xref: /linux/drivers/clk/clk.c (revision 522ba450b56fff29f868b1552bdc2965f55de7ed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk/clk-conf.h>
10 #include <linux/clkdev.h>
11 #include <linux/clk.h>
12 #include <linux/clk-provider.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/hashtable.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/of.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/stringhash.h>
27 
28 #include "clk.h"
29 
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32 
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35 
36 static int prepare_refcnt;
37 static int enable_refcnt;
38 
39 #define CLK_HASH_BITS 9
40 static DEFINE_HASHTABLE(clk_hashtable, CLK_HASH_BITS);
41 
42 static HLIST_HEAD(clk_root_list);
43 static HLIST_HEAD(clk_orphan_list);
44 static LIST_HEAD(clk_notifier_list);
45 
46 /* List of registered clks that use runtime PM */
47 static HLIST_HEAD(clk_rpm_list);
48 static DEFINE_MUTEX(clk_rpm_list_lock);
49 
50 static const struct hlist_head *all_lists[] = {
51 	&clk_root_list,
52 	&clk_orphan_list,
53 	NULL,
54 };
55 
56 /***    private data structures    ***/
57 
58 struct clk_parent_map {
59 	const struct clk_hw	*hw;
60 	struct clk_core		*core;
61 	const char		*fw_name;
62 	const char		*name;
63 	int			index;
64 };
65 
66 struct clk_core {
67 	const char		*name;
68 	const struct clk_ops	*ops;
69 	struct clk_hw		*hw;
70 	struct module		*owner;
71 	struct device		*dev;
72 	struct hlist_node	rpm_node;
73 	struct device_node	*of_node;
74 	struct clk_core		*parent;
75 	struct clk_parent_map	*parents;
76 	u8			num_parents;
77 	u8			new_parent_index;
78 	unsigned long		rate;
79 	unsigned long		req_rate;
80 	unsigned long		new_rate;
81 	struct clk_core		*new_parent;
82 	struct clk_core		*new_child;
83 	unsigned long		flags;
84 	bool			orphan;
85 	bool			rpm_enabled;
86 	unsigned int		enable_count;
87 	unsigned int		prepare_count;
88 	unsigned int		protect_count;
89 	unsigned long		min_rate;
90 	unsigned long		max_rate;
91 	unsigned long		accuracy;
92 	int			phase;
93 	struct clk_duty		duty;
94 	struct hlist_head	children;
95 	struct hlist_node	child_node;
96 	struct hlist_node	hashtable_node;
97 	struct hlist_head	clks;
98 	unsigned int		notifier_count;
99 #ifdef CONFIG_DEBUG_FS
100 	struct dentry		*dentry;
101 	struct hlist_node	debug_node;
102 #endif
103 	struct kref		ref;
104 };
105 
106 #define CREATE_TRACE_POINTS
107 #include <trace/events/clk.h>
108 
109 struct clk {
110 	struct clk_core	*core;
111 	struct device *dev;
112 	const char *dev_id;
113 	const char *con_id;
114 	unsigned long min_rate;
115 	unsigned long max_rate;
116 	unsigned int exclusive_count;
117 	struct hlist_node clks_node;
118 };
119 
120 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)121 static int clk_pm_runtime_get(struct clk_core *core)
122 {
123 	if (!core->rpm_enabled)
124 		return 0;
125 
126 	return pm_runtime_resume_and_get(core->dev);
127 }
128 
clk_pm_runtime_put(struct clk_core * core)129 static void clk_pm_runtime_put(struct clk_core *core)
130 {
131 	if (!core->rpm_enabled)
132 		return;
133 
134 	pm_runtime_put_sync(core->dev);
135 }
136 
137 /**
138  * clk_pm_runtime_get_all() - Runtime "get" all clk provider devices
139  *
140  * Call clk_pm_runtime_get() on all runtime PM enabled clks in the clk tree so
141  * that disabling unused clks avoids a deadlock where a device is runtime PM
142  * resuming/suspending and the runtime PM callback is trying to grab the
143  * prepare_lock for something like clk_prepare_enable() while
144  * clk_disable_unused_subtree() holds the prepare_lock and is trying to runtime
145  * PM resume/suspend the device as well.
146  *
147  * Context: Acquires the 'clk_rpm_list_lock' and returns with the lock held on
148  * success. Otherwise the lock is released on failure.
149  *
150  * Return: 0 on success, negative errno otherwise.
151  */
clk_pm_runtime_get_all(void)152 static int clk_pm_runtime_get_all(void)
153 {
154 	int ret;
155 	struct clk_core *core, *failed;
156 
157 	/*
158 	 * Grab the list lock to prevent any new clks from being registered
159 	 * or unregistered until clk_pm_runtime_put_all().
160 	 */
161 	mutex_lock(&clk_rpm_list_lock);
162 
163 	/*
164 	 * Runtime PM "get" all the devices that are needed for the clks
165 	 * currently registered. Do this without holding the prepare_lock, to
166 	 * avoid the deadlock.
167 	 */
168 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
169 		ret = clk_pm_runtime_get(core);
170 		if (ret) {
171 			failed = core;
172 			pr_err("clk: Failed to runtime PM get '%s' for clk '%s'\n",
173 			       dev_name(failed->dev), failed->name);
174 			goto err;
175 		}
176 	}
177 
178 	return 0;
179 
180 err:
181 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node) {
182 		if (core == failed)
183 			break;
184 
185 		clk_pm_runtime_put(core);
186 	}
187 	mutex_unlock(&clk_rpm_list_lock);
188 
189 	return ret;
190 }
191 
192 /**
193  * clk_pm_runtime_put_all() - Runtime "put" all clk provider devices
194  *
195  * Put the runtime PM references taken in clk_pm_runtime_get_all() and release
196  * the 'clk_rpm_list_lock'.
197  */
clk_pm_runtime_put_all(void)198 static void clk_pm_runtime_put_all(void)
199 {
200 	struct clk_core *core;
201 
202 	hlist_for_each_entry(core, &clk_rpm_list, rpm_node)
203 		clk_pm_runtime_put(core);
204 	mutex_unlock(&clk_rpm_list_lock);
205 }
206 
clk_pm_runtime_init(struct clk_core * core)207 static void clk_pm_runtime_init(struct clk_core *core)
208 {
209 	struct device *dev = core->dev;
210 
211 	if (dev && pm_runtime_enabled(dev)) {
212 		core->rpm_enabled = true;
213 
214 		mutex_lock(&clk_rpm_list_lock);
215 		hlist_add_head(&core->rpm_node, &clk_rpm_list);
216 		mutex_unlock(&clk_rpm_list_lock);
217 	}
218 }
219 
220 /***           locking             ***/
clk_prepare_lock(void)221 static void clk_prepare_lock(void)
222 {
223 	if (!mutex_trylock(&prepare_lock)) {
224 		if (prepare_owner == current) {
225 			prepare_refcnt++;
226 			return;
227 		}
228 		mutex_lock(&prepare_lock);
229 	}
230 	WARN_ON_ONCE(prepare_owner != NULL);
231 	WARN_ON_ONCE(prepare_refcnt != 0);
232 	prepare_owner = current;
233 	prepare_refcnt = 1;
234 }
235 
clk_prepare_unlock(void)236 static void clk_prepare_unlock(void)
237 {
238 	WARN_ON_ONCE(prepare_owner != current);
239 	WARN_ON_ONCE(prepare_refcnt == 0);
240 
241 	if (--prepare_refcnt)
242 		return;
243 	prepare_owner = NULL;
244 	mutex_unlock(&prepare_lock);
245 }
246 
clk_enable_lock(void)247 static unsigned long clk_enable_lock(void)
248 	__acquires(enable_lock)
249 {
250 	unsigned long flags;
251 
252 	/*
253 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
254 	 * we already hold the lock. So, in that case, we rely only on
255 	 * reference counting.
256 	 */
257 	if (!IS_ENABLED(CONFIG_SMP) ||
258 	    !spin_trylock_irqsave(&enable_lock, flags)) {
259 		if (enable_owner == current) {
260 			enable_refcnt++;
261 			__acquire(enable_lock);
262 			if (!IS_ENABLED(CONFIG_SMP))
263 				local_save_flags(flags);
264 			return flags;
265 		}
266 		spin_lock_irqsave(&enable_lock, flags);
267 	}
268 	WARN_ON_ONCE(enable_owner != NULL);
269 	WARN_ON_ONCE(enable_refcnt != 0);
270 	enable_owner = current;
271 	enable_refcnt = 1;
272 	return flags;
273 }
274 
clk_enable_unlock(unsigned long flags)275 static void clk_enable_unlock(unsigned long flags)
276 	__releases(enable_lock)
277 {
278 	WARN_ON_ONCE(enable_owner != current);
279 	WARN_ON_ONCE(enable_refcnt == 0);
280 
281 	if (--enable_refcnt) {
282 		__release(enable_lock);
283 		return;
284 	}
285 	enable_owner = NULL;
286 	spin_unlock_irqrestore(&enable_lock, flags);
287 }
288 
clk_core_rate_is_protected(struct clk_core * core)289 static bool clk_core_rate_is_protected(struct clk_core *core)
290 {
291 	return core->protect_count;
292 }
293 
clk_core_is_prepared(struct clk_core * core)294 static bool clk_core_is_prepared(struct clk_core *core)
295 {
296 	bool ret = false;
297 
298 	/*
299 	 * .is_prepared is optional for clocks that can prepare
300 	 * fall back to software usage counter if it is missing
301 	 */
302 	if (!core->ops->is_prepared)
303 		return core->prepare_count;
304 
305 	if (!clk_pm_runtime_get(core)) {
306 		ret = core->ops->is_prepared(core->hw);
307 		clk_pm_runtime_put(core);
308 	}
309 
310 	return ret;
311 }
312 
clk_core_is_enabled(struct clk_core * core)313 static bool clk_core_is_enabled(struct clk_core *core)
314 {
315 	bool ret = false;
316 
317 	/*
318 	 * .is_enabled is only mandatory for clocks that gate
319 	 * fall back to software usage counter if .is_enabled is missing
320 	 */
321 	if (!core->ops->is_enabled)
322 		return core->enable_count;
323 
324 	/*
325 	 * Check if clock controller's device is runtime active before
326 	 * calling .is_enabled callback. If not, assume that clock is
327 	 * disabled, because we might be called from atomic context, from
328 	 * which pm_runtime_get() is not allowed.
329 	 * This function is called mainly from clk_disable_unused_subtree,
330 	 * which ensures proper runtime pm activation of controller before
331 	 * taking enable spinlock, but the below check is needed if one tries
332 	 * to call it from other places.
333 	 */
334 	if (core->rpm_enabled) {
335 		pm_runtime_get_noresume(core->dev);
336 		if (!pm_runtime_active(core->dev)) {
337 			ret = false;
338 			goto done;
339 		}
340 	}
341 
342 	/*
343 	 * This could be called with the enable lock held, or from atomic
344 	 * context. If the parent isn't enabled already, we can't do
345 	 * anything here. We can also assume this clock isn't enabled.
346 	 */
347 	if ((core->flags & CLK_OPS_PARENT_ENABLE) && core->parent)
348 		if (!clk_core_is_enabled(core->parent)) {
349 			ret = false;
350 			goto done;
351 		}
352 
353 	ret = core->ops->is_enabled(core->hw);
354 done:
355 	if (core->rpm_enabled)
356 		pm_runtime_put(core->dev);
357 
358 	return ret;
359 }
360 
361 /***    helper functions   ***/
362 
__clk_get_name(const struct clk * clk)363 const char *__clk_get_name(const struct clk *clk)
364 {
365 	return !clk ? NULL : clk->core->name;
366 }
367 EXPORT_SYMBOL_GPL(__clk_get_name);
368 
clk_hw_get_name(const struct clk_hw * hw)369 const char *clk_hw_get_name(const struct clk_hw *hw)
370 {
371 	return hw->core->name;
372 }
373 EXPORT_SYMBOL_GPL(clk_hw_get_name);
374 
clk_hw_get_dev(const struct clk_hw * hw)375 struct device *clk_hw_get_dev(const struct clk_hw *hw)
376 {
377 	return hw->core->dev;
378 }
379 EXPORT_SYMBOL_GPL(clk_hw_get_dev);
380 
clk_hw_get_of_node(const struct clk_hw * hw)381 struct device_node *clk_hw_get_of_node(const struct clk_hw *hw)
382 {
383 	return hw->core->of_node;
384 }
385 EXPORT_SYMBOL_GPL(clk_hw_get_of_node);
386 
__clk_get_hw(struct clk * clk)387 struct clk_hw *__clk_get_hw(struct clk *clk)
388 {
389 	return !clk ? NULL : clk->core->hw;
390 }
391 EXPORT_SYMBOL_GPL(__clk_get_hw);
392 
clk_hw_get_num_parents(const struct clk_hw * hw)393 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
394 {
395 	return hw->core->num_parents;
396 }
397 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
398 
clk_hw_get_parent(const struct clk_hw * hw)399 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
400 {
401 	return hw->core->parent ? hw->core->parent->hw : NULL;
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
404 
clk_core_lookup(const char * name)405 static struct clk_core *clk_core_lookup(const char *name)
406 {
407 	struct clk_core *core;
408 	u32 hash;
409 
410 	if (!name)
411 		return NULL;
412 
413 	hash = full_name_hash(NULL, name, strlen(name));
414 
415 	/* search the hashtable */
416 	hash_for_each_possible(clk_hashtable, core, hashtable_node, hash)
417 		if (!strcmp(core->name, name))
418 			return core;
419 
420 	return NULL;
421 }
422 
423 #ifdef CONFIG_OF
424 static int of_parse_clkspec(const struct device_node *np, int index,
425 			    const char *name, struct of_phandle_args *out_args);
426 static struct clk_hw *
427 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
428 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)429 static inline int of_parse_clkspec(const struct device_node *np, int index,
430 				   const char *name,
431 				   struct of_phandle_args *out_args)
432 {
433 	return -ENOENT;
434 }
435 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)436 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
437 {
438 	return ERR_PTR(-ENOENT);
439 }
440 #endif
441 
442 /**
443  * clk_core_get - Find the clk_core parent of a clk
444  * @core: clk to find parent of
445  * @p_index: parent index to search for
446  *
447  * This is the preferred method for clk providers to find the parent of a
448  * clk when that parent is external to the clk controller. The parent_names
449  * array is indexed and treated as a local name matching a string in the device
450  * node's 'clock-names' property or as the 'con_id' matching the device's
451  * dev_name() in a clk_lookup. This allows clk providers to use their own
452  * namespace instead of looking for a globally unique parent string.
453  *
454  * For example the following DT snippet would allow a clock registered by the
455  * clock-controller@c001 that has a clk_init_data::parent_data array
456  * with 'xtal' in the 'name' member to find the clock provided by the
457  * clock-controller@f00abcd without needing to get the globally unique name of
458  * the xtal clk.
459  *
460  *      parent: clock-controller@f00abcd {
461  *              reg = <0xf00abcd 0xabcd>;
462  *              #clock-cells = <0>;
463  *      };
464  *
465  *      clock-controller@c001 {
466  *              reg = <0xc001 0xf00d>;
467  *              clocks = <&parent>;
468  *              clock-names = "xtal";
469  *              #clock-cells = <1>;
470  *      };
471  *
472  * Returns: -ENOENT when the provider can't be found or the clk doesn't
473  * exist in the provider or the name can't be found in the DT node or
474  * in a clkdev lookup. NULL when the provider knows about the clk but it
475  * isn't provided on this system.
476  * A valid clk_core pointer when the clk can be found in the provider.
477  */
clk_core_get(struct clk_core * core,u8 p_index)478 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
479 {
480 	const char *name = core->parents[p_index].fw_name;
481 	int index = core->parents[p_index].index;
482 	struct clk_hw *hw = ERR_PTR(-ENOENT);
483 	struct device *dev = core->dev;
484 	const char *dev_id = dev ? dev_name(dev) : NULL;
485 	struct device_node *np = core->of_node;
486 	struct of_phandle_args clkspec;
487 
488 	if (np && (name || index >= 0) &&
489 	    !of_parse_clkspec(np, index, name, &clkspec)) {
490 		hw = of_clk_get_hw_from_clkspec(&clkspec);
491 		of_node_put(clkspec.np);
492 	} else if (name) {
493 		/*
494 		 * If the DT search above couldn't find the provider fallback to
495 		 * looking up via clkdev based clk_lookups.
496 		 */
497 		hw = clk_find_hw(dev_id, name);
498 	}
499 
500 	if (IS_ERR(hw))
501 		return ERR_CAST(hw);
502 
503 	if (!hw)
504 		return NULL;
505 
506 	return hw->core;
507 }
508 
clk_core_fill_parent_index(struct clk_core * core,u8 index)509 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
510 {
511 	struct clk_parent_map *entry = &core->parents[index];
512 	struct clk_core *parent;
513 
514 	if (entry->hw) {
515 		parent = entry->hw->core;
516 	} else {
517 		parent = clk_core_get(core, index);
518 		if (PTR_ERR(parent) == -ENOENT && entry->name)
519 			parent = clk_core_lookup(entry->name);
520 	}
521 
522 	/*
523 	 * We have a direct reference but it isn't registered yet?
524 	 * Orphan it and let clk_reparent() update the orphan status
525 	 * when the parent is registered.
526 	 */
527 	if (!parent)
528 		parent = ERR_PTR(-EPROBE_DEFER);
529 
530 	/* Only cache it if it's not an error */
531 	if (!IS_ERR(parent))
532 		entry->core = parent;
533 }
534 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)535 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
536 							 u8 index)
537 {
538 	if (!core || index >= core->num_parents || !core->parents)
539 		return NULL;
540 
541 	if (!core->parents[index].core)
542 		clk_core_fill_parent_index(core, index);
543 
544 	return core->parents[index].core;
545 }
546 
547 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)548 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
549 {
550 	struct clk_core *parent;
551 
552 	parent = clk_core_get_parent_by_index(hw->core, index);
553 
554 	return !parent ? NULL : parent->hw;
555 }
556 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
557 
__clk_get_enable_count(struct clk * clk)558 unsigned int __clk_get_enable_count(struct clk *clk)
559 {
560 	return !clk ? 0 : clk->core->enable_count;
561 }
562 
clk_core_get_rate_nolock(struct clk_core * core)563 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
564 {
565 	if (!core)
566 		return 0;
567 
568 	if (!core->num_parents || core->parent)
569 		return core->rate;
570 
571 	/*
572 	 * Clk must have a parent because num_parents > 0 but the parent isn't
573 	 * known yet. Best to return 0 as the rate of this clk until we can
574 	 * properly recalc the rate based on the parent's rate.
575 	 */
576 	return 0;
577 }
578 
clk_hw_get_rate(const struct clk_hw * hw)579 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
580 {
581 	return clk_core_get_rate_nolock(hw->core);
582 }
583 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
584 
clk_core_get_accuracy_no_lock(struct clk_core * core)585 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
586 {
587 	if (!core)
588 		return 0;
589 
590 	return core->accuracy;
591 }
592 
clk_hw_get_flags(const struct clk_hw * hw)593 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
594 {
595 	return hw->core->flags;
596 }
597 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
598 
clk_hw_is_prepared(const struct clk_hw * hw)599 bool clk_hw_is_prepared(const struct clk_hw *hw)
600 {
601 	return clk_core_is_prepared(hw->core);
602 }
603 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
604 
clk_hw_is_enabled(const struct clk_hw * hw)605 bool clk_hw_is_enabled(const struct clk_hw *hw)
606 {
607 	return clk_core_is_enabled(hw->core);
608 }
609 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
610 
__clk_is_enabled(struct clk * clk)611 bool __clk_is_enabled(struct clk *clk)
612 {
613 	if (!clk)
614 		return false;
615 
616 	return clk_core_is_enabled(clk->core);
617 }
618 EXPORT_SYMBOL_GPL(__clk_is_enabled);
619 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)620 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
621 			   unsigned long best, unsigned long flags)
622 {
623 	if (flags & CLK_MUX_ROUND_CLOSEST)
624 		return abs(now - rate) < abs(best - rate);
625 
626 	return now <= rate && now > best;
627 }
628 
629 static void clk_core_init_rate_req(struct clk_core * const core,
630 				   struct clk_rate_request *req,
631 				   unsigned long rate);
632 
633 static int clk_core_round_rate_nolock(struct clk_core *core,
634 				      struct clk_rate_request *req);
635 
clk_core_has_parent(struct clk_core * core,const struct clk_core * parent)636 static bool clk_core_has_parent(struct clk_core *core, const struct clk_core *parent)
637 {
638 	struct clk_core *tmp;
639 	unsigned int i;
640 
641 	/* Optimize for the case where the parent is already the parent. */
642 	if (core->parent == parent)
643 		return true;
644 
645 	for (i = 0; i < core->num_parents; i++) {
646 		tmp = clk_core_get_parent_by_index(core, i);
647 		if (!tmp)
648 			continue;
649 
650 		if (tmp == parent)
651 			return true;
652 	}
653 
654 	return false;
655 }
656 
657 static void
clk_core_forward_rate_req(struct clk_core * core,const struct clk_rate_request * old_req,struct clk_core * parent,struct clk_rate_request * req,unsigned long parent_rate)658 clk_core_forward_rate_req(struct clk_core *core,
659 			  const struct clk_rate_request *old_req,
660 			  struct clk_core *parent,
661 			  struct clk_rate_request *req,
662 			  unsigned long parent_rate)
663 {
664 	if (WARN_ON(!clk_core_has_parent(core, parent)))
665 		return;
666 
667 	clk_core_init_rate_req(parent, req, parent_rate);
668 
669 	if (req->min_rate < old_req->min_rate)
670 		req->min_rate = old_req->min_rate;
671 
672 	if (req->max_rate > old_req->max_rate)
673 		req->max_rate = old_req->max_rate;
674 }
675 
676 static int
clk_core_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)677 clk_core_determine_rate_no_reparent(struct clk_hw *hw,
678 				    struct clk_rate_request *req)
679 {
680 	struct clk_core *core = hw->core;
681 	struct clk_core *parent = core->parent;
682 	unsigned long best;
683 	int ret;
684 
685 	if (core->flags & CLK_SET_RATE_PARENT) {
686 		struct clk_rate_request parent_req;
687 
688 		if (!parent) {
689 			req->rate = 0;
690 			return 0;
691 		}
692 
693 		clk_core_forward_rate_req(core, req, parent, &parent_req,
694 					  req->rate);
695 
696 		trace_clk_rate_request_start(&parent_req);
697 
698 		ret = clk_core_round_rate_nolock(parent, &parent_req);
699 		if (ret)
700 			return ret;
701 
702 		trace_clk_rate_request_done(&parent_req);
703 
704 		best = parent_req.rate;
705 	} else if (parent) {
706 		best = clk_core_get_rate_nolock(parent);
707 	} else {
708 		best = clk_core_get_rate_nolock(core);
709 	}
710 
711 	req->best_parent_rate = best;
712 	req->rate = best;
713 
714 	return 0;
715 }
716 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)717 int clk_mux_determine_rate_flags(struct clk_hw *hw,
718 				 struct clk_rate_request *req,
719 				 unsigned long flags)
720 {
721 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
722 	int i, num_parents, ret;
723 	unsigned long best = 0;
724 
725 	/* if NO_REPARENT flag set, pass through to current parent */
726 	if (core->flags & CLK_SET_RATE_NO_REPARENT)
727 		return clk_core_determine_rate_no_reparent(hw, req);
728 
729 	/* find the parent that can provide the fastest rate <= rate */
730 	num_parents = core->num_parents;
731 	for (i = 0; i < num_parents; i++) {
732 		unsigned long parent_rate;
733 
734 		parent = clk_core_get_parent_by_index(core, i);
735 		if (!parent)
736 			continue;
737 
738 		if (core->flags & CLK_SET_RATE_PARENT) {
739 			struct clk_rate_request parent_req;
740 
741 			clk_core_forward_rate_req(core, req, parent, &parent_req, req->rate);
742 
743 			trace_clk_rate_request_start(&parent_req);
744 
745 			ret = clk_core_round_rate_nolock(parent, &parent_req);
746 			if (ret)
747 				continue;
748 
749 			trace_clk_rate_request_done(&parent_req);
750 
751 			parent_rate = parent_req.rate;
752 		} else {
753 			parent_rate = clk_core_get_rate_nolock(parent);
754 		}
755 
756 		if (mux_is_better_rate(req->rate, parent_rate,
757 				       best, flags)) {
758 			best_parent = parent;
759 			best = parent_rate;
760 		}
761 	}
762 
763 	if (!best_parent)
764 		return -EINVAL;
765 
766 	req->best_parent_hw = best_parent->hw;
767 	req->best_parent_rate = best;
768 	req->rate = best;
769 
770 	return 0;
771 }
772 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
773 
__clk_lookup(const char * name)774 struct clk *__clk_lookup(const char *name)
775 {
776 	struct clk_core *core = clk_core_lookup(name);
777 
778 	return !core ? NULL : core->hw->clk;
779 }
780 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)781 static void clk_core_get_boundaries(struct clk_core *core,
782 				    unsigned long *min_rate,
783 				    unsigned long *max_rate)
784 {
785 	struct clk *clk_user;
786 
787 	lockdep_assert_held(&prepare_lock);
788 
789 	*min_rate = core->min_rate;
790 	*max_rate = core->max_rate;
791 
792 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
793 		*min_rate = max(*min_rate, clk_user->min_rate);
794 
795 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
796 		*max_rate = min(*max_rate, clk_user->max_rate);
797 }
798 
799 /*
800  * clk_hw_get_rate_range() - returns the clock rate range for a hw clk
801  * @hw: the hw clk we want to get the range from
802  * @min_rate: pointer to the variable that will hold the minimum
803  * @max_rate: pointer to the variable that will hold the maximum
804  *
805  * Fills the @min_rate and @max_rate variables with the minimum and
806  * maximum that clock can reach.
