xref: /linux/mm/vmscan.c (revision 2942242dde896ea8544f321617c86f941899c544)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 struct scan_control {
75 	/* How many pages shrink_list() should reclaim */
76 	unsigned long nr_to_reclaim;
77 
78 	/*
79 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 	 * are scanned.
81 	 */
82 	nodemask_t	*nodemask;
83 
84 	/*
85 	 * The memory cgroup that hit its limit and as a result is the
86 	 * primary target of this reclaim invocation.
87 	 */
88 	struct mem_cgroup *target_mem_cgroup;
89 
90 	/*
91 	 * Scan pressure balancing between anon and file LRUs
92 	 */
93 	unsigned long	anon_cost;
94 	unsigned long	file_cost;
95 
96 #ifdef CONFIG_MEMCG
97 	/* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 	int *proactive_swappiness;
99 #endif
100 
101 	/* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 	unsigned int may_deactivate:2;
105 	unsigned int force_deactivate:1;
106 	unsigned int skipped_deactivate:1;
107 
108 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
109 	unsigned int may_writepage:1;
110 
111 	/* Can mapped folios be reclaimed? */
112 	unsigned int may_unmap:1;
113 
114 	/* Can folios be swapped as part of reclaim? */
115 	unsigned int may_swap:1;
116 
117 	/* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 	unsigned int no_cache_trim_mode:1;
119 
120 	/* Has cache_trim_mode failed at least once? */
121 	unsigned int cache_trim_mode_failed:1;
122 
123 	/* Proactive reclaim invoked by userspace through memory.reclaim */
124 	unsigned int proactive:1;
125 
126 	/*
127 	 * Cgroup memory below memory.low is protected as long as we
128 	 * don't threaten to OOM. If any cgroup is reclaimed at
129 	 * reduced force or passed over entirely due to its memory.low
130 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 	 * result, then go back for one more cycle that reclaims the protected
132 	 * memory (memcg_low_reclaim) to avert OOM.
133 	 */
134 	unsigned int memcg_low_reclaim:1;
135 	unsigned int memcg_low_skipped:1;
136 
137 	/* Shared cgroup tree walk failed, rescan the whole tree */
138 	unsigned int memcg_full_walk:1;
139 
140 	unsigned int hibernation_mode:1;
141 
142 	/* One of the zones is ready for compaction */
143 	unsigned int compaction_ready:1;
144 
145 	/* There is easily reclaimable cold cache in the current node */
146 	unsigned int cache_trim_mode:1;
147 
148 	/* The file folios on the current node are dangerously low */
149 	unsigned int file_is_tiny:1;
150 
151 	/* Always discard instead of demoting to lower tier memory */
152 	unsigned int no_demotion:1;
153 
154 	/* Allocation order */
155 	s8 order;
156 
157 	/* Scan (total_size >> priority) pages at once */
158 	s8 priority;
159 
160 	/* The highest zone to isolate folios for reclaim from */
161 	s8 reclaim_idx;
162 
163 	/* This context's GFP mask */
164 	gfp_t gfp_mask;
165 
166 	/* Incremented by the number of inactive pages that were scanned */
167 	unsigned long nr_scanned;
168 
169 	/* Number of pages freed so far during a call to shrink_zones() */
170 	unsigned long nr_reclaimed;
171 
172 	struct {
173 		unsigned int dirty;
174 		unsigned int unqueued_dirty;
175 		unsigned int congested;
176 		unsigned int writeback;
177 		unsigned int immediate;
178 		unsigned int file_taken;
179 		unsigned int taken;
180 	} nr;
181 
182 	/* for recording the reclaimed slab by now */
183 	struct reclaim_state reclaim_state;
184 };
185 
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
188 	do {								\
189 		if ((_folio)->lru.prev != _base) {			\
190 			struct folio *prev;				\
191 									\
192 			prev = lru_to_folio(&(_folio->lru));		\
193 			prefetchw(&prev->_field);			\
194 		}							\
195 	} while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
199 
200 /*
201  * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
202  */
203 int vm_swappiness = 60;
204 
205 #ifdef CONFIG_MEMCG
206 
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)208 static bool cgroup_reclaim(struct scan_control *sc)
209 {
210 	return sc->target_mem_cgroup;
211 }
212 
213 /*
214  * Returns true for reclaim on the root cgroup. This is true for direct
215  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
216  */
root_reclaim(struct scan_control * sc)217 static bool root_reclaim(struct scan_control *sc)
218 {
219 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
220 }
221 
222 /**
223  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224  * @sc: scan_control in question
225  *
226  * The normal page dirty throttling mechanism in balance_dirty_pages() is
227  * completely broken with the legacy memcg and direct stalling in
228  * shrink_folio_list() is used for throttling instead, which lacks all the
229  * niceties such as fairness, adaptive pausing, bandwidth proportional
230  * allocation and configurability.
231  *
232  * This function tests whether the vmscan currently in progress can assume
233  * that the normal dirty throttling mechanism is operational.
234  */
writeback_throttling_sane(struct scan_control * sc)235 static bool writeback_throttling_sane(struct scan_control *sc)
236 {
237 	if (!cgroup_reclaim(sc))
238 		return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 		return true;
242 #endif
243 	return false;
244 }
245 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
247 {
248 	if (sc->proactive && sc->proactive_swappiness)
249 		return *sc->proactive_swappiness;
250 	return mem_cgroup_swappiness(memcg);
251 }
252 #else
cgroup_reclaim(struct scan_control * sc)253 static bool cgroup_reclaim(struct scan_control *sc)
254 {
255 	return false;
256 }
257 
root_reclaim(struct scan_control * sc)258 static bool root_reclaim(struct scan_control *sc)
259 {
260 	return true;
261 }
262 
writeback_throttling_sane(struct scan_control * sc)263 static bool writeback_throttling_sane(struct scan_control *sc)
264 {
265 	return true;
266 }
267 
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
269 {
270 	return READ_ONCE(vm_swappiness);
271 }
272 #endif
273 
274 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
275  * and including the specified highidx
276  * @zone: The current zone in the iterator
277  * @pgdat: The pgdat which node_zones are being iterated
278  * @idx: The index variable
279  * @highidx: The index of the highest zone to return
280  *
281  * This macro iterates through all managed zones up to and including the specified highidx.
282  * The zone iterator enters an invalid state after macro call and must be reinitialized
283  * before it can be used again.
284  */
285 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx)	\
286 	for ((idx) = 0, (zone) = (pgdat)->node_zones;		\
287 	    (idx) <= (highidx);					\
288 	    (idx)++, (zone)++)					\
289 		if (!managed_zone(zone))			\
290 			continue;				\
291 		else
292 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)293 static void set_task_reclaim_state(struct task_struct *task,
294 				   struct reclaim_state *rs)
295 {
296 	/* Check for an overwrite */
297 	WARN_ON_ONCE(rs && task->reclaim_state);
298 
299 	/* Check for the nulling of an already-nulled member */
300 	WARN_ON_ONCE(!rs && !task->reclaim_state);
301 
302 	task->reclaim_state = rs;
303 }
304 
305 /*
306  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
307  * scan_control->nr_reclaimed.
308  */
flush_reclaim_state(struct scan_control * sc)309 static void flush_reclaim_state(struct scan_control *sc)
310 {
311 	/*
312 	 * Currently, reclaim_state->reclaimed includes three types of pages
313 	 * freed outside of vmscan:
314 	 * (1) Slab pages.
315 	 * (2) Clean file pages from pruned inodes (on highmem systems).
316 	 * (3) XFS freed buffer pages.
317 	 *
318 	 * For all of these cases, we cannot universally link the pages to a
319 	 * single memcg. For example, a memcg-aware shrinker can free one object
320 	 * charged to the target memcg, causing an entire page to be freed.
321 	 * If we count the entire page as reclaimed from the memcg, we end up
322 	 * overestimating the reclaimed amount (potentially under-reclaiming).
323 	 *
324 	 * Only count such pages for global reclaim to prevent under-reclaiming
325 	 * from the target memcg; preventing unnecessary retries during memcg
326 	 * charging and false positives from proactive reclaim.
327 	 *
328 	 * For uncommon cases where the freed pages were actually mostly
329 	 * charged to the target memcg, we end up underestimating the reclaimed
330 	 * amount. This should be fine. The freed pages will be uncharged
331 	 * anyway, even if they are not counted here properly, and we will be
332 	 * able to make forward progress in charging (which is usually in a
333 	 * retry loop).
334 	 *
335 	 * We can go one step further, and report the uncharged objcg pages in
336 	 * memcg reclaim, to make reporting more accurate and reduce
337 	 * underestimation, but it's probably not worth the complexity for now.
338 	 */
339 	if (current->reclaim_state && root_reclaim(sc)) {
340 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
341 		current->reclaim_state->reclaimed = 0;
342 	}
343 }
344 
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)345 static bool can_demote(int nid, struct scan_control *sc,
346 		       struct mem_cgroup *memcg)
347 {
348 	int demotion_nid;
349 
350 	if (!numa_demotion_enabled)
351 		return false;
352 	if (sc && sc->no_demotion)
353 		return false;
354 
355 	demotion_nid = next_demotion_node(nid);
356 	if (demotion_nid == NUMA_NO_NODE)
357 		return false;
358 
359 	/* If demotion node isn't in the cgroup's mems_allowed, fall back */
360 	return mem_cgroup_node_allowed(memcg, demotion_nid);
361 }
362 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)363 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
364 					  int nid,
365 					  struct scan_control *sc)
366 {
367 	if (memcg == NULL) {
368 		/*
369 		 * For non-memcg reclaim, is there
370 		 * space in any swap device?
371 		 */
372 		if (get_nr_swap_pages() > 0)
373 			return true;
374 	} else {
375 		/* Is the memcg below its swap limit? */
376 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
377 			return true;
378 	}
379 
380 	/*
381 	 * The page can not be swapped.
382 	 *
383 	 * Can it be reclaimed from this node via demotion?
384 	 */
385 	return can_demote(nid, sc, memcg);
386 }
387 
388 /*
389  * This misses isolated folios which are not accounted for to save counters.
390  * As the data only determines if reclaim or compaction continues, it is
391  * not expected that isolated folios will be a dominating factor.
392  */
zone_reclaimable_pages(struct zone * zone)393 unsigned long zone_reclaimable_pages(struct zone *zone)
394 {
395 	unsigned long nr;
396 
397 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
398 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
399 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
400 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
401 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
402 	/*
403 	 * If there are no reclaimable file-backed or anonymous pages,
404 	 * ensure zones with sufficient free pages are not skipped.
405 	 * This prevents zones like DMA32 from being ignored in reclaim
406 	 * scenarios where they can still help alleviate memory pressure.
407 	 */
408 	if (nr == 0)
409 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
410 	return nr;
411 }
412 
413 /**
414  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
415  * @lruvec: lru vector
416  * @lru: lru to use
417  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
418  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)419 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
420 				     int zone_idx)
421 {
422 	unsigned long size = 0;
423 	int zid;
424 	struct zone *zone;
425 
426 	for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
427 		if (!mem_cgroup_disabled())
428 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
429 		else
430 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
431 	}
432 	return size;
433 }
434 
drop_slab_node(int nid)435 static unsigned long drop_slab_node(int nid)
436 {
437 	unsigned long freed = 0;
438 	struct mem_cgroup *memcg = NULL;
439 
440 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
441 	do {
442 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
443 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
444 
445 	return freed;
446 }
447 
drop_slab(void)448 void drop_slab(void)
449 {
450 	int nid;
451 	int shift = 0;
452 	unsigned long freed;
453 
454 	do {
455 		freed = 0;
456 		for_each_online_node(nid) {
457 			if (fatal_signal_pending(current))
458 				return;
459 
460 			freed += drop_slab_node(nid);
461 		}
462 	} while ((freed >> shift++) > 1);
463 }
464 
465 #define CHECK_RECLAIMER_OFFSET(type)					\
466 	do {								\
467 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
468 			     PGDEMOTE_##type - PGDEMOTE_KSWAPD);	\
469 		BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD !=		\
470 			     PGSCAN_##type - PGSCAN_KSWAPD);		\
471 	} while (0)
472 
reclaimer_offset(struct scan_control * sc)473 static int reclaimer_offset(struct scan_control *sc)
474 {
475 	CHECK_RECLAIMER_OFFSET(DIRECT);
476 	CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
477 	CHECK_RECLAIMER_OFFSET(PROACTIVE);
478 
479 	if (current_is_kswapd())
480 		return 0;
481 	if (current_is_khugepaged())
482 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
483 	if (sc->proactive)
484 		return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
485 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
486 }
487 
is_page_cache_freeable(struct folio * folio)488 static inline int is_page_cache_freeable(struct folio *folio)
489 {
490 	/*
491 	 * A freeable page cache folio is referenced only by the caller
492 	 * that isolated the folio, the page cache and optional filesystem
493 	 * private data at folio->private.
494 	 */
495 	return folio_ref_count(folio) - folio_test_private(folio) ==
496 		1 + folio_nr_pages(folio);
497 }
498 
499 /*
500  * We detected a synchronous write error writing a folio out.  Probably
501  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
502  * fsync(), msync() or close().
503  *
504  * The tricky part is that after writepage we cannot touch the mapping: nothing
505  * prevents it from being freed up.  But we have a ref on the folio and once
506  * that folio is locked, the mapping is pinned.
507  *
508  * We're allowed to run sleeping folio_lock() here because we know the caller has
509  * __GFP_FS.
510  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)511 static void handle_write_error(struct address_space *mapping,
512 				struct folio *folio, int error)
513 {
514 	folio_lock(folio);
515 	if (folio_mapping(folio) == mapping)
516 		mapping_set_error(mapping, error);
517 	folio_unlock(folio);
518 }
519 
skip_throttle_noprogress(pg_data_t * pgdat)520 static bool skip_throttle_noprogress(pg_data_t *pgdat)
521 {
522 	int reclaimable = 0, write_pending = 0;
523 	int i;
524 	struct zone *zone;
525 	/*
526 	 * If kswapd is disabled, reschedule if necessary but do not
527 	 * throttle as the system is likely near OOM.
528 	 */
529 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
530 		return true;
531 
532 	/*
533 	 * If there are a lot of dirty/writeback folios then do not
534 	 * throttle as throttling will occur when the folios cycle
535 	 * towards the end of the LRU if still under writeback.
536 	 */
537 	for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
538 		reclaimable += zone_reclaimable_pages(zone);
539 		write_pending += zone_page_state_snapshot(zone,
540 						  NR_ZONE_WRITE_PENDING);
541 	}
542 	if (2 * write_pending <= reclaimable)
543 		return true;
544 
545 	return false;
546 }
547 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)548 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
549 {
550 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
551 	long timeout, ret;
552 	DEFINE_WAIT(wait);
553 
554 	/*
555 	 * Do not throttle user workers, kthreads other than kswapd or
556 	 * workqueues. They may be required for reclaim to make
557 	 * forward progress (e.g. journalling workqueues or kthreads).
558 	 */
559 	if (!current_is_kswapd() &&
560 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
561 		cond_resched();
562 		return;
563 	}
564 
565 	/*
566 	 * These figures are pulled out of thin air.
567 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
568 	 * parallel reclaimers which is a short-lived event so the timeout is
569 	 * short. Failing to make progress or waiting on writeback are
570 	 * potentially long-lived events so use a longer timeout. This is shaky
571 	 * logic as a failure to make progress could be due to anything from
572 	 * writeback to a slow device to excessive referenced folios at the tail
573 	 * of the inactive LRU.
574 	 */
575 	switch(reason) {
576 	case VMSCAN_THROTTLE_WRITEBACK:
577 		timeout = HZ/10;
578 
579 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
580 			WRITE_ONCE(pgdat->nr_reclaim_start,
581 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
582 		}
583 
584 		break;
585 	case VMSCAN_THROTTLE_CONGESTED:
586 		fallthrough;
587 	case VMSCAN_THROTTLE_NOPROGRESS:
588 		if (skip_throttle_noprogress(pgdat)) {
589 			cond_resched();
590 			return;
591 		}
592 
593 		timeout = 1;
594 
595 		break;
596 	case VMSCAN_THROTTLE_ISOLATED:
597 		timeout = HZ/50;
598 		break;
599 	default:
600 		WARN_ON_ONCE(1);
601 		timeout = HZ;
602 		break;
603 	}
604 
605 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
606 	ret = schedule_timeout(timeout);
607 	finish_wait(wqh, &wait);
608 
609 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
610 		atomic_dec(&pgdat->nr_writeback_throttled);
611 
612 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
613 				jiffies_to_usecs(timeout - ret),
614 				reason);
615 }
616 
617 /*
618  * Account for folios written if tasks are throttled waiting on dirty
619  * folios to clean. If enough folios have been cleaned since throttling
620  * started then wakeup the throttled tasks.
621  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)622 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
623 							int nr_throttled)
624 {
625 	unsigned long nr_written;
626 
627 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
628 
629 	/*
630 	 * This is an inaccurate read as the per-cpu deltas may not
631 	 * be synchronised. However, given that the system is
632 	 * writeback throttled, it is not worth taking the penalty
633 	 * of getting an accurate count. At worst, the throttle
634 	 * timeout guarantees forward progress.
635 	 */
636 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
637 		READ_ONCE(pgdat->nr_reclaim_start);
638 
639 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
640 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
641 }
642 
643 /* possible outcome of pageout() */
644 typedef enum {
645 	/* failed to write folio out, folio is locked */
646 	PAGE_KEEP,
647 	/* move folio to the active list, folio is locked */
648 	PAGE_ACTIVATE,
649 	/* folio has been sent to the disk successfully, folio is unlocked */
650 	PAGE_SUCCESS,
651 	/* folio is clean and locked */
652 	PAGE_CLEAN,
653 } pageout_t;
654 
655 /*
656  * pageout is called by shrink_folio_list() for each dirty folio.
657  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)658 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
659 			 struct swap_iocb **plug, struct list_head *folio_list)
660 {
661 	int (*writeout)(struct folio *, struct writeback_control *);
662 
663 	/*
664 	 * We no longer attempt to writeback filesystem folios here, other
665 	 * than tmpfs/shmem.  That's taken care of in page-writeback.
666 	 * If we find a dirty filesystem folio at the end of the LRU list,
667 	 * typically that means the filesystem is saturating the storage
668 	 * with contiguous writes and telling it to write a folio here
669 	 * would only make the situation worse by injecting an element
670 	 * of random access.
671 	 *
672 	 * If the folio is swapcache, write it back even if that would
673 	 * block, for some throttling. This happens by accident, because
674 	 * swap_backing_dev_info is bust: it doesn't reflect the
675 	 * congestion state of the swapdevs.  Easy to fix, if needed.
676 	 */
677 	if (!is_page_cache_freeable(folio))
678 		return PAGE_KEEP;
679 	if (!mapping) {
680 		/*
681 		 * Some data journaling orphaned folios can have
682 		 * folio->mapping == NULL while being dirty with clean buffers.
683 		 */
684 		if (folio_test_private(folio)) {
685 			if (try_to_free_buffers(folio)) {
686 				folio_clear_dirty(folio);
687 				pr_info("%s: orphaned folio\n", __func__);
688 				return PAGE_CLEAN;
689 			}
690 		}
691 		return PAGE_KEEP;
692 	}
693 	if (shmem_mapping(mapping))
694 		writeout = shmem_writeout;
695 	else if (folio_test_anon(folio))
696 		writeout = swap_writeout;
697 	else
698 		return PAGE_ACTIVATE;
699 
700 	if (folio_clear_dirty_for_io(folio)) {
701 		int res;
702 		struct writeback_control wbc = {
703 			.sync_mode = WB_SYNC_NONE,
704 			.nr_to_write = SWAP_CLUSTER_MAX,
705 			.range_start = 0,
706 			.range_end = LLONG_MAX,
707 			.for_reclaim = 1,
708 			.swap_plug = plug,
709 		};
710 
711 		/*
712 		 * The large shmem folio can be split if CONFIG_THP_SWAP is
713 		 * not enabled or contiguous swap entries are failed to
714 		 * allocate.
715 		 */
716 		if (shmem_mapping(mapping) && folio_test_large(folio))
717 			wbc.list = folio_list;
718 
719 		folio_set_reclaim(folio);
720 		res = writeout(folio, &wbc);
721 		if (res < 0)
722 			handle_write_error(mapping, folio, res);
723 		if (res == AOP_WRITEPAGE_ACTIVATE) {
724 			folio_clear_reclaim(folio);
725 			return PAGE_ACTIVATE;
726 		}
727 
728 		if (!folio_test_writeback(folio)) {
729 			/* synchronous write? */
730 			folio_clear_reclaim(folio);
731 		}
732 		trace_mm_vmscan_write_folio(folio);
733 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
734 		return PAGE_SUCCESS;
735 	}
736 
737 	return PAGE_CLEAN;
738 }
739 
740 /*
741  * Same as remove_mapping, but if the folio is removed from the mapping, it
742  * gets returned with a refcount of 0.
743  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)744 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
745 			    bool reclaimed, struct mem_cgroup *target_memcg)
746 {
747 	int refcount;
748 	void *shadow = NULL;
749 
750 	BUG_ON(!folio_test_locked(folio));
751 	BUG_ON(mapping != folio_mapping(folio));
752 
753 	if (!folio_test_swapcache(folio))
754 		spin_lock(&mapping->host->i_lock);
755 	xa_lock_irq(&mapping->i_pages);
756 	/*
757 	 * The non racy check for a busy folio.
758 	 *
759 	 * Must be careful with the order of the tests. When someone has
760 	 * a ref to the folio, it may be possible that they dirty it then
761 	 * drop the reference. So if the dirty flag is tested before the
762 	 * refcount here, then the following race may occur:
763 	 *
764 	 * get_user_pages(&page);
765 	 * [user mapping goes away]
766 	 * write_to(page);
767 	 *				!folio_test_dirty(folio)    [good]
768 	 * folio_set_dirty(folio);
769 	 * folio_put(folio);
770 	 *				!refcount(folio)   [good, discard it]
771 	 *
772 	 * [oops, our write_to data is lost]
773 	 *
774 	 * Reversing the order of the tests ensures such a situation cannot
775 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
776 	 * load is not satisfied before that of folio->_refcount.
777 	 *
778 	 * Note that if the dirty flag is always set via folio_mark_dirty,
779 	 * and thus under the i_pages lock, then this ordering is not required.
780 	 */
781 	refcount = 1 + folio_nr_pages(folio);
782 	if (!folio_ref_freeze(folio, refcount))
783 		goto cannot_free;
784 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
785 	if (unlikely(folio_test_dirty(folio))) {
786 		folio_ref_unfreeze(folio, refcount);
787 		goto cannot_free;
788 	}
789 
790 	if (folio_test_swapcache(folio)) {
791 		swp_entry_t swap = folio->swap;
792 
793 		if (reclaimed && !mapping_exiting(mapping))
794 			shadow = workingset_eviction(folio, target_memcg);
795 		__delete_from_swap_cache(folio, swap, shadow);
796 		memcg1_swapout(folio, swap);
797 		xa_unlock_irq(&mapping->i_pages);
798 		put_swap_folio(folio, swap);
799 	} else {
800 		void (*free_folio)(struct folio *);
801 
802 		free_folio = mapping->a_ops->free_folio;
803 		/*
804 		 * Remember a shadow entry for reclaimed file cache in
805 		 * order to detect refaults, thus thrashing, later on.
806 		 *
807 		 * But don't store shadows in an address space that is
808 		 * already exiting.  This is not just an optimization,
809 		 * inode reclaim needs to empty out the radix tree or
810 		 * the nodes are lost.  Don't plant shadows behind its
811 		 * back.
812 		 *
813 		 * We also don't store shadows for DAX mappings because the
814 		 * only page cache folios found in these are zero pages
815 		 * covering holes, and because we don't want to mix DAX
816 		 * exceptional entries and shadow exceptional entries in the
817 		 * same address_space.
818 		 */
819 		if (reclaimed && folio_is_file_lru(folio) &&
820 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
821 			shadow = workingset_eviction(folio, target_memcg);
822 		__filemap_remove_folio(folio, shadow);
823 		xa_unlock_irq(&mapping->i_pages);
824 		if (mapping_shrinkable(mapping))
825 			inode_add_lru(mapping->host);
826 		spin_unlock(&mapping->host->i_lock);
827 
828 		if (free_folio)
829 			free_folio(folio);
830 	}
831 
832 	return 1;
833 
834 cannot_free:
835 	xa_unlock_irq(&mapping->i_pages);
836 	if (!folio_test_swapcache(folio))
837 		spin_unlock(&mapping->host->i_lock);
838 	return 0;
839 }
840 
841 /**
842  * remove_mapping() - Attempt to remove a folio from its mapping.
843  * @mapping: The address space.
844  * @folio: The folio to remove.
845  *
846  * If the folio is dirty, under writeback or if someone else has a ref
847  * on it, removal will fail.
848  * Return: The number of pages removed from the mapping.  0 if the folio
849  * could not be removed.
850  * Context: The caller should have a single refcount on the folio and
851  * hold its lock.
852  */
remove_mapping(struct address_space * mapping,struct folio * folio)853 long remove_mapping(struct address_space *mapping, struct folio *folio)
854 {
855 	if (__remove_mapping(mapping, folio, false, NULL)) {
856 		/*
857 		 * Unfreezing the refcount with 1 effectively
858 		 * drops the pagecache ref for us without requiring another
859 		 * atomic operation.
860 		 */
861 		folio_ref_unfreeze(folio, 1);
862 		return folio_nr_pages(folio);
863 	}
864 	return 0;
865 }
866 
867 /**
868  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
869  * @folio: Folio to be returned to an LRU list.
870  *
871  * Add previously isolated @folio to appropriate LRU list.
872  * The folio may still be unevictable for other reasons.
873  *
874  * Context: lru_lock must not be held, interrupts must be enabled.
875  */
folio_putback_lru(struct folio * folio)876 void folio_putback_lru(struct folio *folio)
877 {
878 	folio_add_lru(folio);
879 	folio_put(folio);		/* drop ref from isolate */
880 }
881 
882 enum folio_references {
883 	FOLIOREF_RECLAIM,
884 	FOLIOREF_RECLAIM_CLEAN,
885 	FOLIOREF_KEEP,
886 	FOLIOREF_ACTIVATE,
887 };
888 
889 #ifdef CONFIG_LRU_GEN
890 /*
891  * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
892  * needs to be done by taking the folio off the LRU list and then adding it back
893  * with PG_active set. In contrast, the aging (page table walk) path uses
894  * folio_update_gen().
895  */
lru_gen_set_refs(struct folio * folio)896 static bool lru_gen_set_refs(struct folio *folio)
897 {
898 	/* see the comment on LRU_REFS_FLAGS */
899 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
900 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
901 		return false;
902 	}
903 
904 	set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
905 	return true;
906 }
907 #else
lru_gen_set_refs(struct folio * folio)908 static bool lru_gen_set_refs(struct folio *folio)
909 {
910 	return false;
911 }
912 #endif /* CONFIG_LRU_GEN */
913 
folio_check_references(struct folio * folio,struct scan_control * sc)914 static enum folio_references folio_check_references(struct folio *folio,
915 						  struct scan_control *sc)
916 {
917 	int referenced_ptes, referenced_folio;
918 	unsigned long vm_flags;
919 
920 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
921 					   &vm_flags);
922 
923 	/*
924 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
925 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
926 	 */
927 	if (vm_flags & VM_LOCKED)
928 		return FOLIOREF_ACTIVATE;
929 
930 	/*
931 	 * There are two cases to consider.
