old head gracefully, but if it
2299 	 * is not we can just drop the old head and let the existing refcount
2300 	 * be since all we did is relocate the values
2301 	 */
2302 	if (skb_cloned(skb)) {
2303 		if (skb_orphan_frags(skb, gfp_mask))
2304 			goto nofrags;
2305 		if (skb_zcopy(skb))
2306 			refcount_inc(&skb_uarg(skb)->refcnt);
2307 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2308 			skb_frag_ref(skb, i);
2309 
2310 		if (skb_has_frag_list(skb))
2311 			skb_clone_fraglist(skb);
2312 
2313 		skb_release_data(skb, SKB_CONSUMED);
2314 	} else {
2315 		skb_free_head(skb);
2316 	}
2317 	off = (data + nhead) - skb->head;
2318 
2319 	skb->head     = data;
2320 	skb->head_frag = 0;
2321 	skb->data    += off;
2322 
2323 	skb_set_end_offset(skb, size);
2324 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2325 	off           = nhead;
2326 #endif
2327 	skb->tail	      += off;
2328 	skb_headers_offset_update(skb, nhead);
2329 	skb->cloned   = 0;
2330 	skb->hdr_len  = 0;
2331 	skb->nohdr    = 0;
2332 	atomic_set(&skb_shinfo(skb)->dataref, 1);
2333 
2334 	/* It is not generally safe to change skb->truesize.
2335 	 * For the moment, we really care of rx path, or
2336 	 * when skb is orphaned (not attached to a socket).
2337 	 */
2338 	if (!skb->sk || skb->destructor == sock_edemux)
2339 		skb->truesize += size - osize;
2340 
2341 	return 0;
2342 
2343 nofrags:
2344 	skb_kfree_head(data, size);
2345 nodata:
2346 	return -ENOMEM;
2347 }
2348 EXPORT_SYMBOL(pskb_expand_head);
2349 
2350 /* Make private copy of skb with writable head and some headroom */
2351 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)2352 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2353 {
2354 	struct sk_buff *skb2;
2355 	int delta = headroom - skb_headroom(skb);
2356 
2357 	if (delta <= 0)
2358 		skb2 = pskb_copy(skb, GFP_ATOMIC);
2359 	else {
2360 		skb2 = skb_clone(skb, GFP_ATOMIC);
2361 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2362 					     GFP_ATOMIC)) {
2363 			kfree_skb(skb2);
2364 			skb2 = NULL;
2365 		}
2366 	}
2367 	return skb2;
2368 }
2369 EXPORT_SYMBOL(skb_realloc_headroom);
2370 
2371 /* Note: We plan to rework this in linux-6.4 */
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2372 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2373 {
2374 	unsigned int saved_end_offset, saved_truesize;
2375 	struct skb_shared_info *shinfo;
2376 	int res;
2377 
2378 	saved_end_offset = skb_end_offset(skb);
2379 	saved_truesize = skb->truesize;
2380 
2381 	res = pskb_expand_head(skb, 0, 0, pri);
2382 	if (res)
2383 		return res;
2384 
2385 	skb->truesize = saved_truesize;
2386 
2387 	if (likely(skb_end_offset(skb) == saved_end_offset))
2388 		return 0;
2389 
2390 	/* We can not change skb->end if the original or new value
2391 	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2392 	 */
2393 	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2394 	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2395 		/* We think this path should not be taken.
2396 		 * Add a temporary trace to warn us just in case.
2397 		 */
2398 		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2399 			    saved_end_offset, skb_end_offset(skb));
2400 		WARN_ON_ONCE(1);
2401 		return 0;
2402 	}
2403 
2404 	shinfo = skb_shinfo(skb);
2405 
2406 	/* We are about to change back skb->end,
2407 	 * we need to move skb_shinfo() to its new location.
2408 	 */
2409 	memmove(skb->head + saved_end_offset,
2410 		shinfo,
2411 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2412 
2413 	skb_set_end_offset(skb, saved_end_offset);
2414 
2415 	return 0;
2416 }
2417 
2418 /**
2419  *	skb_expand_head - reallocate header of &sk_buff
2420  *	@skb: buffer to reallocate
2421  *	@headroom: needed headroom
2422  *
2423  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2424  *	if possible; copies skb->sk to new skb as needed
2425  *	and frees original skb in case of failures.
2426  *
2427  *	It expect increased headroom and generates warning otherwise.
2428  */
2429 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)2430 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2431 {
2432 	int delta = headroom - skb_headroom(skb);
2433 	int osize = skb_end_offset(skb);
2434 	struct sock *sk = skb->sk;
2435 
2436 	if (WARN_ONCE(delta <= 0,
2437 		      "%s is expecting an increase in the headroom", __func__))
2438 		return skb;
2439 
2440 	delta = SKB_DATA_ALIGN(delta);
2441 	/* pskb_expand_head() might crash, if skb is shared. */
2442 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2443 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2444 
2445 		if (unlikely(!nskb))
2446 			goto fail;
2447 
2448 		if (sk)
2449 			skb_set_owner_w(nskb, sk);
2450 		consume_skb(skb);
2451 		skb = nskb;
2452 	}
2453 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2454 		goto fail;
2455 
2456 	if (sk && is_skb_wmem(skb)) {
2457 		delta = skb_end_offset(skb) - osize;
2458 		refcount_add(delta, &sk->sk_wmem_alloc);
2459 		skb->truesize += delta;
2460 	}
2461 	return skb;
2462 
2463 fail:
2464 	kfree_skb(skb);
2465 	return NULL;
2466 }
2467 EXPORT_SYMBOL(skb_expand_head);
2468 
2469 /**
2470  *	skb_copy_expand	-	copy and expand sk_buff
2471  *	@skb: buffer to copy
2472  *	@newheadroom: new free bytes at head
2473  *	@newtailroom: new free bytes at tail
2474  *	@gfp_mask: allocation priority
2475  *
2476  *	Make a copy of both an &sk_buff and its data and while doing so
2477  *	allocate additional space.
2478  *
2479  *	This is used when the caller wishes to modify the data and needs a
2480  *	private copy of the data to alter as well as more space for new fields.
2481  *	Returns %NULL on failure or the pointer to the buffer
2482  *	on success. The returned buffer has a reference count of 1.
2483  *
2484  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2485  *	is called from an interrupt.
2486  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2487 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2488 				int newheadroom, int newtailroom,
2489 				gfp_t gfp_mask)
2490 {
2491 	/*
2492 	 *	Allocate the copy buffer
2493 	 */
2494 	int head_copy_len, head_copy_off;
2495 	struct sk_buff *n;
2496 	int oldheadroom;
2497 
2498 	if (!skb_frags_readable(skb))
2499 		return NULL;
2500 
2501 	if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2502 		return NULL;
2503 
2504 	oldheadroom = skb_headroom(skb);
2505 	n = __alloc_skb(newheadroom + skb->len + newtailroom,
2506 			gfp_mask, skb_alloc_rx_flag(skb),
2507 			NUMA_NO_NODE);
2508 	if (!n)
2509 		return NULL;
2510 
2511 	skb_reserve(n, newheadroom);
2512 
2513 	/* Set the tail pointer and length */
2514 	skb_put(n, skb->len);
2515 
2516 	head_copy_len = oldheadroom;
2517 	head_copy_off = 0;
2518 	if (newheadroom <= head_copy_len)
2519 		head_copy_len = newheadroom;
2520 	else
2521 		head_copy_off = newheadroom - head_copy_len;
2522 
2523 	/* Copy the linear header and data. */
2524 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2525 			     skb->len + head_copy_len));
2526 
2527 	skb_copy_header(n, skb);
2528 
2529 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2530 
2531 	return n;
2532 }
2533 EXPORT_SYMBOL(skb_copy_expand);
2534 
2535 /**
2536  *	__skb_pad		-	zero pad the tail of an skb
2537  *	@skb: buffer to pad
2538  *	@pad: space to pad
2539  *	@free_on_error: free buffer on error
2540  *
2541  *	Ensure that a buffer is followed by a padding area that is zero
2542  *	filled. Used by network drivers which may DMA or transfer data
2543  *	beyond the buffer end onto the wire.
2544  *
2545  *	May return error in out of memory cases. The skb is freed on error
2546  *	if @free_on_error is true.
2547  */
2548 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2549 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2550 {
2551 	int err;
2552 	int ntail;
2553 
2554 	/* If the skbuff is non linear tailroom is always zero.. */
2555 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2556 		memset(skb->data+skb->len, 0, pad);
2557 		return 0;
2558 	}
2559 
2560 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2561 	if (likely(skb_cloned(skb) || ntail > 0)) {
2562 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2563 		if (unlikely(err))
2564 			goto free_skb;
2565 	}
2566 
2567 	/* FIXME: The use of this function with non-linear skb's really needs
2568 	 * to be audited.
2569 	 */
2570 	err = skb_linearize(skb);
2571 	if (unlikely(err))
2572 		goto free_skb;
2573 
2574 	memset(skb->data + skb->len, 0, pad);
2575 	return 0;
2576 
2577 free_skb:
2578 	if (free_on_error)
2579 		kfree_skb(skb);
2580 	return err;
2581 }
2582 EXPORT_SYMBOL(__skb_pad);
2583 
2584 /**
2585  *	pskb_put - add data to the tail of a potentially fragmented buffer
2586  *	@skb: start of the buffer to use
2587  *	@tail: tail fragment of the buffer to use
2588  *	@len: amount of data to add
2589  *
2590  *	This function extends the used data area of the potentially
2591  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2592  *	@skb itself. If this would exceed the total buffer size the kernel
2593  *	will panic. A pointer to the first byte of the extra data is
2594  *	returned.
2595  */
2596 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2597 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2598 {
2599 	if (tail != skb) {
2600 		skb->data_len += len;
2601 		skb->len += len;
2602 	}
2603 	return skb_put(tail, len);
2604 }
2605 EXPORT_SYMBOL_GPL(pskb_put);
2606 
2607 /**
2608  *	skb_put - add data to a buffer
2609  *	@skb: buffer to use
2610  *	@len: amount of data to add
2611  *
2612  *	This function extends the used data area of the buffer. If this would
2613  *	exceed the total buffer size the kernel will panic. A pointer to the
2614  *	first byte of the extra data is returned.
2615  */
skb_put(struct sk_buff * skb,unsigned int len)2616 void *skb_put(struct sk_buff *skb, unsigned int len)
2617 {
2618 	void *tmp = skb_tail_pointer(skb);
2619 	SKB_LINEAR_ASSERT(skb);
2620 	skb->tail += len;
2621 	skb->len  += len;
2622 	if (unlikely(skb->tail > skb->end))
2623 		skb_over_panic(skb, len, __builtin_return_address(0));
2624 	return tmp;
2625 }
2626 EXPORT_SYMBOL(skb_put);
2627 
2628 /**
2629  *	skb_push - add data to the start of a buffer
2630  *	@skb: buffer to use
2631  *	@len: amount of data to add
2632  *
2633  *	This function extends the used data area of the buffer at the buffer
2634  *	start. If this would exceed the total buffer headroom the kernel will
2635  *	panic. A pointer to the first byte of the extra data is returned.
2636  */
skb_push(struct sk_buff * skb,unsigned int len)2637 void *skb_push(struct sk_buff *skb, unsigned int len)
2638 {
2639 	skb->data -= len;
2640 	skb->len  += len;
2641 	if (unlikely(skb->data < skb->head))
2642 		skb_under_panic(skb, len, __builtin_return_address(0));
2643 	return skb->data;
2644 }
2645 EXPORT_SYMBOL(skb_push);
2646 
2647 /**
2648  *	skb_pull - remove data from the start of a buffer
2649  *	@skb: buffer to use
2650  *	@len: amount of data to remove
2651  *
2652  *	This function removes data from the start of a buffer, returning
2653  *	the memory to the headroom. A pointer to the next data in the buffer
2654  *	is returned. Once the data has been pulled future pushes will overwrite
2655  *	the old data.
2656  */
skb_pull(struct sk_buff * skb,unsigned int len)2657 void *skb_pull(struct sk_buff *skb, unsigned int len)
2658 {
2659 	return skb_pull_inline(skb, len);
2660 }
2661 EXPORT_SYMBOL(skb_pull);
2662 
2663 /**
2664  *	skb_pull_data - remove data from the start of a buffer returning its
2665  *	original position.
2666  *	@skb: buffer to use
2667  *	@len: amount of data to remove
2668  *
2669  *	This function removes data from the start of a buffer, returning
2670  *	the memory to the headroom. A pointer to the original data in the buffer
2671  *	is returned after checking if there is enough data to pull. Once the
2672  *	data has been pulled future pushes will overwrite the old data.
2673  */
skb_pull_data(struct sk_buff * skb,size_t len)2674 void *skb_pull_data(struct sk_buff *skb, size_t len)
2675 {
2676 	void *data = skb->data;
2677 
2678 	if (skb->len < len)
2679 		return NULL;
2680 
2681 	skb_pull(skb, len);
2682 
2683 	return data;
2684 }
2685 EXPORT_SYMBOL(skb_pull_data);
2686 
2687 /**
2688  *	skb_trim - remove end from a buffer
2689  *	@skb: buffer to alter
2690  *	@len: new length
2691  *
2692  *	Cut the length of a buffer down by removing data from the tail. If
2693  *	the buffer is already under the length specified it is not modified.
2694  *	The skb must be linear.
2695  */
skb_trim(struct sk_buff * skb,unsigned int len)2696 void skb_trim(struct sk_buff *skb, unsigned int len)
2697 {
2698 	if (skb->len > len)
2699 		__skb_trim(skb, len);
2700 }
2701 EXPORT_SYMBOL(skb_trim);
2702 
2703 /* Trims skb to length len. It can change skb pointers.
2704  */
2705 
___pskb_trim(struct sk_buff * skb,unsigned int len)2706 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2707 {
2708 	struct sk_buff **fragp;
2709 	struct sk_buff *frag;
2710 	int offset = skb_headlen(skb);
2711 	int nfrags = skb_shinfo(skb)->nr_frags;
2712 	int i;
2713 	int err;
2714 
2715 	if (skb_cloned(skb) &&
2716 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2717 		return err;
2718 
2719 	i = 0;
2720 	if (offset >= len)
2721 		goto drop_pages;
2722 
2723 	for (; i < nfrags; i++) {
2724 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2725 
2726 		if (end < len) {
2727 			offset = end;
2728 			continue;
2729 		}
2730 
2731 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2732 
2733 drop_pages:
2734 		skb_shinfo(skb)->nr_frags = i;
2735 
2736 		for (; i < nfrags; i++)
2737 			skb_frag_unref(skb, i);
2738 
2739 		if (skb_has_frag_list(skb))
2740 			skb_drop_fraglist(skb);
2741 		goto done;
2742 	}
2743 
2744 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2745 	     fragp = &frag->next) {
2746 		int end = offset + frag->len;
2747 
2748 		if (skb_shared(frag)) {
2749 			struct sk_buff *nfrag;
2750 
2751 			nfrag = skb_clone(frag, GFP_ATOMIC);
2752 			if (unlikely(!nfrag))
2753 				return -ENOMEM;
2754 
2755 			nfrag->next = frag->next;
2756 			consume_skb(frag);
2757 			frag = nfrag;
2758 			*fragp = frag;
2759 		}
2760 
2761 		if (end < len) {
2762 			offset = end;
2763 			continue;
2764 		}
2765 
2766 		if (end > len &&
2767 		    unlikely((err = pskb_trim(frag, len - offset))))
2768 			return err;
2769 
2770 		if (frag->next)
2771 			skb_drop_list(&frag->next);
2772 		break;
2773 	}
2774 
2775 done:
2776 	if (len > skb_headlen(skb)) {
2777 		skb->data_len -= skb->len - len;
2778 		skb->len       = len;
2779 	} else {
2780 		skb->len       = len;
2781 		skb->data_len  = 0;
2782 		skb_set_tail_pointer(skb, len);
2783 	}
2784 
2785 	if (!skb->sk || skb->destructor == sock_edemux)
2786 		skb_condense(skb);
2787 	return 0;
2788 }
2789 EXPORT_SYMBOL(___pskb_trim);
2790 
2791 /* Note : use pskb_trim_rcsum() instead of calling this directly
2792  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2793 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2794 {
2795 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2796 		int delta = skb->len - len;
2797 
2798 		skb->csum = csum_block_sub(skb->csum,
2799 					   skb_checksum(skb, len, delta, 0),
2800 					   len);
2801 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2802 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2803 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2804 
2805 		if (offset + sizeof(__sum16) > hdlen)
2806 			return -EINVAL;
2807 	}
2808 	return __pskb_trim(skb, len);
2809 }
2810 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2811 
2812 /**
2813  *	__pskb_pull_tail - advance tail of skb header
2814  *	@skb: buffer to reallocate
2815  *	@delta: number of bytes to advance tail
2816  *
2817  *	The function makes a sense only on a fragmented &sk_buff,
2818  *	it expands header moving its tail forward and copying necessary
2819  *	data from fragmented part.
2820  *
2821  *	&sk_buff MUST have reference count of 1.
2822  *
2823  *	Returns %NULL (and &sk_buff does not change) if pull failed
2824  *	or value of new tail of skb in the case of success.
2825  *
2826  *	All the pointers pointing into skb header may change and must be
2827  *	reloaded after call to this function.
2828  */
2829 
2830 /* Moves tail of skb head forward, copying data from fragmented part,
2831  * when it is necessary.
2832  * 1. It may fail due to malloc failure.
2833  * 2. It may change skb pointers.
2834  *
2835  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2836  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2837 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2838 {
2839 	/* If skb has not enough free space at tail, get new one
2840 	 * plus 128 bytes for future expansions. If we have enough
2841 	 * room at tail, reallocate without expansion only if skb is cloned.
2842 	 */
2843 	int i, k, eat = (skb->tail + delta) - skb->end;
2844 
2845 	if (!skb_frags_readable(skb))
2846 		return NULL;
2847 
2848 	if (eat > 0 || skb_cloned(skb)) {
2849 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2850 				     GFP_ATOMIC))
2851 			return NULL;
2852 	}
2853 
2854 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2855 			     skb_tail_pointer(skb), delta));
2856 
2857 	/* Optimization: no fragments, no reasons to preestimate
2858 	 * size of pulled pages. Superb.
2859 	 */
2860 	if (!skb_has_frag_list(skb))
2861 		goto pull_pages;
2862 
2863 	/* Estimate size of pulled pages. */
2864 	eat = delta;
2865 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2866 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2867 
2868 		if (size >= eat)
2869 			goto pull_pages;
2870 		eat -= size;
2871 	}
2872 
2873 	/* If we need update frag list, we are in troubles.
2874 	 * Certainly, it is possible to add an offset to skb data,
2875 	 * but taking into account that pulling is expected to
2876 	 * be very rare operation, it is worth to fight against
2877 	 * further bloating skb head and crucify ourselves here instead.