807  */
clk_hw_get_rate_range(struct clk_hw * hw,unsigned long * min_rate,unsigned long * max_rate)808 void clk_hw_get_rate_range(struct clk_hw *hw, unsigned long *min_rate,
809 			   unsigned long *max_rate)
810 {
811 	clk_core_get_boundaries(hw->core, min_rate, max_rate);
812 }
813 EXPORT_SYMBOL_GPL(clk_hw_get_rate_range);
814 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)815 static bool clk_core_check_boundaries(struct clk_core *core,
816 				      unsigned long min_rate,
817 				      unsigned long max_rate)
818 {
819 	struct clk *user;
820 
821 	lockdep_assert_held(&prepare_lock);
822 
823 	if (min_rate > core->max_rate || max_rate < core->min_rate)
824 		return false;
825 
826 	hlist_for_each_entry(user, &core->clks, clks_node)
827 		if (min_rate > user->max_rate || max_rate < user->min_rate)
828 			return false;
829 
830 	return true;
831 }
832 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)833 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
834 			   unsigned long max_rate)
835 {
836 	hw->core->min_rate = min_rate;
837 	hw->core->max_rate = max_rate;
838 }
839 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
840 
841 /*
842  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
843  * @hw: mux type clk to determine rate on
844  * @req: rate request, also used to return preferred parent and frequencies
845  *
846  * Helper for finding best parent to provide a given frequency. This can be used
847  * directly as a determine_rate callback (e.g. for a mux), or from a more
848  * complex clock that may combine a mux with other operations.
849  *
850  * Returns: 0 on success, -EERROR value on error
851  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)852 int __clk_mux_determine_rate(struct clk_hw *hw,
853 			     struct clk_rate_request *req)
854 {
855 	return clk_mux_determine_rate_flags(hw, req, 0);
856 }
857 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
858 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)859 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
860 				     struct clk_rate_request *req)
861 {
862 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
863 }
864 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
865 
866 /*
867  * clk_hw_determine_rate_no_reparent - clk_ops::determine_rate implementation for a clk that doesn't reparent
868  * @hw: mux type clk to determine rate on
869  * @req: rate request, also used to return preferred frequency
870  *
871  * Helper for finding best parent rate to provide a given frequency.
872  * This can be used directly as a determine_rate callback (e.g. for a
873  * mux), or from a more complex clock that may combine a mux with other
874  * operations.
875  *
876  * Returns: 0 on success, -EERROR value on error
877  */
clk_hw_determine_rate_no_reparent(struct clk_hw * hw,struct clk_rate_request * req)878 int clk_hw_determine_rate_no_reparent(struct clk_hw *hw,
879 				      struct clk_rate_request *req)
880 {
881 	return clk_core_determine_rate_no_reparent(hw, req);
882 }
883 EXPORT_SYMBOL_GPL(clk_hw_determine_rate_no_reparent);
884 
885 /***        clk api        ***/
886 
clk_core_rate_unprotect(struct clk_core * core)887 static void clk_core_rate_unprotect(struct clk_core *core)
888 {
889 	lockdep_assert_held(&prepare_lock);
890 
891 	if (!core)
892 		return;
893 
894 	if (WARN(core->protect_count == 0,
895 	    "%s already unprotected\n", core->name))
896 		return;
897 
898 	if (--core->protect_count > 0)
899 		return;
900 
901 	clk_core_rate_unprotect(core->parent);
902 }
903 
clk_core_rate_nuke_protect(struct clk_core * core)904 static int clk_core_rate_nuke_protect(struct clk_core *core)
905 {
906 	int ret;
907 
908 	lockdep_assert_held(&prepare_lock);
909 
910 	if (!core)
911 		return -EINVAL;
912 
913 	if (core->protect_count == 0)
914 		return 0;
915 
916 	ret = core->protect_count;
917 	core->protect_count = 1;
918 	clk_core_rate_unprotect(core);
919 
920 	return ret;
921 }
922 
923 /**
924  * clk_rate_exclusive_put - release exclusivity over clock rate control
925  * @clk: the clk over which the exclusivity is released
926  *
927  * clk_rate_exclusive_put() completes a critical section during which a clock
928  * consumer cannot tolerate any other consumer making any operation on the
929  * clock which could result in a rate change or rate glitch. Exclusive clocks
930  * cannot have their rate changed, either directly or indirectly due to changes
931  * further up the parent chain of clocks. As a result, clocks up parent chain
932  * also get under exclusive control of the calling consumer.
933  *
934  * If exlusivity is claimed more than once on clock, even by the same consumer,
935  * the rate effectively gets locked as exclusivity can't be preempted.
936  *
937  * Calls to clk_rate_exclusive_put() must be balanced with calls to
938  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
939  * error status.
940  */
clk_rate_exclusive_put(struct clk * clk)941 void clk_rate_exclusive_put(struct clk *clk)
942 {
943 	if (!clk)
944 		return;
945 
946 	clk_prepare_lock();
947 
948 	/*
949 	 * if there is something wrong with this consumer protect count, stop
950 	 * here before messing with the provider
951 	 */
952 	if (WARN_ON(clk->exclusive_count <= 0))
953 		goto out;
954 
955 	clk_core_rate_unprotect(clk->core);
956 	clk->exclusive_count--;
957 out:
958 	clk_prepare_unlock();
959 }
960 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
961 
clk_core_rate_protect(struct clk_core * core)962 static void clk_core_rate_protect(struct clk_core *core)
963 {
964 	lockdep_assert_held(&prepare_lock);
965 
966 	if (!core)
967 		return;
968 
969 	if (core->protect_count == 0)
970 		clk_core_rate_protect(core->parent);
971 
972 	core->protect_count++;
973 }
974 
clk_core_rate_restore_protect(struct clk_core * core,int count)975 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
976 {
977 	lockdep_assert_held(&prepare_lock);
978 
979 	if (!core)
980 		return;
981 
982 	if (count == 0)
983 		return;
984 
985 	clk_core_rate_protect(core);
986 	core->protect_count = count;
987 }
988 
989 /**
990  * clk_rate_exclusive_get - get exclusivity over the clk rate control
991  * @clk: the clk over which the exclusity of rate control is requested
992  *
993  * clk_rate_exclusive_get() begins a critical section during which a clock
994  * consumer cannot tolerate any other consumer making any operation on the
995  * clock which could result in a rate change or rate glitch. Exclusive clocks
996  * cannot have their rate changed, either directly or indirectly due to changes
997  * further up the parent chain of clocks. As a result, clocks up parent chain
998  * also get under exclusive control of the calling consumer.
999  *
1000  * If exlusivity is claimed more than once on clock, even by the same consumer,
1001  * the rate effectively gets locked as exclusivity can't be preempted.
1002  *
1003  * Calls to clk_rate_exclusive_get() should be balanced with calls to
1004  * clk_rate_exclusive_put(). Calls to this function may sleep.
1005  * Returns 0 on success, -EERROR otherwise
1006  */
clk_rate_exclusive_get(struct clk * clk)1007 int clk_rate_exclusive_get(struct clk *clk)
1008 {
1009 	if (!clk)
1010 		return 0;
1011 
1012 	clk_prepare_lock();
1013 	clk_core_rate_protect(clk->core);
1014 	clk->exclusive_count++;
1015 	clk_prepare_unlock();
1016 
1017 	return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
1020 
devm_clk_rate_exclusive_put(void * data)1021 static void devm_clk_rate_exclusive_put(void *data)
1022 {
1023 	struct clk *clk = data;
1024 
1025 	clk_rate_exclusive_put(clk);
1026 }
1027 
devm_clk_rate_exclusive_get(struct device * dev,struct clk * clk)1028 int devm_clk_rate_exclusive_get(struct device *dev, struct clk *clk)
1029 {
1030 	int ret;
1031 
1032 	ret = clk_rate_exclusive_get(clk);
1033 	if (ret)
1034 		return ret;
1035 
1036 	return devm_add_action_or_reset(dev, devm_clk_rate_exclusive_put, clk);
1037 }
1038 EXPORT_SYMBOL_GPL(devm_clk_rate_exclusive_get);
1039 
clk_core_unprepare(struct clk_core * core)1040 static void clk_core_unprepare(struct clk_core *core)
1041 {
1042 	lockdep_assert_held(&prepare_lock);
1043 
1044 	if (!core)
1045 		return;
1046 
1047 	if (WARN(core->prepare_count == 0,
1048 	    "%s already unprepared\n", core->name))
1049 		return;
1050 
1051 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
1052 	    "Unpreparing critical %s\n", core->name))
1053 		return;
1054 
1055 	if (core->flags & CLK_SET_RATE_GATE)
1056 		clk_core_rate_unprotect(core);
1057 
1058 	if (--core->prepare_count > 0)
1059 		return;
1060 
1061 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
1062 
1063 	trace_clk_unprepare(core);
1064 
1065 	if (core->ops->unprepare)
1066 		core->ops->unprepare(core->hw);
1067 
1068 	trace_clk_unprepare_complete(core);
1069 	clk_core_unprepare(core->parent);
1070 	clk_pm_runtime_put(core);
1071 }
1072 
clk_core_unprepare_lock(struct clk_core * core)1073 static void clk_core_unprepare_lock(struct clk_core *core)
1074 {
1075 	clk_prepare_lock();
1076 	clk_core_unprepare(core);
1077 	clk_prepare_unlock();
1078 }
1079 
1080 /**
1081  * clk_unprepare - undo preparation of a clock source
1082  * @clk: the clk being unprepared
1083  *
1084  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
1085  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
1086  * if the operation may sleep.  One example is a clk which is accessed over
1087  * I2c.  In the complex case a clk gate operation may require a fast and a slow
1088  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
1089  * exclusive.  In fact clk_disable must be called before clk_unprepare.
1090  */
clk_unprepare(struct clk * clk)1091 void clk_unprepare(struct clk *clk)
1092 {
1093 	if (IS_ERR_OR_NULL(clk))
1094 		return;
1095 
1096 	clk_core_unprepare_lock(clk->core);
1097 }
1098 EXPORT_SYMBOL_GPL(clk_unprepare);
1099 
clk_core_prepare(struct clk_core * core)1100 static int clk_core_prepare(struct clk_core *core)
1101 {
1102 	int ret = 0;
1103 
1104 	lockdep_assert_held(&prepare_lock);
1105 
1106 	if (!core)
1107 		return 0;
1108 
1109 	if (core->prepare_count == 0) {
1110 		ret = clk_pm_runtime_get(core);
1111 		if (ret)
1112 			return ret;
1113 
1114 		ret = clk_core_prepare(core->parent);
1115 		if (ret)
1116 			goto runtime_put;
1117 
1118 		trace_clk_prepare(core);
1119 
1120 		if (core->ops->prepare)
1121 			ret = core->ops->prepare(core->hw);
1122 
1123 		trace_clk_prepare_complete(core);
1124 
1125 		if (ret)
1126 			goto unprepare;
1127 	}
1128 
1129 	core->prepare_count++;
1130 
1131 	/*
1132 	 * CLK_SET_RATE_GATE is a special case of clock protection
1133 	 * Instead of a consumer claiming exclusive rate control, it is
1134 	 * actually the provider which prevents any consumer from making any
1135 	 * operation which could result in a rate change or rate glitch while
1136 	 * the clock is prepared.
1137 	 */
1138 	if (core->flags & CLK_SET_RATE_GATE)
1139 		clk_core_rate_protect(core);
1140 
1141 	return 0;
1142 unprepare:
1143 	clk_core_unprepare(core->parent);
1144 runtime_put:
1145 	clk_pm_runtime_put(core);
1146 	return ret;
1147 }
1148 
clk_core_prepare_lock(struct clk_core * core)1149 static int clk_core_prepare_lock(struct clk_core *core)
1150 {
1151 	int ret;
1152 
1153 	clk_prepare_lock();
1154 	ret = clk_core_prepare(core);
1155 	clk_prepare_unlock();
1156 
1157 	return ret;
1158 }
1159 
1160 /**
1161  * clk_prepare - prepare a clock source
1162  * @clk: the clk being prepared
1163  *
1164  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
1165  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
1166  * operation may sleep.  One example is a clk which is accessed over I2c.  In
1167  * the complex case a clk ungate operation may require a fast and a slow part.
1168  * It is this reason that clk_prepare and clk_enable are not mutually
1169  * exclusive.  In fact clk_prepare must be called before clk_enable.
1170  * Returns 0 on success, -EERROR otherwise.
1171  */
clk_prepare(struct clk * clk)1172 int clk_prepare(struct clk *clk)
1173 {
1174 	if (!clk)
1175 		return 0;
1176 
1177 	return clk_core_prepare_lock(clk->core);
1178 }
1179 EXPORT_SYMBOL_GPL(clk_prepare);
1180 
clk_core_disable(struct clk_core * core)1181 static void clk_core_disable(struct clk_core *core)
1182 {
1183 	lockdep_assert_held(&enable_lock);
1184 
1185 	if (!core)
1186 		return;
1187 
1188 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
1189 		return;
1190 
1191 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
1192 	    "Disabling critical %s\n", core->name))
1193 		return;
1194 
1195 	if (--core->enable_count > 0)
1196 		return;
1197 
1198 	trace_clk_disable(core);
1199 
1200 	if (core->ops->disable)
1201 		core->ops->disable(core->hw);
1202 
1203 	trace_clk_disable_complete(core);
1204 
1205 	clk_core_disable(core->parent);
1206 }
1207 
clk_core_disable_lock(struct clk_core * core)1208 static void clk_core_disable_lock(struct clk_core *core)
1209 {
1210 	unsigned long flags;
1211 
1212 	flags = clk_enable_lock();
1213 	clk_core_disable(core);
1214 	clk_enable_unlock(flags);
1215 }
1216 
1217 /**
1218  * clk_disable - gate a clock
1219  * @clk: the clk being gated
1220  *
1221  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1222  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1223  * clk if the operation is fast and will never sleep.  One example is a
1224  * SoC-internal clk which is controlled via simple register writes.  In the
1225  * complex case a clk gate operation may require a fast and a slow part.  It is
1226  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1227  * In fact clk_disable must be called before clk_unprepare.
1228  */
clk_disable(struct clk * clk)1229 void clk_disable(struct clk *clk)
1230 {
1231 	if (IS_ERR_OR_NULL(clk))
1232 		return;
1233 
1234 	clk_core_disable_lock(clk->core);
1235 }
1236 EXPORT_SYMBOL_GPL(clk_disable);
1237 
clk_core_enable(struct clk_core * core)1238 static int clk_core_enable(struct clk_core *core)
1239 {
1240 	int ret = 0;
1241 
1242 	lockdep_assert_held(&enable_lock);
1243 
1244 	if (!core)
1245 		return 0;
1246 
1247 	if (WARN(core->prepare_count == 0,
1248 	    "Enabling unprepared %s\n", core->name))
1249 		return -ESHUTDOWN;
1250 
1251 	if (core->enable_count == 0) {
1252 		ret = clk_core_enable(core->parent);
1253 
1254 		if (ret)
1255 			return ret;
1256 
1257 		trace_clk_enable(core);
1258 
1259 		if (core->ops->enable)
1260 			ret = core->ops->enable(core->hw);
1261 
1262 		trace_clk_enable_complete(core);
1263 
1264 		if (ret) {
1265 			clk_core_disable(core->parent);
1266 			return ret;
1267 		}
1268 	}
1269 
1270 	core->enable_count++;
1271 	return 0;
1272 }
1273 
clk_core_enable_lock(struct clk_core * core)1274 static int clk_core_enable_lock(struct clk_core *core)
1275 {
1276 	unsigned long flags;
1277 	int ret;
1278 
1279 	flags = clk_enable_lock();
1280 	ret = clk_core_enable(core);
1281 	clk_enable_unlock(flags);
1282 
1283 	return ret;
1284 }
1285 
1286 /**
1287  * clk_gate_restore_context - restore context for poweroff
1288  * @hw: the clk_hw pointer of clock whose state is to be restored
1289  *
1290  * The clock gate restore context function enables or disables
1291  * the gate clocks based on the enable_count. This is done in cases
1292  * where the clock context is lost and based on the enable_count
1293  * the clock either needs to be enabled/disabled. This
1294  * helps restore the state of gate clocks.
1295  */
clk_gate_restore_context(struct clk_hw * hw)1296 void clk_gate_restore_context(struct clk_hw *hw)
1297 {
1298 	struct clk_core *core = hw->core;
1299 
1300 	if (core->enable_count)
1301 		core->ops->enable(hw);
1302 	else
1303 		core->ops->disable(hw);
1304 }
1305 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1306 
clk_core_save_context(struct clk_core * core)1307 static int clk_core_save_context(struct clk_core *core)
1308 {
1309 	struct clk_core *child;
1310 	int ret = 0;
1311 
1312 	hlist_for_each_entry(child, &core->children, child_node) {
1313 		ret = clk_core_save_context(child);
1314 		if (ret < 0)
1315 			return ret;
1316 	}
1317 
1318 	if (core->ops && core->ops->save_context)
1319 		ret = core->ops->save_context(core->hw);
1320 
1321 	return ret;
1322 }
1323 
clk_core_restore_context(struct clk_core * core)1324 static void clk_core_restore_context(struct clk_core *core)
1325 {
1326 	struct clk_core *child;
1327 
1328 	if (core->ops && core->ops->restore_context)
1329 		core->ops->restore_context(core->hw);
1330 
1331 	hlist_for_each_entry(child, &core->children, child_node)
1332 		clk_core_restore_context(child);
1333 }
1334 
1335 /**
1336  * clk_save_context - save clock context for poweroff
1337  *
1338  * Saves the context of the clock register for powerstates in which the
1339  * contents of the registers will be lost. Occurs deep within the suspend
1340  * code.  Returns 0 on success.
1341  */
clk_save_context(void)1342 int clk_save_context(void)
1343 {
1344 	struct clk_core *clk;
1345 	int ret;
1346 
1347 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1348 		ret = clk_core_save_context(clk);
1349 		if (ret < 0)
1350 			return ret;
1351 	}
1352 
1353 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1354 		ret = clk_core_save_context(clk);
1355 		if (ret < 0)
1356 			return ret;
1357 	}
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(clk_save_context);
1362 
1363 /**
1364  * clk_restore_context - restore clock context after poweroff
1365  *
1366  * Restore the saved clock context upon resume.
1367  *
1368  */
clk_restore_context(void)1369 void clk_restore_context(void)
1370 {
1371 	struct clk_core *core;
1372 
1373 	hlist_for_each_entry(core, &clk_root_list, child_node)
1374 		clk_core_restore_context(core);
1375 
1376 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1377 		clk_core_restore_context(core);
1378 }
1379 EXPORT_SYMBOL_GPL(clk_restore_context);
1380 
1381 /**
1382  * clk_enable - ungate a clock
1383  * @clk: the clk being ungated
1384  *
1385  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1386  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1387  * if the operation will never sleep.  One example is a SoC-internal clk which
1388  * is controlled via simple register writes.  In the complex case a clk ungate
1389  * operation may require a fast and a slow part.  It is this reason that
1390  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1391  * must be called before clk_enable.  Returns 0 on success, -EERROR
1392  * otherwise.