932 	 * 1) Rmap lock contention: rotate.
933 	 * 2) Skip the non-shared swapbacked folio mapped solely by
934 	 *    the exiting or OOM-reaped process.
935 	 */
936 	if (referenced_ptes == -1)
937 		return FOLIOREF_KEEP;
938 
939 	if (lru_gen_enabled()) {
940 		if (!referenced_ptes)
941 			return FOLIOREF_RECLAIM;
942 
943 		return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
944 	}
945 
946 	referenced_folio = folio_test_clear_referenced(folio);
947 
948 	if (referenced_ptes) {
949 		/*
950 		 * All mapped folios start out with page table
951 		 * references from the instantiating fault, so we need
952 		 * to look twice if a mapped file/anon folio is used more
953 		 * than once.
954 		 *
955 		 * Mark it and spare it for another trip around the
956 		 * inactive list.  Another page table reference will
957 		 * lead to its activation.
958 		 *
959 		 * Note: the mark is set for activated folios as well
960 		 * so that recently deactivated but used folios are
961 		 * quickly recovered.
962 		 */
963 		folio_set_referenced(folio);
964 
965 		if (referenced_folio || referenced_ptes > 1)
966 			return FOLIOREF_ACTIVATE;
967 
968 		/*
969 		 * Activate file-backed executable folios after first usage.
970 		 */
971 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
972 			return FOLIOREF_ACTIVATE;
973 
974 		return FOLIOREF_KEEP;
975 	}
976 
977 	/* Reclaim if clean, defer dirty folios to writeback */
978 	if (referenced_folio && folio_is_file_lru(folio))
979 		return FOLIOREF_RECLAIM_CLEAN;
980 
981 	return FOLIOREF_RECLAIM;
982 }
983 
984 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)985 static void folio_check_dirty_writeback(struct folio *folio,
986 				       bool *dirty, bool *writeback)
987 {
988 	struct address_space *mapping;
989 
990 	/*
991 	 * Anonymous folios are not handled by flushers and must be written
992 	 * from reclaim context. Do not stall reclaim based on them.
993 	 * MADV_FREE anonymous folios are put into inactive file list too.
994 	 * They could be mistakenly treated as file lru. So further anon
995 	 * test is needed.
996 	 */
997 	if (!folio_is_file_lru(folio) ||
998 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
999 		*dirty = false;
1000 		*writeback = false;
1001 		return;
1002 	}
1003 
1004 	/* By default assume that the folio flags are accurate */
1005 	*dirty = folio_test_dirty(folio);
1006 	*writeback = folio_test_writeback(folio);
1007 
1008 	/* Verify dirty/writeback state if the filesystem supports it */
1009 	if (!folio_test_private(folio))
1010 		return;
1011 
1012 	mapping = folio_mapping(folio);
1013 	if (mapping && mapping->a_ops->is_dirty_writeback)
1014 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1015 }
1016 
alloc_migrate_folio(struct folio * src,unsigned long private)1017 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
1018 {
1019 	struct folio *dst;
1020 	nodemask_t *allowed_mask;
1021 	struct migration_target_control *mtc;
1022 
1023 	mtc = (struct migration_target_control *)private;
1024 
1025 	allowed_mask = mtc->nmask;
1026 	/*
1027 	 * make sure we allocate from the target node first also trying to
1028 	 * demote or reclaim pages from the target node via kswapd if we are
1029 	 * low on free memory on target node. If we don't do this and if
1030 	 * we have free memory on the slower(lower) memtier, we would start
1031 	 * allocating pages from slower(lower) memory tiers without even forcing
1032 	 * a demotion of cold pages from the target memtier. This can result
1033 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1034 	 */
1035 	mtc->nmask = NULL;
1036 	mtc->gfp_mask |= __GFP_THISNODE;
1037 	dst = alloc_migration_target(src, (unsigned long)mtc);
1038 	if (dst)
1039 		return dst;
1040 
1041 	mtc->gfp_mask &= ~__GFP_THISNODE;
1042 	mtc->nmask = allowed_mask;
1043 
1044 	return alloc_migration_target(src, (unsigned long)mtc);
1045 }
1046 
1047 /*
1048  * Take folios on @demote_folios and attempt to demote them to another node.
1049  * Folios which are not demoted are left on @demote_folios.
1050  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1051 static unsigned int demote_folio_list(struct list_head *demote_folios,
1052 				     struct pglist_data *pgdat)
1053 {
1054 	int target_nid = next_demotion_node(pgdat->node_id);
1055 	unsigned int nr_succeeded;
1056 	nodemask_t allowed_mask;
1057 
1058 	struct migration_target_control mtc = {
1059 		/*
1060 		 * Allocate from 'node', or fail quickly and quietly.
1061 		 * When this happens, 'page' will likely just be discarded
1062 		 * instead of migrated.
1063 		 */
1064 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1065 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1066 		.nid = target_nid,
1067 		.nmask = &allowed_mask,
1068 		.reason = MR_DEMOTION,
1069 	};
1070 
1071 	if (list_empty(demote_folios))
1072 		return 0;
1073 
1074 	if (target_nid == NUMA_NO_NODE)
1075 		return 0;
1076 
1077 	node_get_allowed_targets(pgdat, &allowed_mask);
1078 
1079 	/* Demotion ignores all cpuset and mempolicy settings */
1080 	migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1081 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1082 		      &nr_succeeded);
1083 
1084 	return nr_succeeded;
1085 }
1086 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1087 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1088 {
1089 	if (gfp_mask & __GFP_FS)
1090 		return true;
1091 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1092 		return false;
1093 	/*
1094 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1095 	 * providing this isn't SWP_FS_OPS.
1096 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1097 	 * but that will never affect SWP_FS_OPS, so the data_race
1098 	 * is safe.
1099 	 */
1100 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1101 }
1102 
1103 /*
1104  * shrink_folio_list() returns the number of reclaimed pages
1105  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1106 static unsigned int shrink_folio_list(struct list_head *folio_list,
1107 		struct pglist_data *pgdat, struct scan_control *sc,
1108 		struct reclaim_stat *stat, bool ignore_references,
1109 		struct mem_cgroup *memcg)
1110 {
1111 	struct folio_batch free_folios;
1112 	LIST_HEAD(ret_folios);
1113 	LIST_HEAD(demote_folios);
1114 	unsigned int nr_reclaimed = 0, nr_demoted = 0;
1115 	unsigned int pgactivate = 0;
1116 	bool do_demote_pass;
1117 	struct swap_iocb *plug = NULL;
1118 
1119 	folio_batch_init(&free_folios);
1120 	memset(stat, 0, sizeof(*stat));
1121 	cond_resched();
1122 	do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1123 
1124 retry:
1125 	while (!list_empty(folio_list)) {
1126 		struct address_space *mapping;
1127 		struct folio *folio;
1128 		enum folio_references references = FOLIOREF_RECLAIM;
1129 		bool dirty, writeback;
1130 		unsigned int nr_pages;
1131 
1132 		cond_resched();
1133 
1134 		folio = lru_to_folio(folio_list);
1135 		list_del(&folio->lru);
1136 
1137 		if (!folio_trylock(folio))
1138 			goto keep;
1139 
1140 		if (folio_contain_hwpoisoned_page(folio)) {
1141 			/*
1142 			 * unmap_poisoned_folio() can't handle large
1143 			 * folio, just skip it. memory_failure() will
1144 			 * handle it if the UCE is triggered again.
1145 			 */
1146 			if (folio_test_large(folio))
1147 				goto keep_locked;
1148 
1149 			unmap_poisoned_folio(folio, folio_pfn(folio), false);
1150 			folio_unlock(folio);
1151 			folio_put(folio);
1152 			continue;
1153 		}
1154 
1155 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1156 
1157 		nr_pages = folio_nr_pages(folio);
1158 
1159 		/* Account the number of base pages */
1160 		sc->nr_scanned += nr_pages;
1161 
1162 		if (unlikely(!folio_evictable(folio)))
1163 			goto activate_locked;
1164 
1165 		if (!sc->may_unmap && folio_mapped(folio))
1166 			goto keep_locked;
1167 
1168 		/*
1169 		 * The number of dirty pages determines if a node is marked
1170 		 * reclaim_congested. kswapd will stall and start writing
1171 		 * folios if the tail of the LRU is all dirty unqueued folios.
1172 		 */
1173 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1174 		if (dirty || writeback)
1175 			stat->nr_dirty += nr_pages;
1176 
1177 		if (dirty && !writeback)
1178 			stat->nr_unqueued_dirty += nr_pages;
1179 
1180 		/*
1181 		 * Treat this folio as congested if folios are cycling
1182 		 * through the LRU so quickly that the folios marked
1183 		 * for immediate reclaim are making it to the end of
1184 		 * the LRU a second time.
1185 		 */
1186 		if (writeback && folio_test_reclaim(folio))
1187 			stat->nr_congested += nr_pages;
1188 
1189 		/*
1190 		 * If a folio at the tail of the LRU is under writeback, there
1191 		 * are three cases to consider.
1192 		 *
1193 		 * 1) If reclaim is encountering an excessive number
1194 		 *    of folios under writeback and this folio has both
1195 		 *    the writeback and reclaim flags set, then it
1196 		 *    indicates that folios are being queued for I/O but
1197 		 *    are being recycled through the LRU before the I/O
1198 		 *    can complete. Waiting on the folio itself risks an
1199 		 *    indefinite stall if it is impossible to writeback
1200 		 *    the folio due to I/O error or disconnected storage
1201 		 *    so instead note that the LRU is being scanned too
1202 		 *    quickly and the caller can stall after the folio
1203 		 *    list has been processed.
1204 		 *
1205 		 * 2) Global or new memcg reclaim encounters a folio that is
1206 		 *    not marked for immediate reclaim, or the caller does not
1207 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208 		 *    not to fs), or the folio belongs to a mapping where
1209 		 *    waiting on writeback during reclaim may lead to a deadlock.
1210 		 *    In this case mark the folio for immediate reclaim and
1211 		 *    continue scanning.
1212 		 *
1213 		 *    Require may_enter_fs() because we would wait on fs, which
1214 		 *    may not have submitted I/O yet. And the loop driver might
1215 		 *    enter reclaim, and deadlock if it waits on a folio for
1216 		 *    which it is needed to do the write (loop masks off
1217 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1218 		 *    would probably show more reasons.
1219 		 *
1220 		 * 3) Legacy memcg encounters a folio that already has the
1221 		 *    reclaim flag set. memcg does not have any dirty folio
1222 		 *    throttling so we could easily OOM just because too many
1223 		 *    folios are in writeback and there is nothing else to
1224 		 *    reclaim. Wait for the writeback to complete.
1225 		 *
1226 		 * In cases 1) and 2) we activate the folios to get them out of
1227 		 * the way while we continue scanning for clean folios on the
1228 		 * inactive list and refilling from the active list. The
1229 		 * observation here is that waiting for disk writes is more
1230 		 * expensive than potentially causing reloads down the line.
1231 		 * Since they're marked for immediate reclaim, they won't put
1232 		 * memory pressure on the cache working set any longer than it
1233 		 * takes to write them to disk.
1234 		 */
1235 		if (folio_test_writeback(folio)) {
1236 			mapping = folio_mapping(folio);
1237 
1238 			/* Case 1 above */
1239 			if (current_is_kswapd() &&
1240 			    folio_test_reclaim(folio) &&
1241 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1242 				stat->nr_immediate += nr_pages;
1243 				goto activate_locked;
1244 
1245 			/* Case 2 above */
1246 			} else if (writeback_throttling_sane(sc) ||
1247 			    !folio_test_reclaim(folio) ||
1248 			    !may_enter_fs(folio, sc->gfp_mask) ||
1249 			    (mapping &&
1250 			     mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1251 				/*
1252 				 * This is slightly racy -
1253 				 * folio_end_writeback() might have
1254 				 * just cleared the reclaim flag, then
1255 				 * setting the reclaim flag here ends up
1256 				 * interpreted as the readahead flag - but
1257 				 * that does not matter enough to care.
1258 				 * What we do want is for this folio to
1259 				 * have the reclaim flag set next time
1260 				 * memcg reclaim reaches the tests above,
1261 				 * so it will then wait for writeback to
1262 				 * avoid OOM; and it's also appropriate
1263 				 * in global reclaim.
1264 				 */
1265 				folio_set_reclaim(folio);
1266 				stat->nr_writeback += nr_pages;
1267 				goto activate_locked;
1268 
1269 			/* Case 3 above */
1270 			} else {
1271 				folio_unlock(folio);
1272 				folio_wait_writeback(folio);
1273 				/* then go back and try same folio again */
1274 				list_add_tail(&folio->lru, folio_list);
1275 				continue;
1276 			}
1277 		}
1278 
1279 		if (!ignore_references)
1280 			references = folio_check_references(folio, sc);
1281 
1282 		switch (references) {
1283 		case FOLIOREF_ACTIVATE:
1284 			goto activate_locked;
1285 		case FOLIOREF_KEEP:
1286 			stat->nr_ref_keep += nr_pages;
1287 			goto keep_locked;
1288 		case FOLIOREF_RECLAIM:
1289 		case FOLIOREF_RECLAIM_CLEAN:
1290 			; /* try to reclaim the folio below */
1291 		}
1292 
1293 		/*
1294 		 * Before reclaiming the folio, try to relocate
1295 		 * its contents to another node.
1296 		 */
1297 		if (do_demote_pass &&
1298 		    (thp_migration_supported() || !folio_test_large(folio))) {
1299 			list_add(&folio->lru, &demote_folios);
1300 			folio_unlock(folio);
1301 			continue;
1302 		}
1303 
1304 		/*
1305 		 * Anonymous process memory has backing store?
1306 		 * Try to allocate it some swap space here.
1307 		 * Lazyfree folio could be freed directly
1308 		 */
1309 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1310 			if (!folio_test_swapcache(folio)) {
1311 				if (!(sc->gfp_mask & __GFP_IO))
1312 					goto keep_locked;
1313 				if (folio_maybe_dma_pinned(folio))
1314 					goto keep_locked;
1315 				if (folio_test_large(folio)) {
1316 					/* cannot split folio, skip it */
1317 					if (!can_split_folio(folio, 1, NULL))
1318 						goto activate_locked;
1319 					/*
1320 					 * Split partially mapped folios right away.
1321 					 * We can free the unmapped pages without IO.
1322 					 */
1323 					if (data_race(!list_empty(&folio->_deferred_list) &&
1324 					    folio_test_partially_mapped(folio)) &&
1325 					    split_folio_to_list(folio, folio_list))
1326 						goto activate_locked;
1327 				}
1328 				if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1329 					int __maybe_unused order = folio_order(folio);
1330 
1331 					if (!folio_test_large(folio))
1332 						goto activate_locked_split;
1333 					/* Fallback to swap normal pages */
1334 					if (split_folio_to_list(folio, folio_list))
1335 						goto activate_locked;
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 					if (nr_pages >= HPAGE_PMD_NR) {
1338 						count_memcg_folio_events(folio,
1339 							THP_SWPOUT_FALLBACK, 1);
1340 						count_vm_event(THP_SWPOUT_FALLBACK);
1341 					}
1342 #endif
1343 					count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1344 					if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1345 						goto activate_locked_split;
1346 				}
1347 				/*
1348 				 * Normally the folio will be dirtied in unmap because its
1349 				 * pte should be dirty. A special case is MADV_FREE page. The
1350 				 * page's pte could have dirty bit cleared but the folio's
1351 				 * SwapBacked flag is still set because clearing the dirty bit
1352 				 * and SwapBacked flag has no lock protected. For such folio,
1353 				 * unmap will not set dirty bit for it, so folio reclaim will
1354 				 * not write the folio out. This can cause data corruption when
1355 				 * the folio is swapped in later. Always setting the dirty flag
1356 				 * for the folio solves the problem.
1357 				 */
1358 				folio_mark_dirty(folio);
1359 			}
1360 		}
1361 
1362 		/*
1363 		 * If the folio was split above, the tail pages will make
1364 		 * their own pass through this function and be accounted
1365 		 * then.
1366 		 */
1367 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1368 			sc->nr_scanned -= (nr_pages - 1);
1369 			nr_pages = 1;
1370 		}
1371 
1372 		/*
1373 		 * The folio is mapped into the page tables of one or more
1374 		 * processes. Try to unmap it here.
1375 		 */
1376 		if (folio_mapped(folio)) {
1377 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1378 			bool was_swapbacked = folio_test_swapbacked(folio);
1379 
1380 			if (folio_test_pmd_mappable(folio))
1381 				flags |= TTU_SPLIT_HUGE_PMD;
1382 			/*
1383 			 * Without TTU_SYNC, try_to_unmap will only begin to
1384 			 * hold PTL from the first present PTE within a large
1385 			 * folio. Some initial PTEs might be skipped due to
1386 			 * races with parallel PTE writes in which PTEs can be
1387 			 * cleared temporarily before being written new present
1388 			 * values. This will lead to a large folio is still
1389 			 * mapped while some subpages have been partially
1390 			 * unmapped after try_to_unmap; TTU_SYNC helps
1391 			 * try_to_unmap acquire PTL from the first PTE,
1392 			 * eliminating the influence of temporary PTE values.
1393 			 */
1394 			if (folio_test_large(folio))
1395 				flags |= TTU_SYNC;
1396 
1397 			try_to_unmap(folio, flags);
1398 			if (folio_mapped(folio)) {
1399 				stat->nr_unmap_fail += nr_pages;
1400 				if (!was_swapbacked &&
1401 				    folio_test_swapbacked(folio))
1402 					stat->nr_lazyfree_fail += nr_pages;
1403 				goto activate_locked;
1404 			}
1405 		}
1406 
1407 		/*
1408 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1409 		 * No point in trying to reclaim folio if it is pinned.
1410 		 * Furthermore we don't want to reclaim underlying fs metadata
1411 		 * if the folio is pinned and thus potentially modified by the
1412 		 * pinning process as that may upset the filesystem.
1413 		 */
1414 		if (folio_maybe_dma_pinned(folio))
1415 			goto activate_locked;
1416 
1417 		mapping = folio_mapping(folio);
1418 		if (folio_test_dirty(folio)) {
1419 			/*
1420 			 * Only kswapd can writeback filesystem folios
1421 			 * to avoid risk of stack overflow. But avoid
1422 			 * injecting inefficient single-folio I/O into
1423 			 * flusher writeback as much as possible: only
1424 			 * write folios when we've encountered many
1425 			 * dirty folios, and when we've already scanned
1426 			 * the rest of the LRU for clean folios and see
1427 			 * the same dirty folios again (with the reclaim
1428 			 * flag set).
1429 			 */
1430 			if (folio_is_file_lru(folio) &&
1431 			    (!current_is_kswapd() ||
1432 			     !folio_test_reclaim(folio) ||
1433 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1434 				/*
1435 				 * Immediately reclaim when written back.
1436 				 * Similar in principle to folio_deactivate()
1437 				 * except we already have the folio isolated
1438 				 * and know it's dirty
1439 				 */
1440 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1441 						nr_pages);
1442 				folio_set_reclaim(folio);
1443 
1444 				goto activate_locked;
1445 			}
1446 
1447 			if (references == FOLIOREF_RECLAIM_CLEAN)
1448 				goto keep_locked;
1449 			if (!may_enter_fs(folio, sc->gfp_mask))
1450 				goto keep_locked;
1451 			if (!sc->may_writepage)
1452 				goto keep_locked;
1453 
1454 			/*
1455 			 * Folio is dirty. Flush the TLB if a writable entry
1456 			 * potentially exists to avoid CPU writes after I/O
1457 			 * starts and then write it out here.
1458 			 */
1459 			try_to_unmap_flush_dirty();
1460 			switch (pageout(folio, mapping, &plug, folio_list)) {
1461 			case PAGE_KEEP:
1462 				goto keep_locked;
1463 			case PAGE_ACTIVATE:
1464 				/*
1465 				 * If shmem folio is split when writeback to swap,
1466 				 * the tail pages will make their own pass through
1467 				 * this function and be accounted then.
1468 				 */
1469 				if (nr_pages > 1 && !folio_test_large(folio)) {
1470 					sc->nr_scanned -= (nr_pages - 1);
1471 					nr_pages = 1;
1472 				}
1473 				goto activate_locked;
1474 			case PAGE_SUCCESS:
1475 				if (nr_pages > 1 && !folio_test_large(folio)) {
1476 					sc->nr_scanned -= (nr_pages - 1);
1477 					nr_pages = 1;
1478 				}
1479 				stat->nr_pageout += nr_pages;
1480 
1481 				if (folio_test_writeback(folio))
1482 					goto keep;
1483 				if (folio_test_dirty(folio))
1484 					goto keep;
1485 
1486 				/*
1487 				 * A synchronous write - probably a ramdisk.  Go
1488 				 * ahead and try to reclaim the folio.
1489 				 */
1490 				if (!folio_trylock(folio))
1491 					goto keep;
1492 				if (folio_test_dirty(folio) ||
1493 				    folio_test_writeback(folio))
1494 					goto keep_locked;
1495 				mapping = folio_mapping(folio);
1496 				fallthrough;
1497 			case PAGE_CLEAN:
1498 				; /* try to free the folio below */
1499 			}
1500 		}
1501 
1502 		/*
1503 		 * If the folio has buffers, try to free the buffer
1504 		 * mappings associated with this folio. If we succeed
1505 		 * we try to free the folio as well.
1506 		 *
1507 		 * We do this even if the folio is dirty.
1508 		 * filemap_release_folio() does not perform I/O, but it
1509 		 * is possible for a folio to have the dirty flag set,
1510 		 * but it is actually clean (all its buffers are clean).
1511 		 * This happens if the buffers were written out directly,
1512 		 * with submit_bh(). ext3 will do this, as well as
1513 		 * the blockdev mapping.  filemap_release_folio() will
1514 		 * discover that cleanness and will drop the buffers
1515 		 * and mark the folio clean - it can be freed.
1516 		 *
1517 		 * Rarely, folios can have buffers and no ->mapping.
1518 		 * These are the folios which were not successfully
1519 		 * invalidated in truncate_cleanup_folio().  We try to
1520 		 * drop those buffers here and if that worked, and the
1521 		 * folio is no longer mapped into process address space
1522 		 * (refcount == 1) it can be freed.  Otherwise, leave
1523 		 * the folio on the LRU so it is swappable.
1524 		 */
1525 		if (folio_needs_release(folio)) {
1526 			if (!filemap_release_folio(folio, sc->gfp_mask))
1527 				goto activate_locked;
1528 			if (!mapping && folio_ref_count(folio) == 1) {
1529 				folio_unlock(folio);
1530 				if (folio_put_testzero(folio))
1531 					goto free_it;
1532 				else {
1533 					/*
1534 					 * rare race with speculative reference.
1535 					 * the speculative reference will free
1536 					 * this folio shortly, so we may
1537 					 * increment nr_reclaimed here (and
1538 					 * leave it off the LRU).
1539 					 */
1540 					nr_reclaimed += nr_pages;
1541 					continue;
1542 				}
1543 			}
1544 		}
1545 
1546 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1547 			/* follow __remove_mapping for reference */
1548 			if (!folio_ref_freeze(folio, 1))
1549 				goto keep_locked;
1550 			/*
1551 			 * The folio has only one reference left, which is
1552 			 * from the isolation. After the caller puts the
1553 			 * folio back on the lru and drops the reference, the
1554 			 * folio will be freed anyway. It doesn't matter
1555 			 * which lru it goes on. So we don't bother checking
1556 			 * the dirty flag here.
1557 			 */
1558 			count_vm_events(PGLAZYFREED, nr_pages);
1559 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1560 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1561 							 sc->target_mem_cgroup))
1562 			goto keep_locked;
1563 
1564 		folio_unlock(folio);
1565 free_it:
1566 		/*
1567 		 * Folio may get swapped out as a whole, need to account
1568 		 * all pages in it.
1569 		 */
1570 		nr_reclaimed += nr_pages;
1571 
1572 		folio_unqueue_deferred_split(folio);
1573 		if (folio_batch_add(&free_folios, folio) == 0) {
1574 			mem_cgroup_uncharge_folios(&free_folios);
1575 			try_to_unmap_flush();
1576 			free_unref_folios(&free_folios);
1577 		}
1578 		continue;
1579 
1580 activate_locked_split:
1581 		/*
1582 		 * The tail pages that are failed to add into swap cache
1583 		 * reach here.  Fixup nr_scanned and nr_pages.
1584 		 */
1585 		if (nr_pages > 1) {
1586 			sc->nr_scanned -= (nr_pages - 1);
1587 			nr_pages = 1;
1588 		}
1589 activate_locked:
1590 		/* Not a candidate for swapping, so reclaim swap space. */
1591 		if (folio_test_swapcache(folio) &&
1592 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1593 			folio_free_swap(folio);
1594 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1595 		if (!folio_test_mlocked(folio)) {
1596 			int type = folio_is_file_lru(folio);
1597 			folio_set_active(folio);
1598 			stat->nr_activate[type] += nr_pages;
1599 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1600 		}
1601 keep_locked:
1602 		folio_unlock(folio);
1603 keep:
1604 		list_add(&folio->lru, &ret_folios);
1605 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1606 				folio_test_unevictable(folio), folio);
1607 	}
1608 	/* 'folio_list' is always empty here */
1609 
1610 	/* Migrate folios selected for demotion */
1611 	nr_demoted = demote_folio_list(&demote_folios, pgdat);
1612 	nr_reclaimed += nr_demoted;
1613 	stat->nr_demoted += nr_demoted;
1614 	/* Folios that could not be demoted are still in @demote_folios */
1615 	if (!list_empty(&demote_folios)) {
1616 		/* Folios which weren't demoted go back on @folio_list */
1617 		list_splice_init(&demote_folios, folio_list);
1618 
1619 		/*
1620 		 * goto retry to reclaim the undemoted folios in folio_list if
1621 		 * desired.
1622 		 *
1623 		 * Reclaiming directly from top tier nodes is not often desired
1624 		 * due to it breaking the LRU ordering: in general memory
1625 		 * should be reclaimed from lower tier nodes and demoted from
1626 		 * top tier nodes.
1627 		 *
1628 		 * However, disabling reclaim from top tier nodes entirely
1629 		 * would cause ooms in edge scenarios where lower tier memory
1630 		 * is unreclaimable for whatever reason, eg memory being
1631 		 * mlocked or too hot to reclaim. We can disable reclaim
1632 		 * from top tier nodes in proactive reclaim though as that is
1633 		 * not real memory pressure.