2878 	 * Pure masohism, indeed. 8)8)
2879 	 */
2880 	if (eat) {
2881 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2882 		struct sk_buff *clone = NULL;
2883 		struct sk_buff *insp = NULL;
2884 
2885 		do {
2886 			if (list->len <= eat) {
2887 				/* Eaten as whole. */
2888 				eat -= list->len;
2889 				list = list->next;
2890 				insp = list;
2891 			} else {
2892 				/* Eaten partially. */
2893 				if (skb_is_gso(skb) && !list->head_frag &&
2894 				    skb_headlen(list))
2895 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2896 
2897 				if (skb_shared(list)) {
2898 					/* Sucks! We need to fork list. :-( */
2899 					clone = skb_clone(list, GFP_ATOMIC);
2900 					if (!clone)
2901 						return NULL;
2902 					insp = list->next;
2903 					list = clone;
2904 				} else {
2905 					/* This may be pulled without
2906 					 * problems. */
2907 					insp = list;
2908 				}
2909 				if (!pskb_pull(list, eat)) {
2910 					kfree_skb(clone);
2911 					return NULL;
2912 				}
2913 				break;
2914 			}
2915 		} while (eat);
2916 
2917 		/* Free pulled out fragments. */
2918 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2919 			skb_shinfo(skb)->frag_list = list->next;
2920 			consume_skb(list);
2921 		}
2922 		/* And insert new clone at head. */
2923 		if (clone) {
2924 			clone->next = list;
2925 			skb_shinfo(skb)->frag_list = clone;
2926 		}
2927 	}
2928 	/* Success! Now we may commit changes to skb data. */
2929 
2930 pull_pages:
2931 	eat = delta;
2932 	k = 0;
2933 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2934 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2935 
2936 		if (size <= eat) {
2937 			skb_frag_unref(skb, i);
2938 			eat -= size;
2939 		} else {
2940 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2941 
2942 			*frag = skb_shinfo(skb)->frags[i];
2943 			if (eat) {
2944 				skb_frag_off_add(frag, eat);
2945 				skb_frag_size_sub(frag, eat);
2946 				if (!i)
2947 					goto end;
2948 				eat = 0;
2949 			}
2950 			k++;
2951 		}
2952 	}
2953 	skb_shinfo(skb)->nr_frags = k;
2954 
2955 end:
2956 	skb->tail     += delta;
2957 	skb->data_len -= delta;
2958 
2959 	if (!skb->data_len)
2960 		skb_zcopy_clear(skb, false);
2961 
2962 	return skb_tail_pointer(skb);
2963 }
2964 EXPORT_SYMBOL(__pskb_pull_tail);
2965 
2966 /**
2967  *	skb_copy_bits - copy bits from skb to kernel buffer
2968  *	@skb: source skb
2969  *	@offset: offset in source
2970  *	@to: destination buffer
2971  *	@len: number of bytes to copy
2972  *
2973  *	Copy the specified number of bytes from the source skb to the
2974  *	destination buffer.
2975  *
2976  *	CAUTION ! :
2977  *		If its prototype is ever changed,
2978  *		check arch/{*}/net/{*}.S files,
2979  *		since it is called from BPF assembly code.
2980  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2981 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2982 {
2983 	int start = skb_headlen(skb);
2984 	struct sk_buff *frag_iter;
2985 	int i, copy;
2986 
2987 	if (offset > (int)skb->len - len)
2988 		goto fault;
2989 
2990 	/* Copy header. */
2991 	if ((copy = start - offset) > 0) {
2992 		if (copy > len)
2993 			copy = len;
2994 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2995 		if ((len -= copy) == 0)
2996 			return 0;
2997 		offset += copy;
2998 		to     += copy;
2999 	}
3000 
3001 	if (!skb_frags_readable(skb))
3002 		goto fault;
3003 
3004 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3005 		int end;
3006 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
3007 
3008 		WARN_ON(start > offset + len);
3009 
3010 		end = start + skb_frag_size(f);
3011 		if ((copy = end - offset) > 0) {
3012 			u32 p_off, p_len, copied;
3013 			struct page *p;
3014 			u8 *vaddr;
3015 
3016 			if (copy > len)
3017 				copy = len;
3018 
3019 			skb_frag_foreach_page(f,
3020 					      skb_frag_off(f) + offset - start,
3021 					      copy, p, p_off, p_len, copied) {
3022 				vaddr = kmap_atomic(p);
3023 				memcpy(to + copied, vaddr + p_off, p_len);
3024 				kunmap_atomic(vaddr);
3025 			}
3026 
3027 			if ((len -= copy) == 0)
3028 				return 0;
3029 			offset += copy;
3030 			to     += copy;
3031 		}
3032 		start = end;
3033 	}
3034 
3035 	skb_walk_frags(skb, frag_iter) {
3036 		int end;
3037 
3038 		WARN_ON(start > offset + len);
3039 
3040 		end = start + frag_iter->len;
3041 		if ((copy = end - offset) > 0) {
3042 			if (copy > len)
3043 				copy = len;
3044 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
3045 				goto fault;
3046 			if ((len -= copy) == 0)
3047 				return 0;
3048 			offset += copy;
3049 			to     += copy;
3050 		}
3051 		start = end;
3052 	}
3053 
3054 	if (!len)
3055 		return 0;
3056 
3057 fault:
3058 	return -EFAULT;
3059 }
3060 EXPORT_SYMBOL(skb_copy_bits);
3061 
3062 /*
3063  * Callback from splice_to_pipe(), if we need to release some pages
3064  * at the end of the spd in case we error'ed out in filling the pipe.
3065  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)3066 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3067 {
3068 	put_page(spd->pages[i]);
3069 }
3070 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)3071 static struct page *linear_to_page(struct page *page, unsigned int *len,
3072 				   unsigned int *offset,
3073 				   struct sock *sk)
3074 {
3075 	struct page_frag *pfrag = sk_page_frag(sk);
3076 
3077 	if (!sk_page_frag_refill(sk, pfrag))
3078 		return NULL;
3079 
3080 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3081 
3082 	memcpy(page_address(pfrag->page) + pfrag->offset,
3083 	       page_address(page) + *offset, *len);
3084 	*offset = pfrag->offset;
3085 	pfrag->offset += *len;
3086 
3087 	return pfrag->page;
3088 }
3089 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)3090 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3091 			     struct page *page,
3092 			     unsigned int offset)
3093 {
3094 	return	spd->nr_pages &&
3095 		spd->pages[spd->nr_pages - 1] == page &&
3096 		(spd->partial[spd->nr_pages - 1].offset +
3097 		 spd->partial[spd->nr_pages - 1].len == offset);
3098 }
3099 
3100 /*
3101  * Fill page/offset/length into spd, if it can hold more pages.
3102  */
spd_fill_page(struct splice_pipe_desc * spd,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)3103 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
3104 			  unsigned int *len, unsigned int offset, bool linear,
3105 			  struct sock *sk)
3106 {
3107 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3108 		return true;
3109 
3110 	if (linear) {
3111 		page = linear_to_page(page, len, &offset, sk);
3112 		if (!page)
3113 			return true;
3114 	}
3115 	if (spd_can_coalesce(spd, page, offset)) {
3116 		spd->partial[spd->nr_pages - 1].len += *len;
3117 		return false;
3118 	}
3119 	get_page(page);
3120 	spd->pages[spd->nr_pages] = page;
3121 	spd->partial[spd->nr_pages].len = *len;
3122 	spd->partial[spd->nr_pages].offset = offset;
3123 	spd->nr_pages++;
3124 
3125 	return false;
3126 }
3127 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk)3128 static bool __splice_segment(struct page *page, unsigned int poff,
3129 			     unsigned int plen, unsigned int *off,
3130 			     unsigned int *len,
3131 			     struct splice_pipe_desc *spd, bool linear,
3132 			     struct sock *sk)
3133 {
3134 	if (!*len)
3135 		return true;
3136 
3137 	/* skip this segment if already processed */
3138 	if (*off >= plen) {
3139 		*off -= plen;
3140 		return false;
3141 	}
3142 
3143 	/* ignore any bits we already processed */
3144 	poff += *off;
3145 	plen -= *off;
3146 	*off = 0;
3147 
3148 	do {
3149 		unsigned int flen = min(*len, plen);
3150 
3151 		if (spd_fill_page(spd, page, &flen, poff, linear, sk))
3152 			return true;
3153 		poff += flen;
3154 		plen -= flen;
3155 		*len -= flen;
3156 		if (!*len)
3157 			return true;
3158 	} while (plen);
3159 
3160 	return false;
3161 }
3162 
3163 /*
3164  * Map linear and fragment data from the skb to spd. It reports true if the
3165  * pipe is full or if we already spliced the requested length.
3166  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)3167 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3168 			      unsigned int *offset, unsigned int *len,
3169 			      struct splice_pipe_desc *spd, struct sock *sk)
3170 {
3171 	struct sk_buff *iter;
3172 	int seg;
3173 
3174 	/* map the linear part :
3175 	 * If skb->head_frag is set, this 'linear' part is backed by a
3176 	 * fragment, and if the head is not shared with any clones then
3177 	 * we can avoid a copy since we own the head portion of this page.
3178 	 */
3179 	if (__splice_segment(virt_to_page(skb->data),
3180 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
3181 			     skb_headlen(skb),
3182 			     offset, len, spd,
3183 			     skb_head_is_locked(skb),
3184 			     sk))
3185 		return true;
3186 
3187 	/*
3188 	 * then map the fragments
3189 	 */
3190 	if (!skb_frags_readable(skb))
3191 		return false;
3192 
3193 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3194 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3195 
3196 		if (WARN_ON_ONCE(!skb_frag_page(f)))
3197 			return false;
3198 
3199 		if (__splice_segment(skb_frag_page(f),
3200 				     skb_frag_off(f), skb_frag_size(f),
3201 				     offset, len, spd, false, sk))
3202 			return true;
3203 	}
3204 
3205 	skb_walk_frags(skb, iter) {
3206 		if (*offset >= iter->len) {
3207 			*offset -= iter->len;
3208 			continue;
3209 		}
3210 		/* __skb_splice_bits() only fails if the output has no room
3211 		 * left, so no point in going over the frag_list for the error
3212 		 * case.
3213 		 */
3214 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3215 			return true;
3216 	}
3217 
3218 	return false;
3219 }
3220 
3221 /*
3222  * Map data from the skb to a pipe. Should handle both the linear part,
3223  * the fragments, and the frag list.
3224  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)3225 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3226 		    struct pipe_inode_info *pipe, unsigned int tlen,
3227 		    unsigned int flags)
3228 {
3229 	struct partial_page partial[MAX_SKB_FRAGS];
3230 	struct page *pages[MAX_SKB_FRAGS];
3231 	struct splice_pipe_desc spd = {
3232 		.pages = pages,
3233 		.partial = partial,
3234 		.nr_pages_max = MAX_SKB_FRAGS,
3235 		.ops = &nosteal_pipe_buf_ops,
3236 		.spd_release = sock_spd_release,
3237 	};
3238 	int ret = 0;
3239 
3240 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3241 
3242 	if (spd.nr_pages)
3243 		ret = splice_to_pipe(pipe, &spd);
3244 
3245 	return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(skb_splice_bits);
3248 
sendmsg_locked(struct sock * sk,struct msghdr * msg)3249 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3250 {
3251 	struct socket *sock = sk->sk_socket;
3252 	size_t size = msg_data_left(msg);
3253 
3254 	if (!sock)
3255 		return -EINVAL;
3256 
3257 	if (!sock->ops->sendmsg_locked)
3258 		return sock_no_sendmsg_locked(sk, msg, size);
3259 
3260 	return sock->ops->sendmsg_locked(sk, msg, size);
3261 }
3262 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg)3263 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3264 {
3265 	struct socket *sock = sk->sk_socket;
3266 
3267 	if (!sock)
3268 		return -EINVAL;
3269 	return sock_sendmsg(sock, msg);
3270 }
3271 
3272 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,int flags)3273 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3274 			   int len, sendmsg_func sendmsg, int flags)
3275 {
3276 	int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0;
3277 	unsigned int orig_len = len;
3278 	struct sk_buff *head = skb;
3279 	unsigned short fragidx;
3280 	int slen, ret;
3281 
3282 do_frag_list:
3283 
3284 	/* Deal with head data */
3285 	while (offset < skb_headlen(skb) && len) {
3286 		struct kvec kv;
3287 		struct msghdr msg;
3288 
3289 		slen = min_t(int, len, skb_headlen(skb) - offset);
3290 		kv.iov_base = skb->data + offset;
3291 		kv.iov_len = slen;
3292 		memset(&msg, 0, sizeof(msg));
3293 		msg.msg_flags = MSG_DONTWAIT | flags;
3294 		if (slen < len)
3295 			msg.msg_flags |= more_hint;
3296 
3297 		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3298 		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3299 				      sendmsg_unlocked, sk, &msg);
3300 		if (ret <= 0)
3301 			goto error;
3302 
3303 		offset += ret;
3304 		len -= ret;
3305 	}
3306 
3307 	/* All the data was skb head? */
3308 	if (!len)
3309 		goto out;
3310 
3311 	/* Make offset relative to start of frags */
3312 	offset -= skb_headlen(skb);
3313 
3314 	/* Find where we are in frag list */
3315 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3316 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3317 
3318 		if (offset < skb_frag_size(frag))
3319 			break;
3320 
3321 		offset -= skb_frag_size(frag);
3322 	}
3323 
3324 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3325 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3326 
3327 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3328 
3329 		while (slen) {
3330 			struct bio_vec bvec;
3331 			struct msghdr msg = {
3332 				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT |
3333 					     flags,
3334 			};
3335 
3336 			if (slen < len)
3337 				msg.msg_flags |= more_hint;
3338 			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3339 				      skb_frag_off(frag) + offset);
3340 			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3341 				      slen);
3342 
3343 			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3344 					      sendmsg_unlocked, sk, &msg);
3345 			if (ret <= 0)
3346 				goto error;
3347 
3348 			len -= ret;
3349 			offset += ret;
3350 			slen -= ret;
3351 		}
3352 
3353 		offset = 0;
3354 	}
3355 
3356 	if (len) {
3357 		/* Process any frag lists */
3358 
3359 		if (skb == head) {
3360 			if (skb_has_frag_list(skb)) {
3361 				skb = skb_shinfo(skb)->frag_list;
3362 				goto do_frag_list;
3363 			}
3364 		} else if (skb->next) {
3365 			skb = skb->next;
3366 			goto do_frag_list;
3367 		}
3368 	}
3369 
3370 out:
3371 	return orig_len - len;
3372 
3373 error:
3374 	return orig_len == len ? ret : orig_len - len;
3375 }
3376 
3377 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)3378 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3379 			 int len)
3380 {
3381 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0);
3382 }
3383 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3384 
skb_send_sock_locked_with_flags(struct sock * sk,struct sk_buff * skb,int offset,int len,int flags)3385 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
3386 				    int offset, int len, int flags)
3387 {
3388 	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags);
3389 }
3390 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags);
3391 
3392 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)3393 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3394 {
3395 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0);
3396 }
3397 
3398 /**
3399  *	skb_store_bits - store bits from kernel buffer to skb
3400  *	@skb: destination buffer
3401  *	@offset: offset in destination
3402  *	@from: source buffer
3403  *	@len: number of bytes to copy
3404  *
3405  *	Copy the specified number of bytes from the source buffer to the
3406  *	destination skb.  This function handles all the messy bits of
3407  *	traversing fragment lists and such.
3408  */
3409 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)3410 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3411 {
3412 	int start = skb_headlen(skb);
3413 	struct sk_buff *frag_iter;
3414 	int i, copy;
3415 
3416 	if (offset > (int)skb->len - len)
3417 		goto fault;
3418 
3419 	if ((copy = start - offset) > 0) {
3420 		if (copy > len)
3421 			copy = len;
3422 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3423 		if ((len -= copy) == 0)
3424 			return 0;
3425 		offset += copy;
3426 		from += copy;
3427 	}
3428 
3429 	if (!skb_frags_readable(skb))
3430 		goto fault;
3431 
3432 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3434 		int end;
3435 
3436 		WARN_ON(start > offset + len);
3437 
3438 		end = start + skb_frag_size(frag);
3439 		if ((copy = end - offset) > 0) {
3440 			u32 p_off, p_len, copied;
3441 			struct page *p;
3442 			u8 *vaddr;
3443 
3444 			if (copy > len)
3445 				copy = len;
3446 
3447 			skb_frag_foreach_page(frag,
3448 					      skb_frag_off(frag) + offset - start,
3449 					      copy, p, p_off, p_len, copied) {
3450 				vaddr = kmap_atomic(p);
3451 				memcpy(vaddr + p_off, from + copied, p_len);
3452 				kunmap_atomic(vaddr);
3453 			}
3454 
3455 			if ((len -= copy) == 0)
3456 				return 0;
3457 			offset += copy;
3458 			from += copy;
3459 		}
3460 		start = end;
3461 	}
3462 
3463 	skb_walk_frags(skb, frag_iter) {
3464 		int end;
3465 
3466 		WARN_ON(start > offset + len);
3467 
3468 		end = start + frag_iter->len;
3469 		if ((copy = end - offset) > 0) {
3470 			if (copy > len)
3471 				copy = len;
3472 			if (skb_store_bits(frag_iter, offset - start,
3473 					   from, copy))
3474 				goto fault;
3475 			if ((len -= copy) == 0)
3476 				return 0;
3477 			offset += copy;
3478 			from += copy;
3479 		}
3480 		start = end;
3481 	}
3482 	if (!len)
3483 		return 0;
3484 
3485 fault:
3486 	return -EFAULT;
3487 }
3488 EXPORT_SYMBOL(skb_store_bits);
3489 
3490 /* Checksum skb data. */
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3491 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum)
3492 {
3493 	int start = skb_headlen(skb);
3494 	int i, copy = start - offset;
3495 	struct sk_buff *frag_iter;
3496 	int pos = 0;
3497 
3498 	/* Checksum header. */
3499 	if (copy > 0) {
3500 		if (copy > len)
3501 			copy = len;
3502 		csum = csum_partial(skb->data + offset, copy, csum);
3503 		if ((len -= copy) == 0)
3504 			return csum;
3505 		offset += copy;
3506 		pos	= copy;
3507 	}
3508 
3509 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3510 		return 0;
3511 
3512 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513 		int end;
3514 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3515 
3516 		WARN_ON(start > offset + len);
3517 
3518 		end = start + skb_frag_size(frag);
3519 		if ((copy = end - offset) > 0) {
3520 			u32 p_off, p_len, copied;
3521 			struct page *p;
3522 			__wsum csum2;
3523 			u8 *vaddr;
3524 
3525 			if (copy > len)
3526 				copy = len;
3527 
3528 			skb_frag_foreach_page(frag,
3529 					      skb_frag_off(frag) + offset - start,
3530 					      copy, p, p_off, p_len, copied) {
3531 				vaddr = kmap_atomic(p);
3532 				csum2 = csum_partial(vaddr + p_off, p_len, 0);
3533 				kunmap_atomic(vaddr);
3534 				csum = csum_block_add(csum, csum2, pos);
3535 				pos += p_len;
3536 			}
3537 
3538 			if (!(len -= copy))
3539 				return csum;
3540 			offset += copy;
3541 		}
3542 		start = end;
3543 	}
3544 
3545 	skb_walk_frags(skb, frag_iter) {
3546 		int end;
3547 
3548 		WARN_ON(start > offset + len);
3549 
3550 		end = start + frag_iter->len;
3551 		if ((copy = end - offset) > 0) {
3552 			__wsum csum2;
3553 			if (copy > len)
3554 				copy = len;
3555 			csum2 = skb_checksum(frag_iter, offset - start, copy,
3556 					     0);
3557 			csum = csum_block_add(csum, csum2, pos);
3558 			if ((len -= copy) == 0)
3559 				return csum;
3560 			offset += copy;
3561 			pos    += copy;
3562 		}
3563 		start = end;
3564 	}
3565 	BUG_ON(len);
3566 
3567 	return csum;
3568 }
3569 EXPORT_SYMBOL(skb_checksum);
3570 
3571 /* Both of above in one bottle. */
3572 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3573 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3574 				    u8 *to, int len)
3575 {
3576 	int start = skb_headlen(skb);
3577 	int i, copy = start - offset;
3578 	struct sk_buff *frag_iter;
3579 	int pos = 0;
3580 	__wsum csum = 0;
3581 
3582 	/* Copy header. */
3583 	if (copy > 0) {
3584 		if (copy > len)
3585 			copy = len;
3586 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3587 						 copy);
3588 		if ((len -= copy) == 0)
3589 			return csum;
3590 		offset += copy;
3591 		to     += copy;
3592 		pos	= copy;
3593 	}
3594 
3595 	if (!skb_frags_readable(skb))
3596 		return 0;
3597 
3598 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3599 		int end;
3600 
3601 		WARN_ON(start > offset + len);
3602 
3603 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3604 		if ((copy = end - offset) > 0) {
3605 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3606 			u32 p_off, p_len, copied;
3607 			struct page *p;
3608 			__wsum csum2;
3609 			u8 *vaddr;
3610 
3611 			if (copy > len)
3612 				copy = len;
3613 
3614 			skb_frag_foreach_page(frag,
3615 					      skb_frag_off(frag) + offset - start,
3616 					      copy, p, p_off, p_len, copied) {
3617 				vaddr = kmap_atomic(p);
3618 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3619 								  to + copied,
3620 								  p_len);
3621 				kunmap_atomic(vaddr);
3622 				csum = csum_block_add(csum, csum2, pos);
3623 				pos += p_len;
3624 			}
3625 
3626 			if (!(len -= copy))
3627 				return csum;
3628 			offset += copy;
3629 			to     += copy;
3630 		}
3631 		start = end;
3632 	}
3633 
3634 	skb_walk_frags(skb, frag_iter) {
3635 		__wsum csum2;
3636 		int end;
3637 
3638 		WARN_ON(start > offset + len);
3639 
3640 		end = start + frag_iter->len;
3641 		if ((copy = end - offset) > 0) {
3642 			if (copy > len)
3643 				copy = len;
3644 			csum2 = skb_copy_and_csum_bits(frag_iter,
3645 						       offset - start,
3646 						       to, copy);
3647 			csum = csum_block_add(csum, csum2, pos);
3648 			if ((len -= copy) == 0)
3649 				return csum;
3650 			offset += copy;
3651 			to     += copy;
3652 			pos    += copy;
3653 		}
3654 		start = end;
3655 	}
3656 	BUG_ON(len);
3657 	return csum;
3658 }
3659 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3660 
3661 #ifdef CONFIG_NET_CRC32C
skb_crc32c(const struct sk_buff * skb,int offset,int len,u32 crc)3662 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc)
3663 {
3664 	int start = skb_headlen(skb);
3665 	int i, copy = start - offset;
3666 	struct sk_buff *frag_iter;
3667 
3668 	if (copy > 0) {
3669 		copy = min(copy, len);
3670 		crc = crc32c(crc, skb->data + offset, copy);
3671 		len -= copy;
3672 		if (len == 0)
3673 			return crc;
3674 		offset += copy;
3675 	}
3676 
3677 	if (WARN_ON_ONCE(!skb_frags_readable(skb)))
3678 		return 0;
3679 
3680 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3681 		int end;
3682 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3683 
3684 		WARN_ON(start > offset + len);
3685 
3686 		end = start + skb_frag_size(frag);
3687 		copy = end - offset;
3688 		if (copy > 0) {
3689 			u32 p_off, p_len, copied;
3690 			struct page *p;
3691 			u8 *vaddr;
3692 
3693 			copy = min(copy, len);
3694 			skb_frag_foreach_page(frag,
3695 					      skb_frag_off(frag) + offset - start,
3696 					      copy, p, p_off, p_len, copied) {
3697 				vaddr = kmap_atomic(p);
3698 				crc = crc32c(crc, vaddr + p_off, p_len);
3699 				kunmap_atomic(vaddr);
3700 			}
3701 			len -= copy;
3702 			if (len == 0)
3703 				return crc;
3704 			offset += copy;
3705 		}
3706 		start = end;
3707 	}
3708 
3709 	skb_walk_frags(skb, frag_iter) {
3710 		int end;
3711 
3712 		WARN_ON(start > offset + len);
3713 
3714 		end = start + frag_iter->len;
3715 		copy = end - offset;
3716 		if (copy > 0) {
3717 			copy = min(copy, len);
3718 			crc = skb_crc32c(frag_iter, offset - start, copy, crc);
3719 			len -= copy;
3720 			if (len == 0)
3721 				return crc;
3722 			offset += copy;
3723 		}
3724 		start = end;
3725 	}
3726 	BUG_ON(len);
3727 
3728 	return crc;
3729 }
3730 EXPORT_SYMBOL(skb_crc32c);
3731 #endif /* CONFIG_NET_CRC32C */
3732 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3733 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3734 {
3735 	__sum16 sum;
3736 
3737 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3738 	/* See comments in __skb_checksum_complete(). */
3739 	if (likely(!sum)) {
3740 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3741 		    !skb->csum_complete_sw)
3742 			netdev_rx_csum_fault(skb->dev, skb);
3743 	}
3744 	if (!skb_shared(skb))
3745 		skb->csum_valid = !sum;
3746 	return sum;
3747 }
3748 EXPORT_SYMBOL(__skb_checksum_complete_head);
3749 
3750 /* This function assumes skb->csum already holds pseudo header's checksum,
3751  * which has been changed from the hardware checksum, for example, by
3752  * __skb_checksum_validate_complete(). And, the original skb->csum must
3753  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3754  *
3755  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3756  * zero. The new checksum is stored back into skb->csum unless the skb is
3757  * shared.