1393  */
clk_enable(struct clk * clk)1394 int clk_enable(struct clk *clk)
1395 {
1396 	if (!clk)
1397 		return 0;
1398 
1399 	return clk_core_enable_lock(clk->core);
1400 }
1401 EXPORT_SYMBOL_GPL(clk_enable);
1402 
1403 /**
1404  * clk_is_enabled_when_prepared - indicate if preparing a clock also enables it.
1405  * @clk: clock source
1406  *
1407  * Returns true if clk_prepare() implicitly enables the clock, effectively
1408  * making clk_enable()/clk_disable() no-ops, false otherwise.
1409  *
1410  * This is of interest mainly to power management code where actually
1411  * disabling the clock also requires unpreparing it to have any material
1412  * effect.
1413  *
1414  * Regardless of the value returned here, the caller must always invoke
1415  * clk_enable() or clk_prepare_enable()  and counterparts for usage counts
1416  * to be right.
1417  */
clk_is_enabled_when_prepared(struct clk * clk)1418 bool clk_is_enabled_when_prepared(struct clk *clk)
1419 {
1420 	return clk && !(clk->core->ops->enable && clk->core->ops->disable);
1421 }
1422 EXPORT_SYMBOL_GPL(clk_is_enabled_when_prepared);
1423 
clk_core_prepare_enable(struct clk_core * core)1424 static int clk_core_prepare_enable(struct clk_core *core)
1425 {
1426 	int ret;
1427 
1428 	ret = clk_core_prepare_lock(core);
1429 	if (ret)
1430 		return ret;
1431 
1432 	ret = clk_core_enable_lock(core);
1433 	if (ret)
1434 		clk_core_unprepare_lock(core);
1435 
1436 	return ret;
1437 }
1438 
clk_core_disable_unprepare(struct clk_core * core)1439 static void clk_core_disable_unprepare(struct clk_core *core)
1440 {
1441 	clk_core_disable_lock(core);
1442 	clk_core_unprepare_lock(core);
1443 }
1444 
clk_unprepare_unused_subtree(struct clk_core * core)1445 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1446 {
1447 	struct clk_core *child;
1448 
1449 	lockdep_assert_held(&prepare_lock);
1450 
1451 	hlist_for_each_entry(child, &core->children, child_node)
1452 		clk_unprepare_unused_subtree(child);
1453 
1454 	if (core->prepare_count)
1455 		return;
1456 
1457 	if (core->flags & CLK_IGNORE_UNUSED)
1458 		return;
1459 
1460 	if (clk_core_is_prepared(core)) {
1461 		trace_clk_unprepare(core);
1462 		if (core->ops->unprepare_unused)
1463 			core->ops->unprepare_unused(core->hw);
1464 		else if (core->ops->unprepare)
1465 			core->ops->unprepare(core->hw);
1466 		trace_clk_unprepare_complete(core);
1467 	}
1468 }
1469 
clk_disable_unused_subtree(struct clk_core * core)1470 static void __init clk_disable_unused_subtree(struct clk_core *core)
1471 {
1472 	struct clk_core *child;
1473 	unsigned long flags;
1474 
1475 	lockdep_assert_held(&prepare_lock);
1476 
1477 	hlist_for_each_entry(child, &core->children, child_node)
1478 		clk_disable_unused_subtree(child);
1479 
1480 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1481 		clk_core_prepare_enable(core->parent);
1482 
1483 	flags = clk_enable_lock();
1484 
1485 	if (core->enable_count)
1486 		goto unlock_out;
1487 
1488 	if (core->flags & CLK_IGNORE_UNUSED)
1489 		goto unlock_out;
1490 
1491 	/*
1492 	 * some gate clocks have special needs during the disable-unused
1493 	 * sequence.  call .disable_unused if available, otherwise fall
1494 	 * back to .disable
1495 	 */
1496 	if (clk_core_is_enabled(core)) {
1497 		trace_clk_disable(core);
1498 		if (core->ops->disable_unused)
1499 			core->ops->disable_unused(core->hw);
1500 		else if (core->ops->disable)
1501 			core->ops->disable(core->hw);
1502 		trace_clk_disable_complete(core);
1503 	}
1504 
1505 unlock_out:
1506 	clk_enable_unlock(flags);
1507 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1508 		clk_core_disable_unprepare(core->parent);
1509 }
1510 
1511 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1512 static int __init clk_ignore_unused_setup(char *__unused)
1513 {
1514 	clk_ignore_unused = true;
1515 	return 1;
1516 }
1517 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1518 
clk_disable_unused(void)1519 static int __init clk_disable_unused(void)
1520 {
1521 	struct clk_core *core;
1522 	int ret;
1523 
1524 	if (clk_ignore_unused) {
1525 		pr_warn("clk: Not disabling unused clocks\n");
1526 		return 0;
1527 	}
1528 
1529 	pr_info("clk: Disabling unused clocks\n");
1530 
1531 	ret = clk_pm_runtime_get_all();
1532 	if (ret)
1533 		return ret;
1534 	/*
1535 	 * Grab the prepare lock to keep the clk topology stable while iterating
1536 	 * over clks.
1537 	 */
1538 	clk_prepare_lock();
1539 
1540 	hlist_for_each_entry(core, &clk_root_list, child_node)
1541 		clk_disable_unused_subtree(core);
1542 
1543 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1544 		clk_disable_unused_subtree(core);
1545 
1546 	hlist_for_each_entry(core, &clk_root_list, child_node)
1547 		clk_unprepare_unused_subtree(core);
1548 
1549 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1550 		clk_unprepare_unused_subtree(core);
1551 
1552 	clk_prepare_unlock();
1553 
1554 	clk_pm_runtime_put_all();
1555 
1556 	return 0;
1557 }
1558 late_initcall_sync(clk_disable_unused);
1559 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1560 static int clk_core_determine_round_nolock(struct clk_core *core,
1561 					   struct clk_rate_request *req)
1562 {
1563 	long rate;
1564 
1565 	lockdep_assert_held(&prepare_lock);
1566 
1567 	if (!core)
1568 		return 0;
1569 
1570 	/*
1571 	 * Some clock providers hand-craft their clk_rate_requests and
1572 	 * might not fill min_rate and max_rate.
1573 	 *
1574 	 * If it's the case, clamping the rate is equivalent to setting
1575 	 * the rate to 0 which is bad. Skip the clamping but complain so
1576 	 * that it gets fixed, hopefully.
1577 	 */
1578 	if (!req->min_rate && !req->max_rate)
1579 		pr_warn("%s: %s: clk_rate_request has initialized min or max rate.\n",
1580 			__func__, core->name);
1581 	else
1582 		req->rate = clamp(req->rate, req->min_rate, req->max_rate);
1583 
1584 	/*
1585 	 * At this point, core protection will be disabled
1586 	 * - if the provider is not protected at all
1587 	 * - if the calling consumer is the only one which has exclusivity
1588 	 *   over the provider
1589 	 */
1590 	if (clk_core_rate_is_protected(core)) {
1591 		req->rate = core->rate;
1592 	} else if (core->ops->determine_rate) {
1593 		return core->ops->determine_rate(core->hw, req);
1594 	} else if (core->ops->round_rate) {
1595 		rate = core->ops->round_rate(core->hw, req->rate,
1596 					     &req->best_parent_rate);
1597 		if (rate < 0)
1598 			return rate;
1599 
1600 		req->rate = rate;
1601 	} else {
1602 		return -EINVAL;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req,unsigned long rate)1608 static void clk_core_init_rate_req(struct clk_core * const core,
1609 				   struct clk_rate_request *req,
1610 				   unsigned long rate)
1611 {
1612 	struct clk_core *parent;
1613 
1614 	if (WARN_ON(!req))
1615 		return;
1616 
1617 	memset(req, 0, sizeof(*req));
1618 	req->max_rate = ULONG_MAX;
1619 
1620 	if (!core)
1621 		return;
1622 
1623 	req->core = core;
1624 	req->rate = rate;
1625 	clk_core_get_boundaries(core, &req->min_rate, &req->max_rate);
1626 
1627 	parent = core->parent;
1628 	if (parent) {
1629 		req->best_parent_hw = parent->hw;
1630 		req->best_parent_rate = parent->rate;
1631 	} else {
1632 		req->best_parent_hw = NULL;
1633 		req->best_parent_rate = 0;
1634 	}
1635 }
1636 
1637 /**
1638  * clk_hw_init_rate_request - Initializes a clk_rate_request
1639  * @hw: the clk for which we want to submit a rate request
1640  * @req: the clk_rate_request structure we want to initialise
1641  * @rate: the rate which is to be requested
1642  *
1643  * Initializes a clk_rate_request structure to submit to
1644  * __clk_determine_rate() or similar functions.
1645  */
clk_hw_init_rate_request(const struct clk_hw * hw,struct clk_rate_request * req,unsigned long rate)1646 void clk_hw_init_rate_request(const struct clk_hw *hw,
1647 			      struct clk_rate_request *req,
1648 			      unsigned long rate)
1649 {
1650 	if (WARN_ON(!hw || !req))
1651 		return;
1652 
1653 	clk_core_init_rate_req(hw->core, req, rate);
1654 }
1655 EXPORT_SYMBOL_GPL(clk_hw_init_rate_request);
1656 
1657 /**
1658  * clk_hw_forward_rate_request - Forwards a clk_rate_request to a clock's parent
1659  * @hw: the original clock that got the rate request
1660  * @old_req: the original clk_rate_request structure we want to forward
1661  * @parent: the clk we want to forward @old_req to
1662  * @req: the clk_rate_request structure we want to initialise
1663  * @parent_rate: The rate which is to be requested to @parent
1664  *
1665  * Initializes a clk_rate_request structure to submit to a clock parent
1666  * in __clk_determine_rate() or similar functions.
1667  */
clk_hw_forward_rate_request(const struct clk_hw * hw,const struct clk_rate_request * old_req,const struct clk_hw * parent,struct clk_rate_request * req,unsigned long parent_rate)1668 void clk_hw_forward_rate_request(const struct clk_hw *hw,
1669 				 const struct clk_rate_request *old_req,
1670 				 const struct clk_hw *parent,
1671 				 struct clk_rate_request *req,
1672 				 unsigned long parent_rate)
1673 {
1674 	if (WARN_ON(!hw || !old_req || !parent || !req))
1675 		return;
1676 
1677 	clk_core_forward_rate_req(hw->core, old_req,
1678 				  parent->core, req,
1679 				  parent_rate);
1680 }
1681 EXPORT_SYMBOL_GPL(clk_hw_forward_rate_request);
1682 
clk_core_can_round(struct clk_core * const core)1683 static bool clk_core_can_round(struct clk_core * const core)
1684 {
1685 	return core->ops->determine_rate || core->ops->round_rate;
1686 }
1687 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1688 static int clk_core_round_rate_nolock(struct clk_core *core,
1689 				      struct clk_rate_request *req)
1690 {
1691 	int ret;
1692 
1693 	lockdep_assert_held(&prepare_lock);
1694 
1695 	if (!core) {
1696 		req->rate = 0;
1697 		return 0;
1698 	}
1699 
1700 	if (clk_core_can_round(core))
1701 		return clk_core_determine_round_nolock(core, req);
1702 
1703 	if (core->flags & CLK_SET_RATE_PARENT) {
1704 		struct clk_rate_request parent_req;
1705 
1706 		clk_core_forward_rate_req(core, req, core->parent, &parent_req, req->rate);
1707 
1708 		trace_clk_rate_request_start(&parent_req);
1709 
1710 		ret = clk_core_round_rate_nolock(core->parent, &parent_req);
1711 		if (ret)
1712 			return ret;
1713 
1714 		trace_clk_rate_request_done(&parent_req);
1715 
1716 		req->best_parent_rate = parent_req.rate;
1717 		req->rate = parent_req.rate;
1718 
1719 		return 0;
1720 	}
1721 
1722 	req->rate = core->rate;
1723 	return 0;
1724 }
1725 
1726 /**
1727  * __clk_determine_rate - get the closest rate actually supported by a clock
1728  * @hw: determine the rate of this clock
1729  * @req: target rate request
1730  *
1731  * Useful for clk_ops such as .set_rate and .determine_rate.
1732  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1733 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1734 {
1735 	if (!hw) {
1736 		req->rate = 0;
1737 		return 0;
1738 	}
1739 
1740 	return clk_core_round_rate_nolock(hw->core, req);
1741 }
1742 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1743 
1744 /**
1745  * clk_hw_round_rate() - round the given rate for a hw clk
1746  * @hw: the hw clk for which we are rounding a rate
1747  * @rate: the rate which is to be rounded
1748  *
1749  * Takes in a rate as input and rounds it to a rate that the clk can actually
1750  * use.
1751  *
1752  * Context: prepare_lock must be held.
1753  *          For clk providers to call from within clk_ops such as .round_rate,
1754  *          .determine_rate.
1755  *
1756  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1757  *         else returns the parent rate.
1758  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1759 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1760 {
1761 	int ret;
1762 	struct clk_rate_request req;
1763 
1764 	clk_core_init_rate_req(hw->core, &req, rate);
1765 
1766 	trace_clk_rate_request_start(&req);
1767 
1768 	ret = clk_core_round_rate_nolock(hw->core, &req);
1769 	if (ret)
1770 		return 0;
1771 
1772 	trace_clk_rate_request_done(&req);
1773 
1774 	return req.rate;
1775 }
1776 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1777 
1778 /**
1779  * clk_round_rate - round the given rate for a clk
1780  * @clk: the clk for which we are rounding a rate
1781  * @rate: the rate which is to be rounded
1782  *
1783  * Takes in a rate as input and rounds it to a rate that the clk can actually
1784  * use which is then returned.  If clk doesn't support round_rate operation
1785  * then the parent rate is returned.
1786  */
clk_round_rate(struct clk * clk,unsigned long rate)1787 long clk_round_rate(struct clk *clk, unsigned long rate)
1788 {
1789 	struct clk_rate_request req;
1790 	int ret;
1791 
1792 	if (!clk)
1793 		return 0;
1794 
1795 	clk_prepare_lock();
1796 
1797 	if (clk->exclusive_count)
1798 		clk_core_rate_unprotect(clk->core);
1799 
1800 	clk_core_init_rate_req(clk->core, &req, rate);
1801 
1802 	trace_clk_rate_request_start(&req);
1803 
1804 	ret = clk_core_round_rate_nolock(clk->core, &req);
1805 
1806 	trace_clk_rate_request_done(&req);
1807 
1808 	if (clk->exclusive_count)
1809 		clk_core_rate_protect(clk->core);
1810 
1811 	clk_prepare_unlock();
1812 
1813 	if (ret)
1814 		return ret;
1815 
1816 	return req.rate;
1817 }
1818 EXPORT_SYMBOL_GPL(clk_round_rate);
1819 
1820 /**
1821  * __clk_notify - call clk notifier chain
1822  * @core: clk that is changing rate
1823  * @msg: clk notifier type (see include/linux/clk.h)
1824  * @old_rate: old clk rate
1825  * @new_rate: new clk rate
1826  *
1827  * Triggers a notifier call chain on the clk rate-change notification
1828  * for 'clk'.  Passes a pointer to the struct clk and the previous
1829  * and current rates to the notifier callback.  Intended to be called by
1830  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1831  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1832  * a driver returns that.
1833  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1834 static int __clk_notify(struct clk_core *core, unsigned long msg,
1835 		unsigned long old_rate, unsigned long new_rate)
1836 {
1837 	struct clk_notifier *cn;
1838 	struct clk_notifier_data cnd;
1839 	int ret = NOTIFY_DONE;
1840 
1841 	cnd.old_rate = old_rate;
1842 	cnd.new_rate = new_rate;
1843 
1844 	list_for_each_entry(cn, &clk_notifier_list, node) {
1845 		if (cn->clk->core == core) {
1846 			cnd.clk = cn->clk;
1847 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1848 					&cnd);
1849 			if (ret & NOTIFY_STOP_MASK)
1850 				return ret;
1851 		}
1852 	}
1853 
1854 	return ret;
1855 }
1856 
1857 /**
1858  * __clk_recalc_accuracies
1859  * @core: first clk in the subtree
1860  *
1861  * Walks the subtree of clks starting with clk and recalculates accuracies as
1862  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1863  * callback then it is assumed that the clock will take on the accuracy of its
1864  * parent.
1865  */
__clk_recalc_accuracies(struct clk_core * core)1866 static void __clk_recalc_accuracies(struct clk_core *core)
1867 {
1868 	unsigned long parent_accuracy = 0;
1869 	struct clk_core *child;
1870 
1871 	lockdep_assert_held(&prepare_lock);
1872 
1873 	if (core->parent)
1874 		parent_accuracy = core->parent->accuracy;
1875 
1876 	if (core->ops->recalc_accuracy)
1877 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1878 							  parent_accuracy);
1879 	else
1880 		core->accuracy = parent_accuracy;
1881 
1882 	hlist_for_each_entry(child, &core->children, child_node)
1883 		__clk_recalc_accuracies(child);
1884 }
1885 
clk_core_get_accuracy_recalc(struct clk_core * core)1886 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1887 {
1888 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1889 		__clk_recalc_accuracies(core);
1890 
1891 	return clk_core_get_accuracy_no_lock(core);
1892 }
1893 
1894 /**
1895  * clk_get_accuracy - return the accuracy of clk
1896  * @clk: the clk whose accuracy is being returned
1897  *
1898  * Simply returns the cached accuracy of the clk, unless
1899  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1900  * issued.
1901  * If clk is NULL then returns 0.
1902  */
clk_get_accuracy(struct clk * clk)1903 long clk_get_accuracy(struct clk *clk)
1904 {
1905 	long accuracy;
1906 
1907 	if (!clk)
1908 		return 0;
1909 
1910 	clk_prepare_lock();
1911 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1912 	clk_prepare_unlock();
1913 
1914 	return accuracy;
1915 }
1916 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1917 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1918 static unsigned long clk_recalc(struct clk_core *core,
1919 				unsigned long parent_rate)
1920 {
1921 	unsigned long rate = parent_rate;
1922 
1923 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1924 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1925 		clk_pm_runtime_put(core);
1926 	}
1927 	return rate;
1928 }
1929 
1930 /**
1931  * __clk_recalc_rates
1932  * @core: first clk in the subtree
1933  * @update_req: Whether req_rate should be updated with the new rate
1934  * @msg: notification type (see include/linux/clk.h)
1935  *
1936  * Walks the subtree of clks starting with clk and recalculates rates as it
1937  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1938  * it is assumed that the clock will take on the rate of its parent.
1939  *
1940  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1941  * if necessary.
1942  */
__clk_recalc_rates(struct clk_core * core,bool update_req,unsigned long msg)1943 static void __clk_recalc_rates(struct clk_core *core, bool update_req,
1944 			       unsigned long msg)
1945 {
1946 	unsigned long old_rate;
1947 	unsigned long parent_rate = 0;
1948 	struct clk_core *child;
1949 
1950 	lockdep_assert_held(&prepare_lock);
1951 
1952 	old_rate = core->rate;
1953 
1954 	if (core->parent)
1955 		parent_rate = core->parent->rate;
1956 
1957 	core->rate = clk_recalc(core, parent_rate);
1958 	if (update_req)
1959 		core->req_rate = core->rate;
1960 
1961 	/*
1962 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1963 	 * & ABORT_RATE_CHANGE notifiers
1964 	 */
1965 	if (core->notifier_count && msg)
1966 		__clk_notify(core, msg, old_rate, core->rate);
1967 
1968 	hlist_for_each_entry(child, &core->children, child_node)
1969 		__clk_recalc_rates(child, update_req, msg);
1970 }
1971 
clk_core_get_rate_recalc(struct clk_core * core)1972 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1973 {
1974 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1975 		__clk_recalc_rates(core, false, 0);
1976 
1977 	return clk_core_get_rate_nolock(core);
1978 }
1979 
1980 /**
1981  * clk_get_rate - return the rate of clk
1982  * @clk: the clk whose rate is being returned
1983  *
1984  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1985  * is set, which means a recalc_rate will be issued. Can be called regardless of
1986  * the clock enabledness. If clk is NULL, or if an error occurred, then returns
1987  * 0.
1988  */
clk_get_rate(struct clk * clk)1989 unsigned long clk_get_rate(struct clk *clk)
1990 {
1991 	unsigned long rate;
1992 
1993 	if (!clk)
1994 		return 0;
1995 
1996 	clk_prepare_lock();
1997 	rate = clk_core_get_rate_recalc(clk->core);
1998 	clk_prepare_unlock();
1999 
2000 	return rate;
2001 }
2002 EXPORT_SYMBOL_GPL(clk_get_rate);
2003 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)2004 static int clk_fetch_parent_index(struct clk_core *core,
2005 				  struct clk_core *parent)
2006 {
2007 	int i;
2008 
2009 	if (!parent)
2010 		return -EINVAL;
2011 
2012 	for (i = 0; i < core->num_parents; i++) {
2013 		/* Found it first try! */
2014 		if (core->parents[i].core == parent)
2015 			return i;
2016 
2017 		/* Something else is here, so keep looking */
2018 		if (core->parents[i].core)
2019 			continue;
2020 
2021 		/* Maybe core hasn't been cached but the hw is all we know? */
2022 		if (core->parents[i].hw) {
2023 			if (core->parents[i].hw == parent->hw)
2024 				break;
2025 
2026 			/* Didn't match, but we're expecting a clk_hw */
2027 			continue;
2028 		}
2029 
2030 		/* Maybe it hasn't been cached (clk_set_parent() path) */
2031 		if (parent == clk_core_get(core, i))
2032 			break;
2033 
2034 		/* Fallback to comparing globally unique names */
2035 		if (core->parents[i].name &&
2036 		    !strcmp(parent->name, core->parents[i].name))
2037 			break;
2038 	}
2039 
2040 	if (i == core->num_parents)
2041 		return -EINVAL;
2042 
2043 	core->parents[i].core = parent;
2044 	return i;
2045 }
2046 
2047 /**
2048  * clk_hw_get_parent_index - return the index of the parent clock
2049  * @hw: clk_hw associated with the clk being consumed
2050  *
2051  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
2052  * clock does not have a current parent.