1634 		 */
1635 		if (!sc->proactive) {
1636 			do_demote_pass = false;
1637 			goto retry;
1638 		}
1639 	}
1640 
1641 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1642 
1643 	mem_cgroup_uncharge_folios(&free_folios);
1644 	try_to_unmap_flush();
1645 	free_unref_folios(&free_folios);
1646 
1647 	list_splice(&ret_folios, folio_list);
1648 	count_vm_events(PGACTIVATE, pgactivate);
1649 
1650 	if (plug)
1651 		swap_write_unplug(plug);
1652 	return nr_reclaimed;
1653 }
1654 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1655 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1656 					   struct list_head *folio_list)
1657 {
1658 	struct scan_control sc = {
1659 		.gfp_mask = GFP_KERNEL,
1660 		.may_unmap = 1,
1661 	};
1662 	struct reclaim_stat stat;
1663 	unsigned int nr_reclaimed;
1664 	struct folio *folio, *next;
1665 	LIST_HEAD(clean_folios);
1666 	unsigned int noreclaim_flag;
1667 
1668 	list_for_each_entry_safe(folio, next, folio_list, lru) {
1669 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1670 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1671 		    !folio_test_unevictable(folio)) {
1672 			folio_clear_active(folio);
1673 			list_move(&folio->lru, &clean_folios);
1674 		}
1675 	}
1676 
1677 	/*
1678 	 * We should be safe here since we are only dealing with file pages and
1679 	 * we are not kswapd and therefore cannot write dirty file pages. But
1680 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1681 	 * change in the future.
1682 	 */
1683 	noreclaim_flag = memalloc_noreclaim_save();
1684 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1685 					&stat, true, NULL);
1686 	memalloc_noreclaim_restore(noreclaim_flag);
1687 
1688 	list_splice(&clean_folios, folio_list);
1689 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1690 			    -(long)nr_reclaimed);
1691 	/*
1692 	 * Since lazyfree pages are isolated from file LRU from the beginning,
1693 	 * they will rotate back to anonymous LRU in the end if it failed to
1694 	 * discard so isolated count will be mismatched.
1695 	 * Compensate the isolated count for both LRU lists.
1696 	 */
1697 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1698 			    stat.nr_lazyfree_fail);
1699 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1700 			    -(long)stat.nr_lazyfree_fail);
1701 	return nr_reclaimed;
1702 }
1703 
1704 /*
1705  * Update LRU sizes after isolating pages. The LRU size updates must
1706  * be complete before mem_cgroup_update_lru_size due to a sanity check.
1707  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1708 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1709 			enum lru_list lru, unsigned long *nr_zone_taken)
1710 {
1711 	int zid;
1712 
1713 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1714 		if (!nr_zone_taken[zid])
1715 			continue;
1716 
1717 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1718 	}
1719 
1720 }
1721 
1722 /*
1723  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1724  *
1725  * lruvec->lru_lock is heavily contended.  Some of the functions that
1726  * shrink the lists perform better by taking out a batch of pages
1727  * and working on them outside the LRU lock.
1728  *
1729  * For pagecache intensive workloads, this function is the hottest
1730  * spot in the kernel (apart from copy_*_user functions).
1731  *
1732  * Lru_lock must be held before calling this function.
1733  *
1734  * @nr_to_scan:	The number of eligible pages to look through on the list.
1735  * @lruvec:	The LRU vector to pull pages from.
1736  * @dst:	The temp list to put pages on to.
1737  * @nr_scanned:	The number of pages that were scanned.
1738  * @sc:		The scan_control struct for this reclaim session
1739  * @lru:	LRU list id for isolating
1740  *
1741  * returns how many pages were moved onto *@dst.
1742  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1743 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1744 		struct lruvec *lruvec, struct list_head *dst,
1745 		unsigned long *nr_scanned, struct scan_control *sc,
1746 		enum lru_list lru)
1747 {
1748 	struct list_head *src = &lruvec->lists[lru];
1749 	unsigned long nr_taken = 0;
1750 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1751 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1752 	unsigned long skipped = 0, total_scan = 0, scan = 0;
1753 	unsigned long nr_pages;
1754 	unsigned long max_nr_skipped = 0;
1755 	LIST_HEAD(folios_skipped);
1756 
1757 	while (scan < nr_to_scan && !list_empty(src)) {
1758 		struct list_head *move_to = src;
1759 		struct folio *folio;
1760 
1761 		folio = lru_to_folio(src);
1762 		prefetchw_prev_lru_folio(folio, src, flags);
1763 
1764 		nr_pages = folio_nr_pages(folio);
1765 		total_scan += nr_pages;
1766 
1767 		/* Using max_nr_skipped to prevent hard LOCKUP*/
1768 		if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1769 		    (folio_zonenum(folio) > sc->reclaim_idx)) {
1770 			nr_skipped[folio_zonenum(folio)] += nr_pages;
1771 			move_to = &folios_skipped;
1772 			max_nr_skipped++;
1773 			goto move;
1774 		}
1775 
1776 		/*
1777 		 * Do not count skipped folios because that makes the function
1778 		 * return with no isolated folios if the LRU mostly contains
1779 		 * ineligible folios.  This causes the VM to not reclaim any
1780 		 * folios, triggering a premature OOM.
1781 		 * Account all pages in a folio.
1782 		 */
1783 		scan += nr_pages;
1784 
1785 		if (!folio_test_lru(folio))
1786 			goto move;
1787 		if (!sc->may_unmap && folio_mapped(folio))
1788 			goto move;
1789 
1790 		/*
1791 		 * Be careful not to clear the lru flag until after we're
1792 		 * sure the folio is not being freed elsewhere -- the
1793 		 * folio release code relies on it.
1794 		 */
1795 		if (unlikely(!folio_try_get(folio)))
1796 			goto move;
1797 
1798 		if (!folio_test_clear_lru(folio)) {
1799 			/* Another thread is already isolating this folio */
1800 			folio_put(folio);
1801 			goto move;
1802 		}
1803 
1804 		nr_taken += nr_pages;
1805 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1806 		move_to = dst;
1807 move:
1808 		list_move(&folio->lru, move_to);
1809 	}
1810 
1811 	/*
1812 	 * Splice any skipped folios to the start of the LRU list. Note that
1813 	 * this disrupts the LRU order when reclaiming for lower zones but
1814 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1815 	 * scanning would soon rescan the same folios to skip and waste lots
1816 	 * of cpu cycles.
1817 	 */
1818 	if (!list_empty(&folios_skipped)) {
1819 		int zid;
1820 
1821 		list_splice(&folios_skipped, src);
1822 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1823 			if (!nr_skipped[zid])
1824 				continue;
1825 
1826 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1827 			skipped += nr_skipped[zid];
1828 		}
1829 	}
1830 	*nr_scanned = total_scan;
1831 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1832 				    total_scan, skipped, nr_taken, lru);
1833 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1834 	return nr_taken;
1835 }
1836 
1837 /**
1838  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1839  * @folio: Folio to isolate from its LRU list.
1840  *
1841  * Isolate a @folio from an LRU list and adjust the vmstat statistic
1842  * corresponding to whatever LRU list the folio was on.
1843  *
1844  * The folio will have its LRU flag cleared.  If it was found on the
1845  * active list, it will have the Active flag set.  If it was found on the
1846  * unevictable list, it will have the Unevictable flag set.  These flags
1847  * may need to be cleared by the caller before letting the page go.
1848  *
1849  * Context:
1850  *
1851  * (1) Must be called with an elevated refcount on the folio. This is a
1852  *     fundamental difference from isolate_lru_folios() (which is called
1853  *     without a stable reference).
1854  * (2) The lru_lock must not be held.
1855  * (3) Interrupts must be enabled.
1856  *
1857  * Return: true if the folio was removed from an LRU list.
1858  * false if the folio was not on an LRU list.
1859  */
folio_isolate_lru(struct folio * folio)1860 bool folio_isolate_lru(struct folio *folio)
1861 {
1862 	bool ret = false;
1863 
1864 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1865 
1866 	if (folio_test_clear_lru(folio)) {
1867 		struct lruvec *lruvec;
1868 
1869 		folio_get(folio);
1870 		lruvec = folio_lruvec_lock_irq(folio);
1871 		lruvec_del_folio(lruvec, folio);
1872 		unlock_page_lruvec_irq(lruvec);
1873 		ret = true;
1874 	}
1875 
1876 	return ret;
1877 }
1878 
1879 /*
1880  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1881  * then get rescheduled. When there are massive number of tasks doing page
1882  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1883  * the LRU list will go small and be scanned faster than necessary, leading to
1884  * unnecessary swapping, thrashing and OOM.
1885  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1886 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1887 		struct scan_control *sc)
1888 {
1889 	unsigned long inactive, isolated;
1890 	bool too_many;
1891 
1892 	if (current_is_kswapd())
1893 		return false;
1894 
1895 	if (!writeback_throttling_sane(sc))
1896 		return false;
1897 
1898 	if (file) {
1899 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1900 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1901 	} else {
1902 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1903 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1904 	}
1905 
1906 	/*
1907 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1908 	 * won't get blocked by normal direct-reclaimers, forming a circular
1909 	 * deadlock.
1910 	 */
1911 	if (gfp_has_io_fs(sc->gfp_mask))
1912 		inactive >>= 3;
1913 
1914 	too_many = isolated > inactive;
1915 
1916 	/* Wake up tasks throttled due to too_many_isolated. */
1917 	if (!too_many)
1918 		wake_throttle_isolated(pgdat);
1919 
1920 	return too_many;
1921 }
1922 
1923 /*
1924  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1925  *
1926  * Returns the number of pages moved to the given lruvec.
1927  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1928 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1929 		struct list_head *list)
1930 {
1931 	int nr_pages, nr_moved = 0;
1932 	struct folio_batch free_folios;
1933 
1934 	folio_batch_init(&free_folios);
1935 	while (!list_empty(list)) {
1936 		struct folio *folio = lru_to_folio(list);
1937 
1938 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1939 		list_del(&folio->lru);
1940 		if (unlikely(!folio_evictable(folio))) {
1941 			spin_unlock_irq(&lruvec->lru_lock);
1942 			folio_putback_lru(folio);
1943 			spin_lock_irq(&lruvec->lru_lock);
1944 			continue;
1945 		}
1946 
1947 		/*
1948 		 * The folio_set_lru needs to be kept here for list integrity.
1949 		 * Otherwise:
1950 		 *   #0 move_folios_to_lru             #1 release_pages
1951 		 *   if (!folio_put_testzero())
1952 		 *				      if (folio_put_testzero())
1953 		 *				        !lru //skip lru_lock
1954 		 *     folio_set_lru()
1955 		 *     list_add(&folio->lru,)
1956 		 *                                        list_add(&folio->lru,)
1957 		 */
1958 		folio_set_lru(folio);
1959 
1960 		if (unlikely(folio_put_testzero(folio))) {
1961 			__folio_clear_lru_flags(folio);
1962 
1963 			folio_unqueue_deferred_split(folio);
1964 			if (folio_batch_add(&free_folios, folio) == 0) {
1965 				spin_unlock_irq(&lruvec->lru_lock);
1966 				mem_cgroup_uncharge_folios(&free_folios);
1967 				free_unref_folios(&free_folios);
1968 				spin_lock_irq(&lruvec->lru_lock);
1969 			}
1970 
1971 			continue;
1972 		}
1973 
1974 		/*
1975 		 * All pages were isolated from the same lruvec (and isolation
1976 		 * inhibits memcg migration).
1977 		 */
1978 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1979 		lruvec_add_folio(lruvec, folio);
1980 		nr_pages = folio_nr_pages(folio);
1981 		nr_moved += nr_pages;
1982 		if (folio_test_active(folio))
1983 			workingset_age_nonresident(lruvec, nr_pages);
1984 	}
1985 
1986 	if (free_folios.nr) {
1987 		spin_unlock_irq(&lruvec->lru_lock);
1988 		mem_cgroup_uncharge_folios(&free_folios);
1989 		free_unref_folios(&free_folios);
1990 		spin_lock_irq(&lruvec->lru_lock);
1991 	}
1992 
1993 	return nr_moved;
1994 }
1995 
1996 /*
1997  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1998  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1999  * we should not throttle.  Otherwise it is safe to do so.
2000  */
current_may_throttle(void)2001 static int current_may_throttle(void)
2002 {
2003 	return !(current->flags & PF_LOCAL_THROTTLE);
2004 }
2005 
2006 /*
2007  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2008  * of reclaimed pages
2009  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2010 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2011 		struct lruvec *lruvec, struct scan_control *sc,
2012 		enum lru_list lru)
2013 {
2014 	LIST_HEAD(folio_list);
2015 	unsigned long nr_scanned;
2016 	unsigned int nr_reclaimed = 0;
2017 	unsigned long nr_taken;
2018 	struct reclaim_stat stat;
2019 	bool file = is_file_lru(lru);
2020 	enum vm_event_item item;
2021 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2022 	bool stalled = false;
2023 
2024 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2025 		if (stalled)
2026 			return 0;
2027 
2028 		/* wait a bit for the reclaimer. */
2029 		stalled = true;
2030 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2031 
2032 		/* We are about to die and free our memory. Return now. */
2033 		if (fatal_signal_pending(current))
2034 			return SWAP_CLUSTER_MAX;
2035 	}
2036 
2037 	lru_add_drain();
2038 
2039 	spin_lock_irq(&lruvec->lru_lock);
2040 
2041 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2042 				     &nr_scanned, sc, lru);
2043 
2044 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2045 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2046 	if (!cgroup_reclaim(sc))
2047 		__count_vm_events(item, nr_scanned);
2048 	count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2049 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2050 
2051 	spin_unlock_irq(&lruvec->lru_lock);
2052 
2053 	if (nr_taken == 0)
2054 		return 0;
2055 
2056 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2057 					 lruvec_memcg(lruvec));
2058 
2059 	spin_lock_irq(&lruvec->lru_lock);
2060 	move_folios_to_lru(lruvec, &folio_list);
2061 
2062 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2063 					stat.nr_demoted);
2064 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2065 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2066 	if (!cgroup_reclaim(sc))
2067 		__count_vm_events(item, nr_reclaimed);
2068 	count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2069 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2070 	spin_unlock_irq(&lruvec->lru_lock);
2071 
2072 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2073 
2074 	/*
2075 	 * If dirty folios are scanned that are not queued for IO, it
2076 	 * implies that flushers are not doing their job. This can
2077 	 * happen when memory pressure pushes dirty folios to the end of
2078 	 * the LRU before the dirty limits are breached and the dirty
2079 	 * data has expired. It can also happen when the proportion of
2080 	 * dirty folios grows not through writes but through memory
2081 	 * pressure reclaiming all the clean cache. And in some cases,
2082 	 * the flushers simply cannot keep up with the allocation
2083 	 * rate. Nudge the flusher threads in case they are asleep.
2084 	 */
2085 	if (stat.nr_unqueued_dirty == nr_taken) {
2086 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2087 		/*
2088 		 * For cgroupv1 dirty throttling is achieved by waking up
2089 		 * the kernel flusher here and later waiting on folios
2090 		 * which are in writeback to finish (see shrink_folio_list()).
2091 		 *
2092 		 * Flusher may not be able to issue writeback quickly
2093 		 * enough for cgroupv1 writeback throttling to work
2094 		 * on a large system.
2095 		 */
2096 		if (!writeback_throttling_sane(sc))
2097 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2098 	}
2099 
2100 	sc->nr.dirty += stat.nr_dirty;
2101 	sc->nr.congested += stat.nr_congested;
2102 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2103 	sc->nr.writeback += stat.nr_writeback;
2104 	sc->nr.immediate += stat.nr_immediate;
2105 	sc->nr.taken += nr_taken;
2106 	if (file)
2107 		sc->nr.file_taken += nr_taken;
2108 
2109 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2110 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2111 	return nr_reclaimed;
2112 }
2113 
2114 /*
2115  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2116  *
2117  * We move them the other way if the folio is referenced by one or more
2118  * processes.
2119  *
2120  * If the folios are mostly unmapped, the processing is fast and it is
2121  * appropriate to hold lru_lock across the whole operation.  But if
2122  * the folios are mapped, the processing is slow (folio_referenced()), so
2123  * we should drop lru_lock around each folio.  It's impossible to balance
2124  * this, so instead we remove the folios from the LRU while processing them.
2125  * It is safe to rely on the active flag against the non-LRU folios in here
2126  * because nobody will play with that bit on a non-LRU folio.
2127  *
2128  * The downside is that we have to touch folio->_refcount against each folio.
2129  * But we had to alter folio->flags anyway.
2130  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2131 static void shrink_active_list(unsigned long nr_to_scan,
2132 			       struct lruvec *lruvec,
2133 			       struct scan_control *sc,
2134 			       enum lru_list lru)
2135 {
2136 	unsigned long nr_taken;
2137 	unsigned long nr_scanned;
2138 	unsigned long vm_flags;
2139 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2140 	LIST_HEAD(l_active);
2141 	LIST_HEAD(l_inactive);
2142 	unsigned nr_deactivate, nr_activate;
2143 	unsigned nr_rotated = 0;
2144 	bool file = is_file_lru(lru);
2145 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2146 
2147 	lru_add_drain();
2148 
2149 	spin_lock_irq(&lruvec->lru_lock);
2150 
2151 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2152 				     &nr_scanned, sc, lru);
2153 
2154 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2155 
2156 	if (!cgroup_reclaim(sc))
2157 		__count_vm_events(PGREFILL, nr_scanned);
2158 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2159 
2160 	spin_unlock_irq(&lruvec->lru_lock);
2161 
2162 	while (!list_empty(&l_hold)) {
2163 		struct folio *folio;
2164 
2165 		cond_resched();
2166 		folio = lru_to_folio(&l_hold);
2167 		list_del(&folio->lru);
2168 
2169 		if (unlikely(!folio_evictable(folio))) {
2170 			folio_putback_lru(folio);
2171 			continue;
2172 		}
2173 
2174 		if (unlikely(buffer_heads_over_limit)) {
2175 			if (folio_needs_release(folio) &&
2176 			    folio_trylock(folio)) {
2177 				filemap_release_folio(folio, 0);
2178 				folio_unlock(folio);
2179 			}
2180 		}
2181 
2182 		/* Referenced or rmap lock contention: rotate */
2183 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2184 				     &vm_flags) != 0) {
2185 			/*
2186 			 * Identify referenced, file-backed active folios and
2187 			 * give them one more trip around the active list. So
2188 			 * that executable code get better chances to stay in
2189 			 * memory under moderate memory pressure.  Anon folios
2190 			 * are not likely to be evicted by use-once streaming
2191 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2192 			 * so we ignore them here.
2193 			 */
2194 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2195 				nr_rotated += folio_nr_pages(folio);
2196 				list_add(&folio->lru, &l_active);
2197 				continue;
2198 			}
2199 		}
2200 
2201 		folio_clear_active(folio);	/* we are de-activating */
2202 		folio_set_workingset(folio);
2203 		list_add(&folio->lru, &l_inactive);
2204 	}
2205 
2206 	/*
2207 	 * Move folios back to the lru list.
2208 	 */
2209 	spin_lock_irq(&lruvec->lru_lock);
2210 
2211 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2212 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2213 
2214 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2215 	count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2216 
2217 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2218 	spin_unlock_irq(&lruvec->lru_lock);
2219 
2220 	if (nr_rotated)
2221 		lru_note_cost(lruvec, file, 0, nr_rotated);
2222 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2223 			nr_deactivate, nr_rotated, sc->priority, file);
2224 }
2225 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2226 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2227 				      struct pglist_data *pgdat)
2228 {
2229 	struct reclaim_stat stat;
2230 	unsigned int nr_reclaimed;
2231 	struct folio *folio;
2232 	struct scan_control sc = {
2233 		.gfp_mask = GFP_KERNEL,
2234 		.may_writepage = 1,
2235 		.may_unmap = 1,
2236 		.may_swap = 1,
2237 		.no_demotion = 1,
2238 	};
2239 
2240 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2241 	while (!list_empty(folio_list)) {
2242 		folio = lru_to_folio(folio_list);
2243 		list_del(&folio->lru);
2244 		folio_putback_lru(folio);
2245 	}
2246 	trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2247 
2248 	return nr_reclaimed;
2249 }
2250 
reclaim_pages(struct list_head * folio_list)2251 unsigned long reclaim_pages(struct list_head *folio_list)
2252 {
2253 	int nid;
2254 	unsigned int nr_reclaimed = 0;
2255 	LIST_HEAD(node_folio_list);
2256 	unsigned int noreclaim_flag;
2257 
2258 	if (list_empty(folio_list))
2259 		return nr_reclaimed;
2260 
2261 	noreclaim_flag = memalloc_noreclaim_save();
2262 
2263 	nid = folio_nid(lru_to_folio(folio_list));
2264 	do {
2265 		struct folio *folio = lru_to_folio(folio_list);
2266 
2267 		if (nid == folio_nid(folio)) {
2268 			folio_clear_active(folio);
2269 			list_move(&folio->lru, &node_folio_list);
2270 			continue;
2271 		}
2272 
2273 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2274 		nid = folio_nid(lru_to_folio(folio_list));
2275 	} while (!list_empty(folio_list));
2276 
2277 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2278 
2279 	memalloc_noreclaim_restore(noreclaim_flag);
2280 
2281 	return nr_reclaimed;
2282 }
2283 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2284 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2285 				 struct lruvec *lruvec, struct scan_control *sc)
2286 {
2287 	if (is_active_lru(lru)) {
2288 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2289 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2290 		else
2291 			sc->skipped_deactivate = 1;
2292 		return 0;
2293 	}
2294 
2295 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2296 }
2297 
2298 /*
2299  * The inactive anon list should be small enough that the VM never has
2300  * to do too much work.
2301  *
2302  * The inactive file list should be small enough to leave most memory
2303  * to the established workingset on the scan-resistant active list,
2304  * but large enough to avoid thrashing the aggregate readahead window.
2305  *
2306  * Both inactive lists should also be large enough that each inactive
2307  * folio has a chance to be referenced again before it is reclaimed.
2308  *
2309  * If that fails and refaulting is observed, the inactive list grows.
2310  *
2311  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2312  * on this LRU, maintained by the pageout code. An inactive_ratio
2313  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2314  *
2315  * total     target    max
2316  * memory    ratio     inactive
2317  * -------------------------------------
2318  *   10MB       1         5MB
2319  *  100MB       1        50MB
2320  *    1GB       3       250MB
2321  *   10GB      10       0.9GB
2322  *  100GB      31         3GB
2323  *    1TB     101        10GB
2324  *   10TB     320        32GB
2325  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2326 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2327 {
2328 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2329 	unsigned long inactive, active;
2330 	unsigned long inactive_ratio;
2331 	unsigned long gb;
2332 
2333 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2334 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2335 
2336 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2337 	if (gb)
2338 		inactive_ratio = int_sqrt(10 * gb);
2339 	else
2340 		inactive_ratio = 1;
2341 
2342 	return inactive * inactive_ratio < active;
2343 }
2344 
2345 enum scan_balance {
2346 	SCAN_EQUAL,
2347 	SCAN_FRACT,
2348 	SCAN_ANON,
2349 	SCAN_FILE,
2350 };
2351 
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2352 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2353 {
2354 	unsigned long file;
2355 	struct lruvec *target_lruvec;
2356 
2357 	if (lru_gen_enabled())
2358 		return;
2359 
2360 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2361 
2362 	/*
2363 	 * Flush the memory cgroup stats in rate-limited way as we don't need
2364 	 * most accurate stats here. We may switch to regular stats flushing
2365 	 * in the future once it is cheap enough.
2366 	 */
2367 	mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2368 
2369 	/*
2370 	 * Determine the scan balance between anon and file LRUs.
2371 	 */
2372 	spin_lock_irq(&target_lruvec->lru_lock);
2373 	sc->anon_cost = target_lruvec->anon_cost;
2374 	sc->file_cost = target_lruvec->file_cost;
2375 	spin_unlock_irq(&target_lruvec->lru_lock);
2376 
2377 	/*
2378 	 * Target desirable inactive:active list ratios for the anon
2379 	 * and file LRU lists.
2380 	 */
2381 	if (!sc->force_deactivate) {
2382 		unsigned long refaults;
2383 
2384 		/*
2385 		 * When refaults are being observed, it means a new
2386 		 * workingset is being established. Deactivate to get
2387 		 * rid of any stale active pages quickly.
2388 		 */
2389 		refaults = lruvec_page_state(target_lruvec,
2390 				WORKINGSET_ACTIVATE_ANON);
2391 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2392 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2393 			sc->may_deactivate |= DEACTIVATE_ANON;
2394 		else
2395 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2396 
2397 		refaults = lruvec_page_state(target_lruvec,
2398 				WORKINGSET_ACTIVATE_FILE);
2399 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2400 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2401 			sc->may_deactivate |= DEACTIVATE_FILE;
2402 		else
2403 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2404 	} else
2405 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2406 
2407 	/*
2408 	 * If we have plenty of inactive file pages that aren't
2409 	 * thrashing, try to reclaim those first before touching
2410 	 * anonymous pages.
2411 	 */
2412 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2413 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2414 	    !sc->no_cache_trim_mode)
2415 		sc->cache_trim_mode = 1;
2416 	else
2417 		sc->cache_trim_mode = 0;
2418 
2419 	/*
2420 	 * Prevent the reclaimer from falling into the cache trap: as
2421 	 * cache pages start out inactive, every cache fault will tip
2422 	 * the scan balance towards the file LRU.  And as the file LRU
2423 	 * shrinks, so does the window for rotation from references.
2424 	 * This means we have a runaway feedback loop where a tiny
2425 	 * thrashing file LRU becomes infinitely more attractive than
2426 	 * anon pages.  Try to detect this based on file LRU size.
2427 	 */
2428 	if (!cgroup_reclaim(sc)) {
2429 		unsigned long total_high_wmark = 0;
2430 		unsigned long free, anon;
2431 		int z;
2432 		struct zone *zone;
2433 
2434 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2435 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2436 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2437 
2438 		for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2439 			total_high_wmark += high_wmark_pages(zone);
2440 		}
2441 
2442 		/*
2443 		 * Consider anon: if that's low too, this isn't a
2444 		 * runaway file reclaim problem, but rather just
2445 		 * extreme pressure. Reclaim as per usual then.
2446 		 */
2447 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2448 
2449 		sc->file_is_tiny =
2450 			file + free <= total_high_wmark &&
2451 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2452 			anon >> sc->priority;
2453 	}
2454 }
2455 
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2456 static inline void calculate_pressure_balance(struct scan_control *sc,
2457 			int swappiness, u64 *fraction, u64 *denominator)
2458 {
2459 	unsigned long anon_cost, file_cost, total_cost;
2460 	unsigned long ap, fp;
2461 
2462 	/*
2463 	 * Calculate the pressure balance between anon and file pages.
2464 	 *
2465 	 * The amount of pressure we put on each LRU is inversely
2466 	 * proportional to the cost of reclaiming each list, as
2467 	 * determined by the share of pages that are refaulting, times
2468 	 * the relative IO cost of bringing back a swapped out
2469 	 * anonymous page vs reloading a filesystem page (swappiness).
2470 	 *
2471 	 * Although we limit that influence to ensure no list gets
2472 	 * left behind completely: at least a third of the pressure is
2473 	 * applied, before swappiness.
2474 	 *
2475 	 * With swappiness at 100, anon and file have equal IO cost.
2476 	 */
2477 	total_cost = sc->anon_cost + sc->file_cost;
2478 	anon_cost = total_cost + sc->anon_cost;
2479 	file_cost = total_cost + sc->file_cost;
2480 	total_cost = anon_cost + file_cost;
2481 
2482 	ap = swappiness * (total_cost + 1);
2483 	ap /= anon_cost + 1;
2484 
2485 	fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2486 	fp /= file_cost + 1;
2487 
2488 	fraction[WORKINGSET_ANON] = ap;
2489 	fraction[WORKINGSET_FILE] = fp;
2490 	*denominator = ap + fp;
2491 }
2492 
2493 /*
2494  * Determine how aggressively the anon and file LRU lists should be
2495  * scanned.