3758  */
__skb_checksum_complete(struct sk_buff * skb)3759 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3760 {
3761 	__wsum csum;
3762 	__sum16 sum;
3763 
3764 	csum = skb_checksum(skb, 0, skb->len, 0);
3765 
3766 	sum = csum_fold(csum_add(skb->csum, csum));
3767 	/* This check is inverted, because we already knew the hardware
3768 	 * checksum is invalid before calling this function. So, if the
3769 	 * re-computed checksum is valid instead, then we have a mismatch
3770 	 * between the original skb->csum and skb_checksum(). This means either
3771 	 * the original hardware checksum is incorrect or we screw up skb->csum
3772 	 * when moving skb->data around.
3773 	 */
3774 	if (likely(!sum)) {
3775 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3776 		    !skb->csum_complete_sw)
3777 			netdev_rx_csum_fault(skb->dev, skb);
3778 	}
3779 
3780 	if (!skb_shared(skb)) {
3781 		/* Save full packet checksum */
3782 		skb->csum = csum;
3783 		skb->ip_summed = CHECKSUM_COMPLETE;
3784 		skb->csum_complete_sw = 1;
3785 		skb->csum_valid = !sum;
3786 	}
3787 
3788 	return sum;
3789 }
3790 EXPORT_SYMBOL(__skb_checksum_complete);
3791 
3792  /**
3793  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3794  *	@from: source buffer
3795  *
3796  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3797  *	into skb_zerocopy().
3798  */
3799 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3800 skb_zerocopy_headlen(const struct sk_buff *from)
3801 {
3802 	unsigned int hlen = 0;
3803 
3804 	if (!from->head_frag ||
3805 	    skb_headlen(from) < L1_CACHE_BYTES ||
3806 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3807 		hlen = skb_headlen(from);
3808 		if (!hlen)
3809 			hlen = from->len;
3810 	}
3811 
3812 	if (skb_has_frag_list(from))
3813 		hlen = from->len;
3814 
3815 	return hlen;
3816 }
3817 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3818 
3819 /**
3820  *	skb_zerocopy - Zero copy skb to skb
3821  *	@to: destination buffer
3822  *	@from: source buffer
3823  *	@len: number of bytes to copy from source buffer
3824  *	@hlen: size of linear headroom in destination buffer
3825  *
3826  *	Copies up to `len` bytes from `from` to `to` by creating references
3827  *	to the frags in the source buffer.
3828  *
3829  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3830  *	headroom in the `to` buffer.
3831  *
3832  *	Return value:
3833  *	0: everything is OK
3834  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3835  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3836  */
3837 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3838 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3839 {
3840 	int i, j = 0;
3841 	int plen = 0; /* length of skb->head fragment */
3842 	int ret;
3843 	struct page *page;
3844 	unsigned int offset;
3845 
3846 	BUG_ON(!from->head_frag && !hlen);
3847 
3848 	/* dont bother with small payloads */
3849 	if (len <= skb_tailroom(to))
3850 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3851 
3852 	if (hlen) {
3853 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3854 		if (unlikely(ret))
3855 			return ret;
3856 		len -= hlen;
3857 	} else {
3858 		plen = min_t(int, skb_headlen(from), len);
3859 		if (plen) {
3860 			page = virt_to_head_page(from->head);
3861 			offset = from->data - (unsigned char *)page_address(page);
3862 			__skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3863 					       offset, plen);
3864 			get_page(page);
3865 			j = 1;
3866 			len -= plen;
3867 		}
3868 	}
3869 
3870 	skb_len_add(to, len + plen);
3871 
3872 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3873 		skb_tx_error(from);
3874 		return -ENOMEM;
3875 	}
3876 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3877 
3878 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3879 		int size;
3880 
3881 		if (!len)
3882 			break;
3883 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3884 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3885 					len);
3886 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3887 		len -= size;
3888 		skb_frag_ref(to, j);
3889 		j++;
3890 	}
3891 	skb_shinfo(to)->nr_frags = j;
3892 
3893 	return 0;
3894 }
3895 EXPORT_SYMBOL_GPL(skb_zerocopy);
3896 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3897 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3898 {
3899 	__wsum csum;
3900 	long csstart;
3901 
3902 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3903 		csstart = skb_checksum_start_offset(skb);
3904 	else
3905 		csstart = skb_headlen(skb);
3906 
3907 	BUG_ON(csstart > skb_headlen(skb));
3908 
3909 	skb_copy_from_linear_data(skb, to, csstart);
3910 
3911 	csum = 0;
3912 	if (csstart != skb->len)
3913 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3914 					      skb->len - csstart);
3915 
3916 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3917 		long csstuff = csstart + skb->csum_offset;
3918 
3919 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3920 	}
3921 }
3922 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3923 
3924 /**
3925  *	skb_dequeue - remove from the head of the queue
3926  *	@list: list to dequeue from
3927  *
3928  *	Remove the head of the list. The list lock is taken so the function
3929  *	may be used safely with other locking list functions. The head item is
3930  *	returned or %NULL if the list is empty.
3931  */
3932 
skb_dequeue(struct sk_buff_head * list)3933 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3934 {
3935 	unsigned long flags;
3936 	struct sk_buff *result;
3937 
3938 	spin_lock_irqsave(&list->lock, flags);
3939 	result = __skb_dequeue(list);
3940 	spin_unlock_irqrestore(&list->lock, flags);
3941 	return result;
3942 }
3943 EXPORT_SYMBOL(skb_dequeue);
3944 
3945 /**
3946  *	skb_dequeue_tail - remove from the tail of the queue
3947  *	@list: list to dequeue from
3948  *
3949  *	Remove the tail of the list. The list lock is taken so the function
3950  *	may be used safely with other locking list functions. The tail item is
3951  *	returned or %NULL if the list is empty.
3952  */
skb_dequeue_tail(struct sk_buff_head * list)3953 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3954 {
3955 	unsigned long flags;
3956 	struct sk_buff *result;
3957 
3958 	spin_lock_irqsave(&list->lock, flags);
3959 	result = __skb_dequeue_tail(list);
3960 	spin_unlock_irqrestore(&list->lock, flags);
3961 	return result;
3962 }
3963 EXPORT_SYMBOL(skb_dequeue_tail);
3964 
3965 /**
3966  *	skb_queue_purge_reason - empty a list
3967  *	@list: list to empty
3968  *	@reason: drop reason
3969  *
3970  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3971  *	the list and one reference dropped. This function takes the list
3972  *	lock and is atomic with respect to other list locking functions.
3973  */
skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3974 void skb_queue_purge_reason(struct sk_buff_head *list,
3975 			    enum skb_drop_reason reason)
3976 {
3977 	struct sk_buff_head tmp;
3978 	unsigned long flags;
3979 
3980 	if (skb_queue_empty_lockless(list))
3981 		return;
3982 
3983 	__skb_queue_head_init(&tmp);
3984 
3985 	spin_lock_irqsave(&list->lock, flags);
3986 	skb_queue_splice_init(list, &tmp);
3987 	spin_unlock_irqrestore(&list->lock, flags);
3988 
3989 	__skb_queue_purge_reason(&tmp, reason);
3990 }
3991 EXPORT_SYMBOL(skb_queue_purge_reason);
3992 
3993 /**
3994  *	skb_rbtree_purge - empty a skb rbtree
3995  *	@root: root of the rbtree to empty
3996  *	Return value: the sum of truesizes of all purged skbs.
3997  *
3998  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3999  *	the list and one reference dropped. This function does not take
4000  *	any lock. Synchronization should be handled by the caller (e.g., TCP
4001  *	out-of-order queue is protected by the socket lock).
4002  */
skb_rbtree_purge(struct rb_root * root)4003 unsigned int skb_rbtree_purge(struct rb_root *root)
4004 {
4005 	struct rb_node *p = rb_first(root);
4006 	unsigned int sum = 0;
4007 
4008 	while (p) {
4009 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
4010 
4011 		p = rb_next(p);
4012 		rb_erase(&skb->rbnode, root);
4013 		sum += skb->truesize;
4014 		kfree_skb(skb);
4015 	}
4016 	return sum;
4017 }
4018 
skb_errqueue_purge(struct sk_buff_head * list)4019 void skb_errqueue_purge(struct sk_buff_head *list)
4020 {
4021 	struct sk_buff *skb, *next;
4022 	struct sk_buff_head kill;
4023 	unsigned long flags;
4024 
4025 	__skb_queue_head_init(&kill);
4026 
4027 	spin_lock_irqsave(&list->lock, flags);
4028 	skb_queue_walk_safe(list, skb, next) {
4029 		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
4030 		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
4031 			continue;
4032 		__skb_unlink(skb, list);
4033 		__skb_queue_tail(&kill, skb);
4034 	}
4035 	spin_unlock_irqrestore(&list->lock, flags);
4036 	__skb_queue_purge(&kill);
4037 }
4038 EXPORT_SYMBOL(skb_errqueue_purge);
4039 
4040 /**
4041  *	skb_queue_head - queue a buffer at the list head
4042  *	@list: list to use
4043  *	@newsk: buffer to queue
4044  *
4045  *	Queue a buffer at the start of the list. This function takes the
4046  *	list lock and can be used safely with other locking &sk_buff functions
4047  *	safely.
4048  *
4049  *	A buffer cannot be placed on two lists at the same time.
4050  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)4051 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
4052 {
4053 	unsigned long flags;
4054 
4055 	spin_lock_irqsave(&list->lock, flags);
4056 	__skb_queue_head(list, newsk);
4057 	spin_unlock_irqrestore(&list->lock, flags);
4058 }
4059 EXPORT_SYMBOL(skb_queue_head);
4060 
4061 /**
4062  *	skb_queue_tail - queue a buffer at the list tail
4063  *	@list: list to use
4064  *	@newsk: buffer to queue
4065  *
4066  *	Queue a buffer at the tail of the list. This function takes the
4067  *	list lock and can be used safely with other locking &sk_buff functions
4068  *	safely.
4069  *
4070  *	A buffer cannot be placed on two lists at the same time.
4071  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)4072 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
4073 {
4074 	unsigned long flags;
4075 
4076 	spin_lock_irqsave(&list->lock, flags);
4077 	__skb_queue_tail(list, newsk);
4078 	spin_unlock_irqrestore(&list->lock, flags);
4079 }
4080 EXPORT_SYMBOL(skb_queue_tail);
4081 
4082 /**
4083  *	skb_unlink	-	remove a buffer from a list
4084  *	@skb: buffer to remove
4085  *	@list: list to use
4086  *
4087  *	Remove a packet from a list. The list locks are taken and this
4088  *	function is atomic with respect to other list locked calls
4089  *
4090  *	You must know what list the SKB is on.
4091  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)4092 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4093 {
4094 	unsigned long flags;
4095 
4096 	spin_lock_irqsave(&list->lock, flags);
4097 	__skb_unlink(skb, list);
4098 	spin_unlock_irqrestore(&list->lock, flags);
4099 }
4100 EXPORT_SYMBOL(skb_unlink);
4101 
4102 /**
4103  *	skb_append	-	append a buffer
4104  *	@old: buffer to insert after
4105  *	@newsk: buffer to insert
4106  *	@list: list to use
4107  *
4108  *	Place a packet after a given packet in a list. The list locks are taken
4109  *	and this function is atomic with respect to other list locked calls.
4110  *	A buffer cannot be placed on two lists at the same time.
4111  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)4112 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4113 {
4114 	unsigned long flags;
4115 
4116 	spin_lock_irqsave(&list->lock, flags);
4117 	__skb_queue_after(list, old, newsk);
4118 	spin_unlock_irqrestore(&list->lock, flags);
4119 }
4120 EXPORT_SYMBOL(skb_append);
4121 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)4122 static inline void skb_split_inside_header(struct sk_buff *skb,
4123 					   struct sk_buff* skb1,
4124 					   const u32 len, const int pos)
4125 {
4126 	int i;
4127 
4128 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4129 					 pos - len);
4130 	/* And move data appendix as is. */
4131 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4132 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4133 
4134 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4135 	skb1->unreadable	   = skb->unreadable;
4136 	skb_shinfo(skb)->nr_frags  = 0;
4137 	skb1->data_len		   = skb->data_len;
4138 	skb1->len		   += skb1->data_len;
4139 	skb->data_len		   = 0;
4140 	skb->len		   = len;
4141 	skb_set_tail_pointer(skb, len);
4142 }
4143 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)4144 static inline void skb_split_no_header(struct sk_buff *skb,
4145 				       struct sk_buff* skb1,
4146 				       const u32 len, int pos)
4147 {
4148 	int i, k = 0;
4149 	const int nfrags = skb_shinfo(skb)->nr_frags;
4150 
4151 	skb_shinfo(skb)->nr_frags = 0;
4152 	skb1->len		  = skb1->data_len = skb->len - len;
4153 	skb->len		  = len;
4154 	skb->data_len		  = len - pos;
4155 
4156 	for (i = 0; i < nfrags; i++) {
4157 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4158 
4159 		if (pos + size > len) {
4160 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4161 
4162 			if (pos < len) {
4163 				/* Split frag.
4164 				 * We have two variants in this case:
4165 				 * 1. Move all the frag to the second
4166 				 *    part, if it is possible. F.e.
4167 				 *    this approach is mandatory for TUX,
4168 				 *    where splitting is expensive.
4169 				 * 2. Split is accurately. We make this.
4170 				 */
4171 				skb_frag_ref(skb, i);
4172 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4173 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4174 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4175 				skb_shinfo(skb)->nr_frags++;
4176 			}
4177 			k++;
4178 		} else
4179 			skb_shinfo(skb)->nr_frags++;
4180 		pos += size;
4181 	}
4182 	skb_shinfo(skb1)->nr_frags = k;
4183 
4184 	skb1->unreadable = skb->unreadable;
4185 }
4186 
4187 /**
4188  * skb_split - Split fragmented skb to two parts at length len.
4189  * @skb: the buffer to split
4190  * @skb1: the buffer to receive the second part
4191  * @len: new length for skb
4192  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)4193 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4194 {
4195 	int pos = skb_headlen(skb);
4196 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4197 
4198 	skb_zcopy_downgrade_managed(skb);
4199 
4200 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4201 	skb_zerocopy_clone(skb1, skb, 0);
4202 	if (len < pos)	/* Split line is inside header. */
4203 		skb_split_inside_header(skb, skb1, len, pos);
4204 	else		/* Second chunk has no header, nothing to copy. */
4205 		skb_split_no_header(skb, skb1, len, pos);
4206 }
4207 EXPORT_SYMBOL(skb_split);
4208 
4209 /* Shifting from/to a cloned skb is a no-go.
4210  *
4211  * Caller cannot keep skb_shinfo related pointers past calling here!
4212  */
skb_prepare_for_shift(struct sk_buff * skb)4213 static int skb_prepare_for_shift(struct sk_buff *skb)
4214 {
4215 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4216 }
4217 
4218 /**
4219  * skb_shift - Shifts paged data partially from skb to another
4220  * @tgt: buffer into which tail data gets added
4221  * @skb: buffer from which the paged data comes from
4222  * @shiftlen: shift up to this many bytes
4223  *
4224  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4225  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4226  * It's up to caller to free skb if everything was shifted.