2053  */
clk_hw_get_parent_index(struct clk_hw * hw)2054 int clk_hw_get_parent_index(struct clk_hw *hw)
2055 {
2056 	struct clk_hw *parent = clk_hw_get_parent(hw);
2057 
2058 	if (WARN_ON(parent == NULL))
2059 		return -EINVAL;
2060 
2061 	return clk_fetch_parent_index(hw->core, parent->core);
2062 }
2063 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
2064 
2065 /*
2066  * Update the orphan status of @core and all its children.
2067  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)2068 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
2069 {
2070 	struct clk_core *child;
2071 
2072 	core->orphan = is_orphan;
2073 
2074 	hlist_for_each_entry(child, &core->children, child_node)
2075 		clk_core_update_orphan_status(child, is_orphan);
2076 }
2077 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)2078 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
2079 {
2080 	bool was_orphan = core->orphan;
2081 
2082 	hlist_del(&core->child_node);
2083 
2084 	if (new_parent) {
2085 		bool becomes_orphan = new_parent->orphan;
2086 
2087 		/* avoid duplicate POST_RATE_CHANGE notifications */
2088 		if (new_parent->new_child == core)
2089 			new_parent->new_child = NULL;
2090 
2091 		hlist_add_head(&core->child_node, &new_parent->children);
2092 
2093 		if (was_orphan != becomes_orphan)
2094 			clk_core_update_orphan_status(core, becomes_orphan);
2095 	} else {
2096 		hlist_add_head(&core->child_node, &clk_orphan_list);
2097 		if (!was_orphan)
2098 			clk_core_update_orphan_status(core, true);
2099 	}
2100 
2101 	core->parent = new_parent;
2102 }
2103 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)2104 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
2105 					   struct clk_core *parent)
2106 {
2107 	unsigned long flags;
2108 	struct clk_core *old_parent = core->parent;
2109 
2110 	/*
2111 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
2112 	 *
2113 	 * 2. Migrate prepare state between parents and prevent race with
2114 	 * clk_enable().
2115 	 *
2116 	 * If the clock is not prepared, then a race with
2117 	 * clk_enable/disable() is impossible since we already have the
2118 	 * prepare lock (future calls to clk_enable() need to be preceded by
2119 	 * a clk_prepare()).
2120 	 *
2121 	 * If the clock is prepared, migrate the prepared state to the new
2122 	 * parent and also protect against a race with clk_enable() by
2123 	 * forcing the clock and the new parent on.  This ensures that all
2124 	 * future calls to clk_enable() are practically NOPs with respect to
2125 	 * hardware and software states.
2126 	 *
2127 	 * See also: Comment for clk_set_parent() below.
2128 	 */
2129 
2130 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
2131 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2132 		clk_core_prepare_enable(old_parent);
2133 		clk_core_prepare_enable(parent);
2134 	}
2135 
2136 	/* migrate prepare count if > 0 */
2137 	if (core->prepare_count) {
2138 		clk_core_prepare_enable(parent);
2139 		clk_core_enable_lock(core);
2140 	}
2141 
2142 	/* update the clk tree topology */
2143 	flags = clk_enable_lock();
2144 	clk_reparent(core, parent);
2145 	clk_enable_unlock(flags);
2146 
2147 	return old_parent;
2148 }
2149 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)2150 static void __clk_set_parent_after(struct clk_core *core,
2151 				   struct clk_core *parent,
2152 				   struct clk_core *old_parent)
2153 {
2154 	/*
2155 	 * Finish the migration of prepare state and undo the changes done
2156 	 * for preventing a race with clk_enable().
2157 	 */
2158 	if (core->prepare_count) {
2159 		clk_core_disable_lock(core);
2160 		clk_core_disable_unprepare(old_parent);
2161 	}
2162 
2163 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
2164 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
2165 		clk_core_disable_unprepare(parent);
2166 		clk_core_disable_unprepare(old_parent);
2167 	}
2168 }
2169 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)2170 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
2171 			    u8 p_index)
2172 {
2173 	unsigned long flags;
2174 	int ret = 0;
2175 	struct clk_core *old_parent;
2176 
2177 	old_parent = __clk_set_parent_before(core, parent);
2178 
2179 	trace_clk_set_parent(core, parent);
2180 
2181 	/* change clock input source */
2182 	if (parent && core->ops->set_parent)
2183 		ret = core->ops->set_parent(core->hw, p_index);
2184 
2185 	trace_clk_set_parent_complete(core, parent);
2186 
2187 	if (ret) {
2188 		flags = clk_enable_lock();
2189 		clk_reparent(core, old_parent);
2190 		clk_enable_unlock(flags);
2191 
2192 		__clk_set_parent_after(core, old_parent, parent);
2193 
2194 		return ret;
2195 	}
2196 
2197 	__clk_set_parent_after(core, parent, old_parent);
2198 
2199 	return 0;
2200 }
2201 
2202 /**
2203  * __clk_speculate_rates
2204  * @core: first clk in the subtree
2205  * @parent_rate: the "future" rate of clk's parent
2206  *
2207  * Walks the subtree of clks starting with clk, speculating rates as it
2208  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
2209  *
2210  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
2211  * pre-rate change notifications and returns early if no clks in the
2212  * subtree have subscribed to the notifications.  Note that if a clk does not
2213  * implement the .recalc_rate callback then it is assumed that the clock will
2214  * take on the rate of its parent.
2215  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)2216 static int __clk_speculate_rates(struct clk_core *core,
2217 				 unsigned long parent_rate)
2218 {
2219 	struct clk_core *child;
2220 	unsigned long new_rate;
2221 	int ret = NOTIFY_DONE;
2222 
2223 	lockdep_assert_held(&prepare_lock);
2224 
2225 	new_rate = clk_recalc(core, parent_rate);
2226 
2227 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
2228 	if (core->notifier_count)
2229 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
2230 
2231 	if (ret & NOTIFY_STOP_MASK) {
2232 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
2233 				__func__, core->name, ret);
2234 		goto out;
2235 	}
2236 
2237 	hlist_for_each_entry(child, &core->children, child_node) {
2238 		ret = __clk_speculate_rates(child, new_rate);
2239 		if (ret & NOTIFY_STOP_MASK)
2240 			break;
2241 	}
2242 
2243 out:
2244 	return ret;
2245 }
2246 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)2247 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
2248 			     struct clk_core *new_parent, u8 p_index)
2249 {
2250 	struct clk_core *child;
2251 
2252 	core->new_rate = new_rate;
2253 	core->new_parent = new_parent;
2254 	core->new_parent_index = p_index;
2255 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
2256 	core->new_child = NULL;
2257 	if (new_parent && new_parent != core->parent)
2258 		new_parent->new_child = core;
2259 
2260 	hlist_for_each_entry(child, &core->children, child_node) {
2261 		child->new_rate = clk_recalc(child, new_rate);
2262 		clk_calc_subtree(child, child->new_rate, NULL, 0);
2263 	}
2264 }
2265 
2266 /*
2267  * calculate the new rates returning the topmost clock that has to be
2268  * changed.
2269  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)2270 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
2271 					   unsigned long rate)
2272 {
2273 	struct clk_core *top = core;
2274 	struct clk_core *old_parent, *parent;
2275 	unsigned long best_parent_rate = 0;
2276 	unsigned long new_rate;
2277 	unsigned long min_rate;
2278 	unsigned long max_rate;
2279 	int p_index = 0;
2280 	int ret;
2281 
2282 	/* sanity */
2283 	if (IS_ERR_OR_NULL(core))
2284 		return NULL;
2285 
2286 	/* save parent rate, if it exists */
2287 	parent = old_parent = core->parent;
2288 	if (parent)
2289 		best_parent_rate = parent->rate;
2290 
2291 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2292 
2293 	/* find the closest rate and parent clk/rate */
2294 	if (clk_core_can_round(core)) {
2295 		struct clk_rate_request req;
2296 
2297 		clk_core_init_rate_req(core, &req, rate);
2298 
2299 		trace_clk_rate_request_start(&req);
2300 
2301 		ret = clk_core_determine_round_nolock(core, &req);
2302 		if (ret < 0)
2303 			return NULL;
2304 
2305 		trace_clk_rate_request_done(&req);
2306 
2307 		best_parent_rate = req.best_parent_rate;
2308 		new_rate = req.rate;
2309 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2310 
2311 		if (new_rate < min_rate || new_rate > max_rate)
2312 			return NULL;
2313 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2314 		/* pass-through clock without adjustable parent */
2315 		core->new_rate = core->rate;
2316 		return NULL;
2317 	} else {
2318 		/* pass-through clock with adjustable parent */
2319 		top = clk_calc_new_rates(parent, rate);
2320 		new_rate = parent->new_rate;
2321 		goto out;
2322 	}
2323 
2324 	/* some clocks must be gated to change parent */
2325 	if (parent != old_parent &&
2326 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2327 		pr_debug("%s: %s not gated but wants to reparent\n",
2328 			 __func__, core->name);
2329 		return NULL;
2330 	}
2331 
2332 	/* try finding the new parent index */
2333 	if (parent && core->num_parents > 1) {
2334 		p_index = clk_fetch_parent_index(core, parent);
2335 		if (p_index < 0) {
2336 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2337 				 __func__, parent->name, core->name);
2338 			return NULL;
2339 		}
2340 	}
2341 
2342 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2343 	    best_parent_rate != parent->rate)
2344 		top = clk_calc_new_rates(parent, best_parent_rate);
2345 
2346 out:
2347 	clk_calc_subtree(core, new_rate, parent, p_index);
2348 
2349 	return top;
2350 }
2351 
2352 /*
2353  * Notify about rate changes in a subtree. Always walk down the whole tree
2354  * so that in case of an error we can walk down the whole tree again and
2355  * abort the change.
2356  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2357 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2358 						  unsigned long event)
2359 {
2360 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2361 	int ret = NOTIFY_DONE;
2362 
2363 	if (core->rate == core->new_rate)
2364 		return NULL;
2365 
2366 	if (core->notifier_count) {
2367 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2368 		if (ret & NOTIFY_STOP_MASK)
2369 			fail_clk = core;
2370 	}
2371 
2372 	hlist_for_each_entry(child, &core->children, child_node) {
2373 		/* Skip children who will be reparented to another clock */
2374 		if (child->new_parent && child->new_parent != core)
2375 			continue;
2376 		tmp_clk = clk_propagate_rate_change(child, event);
2377 		if (tmp_clk)
2378 			fail_clk = tmp_clk;
2379 	}
2380 
2381 	/* handle the new child who might not be in core->children yet */
2382 	if (core->new_child) {
2383 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2384 		if (tmp_clk)
2385 			fail_clk = tmp_clk;
2386 	}
2387 
2388 	return fail_clk;
2389 }
2390 
2391 /*
2392  * walk down a subtree and set the new rates notifying the rate
2393  * change on the way
2394  */
clk_change_rate(struct clk_core * core)2395 static void clk_change_rate(struct clk_core *core)
2396 {
2397 	struct clk_core *child;
2398 	struct hlist_node *tmp;
2399 	unsigned long old_rate;
2400 	unsigned long best_parent_rate = 0;
2401 	bool skip_set_rate = false;
2402 	struct clk_core *old_parent;
2403 	struct clk_core *parent = NULL;
2404 
2405 	old_rate = core->rate;
2406 
2407 	if (core->new_parent) {
2408 		parent = core->new_parent;
2409 		best_parent_rate = core->new_parent->rate;
2410 	} else if (core->parent) {
2411 		parent = core->parent;
2412 		best_parent_rate = core->parent->rate;
2413 	}
2414 
2415 	if (clk_pm_runtime_get(core))
2416 		return;
2417 
2418 	if (core->flags & CLK_SET_RATE_UNGATE) {
2419 		clk_core_prepare(core);
2420 		clk_core_enable_lock(core);
2421 	}
2422 
2423 	if (core->new_parent && core->new_parent != core->parent) {
2424 		old_parent = __clk_set_parent_before(core, core->new_parent);
2425 		trace_clk_set_parent(core, core->new_parent);
2426 
2427 		if (core->ops->set_rate_and_parent) {
2428 			skip_set_rate = true;
2429 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2430 					best_parent_rate,
2431 					core->new_parent_index);
2432 		} else if (core->ops->set_parent) {
2433 			core->ops->set_parent(core->hw, core->new_parent_index);
2434 		}
2435 
2436 		trace_clk_set_parent_complete(core, core->new_parent);
2437 		__clk_set_parent_after(core, core->new_parent, old_parent);
2438 	}
2439 
2440 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2441 		clk_core_prepare_enable(parent);
2442 
2443 	trace_clk_set_rate(core, core->new_rate);
2444 
2445 	if (!skip_set_rate && core->ops->set_rate)
2446 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2447 
2448 	trace_clk_set_rate_complete(core, core->new_rate);
2449 
2450 	core->rate = clk_recalc(core, best_parent_rate);
2451 
2452 	if (core->flags & CLK_SET_RATE_UNGATE) {
2453 		clk_core_disable_lock(core);
2454 		clk_core_unprepare(core);
2455 	}
2456 
2457 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2458 		clk_core_disable_unprepare(parent);
2459 
2460 	if (core->notifier_count && old_rate != core->rate)
2461 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2462 
2463 	if (core->flags & CLK_RECALC_NEW_RATES)
2464 		(void)clk_calc_new_rates(core, core->new_rate);
2465 
2466 	/*
2467 	 * Use safe iteration, as change_rate can actually swap parents
2468 	 * for certain clock types.
2469 	 */
2470 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2471 		/* Skip children who will be reparented to another clock */
2472 		if (child->new_parent && child->new_parent != core)
2473 			continue;
2474 		clk_change_rate(child);
2475 	}
2476 
2477 	/* handle the new child who might not be in core->children yet */
2478 	if (core->new_child)
2479 		clk_change_rate(core->new_child);
2480 
2481 	clk_pm_runtime_put(core);
2482 }
2483 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2484 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2485 						     unsigned long req_rate)
2486 {
2487 	int ret, cnt;
2488 	struct clk_rate_request req;
2489 
2490 	lockdep_assert_held(&prepare_lock);
2491 
2492 	if (!core)
2493 		return 0;
2494 
2495 	/* simulate what the rate would be if it could be freely set */
2496 	cnt = clk_core_rate_nuke_protect(core);
2497 	if (cnt < 0)
2498 		return cnt;
2499 
2500 	clk_core_init_rate_req(core, &req, req_rate);
2501 
2502 	trace_clk_rate_request_start(&req);
2503 
2504 	ret = clk_core_round_rate_nolock(core, &req);
2505 
2506 	trace_clk_rate_request_done(&req);
2507 
2508 	/* restore the protection */
2509 	clk_core_rate_restore_protect(core, cnt);
2510 
2511 	return ret ? 0 : req.rate;
2512 }
2513 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2514 static int clk_core_set_rate_nolock(struct clk_core *core,
2515 				    unsigned long req_rate)
2516 {
2517 	struct clk_core *top, *fail_clk;
2518 	unsigned long rate;
2519 	int ret;
2520 
2521 	if (!core)
2522 		return 0;
2523 
2524 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2525 
2526 	/* bail early if nothing to do */
2527 	if (rate == clk_core_get_rate_nolock(core))
2528 		return 0;
2529 
2530 	/* fail on a direct rate set of a protected provider */
2531 	if (clk_core_rate_is_protected(core))
2532 		return -EBUSY;
2533 
2534 	/* calculate new rates and get the topmost changed clock */
2535 	top = clk_calc_new_rates(core, req_rate);
2536 	if (!top)
2537 		return -EINVAL;
2538 
2539 	ret = clk_pm_runtime_get(core);
2540 	if (ret)
2541 		return ret;
2542 
2543 	/* notify that we are about to change rates */
2544 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2545 	if (fail_clk) {
2546 		pr_debug("%s: failed to set %s rate\n", __func__,
2547 				fail_clk->name);
2548 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2549 		ret = -EBUSY;
2550 		goto err;
2551 	}
2552 
2553 	/* change the rates */
2554 	clk_change_rate(top);
2555 
2556 	core->req_rate = req_rate;
2557 err:
2558 	clk_pm_runtime_put(core);
2559 
2560 	return ret;
2561 }
2562 
2563 /**
2564  * clk_set_rate - specify a new rate for clk
2565  * @clk: the clk whose rate is being changed
2566  * @rate: the new rate for clk
2567  *
2568  * In the simplest case clk_set_rate will only adjust the rate of clk.
2569  *
2570  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2571  * propagate up to clk's parent; whether or not this happens depends on the
2572  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2573  * after calling .round_rate then upstream parent propagation is ignored.  If
2574  * *parent_rate comes back with a new rate for clk's parent then we propagate
2575  * up to clk's parent and set its rate.  Upward propagation will continue
2576  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2577  * .round_rate stops requesting changes to clk's parent_rate.
2578  *
2579  * Rate changes are accomplished via tree traversal that also recalculates the
2580  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2581  *
2582  * Returns 0 on success, -EERROR otherwise.
2583  */
clk_set_rate(struct clk * clk,unsigned long rate)2584 int clk_set_rate(struct clk *clk, unsigned long rate)
2585 {
2586 	int ret;
2587 
2588 	if (!clk)
2589 		return 0;
2590 
2591 	/* prevent racing with updates to the clock topology */
2592 	clk_prepare_lock();
2593 
2594 	if (clk->exclusive_count)
2595 		clk_core_rate_unprotect(clk->core);
2596 
2597 	ret = clk_core_set_rate_nolock(clk->core, rate);
2598 
2599 	if (clk->exclusive_count)
2600 		clk_core_rate_protect(clk->core);
2601 
2602 	clk_prepare_unlock();
2603 
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL_GPL(clk_set_rate);
2607 
2608 /**
2609  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2610  * @clk: the clk whose rate is being changed
2611  * @rate: the new rate for clk
2612  *
2613  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2614  * within a critical section
2615  *
2616  * This can be used initially to ensure that at least 1 consumer is
2617  * satisfied when several consumers are competing for exclusivity over the
2618  * same clock provider.
2619  *
2620  * The exclusivity is not applied if setting the rate failed.
2621  *
2622  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2623  * clk_rate_exclusive_put().
2624  *
2625  * Returns 0 on success, -EERROR otherwise.
2626  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2627 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2628 {
2629 	int ret;
2630 
2631 	if (!clk)
2632 		return 0;
2633 
2634 	/* prevent racing with updates to the clock topology */
2635 	clk_prepare_lock();
2636 
2637 	/*
2638 	 * The temporary protection removal is not here, on purpose
2639 	 * This function is meant to be used instead of clk_rate_protect,
2640 	 * so before the consumer code path protect the clock provider
2641 	 */
2642 
2643 	ret = clk_core_set_rate_nolock(clk->core, rate);
2644 	if (!ret) {
2645 		clk_core_rate_protect(clk->core);
2646 		clk->exclusive_count++;
2647 	}
2648 
2649 	clk_prepare_unlock();
2650 
2651 	return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2654 
clk_set_rate_range_nolock(struct clk * clk,unsigned long min,unsigned long max)2655 static int clk_set_rate_range_nolock(struct clk *clk,
2656 				     unsigned long min,
2657 				     unsigned long max)
2658 {
2659 	int ret = 0;
2660 	unsigned long old_min, old_max, rate;
2661 
2662 	lockdep_assert_held(&prepare_lock);
2663 
2664 	if (!clk)
2665 		return 0;
2666 
2667 	trace_clk_set_rate_range(clk->core, min, max);
2668 
2669 	if (min > max) {
2670 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2671 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2672 		       min, max);
2673 		return -EINVAL;
2674 	}
2675 
2676 	if (clk->exclusive_count)
2677 		clk_core_rate_unprotect(clk->core);
2678 
2679 	/* Save the current values in case we need to rollback the change */
2680 	old_min = clk->min_rate;
2681 	old_max = clk->max_rate;
2682 	clk->min_rate = min;
2683 	clk->max_rate = max;
2684 
2685 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2686 		ret = -EINVAL;
2687 		goto out;
2688 	}
2689 
2690 	rate = clk->core->req_rate;
2691 	if (clk->core->flags & CLK_GET_RATE_NOCACHE)
2692 		rate = clk_core_get_rate_recalc(clk->core);
2693 
2694 	/*
2695 	 * Since the boundaries have been changed, let's give the
2696 	 * opportunity to the provider to adjust the clock rate based on
2697 	 * the new boundaries.
2698 	 *
2699 	 * We also need to handle the case where the clock is currently
2700 	 * outside of the boundaries. Clamping the last requested rate
2701 	 * to the current minimum and maximum will also handle this.
2702 	 *
2703 	 * FIXME:
2704 	 * There is a catch. It may fail for the usual reason (clock
2705 	 * broken, clock protected, etc) but also because:
2706 	 * - round_rate() was not favorable and fell on the wrong
2707 	 *   side of the boundary
2708 	 * - the determine_rate() callback does not really check for
2709 	 *   this corner case when determining the rate
2710 	 */
2711 	rate = clamp(rate, min, max);
2712 	ret = clk_core_set_rate_nolock(clk->core, rate);
2713 	if (ret) {
2714 		/* rollback the changes */
2715 		clk->min_rate = old_min;
2716 		clk->max_rate = old_max;
2717 	}
2718 
2719 out:
2720 	if (clk->exclusive_count)
2721 		clk_core_rate_protect(clk->core);
2722 
2723 	return ret;
2724 }
2725 
2726 /**
2727  * clk_set_rate_range - set a rate range for a clock source
2728  * @clk: clock source
2729  * @min: desired minimum clock rate in Hz, inclusive
2730  * @max: desired maximum clock rate in Hz, inclusive
2731  *
2732  * Return: 0 for success or negative errno on failure.
2733  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2734 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2735 {
2736 	int ret;
2737 
2738 	if (!clk)
2739 		return 0;
2740 
2741 	clk_prepare_lock();
2742 
2743 	ret = clk_set_rate_range_nolock(clk, min, max);
2744 
2745 	clk_prepare_unlock();
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2750 
2751 /**
2752  * clk_set_min_rate - set a minimum clock rate for a clock source
2753  * @clk: clock source
2754  * @rate: desired minimum clock rate in Hz, inclusive
2755  *
2756  * Returns success (0) or negative errno.