2496  *
2497  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2498  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2499  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2500 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2501 			   unsigned long *nr)
2502 {
2503 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2504 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2505 	int swappiness = sc_swappiness(sc, memcg);
2506 	u64 fraction[ANON_AND_FILE];
2507 	u64 denominator = 0;	/* gcc */
2508 	enum scan_balance scan_balance;
2509 	enum lru_list lru;
2510 
2511 	/* If we have no swap space, do not bother scanning anon folios. */
2512 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2513 		scan_balance = SCAN_FILE;
2514 		goto out;
2515 	}
2516 
2517 	/*
2518 	 * Global reclaim will swap to prevent OOM even with no
2519 	 * swappiness, but memcg users want to use this knob to
2520 	 * disable swapping for individual groups completely when
2521 	 * using the memory controller's swap limit feature would be
2522 	 * too expensive.
2523 	 */
2524 	if (cgroup_reclaim(sc) && !swappiness) {
2525 		scan_balance = SCAN_FILE;
2526 		goto out;
2527 	}
2528 
2529 	/* Proactive reclaim initiated by userspace for anonymous memory only */
2530 	if (swappiness == SWAPPINESS_ANON_ONLY) {
2531 		WARN_ON_ONCE(!sc->proactive);
2532 		scan_balance = SCAN_ANON;
2533 		goto out;
2534 	}
2535 
2536 	/*
2537 	 * Do not apply any pressure balancing cleverness when the
2538 	 * system is close to OOM, scan both anon and file equally
2539 	 * (unless the swappiness setting disagrees with swapping).
2540 	 */
2541 	if (!sc->priority && swappiness) {
2542 		scan_balance = SCAN_EQUAL;
2543 		goto out;
2544 	}
2545 
2546 	/*
2547 	 * If the system is almost out of file pages, force-scan anon.
2548 	 */
2549 	if (sc->file_is_tiny) {
2550 		scan_balance = SCAN_ANON;
2551 		goto out;
2552 	}
2553 
2554 	/*
2555 	 * If there is enough inactive page cache, we do not reclaim
2556 	 * anything from the anonymous working right now to make sure
2557          * a streaming file access pattern doesn't cause swapping.
2558 	 */
2559 	if (sc->cache_trim_mode) {
2560 		scan_balance = SCAN_FILE;
2561 		goto out;
2562 	}
2563 
2564 	scan_balance = SCAN_FRACT;
2565 	calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2566 
2567 out:
2568 	for_each_evictable_lru(lru) {
2569 		bool file = is_file_lru(lru);
2570 		unsigned long lruvec_size;
2571 		unsigned long low, min;
2572 		unsigned long scan;
2573 
2574 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2575 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2576 				      &min, &low);
2577 
2578 		if (min || low) {
2579 			/*
2580 			 * Scale a cgroup's reclaim pressure by proportioning
2581 			 * its current usage to its memory.low or memory.min
2582 			 * setting.
2583 			 *
2584 			 * This is important, as otherwise scanning aggression
2585 			 * becomes extremely binary -- from nothing as we
2586 			 * approach the memory protection threshold, to totally
2587 			 * nominal as we exceed it.  This results in requiring
2588 			 * setting extremely liberal protection thresholds. It
2589 			 * also means we simply get no protection at all if we
2590 			 * set it too low, which is not ideal.
2591 			 *
2592 			 * If there is any protection in place, we reduce scan
2593 			 * pressure by how much of the total memory used is
2594 			 * within protection thresholds.
2595 			 *
2596 			 * There is one special case: in the first reclaim pass,
2597 			 * we skip over all groups that are within their low
2598 			 * protection. If that fails to reclaim enough pages to
2599 			 * satisfy the reclaim goal, we come back and override
2600 			 * the best-effort low protection. However, we still
2601 			 * ideally want to honor how well-behaved groups are in
2602 			 * that case instead of simply punishing them all
2603 			 * equally. As such, we reclaim them based on how much
2604 			 * memory they are using, reducing the scan pressure
2605 			 * again by how much of the total memory used is under
2606 			 * hard protection.
2607 			 */
2608 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2609 			unsigned long protection;
2610 
2611 			/* memory.low scaling, make sure we retry before OOM */
2612 			if (!sc->memcg_low_reclaim && low > min) {
2613 				protection = low;
2614 				sc->memcg_low_skipped = 1;
2615 			} else {
2616 				protection = min;
2617 			}
2618 
2619 			/* Avoid TOCTOU with earlier protection check */
2620 			cgroup_size = max(cgroup_size, protection);
2621 
2622 			scan = lruvec_size - lruvec_size * protection /
2623 				(cgroup_size + 1);
2624 
2625 			/*
2626 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2627 			 * reclaim moving forwards, avoiding decrementing
2628 			 * sc->priority further than desirable.
2629 			 */
2630 			scan = max(scan, SWAP_CLUSTER_MAX);
2631 		} else {
2632 			scan = lruvec_size;
2633 		}
2634 
2635 		scan >>= sc->priority;
2636 
2637 		/*
2638 		 * If the cgroup's already been deleted, make sure to
2639 		 * scrape out the remaining cache.
2640 		 */
2641 		if (!scan && !mem_cgroup_online(memcg))
2642 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2643 
2644 		switch (scan_balance) {
2645 		case SCAN_EQUAL:
2646 			/* Scan lists relative to size */
2647 			break;
2648 		case SCAN_FRACT:
2649 			/*
2650 			 * Scan types proportional to swappiness and
2651 			 * their relative recent reclaim efficiency.
2652 			 * Make sure we don't miss the last page on
2653 			 * the offlined memory cgroups because of a
2654 			 * round-off error.
2655 			 */
2656 			scan = mem_cgroup_online(memcg) ?
2657 			       div64_u64(scan * fraction[file], denominator) :
2658 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2659 						  denominator);
2660 			break;
2661 		case SCAN_FILE:
2662 		case SCAN_ANON:
2663 			/* Scan one type exclusively */
2664 			if ((scan_balance == SCAN_FILE) != file)
2665 				scan = 0;
2666 			break;
2667 		default:
2668 			/* Look ma, no brain */
2669 			BUG();
2670 		}
2671 
2672 		nr[lru] = scan;
2673 	}
2674 }
2675 
2676 /*
2677  * Anonymous LRU management is a waste if there is
2678  * ultimately no way to reclaim the memory.
2679  */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2680 static bool can_age_anon_pages(struct lruvec *lruvec,
2681 			       struct scan_control *sc)
2682 {
2683 	/* Aging the anon LRU is valuable if swap is present: */
2684 	if (total_swap_pages > 0)
2685 		return true;
2686 
2687 	/* Also valuable if anon pages can be demoted: */
2688 	return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2689 			  lruvec_memcg(lruvec));
2690 }
2691 
2692 #ifdef CONFIG_LRU_GEN
2693 
2694 #ifdef CONFIG_LRU_GEN_ENABLED
2695 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2696 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
2697 #else
2698 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2699 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
2700 #endif
2701 
should_walk_mmu(void)2702 static bool should_walk_mmu(void)
2703 {
2704 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2705 }
2706 
should_clear_pmd_young(void)2707 static bool should_clear_pmd_young(void)
2708 {
2709 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2710 }
2711 
2712 /******************************************************************************
2713  *                          shorthand helpers
2714  ******************************************************************************/
2715 
2716 #define DEFINE_MAX_SEQ(lruvec)						\
2717 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2718 
2719 #define DEFINE_MIN_SEQ(lruvec)						\
2720 	unsigned long min_seq[ANON_AND_FILE] = {			\
2721 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
2722 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
2723 	}
2724 
2725 /* Get the min/max evictable type based on swappiness */
2726 #define min_type(swappiness) (!(swappiness))
2727 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2728 
2729 #define evictable_min_seq(min_seq, swappiness)				\
2730 	min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2731 
2732 #define for_each_gen_type_zone(gen, type, zone)				\
2733 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
2734 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
2735 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2736 
2737 #define for_each_evictable_type(type, swappiness)			\
2738 	for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2739 
2740 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
2741 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
2742 
get_lruvec(struct mem_cgroup * memcg,int nid)2743 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2744 {
2745 	struct pglist_data *pgdat = NODE_DATA(nid);
2746 
2747 #ifdef CONFIG_MEMCG
2748 	if (memcg) {
2749 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2750 
2751 		/* see the comment in mem_cgroup_lruvec() */
2752 		if (!lruvec->pgdat)
2753 			lruvec->pgdat = pgdat;
2754 
2755 		return lruvec;
2756 	}
2757 #endif
2758 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2759 
2760 	return &pgdat->__lruvec;
2761 }
2762 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2763 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2764 {
2765 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2766 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2767 
2768 	if (!sc->may_swap)
2769 		return 0;
2770 
2771 	if (!can_demote(pgdat->node_id, sc, memcg) &&
2772 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2773 		return 0;
2774 
2775 	return sc_swappiness(sc, memcg);
2776 }
2777 
get_nr_gens(struct lruvec * lruvec,int type)2778 static int get_nr_gens(struct lruvec *lruvec, int type)
2779 {
2780 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2781 }
2782 
seq_is_valid(struct lruvec * lruvec)2783 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2784 {
2785 	int type;
2786 
2787 	for (type = 0; type < ANON_AND_FILE; type++) {
2788 		int n = get_nr_gens(lruvec, type);
2789 
2790 		if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2791 			return false;
2792 	}
2793 
2794 	return true;
2795 }
2796 
2797 /******************************************************************************
2798  *                          Bloom filters
2799  ******************************************************************************/
2800 
2801 /*
2802  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2803  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2804  * bits in a bitmap, k is the number of hash functions and n is the number of
2805  * inserted items.
2806  *
2807  * Page table walkers use one of the two filters to reduce their search space.
2808  * To get rid of non-leaf entries that no longer have enough leaf entries, the
2809  * aging uses the double-buffering technique to flip to the other filter each
2810  * time it produces a new generation. For non-leaf entries that have enough
2811  * leaf entries, the aging carries them over to the next generation in
2812  * walk_pmd_range(); the eviction also report them when walking the rmap
2813  * in lru_gen_look_around().
2814  *
2815  * For future optimizations:
2816  * 1. It's not necessary to keep both filters all the time. The spare one can be
2817  *    freed after the RCU grace period and reallocated if needed again.
2818  * 2. And when reallocating, it's worth scaling its size according to the number
2819  *    of inserted entries in the other filter, to reduce the memory overhead on
2820  *    small systems and false positives on large systems.
2821  * 3. Jenkins' hash function is an alternative to Knuth's.
2822  */
2823 #define BLOOM_FILTER_SHIFT	15
2824 
filter_gen_from_seq(unsigned long seq)2825 static inline int filter_gen_from_seq(unsigned long seq)
2826 {
2827 	return seq % NR_BLOOM_FILTERS;
2828 }
2829 
get_item_key(void * item,int * key)2830 static void get_item_key(void *item, int *key)
2831 {
2832 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2833 
2834 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2835 
2836 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2837 	key[1] = hash >> BLOOM_FILTER_SHIFT;
2838 }
2839 
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2840 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2841 			      void *item)
2842 {
2843 	int key[2];
2844 	unsigned long *filter;
2845 	int gen = filter_gen_from_seq(seq);
2846 
2847 	filter = READ_ONCE(mm_state->filters[gen]);
2848 	if (!filter)
2849 		return true;
2850 
2851 	get_item_key(item, key);
2852 
2853 	return test_bit(key[0], filter) && test_bit(key[1], filter);
2854 }
2855 
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2856 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2857 				void *item)
2858 {
2859 	int key[2];
2860 	unsigned long *filter;
2861 	int gen = filter_gen_from_seq(seq);
2862 
2863 	filter = READ_ONCE(mm_state->filters[gen]);
2864 	if (!filter)
2865 		return;
2866 
2867 	get_item_key(item, key);
2868 
2869 	if (!test_bit(key[0], filter))
2870 		set_bit(key[0], filter);
2871 	if (!test_bit(key[1], filter))
2872 		set_bit(key[1], filter);
2873 }
2874 
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2875 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2876 {
2877 	unsigned long *filter;
2878 	int gen = filter_gen_from_seq(seq);
2879 
2880 	filter = mm_state->filters[gen];
2881 	if (filter) {
2882 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2883 		return;
2884 	}
2885 
2886 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2887 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2888 	WRITE_ONCE(mm_state->filters[gen], filter);
2889 }
2890 
2891 /******************************************************************************
2892  *                          mm_struct list
2893  ******************************************************************************/
2894 
2895 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2896 
get_mm_list(struct mem_cgroup * memcg)2897 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2898 {
2899 	static struct lru_gen_mm_list mm_list = {
2900 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
2901 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2902 	};
2903 
2904 #ifdef CONFIG_MEMCG
2905 	if (memcg)
2906 		return &memcg->mm_list;
2907 #endif
2908 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2909 
2910 	return &mm_list;
2911 }
2912 
get_mm_state(struct lruvec * lruvec)2913 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2914 {
2915 	return &lruvec->mm_state;
2916 }
2917 
get_next_mm(struct lru_gen_mm_walk * walk)2918 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2919 {
2920 	int key;
2921 	struct mm_struct *mm;
2922 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2923 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2924 
2925 	mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2926 	key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2927 
2928 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2929 		return NULL;
2930 
2931 	clear_bit(key, &mm->lru_gen.bitmap);
2932 
2933 	return mmget_not_zero(mm) ? mm : NULL;
2934 }
2935 
lru_gen_add_mm(struct mm_struct * mm)2936 void lru_gen_add_mm(struct mm_struct *mm)
2937 {
2938 	int nid;
2939 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2940 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2941 
2942 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2943 #ifdef CONFIG_MEMCG
2944 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2945 	mm->lru_gen.memcg = memcg;
2946 #endif
2947 	spin_lock(&mm_list->lock);
2948 
2949 	for_each_node_state(nid, N_MEMORY) {
2950 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2951 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2952 
2953 		/* the first addition since the last iteration */
2954 		if (mm_state->tail == &mm_list->fifo)
2955 			mm_state->tail = &mm->lru_gen.list;
2956 	}
2957 
2958 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2959 
2960 	spin_unlock(&mm_list->lock);
2961 }
2962 
lru_gen_del_mm(struct mm_struct * mm)2963 void lru_gen_del_mm(struct mm_struct *mm)
2964 {
2965 	int nid;
2966 	struct lru_gen_mm_list *mm_list;
2967 	struct mem_cgroup *memcg = NULL;
2968 
2969 	if (list_empty(&mm->lru_gen.list))
2970 		return;
2971 
2972 #ifdef CONFIG_MEMCG
2973 	memcg = mm->lru_gen.memcg;
2974 #endif
2975 	mm_list = get_mm_list(memcg);
2976 
2977 	spin_lock(&mm_list->lock);
2978 
2979 	for_each_node(nid) {
2980 		struct lruvec *lruvec = get_lruvec(memcg, nid);
2981 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2982 
2983 		/* where the current iteration continues after */
2984 		if (mm_state->head == &mm->lru_gen.list)
2985 			mm_state->head = mm_state->head->prev;
2986 
2987 		/* where the last iteration ended before */
2988 		if (mm_state->tail == &mm->lru_gen.list)
2989 			mm_state->tail = mm_state->tail->next;
2990 	}
2991 
2992 	list_del_init(&mm->lru_gen.list);
2993 
2994 	spin_unlock(&mm_list->lock);
2995 
2996 #ifdef CONFIG_MEMCG
2997 	mem_cgroup_put(mm->lru_gen.memcg);
2998 	mm->lru_gen.memcg = NULL;
2999 #endif
3000 }
3001 
3002 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3003 void lru_gen_migrate_mm(struct mm_struct *mm)
3004 {
3005 	struct mem_cgroup *memcg;
3006 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3007 
3008 	VM_WARN_ON_ONCE(task->mm != mm);
3009 	lockdep_assert_held(&task->alloc_lock);
3010 
3011 	/* for mm_update_next_owner() */
3012 	if (mem_cgroup_disabled())
3013 		return;
3014 
3015 	/* migration can happen before addition */
3016 	if (!mm->lru_gen.memcg)
3017 		return;
3018 
3019 	rcu_read_lock();
3020 	memcg = mem_cgroup_from_task(task);
3021 	rcu_read_unlock();
3022 	if (memcg == mm->lru_gen.memcg)
3023 		return;
3024 
3025 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3026 
3027 	lru_gen_del_mm(mm);
3028 	lru_gen_add_mm(mm);
3029 }
3030 #endif
3031 
3032 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3033 
get_mm_list(struct mem_cgroup * memcg)3034 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3035 {
3036 	return NULL;
3037 }
3038 
get_mm_state(struct lruvec * lruvec)3039 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3040 {
3041 	return NULL;
3042 }
3043 
get_next_mm(struct lru_gen_mm_walk * walk)3044 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3045 {
3046 	return NULL;
3047 }
3048 
3049 #endif
3050 
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3051 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3052 {
3053 	int i;
3054 	int hist;
3055 	struct lruvec *lruvec = walk->lruvec;
3056 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3057 
3058 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3059 
3060 	hist = lru_hist_from_seq(walk->seq);
3061 
3062 	for (i = 0; i < NR_MM_STATS; i++) {
3063 		WRITE_ONCE(mm_state->stats[hist][i],
3064 			   mm_state->stats[hist][i] + walk->mm_stats[i]);
3065 		walk->mm_stats[i] = 0;
3066 	}
3067 
3068 	if (NR_HIST_GENS > 1 && last) {
3069 		hist = lru_hist_from_seq(walk->seq + 1);
3070 
3071 		for (i = 0; i < NR_MM_STATS; i++)
3072 			WRITE_ONCE(mm_state->stats[hist][i], 0);
3073 	}
3074 }
3075 
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3076 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3077 {
3078 	bool first = false;
3079 	bool last = false;
3080 	struct mm_struct *mm = NULL;
3081 	struct lruvec *lruvec = walk->lruvec;
3082 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3083 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3084 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3085 
3086 	/*
3087 	 * mm_state->seq is incremented after each iteration of mm_list. There
3088 	 * are three interesting cases for this page table walker:
3089 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3090 	 *    nothing left to do.
3091 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3092 	 *    so that a fresh set of PTE tables can be recorded.
3093 	 * 3. It ended the current iteration: it needs to reset the mm stats
3094 	 *    counters and tell its caller to increment max_seq.
3095 	 */
3096 	spin_lock(&mm_list->lock);
3097 
3098 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3099 
3100 	if (walk->seq <= mm_state->seq)
3101 		goto done;
3102 
3103 	if (!mm_state->head)
3104 		mm_state->head = &mm_list->fifo;
3105 
3106 	if (mm_state->head == &mm_list->fifo)
3107 		first = true;
3108 
3109 	do {
3110 		mm_state->head = mm_state->head->next;
3111 		if (mm_state->head == &mm_list->fifo) {
3112 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3113 			last = true;
3114 			break;
3115 		}
3116 
3117 		/* force scan for those added after the last iteration */
3118 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3119 			mm_state->tail = mm_state->head->next;
3120 			walk->force_scan = true;
3121 		}
3122 	} while (!(mm = get_next_mm(walk)));
3123 done:
3124 	if (*iter || last)
3125 		reset_mm_stats(walk, last);
3126 
3127 	spin_unlock(&mm_list->lock);
3128 
3129 	if (mm && first)
3130 		reset_bloom_filter(mm_state, walk->seq + 1);
3131 
3132 	if (*iter)
3133 		mmput_async(*iter);
3134 
3135 	*iter = mm;
3136 
3137 	return last;
3138 }
3139 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3140 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3141 {
3142 	bool success = false;
3143 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3144 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3145 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3146 
3147 	spin_lock(&mm_list->lock);
3148 
3149 	VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3150 
3151 	if (seq > mm_state->seq) {
3152 		mm_state->head = NULL;
3153 		mm_state->tail = NULL;
3154 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3155 		success = true;
3156 	}
3157 
3158 	spin_unlock(&mm_list->lock);
3159 
3160 	return success;
3161 }
3162 
3163 /******************************************************************************
3164  *                          PID controller
3165  ******************************************************************************/
3166 
3167 /*
3168  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3169  *
3170  * The P term is refaulted/(evicted+protected) from a tier in the generation
3171  * currently being evicted; the I term is the exponential moving average of the
3172  * P term over the generations previously evicted, using the smoothing factor
3173  * 1/2; the D term isn't supported.
3174  *
3175  * The setpoint (SP) is always the first tier of one type; the process variable
3176  * (PV) is either any tier of the other type or any other tier of the same
3177  * type.
3178  *
3179  * The error is the difference between the SP and the PV; the correction is to
3180  * turn off protection when SP>PV or turn on protection when SP<PV.
3181  *
3182  * For future optimizations:
3183  * 1. The D term may discount the other two terms over time so that long-lived
3184  *    generations can resist stale information.
3185  */
3186 struct ctrl_pos {
3187 	unsigned long refaulted;
3188 	unsigned long total;
3189 	int gain;
3190 };
3191 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3192 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3193 			  struct ctrl_pos *pos)
3194 {
3195 	int i;
3196 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3197 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3198 
3199 	pos->gain = gain;
3200 	pos->refaulted = pos->total = 0;
3201 
3202 	for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3203 		pos->refaulted += lrugen->avg_refaulted[type][i] +
3204 				  atomic_long_read(&lrugen->refaulted[hist][type][i]);
3205 		pos->total += lrugen->avg_total[type][i] +
3206 			      lrugen->protected[hist][type][i] +
3207 			      atomic_long_read(&lrugen->evicted[hist][type][i]);
3208 	}
3209 }
3210 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3211 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3212 {
3213 	int hist, tier;
3214 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3215 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3216 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3217 
3218 	lockdep_assert_held(&lruvec->lru_lock);
3219 
3220 	if (!carryover && !clear)
3221 		return;
3222 
3223 	hist = lru_hist_from_seq(seq);
3224 
3225 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3226 		if (carryover) {
3227 			unsigned long sum;
3228 
3229 			sum = lrugen->avg_refaulted[type][tier] +
3230 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3231 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3232 
3233 			sum = lrugen->avg_total[type][tier] +
3234 			      lrugen->protected[hist][type][tier] +
3235 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3236 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3237 		}
3238 
3239 		if (clear) {
3240 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3241 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3242 			WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3243 		}
3244 	}
3245 }
3246 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3247 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3248 {
3249 	/*
3250 	 * Return true if the PV has a limited number of refaults or a lower
3251 	 * refaulted/total than the SP.
3252 	 */
3253 	return pv->refaulted < MIN_LRU_BATCH ||
3254 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3255 	       (sp->refaulted + 1) * pv->total * pv->gain;
3256 }
3257 
3258 /******************************************************************************
3259  *                          the aging
3260  ******************************************************************************/
3261 
3262 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3263 static int folio_update_gen(struct folio *folio, int gen)
3264 {
3265 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3266 
3267 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3268 
3269 	/* see the comment on LRU_REFS_FLAGS */
3270 	if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3271 		set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3272 		return -1;
3273 	}
3274 
3275 	do {
3276 		/* lru_gen_del_folio() has isolated this page? */
3277 		if (!(old_flags & LRU_GEN_MASK))
3278 			return -1;
3279 
3280 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3281 		new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3282 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3283 
3284 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3285 }
3286 
3287 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3288 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3289 {
3290 	int type = folio_is_file_lru(folio);
3291 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3292 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3293 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3294 
3295 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3296 
3297 	do {
3298 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3299 		/* folio_update_gen() has promoted this page? */
3300 		if (new_gen >= 0 && new_gen != old_gen)
3301 			return new_gen;
3302 
3303 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3304 
3305 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3306 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3307 		/* for folio_end_writeback() */
3308 		if (reclaiming)
3309 			new_flags |= BIT(PG_reclaim);
3310 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3311 
3312 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3313 
3314 	return new_gen;
3315 }
3316 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3317 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3318 			      int old_gen, int new_gen)
3319 {
3320 	int type = folio_is_file_lru(folio);
3321 	int zone = folio_zonenum(folio);
3322 	int delta = folio_nr_pages(folio);
3323 
3324 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3325 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3326 
3327 	walk->batched++;
3328 
3329 	walk->nr_pages[old_gen][type][zone] -= delta;
3330 	walk->nr_pages[new_gen][type][zone] += delta;
3331 }
3332 
reset_batch_size(struct lru_gen_mm_walk * walk)3333 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3334 {
3335 	int gen, type, zone;
3336 	struct lruvec *lruvec = walk->lruvec;
3337 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3338 
3339 	walk->batched = 0;
3340 
3341 	for_each_gen_type_zone(gen, type, zone) {
3342 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3343 		int delta = walk->nr_pages[gen][type][zone];
3344 
3345 		if (!delta)
3346 			continue;
3347 
3348 		walk->nr_pages[gen][type][zone] = 0;
3349 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3350 			   lrugen->nr_pages[gen][type][zone] + delta);
3351 
3352 		if (lru_gen_is_active(lruvec, gen))
3353 			lru += LRU_ACTIVE;
3354 		__update_lru_size(lruvec, lru, zone, delta);
3355 	}
3356 }
3357 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3358 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3359 {
3360 	struct address_space *mapping;
3361 	struct vm_area_struct *vma = args->vma;
3362 	struct lru_gen_mm_walk *walk = args->private;
3363 
3364 	if (!vma_is_accessible(vma))
3365 		return true;
3366 
3367 	if (is_vm_hugetlb_page(vma))
3368 		return true;
3369 
3370 	if (!vma_has_recency(vma))
3371 		return true;
3372 
3373 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3374 		return true;
3375 
3376 	if (vma == get_gate_vma(vma->vm_mm))
3377 		return true;
3378 
3379 	if (vma_is_anonymous(vma))
3380 		return !walk->swappiness;
3381 
3382 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3383 		return true;
3384 
3385 	mapping = vma->vm_file->f_mapping;
3386 	if (mapping_unevictable(mapping))
3387 		return true;
3388 
3389 	if (shmem_mapping(mapping))
3390 		return !walk->swappiness;
3391 
3392 	if (walk->swappiness > MAX_SWAPPINESS)
3393 		return true;
3394 
3395 	/* to exclude special mappings like dax, etc. */
3396 	return !mapping->a_ops->read_folio;
3397 }
3398 
3399 /*
3400  * Some userspace memory allocators map many single-page VMAs. Instead of
3401  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3402  * table to reduce zigzags and improve cache performance.