4227  *
4228  * If @tgt runs out of frags, the whole operation is aborted.
4229  *
4230  * Skb cannot include anything else but paged data while tgt is allowed
4231  * to have non-paged data as well.
4232  *
4233  * TODO: full sized shift could be optimized but that would need
4234  * specialized skb free'er to handle frags without up-to-date nr_frags.
4235  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)4236 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4237 {
4238 	int from, to, merge, todo;
4239 	skb_frag_t *fragfrom, *fragto;
4240 
4241 	BUG_ON(shiftlen > skb->len);
4242 
4243 	if (skb_headlen(skb))
4244 		return 0;
4245 	if (skb_zcopy(tgt) || skb_zcopy(skb))
4246 		return 0;
4247 
4248 	DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4249 	DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4250 
4251 	todo = shiftlen;
4252 	from = 0;
4253 	to = skb_shinfo(tgt)->nr_frags;
4254 	fragfrom = &skb_shinfo(skb)->frags[from];
4255 
4256 	/* Actual merge is delayed until the point when we know we can
4257 	 * commit all, so that we don't have to undo partial changes
4258 	 */
4259 	if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4260 			      skb_frag_off(fragfrom))) {
4261 		merge = -1;
4262 	} else {
4263 		merge = to - 1;
4264 
4265 		todo -= skb_frag_size(fragfrom);
4266 		if (todo < 0) {
4267 			if (skb_prepare_for_shift(skb) ||
4268 			    skb_prepare_for_shift(tgt))
4269 				return 0;
4270 
4271 			/* All previous frag pointers might be stale! */
4272 			fragfrom = &skb_shinfo(skb)->frags[from];
4273 			fragto = &skb_shinfo(tgt)->frags[merge];
4274 
4275 			skb_frag_size_add(fragto, shiftlen);
4276 			skb_frag_size_sub(fragfrom, shiftlen);
4277 			skb_frag_off_add(fragfrom, shiftlen);
4278 
4279 			goto onlymerged;
4280 		}
4281 
4282 		from++;
4283 	}
4284 
4285 	/* Skip full, not-fitting skb to avoid expensive operations */
4286 	if ((shiftlen == skb->len) &&
4287 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4288 		return 0;
4289 
4290 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4291 		return 0;
4292 
4293 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4294 		if (to == MAX_SKB_FRAGS)
4295 			return 0;
4296 
4297 		fragfrom = &skb_shinfo(skb)->frags[from];
4298 		fragto = &skb_shinfo(tgt)->frags[to];
4299 
4300 		if (todo >= skb_frag_size(fragfrom)) {
4301 			*fragto = *fragfrom;
4302 			todo -= skb_frag_size(fragfrom);
4303 			from++;
4304 			to++;
4305 
4306 		} else {
4307 			__skb_frag_ref(fragfrom);
4308 			skb_frag_page_copy(fragto, fragfrom);
4309 			skb_frag_off_copy(fragto, fragfrom);
4310 			skb_frag_size_set(fragto, todo);
4311 
4312 			skb_frag_off_add(fragfrom, todo);
4313 			skb_frag_size_sub(fragfrom, todo);
4314 			todo = 0;
4315 
4316 			to++;
4317 			break;
4318 		}
4319 	}
4320 
4321 	/* Ready to "commit" this state change to tgt */
4322 	skb_shinfo(tgt)->nr_frags = to;
4323 
4324 	if (merge >= 0) {
4325 		fragfrom = &skb_shinfo(skb)->frags[0];
4326 		fragto = &skb_shinfo(tgt)->frags[merge];
4327 
4328 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4329 		__skb_frag_unref(fragfrom, skb->pp_recycle);
4330 	}
4331 
4332 	/* Reposition in the original skb */
4333 	to = 0;
4334 	while (from < skb_shinfo(skb)->nr_frags)
4335 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4336 	skb_shinfo(skb)->nr_frags = to;
4337 
4338 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4339 
4340 onlymerged:
4341 	/* Most likely the tgt won't ever need its checksum anymore, skb on
4342 	 * the other hand might need it if it needs to be resent
4343 	 */
4344 	tgt->ip_summed = CHECKSUM_PARTIAL;
4345 	skb->ip_summed = CHECKSUM_PARTIAL;
4346 
4347 	skb_len_add(skb, -shiftlen);
4348 	skb_len_add(tgt, shiftlen);
4349 
4350 	return shiftlen;
4351 }
4352 
4353 /**
4354  * skb_prepare_seq_read - Prepare a sequential read of skb data
4355  * @skb: the buffer to read
4356  * @from: lower offset of data to be read
4357  * @to: upper offset of data to be read
4358  * @st: state variable
4359  *
4360  * Initializes the specified state variable. Must be called before
4361  * invoking skb_seq_read() for the first time.
4362  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)4363 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4364 			  unsigned int to, struct skb_seq_state *st)
4365 {
4366 	st->lower_offset = from;
4367 	st->upper_offset = to;
4368 	st->root_skb = st->cur_skb = skb;
4369 	st->frag_idx = st->stepped_offset = 0;
4370 	st->frag_data = NULL;
4371 	st->frag_off = 0;
4372 }
4373 EXPORT_SYMBOL(skb_prepare_seq_read);
4374 
4375 /**
4376  * skb_seq_read - Sequentially read skb data
4377  * @consumed: number of bytes consumed by the caller so far
4378  * @data: destination pointer for data to be returned
4379  * @st: state variable
4380  *
4381  * Reads a block of skb data at @consumed relative to the
4382  * lower offset specified to skb_prepare_seq_read(). Assigns
4383  * the head of the data block to @data and returns the length
4384  * of the block or 0 if the end of the skb data or the upper
4385  * offset has been reached.
4386  *
4387  * The caller is not required to consume all of the data
4388  * returned, i.e. @consumed is typically set to the number
4389  * of bytes already consumed and the next call to
4390  * skb_seq_read() will return the remaining part of the block.
4391  *
4392  * Note 1: The size of each block of data returned can be arbitrary,
4393  *       this limitation is the cost for zerocopy sequential
4394  *       reads of potentially non linear data.
4395  *
4396  * Note 2: Fragment lists within fragments are not implemented
4397  *       at the moment, state->root_skb could be replaced with
4398  *       a stack for this purpose.
4399  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)4400 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4401 			  struct skb_seq_state *st)
4402 {
4403 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4404 	skb_frag_t *frag;
4405 
4406 	if (unlikely(abs_offset >= st->upper_offset)) {
4407 		if (st->frag_data) {
4408 			kunmap_atomic(st->frag_data);
4409 			st->frag_data = NULL;
4410 		}
4411 		return 0;
4412 	}
4413 
4414 next_skb:
4415 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4416 
4417 	if (abs_offset < block_limit && !st->frag_data) {
4418 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4419 		return block_limit - abs_offset;
4420 	}
4421 
4422 	if (!skb_frags_readable(st->cur_skb))
4423 		return 0;
4424 
4425 	if (st->frag_idx == 0 && !st->frag_data)
4426 		st->stepped_offset += skb_headlen(st->cur_skb);
4427 
4428 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4429 		unsigned int pg_idx, pg_off, pg_sz;
4430 
4431 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4432 
4433 		pg_idx = 0;
4434 		pg_off = skb_frag_off(frag);
4435 		pg_sz = skb_frag_size(frag);
4436 
4437 		if (skb_frag_must_loop(skb_frag_page(frag))) {
4438 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4439 			pg_off = offset_in_page(pg_off + st->frag_off);
4440 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4441 						    PAGE_SIZE - pg_off);
4442 		}
4443 
4444 		block_limit = pg_sz + st->stepped_offset;
4445 		if (abs_offset < block_limit) {
4446 			if (!st->frag_data)
4447 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4448 
4449 			*data = (u8 *)st->frag_data + pg_off +
4450 				(abs_offset - st->stepped_offset);
4451 
4452 			return block_limit - abs_offset;
4453 		}
4454 
4455 		if (st->frag_data) {
4456 			kunmap_atomic(st->frag_data);
4457 			st->frag_data = NULL;
4458 		}
4459 
4460 		st->stepped_offset += pg_sz;
4461 		st->frag_off += pg_sz;
4462 		if (st->frag_off == skb_frag_size(frag)) {
4463 			st->frag_off = 0;
4464 			st->frag_idx++;
4465 		}
4466 	}
4467 
4468 	if (st->frag_data) {
4469 		kunmap_atomic(st->frag_data);
4470 		st->frag_data = NULL;
4471 	}
4472 
4473 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4474 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4475 		st->frag_idx = 0;
4476 		goto next_skb;
4477 	} else if (st->cur_skb->next) {
4478 		st->cur_skb = st->cur_skb->next;
4479 		st->frag_idx = 0;
4480 		goto next_skb;
4481 	}
4482 
4483 	return 0;
4484 }
4485 EXPORT_SYMBOL(skb_seq_read);
4486 
4487 /**
4488  * skb_abort_seq_read - Abort a sequential read of skb data
4489  * @st: state variable
4490  *
4491  * Must be called if skb_seq_read() was not called until it
4492  * returned 0.
4493  */
skb_abort_seq_read(struct skb_seq_state * st)4494 void skb_abort_seq_read(struct skb_seq_state *st)
4495 {
4496 	if (st->frag_data)
4497 		kunmap_atomic(st->frag_data);
4498 }
4499 EXPORT_SYMBOL(skb_abort_seq_read);
4500 
4501 /**
4502  * skb_copy_seq_read() - copy from a skb_seq_state to a buffer
4503  * @st: source skb_seq_state
4504  * @offset: offset in source
4505  * @to: destination buffer
4506  * @len: number of bytes to copy
4507  *
4508  * Copy @len bytes from @offset bytes into the source @st to the destination
4509  * buffer @to. `offset` should increase (or be unchanged) with each subsequent
4510  * call to this function. If offset needs to decrease from the previous use `st`
4511  * should be reset first.
4512  *
4513  * Return: 0 on success or -EINVAL if the copy ended early
4514  */
skb_copy_seq_read(struct skb_seq_state * st,int offset,void * to,int len)4515 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len)
4516 {
4517 	const u8 *data;
4518 	u32 sqlen;
4519 
4520 	for (;;) {
4521 		sqlen = skb_seq_read(offset, &data, st);
4522 		if (sqlen == 0)
4523 			return -EINVAL;
4524 		if (sqlen >= len) {
4525 			memcpy(to, data, len);
4526 			return 0;
4527 		}
4528 		memcpy(to, data, sqlen);
4529 		to += sqlen;
4530 		offset += sqlen;
4531 		len -= sqlen;
4532 	}
4533 }
4534 EXPORT_SYMBOL(skb_copy_seq_read);
4535 
4536 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4537 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)4538 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4539 					  struct ts_config *conf,
4540 					  struct ts_state *state)
4541 {
4542 	return skb_seq_read(offset, text, TS_SKB_CB(state));
4543 }
4544 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)4545 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4546 {
4547 	skb_abort_seq_read(TS_SKB_CB(state));
4548 }
4549 
4550 /**
4551  * skb_find_text - Find a text pattern in skb data
4552  * @skb: the buffer to look in
4553  * @from: search offset
4554  * @to: search limit
4555  * @config: textsearch configuration
4556  *
4557  * Finds a pattern in the skb data according to the specified
4558  * textsearch configuration. Use textsearch_next() to retrieve
4559  * subsequent occurrences of the pattern. Returns the offset
4560  * to the first occurrence or UINT_MAX if no match was found.
4561  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)4562 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4563 			   unsigned int to, struct ts_config *config)
4564 {
4565 	unsigned int patlen = config->ops->get_pattern_len(config);
4566 	struct ts_state state;
4567 	unsigned int ret;
4568 
4569 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4570 
4571 	config->get_next_block = skb_ts_get_next_block;
4572 	config->finish = skb_ts_finish;
4573 
4574 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4575 
4576 	ret = textsearch_find(config, &state);
4577 	return (ret + patlen <= to - from ? ret : UINT_MAX);
4578 }
4579 EXPORT_SYMBOL(skb_find_text);
4580 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size,size_t max_frags)4581 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4582 			 int offset, size_t size, size_t max_frags)
4583 {
4584 	int i = skb_shinfo(skb)->nr_frags;
4585 
4586 	if (skb_can_coalesce(skb, i, page, offset)) {
4587 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4588 	} else if (i < max_frags) {
4589 		skb_zcopy_downgrade_managed(skb);
4590 		get_page(page);
4591 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4592 	} else {
4593 		return -EMSGSIZE;
4594 	}
4595 
4596 	return 0;
4597 }
4598 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4599 
4600 /**
4601  *	skb_pull_rcsum - pull skb and update receive checksum
4602  *	@skb: buffer to update
4603  *	@len: length of data pulled
4604  *
4605  *	This function performs an skb_pull on the packet and updates
4606  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4607  *	receive path processing instead of skb_pull unless you know
4608  *	that the checksum difference is zero (e.g., a valid IP header)
4609  *	or you are setting ip_summed to CHECKSUM_NONE.
4610  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)4611 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4612 {
4613 	unsigned char *data = skb->data;
4614 
4615 	BUG_ON(len > skb->len);
4616 	__skb_pull(skb, len);
4617 	skb_postpull_rcsum(skb, data, len);
4618 	return skb->data;
4619 }
4620 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4621 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4622 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4623 {
4624 	skb_frag_t head_frag;
4625 	struct page *page;
4626 
4627 	page = virt_to_head_page(frag_skb->head);
4628 	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4629 				(unsigned char *)page_address(page),
4630 				skb_headlen(frag_skb));
4631 	return head_frag;
4632 }
4633 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4634 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4635 				 netdev_features_t features,
4636 				 unsigned int offset)
4637 {
4638 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4639 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4640 	unsigned int delta_len = 0;
4641 	struct sk_buff *tail = NULL;
4642 	struct sk_buff *nskb, *tmp;
4643 	int len_diff, err;
4644 
4645 	/* Only skb_gro_receive_list generated skbs arrive here */
4646 	DEBUG_NET_WARN_ON_ONCE(!(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST));
4647 
4648 	skb_push(skb, -skb_network_offset(skb) + offset);
4649 
4650 	/* Ensure the head is writeable before touching the shared info */
4651 	err = skb_unclone(skb, GFP_ATOMIC);
4652 	if (err)
4653 		goto err_linearize;
4654 
4655 	skb_shinfo(skb)->frag_list = NULL;
4656 
4657 	while (list_skb) {
4658 		nskb = list_skb;
4659 		list_skb = list_skb->next;
4660 
4661 		DEBUG_NET_WARN_ON_ONCE(nskb->sk);
4662 
4663 		err = 0;
4664 		if (skb_shared(nskb)) {
4665 			tmp = skb_clone(nskb, GFP_ATOMIC);
4666 			if (tmp) {
4667 				consume_skb(nskb);
4668 				nskb = tmp;
4669 				err = skb_unclone(nskb, GFP_ATOMIC);
4670 			} else {
4671 				err = -ENOMEM;
4672 			}
4673 		}
4674 
4675 		if (!tail)
4676 			skb->next = nskb;
4677 		else
4678 			tail->next = nskb;
4679 
4680 		if (unlikely(err)) {
4681 			nskb->next = list_skb;
4682 			goto err_linearize;
4683 		}
4684 
4685 		tail = nskb;
4686 
4687 		delta_len += nskb->len;
4688 
4689 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4690 
4691 		skb_release_head_state(nskb);
4692 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4693 		__copy_skb_header(nskb, skb);
4694 
4695 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4696 		nskb->transport_header += len_diff;
4697 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4698 						 nskb->data - tnl_hlen,
4699 						 offset + tnl_hlen);
4700 
4701 		if (skb_needs_linearize(nskb, features) &&
4702 		    __skb_linearize(nskb))
4703 			goto err_linearize;
4704 	}
4705 
4706 	skb->data_len = skb->data_len - delta_len;
4707 	skb->len = skb->len - delta_len;
4708 
4709 	skb_gso_reset(skb);
4710 
4711 	skb->prev = tail;
4712 
4713 	if (skb_needs_linearize(skb, features) &&
4714 	    __skb_linearize(skb))
4715 		goto err_linearize;
4716 
4717 	skb_get(skb);
4718 
4719 	return skb;
4720 
4721 err_linearize:
4722 	kfree_skb_list(skb->next);
4723 	skb->next = NULL;
4724 	return ERR_PTR(-ENOMEM);
4725 }
4726 EXPORT_SYMBOL_GPL(skb_segment_list);
4727 
4728 /**
4729  *	skb_segment - Perform protocol segmentation on skb.
4730  *	@head_skb: buffer to segment
4731  *	@features: features for the output path (see dev->features)
4732  *
4733  *	This function performs segmentation on the given skb.  It returns
4734  *	a pointer to the first in a list of new skbs for the segments.
4735  *	In case of error it returns ERR_PTR(err).
4736  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4737 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4738 			    netdev_features_t features)
4739 {
4740 	struct sk_buff *segs = NULL;
4741 	struct sk_buff *tail = NULL;
4742 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4743 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4744 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4745 	unsigned int offset = doffset;
4746 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4747 	unsigned int partial_segs = 0;
4748 	unsigned int headroom;
4749 	unsigned int len = head_skb->len;
4750 	struct sk_buff *frag_skb;
4751 	skb_frag_t *frag;
4752 	__be16 proto;
4753 	bool csum, sg;
4754 	int err = -ENOMEM;
4755 	int i = 0;
4756 	int nfrags, pos;
4757 
4758 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4759 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4760 		struct sk_buff *check_skb;
4761 
4762 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4763 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4764 				/* gso_size is untrusted, and we have a frag_list with
4765 				 * a linear non head_frag item.
4766 				 *
4767 				 * If head_skb's headlen does not fit requested gso_size,
4768 				 * it means that the frag_list members do NOT terminate
4769 				 * on exact gso_size boundaries. Hence we cannot perform
4770 				 * skb_frag_t page sharing. Therefore we must fallback to
4771 				 * copying the frag_list skbs; we do so by disabling SG.
4772 				 */
4773 				features &= ~NETIF_F_SG;
4774 				break;
4775 			}
4776 		}
4777 	}
4778 
4779 	__skb_push(head_skb, doffset);
4780 	proto = skb_network_protocol(head_skb, NULL);
4781 	if (unlikely(!proto))
4782 		return ERR_PTR(-EINVAL);
4783 
4784 	sg = !!(features & NETIF_F_SG);
4785 	csum = !!can_checksum_protocol(features, proto);
4786 
4787 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4788 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4789 			struct sk_buff *iter;
4790 			unsigned int frag_len;
4791 
4792 			if (!list_skb ||
4793 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4794 				goto normal;
4795 
4796 			/* If we get here then all the required
4797 			 * GSO features except frag_list are supported.
4798 			 * Try to split the SKB to multiple GSO SKBs
4799 			 * with no frag_list.
4800 			 * Currently we can do that only when the buffers don't
4801 			 * have a linear part and all the buffers except
4802 			 * the last are of the same length.
4803 			 */
4804 			frag_len = list_skb->len;
4805 			skb_walk_frags(head_skb, iter) {
4806 				if (frag_len != iter->len && iter->next)
4807 					goto normal;
4808 				if (skb_headlen(iter) && !iter->head_frag)
4809 					goto normal;
4810 
4811 				len -= iter->len;
4812 			}
4813 
4814 			if (len != frag_len)
4815 				goto normal;
4816 		}
4817 
4818 		/* GSO partial only requires that we trim off any excess that
4819 		 * doesn't fit into an MSS sized block, so take care of that
4820 		 * now.