2757  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2758 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2759 {
2760 	if (!clk)
2761 		return 0;
2762 
2763 	trace_clk_set_min_rate(clk->core, rate);
2764 
2765 	return clk_set_rate_range(clk, rate, clk->max_rate);
2766 }
2767 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2768 
2769 /**
2770  * clk_set_max_rate - set a maximum clock rate for a clock source
2771  * @clk: clock source
2772  * @rate: desired maximum clock rate in Hz, inclusive
2773  *
2774  * Returns success (0) or negative errno.
2775  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2776 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2777 {
2778 	if (!clk)
2779 		return 0;
2780 
2781 	trace_clk_set_max_rate(clk->core, rate);
2782 
2783 	return clk_set_rate_range(clk, clk->min_rate, rate);
2784 }
2785 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2786 
2787 /**
2788  * clk_get_parent - return the parent of a clk
2789  * @clk: the clk whose parent gets returned
2790  *
2791  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2792  */
clk_get_parent(struct clk * clk)2793 struct clk *clk_get_parent(struct clk *clk)
2794 {
2795 	struct clk *parent;
2796 
2797 	if (!clk)
2798 		return NULL;
2799 
2800 	clk_prepare_lock();
2801 	/* TODO: Create a per-user clk and change callers to call clk_put */
2802 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2803 	clk_prepare_unlock();
2804 
2805 	return parent;
2806 }
2807 EXPORT_SYMBOL_GPL(clk_get_parent);
2808 
__clk_init_parent(struct clk_core * core)2809 static struct clk_core *__clk_init_parent(struct clk_core *core)
2810 {
2811 	u8 index = 0;
2812 
2813 	if (core->num_parents > 1 && core->ops->get_parent)
2814 		index = core->ops->get_parent(core->hw);
2815 
2816 	return clk_core_get_parent_by_index(core, index);
2817 }
2818 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2819 static void clk_core_reparent(struct clk_core *core,
2820 				  struct clk_core *new_parent)
2821 {
2822 	clk_reparent(core, new_parent);
2823 	__clk_recalc_accuracies(core);
2824 	__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2825 }
2826 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2827 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2828 {
2829 	if (!hw)
2830 		return;
2831 
2832 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2833 }
2834 
2835 /**
2836  * clk_has_parent - check if a clock is a possible parent for another
2837  * @clk: clock source
2838  * @parent: parent clock source
2839  *
2840  * This function can be used in drivers that need to check that a clock can be
2841  * the parent of another without actually changing the parent.
2842  *
2843  * Returns true if @parent is a possible parent for @clk, false otherwise.
2844  */
clk_has_parent(const struct clk * clk,const struct clk * parent)2845 bool clk_has_parent(const struct clk *clk, const struct clk *parent)
2846 {
2847 	/* NULL clocks should be nops, so return success if either is NULL. */
2848 	if (!clk || !parent)
2849 		return true;
2850 
2851 	return clk_core_has_parent(clk->core, parent->core);
2852 }
2853 EXPORT_SYMBOL_GPL(clk_has_parent);
2854 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2855 static int clk_core_set_parent_nolock(struct clk_core *core,
2856 				      struct clk_core *parent)
2857 {
2858 	int ret = 0;
2859 	int p_index = 0;
2860 	unsigned long p_rate = 0;
2861 
2862 	lockdep_assert_held(&prepare_lock);
2863 
2864 	if (!core)
2865 		return 0;
2866 
2867 	if (core->parent == parent)
2868 		return 0;
2869 
2870 	/* verify ops for multi-parent clks */
2871 	if (core->num_parents > 1 && !core->ops->set_parent)
2872 		return -EPERM;
2873 
2874 	/* check that we are allowed to re-parent if the clock is in use */
2875 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2876 		return -EBUSY;
2877 
2878 	if (clk_core_rate_is_protected(core))
2879 		return -EBUSY;
2880 
2881 	/* try finding the new parent index */
2882 	if (parent) {
2883 		p_index = clk_fetch_parent_index(core, parent);
2884 		if (p_index < 0) {
2885 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2886 					__func__, parent->name, core->name);
2887 			return p_index;
2888 		}
2889 		p_rate = parent->rate;
2890 	}
2891 
2892 	ret = clk_pm_runtime_get(core);
2893 	if (ret)
2894 		return ret;
2895 
2896 	/* propagate PRE_RATE_CHANGE notifications */
2897 	ret = __clk_speculate_rates(core, p_rate);
2898 
2899 	/* abort if a driver objects */
2900 	if (ret & NOTIFY_STOP_MASK)
2901 		goto runtime_put;
2902 
2903 	/* do the re-parent */
2904 	ret = __clk_set_parent(core, parent, p_index);
2905 
2906 	/* propagate rate an accuracy recalculation accordingly */
2907 	if (ret) {
2908 		__clk_recalc_rates(core, true, ABORT_RATE_CHANGE);
2909 	} else {
2910 		__clk_recalc_rates(core, true, POST_RATE_CHANGE);
2911 		__clk_recalc_accuracies(core);
2912 	}
2913 
2914 runtime_put:
2915 	clk_pm_runtime_put(core);
2916 
2917 	return ret;
2918 }
2919 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2920 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2921 {
2922 	return clk_core_set_parent_nolock(hw->core, parent->core);
2923 }
2924 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2925 
2926 /**
2927  * clk_set_parent - switch the parent of a mux clk
2928  * @clk: the mux clk whose input we are switching
2929  * @parent: the new input to clk
2930  *
2931  * Re-parent clk to use parent as its new input source.  If clk is in
2932  * prepared state, the clk will get enabled for the duration of this call. If
2933  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2934  * that, the reparenting is glitchy in hardware, etc), use the
2935  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2936  *
2937  * After successfully changing clk's parent clk_set_parent will update the
2938  * clk topology, sysfs topology and propagate rate recalculation via
2939  * __clk_recalc_rates.
2940  *
2941  * Returns 0 on success, -EERROR otherwise.
2942  */
clk_set_parent(struct clk * clk,struct clk * parent)2943 int clk_set_parent(struct clk *clk, struct clk *parent)
2944 {
2945 	int ret;
2946 
2947 	if (!clk)
2948 		return 0;
2949 
2950 	clk_prepare_lock();
2951 
2952 	if (clk->exclusive_count)
2953 		clk_core_rate_unprotect(clk->core);
2954 
2955 	ret = clk_core_set_parent_nolock(clk->core,
2956 					 parent ? parent->core : NULL);
2957 
2958 	if (clk->exclusive_count)
2959 		clk_core_rate_protect(clk->core);
2960 
2961 	clk_prepare_unlock();
2962 
2963 	return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(clk_set_parent);
2966 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2967 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2968 {
2969 	int ret = -EINVAL;
2970 
2971 	lockdep_assert_held(&prepare_lock);
2972 
2973 	if (!core)
2974 		return 0;
2975 
2976 	if (clk_core_rate_is_protected(core))
2977 		return -EBUSY;
2978 
2979 	trace_clk_set_phase(core, degrees);
2980 
2981 	if (core->ops->set_phase) {
2982 		ret = core->ops->set_phase(core->hw, degrees);
2983 		if (!ret)
2984 			core->phase = degrees;
2985 	}
2986 
2987 	trace_clk_set_phase_complete(core, degrees);
2988 
2989 	return ret;
2990 }
2991 
2992 /**
2993  * clk_set_phase - adjust the phase shift of a clock signal
2994  * @clk: clock signal source
2995  * @degrees: number of degrees the signal is shifted
2996  *
2997  * Shifts the phase of a clock signal by the specified
2998  * degrees. Returns 0 on success, -EERROR otherwise.
2999  *
3000  * This function makes no distinction about the input or reference
3001  * signal that we adjust the clock signal phase against. For example
3002  * phase locked-loop clock signal generators we may shift phase with
3003  * respect to feedback clock signal input, but for other cases the
3004  * clock phase may be shifted with respect to some other, unspecified
3005  * signal.
3006  *
3007  * Additionally the concept of phase shift does not propagate through
3008  * the clock tree hierarchy, which sets it apart from clock rates and
3009  * clock accuracy. A parent clock phase attribute does not have an
3010  * impact on the phase attribute of a child clock.
3011  */
clk_set_phase(struct clk * clk,int degrees)3012 int clk_set_phase(struct clk *clk, int degrees)
3013 {
3014 	int ret;
3015 
3016 	if (!clk)
3017 		return 0;
3018 
3019 	/* sanity check degrees */
3020 	degrees %= 360;
3021 	if (degrees < 0)
3022 		degrees += 360;
3023 
3024 	clk_prepare_lock();
3025 
3026 	if (clk->exclusive_count)
3027 		clk_core_rate_unprotect(clk->core);
3028 
3029 	ret = clk_core_set_phase_nolock(clk->core, degrees);
3030 
3031 	if (clk->exclusive_count)
3032 		clk_core_rate_protect(clk->core);
3033 
3034 	clk_prepare_unlock();
3035 
3036 	return ret;
3037 }
3038 EXPORT_SYMBOL_GPL(clk_set_phase);
3039 
clk_core_get_phase(struct clk_core * core)3040 static int clk_core_get_phase(struct clk_core *core)
3041 {
3042 	int ret;
3043 
3044 	lockdep_assert_held(&prepare_lock);
3045 	if (!core->ops->get_phase)
3046 		return 0;
3047 
3048 	/* Always try to update cached phase if possible */
3049 	ret = core->ops->get_phase(core->hw);
3050 	if (ret >= 0)
3051 		core->phase = ret;
3052 
3053 	return ret;
3054 }
3055 
3056 /**
3057  * clk_get_phase - return the phase shift of a clock signal
3058  * @clk: clock signal source
3059  *
3060  * Returns the phase shift of a clock node in degrees, otherwise returns
3061  * -EERROR.
3062  */
clk_get_phase(struct clk * clk)3063 int clk_get_phase(struct clk *clk)
3064 {
3065 	int ret;
3066 
3067 	if (!clk)
3068 		return 0;
3069 
3070 	clk_prepare_lock();
3071 	ret = clk_core_get_phase(clk->core);
3072 	clk_prepare_unlock();
3073 
3074 	return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(clk_get_phase);
3077 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)3078 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
3079 {
3080 	/* Assume a default value of 50% */
3081 	core->duty.num = 1;
3082 	core->duty.den = 2;
3083 }
3084 
3085 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
3086 
clk_core_update_duty_cycle_nolock(struct clk_core * core)3087 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
3088 {
3089 	struct clk_duty *duty = &core->duty;
3090 	int ret = 0;
3091 
3092 	if (!core->ops->get_duty_cycle)
3093 		return clk_core_update_duty_cycle_parent_nolock(core);
3094 
3095 	ret = core->ops->get_duty_cycle(core->hw, duty);
3096 	if (ret)
3097 		goto reset;
3098 
3099 	/* Don't trust the clock provider too much */
3100 	if (duty->den == 0 || duty->num > duty->den) {
3101 		ret = -EINVAL;
3102 		goto reset;
3103 	}
3104 
3105 	return 0;
3106 
3107 reset:
3108 	clk_core_reset_duty_cycle_nolock(core);
3109 	return ret;
3110 }
3111 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)3112 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
3113 {
3114 	int ret = 0;
3115 
3116 	if (core->parent &&
3117 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
3118 		ret = clk_core_update_duty_cycle_nolock(core->parent);
3119 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3120 	} else {
3121 		clk_core_reset_duty_cycle_nolock(core);
3122 	}
3123 
3124 	return ret;
3125 }
3126 
3127 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3128 						 struct clk_duty *duty);
3129 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)3130 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
3131 					  struct clk_duty *duty)
3132 {
3133 	int ret;
3134 
3135 	lockdep_assert_held(&prepare_lock);
3136 
3137 	if (clk_core_rate_is_protected(core))
3138 		return -EBUSY;
3139 
3140 	trace_clk_set_duty_cycle(core, duty);
3141 
3142 	if (!core->ops->set_duty_cycle)
3143 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
3144 
3145 	ret = core->ops->set_duty_cycle(core->hw, duty);
3146 	if (!ret)
3147 		memcpy(&core->duty, duty, sizeof(*duty));
3148 
3149 	trace_clk_set_duty_cycle_complete(core, duty);
3150 
3151 	return ret;
3152 }
3153 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)3154 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
3155 						 struct clk_duty *duty)
3156 {
3157 	int ret = 0;
3158 
3159 	if (core->parent &&
3160 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
3161 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
3162 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
3163 	}
3164 
3165 	return ret;
3166 }
3167 
3168 /**
3169  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
3170  * @clk: clock signal source
3171  * @num: numerator of the duty cycle ratio to be applied
3172  * @den: denominator of the duty cycle ratio to be applied
3173  *
3174  * Apply the duty cycle ratio if the ratio is valid and the clock can
3175  * perform this operation
3176  *
3177  * Returns (0) on success, a negative errno otherwise.
3178  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)3179 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
3180 {
3181 	int ret;
3182 	struct clk_duty duty;
3183 
3184 	if (!clk)
3185 		return 0;
3186 
3187 	/* sanity check the ratio */
3188 	if (den == 0 || num > den)
3189 		return -EINVAL;
3190 
3191 	duty.num = num;
3192 	duty.den = den;
3193 
3194 	clk_prepare_lock();
3195 
3196 	if (clk->exclusive_count)
3197 		clk_core_rate_unprotect(clk->core);
3198 
3199 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
3200 
3201 	if (clk->exclusive_count)
3202 		clk_core_rate_protect(clk->core);
3203 
3204 	clk_prepare_unlock();
3205 
3206 	return ret;
3207 }
3208 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
3209 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)3210 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
3211 					  unsigned int scale)
3212 {
3213 	struct clk_duty *duty = &core->duty;
3214 	int ret;
3215 
3216 	clk_prepare_lock();
3217 
3218 	ret = clk_core_update_duty_cycle_nolock(core);
3219 	if (!ret)
3220 		ret = mult_frac(scale, duty->num, duty->den);
3221 
3222 	clk_prepare_unlock();
3223 
3224 	return ret;
3225 }
3226 
3227 /**
3228  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
3229  * @clk: clock signal source
3230  * @scale: scaling factor to be applied to represent the ratio as an integer
3231  *
3232  * Returns the duty cycle ratio of a clock node multiplied by the provided
3233  * scaling factor, or negative errno on error.
3234  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)3235 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
3236 {
3237 	if (!clk)
3238 		return 0;
3239 
3240 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
3241 }
3242 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
3243 
3244 /**
3245  * clk_is_match - check if two clk's point to the same hardware clock
3246  * @p: clk compared against q
3247  * @q: clk compared against p
3248  *
3249  * Returns true if the two struct clk pointers both point to the same hardware
3250  * clock node. Put differently, returns true if struct clk *p and struct clk *q
3251  * share the same struct clk_core object.
3252  *
3253  * Returns false otherwise. Note that two NULL clks are treated as matching.
3254  */
clk_is_match(const struct clk * p,const struct clk * q)3255 bool clk_is_match(const struct clk *p, const struct clk *q)
3256 {
3257 	/* trivial case: identical struct clk's or both NULL */
3258 	if (p == q)
3259 		return true;
3260 
3261 	/* true if clk->core pointers match. Avoid dereferencing garbage */
3262 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
3263 		if (p->core == q->core)
3264 			return true;
3265 
3266 	return false;
3267 }
3268 EXPORT_SYMBOL_GPL(clk_is_match);
3269 
3270 /***        debugfs support        ***/
3271 
3272 #ifdef CONFIG_DEBUG_FS
3273 #include <linux/debugfs.h>
3274 
3275 static struct dentry *rootdir;
3276 static int inited = 0;
3277 static DEFINE_MUTEX(clk_debug_lock);
3278 static HLIST_HEAD(clk_debug_list);
3279 
3280 static struct hlist_head *orphan_list[] = {
3281 	&clk_orphan_list,
3282 	NULL,
3283 };
3284 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3285 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3286 				 int level)
3287 {
3288 	int phase;
3289 	struct clk *clk_user;
3290 	int multi_node = 0;
3291 
3292 	seq_printf(s, "%*s%-*s %-7d %-8d %-8d %-11lu %-10lu ",
3293 		   level * 3 + 1, "",
3294 		   35 - level * 3, c->name,
3295 		   c->enable_count, c->prepare_count, c->protect_count,
3296 		   clk_core_get_rate_recalc(c),
3297 		   clk_core_get_accuracy_recalc(c));
3298 
3299 	phase = clk_core_get_phase(c);
3300 	if (phase >= 0)
3301 		seq_printf(s, "%-5d", phase);
3302 	else
3303 		seq_puts(s, "-----");
3304 
3305 	seq_printf(s, " %-6d", clk_core_get_scaled_duty_cycle(c, 100000));
3306 
3307 	if (c->ops->is_enabled)
3308 		seq_printf(s, " %5c ", clk_core_is_enabled(c) ? 'Y' : 'N');
3309 	else if (!c->ops->enable)
3310 		seq_printf(s, " %5c ", 'Y');
3311 	else
3312 		seq_printf(s, " %5c ", '?');
3313 
3314 	hlist_for_each_entry(clk_user, &c->clks, clks_node) {
3315 		seq_printf(s, "%*s%-*s  %-25s\n",
3316 			   level * 3 + 2 + 105 * multi_node, "",
3317 			   30,
3318 			   clk_user->dev_id ? clk_user->dev_id : "deviceless",
3319 			   clk_user->con_id ? clk_user->con_id : "no_connection_id");
3320 
3321 		multi_node = 1;
3322 	}
3323 
3324 }
3325 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3326 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3327 				     int level)
3328 {
3329 	struct clk_core *child;
3330 
3331 	clk_summary_show_one(s, c, level);
3332 
3333 	hlist_for_each_entry(child, &c->children, child_node)
3334 		clk_summary_show_subtree(s, child, level + 1);
3335 }
3336 
clk_summary_show(struct seq_file * s,void * data)3337 static int clk_summary_show(struct seq_file *s, void *data)
3338 {
3339 	struct clk_core *c;
3340 	struct hlist_head **lists = s->private;
3341 	int ret;
3342 
3343 	seq_puts(s, "                                 enable  prepare  protect                                duty  hardware                            connection\n");
3344 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle    enable   consumer                         id\n");
3345 	seq_puts(s, "---------------------------------------------------------------------------------------------------------------------------------------------\n");
3346 
3347 	ret = clk_pm_runtime_get_all();
3348 	if (ret)
3349 		return ret;
3350 
3351 	clk_prepare_lock();
3352 
3353 	for (; *lists; lists++)
3354 		hlist_for_each_entry(c, *lists, child_node)
3355 			clk_summary_show_subtree(s, c, 0);
3356 
3357 	clk_prepare_unlock();
3358 	clk_pm_runtime_put_all();
3359 
3360 	return 0;
3361 }
3362 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3363 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3364 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3365 {
3366 	int phase;
3367 	unsigned long min_rate, max_rate;
3368 
3369 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3370 
3371 	/* This should be JSON format, i.e. elements separated with a comma */
3372 	seq_printf(s, "\"%s\": { ", c->name);
3373 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3374 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3375 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3376 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3377 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3378 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3379 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3380 	phase = clk_core_get_phase(c);
3381 	if (phase >= 0)
3382 		seq_printf(s, "\"phase\": %d,", phase);
3383 	seq_printf(s, "\"duty_cycle\": %u",
3384 		   clk_core_get_scaled_duty_cycle(c, 100000));
3385 }
3386 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3387 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3388 {
3389 	struct clk_core *child;
3390 
3391 	clk_dump_one(s, c, level);
3392 
3393 	hlist_for_each_entry(child, &c->children, child_node) {
3394 		seq_putc(s, ',');
3395 		clk_dump_subtree(s, child, level + 1);
3396 	}
3397 
3398 	seq_putc(s, '}');
3399 }
3400 
clk_dump_show(struct seq_file * s,void * data)3401 static int clk_dump_show(struct seq_file *s, void *data)
3402 {
3403 	struct clk_core *c;
3404 	bool first_node = true;
3405 	struct hlist_head **lists = s->private;
3406 	int ret;
3407 
3408 	ret = clk_pm_runtime_get_all();
3409 	if (ret)
3410 		return ret;
3411 
3412 	seq_putc(s, '{');
3413 
3414 	clk_prepare_lock();
3415 
3416 	for (; *lists; lists++) {
3417 		hlist_for_each_entry(c, *lists, child_node) {
3418 			if (!first_node)
3419 				seq_putc(s, ',');
3420 			first_node = false;
3421 			clk_dump_subtree(s, c, 0);
3422 		}
3423 	}
3424 
3425 	clk_prepare_unlock();
3426 	clk_pm_runtime_put_all();
3427 
3428 	seq_puts(s, "}\n");
3429 	return 0;
3430 }
3431 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3432 
3433 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3434 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3435 /*
3436  * This can be dangerous, therefore don't provide any real compile time
3437  * configuration option for this feature.
3438  * People who want to use this will need to modify the source code directly.