3403  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3404 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3405 			 unsigned long *vm_start, unsigned long *vm_end)
3406 {
3407 	unsigned long start = round_up(*vm_end, size);
3408 	unsigned long end = (start | ~mask) + 1;
3409 	VMA_ITERATOR(vmi, args->mm, start);
3410 
3411 	VM_WARN_ON_ONCE(mask & size);
3412 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3413 
3414 	for_each_vma(vmi, args->vma) {
3415 		if (end && end <= args->vma->vm_start)
3416 			return false;
3417 
3418 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3419 			continue;
3420 
3421 		*vm_start = max(start, args->vma->vm_start);
3422 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3423 
3424 		return true;
3425 	}
3426 
3427 	return false;
3428 }
3429 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3430 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3431 				 struct pglist_data *pgdat)
3432 {
3433 	unsigned long pfn = pte_pfn(pte);
3434 
3435 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3436 
3437 	if (!pte_present(pte) || is_zero_pfn(pfn))
3438 		return -1;
3439 
3440 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3441 		return -1;
3442 
3443 	if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3444 		return -1;
3445 
3446 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3447 		return -1;
3448 
3449 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3450 		return -1;
3451 
3452 	return pfn;
3453 }
3454 
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3455 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3456 				 struct pglist_data *pgdat)
3457 {
3458 	unsigned long pfn = pmd_pfn(pmd);
3459 
3460 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3461 
3462 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3463 		return -1;
3464 
3465 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3466 		return -1;
3467 
3468 	if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3469 		return -1;
3470 
3471 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3472 		return -1;
3473 
3474 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3475 		return -1;
3476 
3477 	return pfn;
3478 }
3479 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3480 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3481 				   struct pglist_data *pgdat)
3482 {
3483 	struct folio *folio = pfn_folio(pfn);
3484 
3485 	if (folio_lru_gen(folio) < 0)
3486 		return NULL;
3487 
3488 	if (folio_nid(folio) != pgdat->node_id)
3489 		return NULL;
3490 
3491 	if (folio_memcg(folio) != memcg)
3492 		return NULL;
3493 
3494 	return folio;
3495 }
3496 
suitable_to_scan(int total,int young)3497 static bool suitable_to_scan(int total, int young)
3498 {
3499 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3500 
3501 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3502 	return young * n >= total;
3503 }
3504 
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3505 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3506 			      int new_gen, bool dirty)
3507 {
3508 	int old_gen;
3509 
3510 	if (!folio)
3511 		return;
3512 
3513 	if (dirty && !folio_test_dirty(folio) &&
3514 	    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3515 	      !folio_test_swapcache(folio)))
3516 		folio_mark_dirty(folio);
3517 
3518 	if (walk) {
3519 		old_gen = folio_update_gen(folio, new_gen);
3520 		if (old_gen >= 0 && old_gen != new_gen)
3521 			update_batch_size(walk, folio, old_gen, new_gen);
3522 	} else if (lru_gen_set_refs(folio)) {
3523 		old_gen = folio_lru_gen(folio);
3524 		if (old_gen >= 0 && old_gen != new_gen)
3525 			folio_activate(folio);
3526 	}
3527 }
3528 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3529 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3530 			   struct mm_walk *args)
3531 {
3532 	int i;
3533 	bool dirty;
3534 	pte_t *pte;
3535 	spinlock_t *ptl;
3536 	unsigned long addr;
3537 	int total = 0;
3538 	int young = 0;
3539 	struct folio *last = NULL;
3540 	struct lru_gen_mm_walk *walk = args->private;
3541 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3542 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3543 	DEFINE_MAX_SEQ(walk->lruvec);
3544 	int gen = lru_gen_from_seq(max_seq);
3545 	pmd_t pmdval;
3546 
3547 	pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3548 	if (!pte)
3549 		return false;
3550 
3551 	if (!spin_trylock(ptl)) {
3552 		pte_unmap(pte);
3553 		return true;
3554 	}
3555 
3556 	if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3557 		pte_unmap_unlock(pte, ptl);
3558 		return false;
3559 	}
3560 
3561 	arch_enter_lazy_mmu_mode();
3562 restart:
3563 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3564 		unsigned long pfn;
3565 		struct folio *folio;
3566 		pte_t ptent = ptep_get(pte + i);
3567 
3568 		total++;
3569 		walk->mm_stats[MM_LEAF_TOTAL]++;
3570 
3571 		pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3572 		if (pfn == -1)
3573 			continue;
3574 
3575 		folio = get_pfn_folio(pfn, memcg, pgdat);
3576 		if (!folio)
3577 			continue;
3578 
3579 		if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3580 			continue;
3581 
3582 		if (last != folio) {
3583 			walk_update_folio(walk, last, gen, dirty);
3584 
3585 			last = folio;
3586 			dirty = false;
3587 		}
3588 
3589 		if (pte_dirty(ptent))
3590 			dirty = true;
3591 
3592 		young++;
3593 		walk->mm_stats[MM_LEAF_YOUNG]++;
3594 	}
3595 
3596 	walk_update_folio(walk, last, gen, dirty);
3597 	last = NULL;
3598 
3599 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3600 		goto restart;
3601 
3602 	arch_leave_lazy_mmu_mode();
3603 	pte_unmap_unlock(pte, ptl);
3604 
3605 	return suitable_to_scan(total, young);
3606 }
3607 
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3608 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3609 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3610 {
3611 	int i;
3612 	bool dirty;
3613 	pmd_t *pmd;
3614 	spinlock_t *ptl;
3615 	struct folio *last = NULL;
3616 	struct lru_gen_mm_walk *walk = args->private;
3617 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3618 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3619 	DEFINE_MAX_SEQ(walk->lruvec);
3620 	int gen = lru_gen_from_seq(max_seq);
3621 
3622 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3623 
3624 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3625 	if (*first == -1) {
3626 		*first = addr;
3627 		bitmap_zero(bitmap, MIN_LRU_BATCH);
3628 		return;
3629 	}
3630 
3631 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3632 	if (i && i <= MIN_LRU_BATCH) {
3633 		__set_bit(i - 1, bitmap);
3634 		return;
3635 	}
3636 
3637 	pmd = pmd_offset(pud, *first);
3638 
3639 	ptl = pmd_lockptr(args->mm, pmd);
3640 	if (!spin_trylock(ptl))
3641 		goto done;
3642 
3643 	arch_enter_lazy_mmu_mode();
3644 
3645 	do {
3646 		unsigned long pfn;
3647 		struct folio *folio;
3648 
3649 		/* don't round down the first address */
3650 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3651 
3652 		if (!pmd_present(pmd[i]))
3653 			goto next;
3654 
3655 		if (!pmd_trans_huge(pmd[i])) {
3656 			if (!walk->force_scan && should_clear_pmd_young() &&
3657 			    !mm_has_notifiers(args->mm))
3658 				pmdp_test_and_clear_young(vma, addr, pmd + i);
3659 			goto next;
3660 		}
3661 
3662 		pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3663 		if (pfn == -1)
3664 			goto next;
3665 
3666 		folio = get_pfn_folio(pfn, memcg, pgdat);
3667 		if (!folio)
3668 			goto next;
3669 
3670 		if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3671 			goto next;
3672 
3673 		if (last != folio) {
3674 			walk_update_folio(walk, last, gen, dirty);
3675 
3676 			last = folio;
3677 			dirty = false;
3678 		}
3679 
3680 		if (pmd_dirty(pmd[i]))
3681 			dirty = true;
3682 
3683 		walk->mm_stats[MM_LEAF_YOUNG]++;
3684 next:
3685 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3686 	} while (i <= MIN_LRU_BATCH);
3687 
3688 	walk_update_folio(walk, last, gen, dirty);
3689 
3690 	arch_leave_lazy_mmu_mode();
3691 	spin_unlock(ptl);
3692 done:
3693 	*first = -1;
3694 }
3695 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3696 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3697 			   struct mm_walk *args)
3698 {
3699 	int i;
3700 	pmd_t *pmd;
3701 	unsigned long next;
3702 	unsigned long addr;
3703 	struct vm_area_struct *vma;
3704 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3705 	unsigned long first = -1;
3706 	struct lru_gen_mm_walk *walk = args->private;
3707 	struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3708 
3709 	VM_WARN_ON_ONCE(pud_leaf(*pud));
3710 
3711 	/*
3712 	 * Finish an entire PMD in two passes: the first only reaches to PTE
3713 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
3714 	 * the PMD lock to clear the accessed bit in PMD entries.
3715 	 */
3716 	pmd = pmd_offset(pud, start & PUD_MASK);
3717 restart:
3718 	/* walk_pte_range() may call get_next_vma() */
3719 	vma = args->vma;
3720 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3721 		pmd_t val = pmdp_get_lockless(pmd + i);
3722 
3723 		next = pmd_addr_end(addr, end);
3724 
3725 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3726 			walk->mm_stats[MM_LEAF_TOTAL]++;
3727 			continue;
3728 		}
3729 
3730 		if (pmd_trans_huge(val)) {
3731 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3732 			unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3733 
3734 			walk->mm_stats[MM_LEAF_TOTAL]++;
3735 
3736 			if (pfn != -1)
3737 				walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3738 			continue;
3739 		}
3740 
3741 		if (!walk->force_scan && should_clear_pmd_young() &&
3742 		    !mm_has_notifiers(args->mm)) {
3743 			if (!pmd_young(val))
3744 				continue;
3745 
3746 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3747 		}
3748 
3749 		if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3750 			continue;
3751 
3752 		walk->mm_stats[MM_NONLEAF_FOUND]++;
3753 
3754 		if (!walk_pte_range(&val, addr, next, args))
3755 			continue;
3756 
3757 		walk->mm_stats[MM_NONLEAF_ADDED]++;
3758 
3759 		/* carry over to the next generation */
3760 		update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3761 	}
3762 
3763 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3764 
3765 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3766 		goto restart;
3767 }
3768 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3769 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3770 			  struct mm_walk *args)
3771 {
3772 	int i;
3773 	pud_t *pud;
3774 	unsigned long addr;
3775 	unsigned long next;
3776 	struct lru_gen_mm_walk *walk = args->private;
3777 
3778 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3779 
3780 	pud = pud_offset(p4d, start & P4D_MASK);
3781 restart:
3782 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3783 		pud_t val = READ_ONCE(pud[i]);
3784 
3785 		next = pud_addr_end(addr, end);
3786 
3787 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3788 			continue;
3789 
3790 		walk_pmd_range(&val, addr, next, args);
3791 
3792 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3793 			end = (addr | ~PUD_MASK) + 1;
3794 			goto done;
3795 		}
3796 	}
3797 
3798 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3799 		goto restart;
3800 
3801 	end = round_up(end, P4D_SIZE);
3802 done:
3803 	if (!end || !args->vma)
3804 		return 1;
3805 
3806 	walk->next_addr = max(end, args->vma->vm_start);
3807 
3808 	return -EAGAIN;
3809 }
3810 
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3811 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3812 {
3813 	static const struct mm_walk_ops mm_walk_ops = {
3814 		.test_walk = should_skip_vma,
3815 		.p4d_entry = walk_pud_range,
3816 		.walk_lock = PGWALK_RDLOCK,
3817 	};
3818 	int err;
3819 	struct lruvec *lruvec = walk->lruvec;
3820 
3821 	walk->next_addr = FIRST_USER_ADDRESS;
3822 
3823 	do {
3824 		DEFINE_MAX_SEQ(lruvec);
3825 
3826 		err = -EBUSY;
3827 
3828 		/* another thread might have called inc_max_seq() */
3829 		if (walk->seq != max_seq)
3830 			break;
3831 
3832 		/* the caller might be holding the lock for write */
3833 		if (mmap_read_trylock(mm)) {
3834 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3835 
3836 			mmap_read_unlock(mm);
3837 		}
3838 
3839 		if (walk->batched) {
3840 			spin_lock_irq(&lruvec->lru_lock);
3841 			reset_batch_size(walk);
3842 			spin_unlock_irq(&lruvec->lru_lock);
3843 		}
3844 
3845 		cond_resched();
3846 	} while (err == -EAGAIN);
3847 }
3848 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3849 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3850 {
3851 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3852 
3853 	if (pgdat && current_is_kswapd()) {
3854 		VM_WARN_ON_ONCE(walk);
3855 
3856 		walk = &pgdat->mm_walk;
3857 	} else if (!walk && force_alloc) {
3858 		VM_WARN_ON_ONCE(current_is_kswapd());
3859 
3860 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3861 	}
3862 
3863 	current->reclaim_state->mm_walk = walk;
3864 
3865 	return walk;
3866 }
3867 
clear_mm_walk(void)3868 static void clear_mm_walk(void)
3869 {
3870 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3871 
3872 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3873 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3874 
3875 	current->reclaim_state->mm_walk = NULL;
3876 
3877 	if (!current_is_kswapd())
3878 		kfree(walk);
3879 }
3880 
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3881 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3882 {
3883 	int zone;
3884 	int remaining = MAX_LRU_BATCH;
3885 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3886 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3887 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3888 
3889 	/* For file type, skip the check if swappiness is anon only */
3890 	if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3891 		goto done;
3892 
3893 	/* For anon type, skip the check if swappiness is zero (file only) */
3894 	if (!type && !swappiness)
3895 		goto done;
3896 
3897 	/* prevent cold/hot inversion if the type is evictable */
3898 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3899 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
3900 
3901 		while (!list_empty(head)) {
3902 			struct folio *folio = lru_to_folio(head);
3903 			int refs = folio_lru_refs(folio);
3904 			bool workingset = folio_test_workingset(folio);
3905 
3906 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3907 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3908 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3909 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3910 
3911 			new_gen = folio_inc_gen(lruvec, folio, false);
3912 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3913 
3914 			/* don't count the workingset being lazily promoted */
3915 			if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3916 				int tier = lru_tier_from_refs(refs, workingset);
3917 				int delta = folio_nr_pages(folio);
3918 
3919 				WRITE_ONCE(lrugen->protected[hist][type][tier],
3920 					   lrugen->protected[hist][type][tier] + delta);
3921 			}
3922 
3923 			if (!--remaining)
3924 				return false;
3925 		}
3926 	}
3927 done:
3928 	reset_ctrl_pos(lruvec, type, true);
3929 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3930 
3931 	return true;
3932 }
3933 
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3934 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3935 {
3936 	int gen, type, zone;
3937 	bool success = false;
3938 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3939 	DEFINE_MIN_SEQ(lruvec);
3940 
3941 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3942 
3943 	/* find the oldest populated generation */
3944 	for_each_evictable_type(type, swappiness) {
3945 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3946 			gen = lru_gen_from_seq(min_seq[type]);
3947 
3948 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3949 				if (!list_empty(&lrugen->folios[gen][type][zone]))
3950 					goto next;
3951 			}
3952 
3953 			min_seq[type]++;
3954 		}
3955 next:
3956 		;
3957 	}
3958 
3959 	/* see the comment on lru_gen_folio */
3960 	if (swappiness && swappiness <= MAX_SWAPPINESS) {
3961 		unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3962 
3963 		if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3964 			min_seq[LRU_GEN_ANON] = seq;
3965 		else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3966 			min_seq[LRU_GEN_FILE] = seq;
3967 	}
3968 
3969 	for_each_evictable_type(type, swappiness) {
3970 		if (min_seq[type] <= lrugen->min_seq[type])
3971 			continue;
3972 
3973 		reset_ctrl_pos(lruvec, type, true);
3974 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3975 		success = true;
3976 	}
3977 
3978 	return success;
3979 }
3980 
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3981 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3982 {
3983 	bool success;
3984 	int prev, next;
3985 	int type, zone;
3986 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3987 restart:
3988 	if (seq < READ_ONCE(lrugen->max_seq))
3989 		return false;
3990 
3991 	spin_lock_irq(&lruvec->lru_lock);
3992 
3993 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3994 
3995 	success = seq == lrugen->max_seq;
3996 	if (!success)
3997 		goto unlock;
3998 
3999 	for (type = 0; type < ANON_AND_FILE; type++) {
4000 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4001 			continue;
4002 
4003 		if (inc_min_seq(lruvec, type, swappiness))
4004 			continue;
4005 
4006 		spin_unlock_irq(&lruvec->lru_lock);
4007 		cond_resched();
4008 		goto restart;
4009 	}
4010 
4011 	/*
4012 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4013 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4014 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4015 	 * overlap, cold/hot inversion happens.
4016 	 */
4017 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4018 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4019 
4020 	for (type = 0; type < ANON_AND_FILE; type++) {
4021 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4022 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4023 			long delta = lrugen->nr_pages[prev][type][zone] -
4024 				     lrugen->nr_pages[next][type][zone];
4025 
4026 			if (!delta)
4027 				continue;
4028 
4029 			__update_lru_size(lruvec, lru, zone, delta);
4030 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4031 		}
4032 	}
4033 
4034 	for (type = 0; type < ANON_AND_FILE; type++)
4035 		reset_ctrl_pos(lruvec, type, false);
4036 
4037 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4038 	/* make sure preceding modifications appear */
4039 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4040 unlock:
4041 	spin_unlock_irq(&lruvec->lru_lock);
4042 
4043 	return success;
4044 }
4045 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4046 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4047 			       int swappiness, bool force_scan)
4048 {
4049 	bool success;
4050 	struct lru_gen_mm_walk *walk;
4051 	struct mm_struct *mm = NULL;
4052 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4053 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4054 
4055 	VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4056 
4057 	if (!mm_state)
4058 		return inc_max_seq(lruvec, seq, swappiness);
4059 
4060 	/* see the comment in iterate_mm_list() */
4061 	if (seq <= READ_ONCE(mm_state->seq))
4062 		return false;
4063 
4064 	/*
4065 	 * If the hardware doesn't automatically set the accessed bit, fallback
4066 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4067 	 * handful of PTEs. Spreading the work out over a period of time usually
4068 	 * is less efficient, but it avoids bursty page faults.
4069 	 */
4070 	if (!should_walk_mmu()) {
4071 		success = iterate_mm_list_nowalk(lruvec, seq);
4072 		goto done;
4073 	}
4074 
4075 	walk = set_mm_walk(NULL, true);
4076 	if (!walk) {
4077 		success = iterate_mm_list_nowalk(lruvec, seq);
4078 		goto done;
4079 	}
4080 
4081 	walk->lruvec = lruvec;
4082 	walk->seq = seq;
4083 	walk->swappiness = swappiness;
4084 	walk->force_scan = force_scan;
4085 
4086 	do {
4087 		success = iterate_mm_list(walk, &mm);
4088 		if (mm)
4089 			walk_mm(mm, walk);
4090 	} while (mm);
4091 done:
4092 	if (success) {
4093 		success = inc_max_seq(lruvec, seq, swappiness);
4094 		WARN_ON_ONCE(!success);
4095 	}
4096 
4097 	return success;
4098 }
4099 
4100 /******************************************************************************
4101  *                          working set protection
4102  ******************************************************************************/
4103 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4104 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4105 {
4106 	int priority;
4107 	unsigned long reclaimable;
4108 
4109 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4110 		return;
4111 	/*
4112 	 * Determine the initial priority based on
4113 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4114 	 * where reclaimed_to_scanned_ratio = inactive / total.
4115 	 */
4116 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4117 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4118 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4119 
4120 	/* round down reclaimable and round up sc->nr_to_reclaim */
4121 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4122 
4123 	/*
4124 	 * The estimation is based on LRU pages only, so cap it to prevent
4125 	 * overshoots of shrinker objects by large margins.
4126 	 */
4127 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4128 }
4129 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4130 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4131 {
4132 	int gen, type, zone;
4133 	unsigned long total = 0;
4134 	int swappiness = get_swappiness(lruvec, sc);
4135 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4136 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4137 	DEFINE_MAX_SEQ(lruvec);
4138 	DEFINE_MIN_SEQ(lruvec);
4139 
4140 	for_each_evictable_type(type, swappiness) {
4141 		unsigned long seq;
4142 
4143 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4144 			gen = lru_gen_from_seq(seq);
4145 
4146 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4147 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4148 		}
4149 	}
4150 
4151 	/* whether the size is big enough to be helpful */
4152 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4153 }
4154 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4155 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4156 				  unsigned long min_ttl)
4157 {
4158 	int gen;
4159 	unsigned long birth;
4160 	int swappiness = get_swappiness(lruvec, sc);
4161 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4162 	DEFINE_MIN_SEQ(lruvec);
4163 
4164 	if (mem_cgroup_below_min(NULL, memcg))
4165 		return false;
4166 
4167 	if (!lruvec_is_sizable(lruvec, sc))
4168 		return false;
4169 
4170 	gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4171 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4172 
4173 	return time_is_before_jiffies(birth + min_ttl);
4174 }
4175 
4176 /* to protect the working set of the last N jiffies */
4177 static unsigned long lru_gen_min_ttl __read_mostly;
4178 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4179 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4180 {
4181 	struct mem_cgroup *memcg;
4182 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4183 	bool reclaimable = !min_ttl;
4184 
4185 	VM_WARN_ON_ONCE(!current_is_kswapd());
4186 
4187 	set_initial_priority(pgdat, sc);
4188 
4189 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4190 	do {
4191 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4192 
4193 		mem_cgroup_calculate_protection(NULL, memcg);
4194 
4195 		if (!reclaimable)
4196 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4197 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4198 
4199 	/*
4200 	 * The main goal is to OOM kill if every generation from all memcgs is
4201 	 * younger than min_ttl. However, another possibility is all memcgs are
4202 	 * either too small or below min.
4203 	 */
4204 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4205 		struct oom_control oc = {
4206 			.gfp_mask = sc->gfp_mask,
4207 		};
4208 
4209 		out_of_memory(&oc);
4210 
4211 		mutex_unlock(&oom_lock);
4212 	}
4213 }
4214 
4215 /******************************************************************************
4216  *                          rmap/PT walk feedback
4217  ******************************************************************************/
4218 
4219 /*
4220  * This function exploits spatial locality when shrink_folio_list() walks the
4221  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4222  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4223  * the PTE table to the Bloom filter. This forms a feedback loop between the
4224  * eviction and the aging.
4225  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4226 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4227 {
4228 	int i;
4229 	bool dirty;
4230 	unsigned long start;
4231 	unsigned long end;
4232 	struct lru_gen_mm_walk *walk;
4233 	struct folio *last = NULL;
4234 	int young = 1;
4235 	pte_t *pte = pvmw->pte;
4236 	unsigned long addr = pvmw->address;
4237 	struct vm_area_struct *vma = pvmw->vma;
4238 	struct folio *folio = pfn_folio(pvmw->pfn);
4239 	struct mem_cgroup *memcg = folio_memcg(folio);
4240 	struct pglist_data *pgdat = folio_pgdat(folio);
4241 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4242 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4243 	DEFINE_MAX_SEQ(lruvec);
4244 	int gen = lru_gen_from_seq(max_seq);
4245 
4246 	lockdep_assert_held(pvmw->ptl);
4247 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4248 
4249 	if (!ptep_clear_young_notify(vma, addr, pte))
4250 		return false;
4251 
4252 	if (spin_is_contended(pvmw->ptl))
4253 		return true;
4254 
4255 	/* exclude special VMAs containing anon pages from COW */
4256 	if (vma->vm_flags & VM_SPECIAL)
4257 		return true;
4258 
4259 	/* avoid taking the LRU lock under the PTL when possible */
4260 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4261 
4262 	start = max(addr & PMD_MASK, vma->vm_start);
4263 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4264 
4265 	if (end - start == PAGE_SIZE)
4266 		return true;
4267 
4268 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4269 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4270 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4271 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4272 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4273 		else {
4274 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4275 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4276 		}
4277 	}
4278 
4279 	arch_enter_lazy_mmu_mode();
4280 
4281 	pte -= (addr - start) / PAGE_SIZE;
4282 
4283 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4284 		unsigned long pfn;
4285 		pte_t ptent = ptep_get(pte + i);
4286 
4287 		pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4288 		if (pfn == -1)
4289 			continue;
4290 
4291 		folio = get_pfn_folio(pfn, memcg, pgdat);
4292 		if (!folio)
4293 			continue;
4294 
4295 		if (!ptep_clear_young_notify(vma, addr, pte + i))
4296 			continue;
4297 
4298 		if (last != folio) {
4299 			walk_update_folio(walk, last, gen, dirty);
4300 
4301 			last = folio;
4302 			dirty = false;
4303 		}
4304 
4305 		if (pte_dirty(ptent))
4306 			dirty = true;
4307 
4308 		young++;
4309 	}
4310 
4311 	walk_update_folio(walk, last, gen, dirty);
4312 
4313 	arch_leave_lazy_mmu_mode();
4314 
4315 	/* feedback from rmap walkers to page table walkers */
4316 	if (mm_state && suitable_to_scan(i, young))
4317 		update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4318 
4319 	return true;
4320 }
4321 
4322 /******************************************************************************
4323  *                          memcg LRU
4324  ******************************************************************************/
4325 
4326 /* see the comment on MEMCG_NR_GENS */
4327 enum {
4328 	MEMCG_LRU_NOP,
4329 	MEMCG_LRU_HEAD,
4330 	MEMCG_LRU_TAIL,
4331 	MEMCG_LRU_OLD,
4332 	MEMCG_LRU_YOUNG,
4333 };
4334 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4335 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4336 {
4337 	int seg;
4338 	int old, new;
4339 	unsigned long flags;
4340 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4341 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4342 
4343 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4344 
4345 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4346 
4347 	seg = 0;
4348 	new = old = lruvec->lrugen.gen;
4349 
4350 	/* see the comment on MEMCG_NR_GENS */
4351 	if (op == MEMCG_LRU_HEAD)
4352 		seg = MEMCG_LRU_HEAD;
4353 	else if (op == MEMCG_LRU_TAIL)
4354 		seg = MEMCG_LRU_TAIL;
4355 	else if (op == MEMCG_LRU_OLD)
4356 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4357 	else if (op == MEMCG_LRU_YOUNG)
4358 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4359 	else
4360 		VM_WARN_ON_ONCE(true);
4361 
4362 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4363 	WRITE_ONCE(lruvec->lrugen.gen, new);
4364 
4365 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4366 
4367 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4368 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4369 	else
4370 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4371 
4372 	pgdat->memcg_lru.nr_memcgs[old]--;
4373 	pgdat->memcg_lru.nr_memcgs[new]++;
4374 
4375 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4376 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4377 
4378 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4379 }
4380 
4381 #ifdef CONFIG_MEMCG
4382 
lru_gen_online_memcg(struct mem_cgroup * memcg)4383 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4384 {
4385 	int gen;
4386 	int nid;
4387 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4388 
4389 	for_each_node(nid) {
4390 		struct pglist_data *pgdat = NODE_DATA(nid);
4391 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4392 
4393 		spin_lock_irq(&pgdat->memcg_lru.lock);
4394 
4395 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4396 
4397 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4398 
4399 		lruvec->lrugen.gen = gen;
4400 
4401 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4402 		pgdat->memcg_lru.nr_memcgs[gen]++;
4403 
4404 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4405 	}
4406 }
4407 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4408 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4409 {
4410 	int nid;
4411 
4412 	for_each_node(nid) {
4413 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4414 
4415 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4416 	}
4417 }
4418 
lru_gen_release_memcg(struct mem_cgroup * memcg)4419 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4420 {
4421 	int gen;
4422 	int nid;
4423 
4424 	for_each_node(nid) {
4425 		struct pglist_data *pgdat = NODE_DATA(nid);
4426 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4427 
4428 		spin_lock_irq(&pgdat->memcg_lru.lock);
4429 
4430 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4431 			goto unlock;
4432 
4433 		gen = lruvec->lrugen.gen;
4434 
4435 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4436 		pgdat->memcg_lru.nr_memcgs[gen]--;
4437 
4438 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4439 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4440 unlock:
4441 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4442 	}
4443 }
4444 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4445 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4446 {
4447 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4448 
4449 	/* see the comment on MEMCG_NR_GENS */
4450 	if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4451 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4452 }
4453 
4454 #endif /* CONFIG_MEMCG */
4455 
4456 /******************************************************************************
4457  *                          the eviction
4458  ******************************************************************************/
4459 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4460 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4461 		       int tier_idx)
4462 {
4463 	bool success;
4464 	bool dirty, writeback;
4465 	int gen = folio_lru_gen(folio);
4466 	int type = folio_is_file_lru(folio);
4467 	int zone = folio_zonenum(folio);
4468 	int delta = folio_nr_pages(folio);
4469 	int refs = folio_lru_refs(folio);
4470 	bool workingset = folio_test_workingset(folio);
4471 	int tier = lru_tier_from_refs(refs, workingset);
4472 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4473 
4474 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4475 
4476 	/* unevictable */
4477 	if (!folio_evictable(folio)) {
4478 		success = lru_gen_del_folio(lruvec, folio, true);
4479 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4480 		folio_set_unevictable(folio);
4481 		lruvec_add_folio(lruvec, folio);
4482 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4483 		return true;
4484 	}
4485 
4486 	/* promoted */
4487 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4488 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4489 		return true;
4490 	}
4491 
4492 	/* protected */
4493 	if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4494 		gen = folio_inc_gen(lruvec, folio, false);
4495 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4496 
4497 		/* don't count the workingset being lazily promoted */
4498 		if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4499 			int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4500 
4501 			WRITE_ONCE(lrugen->protected[hist][type][tier],
4502 				   lrugen->protected[hist][type][tier] + delta);
4503 		}
4504 		return true;
4505 	}
4506 
4507 	/* ineligible */
4508 	if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4509 		gen = folio_inc_gen(lruvec, folio, false);
4510 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4511 		return true;
4512 	}
4513 
4514 	dirty = folio_test_dirty(folio);
4515 	writeback = folio_test_writeback(folio);
4516 	if (type == LRU_GEN_FILE && dirty) {
4517 		sc->nr.file_taken += delta;
4518 		if (!writeback)
4519 			sc->nr.unqueued_dirty += delta;
4520 	}
4521 
4522 	/* waiting for writeback */
4523 	if (writeback || (type == LRU_GEN_FILE && dirty)) {
4524 		gen = folio_inc_gen(lruvec, folio, true);
4525 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4526 		return true;
4527 	}
4528 
4529 	return false;
4530 }
4531 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4532 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4533 {
4534 	bool success;
4535 
4536 	/* swap constrained */
4537 	if (!(sc->gfp_mask & __GFP_IO) &&
4538 	    (folio_test_dirty(folio) ||
4539 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4540 		return false;
4541 
4542 	/* raced with release_pages() */
4543 	if (!folio_try_get(folio))
4544 		return false;
4545 
4546 	/* raced with another isolation */
4547 	if (!folio_test_clear_lru(folio)) {
4548 		folio_put(folio);
4549 		return false;
4550 	}
4551 
4552 	/* see the comment on LRU_REFS_FLAGS */
4553 	if (!folio_test_referenced(folio))
4554 		set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4555 
4556 	/* for shrink_folio_list() */
4557 	folio_clear_reclaim(folio);
4558 
4559 	success = lru_gen_del_folio(lruvec, folio, true);
4560 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4561 
4562 	return true;
4563 }
4564 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4565 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4566 		       int type, int tier, struct list_head *list)
4567 {
4568 	int i;
4569 	int gen;
4570 	enum vm_event_item item;
4571 	int sorted = 0;
4572 	int scanned = 0;
4573 	int isolated = 0;
4574 	int skipped = 0;
4575 	int remaining = MAX_LRU_BATCH;
4576 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4577 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4578 
4579 	VM_WARN_ON_ONCE(!list_empty(list));
4580 
4581 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4582 		return 0;
4583 
4584 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4585 
4586 	for (i = MAX_NR_ZONES; i > 0; i--) {
4587 		LIST_HEAD(moved);
4588 		int skipped_zone = 0;
4589 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4590 		struct list_head *head = &lrugen->folios[gen][type][zone];
4591 
4592 		while (!list_empty(head)) {
4593 			struct folio *folio = lru_to_folio(head);
4594 			int delta = folio_nr_pages(folio);
4595 
4596 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4597 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4598 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4599 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4600 
4601 			scanned += delta;
4602 
4603 			if (sort_folio(lruvec, folio, sc, tier))
4604 				sorted += delta;
4605 			else if (isolate_folio(lruvec, folio, sc)) {
4606 				list_add(&folio->lru, list);
4607 				isolated += delta;
4608 			} else {
4609 				list_move(&folio->lru, &moved);
4610 				skipped_zone += delta;
4611 			}
4612 
4613 			if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4614 				break;
4615 		}
4616 
4617 		if (skipped_zone) {
4618 			list_splice(&moved, head);
4619 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4620 			skipped += skipped_zone;
4621 		}
4622 
4623 		if (!remaining || isolated >= MIN_LRU_BATCH)
4624 			break;
4625 	}
4626 
4627 	item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4628 	if (!cgroup_reclaim(sc)) {
4629 		__count_vm_events(item, isolated);
4630 		__count_vm_events(PGREFILL, sorted);
4631 	}
4632 	count_memcg_events(memcg, item, isolated);
4633 	count_memcg_events(memcg, PGREFILL, sorted);
4634 	__count_vm_events(PGSCAN_ANON + type, isolated);
4635 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4636 				scanned, skipped, isolated,
4637 				type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4638 	if (type == LRU_GEN_FILE)
4639 		sc->nr.file_taken += isolated;
4640 	/*
4641 	 * There might not be eligible folios due to reclaim_idx. Check the
4642 	 * remaining to prevent livelock if it's not making progress.