4821 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4822 		 */
4823 		partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4824 		if (partial_segs > 1)
4825 			mss *= partial_segs;
4826 		else
4827 			partial_segs = 0;
4828 	}
4829 
4830 normal:
4831 	headroom = skb_headroom(head_skb);
4832 	pos = skb_headlen(head_skb);
4833 
4834 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4835 		return ERR_PTR(-ENOMEM);
4836 
4837 	nfrags = skb_shinfo(head_skb)->nr_frags;
4838 	frag = skb_shinfo(head_skb)->frags;
4839 	frag_skb = head_skb;
4840 
4841 	do {
4842 		struct sk_buff *nskb;
4843 		skb_frag_t *nskb_frag;
4844 		int hsize;
4845 		int size;
4846 
4847 		if (unlikely(mss == GSO_BY_FRAGS)) {
4848 			len = list_skb->len;
4849 		} else {
4850 			len = head_skb->len - offset;
4851 			if (len > mss)
4852 				len = mss;
4853 		}
4854 
4855 		hsize = skb_headlen(head_skb) - offset;
4856 
4857 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4858 		    (skb_headlen(list_skb) == len || sg)) {
4859 			BUG_ON(skb_headlen(list_skb) > len);
4860 
4861 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4862 			if (unlikely(!nskb))
4863 				goto err;
4864 
4865 			i = 0;
4866 			nfrags = skb_shinfo(list_skb)->nr_frags;
4867 			frag = skb_shinfo(list_skb)->frags;
4868 			frag_skb = list_skb;
4869 			pos += skb_headlen(list_skb);
4870 
4871 			while (pos < offset + len) {
4872 				BUG_ON(i >= nfrags);
4873 
4874 				size = skb_frag_size(frag);
4875 				if (pos + size > offset + len)
4876 					break;
4877 
4878 				i++;
4879 				pos += size;
4880 				frag++;
4881 			}
4882 
4883 			list_skb = list_skb->next;
4884 
4885 			if (unlikely(pskb_trim(nskb, len))) {
4886 				kfree_skb(nskb);
4887 				goto err;
4888 			}
4889 
4890 			hsize = skb_end_offset(nskb);
4891 			if (skb_cow_head(nskb, doffset + headroom)) {
4892 				kfree_skb(nskb);
4893 				goto err;
4894 			}
4895 
4896 			nskb->truesize += skb_end_offset(nskb) - hsize;
4897 			skb_release_head_state(nskb);
4898 			__skb_push(nskb, doffset);
4899 		} else {
4900 			if (hsize < 0)
4901 				hsize = 0;
4902 			if (hsize > len || !sg)
4903 				hsize = len;
4904 
4905 			nskb = __alloc_skb(hsize + doffset + headroom,
4906 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4907 					   NUMA_NO_NODE);
4908 
4909 			if (unlikely(!nskb))
4910 				goto err;
4911 
4912 			skb_reserve(nskb, headroom);
4913 			__skb_put(nskb, doffset);
4914 		}
4915 
4916 		if (segs)
4917 			tail->next = nskb;
4918 		else
4919 			segs = nskb;
4920 		tail = nskb;
4921 
4922 		__copy_skb_header(nskb, head_skb);
4923 
4924 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4925 		skb_reset_mac_len(nskb);
4926 
4927 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4928 						 nskb->data - tnl_hlen,
4929 						 doffset + tnl_hlen);
4930 
4931 		if (nskb->len == len + doffset)
4932 			goto perform_csum_check;
4933 
4934 		if (!sg) {
4935 			if (!csum) {
4936 				if (!nskb->remcsum_offload)
4937 					nskb->ip_summed = CHECKSUM_NONE;
4938 				SKB_GSO_CB(nskb)->csum =
4939 					skb_copy_and_csum_bits(head_skb, offset,
4940 							       skb_put(nskb,
4941 								       len),
4942 							       len);
4943 				SKB_GSO_CB(nskb)->csum_start =
4944 					skb_headroom(nskb) + doffset;
4945 			} else {
4946 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4947 					goto err;
4948 			}
4949 			continue;
4950 		}
4951 
4952 		nskb_frag = skb_shinfo(nskb)->frags;
4953 
4954 		skb_copy_from_linear_data_offset(head_skb, offset,
4955 						 skb_put(nskb, hsize), hsize);
4956 
4957 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4958 					   SKBFL_SHARED_FRAG;
4959 
4960 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4961 			goto err;
4962 
4963 		while (pos < offset + len) {
4964 			if (i >= nfrags) {
4965 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4966 				    skb_zerocopy_clone(nskb, list_skb,
4967 						       GFP_ATOMIC))
4968 					goto err;
4969 
4970 				i = 0;
4971 				nfrags = skb_shinfo(list_skb)->nr_frags;
4972 				frag = skb_shinfo(list_skb)->frags;
4973 				frag_skb = list_skb;
4974 				if (!skb_headlen(list_skb)) {
4975 					BUG_ON(!nfrags);
4976 				} else {
4977 					BUG_ON(!list_skb->head_frag);
4978 
4979 					/* to make room for head_frag. */
4980 					i--;
4981 					frag--;
4982 				}
4983 
4984 				list_skb = list_skb->next;
4985 			}
4986 
4987 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4988 				     MAX_SKB_FRAGS)) {
4989 				net_warn_ratelimited(
4990 					"skb_segment: too many frags: %u %u\n",
4991 					pos, mss);
4992 				err = -EINVAL;
4993 				goto err;
4994 			}
4995 
4996 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4997 			__skb_frag_ref(nskb_frag);
4998 			size = skb_frag_size(nskb_frag);
4999 
5000 			if (pos < offset) {
5001 				skb_frag_off_add(nskb_frag, offset - pos);
5002 				skb_frag_size_sub(nskb_frag, offset - pos);
5003 			}
5004 
5005 			skb_shinfo(nskb)->nr_frags++;
5006 
5007 			if (pos + size <= offset + len) {
5008 				i++;
5009 				frag++;
5010 				pos += size;
5011 			} else {
5012 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
5013 				goto skip_fraglist;
5014 			}
5015 
5016 			nskb_frag++;
5017 		}
5018 
5019 skip_fraglist:
5020 		nskb->data_len = len - hsize;
5021 		nskb->len += nskb->data_len;
5022 		nskb->truesize += nskb->data_len;
5023 
5024 perform_csum_check:
5025 		if (!csum) {
5026 			if (skb_has_shared_frag(nskb) &&
5027 			    __skb_linearize(nskb))
5028 				goto err;
5029 
5030 			if (!nskb->remcsum_offload)
5031 				nskb->ip_summed = CHECKSUM_NONE;
5032 			SKB_GSO_CB(nskb)->csum =
5033 				skb_checksum(nskb, doffset,
5034 					     nskb->len - doffset, 0);
5035 			SKB_GSO_CB(nskb)->csum_start =
5036 				skb_headroom(nskb) + doffset;
5037 		}
5038 	} while ((offset += len) < head_skb->len);
5039 
5040 	/* Some callers want to get the end of the list.
5041 	 * Put it in segs->prev to avoid walking the list.
5042 	 * (see validate_xmit_skb_list() for example)
5043 	 */
5044 	segs->prev = tail;
5045 
5046 	if (partial_segs) {
5047 		struct sk_buff *iter;
5048 		int type = skb_shinfo(head_skb)->gso_type;
5049 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
5050 
5051 		/* Update type to add partial and then remove dodgy if set */
5052 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
5053 		type &= ~SKB_GSO_DODGY;
5054 
5055 		/* Update GSO info and prepare to start updating headers on
5056 		 * our way back down the stack of protocols.
5057 		 */
5058 		for (iter = segs; iter; iter = iter->next) {
5059 			skb_shinfo(iter)->gso_size = gso_size;
5060 			skb_shinfo(iter)->gso_segs = partial_segs;
5061 			skb_shinfo(iter)->gso_type = type;
5062 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
5063 		}
5064 
5065 		if (tail->len - doffset <= gso_size)
5066 			skb_shinfo(tail)->gso_size = 0;
5067 		else if (tail != segs)
5068 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
5069 	}
5070 
5071 	/* Following permits correct backpressure, for protocols
5072 	 * using skb_set_owner_w().
5073 	 * Idea is to tranfert ownership from head_skb to last segment.
5074 	 */
5075 	if (head_skb->destructor == sock_wfree) {
5076 		swap(tail->truesize, head_skb->truesize);
5077 		swap(tail->destructor, head_skb->destructor);
5078 		swap(tail->sk, head_skb->sk);
5079 	}
5080 	return segs;
5081 
5082 err:
5083 	kfree_skb_list(segs);
5084 	return ERR_PTR(err);
5085 }
5086 EXPORT_SYMBOL_GPL(skb_segment);
5087 
5088 #ifdef CONFIG_SKB_EXTENSIONS
5089 #define SKB_EXT_ALIGN_VALUE	8
5090 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
5091 
5092 static const u8 skb_ext_type_len[] = {
5093 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
5094 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
5095 #endif
5096 #ifdef CONFIG_XFRM
5097 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
5098 #endif
5099 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5100 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
5101 #endif
5102 #if IS_ENABLED(CONFIG_MPTCP)
5103 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
5104 #endif
5105 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
5106 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
5107 #endif
5108 #if IS_ENABLED(CONFIG_INET_PSP)
5109 	[SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext),
5110 #endif
5111 };
5112 
skb_ext_total_length(void)5113 static __always_inline unsigned int skb_ext_total_length(void)
5114 {
5115 	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
5116 	int i;
5117 
5118 	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
5119 		l += skb_ext_type_len[i];
5120 
5121 	return l;
5122 }
5123 
skb_extensions_init(void)5124 static void skb_extensions_init(void)
5125 {
5126 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
5127 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
5128 	BUILD_BUG_ON(skb_ext_total_length() > 255);
5129 #endif
5130 
5131 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5132 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5133 					     0,
5134 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5135 					     NULL);
5136 }
5137 #else
skb_extensions_init(void)5138 static void skb_extensions_init(void) {}
5139 #endif
5140 
5141 /* The SKB kmem_cache slab is critical for network performance.  Never
5142  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5143  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5144  */
5145 #ifndef CONFIG_SLUB_TINY
5146 #define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
5147 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5148 #define FLAG_SKB_NO_MERGE	0
5149 #endif
5150 
skb_init(void)5151 void __init skb_init(void)
5152 {
5153 	net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5154 					      sizeof(struct sk_buff),
5155 					      0,
5156 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5157 						FLAG_SKB_NO_MERGE,
5158 					      offsetof(struct sk_buff, cb),
5159 					      sizeof_field(struct sk_buff, cb),
5160 					      NULL);
5161 	skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache);
5162 
5163 	net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5164 						sizeof(struct sk_buff_fclones),
5165 						0,
5166 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5167 						NULL);
5168 	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5169 	 * struct skb_shared_info is located at the end of skb->head,
5170 	 * and should not be copied to/from user.
5171 	 */
5172 	net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5173 						SKB_SMALL_HEAD_CACHE_SIZE,
5174 						0,
5175 						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5176 						0,
5177 						SKB_SMALL_HEAD_HEADROOM,
5178 						NULL);
5179 	skb_extensions_init();
5180 }
5181 
5182 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)5183 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5184 	       unsigned int recursion_level)
5185 {
5186 	int start = skb_headlen(skb);
5187 	int i, copy = start - offset;
5188 	struct sk_buff *frag_iter;
5189 	int elt = 0;
5190 
5191 	if (unlikely(recursion_level >= 24))
5192 		return -EMSGSIZE;
5193 
5194 	if (copy > 0) {
5195 		if (copy > len)
5196 			copy = len;
5197 		sg_set_buf(sg, skb->data + offset, copy);
5198 		elt++;
5199 		if ((len -= copy) == 0)
5200 			return elt;
5201 		offset += copy;
5202 	}
5203 
5204 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5205 		int end;
5206 
5207 		WARN_ON(start > offset + len);
5208 
5209 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5210 		if ((copy = end - offset) > 0) {
5211 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5212 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5213 				return -EMSGSIZE;
5214 
5215 			if (copy > len)
5216 				copy = len;
5217 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5218 				    skb_frag_off(frag) + offset - start);
5219 			elt++;
5220 			if (!(len -= copy))
5221 				return elt;
5222 			offset += copy;
5223 		}
5224 		start = end;
5225 	}
5226 
5227 	skb_walk_frags(skb, frag_iter) {
5228 		int end, ret;
5229 
5230 		WARN_ON(start > offset + len);
5231 
5232 		end = start + frag_iter->len;
5233 		if ((copy = end - offset) > 0) {
5234 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5235 				return -EMSGSIZE;
5236 
5237 			if (copy > len)
5238 				copy = len;
5239 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5240 					      copy, recursion_level + 1);
5241 			if (unlikely(ret < 0))
5242 				return ret;
5243 			elt += ret;
5244 			if ((len -= copy) == 0)
5245 				return elt;
5246 			offset += copy;
5247 		}
5248 		start = end;
5249 	}
5250 	BUG_ON(len);
5251 	return elt;
5252 }
5253 
5254 /**
5255  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5256  *	@skb: Socket buffer containing the buffers to be mapped
5257  *	@sg: The scatter-gather list to map into
5258  *	@offset: The offset into the buffer's contents to start mapping
5259  *	@len: Length of buffer space to be mapped
5260  *
5261  *	Fill the specified scatter-gather list with mappings/pointers into a
5262  *	region of the buffer space attached to a socket buffer. Returns either
5263  *	the number of scatterlist items used, or -EMSGSIZE if the contents
5264  *	could not fit.
5265  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5266 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5267 {
5268 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5269 
5270 	if (nsg <= 0)
5271 		return nsg;
5272 
5273 	sg_mark_end(&sg[nsg - 1]);
5274 
5275 	return nsg;
5276 }
5277 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5278 
5279 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5280  * sglist without mark the sg which contain last skb data as the end.
5281  * So the caller can mannipulate sg list as will when padding new data after
5282  * the first call without calling sg_unmark_end to expend sg list.
5283  *
5284  * Scenario to use skb_to_sgvec_nomark:
5285  * 1. sg_init_table
5286  * 2. skb_to_sgvec_nomark(payload1)
5287  * 3. skb_to_sgvec_nomark(payload2)
5288  *
5289  * This is equivalent to:
5290  * 1. sg_init_table
5291  * 2. skb_to_sgvec(payload1)
5292  * 3. sg_unmark_end
5293  * 4. skb_to_sgvec(payload2)
5294  *
5295  * When mapping multiple payload conditionally, skb_to_sgvec_nomark
5296  * is more preferable.
5297  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)5298 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5299 			int offset, int len)
5300 {
5301 	return __skb_to_sgvec(skb, sg, offset, len, 0);
5302 }
5303 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5304 
5305 
5306 
5307 /**
5308  *	skb_cow_data - Check that a socket buffer's data buffers are writable
5309  *	@skb: The socket buffer to check.
5310  *	@tailbits: Amount of trailing space to be added
5311  *	@trailer: Returned pointer to the skb where the @tailbits space begins
5312  *
5313  *	Make sure that the data buffers attached to a socket buffer are
5314  *	writable. If they are not, private copies are made of the data buffers
5315  *	and the socket buffer is set to use these instead.
5316  *
5317  *	If @tailbits is given, make sure that there is space to write @tailbits
5318  *	bytes of data beyond current end of socket buffer.  @trailer will be
5319  *	set to point to the skb in which this space begins.
5320  *
5321  *	The number of scatterlist elements required to completely map the
5322  *	COW'd and extended socket buffer will be returned.
5323  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)5324 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5325 {
5326 	int copyflag;
5327 	int elt;
5328 	struct sk_buff *skb1, **skb_p;
5329 
5330 	/* If skb is cloned or its head is paged, reallocate
5331 	 * head pulling out all the pages (pages are considered not writable
5332 	 * at the moment even if they are anonymous).
5333 	 */
5334 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5335 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5336 		return -ENOMEM;
5337 
5338 	/* Easy case. Most of packets will go this way. */
5339 	if (!skb_has_frag_list(skb)) {
5340 		/* A little of trouble, not enough of space for trailer.
5341 		 * This should not happen, when stack is tuned to generate
5342 		 * good frames. OK, on miss we reallocate and reserve even more
5343 		 * space, 128 bytes is fair. */
5344 
5345 		if (skb_tailroom(skb) < tailbits &&
5346 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5347 			return -ENOMEM;
5348 
5349 		/* Voila! */
5350 		*trailer = skb;
5351 		return 1;
5352 	}
5353 
5354 	/* Misery. We are in troubles, going to mincer fragments... */
5355 
5356 	elt = 1;
5357 	skb_p = &skb_shinfo(skb)->frag_list;
5358 	copyflag = 0;
5359 
5360 	while ((skb1 = *skb_p) != NULL) {
5361 		int ntail = 0;
5362 
5363 		/* The fragment is partially pulled by someone,
5364 		 * this can happen on input. Copy it and everything
5365 		 * after it. */
5366 
5367 		if (skb_shared(skb1))
5368 			copyflag = 1;
5369 
5370 		/* If the skb is the last, worry about trailer. */
5371 
5372 		if (skb1->next == NULL && tailbits) {
5373 			if (skb_shinfo(skb1)->nr_frags ||
5374 			    skb_has_frag_list(skb1) ||
5375 			    skb_tailroom(skb1) < tailbits)
5376 				ntail = tailbits + 128;
5377 		}
5378 
5379 		if (copyflag ||
5380 		    skb_cloned(skb1) ||
5381 		    ntail ||
5382 		    skb_shinfo(skb1)->nr_frags ||
5383 		    skb_has_frag_list(skb1)) {
5384 			struct sk_buff *skb2;
5385 
5386 			/* Fuck, we are miserable poor guys... */
5387 			if (ntail == 0)
5388 				skb2 = skb_copy(skb1, GFP_ATOMIC);
5389 			else
5390 				skb2 = skb_copy_expand(skb1,
5391 						       skb_headroom(skb1),
5392 						       ntail,
5393 						       GFP_ATOMIC);
5394 			if (unlikely(skb2 == NULL))
5395 				return -ENOMEM;
5396 
5397 			if (skb1->sk)
5398 				skb_set_owner_w(skb2, skb1->sk);
5399 
5400 			/* Looking around. Are we still alive?
5401 			 * OK, link new skb, drop old one */
5402 
5403 			skb2->next = skb1->next;
5404 			*skb_p = skb2;
5405 			kfree_skb(skb1);
5406 			skb1 = skb2;
5407 		}
5408 		elt++;
5409 		*trailer = skb1;
5410 		skb_p = &skb1->next;
5411 	}
5412 
5413 	return elt;
5414 }
5415 EXPORT_SYMBOL_GPL(skb_cow_data);
5416 
sock_rmem_free(struct sk_buff * skb)5417 static void sock_rmem_free(struct sk_buff *skb)
5418 {
5419 	struct sock *sk = skb->sk;
5420 
5421 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5422 }
5423 
skb_set_err_queue(struct sk_buff * skb)5424 static void skb_set_err_queue(struct sk_buff *skb)
5425 {
5426 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5427 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5428 	 */
5429 	skb->pkt_type = PACKET_OUTGOING;
5430 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5431 }
5432 
5433 /*
5434  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5435  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)5436 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5437 {
5438 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5439 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5440 		return -ENOMEM;
5441 
5442 	skb_orphan(skb);
5443 	skb->sk = sk;
5444 	skb->destructor = sock_rmem_free;
5445 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5446 	skb_set_err_queue(skb);
5447 
5448 	/* before exiting rcu section, make sure dst is refcounted */
5449 	skb_dst_force(skb);
5450 
5451 	skb_queue_tail(&sk->sk_error_queue, skb);
5452 	if (!sock_flag(sk, SOCK_DEAD))
5453 		sk_error_report(sk);
5454 	return 0;
5455 }
5456 EXPORT_SYMBOL(sock_queue_err_skb);
5457 
is_icmp_err_skb(const struct sk_buff * skb)5458 static bool is_icmp_err_skb(const struct sk_buff *skb)
5459 {
5460 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5461 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5462 }
5463 
sock_dequeue_err_skb(struct sock * sk)5464 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5465 {
5466 	struct sk_buff_head *q = &sk->sk_error_queue;
5467 	struct sk_buff *skb, *skb_next = NULL;
5468 	bool icmp_next = false;
5469 	unsigned long flags;
5470 
5471 	if (skb_queue_empty_lockless(q))
5472 		return NULL;
5473 
5474 	spin_lock_irqsave(&q->lock, flags);
5475 	skb = __skb_dequeue(q);
5476 	if (skb && (skb_next = skb_peek(q))) {
5477 		icmp_next = is_icmp_err_skb(skb_next);
5478 		if (icmp_next)
5479 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5480 	}
5481 	spin_unlock_irqrestore(&q->lock, flags);
5482 
5483 	if (is_icmp_err_skb(skb) && !icmp_next)
5484 		sk->sk_err = 0;
5485 
5486 	if (skb_next)
5487 		sk_error_report(sk);
5488 
5489 	return skb;
5490 }
5491 EXPORT_SYMBOL(sock_dequeue_err_skb);
5492 
5493 /**
5494  * skb_clone_sk - create clone of skb, and take reference to socket
5495  * @skb: the skb to clone
5496  *
5497  * This function creates a clone of a buffer that holds a reference on
5498  * sk_refcnt.  Buffers created via this function are meant to be
5499  * returned using sock_queue_err_skb, or free via kfree_skb.