3439  */
clk_rate_set(void * data,u64 val)3440 static int clk_rate_set(void *data, u64 val)
3441 {
3442 	struct clk_core *core = data;
3443 	int ret;
3444 
3445 	clk_prepare_lock();
3446 	ret = clk_core_set_rate_nolock(core, val);
3447 	clk_prepare_unlock();
3448 
3449 	return ret;
3450 }
3451 
3452 #define clk_rate_mode	0644
3453 
clk_phase_set(void * data,u64 val)3454 static int clk_phase_set(void *data, u64 val)
3455 {
3456 	struct clk_core *core = data;
3457 	int degrees = do_div(val, 360);
3458 	int ret;
3459 
3460 	clk_prepare_lock();
3461 	ret = clk_core_set_phase_nolock(core, degrees);
3462 	clk_prepare_unlock();
3463 
3464 	return ret;
3465 }
3466 
3467 #define clk_phase_mode	0644
3468 
clk_prepare_enable_set(void * data,u64 val)3469 static int clk_prepare_enable_set(void *data, u64 val)
3470 {
3471 	struct clk_core *core = data;
3472 	int ret = 0;
3473 
3474 	if (val)
3475 		ret = clk_prepare_enable(core->hw->clk);
3476 	else
3477 		clk_disable_unprepare(core->hw->clk);
3478 
3479 	return ret;
3480 }
3481 
clk_prepare_enable_get(void * data,u64 * val)3482 static int clk_prepare_enable_get(void *data, u64 *val)
3483 {
3484 	struct clk_core *core = data;
3485 
3486 	*val = core->enable_count && core->prepare_count;
3487 	return 0;
3488 }
3489 
3490 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3491 			 clk_prepare_enable_set, "%llu\n");
3492 
3493 #else
3494 #define clk_rate_set	NULL
3495 #define clk_rate_mode	0444
3496 
3497 #define clk_phase_set	NULL
3498 #define clk_phase_mode	0644
3499 #endif
3500 
clk_rate_get(void * data,u64 * val)3501 static int clk_rate_get(void *data, u64 *val)
3502 {
3503 	struct clk_core *core = data;
3504 
3505 	clk_prepare_lock();
3506 	*val = clk_core_get_rate_recalc(core);
3507 	clk_prepare_unlock();
3508 
3509 	return 0;
3510 }
3511 
3512 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3513 
clk_phase_get(void * data,u64 * val)3514 static int clk_phase_get(void *data, u64 *val)
3515 {
3516 	struct clk_core *core = data;
3517 
3518 	*val = core->phase;
3519 	return 0;
3520 }
3521 
3522 DEFINE_DEBUGFS_ATTRIBUTE(clk_phase_fops, clk_phase_get, clk_phase_set, "%llu\n");
3523 
3524 static const struct {
3525 	unsigned long flag;
3526 	const char *name;
3527 } clk_flags[] = {
3528 #define ENTRY(f) { f, #f }
3529 	ENTRY(CLK_SET_RATE_GATE),
3530 	ENTRY(CLK_SET_PARENT_GATE),
3531 	ENTRY(CLK_SET_RATE_PARENT),
3532 	ENTRY(CLK_IGNORE_UNUSED),
3533 	ENTRY(CLK_GET_RATE_NOCACHE),
3534 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3535 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3536 	ENTRY(CLK_RECALC_NEW_RATES),
3537 	ENTRY(CLK_SET_RATE_UNGATE),
3538 	ENTRY(CLK_IS_CRITICAL),
3539 	ENTRY(CLK_OPS_PARENT_ENABLE),
3540 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3541 #undef ENTRY
3542 };
3543 
clk_flags_show(struct seq_file * s,void * data)3544 static int clk_flags_show(struct seq_file *s, void *data)
3545 {
3546 	struct clk_core *core = s->private;
3547 	unsigned long flags = core->flags;
3548 	unsigned int i;
3549 
3550 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3551 		if (flags & clk_flags[i].flag) {
3552 			seq_printf(s, "%s\n", clk_flags[i].name);
3553 			flags &= ~clk_flags[i].flag;
3554 		}
3555 	}
3556 	if (flags) {
3557 		/* Unknown flags */
3558 		seq_printf(s, "0x%lx\n", flags);
3559 	}
3560 
3561 	return 0;
3562 }
3563 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3564 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3565 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3566 				 unsigned int i, char terminator)
3567 {
3568 	struct clk_core *parent;
3569 	const char *name = NULL;
3570 
3571 	/*
3572 	 * Go through the following options to fetch a parent's name.
3573 	 *
3574 	 * 1. Fetch the registered parent clock and use its name
3575 	 * 2. Use the global (fallback) name if specified
3576 	 * 3. Use the local fw_name if provided
3577 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3578 	 *
3579 	 * This may still fail in some cases, such as when the parent is
3580 	 * specified directly via a struct clk_hw pointer, but it isn't
3581 	 * registered (yet).
3582 	 */
3583 	parent = clk_core_get_parent_by_index(core, i);
3584 	if (parent) {
3585 		seq_puts(s, parent->name);
3586 	} else if (core->parents[i].name) {
3587 		seq_puts(s, core->parents[i].name);
3588 	} else if (core->parents[i].fw_name) {
3589 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3590 	} else {
3591 		if (core->parents[i].index >= 0)
3592 			name = of_clk_get_parent_name(core->of_node, core->parents[i].index);
3593 		if (!name)
3594 			name = "(missing)";
3595 
3596 		seq_puts(s, name);
3597 	}
3598 
3599 	seq_putc(s, terminator);
3600 }
3601 
possible_parents_show(struct seq_file * s,void * data)3602 static int possible_parents_show(struct seq_file *s, void *data)
3603 {
3604 	struct clk_core *core = s->private;
3605 	int i;
3606 
3607 	for (i = 0; i < core->num_parents - 1; i++)
3608 		possible_parent_show(s, core, i, ' ');
3609 
3610 	possible_parent_show(s, core, i, '\n');
3611 
3612 	return 0;
3613 }
3614 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3615 
current_parent_show(struct seq_file * s,void * data)3616 static int current_parent_show(struct seq_file *s, void *data)
3617 {
3618 	struct clk_core *core = s->private;
3619 
3620 	if (core->parent)
3621 		seq_printf(s, "%s\n", core->parent->name);
3622 
3623 	return 0;
3624 }
3625 DEFINE_SHOW_ATTRIBUTE(current_parent);
3626 
3627 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
current_parent_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)3628 static ssize_t current_parent_write(struct file *file, const char __user *ubuf,
3629 				    size_t count, loff_t *ppos)
3630 {
3631 	struct seq_file *s = file->private_data;
3632 	struct clk_core *core = s->private;
3633 	struct clk_core *parent;
3634 	u8 idx;
3635 	int err;
3636 
3637 	err = kstrtou8_from_user(ubuf, count, 0, &idx);
3638 	if (err < 0)
3639 		return err;
3640 
3641 	parent = clk_core_get_parent_by_index(core, idx);
3642 	if (!parent)
3643 		return -ENOENT;
3644 
3645 	clk_prepare_lock();
3646 	err = clk_core_set_parent_nolock(core, parent);
3647 	clk_prepare_unlock();
3648 	if (err)
3649 		return err;
3650 
3651 	return count;
3652 }
3653 
3654 static const struct file_operations current_parent_rw_fops = {
3655 	.open		= current_parent_open,
3656 	.write		= current_parent_write,
3657 	.read		= seq_read,
3658 	.llseek		= seq_lseek,
3659 	.release	= single_release,
3660 };
3661 #endif
3662 
clk_duty_cycle_show(struct seq_file * s,void * data)3663 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3664 {
3665 	struct clk_core *core = s->private;
3666 	struct clk_duty *duty = &core->duty;
3667 
3668 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3669 
3670 	return 0;
3671 }
3672 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3673 
clk_min_rate_show(struct seq_file * s,void * data)3674 static int clk_min_rate_show(struct seq_file *s, void *data)
3675 {
3676 	struct clk_core *core = s->private;
3677 	unsigned long min_rate, max_rate;
3678 
3679 	clk_prepare_lock();
3680 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3681 	clk_prepare_unlock();
3682 	seq_printf(s, "%lu\n", min_rate);
3683 
3684 	return 0;
3685 }
3686 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3687 
clk_max_rate_show(struct seq_file * s,void * data)3688 static int clk_max_rate_show(struct seq_file *s, void *data)
3689 {
3690 	struct clk_core *core = s->private;
3691 	unsigned long min_rate, max_rate;
3692 
3693 	clk_prepare_lock();
3694 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3695 	clk_prepare_unlock();
3696 	seq_printf(s, "%lu\n", max_rate);
3697 
3698 	return 0;
3699 }
3700 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3701 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3702 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3703 {
3704 	struct dentry *root;
3705 
3706 	if (!core || !pdentry)
3707 		return;
3708 
3709 	root = debugfs_create_dir(core->name, pdentry);
3710 	core->dentry = root;
3711 
3712 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3713 			    &clk_rate_fops);
3714 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3715 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3716 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3717 	debugfs_create_file("clk_phase", clk_phase_mode, root, core,
3718 			    &clk_phase_fops);
3719 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3720 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3721 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3722 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3723 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3724 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3725 			    &clk_duty_cycle_fops);
3726 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3727 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3728 			    &clk_prepare_enable_fops);
3729 
3730 	if (core->num_parents > 1)
3731 		debugfs_create_file("clk_parent", 0644, root, core,
3732 				    &current_parent_rw_fops);
3733 	else
3734 #endif
3735 	if (core->num_parents > 0)
3736 		debugfs_create_file("clk_parent", 0444, root, core,
3737 				    &current_parent_fops);
3738 
3739 	if (core->num_parents > 1)
3740 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3741 				    &possible_parents_fops);
3742 
3743 	if (core->ops->debug_init)
3744 		core->ops->debug_init(core->hw, core->dentry);
3745 }
3746 
3747 /**
3748  * clk_debug_register - add a clk node to the debugfs clk directory
3749  * @core: the clk being added to the debugfs clk directory
3750  *
3751  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3752  * initialized.  Otherwise it bails out early since the debugfs clk directory
3753  * will be created lazily by clk_debug_init as part of a late_initcall.
3754  */
clk_debug_register(struct clk_core * core)3755 static void clk_debug_register(struct clk_core *core)
3756 {
3757 	mutex_lock(&clk_debug_lock);
3758 	hlist_add_head(&core->debug_node, &clk_debug_list);
3759 	if (inited)
3760 		clk_debug_create_one(core, rootdir);
3761 	mutex_unlock(&clk_debug_lock);
3762 }
3763 
3764  /**
3765  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3766  * @core: the clk being removed from the debugfs clk directory
3767  *
3768  * Dynamically removes a clk and all its child nodes from the
3769  * debugfs clk directory if clk->dentry points to debugfs created by
3770  * clk_debug_register in __clk_core_init.
3771  */
clk_debug_unregister(struct clk_core * core)3772 static void clk_debug_unregister(struct clk_core *core)
3773 {
3774 	mutex_lock(&clk_debug_lock);
3775 	hlist_del_init(&core->debug_node);
3776 	debugfs_remove_recursive(core->dentry);
3777 	core->dentry = NULL;
3778 	mutex_unlock(&clk_debug_lock);
3779 }
3780 
3781 /**
3782  * clk_debug_init - lazily populate the debugfs clk directory
3783  *
3784  * clks are often initialized very early during boot before memory can be
3785  * dynamically allocated and well before debugfs is setup. This function
3786  * populates the debugfs clk directory once at boot-time when we know that
3787  * debugfs is setup. It should only be called once at boot-time, all other clks
3788  * added dynamically will be done so with clk_debug_register.
3789  */
clk_debug_init(void)3790 static int __init clk_debug_init(void)
3791 {
3792 	struct clk_core *core;
3793 
3794 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3795 	pr_warn("\n");
3796 	pr_warn("********************************************************************\n");
3797 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3798 	pr_warn("**                                                                **\n");
3799 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3800 	pr_warn("**                                                                **\n");
3801 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3802 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3803 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3804 	pr_warn("**                                                                **\n");
3805 	pr_warn("** If you see this message and you are not debugging the          **\n");
3806 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3807 	pr_warn("**                                                                **\n");
3808 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3809 	pr_warn("********************************************************************\n");
3810 #endif
3811 
3812 	rootdir = debugfs_create_dir("clk", NULL);
3813 
3814 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3815 			    &clk_summary_fops);
3816 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3817 			    &clk_dump_fops);
3818 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3819 			    &clk_summary_fops);
3820 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3821 			    &clk_dump_fops);
3822 
3823 	mutex_lock(&clk_debug_lock);
3824 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3825 		clk_debug_create_one(core, rootdir);
3826 
3827 	inited = 1;
3828 	mutex_unlock(&clk_debug_lock);
3829 
3830 	return 0;
3831 }
3832 late_initcall(clk_debug_init);
3833 #else
clk_debug_register(struct clk_core * core)3834 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3835 static inline void clk_debug_unregister(struct clk_core *core)
3836 {
3837 }
3838 #endif
3839 
clk_core_reparent_orphans_nolock(void)3840 static void clk_core_reparent_orphans_nolock(void)
3841 {
3842 	struct clk_core *orphan;
3843 	struct hlist_node *tmp2;
3844 
3845 	/*
3846 	 * walk the list of orphan clocks and reparent any that newly finds a
3847 	 * parent.
3848 	 */
3849 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3850 		struct clk_core *parent = __clk_init_parent(orphan);
3851 
3852 		/*
3853 		 * We need to use __clk_set_parent_before() and _after() to
3854 		 * properly migrate any prepare/enable count of the orphan
3855 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3856 		 * are enabled during init but might not have a parent yet.
3857 		 */
3858 		if (parent) {
3859 			/* update the clk tree topology */
3860 			__clk_set_parent_before(orphan, parent);
3861 			__clk_set_parent_after(orphan, parent, NULL);
3862 			__clk_recalc_accuracies(orphan);
3863 			__clk_recalc_rates(orphan, true, 0);
3864 
3865 			/*
3866 			 * __clk_init_parent() will set the initial req_rate to
3867 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3868 			 * is an orphan when it's registered.
3869 			 *
3870 			 * 'req_rate' is used by clk_set_rate_range() and
3871 			 * clk_put() to trigger a clk_set_rate() call whenever
3872 			 * the boundaries are modified. Let's make sure
3873 			 * 'req_rate' is set to something non-zero so that
3874 			 * clk_set_rate_range() doesn't drop the frequency.
3875 			 */
3876 			orphan->req_rate = orphan->rate;
3877 		}
3878 	}
3879 }
3880 
3881 /**
3882  * __clk_core_init - initialize the data structures in a struct clk_core
3883  * @core:	clk_core being initialized
3884  *
3885  * Initializes the lists in struct clk_core, queries the hardware for the
3886  * parent and rate and sets them both.
3887  */
__clk_core_init(struct clk_core * core)3888 static int __clk_core_init(struct clk_core *core)
3889 {
3890 	int ret;
3891 	struct clk_core *parent;
3892 	unsigned long rate;
3893 	int phase;
3894 
3895 	clk_prepare_lock();
3896 
3897 	/*
3898 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3899 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3900 	 * being NULL as the clk not being registered yet. This is crucial so
3901 	 * that clks aren't parented until their parent is fully registered.
3902 	 */
3903 	core->hw->core = core;
3904 
3905 	ret = clk_pm_runtime_get(core);
3906 	if (ret)
3907 		goto unlock;
3908 
3909 	/* check to see if a clock with this name is already registered */
3910 	if (clk_core_lookup(core->name)) {
3911 		pr_debug("%s: clk %s already initialized\n",
3912 				__func__, core->name);
3913 		ret = -EEXIST;
3914 		goto out;
3915 	}
3916 
3917 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3918 	if (core->ops->set_rate &&
3919 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3920 	      core->ops->recalc_rate)) {
3921 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3922 		       __func__, core->name);
3923 		ret = -EINVAL;
3924 		goto out;
3925 	}
3926 
3927 	if (core->ops->set_parent && !core->ops->get_parent) {
3928 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3929 		       __func__, core->name);
3930 		ret = -EINVAL;
3931 		goto out;
3932 	}
3933 
3934 	if (core->ops->set_parent && !core->ops->determine_rate) {
3935 		pr_err("%s: %s must implement .set_parent & .determine_rate\n",
3936 			__func__, core->name);
3937 		ret = -EINVAL;
3938 		goto out;
3939 	}
3940 
3941 	if (core->num_parents > 1 && !core->ops->get_parent) {
3942 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3943 		       __func__, core->name);
3944 		ret = -EINVAL;
3945 		goto out;
3946 	}
3947 
3948 	if (core->ops->set_rate_and_parent &&
3949 			!(core->ops->set_parent && core->ops->set_rate)) {
3950 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3951 				__func__, core->name);
3952 		ret = -EINVAL;
3953 		goto out;
3954 	}
3955 
3956 	/*
3957 	 * optional platform-specific magic
3958 	 *
3959 	 * The .init callback is not used by any of the basic clock types, but
3960 	 * exists for weird hardware that must perform initialization magic for
3961 	 * CCF to get an accurate view of clock for any other callbacks. It may
3962 	 * also be used needs to perform dynamic allocations. Such allocation
3963 	 * must be freed in the terminate() callback.
3964 	 * This callback shall not be used to initialize the parameters state,
3965 	 * such as rate, parent, etc ...
3966 	 *
3967 	 * If it exist, this callback should called before any other callback of
3968 	 * the clock
3969 	 */
3970 	if (core->ops->init) {
3971 		ret = core->ops->init(core->hw);
3972 		if (ret)
3973 			goto out;
3974 	}
3975 
3976 	parent = core->parent = __clk_init_parent(core);
3977 
3978 	/*
3979 	 * Populate core->parent if parent has already been clk_core_init'd. If
3980 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3981 	 * list.  If clk doesn't have any parents then place it in the root
3982 	 * clk list.
3983 	 *
3984 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3985 	 * clocks and re-parent any that are children of the clock currently
3986 	 * being clk_init'd.
3987 	 */
3988 	if (parent) {
3989 		hlist_add_head(&core->child_node, &parent->children);
3990 		core->orphan = parent->orphan;
3991 	} else if (!core->num_parents) {
3992 		hlist_add_head(&core->child_node, &clk_root_list);
3993 		core->orphan = false;
3994 	} else {
3995 		hlist_add_head(&core->child_node, &clk_orphan_list);
3996 		core->orphan = true;
3997 	}
3998 	hash_add(clk_hashtable, &core->hashtable_node,
3999 		 full_name_hash(NULL, core->name, strlen(core->name)));
4000 
4001 	/*
4002 	 * Set clk's accuracy.  The preferred method is to use
4003 	 * .recalc_accuracy. For simple clocks and lazy developers the default
4004 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
4005 	 * parent (or is orphaned) then accuracy is set to zero (perfect
4006 	 * clock).
4007 	 */
4008 	if (core->ops->recalc_accuracy)
4009 		core->accuracy = core->ops->recalc_accuracy(core->hw,
4010 					clk_core_get_accuracy_no_lock(parent));
4011 	else if (parent)
4012 		core->accuracy = parent->accuracy;
4013 	else
4014 		core->accuracy = 0;
4015 
4016 	/*
4017 	 * Set clk's phase by clk_core_get_phase() caching the phase.
4018 	 * Since a phase is by definition relative to its parent, just
4019 	 * query the current clock phase, or just assume it's in phase.
4020 	 */
4021 	phase = clk_core_get_phase(core);
4022 	if (phase < 0) {
4023 		ret = phase;
4024 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
4025 			core->name);
4026 		goto out;
4027 	}
4028 
4029 	/*
4030 	 * Set clk's duty cycle.
4031 	 */
4032 	clk_core_update_duty_cycle_nolock(core);
4033 
4034 	/*
4035 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
4036 	 * simple clocks and lazy developers the default fallback is to use the
4037 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
4038 	 * then rate is set to zero.
4039 	 */
4040 	if (core->ops->recalc_rate)
4041 		rate = core->ops->recalc_rate(core->hw,
4042 				clk_core_get_rate_nolock(parent));
4043 	else if (parent)
4044 		rate = parent->rate;
4045 	else
4046 		rate = 0;
4047 	core->rate = core->req_rate = rate;
4048 
4049 	/*
4050 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
4051 	 * don't get accidentally disabled when walking the orphan tree and
4052 	 * reparenting clocks
4053 	 */
4054 	if (core->flags & CLK_IS_CRITICAL) {
4055 		ret = clk_core_prepare(core);
4056 		if (ret) {
4057 			pr_warn("%s: critical clk '%s' failed to prepare\n",
4058 			       __func__, core->name);
4059 			goto out;
4060 		}
4061 
4062 		ret = clk_core_enable_lock(core);
4063 		if (ret) {
4064 			pr_warn("%s: critical clk '%s' failed to enable\n",
4065 			       __func__, core->name);
4066 			clk_core_unprepare(core);
4067 			goto out;
4068 		}
4069 	}
4070 
4071 	clk_core_reparent_orphans_nolock();
4072 out:
4073 	clk_pm_runtime_put(core);
4074 unlock:
4075 	if (ret) {
4076 		hash_del(&core->hashtable_node);
4077 		hlist_del_init(&core->child_node);
4078 		core->hw->core = NULL;
4079 	}
4080 
4081 	clk_prepare_unlock();
4082 
4083 	if (!ret)
4084 		clk_debug_register(core);
4085 
4086 	return ret;
4087 }
4088 
4089 /**
4090  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
4091  * @core: clk to add consumer to
4092  * @clk: consumer to link to a clk
4093  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)4094 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
4095 {
4096 	clk_prepare_lock();
4097 	hlist_add_head(&clk->clks_node, &core->clks);
4098 	clk_prepare_unlock();
4099 }
4100 
4101 /**
4102  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
4103  * @clk: consumer to unlink
4104  */
clk_core_unlink_consumer(struct clk * clk)4105 static void clk_core_unlink_consumer(struct clk *clk)
4106 {
4107 	lockdep_assert_held(&prepare_lock);
4108 	hlist_del(&clk->clks_node);
4109 }
4110 
4111 /**
4112  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
4113  * @core: clk to allocate a consumer for
4114  * @dev_id: string describing device name
4115  * @con_id: connection ID string on device
4116  *
4117  * Returns: clk consumer left unlinked from the consumer list
4118  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)4119 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
4120 			     const char *con_id)
4121 {
4122 	struct clk *clk;
4123 
4124 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
4125 	if (!clk)
4126 		return ERR_PTR(-ENOMEM);
4127 
4128 	clk->core = core;
4129 	clk->dev_id = dev_id;
4130 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
4131 	clk->max_rate = ULONG_MAX;
4132 
4133 	return clk;
4134 }
4135 
4136 /**
4137  * free_clk - Free a clk consumer
4138  * @clk: clk consumer to free
4139  *
4140  * Note, this assumes the clk has been unlinked from the clk_core consumer
4141  * list.
4142  */
free_clk(struct clk * clk)4143 static void free_clk(struct clk *clk)
4144 {
4145 	kfree_const(clk->con_id);
4146 	kfree(clk);
4147 }
4148 
4149 /**
4150  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
4151  * a clk_hw
4152  * @dev: clk consumer device
4153  * @hw: clk_hw associated with the clk being consumed
4154  * @dev_id: string describing device name
4155  * @con_id: connection ID string on device
4156  *
4157  * This is the main function used to create a clk pointer for use by clk
4158  * consumers. It connects a consumer to the clk_core and clk_hw structures
4159  * used by the framework and clk provider respectively.