4643 	 */
4644 	return isolated || !remaining ? scanned : 0;
4645 }
4646 
get_tier_idx(struct lruvec * lruvec,int type)4647 static int get_tier_idx(struct lruvec *lruvec, int type)
4648 {
4649 	int tier;
4650 	struct ctrl_pos sp, pv;
4651 
4652 	/*
4653 	 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4654 	 * This value is chosen because any other tier would have at least twice
4655 	 * as many refaults as the first tier.
4656 	 */
4657 	read_ctrl_pos(lruvec, type, 0, 2, &sp);
4658 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4659 		read_ctrl_pos(lruvec, type, tier, 3, &pv);
4660 		if (!positive_ctrl_err(&sp, &pv))
4661 			break;
4662 	}
4663 
4664 	return tier - 1;
4665 }
4666 
get_type_to_scan(struct lruvec * lruvec,int swappiness)4667 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4668 {
4669 	struct ctrl_pos sp, pv;
4670 
4671 	if (swappiness <= MIN_SWAPPINESS + 1)
4672 		return LRU_GEN_FILE;
4673 
4674 	if (swappiness >= MAX_SWAPPINESS)
4675 		return LRU_GEN_ANON;
4676 	/*
4677 	 * Compare the sum of all tiers of anon with that of file to determine
4678 	 * which type to scan.
4679 	 */
4680 	read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4681 	read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4682 
4683 	return positive_ctrl_err(&sp, &pv);
4684 }
4685 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4686 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4687 			  int *type_scanned, struct list_head *list)
4688 {
4689 	int i;
4690 	int type = get_type_to_scan(lruvec, swappiness);
4691 
4692 	for_each_evictable_type(i, swappiness) {
4693 		int scanned;
4694 		int tier = get_tier_idx(lruvec, type);
4695 
4696 		*type_scanned = type;
4697 
4698 		scanned = scan_folios(lruvec, sc, type, tier, list);
4699 		if (scanned)
4700 			return scanned;
4701 
4702 		type = !type;
4703 	}
4704 
4705 	return 0;
4706 }
4707 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4708 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4709 {
4710 	int type;
4711 	int scanned;
4712 	int reclaimed;
4713 	LIST_HEAD(list);
4714 	LIST_HEAD(clean);
4715 	struct folio *folio;
4716 	struct folio *next;
4717 	enum vm_event_item item;
4718 	struct reclaim_stat stat;
4719 	struct lru_gen_mm_walk *walk;
4720 	bool skip_retry = false;
4721 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4722 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4723 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4724 
4725 	spin_lock_irq(&lruvec->lru_lock);
4726 
4727 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4728 
4729 	scanned += try_to_inc_min_seq(lruvec, swappiness);
4730 
4731 	if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4732 		scanned = 0;
4733 
4734 	spin_unlock_irq(&lruvec->lru_lock);
4735 
4736 	if (list_empty(&list))
4737 		return scanned;
4738 retry:
4739 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4740 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4741 	sc->nr_reclaimed += reclaimed;
4742 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4743 			scanned, reclaimed, &stat, sc->priority,
4744 			type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4745 
4746 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4747 		DEFINE_MIN_SEQ(lruvec);
4748 
4749 		if (!folio_evictable(folio)) {
4750 			list_del(&folio->lru);
4751 			folio_putback_lru(folio);
4752 			continue;
4753 		}
4754 
4755 		/* retry folios that may have missed folio_rotate_reclaimable() */
4756 		if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4757 		    !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4758 			list_move(&folio->lru, &clean);
4759 			continue;
4760 		}
4761 
4762 		/* don't add rejected folios to the oldest generation */
4763 		if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4764 			set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4765 	}
4766 
4767 	spin_lock_irq(&lruvec->lru_lock);
4768 
4769 	move_folios_to_lru(lruvec, &list);
4770 
4771 	walk = current->reclaim_state->mm_walk;
4772 	if (walk && walk->batched) {
4773 		walk->lruvec = lruvec;
4774 		reset_batch_size(walk);
4775 	}
4776 
4777 	__mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4778 					stat.nr_demoted);
4779 
4780 	item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4781 	if (!cgroup_reclaim(sc))
4782 		__count_vm_events(item, reclaimed);
4783 	count_memcg_events(memcg, item, reclaimed);
4784 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
4785 
4786 	spin_unlock_irq(&lruvec->lru_lock);
4787 
4788 	list_splice_init(&clean, &list);
4789 
4790 	if (!list_empty(&list)) {
4791 		skip_retry = true;
4792 		goto retry;
4793 	}
4794 
4795 	return scanned;
4796 }
4797 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4798 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4799 			     int swappiness, unsigned long *nr_to_scan)
4800 {
4801 	int gen, type, zone;
4802 	unsigned long size = 0;
4803 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4804 	DEFINE_MIN_SEQ(lruvec);
4805 
4806 	*nr_to_scan = 0;
4807 	/* have to run aging, since eviction is not possible anymore */
4808 	if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4809 		return true;
4810 
4811 	for_each_evictable_type(type, swappiness) {
4812 		unsigned long seq;
4813 
4814 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4815 			gen = lru_gen_from_seq(seq);
4816 
4817 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4818 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4819 		}
4820 	}
4821 
4822 	*nr_to_scan = size;
4823 	/* better to run aging even though eviction is still possible */
4824 	return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4825 }
4826 
4827 /*
4828  * For future optimizations:
4829  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4830  *    reclaim.
4831  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4832 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4833 {
4834 	bool success;
4835 	unsigned long nr_to_scan;
4836 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4837 	DEFINE_MAX_SEQ(lruvec);
4838 
4839 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4840 		return -1;
4841 
4842 	success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4843 
4844 	/* try to scrape all its memory if this memcg was deleted */
4845 	if (nr_to_scan && !mem_cgroup_online(memcg))
4846 		return nr_to_scan;
4847 
4848 	/* try to get away with not aging at the default priority */
4849 	if (!success || sc->priority == DEF_PRIORITY)
4850 		return nr_to_scan >> sc->priority;
4851 
4852 	/* stop scanning this lruvec as it's low on cold folios */
4853 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4854 }
4855 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4856 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4857 {
4858 	int i;
4859 	enum zone_watermarks mark;
4860 
4861 	/* don't abort memcg reclaim to ensure fairness */
4862 	if (!root_reclaim(sc))
4863 		return false;
4864 
4865 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4866 		return true;
4867 
4868 	/* check the order to exclude compaction-induced reclaim */
4869 	if (!current_is_kswapd() || sc->order)
4870 		return false;
4871 
4872 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4873 	       WMARK_PROMO : WMARK_HIGH;
4874 
4875 	for (i = 0; i <= sc->reclaim_idx; i++) {
4876 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4877 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4878 
4879 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4880 			return false;
4881 	}
4882 
4883 	/* kswapd should abort if all eligible zones are safe */
4884 	return true;
4885 }
4886 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4887 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4888 {
4889 	long nr_to_scan;
4890 	unsigned long scanned = 0;
4891 	int swappiness = get_swappiness(lruvec, sc);
4892 
4893 	while (true) {
4894 		int delta;
4895 
4896 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4897 		if (nr_to_scan <= 0)
4898 			break;
4899 
4900 		delta = evict_folios(lruvec, sc, swappiness);
4901 		if (!delta)
4902 			break;
4903 
4904 		scanned += delta;
4905 		if (scanned >= nr_to_scan)
4906 			break;
4907 
4908 		if (should_abort_scan(lruvec, sc))
4909 			break;
4910 
4911 		cond_resched();
4912 	}
4913 
4914 	/*
4915 	 * If too many file cache in the coldest generation can't be evicted
4916 	 * due to being dirty, wake up the flusher.
4917 	 */
4918 	if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4919 		wakeup_flusher_threads(WB_REASON_VMSCAN);
4920 
4921 	/* whether this lruvec should be rotated */
4922 	return nr_to_scan < 0;
4923 }
4924 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4925 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4926 {
4927 	bool success;
4928 	unsigned long scanned = sc->nr_scanned;
4929 	unsigned long reclaimed = sc->nr_reclaimed;
4930 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4931 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4932 
4933 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4934 	if (mem_cgroup_below_min(NULL, memcg))
4935 		return MEMCG_LRU_YOUNG;
4936 
4937 	if (mem_cgroup_below_low(NULL, memcg)) {
4938 		/* see the comment on MEMCG_NR_GENS */
4939 		if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4940 			return MEMCG_LRU_TAIL;
4941 
4942 		memcg_memory_event(memcg, MEMCG_LOW);
4943 	}
4944 
4945 	success = try_to_shrink_lruvec(lruvec, sc);
4946 
4947 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4948 
4949 	if (!sc->proactive)
4950 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4951 			   sc->nr_reclaimed - reclaimed);
4952 
4953 	flush_reclaim_state(sc);
4954 
4955 	if (success && mem_cgroup_online(memcg))
4956 		return MEMCG_LRU_YOUNG;
4957 
4958 	if (!success && lruvec_is_sizable(lruvec, sc))
4959 		return 0;
4960 
4961 	/* one retry if offlined or too small */
4962 	return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4963 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4964 }
4965 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4966 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4967 {
4968 	int op;
4969 	int gen;
4970 	int bin;
4971 	int first_bin;
4972 	struct lruvec *lruvec;
4973 	struct lru_gen_folio *lrugen;
4974 	struct mem_cgroup *memcg;
4975 	struct hlist_nulls_node *pos;
4976 
4977 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4978 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4979 restart:
4980 	op = 0;
4981 	memcg = NULL;
4982 
4983 	rcu_read_lock();
4984 
4985 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4986 		if (op) {
4987 			lru_gen_rotate_memcg(lruvec, op);
4988 			op = 0;
4989 		}
4990 
4991 		mem_cgroup_put(memcg);
4992 		memcg = NULL;
4993 
4994 		if (gen != READ_ONCE(lrugen->gen))
4995 			continue;
4996 
4997 		lruvec = container_of(lrugen, struct lruvec, lrugen);
4998 		memcg = lruvec_memcg(lruvec);
4999 
5000 		if (!mem_cgroup_tryget(memcg)) {
5001 			lru_gen_release_memcg(memcg);
5002 			memcg = NULL;
5003 			continue;
5004 		}
5005 
5006 		rcu_read_unlock();
5007 
5008 		op = shrink_one(lruvec, sc);
5009 
5010 		rcu_read_lock();
5011 
5012 		if (should_abort_scan(lruvec, sc))
5013 			break;
5014 	}
5015 
5016 	rcu_read_unlock();
5017 
5018 	if (op)
5019 		lru_gen_rotate_memcg(lruvec, op);
5020 
5021 	mem_cgroup_put(memcg);
5022 
5023 	if (!is_a_nulls(pos))
5024 		return;
5025 
5026 	/* restart if raced with lru_gen_rotate_memcg() */
5027 	if (gen != get_nulls_value(pos))
5028 		goto restart;
5029 
5030 	/* try the rest of the bins of the current generation */
5031 	bin = get_memcg_bin(bin + 1);
5032 	if (bin != first_bin)
5033 		goto restart;
5034 }
5035 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5036 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5037 {
5038 	struct blk_plug plug;
5039 
5040 	VM_WARN_ON_ONCE(root_reclaim(sc));
5041 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5042 
5043 	lru_add_drain();
5044 
5045 	blk_start_plug(&plug);
5046 
5047 	set_mm_walk(NULL, sc->proactive);
5048 
5049 	if (try_to_shrink_lruvec(lruvec, sc))
5050 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5051 
5052 	clear_mm_walk();
5053 
5054 	blk_finish_plug(&plug);
5055 }
5056 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5057 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5058 {
5059 	struct blk_plug plug;
5060 	unsigned long reclaimed = sc->nr_reclaimed;
5061 
5062 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5063 
5064 	/*
5065 	 * Unmapped clean folios are already prioritized. Scanning for more of
5066 	 * them is likely futile and can cause high reclaim latency when there
5067 	 * is a large number of memcgs.
5068 	 */
5069 	if (!sc->may_writepage || !sc->may_unmap)
5070 		goto done;
5071 
5072 	lru_add_drain();
5073 
5074 	blk_start_plug(&plug);
5075 
5076 	set_mm_walk(pgdat, sc->proactive);
5077 
5078 	set_initial_priority(pgdat, sc);
5079 
5080 	if (current_is_kswapd())
5081 		sc->nr_reclaimed = 0;
5082 
5083 	if (mem_cgroup_disabled())
5084 		shrink_one(&pgdat->__lruvec, sc);
5085 	else
5086 		shrink_many(pgdat, sc);
5087 
5088 	if (current_is_kswapd())
5089 		sc->nr_reclaimed += reclaimed;
5090 
5091 	clear_mm_walk();
5092 
5093 	blk_finish_plug(&plug);
5094 done:
5095 	if (sc->nr_reclaimed > reclaimed)
5096 		pgdat->kswapd_failures = 0;
5097 }
5098 
5099 /******************************************************************************
5100  *                          state change
5101  ******************************************************************************/
5102 
state_is_valid(struct lruvec * lruvec)5103 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5104 {
5105 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5106 
5107 	if (lrugen->enabled) {
5108 		enum lru_list lru;
5109 
5110 		for_each_evictable_lru(lru) {
5111 			if (!list_empty(&lruvec->lists[lru]))
5112 				return false;
5113 		}
5114 	} else {
5115 		int gen, type, zone;
5116 
5117 		for_each_gen_type_zone(gen, type, zone) {
5118 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5119 				return false;
5120 		}
5121 	}
5122 
5123 	return true;
5124 }
5125 
fill_evictable(struct lruvec * lruvec)5126 static bool fill_evictable(struct lruvec *lruvec)
5127 {
5128 	enum lru_list lru;
5129 	int remaining = MAX_LRU_BATCH;
5130 
5131 	for_each_evictable_lru(lru) {
5132 		int type = is_file_lru(lru);
5133 		bool active = is_active_lru(lru);
5134 		struct list_head *head = &lruvec->lists[lru];
5135 
5136 		while (!list_empty(head)) {
5137 			bool success;
5138 			struct folio *folio = lru_to_folio(head);
5139 
5140 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5141 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5142 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5143 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5144 
5145 			lruvec_del_folio(lruvec, folio);
5146 			success = lru_gen_add_folio(lruvec, folio, false);
5147 			VM_WARN_ON_ONCE(!success);
5148 
5149 			if (!--remaining)
5150 				return false;
5151 		}
5152 	}
5153 
5154 	return true;
5155 }
5156 
drain_evictable(struct lruvec * lruvec)5157 static bool drain_evictable(struct lruvec *lruvec)
5158 {
5159 	int gen, type, zone;
5160 	int remaining = MAX_LRU_BATCH;
5161 
5162 	for_each_gen_type_zone(gen, type, zone) {
5163 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5164 
5165 		while (!list_empty(head)) {
5166 			bool success;
5167 			struct folio *folio = lru_to_folio(head);
5168 
5169 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5170 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5171 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5172 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5173 
5174 			success = lru_gen_del_folio(lruvec, folio, false);
5175 			VM_WARN_ON_ONCE(!success);
5176 			lruvec_add_folio(lruvec, folio);
5177 
5178 			if (!--remaining)
5179 				return false;
5180 		}
5181 	}
5182 
5183 	return true;
5184 }
5185 
lru_gen_change_state(bool enabled)5186 static void lru_gen_change_state(bool enabled)
5187 {
5188 	static DEFINE_MUTEX(state_mutex);
5189 
5190 	struct mem_cgroup *memcg;
5191 
5192 	cgroup_lock();
5193 	cpus_read_lock();
5194 	get_online_mems();
5195 	mutex_lock(&state_mutex);
5196 
5197 	if (enabled == lru_gen_enabled())
5198 		goto unlock;
5199 
5200 	if (enabled)
5201 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5202 	else
5203 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5204 
5205 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5206 	do {
5207 		int nid;
5208 
5209 		for_each_node(nid) {
5210 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5211 
5212 			spin_lock_irq(&lruvec->lru_lock);
5213 
5214 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5215 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5216 
5217 			lruvec->lrugen.enabled = enabled;
5218 
5219 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5220 				spin_unlock_irq(&lruvec->lru_lock);
5221 				cond_resched();
5222 				spin_lock_irq(&lruvec->lru_lock);
5223 			}
5224 
5225 			spin_unlock_irq(&lruvec->lru_lock);
5226 		}
5227 
5228 		cond_resched();
5229 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5230 unlock:
5231 	mutex_unlock(&state_mutex);
5232 	put_online_mems();
5233 	cpus_read_unlock();
5234 	cgroup_unlock();
5235 }
5236 
5237 /******************************************************************************
5238  *                          sysfs interface
5239  ******************************************************************************/
5240 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5241 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5242 {
5243 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5244 }
5245 
5246 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5247 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5248 				const char *buf, size_t len)
5249 {
5250 	unsigned int msecs;
5251 
5252 	if (kstrtouint(buf, 0, &msecs))
5253 		return -EINVAL;
5254 
5255 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5256 
5257 	return len;
5258 }
5259 
5260 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5261 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5262 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5263 {
5264 	unsigned int caps = 0;
5265 
5266 	if (get_cap(LRU_GEN_CORE))
5267 		caps |= BIT(LRU_GEN_CORE);
5268 
5269 	if (should_walk_mmu())
5270 		caps |= BIT(LRU_GEN_MM_WALK);
5271 
5272 	if (should_clear_pmd_young())
5273 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5274 
5275 	return sysfs_emit(buf, "0x%04x\n", caps);
5276 }
5277 
5278 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5279 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5280 			     const char *buf, size_t len)
5281 {
5282 	int i;
5283 	unsigned int caps;
5284 
5285 	if (tolower(*buf) == 'n')
5286 		caps = 0;
5287 	else if (tolower(*buf) == 'y')
5288 		caps = -1;
5289 	else if (kstrtouint(buf, 0, &caps))
5290 		return -EINVAL;
5291 
5292 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5293 		bool enabled = caps & BIT(i);
5294 
5295 		if (i == LRU_GEN_CORE)
5296 			lru_gen_change_state(enabled);
5297 		else if (enabled)
5298 			static_branch_enable(&lru_gen_caps[i]);
5299 		else
5300 			static_branch_disable(&lru_gen_caps[i]);
5301 	}
5302 
5303 	return len;
5304 }
5305 
5306 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5307 
5308 static struct attribute *lru_gen_attrs[] = {
5309 	&lru_gen_min_ttl_attr.attr,
5310 	&lru_gen_enabled_attr.attr,
5311 	NULL
5312 };
5313 
5314 static const struct attribute_group lru_gen_attr_group = {
5315 	.name = "lru_gen",
5316 	.attrs = lru_gen_attrs,
5317 };
5318 
5319 /******************************************************************************
5320  *                          debugfs interface
5321  ******************************************************************************/
5322 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5323 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5324 {
5325 	struct mem_cgroup *memcg;
5326 	loff_t nr_to_skip = *pos;
5327 
5328 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5329 	if (!m->private)
5330 		return ERR_PTR(-ENOMEM);
5331 
5332 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5333 	do {
5334 		int nid;
5335 
5336 		for_each_node_state(nid, N_MEMORY) {
5337 			if (!nr_to_skip--)
5338 				return get_lruvec(memcg, nid);
5339 		}
5340 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5341 
5342 	return NULL;
5343 }
5344 
lru_gen_seq_stop(struct seq_file * m,void * v)5345 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5346 {
5347 	if (!IS_ERR_OR_NULL(v))
5348 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5349 
5350 	kvfree(m->private);
5351 	m->private = NULL;
5352 }
5353 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5354 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5355 {
5356 	int nid = lruvec_pgdat(v)->node_id;
5357 	struct mem_cgroup *memcg = lruvec_memcg(v);
5358 
5359 	++*pos;
5360 
5361 	nid = next_memory_node(nid);
5362 	if (nid == MAX_NUMNODES) {
5363 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5364 		if (!memcg)
5365 			return NULL;
5366 
5367 		nid = first_memory_node;
5368 	}
5369 
5370 	return get_lruvec(memcg, nid);
5371 }
5372 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5373 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5374 				  unsigned long max_seq, unsigned long *min_seq,
5375 				  unsigned long seq)
5376 {
5377 	int i;
5378 	int type, tier;
5379 	int hist = lru_hist_from_seq(seq);
5380 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5381 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5382 
5383 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5384 		seq_printf(m, "            %10d", tier);
5385 		for (type = 0; type < ANON_AND_FILE; type++) {
5386 			const char *s = "xxx";
5387 			unsigned long n[3] = {};
5388 
5389 			if (seq == max_seq) {
5390 				s = "RTx";
5391 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5392 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5393 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5394 				s = "rep";
5395 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5396 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5397 				n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5398 			}
5399 
5400 			for (i = 0; i < 3; i++)
5401 				seq_printf(m, " %10lu%c", n[i], s[i]);
5402 		}
5403 		seq_putc(m, '\n');
5404 	}
5405 
5406 	if (!mm_state)
5407 		return;
5408 
5409 	seq_puts(m, "                      ");
5410 	for (i = 0; i < NR_MM_STATS; i++) {
5411 		const char *s = "xxxx";
5412 		unsigned long n = 0;
5413 
5414 		if (seq == max_seq && NR_HIST_GENS == 1) {
5415 			s = "TYFA";
5416 			n = READ_ONCE(mm_state->stats[hist][i]);
5417 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5418 			s = "tyfa";
5419 			n = READ_ONCE(mm_state->stats[hist][i]);
5420 		}
5421 
5422 		seq_printf(m, " %10lu%c", n, s[i]);
5423 	}
5424 	seq_putc(m, '\n');
5425 }
5426 
5427 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5428 static int lru_gen_seq_show(struct seq_file *m, void *v)
5429 {
5430 	unsigned long seq;
5431 	bool full = !debugfs_real_fops(m->file)->write;
5432 	struct lruvec *lruvec = v;
5433 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5434 	int nid = lruvec_pgdat(lruvec)->node_id;
5435 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5436 	DEFINE_MAX_SEQ(lruvec);
5437 	DEFINE_MIN_SEQ(lruvec);
5438 
5439 	if (nid == first_memory_node) {
5440 		const char *path = memcg ? m->private : "";
5441 
5442 #ifdef CONFIG_MEMCG
5443 		if (memcg)
5444 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5445 #endif
5446 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5447 	}
5448 
5449 	seq_printf(m, " node %5d\n", nid);
5450 
5451 	if (!full)
5452 		seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5453 	else if (max_seq >= MAX_NR_GENS)
5454 		seq = max_seq - MAX_NR_GENS + 1;
5455 	else
5456 		seq = 0;
5457 
5458 	for (; seq <= max_seq; seq++) {
5459 		int type, zone;
5460 		int gen = lru_gen_from_seq(seq);
5461 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5462 
5463 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5464 
5465 		for (type = 0; type < ANON_AND_FILE; type++) {
5466 			unsigned long size = 0;
5467 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5468 
5469 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5470 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5471 
5472 			seq_printf(m, " %10lu%c", size, mark);
5473 		}
5474 
5475 		seq_putc(m, '\n');
5476 
5477 		if (full)
5478 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5479 	}
5480 
5481 	return 0;
5482 }
5483 
5484 static const struct seq_operations lru_gen_seq_ops = {
5485 	.start = lru_gen_seq_start,
5486 	.stop = lru_gen_seq_stop,
5487 	.next = lru_gen_seq_next,
5488 	.show = lru_gen_seq_show,
5489 };
5490 
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5491 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5492 		     int swappiness, bool force_scan)
5493 {
5494 	DEFINE_MAX_SEQ(lruvec);
5495 
5496 	if (seq > max_seq)
5497 		return -EINVAL;
5498 
5499 	return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5500 }
5501 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5502 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5503 			int swappiness, unsigned long nr_to_reclaim)
5504 {
5505 	DEFINE_MAX_SEQ(lruvec);
5506 
5507 	if (seq + MIN_NR_GENS > max_seq)
5508 		return -EINVAL;
5509 
5510 	sc->nr_reclaimed = 0;
5511 
5512 	while (!signal_pending(current)) {
5513 		DEFINE_MIN_SEQ(lruvec);
5514 
5515 		if (seq < evictable_min_seq(min_seq, swappiness))
5516 			return 0;
5517 
5518 		if (sc->nr_reclaimed >= nr_to_reclaim)
5519 			return 0;
5520 
5521 		if (!evict_folios(lruvec, sc, swappiness))
5522 			return 0;
5523 
5524 		cond_resched();
5525 	}
5526 
5527 	return -EINTR;
5528 }
5529 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5530 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5531 		   struct scan_control *sc, int swappiness, unsigned long opt)