5500  *
5501  * When passing buffers allocated with this function to sock_queue_err_skb
5502  * it is necessary to wrap the call with sock_hold/sock_put in order to
5503  * prevent the socket from being released prior to being enqueued on
5504  * the sk_error_queue.
5505  */
skb_clone_sk(struct sk_buff * skb)5506 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5507 {
5508 	struct sock *sk = skb->sk;
5509 	struct sk_buff *clone;
5510 
5511 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5512 		return NULL;
5513 
5514 	clone = skb_clone(skb, GFP_ATOMIC);
5515 	if (!clone) {
5516 		sock_put(sk);
5517 		return NULL;
5518 	}
5519 
5520 	clone->sk = sk;
5521 	clone->destructor = sock_efree;
5522 
5523 	return clone;
5524 }
5525 EXPORT_SYMBOL(skb_clone_sk);
5526 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)5527 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5528 					struct sock *sk,
5529 					int tstype,
5530 					bool opt_stats)
5531 {
5532 	struct sock_exterr_skb *serr;
5533 	int err;
5534 
5535 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5536 
5537 	serr = SKB_EXT_ERR(skb);
5538 	memset(serr, 0, sizeof(*serr));
5539 	serr->ee.ee_errno = ENOMSG;
5540 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5541 	serr->ee.ee_info = tstype;
5542 	serr->opt_stats = opt_stats;
5543 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5544 	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5545 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5546 		if (sk_is_tcp(sk))
5547 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5548 	}
5549 
5550 	err = sock_queue_err_skb(sk, skb);
5551 
5552 	if (err)
5553 		kfree_skb(skb);
5554 }
5555 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)5556 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5557 {
5558 	bool ret;
5559 
5560 	if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data)))
5561 		return true;
5562 
5563 	read_lock_bh(&sk->sk_callback_lock);
5564 	ret = sk->sk_socket && sk->sk_socket->file &&
5565 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5566 	read_unlock_bh(&sk->sk_callback_lock);
5567 	return ret;
5568 }
5569 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)5570 void skb_complete_tx_timestamp(struct sk_buff *skb,
5571 			       struct skb_shared_hwtstamps *hwtstamps)
5572 {
5573 	struct sock *sk = skb->sk;
5574 
5575 	if (!skb_may_tx_timestamp(sk, false))
5576 		goto err;
5577 
5578 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5579 	 * but only if the socket refcount is not zero.
5580 	 */
5581 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5582 		*skb_hwtstamps(skb) = *hwtstamps;
5583 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5584 		sock_put(sk);
5585 		return;
5586 	}
5587 
5588 err:
5589 	kfree_skb(skb);
5590 }
5591 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5592 
skb_tstamp_tx_report_so_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,int tstype)5593 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb,
5594 						 struct skb_shared_hwtstamps *hwtstamps,
5595 						 int tstype)
5596 {
5597 	switch (tstype) {
5598 	case SCM_TSTAMP_SCHED:
5599 		return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP;
5600 	case SCM_TSTAMP_SND:
5601 		return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF :
5602 						    SKBTX_SW_TSTAMP);
5603 	case SCM_TSTAMP_ACK:
5604 		return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK;
5605 	case SCM_TSTAMP_COMPLETION:
5606 		return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP;
5607 	}
5608 
5609 	return false;
5610 }
5611 
skb_tstamp_tx_report_bpf_timestamping(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5612 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb,
5613 						  struct skb_shared_hwtstamps *hwtstamps,
5614 						  struct sock *sk,
5615 						  int tstype)
5616 {
5617 	int op;
5618 
5619 	switch (tstype) {
5620 	case SCM_TSTAMP_SCHED:
5621 		op = BPF_SOCK_OPS_TSTAMP_SCHED_CB;
5622 		break;
5623 	case SCM_TSTAMP_SND:
5624 		if (hwtstamps) {
5625 			op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB;
5626 			*skb_hwtstamps(skb) = *hwtstamps;
5627 		} else {
5628 			op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB;
5629 		}
5630 		break;
5631 	case SCM_TSTAMP_ACK:
5632 		op = BPF_SOCK_OPS_TSTAMP_ACK_CB;
5633 		break;
5634 	default:
5635 		return;
5636 	}
5637 
5638 	bpf_skops_tx_timestamping(sk, skb, op);
5639 }
5640 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)5641 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5642 		     const struct sk_buff *ack_skb,
5643 		     struct skb_shared_hwtstamps *hwtstamps,
5644 		     struct sock *sk, int tstype)
5645 {
5646 	struct sk_buff *skb;
5647 	bool tsonly, opt_stats = false;
5648 	u32 tsflags;
5649 
5650 	if (!sk)
5651 		return;
5652 
5653 	if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF)
5654 		skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps,
5655 						      sk, tstype);
5656 
5657 	if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype))
5658 		return;
5659 
5660 	tsflags = READ_ONCE(sk->sk_tsflags);
5661 	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5662 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5663 		return;
5664 
5665 	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5666 	if (!skb_may_tx_timestamp(sk, tsonly))
5667 		return;
5668 
5669 	if (tsonly) {
5670 #ifdef CONFIG_INET
5671 		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5672 		    sk_is_tcp(sk)) {
5673 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5674 							     ack_skb);
5675 			opt_stats = true;
5676 		} else
5677 #endif
5678 			skb = alloc_skb(0, GFP_ATOMIC);
5679 	} else {
5680 		skb = skb_clone(orig_skb, GFP_ATOMIC);
5681 
5682 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5683 			kfree_skb(skb);
5684 			return;
5685 		}
5686 	}
5687 	if (!skb)
5688 		return;
5689 
5690 	if (tsonly) {
5691 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5692 					     SKBTX_ANY_TSTAMP;
5693 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5694 	}
5695 
5696 	if (hwtstamps)
5697 		*skb_hwtstamps(skb) = *hwtstamps;
5698 	else
5699 		__net_timestamp(skb);
5700 
5701 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5702 }
5703 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5704 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5705 void skb_tstamp_tx(struct sk_buff *orig_skb,
5706 		   struct skb_shared_hwtstamps *hwtstamps)
5707 {
5708 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5709 			       SCM_TSTAMP_SND);
5710 }
5711 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5712 
5713 #ifdef CONFIG_WIRELESS
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5714 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5715 {
5716 	struct sock *sk = skb->sk;
5717 	struct sock_exterr_skb *serr;
5718 	int err = 1;
5719 
5720 	skb->wifi_acked_valid = 1;
5721 	skb->wifi_acked = acked;
5722 
5723 	serr = SKB_EXT_ERR(skb);
5724 	memset(serr, 0, sizeof(*serr));
5725 	serr->ee.ee_errno = ENOMSG;
5726 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5727 
5728 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5729 	 * but only if the socket refcount is not zero.
5730 	 */
5731 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5732 		err = sock_queue_err_skb(sk, skb);
5733 		sock_put(sk);
5734 	}
5735 	if (err)
5736 		kfree_skb(skb);
5737 }
5738 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5739 #endif /* CONFIG_WIRELESS */
5740 
5741 /**
5742  * skb_partial_csum_set - set up and verify partial csum values for packet
5743  * @skb: the skb to set
5744  * @start: the number of bytes after skb->data to start checksumming.
5745  * @off: the offset from start to place the checksum.
5746  *
5747  * For untrusted partially-checksummed packets, we need to make sure the values
5748  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5749  *
5750  * This function checks and sets those values and skb->ip_summed: if this
5751  * returns false you should drop the packet.
5752  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5753 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5754 {
5755 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5756 	u32 csum_start = skb_headroom(skb) + (u32)start;
5757 
5758 	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5759 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5760 				     start, off, skb_headroom(skb), skb_headlen(skb));
5761 		return false;
5762 	}
5763 	skb->ip_summed = CHECKSUM_PARTIAL;
5764 	skb->csum_start = csum_start;
5765 	skb->csum_offset = off;
5766 	skb->transport_header = csum_start;
5767 	return true;
5768 }
5769 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5770 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5771 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5772 			       unsigned int max)
5773 {
5774 	if (skb_headlen(skb) >= len)
5775 		return 0;
5776 
5777 	/* If we need to pullup then pullup to the max, so we
5778 	 * won't need to do it again.
5779 	 */
5780 	if (max > skb->len)
5781 		max = skb->len;
5782 
5783 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5784 		return -ENOMEM;
5785 
5786 	if (skb_headlen(skb) < len)
5787 		return -EPROTO;
5788 
5789 	return 0;
5790 }
5791 
5792 #define MAX_TCP_HDR_LEN (15 * 4)
5793 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5794 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5795 				      typeof(IPPROTO_IP) proto,
5796 				      unsigned int off)
5797 {
5798 	int err;
5799 
5800 	switch (proto) {
5801 	case IPPROTO_TCP:
5802 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5803 					  off + MAX_TCP_HDR_LEN);
5804 		if (!err && !skb_partial_csum_set(skb, off,
5805 						  offsetof(struct tcphdr,
5806 							   check)))
5807 			err = -EPROTO;
5808 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5809 
5810 	case IPPROTO_UDP:
5811 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5812 					  off + sizeof(struct udphdr));
5813 		if (!err && !skb_partial_csum_set(skb, off,
5814 						  offsetof(struct udphdr,
5815 							   check)))
5816 			err = -EPROTO;
5817 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5818 	}
5819 
5820 	return ERR_PTR(-EPROTO);
5821 }
5822 
5823 /* This value should be large enough to cover a tagged ethernet header plus
5824  * maximally sized IP and TCP or UDP headers.
5825  */
5826 #define MAX_IP_HDR_LEN 128
5827 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5828 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5829 {
5830 	unsigned int off;
5831 	bool fragment;
5832 	__sum16 *csum;
5833 	int err;
5834 
5835 	fragment = false;
5836 
5837 	err = skb_maybe_pull_tail(skb,
5838 				  sizeof(struct iphdr),
5839 				  MAX_IP_HDR_LEN);
5840 	if (err < 0)
5841 		goto out;
5842 
5843 	if (ip_is_fragment(ip_hdr(skb)))
5844 		fragment = true;
5845 
5846 	off = ip_hdrlen(skb);
5847 
5848 	err = -EPROTO;
5849 
5850 	if (fragment)
5851 		goto out;
5852 
5853 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5854 	if (IS_ERR(csum))
5855 		return PTR_ERR(csum);
5856 
5857 	if (recalculate)
5858 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5859 					   ip_hdr(skb)->daddr,
5860 					   skb->len - off,
5861 					   ip_hdr(skb)->protocol, 0);
5862 	err = 0;
5863 
5864 out:
5865 	return err;
5866 }
5867 
5868 /* This value should be large enough to cover a tagged ethernet header plus
5869  * an IPv6 header, all options, and a maximal TCP or UDP header.
5870  */
5871 #define MAX_IPV6_HDR_LEN 256
5872 
5873 #define OPT_HDR(type, skb, off) \
5874 	(type *)(skb_network_header(skb) + (off))
5875 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5876 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5877 {
5878 	int err;
5879 	u8 nexthdr;
5880 	unsigned int off;
5881 	unsigned int len;
5882 	bool fragment;
5883 	bool done;
5884 	__sum16 *csum;
5885 
5886 	fragment = false;
5887 	done = false;
5888 
5889 	off = sizeof(struct ipv6hdr);
5890 
5891 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5892 	if (err < 0)
5893 		goto out;
5894 
5895 	nexthdr = ipv6_hdr(skb)->nexthdr;
5896 
5897 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5898 	while (off <= len && !done) {
5899 		switch (nexthdr) {
5900 		case IPPROTO_DSTOPTS:
5901 		case IPPROTO_HOPOPTS:
5902 		case IPPROTO_ROUTING: {
5903 			struct ipv6_opt_hdr *hp;
5904 
5905 			err = skb_maybe_pull_tail(skb,
5906 						  off +
5907 						  sizeof(struct ipv6_opt_hdr),
5908 						  MAX_IPV6_HDR_LEN);
5909 			if (err < 0)
5910 				goto out;
5911 
5912 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5913 			nexthdr = hp->nexthdr;
5914 			off += ipv6_optlen(hp);
5915 			break;
5916 		}
5917 		case IPPROTO_AH: {
5918 			struct ip_auth_hdr *hp;
5919 
5920 			err = skb_maybe_pull_tail(skb,
5921 						  off +
5922 						  sizeof(struct ip_auth_hdr),
5923 						  MAX_IPV6_HDR_LEN);
5924 			if (err < 0)
5925 				goto out;
5926 
5927 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5928 			nexthdr = hp->nexthdr;
5929 			off += ipv6_authlen(hp);
5930 			break;
5931 		}
5932 		case IPPROTO_FRAGMENT: {
5933 			struct frag_hdr *hp;
5934 
5935 			err = skb_maybe_pull_tail(skb,
5936 						  off +
5937 						  sizeof(struct frag_hdr),
5938 						  MAX_IPV6_HDR_LEN);
5939 			if (err < 0)
5940 				goto out;
5941 
5942 			hp = OPT_HDR(struct frag_hdr, skb, off);
5943 
5944 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5945 				fragment = true;
5946 
5947 			nexthdr = hp->nexthdr;
5948 			off += sizeof(struct frag_hdr);
5949 			break;
5950 		}
5951 		default:
5952 			done = true;
5953 			break;
5954 		}
5955 	}
5956 
5957 	err = -EPROTO;
5958 
5959 	if (!done || fragment)
5960 		goto out;
5961 
5962 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5963 	if (IS_ERR(csum))
5964 		return PTR_ERR(csum);
5965 
5966 	if (recalculate)
5967 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5968 					 &ipv6_hdr(skb)->daddr,
5969 					 skb->len - off, nexthdr, 0);
5970 	err = 0;
5971 
5972 out:
5973 	return err;
5974 }
5975 
5976 /**
5977  * skb_checksum_setup - set up partial checksum offset
5978  * @skb: the skb to set up
5979  * @recalculate: if true the pseudo-header checksum will be recalculated
5980  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5981 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5982 {
5983 	int err;
5984 
5985 	switch (skb->protocol) {
5986 	case htons(ETH_P_IP):
5987 		err = skb_checksum_setup_ipv4(skb, recalculate);
5988 		break;
5989 
5990 	case htons(ETH_P_IPV6):
5991 		err = skb_checksum_setup_ipv6(skb, recalculate);
5992 		break;
5993 
5994 	default:
5995 		err = -EPROTO;
5996 		break;
5997 	}
5998 
5999 	return err;
6000 }
6001 EXPORT_SYMBOL(skb_checksum_setup);
6002 
6003 /**
6004  * skb_checksum_maybe_trim - maybe trims the given skb
6005  * @skb: the skb to check
6006  * @transport_len: the data length beyond the network header
6007  *
6008  * Checks whether the given skb has data beyond the given transport length.
6009  * If so, returns a cloned skb trimmed to this transport length.
6010  * Otherwise returns the provided skb. Returns NULL in error cases
6011  * (e.g. transport_len exceeds skb length or out-of-memory).
6012  *
6013  * Caller needs to set the skb transport header and free any returned skb if it
6014  * differs from the provided skb.
6015  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)6016 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
6017 					       unsigned int transport_len)
6018 {
6019 	struct sk_buff *skb_chk;
6020 	unsigned int len = skb_transport_offset(skb) + transport_len;
6021 	int ret;
6022 
6023 	if (skb->len < len)
6024 		return NULL;
6025 	else if (skb->len == len)
6026 		return skb;
6027 
6028 	skb_chk = skb_clone(skb, GFP_ATOMIC);
6029 	if (!skb_chk)
6030 		return NULL;
6031 
6032 	ret = pskb_trim_rcsum(skb_chk, len);
6033 	if (ret) {
6034 		kfree_skb(skb_chk);
6035 		return NULL;
6036 	}
6037 
6038 	return skb_chk;
6039 }
6040 
6041 /**
6042  * skb_checksum_trimmed - validate checksum of an skb
6043  * @skb: the skb to check
6044  * @transport_len: the data length beyond the network header
6045  * @skb_chkf: checksum function to use
6046  *
6047  * Applies the given checksum function skb_chkf to the provided skb.
6048  * Returns a checked and maybe trimmed skb. Returns NULL on error.
6049  *
6050  * If the skb has data beyond the given transport length, then a
6051  * trimmed & cloned skb is checked and returned.
6052  *
6053  * Caller needs to set the skb transport header and free any returned skb if it
6054  * differs from the provided skb.
6055  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))6056 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
6057 				     unsigned int transport_len,
6058 				     __sum16(*skb_chkf)(struct sk_buff *skb))
6059 {
6060 	struct sk_buff *skb_chk;
6061 	unsigned int offset = skb_transport_offset(skb);
6062 	__sum16 ret;
6063 
6064 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
6065 	if (!skb_chk)
6066 		goto err;
6067 
6068 	if (!pskb_may_pull(skb_chk, offset))
6069 		goto err;
6070 
6071 	skb_pull_rcsum(skb_chk, offset);
6072 	ret = skb_chkf(skb_chk);
6073 	skb_push_rcsum(skb_chk, offset);
6074 
6075 	if (ret)
6076 		goto err;
6077 
6078 	return skb_chk;
6079 
6080 err:
6081 	if (skb_chk && skb_chk != skb)
6082 		kfree_skb(skb_chk);
6083 
6084 	return NULL;
6085 
6086 }
6087 EXPORT_SYMBOL(skb_checksum_trimmed);
6088 
__skb_warn_lro_forwarding(const struct sk_buff * skb)6089 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
6090 {
6091 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
6092 			     skb->dev->name);
6093 }
6094 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
6095 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)6096 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
6097 {
6098 	if (head_stolen) {
6099 		skb_release_head_state(skb);
6100 		kmem_cache_free(net_hotdata.skbuff_cache, skb);
6101 	} else {
6102 		__kfree_skb(skb);
6103 	}
6104 }
6105 EXPORT_SYMBOL(kfree_skb_partial);
6106 
6107 /**
6108  * skb_try_coalesce - try to merge skb to prior one
6109  * @to: prior buffer
6110  * @from: buffer to add
6111  * @fragstolen: pointer to boolean
6112  * @delta_truesize: how much more was allocated than was requested
6113  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)6114 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
6115 		      bool *fragstolen, int *delta_truesize)
6116 {
6117 	struct skb_shared_info *to_shinfo, *from_shinfo;
6118 	int i, delta, len = from->len;
6119 
6120 	*fragstolen = false;
6121 
6122 	if (skb_cloned(to))
6123 		return false;
6124 
6125 	/* In general, avoid mixing page_pool and non-page_pool allocated
6126 	 * pages within the same SKB. In theory we could take full
6127 	 * references if @from is cloned and !@to->pp_recycle but its
6128 	 * tricky (due to potential race with the clone disappearing) and
6129 	 * rare, so not worth dealing with.