4160  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)4161 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
4162 			      const char *dev_id, const char *con_id)
4163 {
4164 	struct clk *clk;
4165 	struct clk_core *core;
4166 
4167 	/* This is to allow this function to be chained to others */
4168 	if (IS_ERR_OR_NULL(hw))
4169 		return ERR_CAST(hw);
4170 
4171 	core = hw->core;
4172 	clk = alloc_clk(core, dev_id, con_id);
4173 	if (IS_ERR(clk))
4174 		return clk;
4175 	clk->dev = dev;
4176 
4177 	if (!try_module_get(core->owner)) {
4178 		free_clk(clk);
4179 		return ERR_PTR(-ENOENT);
4180 	}
4181 
4182 	kref_get(&core->ref);
4183 	clk_core_link_consumer(core, clk);
4184 
4185 	return clk;
4186 }
4187 
4188 /**
4189  * clk_hw_get_clk - get clk consumer given an clk_hw
4190  * @hw: clk_hw associated with the clk being consumed
4191  * @con_id: connection ID string on device
4192  *
4193  * Returns: new clk consumer
4194  * This is the function to be used by providers which need
4195  * to get a consumer clk and act on the clock element
4196  * Calls to this function must be balanced with calls clk_put()
4197  */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)4198 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
4199 {
4200 	struct device *dev = hw->core->dev;
4201 	const char *name = dev ? dev_name(dev) : NULL;
4202 
4203 	return clk_hw_create_clk(dev, hw, name, con_id);
4204 }
4205 EXPORT_SYMBOL(clk_hw_get_clk);
4206 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)4207 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
4208 {
4209 	const char *dst;
4210 
4211 	if (!src) {
4212 		if (must_exist)
4213 			return -EINVAL;
4214 		return 0;
4215 	}
4216 
4217 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
4218 	if (!dst)
4219 		return -ENOMEM;
4220 
4221 	return 0;
4222 }
4223 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)4224 static int clk_core_populate_parent_map(struct clk_core *core,
4225 					const struct clk_init_data *init)
4226 {
4227 	u8 num_parents = init->num_parents;
4228 	const char * const *parent_names = init->parent_names;
4229 	const struct clk_hw **parent_hws = init->parent_hws;
4230 	const struct clk_parent_data *parent_data = init->parent_data;
4231 	int i, ret = 0;
4232 	struct clk_parent_map *parents, *parent;
4233 
4234 	if (!num_parents)
4235 		return 0;
4236 
4237 	/*
4238 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
4239 	 * having a cache of names/clk_hw pointers to clk_core pointers.
4240 	 */
4241 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
4242 	core->parents = parents;
4243 	if (!parents)
4244 		return -ENOMEM;
4245 
4246 	/* Copy everything over because it might be __initdata */
4247 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
4248 		parent->index = -1;
4249 		if (parent_names) {
4250 			/* throw a WARN if any entries are NULL */
4251 			WARN(!parent_names[i],
4252 				"%s: invalid NULL in %s's .parent_names\n",
4253 				__func__, core->name);
4254 			ret = clk_cpy_name(&parent->name, parent_names[i],
4255 					   true);
4256 		} else if (parent_data) {
4257 			parent->hw = parent_data[i].hw;
4258 			parent->index = parent_data[i].index;
4259 			ret = clk_cpy_name(&parent->fw_name,
4260 					   parent_data[i].fw_name, false);
4261 			if (!ret)
4262 				ret = clk_cpy_name(&parent->name,
4263 						   parent_data[i].name,
4264 						   false);
4265 		} else if (parent_hws) {
4266 			parent->hw = parent_hws[i];
4267 		} else {
4268 			ret = -EINVAL;
4269 			WARN(1, "Must specify parents if num_parents > 0\n");
4270 		}
4271 
4272 		if (ret) {
4273 			do {
4274 				kfree_const(parents[i].name);
4275 				kfree_const(parents[i].fw_name);
4276 			} while (--i >= 0);
4277 			kfree(parents);
4278 
4279 			return ret;
4280 		}
4281 	}
4282 
4283 	return 0;
4284 }
4285 
clk_core_free_parent_map(struct clk_core * core)4286 static void clk_core_free_parent_map(struct clk_core *core)
4287 {
4288 	int i = core->num_parents;
4289 
4290 	if (!core->num_parents)
4291 		return;
4292 
4293 	while (--i >= 0) {
4294 		kfree_const(core->parents[i].name);
4295 		kfree_const(core->parents[i].fw_name);
4296 	}
4297 
4298 	kfree(core->parents);
4299 }
4300 
4301 /* Free memory allocated for a struct clk_core */
__clk_release(struct kref * ref)4302 static void __clk_release(struct kref *ref)
4303 {
4304 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4305 
4306 	if (core->rpm_enabled) {
4307 		mutex_lock(&clk_rpm_list_lock);
4308 		hlist_del(&core->rpm_node);
4309 		mutex_unlock(&clk_rpm_list_lock);
4310 	}
4311 
4312 	clk_core_free_parent_map(core);
4313 	kfree_const(core->name);
4314 	kfree(core);
4315 }
4316 
4317 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)4318 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
4319 {
4320 	int ret;
4321 	struct clk_core *core;
4322 	const struct clk_init_data *init = hw->init;
4323 
4324 	/*
4325 	 * The init data is not supposed to be used outside of registration path.
4326 	 * Set it to NULL so that provider drivers can't use it either and so that
4327 	 * we catch use of hw->init early on in the core.
4328 	 */
4329 	hw->init = NULL;
4330 
4331 	core = kzalloc(sizeof(*core), GFP_KERNEL);
4332 	if (!core) {
4333 		ret = -ENOMEM;
4334 		goto fail_out;
4335 	}
4336 
4337 	kref_init(&core->ref);
4338 
4339 	core->name = kstrdup_const(init->name, GFP_KERNEL);
4340 	if (!core->name) {
4341 		ret = -ENOMEM;
4342 		goto fail_name;
4343 	}
4344 
4345 	if (WARN_ON(!init->ops)) {
4346 		ret = -EINVAL;
4347 		goto fail_ops;
4348 	}
4349 	core->ops = init->ops;
4350 
4351 	core->dev = dev;
4352 	clk_pm_runtime_init(core);
4353 	core->of_node = np;
4354 	if (dev && dev->driver)
4355 		core->owner = dev->driver->owner;
4356 	core->hw = hw;
4357 	core->flags = init->flags;
4358 	core->num_parents = init->num_parents;
4359 	core->min_rate = 0;
4360 	core->max_rate = ULONG_MAX;
4361 
4362 	ret = clk_core_populate_parent_map(core, init);
4363 	if (ret)
4364 		goto fail_parents;
4365 
4366 	INIT_HLIST_HEAD(&core->clks);
4367 
4368 	/*
4369 	 * Don't call clk_hw_create_clk() here because that would pin the
4370 	 * provider module to itself and prevent it from ever being removed.
4371 	 */
4372 	hw->clk = alloc_clk(core, NULL, NULL);
4373 	if (IS_ERR(hw->clk)) {
4374 		ret = PTR_ERR(hw->clk);
4375 		goto fail_create_clk;
4376 	}
4377 
4378 	clk_core_link_consumer(core, hw->clk);
4379 
4380 	ret = __clk_core_init(core);
4381 	if (!ret)
4382 		return hw->clk;
4383 
4384 	clk_prepare_lock();
4385 	clk_core_unlink_consumer(hw->clk);
4386 	clk_prepare_unlock();
4387 
4388 	free_clk(hw->clk);
4389 	hw->clk = NULL;
4390 
4391 fail_create_clk:
4392 fail_parents:
4393 fail_ops:
4394 fail_name:
4395 	kref_put(&core->ref, __clk_release);
4396 fail_out:
4397 	if (dev) {
4398 		dev_err_probe(dev, ret, "failed to register clk '%s' (%pS)\n",
4399 			      init->name, hw);
4400 	} else {
4401 		pr_err("%pOF: error %pe: failed to register clk '%s' (%pS)\n",
4402 		       np, ERR_PTR(ret), init->name, hw);
4403 	}
4404 	return ERR_PTR(ret);
4405 }
4406 
4407 /**
4408  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4409  * @dev: Device to get device node of
4410  *
4411  * Return: device node pointer of @dev, or the device node pointer of
4412  * @dev->parent if dev doesn't have a device node, or NULL if neither
4413  * @dev or @dev->parent have a device node.
4414  */
dev_or_parent_of_node(struct device * dev)4415 static struct device_node *dev_or_parent_of_node(struct device *dev)
4416 {
4417 	struct device_node *np;
4418 
4419 	if (!dev)
4420 		return NULL;
4421 
4422 	np = dev_of_node(dev);
4423 	if (!np)
4424 		np = dev_of_node(dev->parent);
4425 
4426 	return np;
4427 }
4428 
4429 /**
4430  * clk_register - allocate a new clock, register it and return an opaque cookie
4431  * @dev: device that is registering this clock
4432  * @hw: link to hardware-specific clock data
4433  *
4434  * clk_register is the *deprecated* interface for populating the clock tree with
4435  * new clock nodes. Use clk_hw_register() instead.
4436  *
4437  * Returns: a pointer to the newly allocated struct clk which
4438  * cannot be dereferenced by driver code but may be used in conjunction with the
4439  * rest of the clock API.  In the event of an error clk_register will return an
4440  * error code; drivers must test for an error code after calling clk_register.
4441  */
clk_register(struct device * dev,struct clk_hw * hw)4442 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4443 {
4444 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4445 }
4446 EXPORT_SYMBOL_GPL(clk_register);
4447 
4448 /**
4449  * clk_hw_register - register a clk_hw and return an error code
4450  * @dev: device that is registering this clock
4451  * @hw: link to hardware-specific clock data
4452  *
4453  * clk_hw_register is the primary interface for populating the clock tree with
4454  * new clock nodes. It returns an integer equal to zero indicating success or
4455  * less than zero indicating failure. Drivers must test for an error code after
4456  * calling clk_hw_register().
4457  */
clk_hw_register(struct device * dev,struct clk_hw * hw)4458 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4459 {
4460 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4461 			       hw));
4462 }
4463 EXPORT_SYMBOL_GPL(clk_hw_register);
4464 
4465 /*
4466  * of_clk_hw_register - register a clk_hw and return an error code
4467  * @node: device_node of device that is registering this clock
4468  * @hw: link to hardware-specific clock data
4469  *
4470  * of_clk_hw_register() is the primary interface for populating the clock tree
4471  * with new clock nodes when a struct device is not available, but a struct
4472  * device_node is. It returns an integer equal to zero indicating success or
4473  * less than zero indicating failure. Drivers must test for an error code after
4474  * calling of_clk_hw_register().
4475  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4476 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4477 {
4478 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4479 }
4480 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4481 
4482 /*
4483  * Empty clk_ops for unregistered clocks. These are used temporarily
4484  * after clk_unregister() was called on a clock and until last clock
4485  * consumer calls clk_put() and the struct clk object is freed.
4486  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4487 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4488 {
4489 	return -ENXIO;
4490 }
4491 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4492 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4493 {
4494 	WARN_ON_ONCE(1);
4495 }
4496 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4497 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4498 					unsigned long parent_rate)
4499 {
4500 	return -ENXIO;
4501 }
4502 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4503 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4504 {
4505 	return -ENXIO;
4506 }
4507 
clk_nodrv_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)4508 static int clk_nodrv_determine_rate(struct clk_hw *hw,
4509 				    struct clk_rate_request *req)
4510 {
4511 	return -ENXIO;
4512 }
4513 
4514 static const struct clk_ops clk_nodrv_ops = {
4515 	.enable		= clk_nodrv_prepare_enable,
4516 	.disable	= clk_nodrv_disable_unprepare,
4517 	.prepare	= clk_nodrv_prepare_enable,
4518 	.unprepare	= clk_nodrv_disable_unprepare,
4519 	.determine_rate	= clk_nodrv_determine_rate,
4520 	.set_rate	= clk_nodrv_set_rate,
4521 	.set_parent	= clk_nodrv_set_parent,
4522 };
4523 
clk_core_evict_parent_cache_subtree(struct clk_core * root,const struct clk_core * target)4524 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4525 						const struct clk_core *target)
4526 {
4527 	int i;
4528 	struct clk_core *child;
4529 
4530 	for (i = 0; i < root->num_parents; i++)
4531 		if (root->parents[i].core == target)
4532 			root->parents[i].core = NULL;
4533 
4534 	hlist_for_each_entry(child, &root->children, child_node)
4535 		clk_core_evict_parent_cache_subtree(child, target);
4536 }
4537 
4538 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4539 static void clk_core_evict_parent_cache(struct clk_core *core)
4540 {
4541 	const struct hlist_head **lists;
4542 	struct clk_core *root;
4543 
4544 	lockdep_assert_held(&prepare_lock);
4545 
4546 	for (lists = all_lists; *lists; lists++)
4547 		hlist_for_each_entry(root, *lists, child_node)
4548 			clk_core_evict_parent_cache_subtree(root, core);
4549 
4550 }
4551 
4552 /**
4553  * clk_unregister - unregister a currently registered clock
4554  * @clk: clock to unregister
4555  */
clk_unregister(struct clk * clk)4556 void clk_unregister(struct clk *clk)
4557 {
4558 	unsigned long flags;
4559 	const struct clk_ops *ops;
4560 
4561 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4562 		return;
4563 
4564 	clk_debug_unregister(clk->core);
4565 
4566 	clk_prepare_lock();
4567 
4568 	ops = clk->core->ops;
4569 	if (ops == &clk_nodrv_ops) {
4570 		pr_err("%s: unregistered clock: %s\n", __func__,
4571 		       clk->core->name);
4572 		clk_prepare_unlock();
4573 		return;
4574 	}
4575 	/*
4576 	 * Assign empty clock ops for consumers that might still hold
4577 	 * a reference to this clock.
4578 	 */
4579 	flags = clk_enable_lock();
4580 	clk->core->ops = &clk_nodrv_ops;
4581 	clk_enable_unlock(flags);
4582 
4583 	if (ops->terminate)
4584 		ops->terminate(clk->core->hw);
4585 
4586 	if (!hlist_empty(&clk->core->children)) {
4587 		struct clk_core *child;
4588 		struct hlist_node *t;
4589 
4590 		/* Reparent all children to the orphan list. */
4591 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4592 					  child_node)
4593 			clk_core_set_parent_nolock(child, NULL);
4594 	}
4595 
4596 	clk_core_evict_parent_cache(clk->core);
4597 
4598 	hash_del(&clk->core->hashtable_node);
4599 	hlist_del_init(&clk->core->child_node);
4600 
4601 	if (clk->core->prepare_count)
4602 		pr_warn("%s: unregistering prepared clock: %s\n",
4603 					__func__, clk->core->name);
4604 
4605 	if (clk->core->protect_count)
4606 		pr_warn("%s: unregistering protected clock: %s\n",
4607 					__func__, clk->core->name);
4608 	clk_prepare_unlock();
4609 
4610 	kref_put(&clk->core->ref, __clk_release);
4611 	free_clk(clk);
4612 }
4613 EXPORT_SYMBOL_GPL(clk_unregister);
4614 
4615 /**
4616  * clk_hw_unregister - unregister a currently registered clk_hw
4617  * @hw: hardware-specific clock data to unregister
4618  */
clk_hw_unregister(struct clk_hw * hw)4619 void clk_hw_unregister(struct clk_hw *hw)
4620 {
4621 	clk_unregister(hw->clk);
4622 }
4623 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4624 
devm_clk_unregister_cb(struct device * dev,void * res)4625 static void devm_clk_unregister_cb(struct device *dev, void *res)
4626 {
4627 	clk_unregister(*(struct clk **)res);
4628 }
4629 
devm_clk_hw_unregister_cb(struct device * dev,void * res)4630 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4631 {
4632 	clk_hw_unregister(*(struct clk_hw **)res);
4633 }
4634 
4635 /**
4636  * devm_clk_register - resource managed clk_register()
4637  * @dev: device that is registering this clock
4638  * @hw: link to hardware-specific clock data
4639  *
4640  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4641  *
4642  * Clocks returned from this function are automatically clk_unregister()ed on
4643  * driver detach. See clk_register() for more information.
4644  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4645 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4646 {
4647 	struct clk *clk;
4648 	struct clk **clkp;
4649 
4650 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4651 	if (!clkp)
4652 		return ERR_PTR(-ENOMEM);
4653 
4654 	clk = clk_register(dev, hw);
4655 	if (!IS_ERR(clk)) {
4656 		*clkp = clk;
4657 		devres_add(dev, clkp);
4658 	} else {
4659 		devres_free(clkp);
4660 	}
4661 
4662 	return clk;
4663 }
4664 EXPORT_SYMBOL_GPL(devm_clk_register);
4665 
4666 /**
4667  * devm_clk_hw_register - resource managed clk_hw_register()
4668  * @dev: device that is registering this clock
4669  * @hw: link to hardware-specific clock data
4670  *
4671  * Managed clk_hw_register(). Clocks registered by this function are
4672  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4673  * for more information.
4674  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4675 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4676 {
4677 	struct clk_hw **hwp;
4678 	int ret;
4679 
4680 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4681 	if (!hwp)
4682 		return -ENOMEM;
4683 
4684 	ret = clk_hw_register(dev, hw);
4685 	if (!ret) {
4686 		*hwp = hw;
4687 		devres_add(dev, hwp);
4688 	} else {
4689 		devres_free(hwp);
4690 	}
4691 
4692 	return ret;
4693 }
4694 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4695 
devm_clk_release(struct device * dev,void * res)4696 static void devm_clk_release(struct device *dev, void *res)
4697 {
4698 	clk_put(*(struct clk **)res);
4699 }
4700 
4701 /**
4702  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4703  * @dev: device that is registering this clock
4704  * @hw: clk_hw associated with the clk being consumed
4705  * @con_id: connection ID string on device
4706  *
4707  * Managed clk_hw_get_clk(). Clocks got with this function are
4708  * automatically clk_put() on driver detach. See clk_put()
4709  * for more information.
4710  */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4711 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4712 				const char *con_id)
4713 {
4714 	struct clk *clk;
4715 	struct clk **clkp;
4716 
4717 	/* This should not happen because it would mean we have drivers
4718 	 * passing around clk_hw pointers instead of having the caller use
4719 	 * proper clk_get() style APIs
4720 	 */
4721 	WARN_ON_ONCE(dev != hw->core->dev);
4722 
4723 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4724 	if (!clkp)
4725 		return ERR_PTR(-ENOMEM);
4726 
4727 	clk = clk_hw_get_clk(hw, con_id);
4728 	if (!IS_ERR(clk)) {
4729 		*clkp = clk;
4730 		devres_add(dev, clkp);
4731 	} else {
4732 		devres_free(clkp);
4733 	}
4734 
4735 	return clk;
4736 }
4737 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4738 
4739 /*
4740  * clkdev helpers
4741  */
4742 
__clk_put(struct clk * clk)4743 void __clk_put(struct clk *clk)
4744 {
4745 	struct module *owner;
4746 
4747 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4748 		return;
4749 
4750 	clk_prepare_lock();
4751 
4752 	/*
4753 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4754 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4755 	 * and by that same consumer
4756 	 */
4757 	if (WARN_ON(clk->exclusive_count)) {
4758 		/* We voiced our concern, let's sanitize the situation */
4759 		clk->core->protect_count -= (clk->exclusive_count - 1);
4760 		clk_core_rate_unprotect(clk->core);
4761 		clk->exclusive_count = 0;
4762 	}
4763 
4764 	clk_core_unlink_consumer(clk);
4765 
4766 	/* If we had any boundaries on that clock, let's drop them. */
4767 	if (clk->min_rate > 0 || clk->max_rate < ULONG_MAX)
4768 		clk_set_rate_range_nolock(clk, 0, ULONG_MAX);
4769 
4770 	clk_prepare_unlock();
4771 
4772 	owner = clk->core->owner;
4773 	kref_put(&clk->core->ref, __clk_release);
4774 	module_put(owner);
4775 	free_clk(clk);
4776 }
4777 
4778 /***        clk rate change notifiers        ***/
4779 
4780 /**
4781  * clk_notifier_register - add a clk rate change notifier
4782  * @clk: struct clk * to watch
4783  * @nb: struct notifier_block * with callback info
4784  *
4785  * Request notification when clk's rate changes.  This uses an SRCU
4786  * notifier because we want it to block and notifier unregistrations are
4787  * uncommon.  The callbacks associated with the notifier must not
4788  * re-enter into the clk framework by calling any top-level clk APIs;
4789  * this will cause a nested prepare_lock mutex.
4790  *
4791  * In all notification cases (pre, post and abort rate change) the original
4792  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4793  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4794  *
4795  * clk_notifier_register() must be called from non-atomic context.
4796  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4797  * allocation failure; otherwise, passes along the return value of
4798  * srcu_notifier_chain_register().
4799  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4800 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4801 {
4802 	struct clk_notifier *cn;
4803 	int ret = -ENOMEM;
4804 
4805 	if (!clk || !nb)
4806 		return -EINVAL;
4807 
4808 	clk_prepare_lock();
4809 
4810 	/* search the list of notifiers for this clk */
4811 	list_for_each_entry(cn, &clk_notifier_list, node)
4812 		if (cn->clk == clk)
4813 			goto found;
4814 
4815 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4816 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4817 	if (!cn)
4818 		goto out;
4819 
4820 	cn->clk = clk;
4821 	srcu_init_notifier_head(&cn->notifier_head);
4822 
4823 	list_add(&cn->node, &clk_notifier_list);
4824 
4825 found:
4826 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4827 
4828 	clk->core->notifier_count++;
4829 
4830 out:
4831 	clk_prepare_unlock();
4832 
4833 	return ret;
4834 }
4835 EXPORT_SYMBOL_GPL(clk_notifier_register);
4836 
4837 /**
4838  * clk_notifier_unregister - remove a clk rate change notifier
4839  * @clk: struct clk *
4840  * @nb: struct notifier_block * with callback info
4841  *
4842  * Request no further notification for changes to 'clk' and frees memory
4843  * allocated in clk_notifier_register.
4844  *
4845  * Returns -EINVAL if called with null arguments; otherwise, passes
4846  * along the return value of srcu_notifier_chain_unregister().