5532 {
5533 	struct lruvec *lruvec;
5534 	int err = -EINVAL;
5535 	struct mem_cgroup *memcg = NULL;
5536 
5537 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5538 		return -EINVAL;
5539 
5540 	if (!mem_cgroup_disabled()) {
5541 		rcu_read_lock();
5542 
5543 		memcg = mem_cgroup_from_id(memcg_id);
5544 		if (!mem_cgroup_tryget(memcg))
5545 			memcg = NULL;
5546 
5547 		rcu_read_unlock();
5548 
5549 		if (!memcg)
5550 			return -EINVAL;
5551 	}
5552 
5553 	if (memcg_id != mem_cgroup_id(memcg))
5554 		goto done;
5555 
5556 	lruvec = get_lruvec(memcg, nid);
5557 
5558 	if (swappiness < MIN_SWAPPINESS)
5559 		swappiness = get_swappiness(lruvec, sc);
5560 	else if (swappiness > SWAPPINESS_ANON_ONLY)
5561 		goto done;
5562 
5563 	switch (cmd) {
5564 	case '+':
5565 		err = run_aging(lruvec, seq, swappiness, opt);
5566 		break;
5567 	case '-':
5568 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
5569 		break;
5570 	}
5571 done:
5572 	mem_cgroup_put(memcg);
5573 
5574 	return err;
5575 }
5576 
5577 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5578 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5579 				 size_t len, loff_t *pos)
5580 {
5581 	void *buf;
5582 	char *cur, *next;
5583 	unsigned int flags;
5584 	struct blk_plug plug;
5585 	int err = -EINVAL;
5586 	struct scan_control sc = {
5587 		.may_writepage = true,
5588 		.may_unmap = true,
5589 		.may_swap = true,
5590 		.reclaim_idx = MAX_NR_ZONES - 1,
5591 		.gfp_mask = GFP_KERNEL,
5592 	};
5593 
5594 	buf = kvmalloc(len + 1, GFP_KERNEL);
5595 	if (!buf)
5596 		return -ENOMEM;
5597 
5598 	if (copy_from_user(buf, src, len)) {
5599 		kvfree(buf);
5600 		return -EFAULT;
5601 	}
5602 
5603 	set_task_reclaim_state(current, &sc.reclaim_state);
5604 	flags = memalloc_noreclaim_save();
5605 	blk_start_plug(&plug);
5606 	if (!set_mm_walk(NULL, true)) {
5607 		err = -ENOMEM;
5608 		goto done;
5609 	}
5610 
5611 	next = buf;
5612 	next[len] = '\0';
5613 
5614 	while ((cur = strsep(&next, ",;\n"))) {
5615 		int n;
5616 		int end;
5617 		char cmd, swap_string[5];
5618 		unsigned int memcg_id;
5619 		unsigned int nid;
5620 		unsigned long seq;
5621 		unsigned int swappiness;
5622 		unsigned long opt = -1;
5623 
5624 		cur = skip_spaces(cur);
5625 		if (!*cur)
5626 			continue;
5627 
5628 		n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5629 			   &seq, &end, swap_string, &end, &opt, &end);
5630 		if (n < 4 || cur[end]) {
5631 			err = -EINVAL;
5632 			break;
5633 		}
5634 
5635 		if (n == 4) {
5636 			swappiness = -1;
5637 		} else if (!strcmp("max", swap_string)) {
5638 			/* set by userspace for anonymous memory only */
5639 			swappiness = SWAPPINESS_ANON_ONLY;
5640 		} else {
5641 			err = kstrtouint(swap_string, 0, &swappiness);
5642 			if (err)
5643 				break;
5644 		}
5645 
5646 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5647 		if (err)
5648 			break;
5649 	}
5650 done:
5651 	clear_mm_walk();
5652 	blk_finish_plug(&plug);
5653 	memalloc_noreclaim_restore(flags);
5654 	set_task_reclaim_state(current, NULL);
5655 
5656 	kvfree(buf);
5657 
5658 	return err ? : len;
5659 }
5660 
lru_gen_seq_open(struct inode * inode,struct file * file)5661 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5662 {
5663 	return seq_open(file, &lru_gen_seq_ops);
5664 }
5665 
5666 static const struct file_operations lru_gen_rw_fops = {
5667 	.open = lru_gen_seq_open,
5668 	.read = seq_read,
5669 	.write = lru_gen_seq_write,
5670 	.llseek = seq_lseek,
5671 	.release = seq_release,
5672 };
5673 
5674 static const struct file_operations lru_gen_ro_fops = {
5675 	.open = lru_gen_seq_open,
5676 	.read = seq_read,
5677 	.llseek = seq_lseek,
5678 	.release = seq_release,
5679 };
5680 
5681 /******************************************************************************
5682  *                          initialization
5683  ******************************************************************************/
5684 
lru_gen_init_pgdat(struct pglist_data * pgdat)5685 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5686 {
5687 	int i, j;
5688 
5689 	spin_lock_init(&pgdat->memcg_lru.lock);
5690 
5691 	for (i = 0; i < MEMCG_NR_GENS; i++) {
5692 		for (j = 0; j < MEMCG_NR_BINS; j++)
5693 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5694 	}
5695 }
5696 
lru_gen_init_lruvec(struct lruvec * lruvec)5697 void lru_gen_init_lruvec(struct lruvec *lruvec)
5698 {
5699 	int i;
5700 	int gen, type, zone;
5701 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5702 	struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5703 
5704 	lrugen->max_seq = MIN_NR_GENS + 1;
5705 	lrugen->enabled = lru_gen_enabled();
5706 
5707 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
5708 		lrugen->timestamps[i] = jiffies;
5709 
5710 	for_each_gen_type_zone(gen, type, zone)
5711 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5712 
5713 	if (mm_state)
5714 		mm_state->seq = MIN_NR_GENS;
5715 }
5716 
5717 #ifdef CONFIG_MEMCG
5718 
lru_gen_init_memcg(struct mem_cgroup * memcg)5719 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5720 {
5721 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5722 
5723 	if (!mm_list)
5724 		return;
5725 
5726 	INIT_LIST_HEAD(&mm_list->fifo);
5727 	spin_lock_init(&mm_list->lock);
5728 }
5729 
lru_gen_exit_memcg(struct mem_cgroup * memcg)5730 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5731 {
5732 	int i;
5733 	int nid;
5734 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5735 
5736 	VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5737 
5738 	for_each_node(nid) {
5739 		struct lruvec *lruvec = get_lruvec(memcg, nid);
5740 		struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5741 
5742 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5743 					   sizeof(lruvec->lrugen.nr_pages)));
5744 
5745 		lruvec->lrugen.list.next = LIST_POISON1;
5746 
5747 		if (!mm_state)
5748 			continue;
5749 
5750 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5751 			bitmap_free(mm_state->filters[i]);
5752 			mm_state->filters[i] = NULL;
5753 		}
5754 	}
5755 }
5756 
5757 #endif /* CONFIG_MEMCG */
5758 
init_lru_gen(void)5759 static int __init init_lru_gen(void)
5760 {
5761 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5762 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5763 
5764 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5765 		pr_err("lru_gen: failed to create sysfs group\n");
5766 
5767 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5768 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5769 
5770 	return 0;
5771 };
5772 late_initcall(init_lru_gen);
5773 
5774 #else /* !CONFIG_LRU_GEN */
5775 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5776 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5777 {
5778 	BUILD_BUG();
5779 }
5780 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5781 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5782 {
5783 	BUILD_BUG();
5784 }
5785 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5786 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5787 {
5788 	BUILD_BUG();
5789 }
5790 
5791 #endif /* CONFIG_LRU_GEN */
5792 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5793 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5794 {
5795 	unsigned long nr[NR_LRU_LISTS];
5796 	unsigned long targets[NR_LRU_LISTS];
5797 	unsigned long nr_to_scan;
5798 	enum lru_list lru;
5799 	unsigned long nr_reclaimed = 0;
5800 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5801 	bool proportional_reclaim;
5802 	struct blk_plug plug;
5803 
5804 	if (lru_gen_enabled() && !root_reclaim(sc)) {
5805 		lru_gen_shrink_lruvec(lruvec, sc);
5806 		return;
5807 	}
5808 
5809 	get_scan_count(lruvec, sc, nr);
5810 
5811 	/* Record the original scan target for proportional adjustments later */
5812 	memcpy(targets, nr, sizeof(nr));
5813 
5814 	/*
5815 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5816 	 * event that can occur when there is little memory pressure e.g.
5817 	 * multiple streaming readers/writers. Hence, we do not abort scanning
5818 	 * when the requested number of pages are reclaimed when scanning at
5819 	 * DEF_PRIORITY on the assumption that the fact we are direct
5820 	 * reclaiming implies that kswapd is not keeping up and it is best to
5821 	 * do a batch of work at once. For memcg reclaim one check is made to
5822 	 * abort proportional reclaim if either the file or anon lru has already
5823 	 * dropped to zero at the first pass.
5824 	 */
5825 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5826 				sc->priority == DEF_PRIORITY);
5827 
5828 	blk_start_plug(&plug);
5829 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5830 					nr[LRU_INACTIVE_FILE]) {
5831 		unsigned long nr_anon, nr_file, percentage;
5832 		unsigned long nr_scanned;
5833 
5834 		for_each_evictable_lru(lru) {
5835 			if (nr[lru]) {
5836 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5837 				nr[lru] -= nr_to_scan;
5838 
5839 				nr_reclaimed += shrink_list(lru, nr_to_scan,
5840 							    lruvec, sc);
5841 			}
5842 		}
5843 
5844 		cond_resched();
5845 
5846 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5847 			continue;
5848 
5849 		/*
5850 		 * For kswapd and memcg, reclaim at least the number of pages
5851 		 * requested. Ensure that the anon and file LRUs are scanned
5852 		 * proportionally what was requested by get_scan_count(). We
5853 		 * stop reclaiming one LRU and reduce the amount scanning
5854 		 * proportional to the original scan target.
5855 		 */
5856 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5857 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5858 
5859 		/*
5860 		 * It's just vindictive to attack the larger once the smaller
5861 		 * has gone to zero.  And given the way we stop scanning the
5862 		 * smaller below, this makes sure that we only make one nudge
5863 		 * towards proportionality once we've got nr_to_reclaim.
5864 		 */
5865 		if (!nr_file || !nr_anon)
5866 			break;
5867 
5868 		if (nr_file > nr_anon) {
5869 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5870 						targets[LRU_ACTIVE_ANON] + 1;
5871 			lru = LRU_BASE;
5872 			percentage = nr_anon * 100 / scan_target;
5873 		} else {
5874 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5875 						targets[LRU_ACTIVE_FILE] + 1;
5876 			lru = LRU_FILE;
5877 			percentage = nr_file * 100 / scan_target;
5878 		}
5879 
5880 		/* Stop scanning the smaller of the LRU */
5881 		nr[lru] = 0;
5882 		nr[lru + LRU_ACTIVE] = 0;
5883 
5884 		/*
5885 		 * Recalculate the other LRU scan count based on its original
5886 		 * scan target and the percentage scanning already complete
5887 		 */
5888 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5889 		nr_scanned = targets[lru] - nr[lru];
5890 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5891 		nr[lru] -= min(nr[lru], nr_scanned);
5892 
5893 		lru += LRU_ACTIVE;
5894 		nr_scanned = targets[lru] - nr[lru];
5895 		nr[lru] = targets[lru] * (100 - percentage) / 100;
5896 		nr[lru] -= min(nr[lru], nr_scanned);
5897 	}
5898 	blk_finish_plug(&plug);
5899 	sc->nr_reclaimed += nr_reclaimed;
5900 
5901 	/*
5902 	 * Even if we did not try to evict anon pages at all, we want to
5903 	 * rebalance the anon lru active/inactive ratio.
5904 	 */
5905 	if (can_age_anon_pages(lruvec, sc) &&
5906 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5907 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5908 				   sc, LRU_ACTIVE_ANON);
5909 }
5910 
5911 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5912 static bool in_reclaim_compaction(struct scan_control *sc)
5913 {
5914 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5915 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5916 			 sc->priority < DEF_PRIORITY - 2))
5917 		return true;
5918 
5919 	return false;
5920 }
5921 
5922 /*
5923  * Reclaim/compaction is used for high-order allocation requests. It reclaims
5924  * order-0 pages before compacting the zone. should_continue_reclaim() returns
5925  * true if more pages should be reclaimed such that when the page allocator
5926  * calls try_to_compact_pages() that it will have enough free pages to succeed.
5927  * It will give up earlier than that if there is difficulty reclaiming pages.
5928  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5929 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5930 					unsigned long nr_reclaimed,
5931 					struct scan_control *sc)
5932 {
5933 	unsigned long pages_for_compaction;
5934 	unsigned long inactive_lru_pages;
5935 	int z;
5936 	struct zone *zone;
5937 
5938 	/* If not in reclaim/compaction mode, stop */
5939 	if (!in_reclaim_compaction(sc))
5940 		return false;
5941 
5942 	/*
5943 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5944 	 * number of pages that were scanned. This will return to the caller
5945 	 * with the risk reclaim/compaction and the resulting allocation attempt
5946 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5947 	 * allocations through requiring that the full LRU list has been scanned
5948 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5949 	 * scan, but that approximation was wrong, and there were corner cases
5950 	 * where always a non-zero amount of pages were scanned.
5951 	 */
5952 	if (!nr_reclaimed)
5953 		return false;
5954 
5955 	/* If compaction would go ahead or the allocation would succeed, stop */
5956 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5957 		unsigned long watermark = min_wmark_pages(zone);
5958 
5959 		/* Allocation can already succeed, nothing to do */
5960 		if (zone_watermark_ok(zone, sc->order, watermark,
5961 				      sc->reclaim_idx, 0))
5962 			return false;
5963 
5964 		if (compaction_suitable(zone, sc->order, watermark,
5965 					sc->reclaim_idx))
5966 			return false;
5967 	}
5968 
5969 	/*
5970 	 * If we have not reclaimed enough pages for compaction and the
5971 	 * inactive lists are large enough, continue reclaiming
5972 	 */
5973 	pages_for_compaction = compact_gap(sc->order);
5974 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5975 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5976 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5977 
5978 	return inactive_lru_pages > pages_for_compaction;
5979 }
5980 
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5981 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5982 {
5983 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5984 	struct mem_cgroup_reclaim_cookie reclaim = {
5985 		.pgdat = pgdat,
5986 	};
5987 	struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5988 	struct mem_cgroup *memcg;
5989 
5990 	/*
5991 	 * In most cases, direct reclaimers can do partial walks
5992 	 * through the cgroup tree, using an iterator state that
5993 	 * persists across invocations. This strikes a balance between
5994 	 * fairness and allocation latency.
5995 	 *
5996 	 * For kswapd, reliable forward progress is more important
5997 	 * than a quick return to idle. Always do full walks.
5998 	 */
5999 	if (current_is_kswapd() || sc->memcg_full_walk)
6000 		partial = NULL;
6001 
6002 	memcg = mem_cgroup_iter(target_memcg, NULL, partial);
6003 	do {
6004 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6005 		unsigned long reclaimed;
6006 		unsigned long scanned;
6007 
6008 		/*
6009 		 * This loop can become CPU-bound when target memcgs
6010 		 * aren't eligible for reclaim - either because they
6011 		 * don't have any reclaimable pages, or because their
6012 		 * memory is explicitly protected. Avoid soft lockups.
6013 		 */
6014 		cond_resched();
6015 
6016 		mem_cgroup_calculate_protection(target_memcg, memcg);
6017 
6018 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6019 			/*
6020 			 * Hard protection.
6021 			 * If there is no reclaimable memory, OOM.
6022 			 */
6023 			continue;
6024 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6025 			/*
6026 			 * Soft protection.
6027 			 * Respect the protection only as long as
6028 			 * there is an unprotected supply
6029 			 * of reclaimable memory from other cgroups.
6030 			 */
6031 			if (!sc->memcg_low_reclaim) {
6032 				sc->memcg_low_skipped = 1;
6033 				continue;
6034 			}
6035 			memcg_memory_event(memcg, MEMCG_LOW);
6036 		}
6037 
6038 		reclaimed = sc->nr_reclaimed;
6039 		scanned = sc->nr_scanned;
6040 
6041 		shrink_lruvec(lruvec, sc);
6042 
6043 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6044 			    sc->priority);
6045 
6046 		/* Record the group's reclaim efficiency */
6047 		if (!sc->proactive)
6048 			vmpressure(sc->gfp_mask, memcg, false,
6049 				   sc->nr_scanned - scanned,
6050 				   sc->nr_reclaimed - reclaimed);
6051 
6052 		/* If partial walks are allowed, bail once goal is reached */
6053 		if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6054 			mem_cgroup_iter_break(target_memcg, memcg);
6055 			break;
6056 		}
6057 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6058 }
6059 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6060 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6061 {
6062 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6063 	struct lruvec *target_lruvec;
6064 	bool reclaimable = false;
6065 
6066 	if (lru_gen_enabled() && root_reclaim(sc)) {
6067 		memset(&sc->nr, 0, sizeof(sc->nr));
6068 		lru_gen_shrink_node(pgdat, sc);
6069 		return;
6070 	}
6071 
6072 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6073 
6074 again:
6075 	memset(&sc->nr, 0, sizeof(sc->nr));
6076 
6077 	nr_reclaimed = sc->nr_reclaimed;
6078 	nr_scanned = sc->nr_scanned;
6079 
6080 	prepare_scan_control(pgdat, sc);
6081 
6082 	shrink_node_memcgs(pgdat, sc);
6083 
6084 	flush_reclaim_state(sc);
6085 
6086 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6087 
6088 	/* Record the subtree's reclaim efficiency */
6089 	if (!sc->proactive)
6090 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6091 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6092 
6093 	if (nr_node_reclaimed)
6094 		reclaimable = true;
6095 
6096 	if (current_is_kswapd()) {
6097 		/*
6098 		 * If reclaim is isolating dirty pages under writeback,
6099 		 * it implies that the long-lived page allocation rate
6100 		 * is exceeding the page laundering rate. Either the
6101 		 * global limits are not being effective at throttling
6102 		 * processes due to the page distribution throughout
6103 		 * zones or there is heavy usage of a slow backing
6104 		 * device. The only option is to throttle from reclaim
6105 		 * context which is not ideal as there is no guarantee
6106 		 * the dirtying process is throttled in the same way
6107 		 * balance_dirty_pages() manages.
6108 		 *
6109 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6110 		 * count the number of pages under pages flagged for
6111 		 * immediate reclaim and stall if any are encountered
6112 		 * in the nr_immediate check below.
6113 		 */
6114 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6115 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6116 
6117 		/* Allow kswapd to start writing pages during reclaim.*/
6118 		if (sc->nr.unqueued_dirty &&
6119 			sc->nr.unqueued_dirty == sc->nr.file_taken)
6120 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6121 
6122 		/*
6123 		 * If kswapd scans pages marked for immediate
6124 		 * reclaim and under writeback (nr_immediate), it
6125 		 * implies that pages are cycling through the LRU
6126 		 * faster than they are written so forcibly stall
6127 		 * until some pages complete writeback.
6128 		 */
6129 		if (sc->nr.immediate)
6130 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6131 	}
6132 
6133 	/*
6134 	 * Tag a node/memcg as congested if all the dirty pages were marked
6135 	 * for writeback and immediate reclaim (counted in nr.congested).
6136 	 *
6137 	 * Legacy memcg will stall in page writeback so avoid forcibly
6138 	 * stalling in reclaim_throttle().
6139 	 */
6140 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6141 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6142 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6143 
6144 		if (current_is_kswapd())
6145 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6146 	}
6147 
6148 	/*
6149 	 * Stall direct reclaim for IO completions if the lruvec is
6150 	 * node is congested. Allow kswapd to continue until it
6151 	 * starts encountering unqueued dirty pages or cycling through
6152 	 * the LRU too quickly.
6153 	 */
6154 	if (!current_is_kswapd() && current_may_throttle() &&
6155 	    !sc->hibernation_mode &&
6156 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6157 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6158 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6159 
6160 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6161 		goto again;
6162 
6163 	/*
6164 	 * Kswapd gives up on balancing particular nodes after too
6165 	 * many failures to reclaim anything from them and goes to
6166 	 * sleep. On reclaim progress, reset the failure counter. A
6167 	 * successful direct reclaim run will revive a dormant kswapd.
6168 	 */
6169 	if (reclaimable)
6170 		pgdat->kswapd_failures = 0;
6171 	else if (sc->cache_trim_mode)
6172 		sc->cache_trim_mode_failed = 1;
6173 }
6174 
6175 /*
6176  * Returns true if compaction should go ahead for a costly-order request, or
6177  * the allocation would already succeed without compaction. Return false if we
6178  * should reclaim first.
6179  */
compaction_ready(struct zone * zone,struct scan_control * sc)6180 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6181 {
6182 	unsigned long watermark;
6183 
6184 	if (!gfp_compaction_allowed(sc->gfp_mask))
6185 		return false;
6186 
6187 	/* Allocation can already succeed, nothing to do */
6188 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6189 			      sc->reclaim_idx, 0))
6190 		return true;
6191 
6192 	/*
6193 	 * Direct reclaim usually targets the min watermark, but compaction
6194 	 * takes time to run and there are potentially other callers using the
6195 	 * pages just freed. So target a higher buffer to give compaction a
6196 	 * reasonable chance of completing and allocating the pages.
6197 	 *
6198 	 * Note that we won't actually reclaim the whole buffer in one attempt
6199 	 * as the target watermark in should_continue_reclaim() is lower. But if
6200 	 * we are already above the high+gap watermark, don't reclaim at all.
6201 	 */
6202 	watermark = high_wmark_pages(zone);
6203 	if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6204 		return true;
6205 
6206 	return false;
6207 }
6208 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6209 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6210 {
6211 	/*
6212 	 * If reclaim is making progress greater than 12% efficiency then
6213 	 * wake all the NOPROGRESS throttled tasks.
6214 	 */
6215 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6216 		wait_queue_head_t *wqh;
6217 
6218 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6219 		if (waitqueue_active(wqh))
6220 			wake_up(wqh);
6221 
6222 		return;
6223 	}
6224 
6225 	/*
6226 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6227 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6228 	 * under writeback and marked for immediate reclaim at the tail of the
6229 	 * LRU.
6230 	 */
6231 	if (current_is_kswapd() || cgroup_reclaim(sc))
6232 		return;
6233 
6234 	/* Throttle if making no progress at high prioities. */
6235 	if (sc->priority == 1 && !sc->nr_reclaimed)
6236 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6237 }
6238 
6239 /*
6240  * This is the direct reclaim path, for page-allocating processes.  We only
6241  * try to reclaim pages from zones which will satisfy the caller's allocation
6242  * request.
6243  *
6244  * If a zone is deemed to be full of pinned pages then just give it a light
6245  * scan then give up on it.
6246  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6247 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6248 {
6249 	struct zoneref *z;
6250 	struct zone *zone;
6251 	unsigned long nr_soft_reclaimed;
6252 	unsigned long nr_soft_scanned;
6253 	gfp_t orig_mask;
6254 	pg_data_t *last_pgdat = NULL;
6255 	pg_data_t *first_pgdat = NULL;
6256 
6257 	/*
6258 	 * If the number of buffer_heads in the machine exceeds the maximum
6259 	 * allowed level, force direct reclaim to scan the highmem zone as
6260 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6261 	 */
6262 	orig_mask = sc->gfp_mask;
6263 	if (buffer_heads_over_limit) {
6264 		sc->gfp_mask |= __GFP_HIGHMEM;
6265 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6266 	}
6267 
6268 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6269 					sc->reclaim_idx, sc->nodemask) {
6270 		/*
6271 		 * Take care memory controller reclaiming has small influence
6272 		 * to global LRU.
6273 		 */
6274 		if (!cgroup_reclaim(sc)) {
6275 			if (!cpuset_zone_allowed(zone,
6276 						 GFP_KERNEL | __GFP_HARDWALL))
6277 				continue;
6278 
6279 			/*
6280 			 * If we already have plenty of memory free for
6281 			 * compaction in this zone, don't free any more.
6282 			 * Even though compaction is invoked for any
6283 			 * non-zero order, only frequent costly order
6284 			 * reclamation is disruptive enough to become a
6285 			 * noticeable problem, like transparent huge
6286 			 * page allocations.
6287 			 */
6288 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6289 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6290 			    compaction_ready(zone, sc)) {
6291 				sc->compaction_ready = true;
6292 				continue;
6293 			}
6294 
6295 			/*
6296 			 * Shrink each node in the zonelist once. If the
6297 			 * zonelist is ordered by zone (not the default) then a
6298 			 * node may be shrunk multiple times but in that case
6299 			 * the user prefers lower zones being preserved.
6300 			 */
6301 			if (zone->zone_pgdat == last_pgdat)
6302 				continue;
6303 
6304 			/*
6305 			 * This steals pages from memory cgroups over softlimit
6306 			 * and returns the number of reclaimed pages and
6307 			 * scanned pages. This works for global memory pressure
6308 			 * and balancing, not for a memcg's limit.