6130 	 */
6131 	if (to->pp_recycle != from->pp_recycle)
6132 		return false;
6133 
6134 	if (skb_frags_readable(from) != skb_frags_readable(to))
6135 		return false;
6136 
6137 	if (len <= skb_tailroom(to) && skb_frags_readable(from)) {
6138 		if (len)
6139 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
6140 		*delta_truesize = 0;
6141 		return true;
6142 	}
6143 
6144 	to_shinfo = skb_shinfo(to);
6145 	from_shinfo = skb_shinfo(from);
6146 	if (to_shinfo->frag_list || from_shinfo->frag_list)
6147 		return false;
6148 	if (skb_zcopy(to) || skb_zcopy(from))
6149 		return false;
6150 
6151 	if (skb_headlen(from) != 0) {
6152 		struct page *page;
6153 		unsigned int offset;
6154 
6155 		if (to_shinfo->nr_frags +
6156 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
6157 			return false;
6158 
6159 		if (skb_head_is_locked(from))
6160 			return false;
6161 
6162 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
6163 
6164 		page = virt_to_head_page(from->head);
6165 		offset = from->data - (unsigned char *)page_address(page);
6166 
6167 		skb_fill_page_desc(to, to_shinfo->nr_frags,
6168 				   page, offset, skb_headlen(from));
6169 		*fragstolen = true;
6170 	} else {
6171 		if (to_shinfo->nr_frags +
6172 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
6173 			return false;
6174 
6175 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
6176 	}
6177 
6178 	WARN_ON_ONCE(delta < len);
6179 
6180 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
6181 	       from_shinfo->frags,
6182 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
6183 	to_shinfo->nr_frags += from_shinfo->nr_frags;
6184 
6185 	if (!skb_cloned(from))
6186 		from_shinfo->nr_frags = 0;
6187 
6188 	/* if the skb is not cloned this does nothing
6189 	 * since we set nr_frags to 0.
6190 	 */
6191 	if (skb_pp_frag_ref(from)) {
6192 		for (i = 0; i < from_shinfo->nr_frags; i++)
6193 			__skb_frag_ref(&from_shinfo->frags[i]);
6194 	}
6195 
6196 	to->truesize += delta;
6197 	to->len += len;
6198 	to->data_len += len;
6199 
6200 	*delta_truesize = delta;
6201 	return true;
6202 }
6203 EXPORT_SYMBOL(skb_try_coalesce);
6204 
6205 /**
6206  * skb_scrub_packet - scrub an skb
6207  *
6208  * @skb: buffer to clean
6209  * @xnet: packet is crossing netns
6210  *
6211  * skb_scrub_packet can be used after encapsulating or decapsulating a packet
6212  * into/from a tunnel. Some information have to be cleared during these
6213  * operations.
6214  * skb_scrub_packet can also be used to clean a skb before injecting it in
6215  * another namespace (@xnet == true). We have to clear all information in the
6216  * skb that could impact namespace isolation.
6217  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)6218 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6219 {
6220 	skb->pkt_type = PACKET_HOST;
6221 	skb->skb_iif = 0;
6222 	skb->ignore_df = 0;
6223 	skb_dst_drop(skb);
6224 	skb_ext_reset(skb);
6225 	nf_reset_ct(skb);
6226 	nf_reset_trace(skb);
6227 
6228 #ifdef CONFIG_NET_SWITCHDEV
6229 	skb->offload_fwd_mark = 0;
6230 	skb->offload_l3_fwd_mark = 0;
6231 #endif
6232 	ipvs_reset(skb);
6233 
6234 	if (!xnet)
6235 		return;
6236 
6237 	skb->mark = 0;
6238 	skb_clear_tstamp(skb);
6239 }
6240 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6241 
skb_reorder_vlan_header(struct sk_buff * skb)6242 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6243 {
6244 	int mac_len, meta_len;
6245 	void *meta;
6246 
6247 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
6248 		kfree_skb(skb);
6249 		return NULL;
6250 	}
6251 
6252 	mac_len = skb->data - skb_mac_header(skb);
6253 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6254 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6255 			mac_len - VLAN_HLEN - ETH_TLEN);
6256 	}
6257 
6258 	meta_len = skb_metadata_len(skb);
6259 	if (meta_len) {
6260 		meta = skb_metadata_end(skb) - meta_len;
6261 		memmove(meta + VLAN_HLEN, meta, meta_len);
6262 	}
6263 
6264 	skb->mac_header += VLAN_HLEN;
6265 	return skb;
6266 }
6267 
skb_vlan_untag(struct sk_buff * skb)6268 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6269 {
6270 	struct vlan_hdr *vhdr;
6271 	u16 vlan_tci;
6272 
6273 	if (unlikely(skb_vlan_tag_present(skb))) {
6274 		/* vlan_tci is already set-up so leave this for another time */
6275 		return skb;
6276 	}
6277 
6278 	skb = skb_share_check(skb, GFP_ATOMIC);
6279 	if (unlikely(!skb))
6280 		goto err_free;
6281 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6282 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6283 		goto err_free;
6284 
6285 	vhdr = (struct vlan_hdr *)skb->data;
6286 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
6287 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6288 
6289 	skb_pull_rcsum(skb, VLAN_HLEN);
6290 	vlan_set_encap_proto(skb, vhdr);
6291 
6292 	skb = skb_reorder_vlan_header(skb);
6293 	if (unlikely(!skb))
6294 		goto err_free;
6295 
6296 	skb_reset_network_header(skb);
6297 	if (!skb_transport_header_was_set(skb))
6298 		skb_reset_transport_header(skb);
6299 	skb_reset_mac_len(skb);
6300 
6301 	return skb;
6302 
6303 err_free:
6304 	kfree_skb(skb);
6305 	return NULL;
6306 }
6307 EXPORT_SYMBOL(skb_vlan_untag);
6308 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)6309 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6310 {
6311 	if (!pskb_may_pull(skb, write_len))
6312 		return -ENOMEM;
6313 
6314 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6315 		return 0;
6316 
6317 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6318 }
6319 EXPORT_SYMBOL(skb_ensure_writable);
6320 
skb_ensure_writable_head_tail(struct sk_buff * skb,struct net_device * dev)6321 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6322 {
6323 	int needed_headroom = dev->needed_headroom;
6324 	int needed_tailroom = dev->needed_tailroom;
6325 
6326 	/* For tail taggers, we need to pad short frames ourselves, to ensure
6327 	 * that the tail tag does not fail at its role of being at the end of
6328 	 * the packet, once the conduit interface pads the frame. Account for
6329 	 * that pad length here, and pad later.
6330 	 */
6331 	if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6332 		needed_tailroom += ETH_ZLEN - skb->len;
6333 	/* skb_headroom() returns unsigned int... */
6334 	needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6335 	needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6336 
6337 	if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6338 		/* No reallocation needed, yay! */
6339 		return 0;
6340 
6341 	return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6342 				GFP_ATOMIC);
6343 }
6344 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6345 
6346 /* remove VLAN header from packet and update csum accordingly.
6347  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6348  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)6349 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6350 {
6351 	int offset = skb->data - skb_mac_header(skb);
6352 	int err;
6353 
6354 	if (WARN_ONCE(offset,
6355 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6356 		      offset)) {
6357 		return -EINVAL;
6358 	}
6359 
6360 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6361 	if (unlikely(err))
6362 		return err;
6363 
6364 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6365 
6366 	vlan_remove_tag(skb, vlan_tci);
6367 
6368 	skb->mac_header += VLAN_HLEN;
6369 
6370 	if (skb_network_offset(skb) < ETH_HLEN)
6371 		skb_set_network_header(skb, ETH_HLEN);
6372 
6373 	skb_reset_mac_len(skb);
6374 
6375 	return err;
6376 }
6377 EXPORT_SYMBOL(__skb_vlan_pop);
6378 
6379 /* Pop a vlan tag either from hwaccel or from payload.
6380  * Expects skb->data at mac header.
6381  */
skb_vlan_pop(struct sk_buff * skb)6382 int skb_vlan_pop(struct sk_buff *skb)
6383 {
6384 	u16 vlan_tci;
6385 	__be16 vlan_proto;
6386 	int err;
6387 
6388 	if (likely(skb_vlan_tag_present(skb))) {
6389 		__vlan_hwaccel_clear_tag(skb);
6390 	} else {
6391 		if (unlikely(!eth_type_vlan(skb->protocol)))
6392 			return 0;
6393 
6394 		err = __skb_vlan_pop(skb, &vlan_tci);
6395 		if (err)
6396 			return err;
6397 	}
6398 	/* move next vlan tag to hw accel tag */
6399 	if (likely(!eth_type_vlan(skb->protocol)))
6400 		return 0;
6401 
6402 	vlan_proto = skb->protocol;
6403 	err = __skb_vlan_pop(skb, &vlan_tci);
6404 	if (unlikely(err))
6405 		return err;
6406 
6407 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6408 	return 0;
6409 }
6410 EXPORT_SYMBOL(skb_vlan_pop);
6411 
6412 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6413  * Expects skb->data at mac header.
6414  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)6415 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6416 {
6417 	if (skb_vlan_tag_present(skb)) {
6418 		int offset = skb->data - skb_mac_header(skb);
6419 		int err;
6420 
6421 		if (WARN_ONCE(offset,
6422 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6423 			      offset)) {
6424 			return -EINVAL;
6425 		}
6426 
6427 		err = __vlan_insert_tag(skb, skb->vlan_proto,
6428 					skb_vlan_tag_get(skb));
6429 		if (err)
6430 			return err;
6431 
6432 		skb->protocol = skb->vlan_proto;
6433 		skb->network_header -= VLAN_HLEN;
6434 
6435 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6436 	}
6437 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6438 	return 0;
6439 }
6440 EXPORT_SYMBOL(skb_vlan_push);
6441 
6442 /**
6443  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6444  *
6445  * @skb: Socket buffer to modify
6446  *
6447  * Drop the Ethernet header of @skb.
6448  *
6449  * Expects that skb->data points to the mac header and that no VLAN tags are
6450  * present.
6451  *
6452  * Returns 0 on success, -errno otherwise.
6453  */
skb_eth_pop(struct sk_buff * skb)6454 int skb_eth_pop(struct sk_buff *skb)
6455 {
6456 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6457 	    skb_network_offset(skb) < ETH_HLEN)
6458 		return -EPROTO;
6459 
6460 	skb_pull_rcsum(skb, ETH_HLEN);
6461 	skb_reset_mac_header(skb);
6462 	skb_reset_mac_len(skb);
6463 
6464 	return 0;
6465 }
6466 EXPORT_SYMBOL(skb_eth_pop);
6467 
6468 /**
6469  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6470  *
6471  * @skb: Socket buffer to modify
6472  * @dst: Destination MAC address of the new header
6473  * @src: Source MAC address of the new header
6474  *
6475  * Prepend @skb with a new Ethernet header.
6476  *
6477  * Expects that skb->data points to the mac header, which must be empty.
6478  *
6479  * Returns 0 on success, -errno otherwise.
6480  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)6481 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6482 		 const unsigned char *src)
6483 {
6484 	struct ethhdr *eth;
6485 	int err;
6486 
6487 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6488 		return -EPROTO;
6489 
6490 	err = skb_cow_head(skb, sizeof(*eth));
6491 	if (err < 0)
6492 		return err;
6493 
6494 	skb_push(skb, sizeof(*eth));
6495 	skb_reset_mac_header(skb);
6496 	skb_reset_mac_len(skb);
6497 
6498 	eth = eth_hdr(skb);
6499 	ether_addr_copy(eth->h_dest, dst);
6500 	ether_addr_copy(eth->h_source, src);
6501 	eth->h_proto = skb->protocol;
6502 
6503 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6504 
6505 	return 0;
6506 }
6507 EXPORT_SYMBOL(skb_eth_push);
6508 
6509 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)6510 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6511 			     __be16 ethertype)
6512 {
6513 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6514 		__be16 diff[] = { ~hdr->h_proto, ethertype };
6515 
6516 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6517 	}
6518 
6519 	hdr->h_proto = ethertype;
6520 }
6521 
6522 /**
6523  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6524  *                   the packet
6525  *
6526  * @skb: buffer
6527  * @mpls_lse: MPLS label stack entry to push
6528  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6529  * @mac_len: length of the MAC header
6530  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6531  *            ethernet
6532  *
6533  * Expects skb->data at mac header.
6534  *
6535  * Returns 0 on success, -errno otherwise.
6536  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)6537 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6538 		  int mac_len, bool ethernet)
6539 {
6540 	struct mpls_shim_hdr *lse;
6541 	int err;
6542 
6543 	if (unlikely(!eth_p_mpls(mpls_proto)))
6544 		return -EINVAL;
6545 
6546 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6547 	if (skb->encapsulation)
6548 		return -EINVAL;
6549 
6550 	err = skb_cow_head(skb, MPLS_HLEN);
6551 	if (unlikely(err))
6552 		return err;
6553 
6554 	if (!skb->inner_protocol) {
6555 		skb_set_inner_network_header(skb, skb_network_offset(skb));
6556 		skb_set_inner_protocol(skb, skb->protocol);
6557 	}
6558 
6559 	skb_push(skb, MPLS_HLEN);
6560 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6561 		mac_len);
6562 	skb_reset_mac_header(skb);
6563 	skb_set_network_header(skb, mac_len);
6564 	skb_reset_mac_len(skb);
6565 
6566 	lse = mpls_hdr(skb);
6567 	lse->label_stack_entry = mpls_lse;
6568 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6569 
6570 	if (ethernet && mac_len >= ETH_HLEN)
6571 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6572 	skb->protocol = mpls_proto;
6573 
6574 	return 0;
6575 }
6576 EXPORT_SYMBOL_GPL(skb_mpls_push);
6577 
6578 /**
6579  * skb_mpls_pop() - pop the outermost MPLS header
6580  *
6581  * @skb: buffer
6582  * @next_proto: ethertype of header after popped MPLS header
6583  * @mac_len: length of the MAC header
6584  * @ethernet: flag to indicate if the packet is ethernet
6585  *
6586  * Expects skb->data at mac header.
6587  *
6588  * Returns 0 on success, -errno otherwise.
6589  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6590 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6591 		 bool ethernet)
6592 {
6593 	int err;
6594 
6595 	if (unlikely(!eth_p_mpls(skb->protocol)))
6596 		return 0;
6597 
6598 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6599 	if (unlikely(err))
6600 		return err;
6601 
6602 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6603 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6604 		mac_len);
6605 
6606 	__skb_pull(skb, MPLS_HLEN);
6607 	skb_reset_mac_header(skb);
6608 	skb_set_network_header(skb, mac_len);
6609 
6610 	if (ethernet && mac_len >= ETH_HLEN) {
6611 		struct ethhdr *hdr;
6612 
6613 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6614 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6615 		skb_mod_eth_type(skb, hdr, next_proto);
6616 	}
6617 	skb->protocol = next_proto;
6618 
6619 	return 0;
6620 }
6621 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6622 
6623 /**
6624  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6625  *
6626  * @skb: buffer
6627  * @mpls_lse: new MPLS label stack entry to update to
6628  *
6629  * Expects skb->data at mac header.
6630  *
6631  * Returns 0 on success, -errno otherwise.
6632  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6633 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6634 {
6635 	int err;
6636 
6637 	if (unlikely(!eth_p_mpls(skb->protocol)))
6638 		return -EINVAL;
6639 
6640 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6641 	if (unlikely(err))
6642 		return err;
6643 
6644 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6645 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6646 
6647 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6648 	}
6649 
6650 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6651 
6652 	return 0;
6653 }
6654 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6655 
6656 /**
6657  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6658  *
6659  * @skb: buffer
6660  *
6661  * Expects skb->data at mac header.
6662  *
6663  * Returns 0 on success, -errno otherwise.
6664  */
skb_mpls_dec_ttl(struct sk_buff * skb)6665 int skb_mpls_dec_ttl(struct sk_buff *skb)
6666 {
6667 	u32 lse;
6668 	u8 ttl;
6669 
6670 	if (unlikely(!eth_p_mpls(skb->protocol)))
6671 		return -EINVAL;
6672 
6673 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6674 		return -ENOMEM;
6675 
6676 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6677 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6678 	if (!--ttl)
6679 		return -EINVAL;
6680 
6681 	lse &= ~MPLS_LS_TTL_MASK;
6682 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6683 
6684 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6685 }
6686 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6687 
6688 /**
6689  * alloc_skb_with_frags - allocate skb with page frags
6690  *
6691  * @header_len: size of linear part
6692  * @data_len: needed length in frags
6693  * @order: max page order desired.
6694  * @errcode: pointer to error code if any
6695  * @gfp_mask: allocation mask
6696  *
6697  * This can be used to allocate a paged skb, given a maximal order for frags.
6698  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int order,int * errcode,gfp_t gfp_mask)6699 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6700 				     unsigned long data_len,
6701 				     int order,
6702 				     int *errcode,
6703 				     gfp_t gfp_mask)
6704 {
6705 	unsigned long chunk;
6706 	struct sk_buff *skb;
6707 	struct page *page;
6708 	int nr_frags = 0;
6709 
6710 	*errcode = -EMSGSIZE;
6711 	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6712 		return NULL;
6713 
6714 	*errcode = -ENOBUFS;
6715 	skb = alloc_skb(header_len, gfp_mask);
6716 	if (!skb)
6717 		return NULL;
6718 
6719 	while (data_len) {
6720 		if (nr_frags == MAX_SKB_FRAGS)
6721 			goto failure;
6722 		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6723 			order--;
6724 
6725 		if (order) {
6726 			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6727 					   __GFP_COMP |
6728 					   __GFP_NOWARN,
6729 					   order);
6730 			if (!page) {
6731 				order--;
6732 				continue;
6733 			}
6734 		} else {
6735 			page = alloc_page(gfp_mask);
6736 			if (!page)
6737 				goto failure;
6738 		}
6739 		chunk = min_t(unsigned long, data_len,
6740 			      PAGE_SIZE << order);
6741 		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6742 		nr_frags++;
6743 		skb->truesize += (PAGE_SIZE << order);
6744 		data_len -= chunk;
6745 	}
6746 	return skb;
6747 
6748 failure:
6749 	kfree_skb(skb);
6750 	return NULL;
6751 }
6752 EXPORT_SYMBOL(alloc_skb_with_frags);
6753 
6754 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6755 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6756 				    const int headlen, gfp_t gfp_mask)
6757 {
6758 	int i;
6759 	unsigned int size = skb_end_offset(skb);
6760 	int new_hlen = headlen - off;
6761 	u8 *data;
6762 
6763 	if (skb_pfmemalloc(skb))
6764 		gfp_mask |= __GFP_MEMALLOC;
6765 
6766 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6767 	if (!data)
6768 		return -ENOMEM;
6769 	size = SKB_WITH_OVERHEAD(size);
6770 
6771 	/* Copy real data, and all frags */
6772 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6773 	skb->len -= off;
6774 
6775 	memcpy((struct skb_shared_info *)(data + size),
6776 	       skb_shinfo(skb),
6777 	       offsetof(struct skb_shared_info,
6778 			frags[skb_shinfo(skb)->nr_frags]));
6779 	if (skb_cloned(skb)) {
6780 		/* drop the old head gracefully */
6781 		if (skb_orphan_frags(skb, gfp_mask)) {
6782 			skb_kfree_head(data, size);
6783 			return -ENOMEM;
6784 		}
6785 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6786 			skb_frag_ref(skb, i);
6787 		if (skb_has_frag_list(skb))
6788 			skb_clone_fraglist(skb);
6789 		skb_release_data(skb, SKB_CONSUMED);
6790 	} else {
6791 		/* we can reuse existing recount- all we did was
6792 		 * relocate values
6793 		 */
6794 		skb_free_head(skb);
6795 	}
6796 
6797 	skb->head = data;
6798 	skb->data = data;
6799 	skb->head_frag = 0;
6800 	skb_set_end_offset(skb, size);
6801 	skb_set_tail_pointer(skb, skb_headlen(skb));
6802 	skb_headers_offset_update(skb, 0);
6803 	skb->cloned = 0;
6804 	skb->hdr_len = 0;
6805 	skb->nohdr = 0;
6806 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6807 
6808 	return 0;
6809 }
6810 
6811 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6812 
6813 /* carve out the first eat bytes from skb's frag_list. May recurse into
6814  * pskb_carve()
6815  */
pskb_carve_frag_list(struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6816 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat,
6817 				gfp_t gfp_mask)
6818 {
6819 	struct sk_buff *list = shinfo->frag_list;
6820 	struct sk_buff *clone = NULL;
6821 	struct sk_buff *insp = NULL;
6822 
6823 	do {
6824 		if (!list) {
6825 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6826 			return -EFAULT;
6827 		}
6828 		if (list->len <= eat) {
6829 			/* Eaten as whole. */
6830 			eat -= list->len;
6831 			list = list->next;
6832 			insp = list;
6833 		} else {
6834 			/* Eaten partially. */
6835 			if (skb_shared(list)) {
6836 				clone = skb_clone(list, gfp_mask);
6837 				if (!clone)
6838 					return -ENOMEM;
6839 				insp = list->next;
6840 				list = clone;
6841 			} else {
6842 				/* This may be pulled without problems. */
6843 				insp = list;
6844 			}
6845 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6846 				kfree_skb(clone);
6847 				return -ENOMEM;
6848 			}
6849 			break;
6850 		}
6851 	} while (eat);
6852 
6853 	/* Free pulled out fragments. */
6854 	while ((list = shinfo->frag_list) != insp) {
6855 		shinfo->frag_list = list->next;
6856 		consume_skb(list);
6857 	}
6858 	/* And insert new clone at head. */
6859 	if (clone) {
6860 		clone->next = list;
6861 		shinfo->frag_list = clone;
6862 	}
6863 	return 0;
6864 }
6865 
6866 /* carve off first len bytes from skb. Split line (off) is in the
6867  * non-linear part of skb
6868  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6869 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6870 				       int pos, gfp_t gfp_mask)
6871 {
6872 	int i, k = 0;
6873 	unsigned int size = skb_end_offset(skb);
6874 	u8 *data;
6875 	const int nfrags = skb_shinfo(skb)->nr_frags;
6876 	struct skb_shared_info *shinfo;
6877 
6878 	if (skb_pfmemalloc(skb))
6879 		gfp_mask |= __GFP_MEMALLOC;
6880 
6881 	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6882 	if (!data)
6883 		return -ENOMEM;
6884 	size = SKB_WITH_OVERHEAD(size);
6885 
6886 	memcpy((struct skb_shared_info *)(data + size),
6887 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6888 	if (skb_orphan_frags(skb, gfp_mask)) {
6889 		skb_kfree_head(data, size);
6890 		return -ENOMEM;
6891 	}
6892 	shinfo = (struct skb_shared_info *)(data + size);
6893 	for (i = 0; i < nfrags; i++) {
6894 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6895 
6896 		if (pos + fsize > off) {
6897 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6898 
6899 			if (pos < off) {
6900 				/* Split frag.