4847  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4848 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4849 {
4850 	struct clk_notifier *cn;
4851 	int ret = -ENOENT;
4852 
4853 	if (!clk || !nb)
4854 		return -EINVAL;
4855 
4856 	clk_prepare_lock();
4857 
4858 	list_for_each_entry(cn, &clk_notifier_list, node) {
4859 		if (cn->clk == clk) {
4860 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4861 
4862 			clk->core->notifier_count--;
4863 
4864 			/* XXX the notifier code should handle this better */
4865 			if (!cn->notifier_head.head) {
4866 				srcu_cleanup_notifier_head(&cn->notifier_head);
4867 				list_del(&cn->node);
4868 				kfree(cn);
4869 			}
4870 			break;
4871 		}
4872 	}
4873 
4874 	clk_prepare_unlock();
4875 
4876 	return ret;
4877 }
4878 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4879 
4880 struct clk_notifier_devres {
4881 	struct clk *clk;
4882 	struct notifier_block *nb;
4883 };
4884 
devm_clk_notifier_release(struct device * dev,void * res)4885 static void devm_clk_notifier_release(struct device *dev, void *res)
4886 {
4887 	struct clk_notifier_devres *devres = res;
4888 
4889 	clk_notifier_unregister(devres->clk, devres->nb);
4890 }
4891 
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4892 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4893 			       struct notifier_block *nb)
4894 {
4895 	struct clk_notifier_devres *devres;
4896 	int ret;
4897 
4898 	devres = devres_alloc(devm_clk_notifier_release,
4899 			      sizeof(*devres), GFP_KERNEL);
4900 
4901 	if (!devres)
4902 		return -ENOMEM;
4903 
4904 	ret = clk_notifier_register(clk, nb);
4905 	if (!ret) {
4906 		devres->clk = clk;
4907 		devres->nb = nb;
4908 		devres_add(dev, devres);
4909 	} else {
4910 		devres_free(devres);
4911 	}
4912 
4913 	return ret;
4914 }
4915 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4916 
4917 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4918 static void clk_core_reparent_orphans(void)
4919 {
4920 	clk_prepare_lock();
4921 	clk_core_reparent_orphans_nolock();
4922 	clk_prepare_unlock();
4923 }
4924 
4925 /**
4926  * struct of_clk_provider - Clock provider registration structure
4927  * @link: Entry in global list of clock providers
4928  * @node: Pointer to device tree node of clock provider
4929  * @get: Get clock callback.  Returns NULL or a struct clk for the
4930  *       given clock specifier
4931  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4932  *       struct clk_hw for the given clock specifier
4933  * @data: context pointer to be passed into @get callback
4934  */
4935 struct of_clk_provider {
4936 	struct list_head link;
4937 
4938 	struct device_node *node;
4939 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4940 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4941 	void *data;
4942 };
4943 
4944 extern struct of_device_id __clk_of_table;
4945 static const struct of_device_id __clk_of_table_sentinel
4946 	__used __section("__clk_of_table_end");
4947 
4948 static LIST_HEAD(of_clk_providers);
4949 static DEFINE_MUTEX(of_clk_mutex);
4950 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4951 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4952 				     void *data)
4953 {
4954 	return data;
4955 }
4956 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4957 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4958 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4959 {
4960 	return data;
4961 }
4962 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4963 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4964 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4965 {
4966 	struct clk_onecell_data *clk_data = data;
4967 	unsigned int idx = clkspec->args[0];
4968 
4969 	if (idx >= clk_data->clk_num) {
4970 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4971 		return ERR_PTR(-EINVAL);
4972 	}
4973 
4974 	return clk_data->clks[idx];
4975 }
4976 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4977 
4978 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4979 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4980 {
4981 	struct clk_hw_onecell_data *hw_data = data;
4982 	unsigned int idx = clkspec->args[0];
4983 
4984 	if (idx >= hw_data->num) {
4985 		pr_err("%s: invalid index %u\n", __func__, idx);
4986 		return ERR_PTR(-EINVAL);
4987 	}
4988 
4989 	return hw_data->hws[idx];
4990 }
4991 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4992 
4993 /**
4994  * of_clk_add_provider() - Register a clock provider for a node
4995  * @np: Device node pointer associated with clock provider
4996  * @clk_src_get: callback for decoding clock
4997  * @data: context pointer for @clk_src_get callback.
4998  *
4999  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
5000  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)5001 int of_clk_add_provider(struct device_node *np,
5002 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
5003 						   void *data),
5004 			void *data)
5005 {
5006 	struct of_clk_provider *cp;
5007 	int ret;
5008 
5009 	if (!np)
5010 		return 0;
5011 
5012 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5013 	if (!cp)
5014 		return -ENOMEM;
5015 
5016 	cp->node = of_node_get(np);
5017 	cp->data = data;
5018 	cp->get = clk_src_get;
5019 
5020 	mutex_lock(&of_clk_mutex);
5021 	list_add(&cp->link, &of_clk_providers);
5022 	mutex_unlock(&of_clk_mutex);
5023 	pr_debug("Added clock from %pOF\n", np);
5024 
5025 	clk_core_reparent_orphans();
5026 
5027 	ret = of_clk_set_defaults(np, true);
5028 	if (ret < 0)
5029 		of_clk_del_provider(np);
5030 
5031 	fwnode_dev_initialized(&np->fwnode, true);
5032 
5033 	return ret;
5034 }
5035 EXPORT_SYMBOL_GPL(of_clk_add_provider);
5036 
5037 /**
5038  * of_clk_add_hw_provider() - Register a clock provider for a node
5039  * @np: Device node pointer associated with clock provider
5040  * @get: callback for decoding clk_hw
5041  * @data: context pointer for @get callback.
5042  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5043 int of_clk_add_hw_provider(struct device_node *np,
5044 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5045 						 void *data),
5046 			   void *data)
5047 {
5048 	struct of_clk_provider *cp;
5049 	int ret;
5050 
5051 	if (!np)
5052 		return 0;
5053 
5054 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
5055 	if (!cp)
5056 		return -ENOMEM;
5057 
5058 	cp->node = of_node_get(np);
5059 	cp->data = data;
5060 	cp->get_hw = get;
5061 
5062 	mutex_lock(&of_clk_mutex);
5063 	list_add(&cp->link, &of_clk_providers);
5064 	mutex_unlock(&of_clk_mutex);
5065 	pr_debug("Added clk_hw provider from %pOF\n", np);
5066 
5067 	clk_core_reparent_orphans();
5068 
5069 	ret = of_clk_set_defaults(np, true);
5070 	if (ret < 0)
5071 		of_clk_del_provider(np);
5072 
5073 	fwnode_dev_initialized(&np->fwnode, true);
5074 
5075 	return ret;
5076 }
5077 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
5078 
devm_of_clk_release_provider(struct device * dev,void * res)5079 static void devm_of_clk_release_provider(struct device *dev, void *res)
5080 {
5081 	of_clk_del_provider(*(struct device_node **)res);
5082 }
5083 
5084 /*
5085  * We allow a child device to use its parent device as the clock provider node
5086  * for cases like MFD sub-devices where the child device driver wants to use
5087  * devm_*() APIs but not list the device in DT as a sub-node.
5088  */
get_clk_provider_node(struct device * dev)5089 static struct device_node *get_clk_provider_node(struct device *dev)
5090 {
5091 	struct device_node *np, *parent_np;
5092 
5093 	np = dev->of_node;
5094 	parent_np = dev->parent ? dev->parent->of_node : NULL;
5095 
5096 	if (!of_property_present(np, "#clock-cells"))
5097 		if (of_property_present(parent_np, "#clock-cells"))
5098 			np = parent_np;
5099 
5100 	return np;
5101 }
5102 
5103 /**
5104  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
5105  * @dev: Device acting as the clock provider (used for DT node and lifetime)
5106  * @get: callback for decoding clk_hw
5107  * @data: context pointer for @get callback
5108  *
5109  * Registers clock provider for given device's node. If the device has no DT
5110  * node or if the device node lacks of clock provider information (#clock-cells)
5111  * then the parent device's node is scanned for this information. If parent node
5112  * has the #clock-cells then it is used in registration. Provider is
5113  * automatically released at device exit.
5114  *
5115  * Return: 0 on success or an errno on failure.
5116  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)5117 int devm_of_clk_add_hw_provider(struct device *dev,
5118 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
5119 					      void *data),
5120 			void *data)
5121 {
5122 	struct device_node **ptr, *np;
5123 	int ret;
5124 
5125 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
5126 			   GFP_KERNEL);
5127 	if (!ptr)
5128 		return -ENOMEM;
5129 
5130 	np = get_clk_provider_node(dev);
5131 	ret = of_clk_add_hw_provider(np, get, data);
5132 	if (!ret) {
5133 		*ptr = np;
5134 		devres_add(dev, ptr);
5135 	} else {
5136 		devres_free(ptr);
5137 	}
5138 
5139 	return ret;
5140 }
5141 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
5142 
5143 /**
5144  * of_clk_del_provider() - Remove a previously registered clock provider
5145  * @np: Device node pointer associated with clock provider
5146  */
of_clk_del_provider(struct device_node * np)5147 void of_clk_del_provider(struct device_node *np)
5148 {
5149 	struct of_clk_provider *cp;
5150 
5151 	if (!np)
5152 		return;
5153 
5154 	mutex_lock(&of_clk_mutex);
5155 	list_for_each_entry(cp, &of_clk_providers, link) {
5156 		if (cp->node == np) {
5157 			list_del(&cp->link);
5158 			fwnode_dev_initialized(&np->fwnode, false);
5159 			of_node_put(cp->node);
5160 			kfree(cp);
5161 			break;
5162 		}
5163 	}
5164 	mutex_unlock(&of_clk_mutex);
5165 }
5166 EXPORT_SYMBOL_GPL(of_clk_del_provider);
5167 
5168 /**
5169  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
5170  * @np: device node to parse clock specifier from
5171  * @index: index of phandle to parse clock out of. If index < 0, @name is used
5172  * @name: clock name to find and parse. If name is NULL, the index is used
5173  * @out_args: Result of parsing the clock specifier
5174  *
5175  * Parses a device node's "clocks" and "clock-names" properties to find the
5176  * phandle and cells for the index or name that is desired. The resulting clock
5177  * specifier is placed into @out_args, or an errno is returned when there's a
5178  * parsing error. The @index argument is ignored if @name is non-NULL.
5179  *
5180  * Example:
5181  *
5182  * phandle1: clock-controller@1 {
5183  *	#clock-cells = <2>;
5184  * }
5185  *
5186  * phandle2: clock-controller@2 {
5187  *	#clock-cells = <1>;
5188  * }
5189  *
5190  * clock-consumer@3 {
5191  *	clocks = <&phandle1 1 2 &phandle2 3>;
5192  *	clock-names = "name1", "name2";
5193  * }
5194  *
5195  * To get a device_node for `clock-controller@2' node you may call this
5196  * function a few different ways:
5197  *
5198  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
5199  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
5200  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
5201  *
5202  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
5203  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
5204  * the "clock-names" property of @np.
5205  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)5206 static int of_parse_clkspec(const struct device_node *np, int index,
5207 			    const char *name, struct of_phandle_args *out_args)
5208 {
5209 	int ret = -ENOENT;
5210 
5211 	/* Walk up the tree of devices looking for a clock property that matches */
5212 	while (np) {
5213 		/*
5214 		 * For named clocks, first look up the name in the
5215 		 * "clock-names" property.  If it cannot be found, then index
5216 		 * will be an error code and of_parse_phandle_with_args() will
5217 		 * return -EINVAL.
5218 		 */
5219 		if (name)
5220 			index = of_property_match_string(np, "clock-names", name);
5221 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
5222 						 index, out_args);
5223 		if (!ret)
5224 			break;
5225 		if (name && index >= 0)
5226 			break;
5227 
5228 		/*
5229 		 * No matching clock found on this node.  If the parent node
5230 		 * has a "clock-ranges" property, then we can try one of its
5231 		 * clocks.
5232 		 */
5233 		np = np->parent;
5234 		if (np && !of_property_present(np, "clock-ranges"))
5235 			break;
5236 		index = 0;
5237 	}
5238 
5239 	return ret;
5240 }
5241 
5242 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)5243 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
5244 			      struct of_phandle_args *clkspec)
5245 {
5246 	struct clk *clk;
5247 
5248 	if (provider->get_hw)
5249 		return provider->get_hw(clkspec, provider->data);
5250 
5251 	clk = provider->get(clkspec, provider->data);
5252 	if (IS_ERR(clk))
5253 		return ERR_CAST(clk);
5254 	return __clk_get_hw(clk);
5255 }
5256 
5257 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)5258 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
5259 {
5260 	struct of_clk_provider *provider;
5261 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
5262 
5263 	if (!clkspec)
5264 		return ERR_PTR(-EINVAL);
5265 
5266 	/* Check if node in clkspec is in disabled/fail state */
5267 	if (!of_device_is_available(clkspec->np))
5268 		return ERR_PTR(-ENOENT);
5269 
5270 	mutex_lock(&of_clk_mutex);
5271 	list_for_each_entry(provider, &of_clk_providers, link) {
5272 		if (provider->node == clkspec->np) {
5273 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
5274 			if (!IS_ERR(hw))
5275 				break;
5276 		}
5277 	}
5278 	mutex_unlock(&of_clk_mutex);
5279 
5280 	return hw;
5281 }
5282 
5283 /**
5284  * of_clk_get_from_provider() - Lookup a clock from a clock provider
5285  * @clkspec: pointer to a clock specifier data structure
5286  *
5287  * This function looks up a struct clk from the registered list of clock
5288  * providers, an input is a clock specifier data structure as returned
5289  * from the of_parse_phandle_with_args() function call.
5290  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)5291 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
5292 {
5293 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
5294 
5295 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
5296 }
5297 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
5298 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)5299 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
5300 			     const char *con_id)
5301 {
5302 	int ret;
5303 	struct clk_hw *hw;
5304 	struct of_phandle_args clkspec;
5305 
5306 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
5307 	if (ret)
5308 		return ERR_PTR(ret);
5309 
5310 	hw = of_clk_get_hw_from_clkspec(&clkspec);
5311 	of_node_put(clkspec.np);
5312 
5313 	return hw;
5314 }
5315 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)5316 static struct clk *__of_clk_get(struct device_node *np,
5317 				int index, const char *dev_id,
5318 				const char *con_id)
5319 {
5320 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5321 
5322 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5323 }
5324 
of_clk_get(struct device_node * np,int index)5325 struct clk *of_clk_get(struct device_node *np, int index)
5326 {
5327 	return __of_clk_get(np, index, np->full_name, NULL);
5328 }
5329 EXPORT_SYMBOL(of_clk_get);
5330 
5331 /**
5332  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5333  * @np: pointer to clock consumer node
5334  * @name: name of consumer's clock input, or NULL for the first clock reference
5335  *
5336  * This function parses the clocks and clock-names properties,
5337  * and uses them to look up the struct clk from the registered list of clock
5338  * providers.
5339  */
of_clk_get_by_name(struct device_node * np,const char * name)5340 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5341 {
5342 	if (!np)
5343 		return ERR_PTR(-ENOENT);
5344 
5345 	return __of_clk_get(np, 0, np->full_name, name);
5346 }
5347 EXPORT_SYMBOL(of_clk_get_by_name);
5348 
5349 /**
5350  * of_clk_get_parent_count() - Count the number of clocks a device node has
5351  * @np: device node to count
5352  *
5353  * Returns: The number of clocks that are possible parents of this node
5354  */
of_clk_get_parent_count(const struct device_node * np)5355 unsigned int of_clk_get_parent_count(const struct device_node *np)
5356 {
5357 	int count;
5358 
5359 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5360 	if (count < 0)
5361 		return 0;
5362 
5363 	return count;
5364 }
5365 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5366 
of_clk_get_parent_name(const struct device_node * np,int index)5367 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5368 {
5369 	struct of_phandle_args clkspec;
5370 	const char *clk_name;
5371 	bool found = false;
5372 	u32 pv;
5373 	int rc;
5374 	int count;
5375 	struct clk *clk;
5376 
5377 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5378 					&clkspec);
5379 	if (rc)
5380 		return NULL;
5381 
5382 	index = clkspec.args_count ? clkspec.args[0] : 0;
5383 	count = 0;
5384 
5385 	/* if there is an indices property, use it to transfer the index
5386 	 * specified into an array offset for the clock-output-names property.
5387 	 */
5388 	of_property_for_each_u32(clkspec.np, "clock-indices", pv) {
5389 		if (index == pv) {
5390 			index = count;
5391 			found = true;
5392 			break;
5393 		}
5394 		count++;
5395 	}
5396 	/* We went off the end of 'clock-indices' without finding it */
5397 	if (of_property_present(clkspec.np, "clock-indices") && !found) {
5398 		of_node_put(clkspec.np);
5399 		return NULL;
5400 	}
5401 
5402 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5403 					  index,
5404 					  &clk_name) < 0) {
5405 		/*
5406 		 * Best effort to get the name if the clock has been
5407 		 * registered with the framework. If the clock isn't
5408 		 * registered, we return the node name as the name of
5409 		 * the clock as long as #clock-cells = 0.
5410 		 */
5411 		clk = of_clk_get_from_provider(&clkspec);
5412 		if (IS_ERR(clk)) {
5413 			if (clkspec.args_count == 0)
5414 				clk_name = clkspec.np->name;
5415 			else
5416 				clk_name = NULL;
5417 		} else {
5418 			clk_name = __clk_get_name(clk);
5419 			clk_put(clk);
5420 		}
5421 	}
5422 
5423 
5424 	of_node_put(clkspec.np);
5425 	return clk_name;
5426 }
5427 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5428 
5429 /**
5430  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5431  * number of parents
5432  * @np: Device node pointer associated with clock provider
5433  * @parents: pointer to char array that hold the parents' names
5434  * @size: size of the @parents array
5435  *
5436  * Return: number of parents for the clock node.
5437  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5438 int of_clk_parent_fill(struct device_node *np, const char **parents,
5439 		       unsigned int size)
5440 {
5441 	unsigned int i = 0;
5442 
5443 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5444 		i++;
5445 
5446 	return i;
5447 }
5448 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5449 
5450 struct clock_provider {
5451 	void (*clk_init_cb)(struct device_node *);
5452 	struct device_node *np;
5453 	struct list_head node;
5454 };
5455 
5456 /*
5457  * This function looks for a parent clock. If there is one, then it
5458  * checks that the provider for this parent clock was initialized, in
5459  * this case the parent clock will be ready.
5460  */
parent_ready(struct device_node * np)5461 static int parent_ready(struct device_node *np)
5462 {
5463 	int i = 0;
5464 
5465 	while (true) {
5466 		struct clk *clk = of_clk_get(np, i);
5467 
5468 		/* this parent is ready we can check the next one */
5469 		if (!IS_ERR(clk)) {
5470 			clk_put(clk);
5471 			i++;
5472 			continue;
5473 		}
5474 
5475 		/* at least one parent is not ready, we exit now */
5476 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5477 			return 0;
5478 
5479 		/*
5480 		 * Here we make assumption that the device tree is
5481 		 * written correctly. So an error means that there is
5482 		 * no more parent. As we didn't exit yet, then the
5483 		 * previous parent are ready. If there is no clock
5484 		 * parent, no need to wait for them, then we can
5485 		 * consider their absence as being ready
5486 		 */
5487 		return 1;
5488 	}
5489 }
5490 
5491 /**
5492  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5493  * @np: Device node pointer associated with clock provider
5494  * @index: clock index
5495  * @flags: pointer to top-level framework flags
5496  *
5497  * Detects if the clock-critical property exists and, if so, sets the
5498  * corresponding CLK_IS_CRITICAL flag.
5499  *
5500  * Do not use this function. It exists only for legacy Device Tree
5501  * bindings, such as the one-clock-per-node style that are outdated.
5502  * Those bindings typically put all clock data into .dts and the Linux
5503  * driver has no clock data, thus making it impossible to set this flag
5504  * correctly from the driver. Only those drivers may call
5505  * of_clk_detect_critical from their setup functions.
5506  *
5507  * Return: error code or zero on success
5508  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5509 int of_clk_detect_critical(struct device_node *np, int index,
5510 			   unsigned long *flags)
5511 {
5512 	uint32_t idx;
5513 
5514 	if (!np || !flags)
5515 		return -EINVAL;
5516 
5517 	of_property_for_each_u32(np, "clock-critical", idx)
5518 		if (index == idx)
5519 			*flags |= CLK_IS_CRITICAL;
5520 
5521 	return 0;
5522 }
5523 
5524 /**
5525  * of_clk_init() - Scan and init clock providers from the DT
5526  * @matches: array of compatible values and init functions for providers.
5527  *
5528  * This function scans the device tree for matching clock providers
5529  * and calls their initialization functions. It also does it by trying
5530  * to follow the dependencies.
5531  */
of_clk_init(const struct of_device_id * matches)5532 void __init of_clk_init(const struct of_device_id *matches)
5533 {
5534 	const struct of_device_id *match;
5535 	struct device_node *np;
5536 	struct clock_provider *clk_provider, *next;
5537 	bool is_init_done;
5538 	bool force = false;
5539 	LIST_HEAD(clk_provider_list);
5540 
5541 	if (!matches)
5542 		matches = &__clk_of_table;
5543 
5544 	/* First prepare the list of the clocks providers */
5545 	for_each_matching_node_and_match(np, matches, &match) {
5546 		struct clock_provider *parent;
5547 
5548 		if (!of_device_is_available(np))
5549 			continue;
5550 
5551 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5552 		if (!parent) {
5553 			list_for_each_entry_safe(clk_provider, next,
5554 						 &clk_provider_list, node) {
5555 				list_del(&clk_provider->node);
5556 				of_node_put(clk_provider->np);
5557 				kfree(clk_provider);
5558 			}
5559 			of_node_put(np);
5560 			return;
5561 		}
5562 
5563 		parent->clk_init_cb = match->data;
5564 		parent->np = of_node_get(np);
5565 		list_add_tail(&parent->node, &clk_provider_list);
5566 	}
5567 
5568 	while (!list_empty(&clk_provider_list)) {
5569 		is_init_done = false;
5570 		list_for_each_entry_safe(clk_provider, next,
5571 					&clk_provider_list, node) {
5572 			if (force || parent_ready(clk_provider->np)) {
5573 
5574 				/* Don't populate platform devices */
5575 				of_node_set_flag(clk_provider->np,
5576 						 OF_POPULATED);
5577 
5578 				clk_provider->clk_init_cb(clk_provider->np);
5579 				of_clk_set_defaults(clk_provider->np, true);
5580 
5581 				list_del(&clk_provider->node);
5582 				of_node_put(clk_provider->np);
5583 				kfree(clk_provider);
5584 				is_init_done = true;
5585 			}
5586 		}
5587 
5588 		/*
5589 		 * We didn't manage to initialize any of the
5590 		 * remaining providers during the last loop, so now we
5591 		 * initialize all the remaining ones unconditionally
5592 		 * in case the clock parent was not mandatory
5593 		 */
5594 		if (!is_init_done)
5595 			force = true;
5596 	}
5597 }
5598 #endif
5599