6901 				 * We have two variants in this case:
6902 				 * 1. Move all the frag to the second
6903 				 *    part, if it is possible. F.e.
6904 				 *    this approach is mandatory for TUX,
6905 				 *    where splitting is expensive.
6906 				 * 2. Split is accurately. We make this.
6907 				 */
6908 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6909 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6910 			}
6911 			skb_frag_ref(skb, i);
6912 			k++;
6913 		}
6914 		pos += fsize;
6915 	}
6916 	shinfo->nr_frags = k;
6917 	if (skb_has_frag_list(skb))
6918 		skb_clone_fraglist(skb);
6919 
6920 	/* split line is in frag list */
6921 	if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) {
6922 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6923 		if (skb_has_frag_list(skb))
6924 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6925 		skb_kfree_head(data, size);
6926 		return -ENOMEM;
6927 	}
6928 	skb_release_data(skb, SKB_CONSUMED);
6929 
6930 	skb->head = data;
6931 	skb->head_frag = 0;
6932 	skb->data = data;
6933 	skb_set_end_offset(skb, size);
6934 	skb_reset_tail_pointer(skb);
6935 	skb_headers_offset_update(skb, 0);
6936 	skb->cloned   = 0;
6937 	skb->hdr_len  = 0;
6938 	skb->nohdr    = 0;
6939 	skb->len -= off;
6940 	skb->data_len = skb->len;
6941 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6942 	return 0;
6943 }
6944 
6945 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6946 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6947 {
6948 	int headlen = skb_headlen(skb);
6949 
6950 	if (len < headlen)
6951 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6952 	else
6953 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6954 }
6955 
6956 /* Extract to_copy bytes starting at off from skb, and return this in
6957  * a new skb
6958  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6959 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6960 			     int to_copy, gfp_t gfp)
6961 {
6962 	struct sk_buff  *clone = skb_clone(skb, gfp);
6963 
6964 	if (!clone)
6965 		return NULL;
6966 
6967 	if (pskb_carve(clone, off, gfp) < 0 ||
6968 	    pskb_trim(clone, to_copy)) {
6969 		kfree_skb(clone);
6970 		return NULL;
6971 	}
6972 	return clone;
6973 }
6974 EXPORT_SYMBOL(pskb_extract);
6975 
6976 /**
6977  * skb_condense - try to get rid of fragments/frag_list if possible
6978  * @skb: buffer
6979  *
6980  * Can be used to save memory before skb is added to a busy queue.
6981  * If packet has bytes in frags and enough tail room in skb->head,
6982  * pull all of them, so that we can free the frags right now and adjust
6983  * truesize.
6984  * Notes:
6985  *	We do not reallocate skb->head thus can not fail.
6986  *	Caller must re-evaluate skb->truesize if needed.
6987  */
skb_condense(struct sk_buff * skb)6988 void skb_condense(struct sk_buff *skb)
6989 {
6990 	if (skb->data_len) {
6991 		if (skb->data_len > skb->end - skb->tail ||
6992 		    skb_cloned(skb) || !skb_frags_readable(skb))
6993 			return;
6994 
6995 		/* Nice, we can free page frag(s) right now */
6996 		__pskb_pull_tail(skb, skb->data_len);
6997 	}
6998 	/* At this point, skb->truesize might be over estimated,
6999 	 * because skb had a fragment, and fragments do not tell
7000 	 * their truesize.
7001 	 * When we pulled its content into skb->head, fragment
7002 	 * was freed, but __pskb_pull_tail() could not possibly
7003 	 * adjust skb->truesize, not knowing the frag truesize.
7004 	 */
7005 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
7006 }
7007 EXPORT_SYMBOL(skb_condense);
7008 
7009 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)7010 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
7011 {
7012 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
7013 }
7014 
7015 /**
7016  * __skb_ext_alloc - allocate a new skb extensions storage
7017  *
7018  * @flags: See kmalloc().
7019  *
7020  * Returns the newly allocated pointer. The pointer can later attached to a
7021  * skb via __skb_ext_set().
7022  * Note: caller must handle the skb_ext as an opaque data.
7023  */
__skb_ext_alloc(gfp_t flags)7024 struct skb_ext *__skb_ext_alloc(gfp_t flags)
7025 {
7026 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
7027 
7028 	if (new) {
7029 		memset(new->offset, 0, sizeof(new->offset));
7030 		refcount_set(&new->refcnt, 1);
7031 	}
7032 
7033 	return new;
7034 }
7035 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)7036 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
7037 					 unsigned int old_active)
7038 {
7039 	struct skb_ext *new;
7040 
7041 	if (refcount_read(&old->refcnt) == 1)
7042 		return old;
7043 
7044 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
7045 	if (!new)
7046 		return NULL;
7047 
7048 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
7049 	refcount_set(&new->refcnt, 1);
7050 
7051 #ifdef CONFIG_XFRM
7052 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
7053 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
7054 		unsigned int i;
7055 
7056 		for (i = 0; i < sp->len; i++)
7057 			xfrm_state_hold(sp->xvec[i]);
7058 	}
7059 #endif
7060 #ifdef CONFIG_MCTP_FLOWS
7061 	if (old_active & (1 << SKB_EXT_MCTP)) {
7062 		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
7063 
7064 		if (flow->key)
7065 			refcount_inc(&flow->key->refs);
7066 	}
7067 #endif
7068 	__skb_ext_put(old);
7069 	return new;
7070 }
7071 
7072 /**
7073  * __skb_ext_set - attach the specified extension storage to this skb
7074  * @skb: buffer
7075  * @id: extension id
7076  * @ext: extension storage previously allocated via __skb_ext_alloc()
7077  *
7078  * Existing extensions, if any, are cleared.
7079  *
7080  * Returns the pointer to the extension.
7081  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)7082 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
7083 		    struct skb_ext *ext)
7084 {
7085 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
7086 
7087 	skb_ext_put(skb);
7088 	newlen = newoff + skb_ext_type_len[id];
7089 	ext->chunks = newlen;
7090 	ext->offset[id] = newoff;
7091 	skb->extensions = ext;
7092 	skb->active_extensions = 1 << id;
7093 	return skb_ext_get_ptr(ext, id);
7094 }
7095 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL");
7096 
7097 /**
7098  * skb_ext_add - allocate space for given extension, COW if needed
7099  * @skb: buffer
7100  * @id: extension to allocate space for
7101  *
7102  * Allocates enough space for the given extension.
7103  * If the extension is already present, a pointer to that extension
7104  * is returned.
7105  *
7106  * If the skb was cloned, COW applies and the returned memory can be
7107  * modified without changing the extension space of clones buffers.
7108  *
7109  * Returns pointer to the extension or NULL on allocation failure.
7110  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)7111 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
7112 {
7113 	struct skb_ext *new, *old = NULL;
7114 	unsigned int newlen, newoff;
7115 
7116 	if (skb->active_extensions) {
7117 		old = skb->extensions;
7118 
7119 		new = skb_ext_maybe_cow(old, skb->active_extensions);
7120 		if (!new)
7121 			return NULL;
7122 
7123 		if (__skb_ext_exist(new, id))
7124 			goto set_active;
7125 
7126 		newoff = new->chunks;
7127 	} else {
7128 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
7129 
7130 		new = __skb_ext_alloc(GFP_ATOMIC);
7131 		if (!new)
7132 			return NULL;
7133 	}
7134 
7135 	newlen = newoff + skb_ext_type_len[id];
7136 	new->chunks = newlen;
7137 	new->offset[id] = newoff;
7138 set_active:
7139 	skb->slow_gro = 1;
7140 	skb->extensions = new;
7141 	skb->active_extensions |= 1 << id;
7142 	return skb_ext_get_ptr(new, id);
7143 }
7144 EXPORT_SYMBOL(skb_ext_add);
7145 
7146 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)7147 static void skb_ext_put_sp(struct sec_path *sp)
7148 {
7149 	unsigned int i;
7150 
7151 	for (i = 0; i < sp->len; i++)
7152 		xfrm_state_put(sp->xvec[i]);
7153 }
7154 #endif
7155 
7156 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)7157 static void skb_ext_put_mctp(struct mctp_flow *flow)
7158 {
7159 	if (flow->key)
7160 		mctp_key_unref(flow->key);
7161 }
7162 #endif
7163 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)7164 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
7165 {
7166 	struct skb_ext *ext = skb->extensions;
7167 
7168 	skb->active_extensions &= ~(1 << id);
7169 	if (skb->active_extensions == 0) {
7170 		skb->extensions = NULL;
7171 		__skb_ext_put(ext);
7172 #ifdef CONFIG_XFRM
7173 	} else if (id == SKB_EXT_SEC_PATH &&
7174 		   refcount_read(&ext->refcnt) == 1) {
7175 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
7176 
7177 		skb_ext_put_sp(sp);
7178 		sp->len = 0;
7179 #endif
7180 	}
7181 }
7182 EXPORT_SYMBOL(__skb_ext_del);
7183 
__skb_ext_put(struct skb_ext * ext)7184 void __skb_ext_put(struct skb_ext *ext)
7185 {
7186 	/* If this is last clone, nothing can increment
7187 	 * it after check passes.  Avoids one atomic op.
7188 	 */
7189 	if (refcount_read(&ext->refcnt) == 1)
7190 		goto free_now;
7191 
7192 	if (!refcount_dec_and_test(&ext->refcnt))
7193 		return;
7194 free_now:
7195 #ifdef CONFIG_XFRM
7196 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7197 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7198 #endif
7199 #ifdef CONFIG_MCTP_FLOWS
7200 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7201 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7202 #endif
7203 
7204 	kmem_cache_free(skbuff_ext_cache, ext);
7205 }
7206 EXPORT_SYMBOL(__skb_ext_put);
7207 #endif /* CONFIG_SKB_EXTENSIONS */
7208 
kfree_skb_napi_cache(struct sk_buff * skb)7209 static void kfree_skb_napi_cache(struct sk_buff *skb)
7210 {
7211 	/* if SKB is a clone, don't handle this case */
7212 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7213 		__kfree_skb(skb);
7214 		return;
7215 	}
7216 
7217 	local_bh_disable();
7218 	__napi_kfree_skb(skb, SKB_CONSUMED);
7219 	local_bh_enable();
7220 }
7221 
7222 /**
7223  * skb_attempt_defer_free - queue skb for remote freeing
7224  * @skb: buffer
7225  *
7226  * Put @skb in a per-cpu list, using the cpu which
7227  * allocated the skb/pages to reduce false sharing
7228  * and memory zone spinlock contention.
7229  */
skb_attempt_defer_free(struct sk_buff * skb)7230 void skb_attempt_defer_free(struct sk_buff *skb)
7231 {
7232 	struct skb_defer_node *sdn;
7233 	unsigned long defer_count;
7234 	int cpu = skb->alloc_cpu;
7235 	unsigned int defer_max;
7236 	bool kick;
7237 
7238 	if (cpu == raw_smp_processor_id() ||
7239 	    WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7240 	    !cpu_online(cpu)) {
7241 nodefer:	kfree_skb_napi_cache(skb);
7242 		return;
7243 	}
7244 
7245 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7246 	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7247 	DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb));
7248 
7249 	sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id();
7250 
7251 	defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7252 	defer_count = atomic_long_inc_return(&sdn->defer_count);
7253 
7254 	if (defer_count >= defer_max)
7255 		goto nodefer;
7256 
7257 	llist_add(&skb->ll_node, &sdn->defer_list);
7258 
7259 	/* Send an IPI every time queue reaches half capacity. */
7260 	kick = (defer_count - 1) == (defer_max >> 1);
7261 
7262 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7263 	 * if we are unlucky enough (this seems very unlikely).
7264 	 */
7265 	if (unlikely(kick))
7266 		kick_defer_list_purge(cpu);
7267 }
7268 
skb_splice_csum_page(struct sk_buff * skb,struct page * page,size_t offset,size_t len)7269 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7270 				 size_t offset, size_t len)
7271 {
7272 	const char *kaddr;
7273 	__wsum csum;
7274 
7275 	kaddr = kmap_local_page(page);
7276 	csum = csum_partial(kaddr + offset, len, 0);
7277 	kunmap_local(kaddr);
7278 	skb->csum = csum_block_add(skb->csum, csum, skb->len);
7279 }
7280 
7281 /**
7282  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7283  * @skb: The buffer to add pages to
7284  * @iter: Iterator representing the pages to be added
7285  * @maxsize: Maximum amount of pages to be added
7286  *
7287  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7288  * extracts pages from an iterator and adds them to the socket buffer if
7289  * possible, copying them to fragments if not possible (such as if they're slab
7290  * pages).
7291  *
7292  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7293  * insufficient space in the buffer to transfer anything.
7294  */
skb_splice_from_iter(struct sk_buff * skb,struct iov_iter * iter,ssize_t maxsize)7295 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7296 			     ssize_t maxsize)
7297 {
7298 	size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7299 	struct page *pages[8], **ppages = pages;
7300 	ssize_t spliced = 0, ret = 0;
7301 	unsigned int i;
7302 
7303 	while (iter->count > 0) {
7304 		ssize_t space, nr, len;
7305 		size_t off;
7306 
7307 		ret = -EMSGSIZE;
7308 		space = frag_limit - skb_shinfo(skb)->nr_frags;
7309 		if (space < 0)
7310 			break;
7311 
7312 		/* We might be able to coalesce without increasing nr_frags */
7313 		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7314 
7315 		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7316 		if (len <= 0) {
7317 			ret = len ?: -EIO;
7318 			break;
7319 		}
7320 
7321 		i = 0;
7322 		do {
7323 			struct page *page = pages[i++];
7324 			size_t part = min_t(size_t, PAGE_SIZE - off, len);
7325 
7326 			ret = -EIO;
7327 			if (WARN_ON_ONCE(!sendpage_ok(page)))
7328 				goto out;
7329 
7330 			ret = skb_append_pagefrags(skb, page, off, part,
7331 						   frag_limit);
7332 			if (ret < 0) {
7333 				iov_iter_revert(iter, len);
7334 				goto out;
7335 			}
7336 
7337 			if (skb->ip_summed == CHECKSUM_NONE)
7338 				skb_splice_csum_page(skb, page, off, part);
7339 
7340 			off = 0;
7341 			spliced += part;
7342 			maxsize -= part;
7343 			len -= part;
7344 		} while (len > 0);
7345 
7346 		if (maxsize <= 0)
7347 			break;
7348 	}
7349 
7350 out:
7351 	skb_len_add(skb, spliced);
7352 	return spliced ?: ret;
7353 }
7354 EXPORT_SYMBOL(skb_splice_from_iter);
7355 
7356 static __always_inline
memcpy_from_iter_csum(void * iter_from,size_t progress,size_t len,void * to,void * priv2)7357 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7358 			     size_t len, void *to, void *priv2)
7359 {
7360 	__wsum *csum = priv2;
7361 	__wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7362 
7363 	*csum = csum_block_add(*csum, next, progress);
7364 	return 0;
7365 }
7366 
7367 static __always_inline
copy_from_user_iter_csum(void __user * iter_from,size_t progress,size_t len,void * to,void * priv2)7368 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7369 				size_t len, void *to, void *priv2)
7370 {
7371 	__wsum next, *csum = priv2;
7372 
7373 	next = csum_and_copy_from_user(iter_from, to + progress, len);
7374 	*csum = csum_block_add(*csum, next, progress);
7375 	return next ? 0 : len;
7376 }
7377 
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)7378 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7379 				  __wsum *csum, struct iov_iter *i)
7380 {
7381 	size_t copied;
7382 
7383 	if (WARN_ON_ONCE(!i->data_source))
7384 		return false;
7385 	copied = iterate_and_advance2(i, bytes, addr, csum,
7386 				      copy_from_user_iter_csum,
7387 				      memcpy_from_iter_csum);
7388 	if (likely(copied == bytes))
7389 		return true;
7390 	iov_iter_revert(i, copied);
7391 	return false;
7392 }
7393 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7394 
get_netmem(netmem_ref netmem)7395 void get_netmem(netmem_ref netmem)
7396 {
7397 	struct net_iov *niov;
7398 
7399 	if (netmem_is_net_iov(netmem)) {
7400 		niov = netmem_to_net_iov(netmem);
7401 		if (net_is_devmem_iov(niov))
7402 			net_devmem_get_net_iov(netmem_to_net_iov(netmem));
7403 		return;
7404 	}
7405 	get_page(netmem_to_page(netmem));
7406 }
7407 EXPORT_SYMBOL(get_netmem);
7408 
put_netmem(netmem_ref netmem)7409 void put_netmem(netmem_ref netmem)
7410 {
7411 	struct net_iov *niov;
7412 
7413 	if (netmem_is_net_iov(netmem)) {
7414 		niov = netmem_to_net_iov(netmem);
7415 		if (net_is_devmem_iov(niov))
7416 			net_devmem_put_net_iov(netmem_to_net_iov(netmem));
7417 		return;
7418 	}
7419 
7420 	put_page(netmem_to_page(netmem));
7421 }
7422 EXPORT_SYMBOL(put_netmem);
7423