6309 			 */
6310 			nr_soft_scanned = 0;
6311 			nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6312 								      sc->order, sc->gfp_mask,
6313 								      &nr_soft_scanned);
6314 			sc->nr_reclaimed += nr_soft_reclaimed;
6315 			sc->nr_scanned += nr_soft_scanned;
6316 			/* need some check for avoid more shrink_zone() */
6317 		}
6318 
6319 		if (!first_pgdat)
6320 			first_pgdat = zone->zone_pgdat;
6321 
6322 		/* See comment about same check for global reclaim above */
6323 		if (zone->zone_pgdat == last_pgdat)
6324 			continue;
6325 		last_pgdat = zone->zone_pgdat;
6326 		shrink_node(zone->zone_pgdat, sc);
6327 	}
6328 
6329 	if (first_pgdat)
6330 		consider_reclaim_throttle(first_pgdat, sc);
6331 
6332 	/*
6333 	 * Restore to original mask to avoid the impact on the caller if we
6334 	 * promoted it to __GFP_HIGHMEM.
6335 	 */
6336 	sc->gfp_mask = orig_mask;
6337 }
6338 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6339 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6340 {
6341 	struct lruvec *target_lruvec;
6342 	unsigned long refaults;
6343 
6344 	if (lru_gen_enabled())
6345 		return;
6346 
6347 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6348 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6349 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6350 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6351 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6352 }
6353 
6354 /*
6355  * This is the main entry point to direct page reclaim.
6356  *
6357  * If a full scan of the inactive list fails to free enough memory then we
6358  * are "out of memory" and something needs to be killed.
6359  *
6360  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6361  * high - the zone may be full of dirty or under-writeback pages, which this
6362  * caller can't do much about.  We kick the writeback threads and take explicit
6363  * naps in the hope that some of these pages can be written.  But if the
6364  * allocating task holds filesystem locks which prevent writeout this might not
6365  * work, and the allocation attempt will fail.
6366  *
6367  * returns:	0, if no pages reclaimed
6368  * 		else, the number of pages reclaimed
6369  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6370 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6371 					  struct scan_control *sc)
6372 {
6373 	int initial_priority = sc->priority;
6374 	pg_data_t *last_pgdat;
6375 	struct zoneref *z;
6376 	struct zone *zone;
6377 retry:
6378 	delayacct_freepages_start();
6379 
6380 	if (!cgroup_reclaim(sc))
6381 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6382 
6383 	do {
6384 		if (!sc->proactive)
6385 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6386 					sc->priority);
6387 		sc->nr_scanned = 0;
6388 		shrink_zones(zonelist, sc);
6389 
6390 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6391 			break;
6392 
6393 		if (sc->compaction_ready)
6394 			break;
6395 
6396 		/*
6397 		 * If we're getting trouble reclaiming, start doing
6398 		 * writepage even in laptop mode.
6399 		 */
6400 		if (sc->priority < DEF_PRIORITY - 2)
6401 			sc->may_writepage = 1;
6402 	} while (--sc->priority >= 0);
6403 
6404 	last_pgdat = NULL;
6405 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6406 					sc->nodemask) {
6407 		if (zone->zone_pgdat == last_pgdat)
6408 			continue;
6409 		last_pgdat = zone->zone_pgdat;
6410 
6411 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6412 
6413 		if (cgroup_reclaim(sc)) {
6414 			struct lruvec *lruvec;
6415 
6416 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6417 						   zone->zone_pgdat);
6418 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6419 		}
6420 	}
6421 
6422 	delayacct_freepages_end();
6423 
6424 	if (sc->nr_reclaimed)
6425 		return sc->nr_reclaimed;
6426 
6427 	/* Aborted reclaim to try compaction? don't OOM, then */
6428 	if (sc->compaction_ready)
6429 		return 1;
6430 
6431 	/*
6432 	 * In most cases, direct reclaimers can do partial walks
6433 	 * through the cgroup tree to meet the reclaim goal while
6434 	 * keeping latency low. Since the iterator state is shared
6435 	 * among all direct reclaim invocations (to retain fairness
6436 	 * among cgroups), though, high concurrency can result in
6437 	 * individual threads not seeing enough cgroups to make
6438 	 * meaningful forward progress. Avoid false OOMs in this case.
6439 	 */
6440 	if (!sc->memcg_full_walk) {
6441 		sc->priority = initial_priority;
6442 		sc->memcg_full_walk = 1;
6443 		goto retry;
6444 	}
6445 
6446 	/*
6447 	 * We make inactive:active ratio decisions based on the node's
6448 	 * composition of memory, but a restrictive reclaim_idx or a
6449 	 * memory.low cgroup setting can exempt large amounts of
6450 	 * memory from reclaim. Neither of which are very common, so
6451 	 * instead of doing costly eligibility calculations of the
6452 	 * entire cgroup subtree up front, we assume the estimates are
6453 	 * good, and retry with forcible deactivation if that fails.
6454 	 */
6455 	if (sc->skipped_deactivate) {
6456 		sc->priority = initial_priority;
6457 		sc->force_deactivate = 1;
6458 		sc->skipped_deactivate = 0;
6459 		goto retry;
6460 	}
6461 
6462 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6463 	if (sc->memcg_low_skipped) {
6464 		sc->priority = initial_priority;
6465 		sc->force_deactivate = 0;
6466 		sc->memcg_low_reclaim = 1;
6467 		sc->memcg_low_skipped = 0;
6468 		goto retry;
6469 	}
6470 
6471 	return 0;
6472 }
6473 
allow_direct_reclaim(pg_data_t * pgdat)6474 static bool allow_direct_reclaim(pg_data_t *pgdat)
6475 {
6476 	struct zone *zone;
6477 	unsigned long pfmemalloc_reserve = 0;
6478 	unsigned long free_pages = 0;
6479 	int i;
6480 	bool wmark_ok;
6481 
6482 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6483 		return true;
6484 
6485 	for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6486 		if (!zone_reclaimable_pages(zone))
6487 			continue;
6488 
6489 		pfmemalloc_reserve += min_wmark_pages(zone);
6490 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6491 	}
6492 
6493 	/* If there are no reserves (unexpected config) then do not throttle */
6494 	if (!pfmemalloc_reserve)
6495 		return true;
6496 
6497 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6498 
6499 	/* kswapd must be awake if processes are being throttled */
6500 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6501 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6502 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6503 
6504 		wake_up_interruptible(&pgdat->kswapd_wait);
6505 	}
6506 
6507 	return wmark_ok;
6508 }
6509 
6510 /*
6511  * Throttle direct reclaimers if backing storage is backed by the network
6512  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6513  * depleted. kswapd will continue to make progress and wake the processes
6514  * when the low watermark is reached.
6515  *
6516  * Returns true if a fatal signal was delivered during throttling. If this
6517  * happens, the page allocator should not consider triggering the OOM killer.
6518  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6519 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6520 					nodemask_t *nodemask)
6521 {
6522 	struct zoneref *z;
6523 	struct zone *zone;
6524 	pg_data_t *pgdat = NULL;
6525 
6526 	/*
6527 	 * Kernel threads should not be throttled as they may be indirectly
6528 	 * responsible for cleaning pages necessary for reclaim to make forward
6529 	 * progress. kjournald for example may enter direct reclaim while
6530 	 * committing a transaction where throttling it could forcing other
6531 	 * processes to block on log_wait_commit().
6532 	 */
6533 	if (current->flags & PF_KTHREAD)
6534 		goto out;
6535 
6536 	/*
6537 	 * If a fatal signal is pending, this process should not throttle.
6538 	 * It should return quickly so it can exit and free its memory
6539 	 */
6540 	if (fatal_signal_pending(current))
6541 		goto out;
6542 
6543 	/*
6544 	 * Check if the pfmemalloc reserves are ok by finding the first node
6545 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6546 	 * GFP_KERNEL will be required for allocating network buffers when
6547 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6548 	 *
6549 	 * Throttling is based on the first usable node and throttled processes
6550 	 * wait on a queue until kswapd makes progress and wakes them. There
6551 	 * is an affinity then between processes waking up and where reclaim
6552 	 * progress has been made assuming the process wakes on the same node.
6553 	 * More importantly, processes running on remote nodes will not compete
6554 	 * for remote pfmemalloc reserves and processes on different nodes
6555 	 * should make reasonable progress.
6556 	 */
6557 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6558 					gfp_zone(gfp_mask), nodemask) {
6559 		if (zone_idx(zone) > ZONE_NORMAL)
6560 			continue;
6561 
6562 		/* Throttle based on the first usable node */
6563 		pgdat = zone->zone_pgdat;
6564 		if (allow_direct_reclaim(pgdat))
6565 			goto out;
6566 		break;
6567 	}
6568 
6569 	/* If no zone was usable by the allocation flags then do not throttle */
6570 	if (!pgdat)
6571 		goto out;
6572 
6573 	/* Account for the throttling */
6574 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
6575 
6576 	/*
6577 	 * If the caller cannot enter the filesystem, it's possible that it
6578 	 * is due to the caller holding an FS lock or performing a journal
6579 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
6580 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
6581 	 * blocked waiting on the same lock. Instead, throttle for up to a
6582 	 * second before continuing.
6583 	 */
6584 	if (!(gfp_mask & __GFP_FS))
6585 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6586 			allow_direct_reclaim(pgdat), HZ);
6587 	else
6588 		/* Throttle until kswapd wakes the process */
6589 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6590 			allow_direct_reclaim(pgdat));
6591 
6592 	if (fatal_signal_pending(current))
6593 		return true;
6594 
6595 out:
6596 	return false;
6597 }
6598 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6599 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6600 				gfp_t gfp_mask, nodemask_t *nodemask)
6601 {
6602 	unsigned long nr_reclaimed;
6603 	struct scan_control sc = {
6604 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6605 		.gfp_mask = current_gfp_context(gfp_mask),
6606 		.reclaim_idx = gfp_zone(gfp_mask),
6607 		.order = order,
6608 		.nodemask = nodemask,
6609 		.priority = DEF_PRIORITY,
6610 		.may_writepage = !laptop_mode,
6611 		.may_unmap = 1,
6612 		.may_swap = 1,
6613 	};
6614 
6615 	/*
6616 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6617 	 * Confirm they are large enough for max values.
6618 	 */
6619 	BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6620 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6621 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6622 
6623 	/*
6624 	 * Do not enter reclaim if fatal signal was delivered while throttled.
6625 	 * 1 is returned so that the page allocator does not OOM kill at this
6626 	 * point.
6627 	 */
6628 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6629 		return 1;
6630 
6631 	set_task_reclaim_state(current, &sc.reclaim_state);
6632 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6633 
6634 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6635 
6636 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6637 	set_task_reclaim_state(current, NULL);
6638 
6639 	return nr_reclaimed;
6640 }
6641 
6642 #ifdef CONFIG_MEMCG
6643 
6644 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6645 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6646 						gfp_t gfp_mask, bool noswap,
6647 						pg_data_t *pgdat,
6648 						unsigned long *nr_scanned)
6649 {
6650 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6651 	struct scan_control sc = {
6652 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
6653 		.target_mem_cgroup = memcg,
6654 		.may_writepage = !laptop_mode,
6655 		.may_unmap = 1,
6656 		.reclaim_idx = MAX_NR_ZONES - 1,
6657 		.may_swap = !noswap,
6658 	};
6659 
6660 	WARN_ON_ONCE(!current->reclaim_state);
6661 
6662 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6663 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6664 
6665 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6666 						      sc.gfp_mask);
6667 
6668 	/*
6669 	 * NOTE: Although we can get the priority field, using it
6670 	 * here is not a good idea, since it limits the pages we can scan.
6671 	 * if we don't reclaim here, the shrink_node from balance_pgdat
6672 	 * will pick up pages from other mem cgroup's as well. We hack
6673 	 * the priority and make it zero.
6674 	 */
6675 	shrink_lruvec(lruvec, &sc);
6676 
6677 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6678 
6679 	*nr_scanned = sc.nr_scanned;
6680 
6681 	return sc.nr_reclaimed;
6682 }
6683 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6684 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6685 					   unsigned long nr_pages,
6686 					   gfp_t gfp_mask,
6687 					   unsigned int reclaim_options,
6688 					   int *swappiness)
6689 {
6690 	unsigned long nr_reclaimed;
6691 	unsigned int noreclaim_flag;
6692 	struct scan_control sc = {
6693 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6694 		.proactive_swappiness = swappiness,
6695 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6696 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6697 		.reclaim_idx = MAX_NR_ZONES - 1,
6698 		.target_mem_cgroup = memcg,
6699 		.priority = DEF_PRIORITY,
6700 		.may_writepage = !laptop_mode,
6701 		.may_unmap = 1,
6702 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6703 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6704 	};
6705 	/*
6706 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6707 	 * equal pressure on all the nodes. This is based on the assumption that
6708 	 * the reclaim does not bail out early.
6709 	 */
6710 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6711 
6712 	set_task_reclaim_state(current, &sc.reclaim_state);
6713 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6714 	noreclaim_flag = memalloc_noreclaim_save();
6715 
6716 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6717 
6718 	memalloc_noreclaim_restore(noreclaim_flag);
6719 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6720 	set_task_reclaim_state(current, NULL);
6721 
6722 	return nr_reclaimed;
6723 }
6724 #endif
6725 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6726 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6727 {
6728 	struct mem_cgroup *memcg;
6729 	struct lruvec *lruvec;
6730 
6731 	if (lru_gen_enabled()) {
6732 		lru_gen_age_node(pgdat, sc);
6733 		return;
6734 	}
6735 
6736 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
6737 	if (!can_age_anon_pages(lruvec, sc))
6738 		return;
6739 
6740 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6741 		return;
6742 
6743 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
6744 	do {
6745 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
6746 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6747 				   sc, LRU_ACTIVE_ANON);
6748 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
6749 	} while (memcg);
6750 }
6751 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6752 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6753 {
6754 	int i;
6755 	struct zone *zone;
6756 
6757 	/*
6758 	 * Check for watermark boosts top-down as the higher zones
6759 	 * are more likely to be boosted. Both watermarks and boosts
6760 	 * should not be checked at the same time as reclaim would
6761 	 * start prematurely when there is no boosting and a lower
6762 	 * zone is balanced.
6763 	 */
6764 	for (i = highest_zoneidx; i >= 0; i--) {
6765 		zone = pgdat->node_zones + i;
6766 		if (!managed_zone(zone))
6767 			continue;
6768 
6769 		if (zone->watermark_boost)
6770 			return true;
6771 	}
6772 
6773 	return false;
6774 }
6775 
6776 /*
6777  * Returns true if there is an eligible zone balanced for the request order
6778  * and highest_zoneidx
6779  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6780 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6781 {
6782 	int i;
6783 	unsigned long mark = -1;
6784 	struct zone *zone;
6785 
6786 	/*
6787 	 * Check watermarks bottom-up as lower zones are more likely to
6788 	 * meet watermarks.
6789 	 */
6790 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6791 		enum zone_stat_item item;
6792 		unsigned long free_pages;
6793 
6794 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6795 			mark = promo_wmark_pages(zone);
6796 		else
6797 			mark = high_wmark_pages(zone);
6798 
6799 		/*
6800 		 * In defrag_mode, watermarks must be met in whole
6801 		 * blocks to avoid polluting allocator fallbacks.
6802 		 *
6803 		 * However, kswapd usually cannot accomplish this on
6804 		 * its own and needs kcompactd support. Once it's
6805 		 * reclaimed a compaction gap, and kswapd_shrink_node
6806 		 * has dropped order, simply ensure there are enough
6807 		 * base pages for compaction, wake kcompactd & sleep.
6808 		 */
6809 		if (defrag_mode && order)
6810 			item = NR_FREE_PAGES_BLOCKS;
6811 		else
6812 			item = NR_FREE_PAGES;
6813 
6814 		/*
6815 		 * When there is a high number of CPUs in the system,
6816 		 * the cumulative error from the vmstat per-cpu cache
6817 		 * can blur the line between the watermarks. In that
6818 		 * case, be safe and get an accurate snapshot.
6819 		 *
6820 		 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6821 		 * pageblock_nr_pages, while the vmstat pcp threshold
6822 		 * is limited to 125. On many configurations that
6823 		 * counter won't actually be per-cpu cached. But keep
6824 		 * things simple for now; revisit when somebody cares.
6825 		 */
6826 		free_pages = zone_page_state(zone, item);
6827 		if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6828 			free_pages = zone_page_state_snapshot(zone, item);
6829 
6830 		if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6831 					0, free_pages))
6832 			return true;
6833 	}
6834 
6835 	/*
6836 	 * If a node has no managed zone within highest_zoneidx, it does not
6837 	 * need balancing by definition. This can happen if a zone-restricted
6838 	 * allocation tries to wake a remote kswapd.
6839 	 */
6840 	if (mark == -1)
6841 		return true;
6842 
6843 	return false;
6844 }
6845 
6846 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6847 static void clear_pgdat_congested(pg_data_t *pgdat)
6848 {
6849 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6850 
6851 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6852 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6853 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
6854 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6855 }
6856 
6857 /*
6858  * Prepare kswapd for sleeping. This verifies that there are no processes
6859  * waiting in throttle_direct_reclaim() and that watermarks have been met.
6860  *
6861  * Returns true if kswapd is ready to sleep
6862  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6863 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6864 				int highest_zoneidx)
6865 {
6866 	/*
6867 	 * The throttled processes are normally woken up in balance_pgdat() as
6868 	 * soon as allow_direct_reclaim() is true. But there is a potential
6869 	 * race between when kswapd checks the watermarks and a process gets
6870 	 * throttled. There is also a potential race if processes get
6871 	 * throttled, kswapd wakes, a large process exits thereby balancing the
6872 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
6873 	 * the wake up checks. If kswapd is going to sleep, no process should
6874 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6875 	 * the wake up is premature, processes will wake kswapd and get
6876 	 * throttled again. The difference from wake ups in balance_pgdat() is
6877 	 * that here we are under prepare_to_wait().
6878 	 */
6879 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
6880 		wake_up_all(&pgdat->pfmemalloc_wait);
6881 
6882 	/* Hopeless node, leave it to direct reclaim */
6883 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6884 		return true;
6885 
6886 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6887 		clear_pgdat_congested(pgdat);
6888 		return true;
6889 	}
6890 
6891 	return false;
6892 }
6893 
6894 /*
6895  * kswapd shrinks a node of pages that are at or below the highest usable
6896  * zone that is currently unbalanced.
6897  *
6898  * Returns true if kswapd scanned at least the requested number of pages to
6899  * reclaim or if the lack of progress was due to pages under writeback.
6900  * This is used to determine if the scanning priority needs to be raised.
6901  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6902 static bool kswapd_shrink_node(pg_data_t *pgdat,
6903 			       struct scan_control *sc)
6904 {
6905 	struct zone *zone;
6906 	int z;
6907 	unsigned long nr_reclaimed = sc->nr_reclaimed;
6908 
6909 	/* Reclaim a number of pages proportional to the number of zones */
6910 	sc->nr_to_reclaim = 0;
6911 	for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6912 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6913 	}
6914 
6915 	/*
6916 	 * Historically care was taken to put equal pressure on all zones but
6917 	 * now pressure is applied based on node LRU order.
6918 	 */
6919 	shrink_node(pgdat, sc);
6920 
6921 	/*
6922 	 * Fragmentation may mean that the system cannot be rebalanced for
6923 	 * high-order allocations. If twice the allocation size has been
6924 	 * reclaimed then recheck watermarks only at order-0 to prevent
6925 	 * excessive reclaim. Assume that a process requested a high-order
6926 	 * can direct reclaim/compact.
6927 	 */
6928 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6929 		sc->order = 0;
6930 
6931 	/* account for progress from mm_account_reclaimed_pages() */
6932 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6933 }
6934 
6935 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6936 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6937 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6938 {
6939 	int i;
6940 	struct zone *zone;
6941 
6942 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6943 		if (active)
6944 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6945 		else
6946 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6947 	}
6948 }
6949 
6950 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6951 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6952 {
6953 	update_reclaim_active(pgdat, highest_zoneidx, true);
6954 }
6955 
6956 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6957 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6958 {
6959 	update_reclaim_active(pgdat, highest_zoneidx, false);
6960 }
6961 
6962 /*
6963  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6964  * that are eligible for use by the caller until at least one zone is
6965  * balanced.
6966  *
6967  * Returns the order kswapd finished reclaiming at.
6968  *
6969  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
6970  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6971  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6972  * or lower is eligible for reclaim until at least one usable zone is
6973  * balanced.
6974  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6975 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6976 {
6977 	int i;
6978 	unsigned long nr_soft_reclaimed;
6979 	unsigned long nr_soft_scanned;
6980 	unsigned long pflags;
6981 	unsigned long nr_boost_reclaim;
6982 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6983 	bool boosted;
6984 	struct zone *zone;
6985 	struct scan_control sc = {
6986 		.gfp_mask = GFP_KERNEL,
6987 		.order = order,
6988 		.may_unmap = 1,
6989 	};
6990 
6991 	set_task_reclaim_state(current, &sc.reclaim_state);
6992 	psi_memstall_enter(&pflags);
6993 	__fs_reclaim_acquire(_THIS_IP_);
6994 
6995 	count_vm_event(PAGEOUTRUN);
6996 
6997 	/*
6998 	 * Account for the reclaim boost. Note that the zone boost is left in
6999 	 * place so that parallel allocations that are near the watermark will
7000 	 * stall or direct reclaim until kswapd is finished.
7001 	 */
7002 	nr_boost_reclaim = 0;
7003 	for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
7004 		nr_boost_reclaim += zone->watermark_boost;
7005 		zone_boosts[i] = zone->watermark_boost;
7006 	}
7007 	boosted = nr_boost_reclaim;
7008 
7009 restart:
7010 	set_reclaim_active(pgdat, highest_zoneidx);
7011 	sc.priority = DEF_PRIORITY;
7012 	do {
7013 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7014 		bool raise_priority = true;
7015 		bool balanced;
7016 		bool ret;
7017 		bool was_frozen;
7018 
7019 		sc.reclaim_idx = highest_zoneidx;
7020 
7021 		/*
7022 		 * If the number of buffer_heads exceeds the maximum allowed
7023 		 * then consider reclaiming from all zones. This has a dual
7024 		 * purpose -- on 64-bit systems it is expected that
7025 		 * buffer_heads are stripped during active rotation. On 32-bit
7026 		 * systems, highmem pages can pin lowmem memory and shrinking
7027 		 * buffers can relieve lowmem pressure. Reclaim may still not
7028 		 * go ahead if all eligible zones for the original allocation
7029 		 * request are balanced to avoid excessive reclaim from kswapd.
7030 		 */
7031 		if (buffer_heads_over_limit) {
7032 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7033 				zone = pgdat->node_zones + i;
7034 				if (!managed_zone(zone))
7035 					continue;
7036 
7037 				sc.reclaim_idx = i;
7038 				break;
7039 			}
7040 		}
7041 
7042 		/*
7043 		 * If the pgdat is imbalanced then ignore boosting and preserve
7044 		 * the watermarks for a later time and restart. Note that the
7045 		 * zone watermarks will be still reset at the end of balancing
7046 		 * on the grounds that the normal reclaim should be enough to
7047 		 * re-evaluate if boosting is required when kswapd next wakes.
7048 		 */
7049 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7050 		if (!balanced && nr_boost_reclaim) {
7051 			nr_boost_reclaim = 0;
7052 			goto restart;
7053 		}
7054 
7055 		/*
7056 		 * If boosting is not active then only reclaim if there are no
7057 		 * eligible zones. Note that sc.reclaim_idx is not used as
7058 		 * buffer_heads_over_limit may have adjusted it.
7059 		 */
7060 		if (!nr_boost_reclaim && balanced)
7061 			goto out;
7062 
7063 		/* Limit the priority of boosting to avoid reclaim writeback */
7064 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7065 			raise_priority = false;
7066 
7067 		/*
7068 		 * Do not writeback or swap pages for boosted reclaim. The
7069 		 * intent is to relieve pressure not issue sub-optimal IO
7070 		 * from reclaim context. If no pages are reclaimed, the
7071 		 * reclaim will be aborted.
7072 		 */
7073 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7074 		sc.may_swap = !nr_boost_reclaim;
7075 
7076 		/*
7077 		 * Do some background aging, to give pages a chance to be
7078 		 * referenced before reclaiming. All pages are rotated
7079 		 * regardless of classzone as this is about consistent aging.
7080 		 */
7081 		kswapd_age_node(pgdat, &sc);
7082 
7083 		/*
7084 		 * If we're getting trouble reclaiming, start doing writepage
7085 		 * even in laptop mode.
7086 		 */
7087 		if (sc.priority < DEF_PRIORITY - 2)
7088 			sc.may_writepage = 1;
7089 
7090 		/* Call soft limit reclaim before calling shrink_node. */
7091 		sc.nr_scanned = 0;
7092 		nr_soft_scanned = 0;
7093 		nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7094 							      sc.gfp_mask, &nr_soft_scanned);
7095 		sc.nr_reclaimed += nr_soft_reclaimed;
7096 
7097 		/*
7098 		 * There should be no need to raise the scanning priority if
7099 		 * enough pages are already being scanned that that high
7100 		 * watermark would be met at 100% efficiency.
7101 		 */
7102 		if (kswapd_shrink_node(pgdat, &sc))
7103 			raise_priority = false;
7104 
7105 		/*
7106 		 * If the low watermark is met there is no need for processes
7107 		 * to be throttled on pfmemalloc_wait as they should not be
7108 		 * able to safely make forward progress. Wake them
7109 		 */
7110 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7111 				allow_direct_reclaim(pgdat))
7112 			wake_up_all(&pgdat->pfmemalloc_wait);
7113 
7114 		/* Check if kswapd should be suspending */
7115 		__fs_reclaim_release(_THIS_IP_);
7116 		ret = kthread_freezable_should_stop(&was_frozen);
7117 		__fs_reclaim_acquire(_THIS_IP_);
7118 		if (was_frozen || ret)
7119 			break;
7120 
7121 		/*
7122 		 * Raise priority if scanning rate is too low or there was no
7123 		 * progress in reclaiming pages
7124 		 */
7125 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7126 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7127 
7128 		/*
7129 		 * If reclaim made no progress for a boost, stop reclaim as
7130 		 * IO cannot be queued and it could be an infinite loop in
7131 		 * extreme circumstances.
7132 		 */
7133 		if (nr_boost_reclaim && !nr_reclaimed)
7134 			break;
7135 
7136 		if (raise_priority || !nr_reclaimed)
7137 			sc.priority--;
7138 	} while (sc.priority >= 1);
7139 
7140 	/*
7141 	 * Restart only if it went through the priority loop all the way,
7142 	 * but cache_trim_mode didn't work.
7143 	 */
7144 	if (!sc.nr_reclaimed && sc.priority < 1 &&
7145 	    !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7146 		sc.no_cache_trim_mode = 1;
7147 		goto restart;
7148 	}
7149 
7150 	if (!sc.nr_reclaimed)
7151 		pgdat->kswapd_failures++;
7152 
7153 out:
7154 	clear_reclaim_active(pgdat, highest_zoneidx);
7155 
7156 	/* If reclaim was boosted, account for the reclaim done in this pass */
7157 	if (boosted) {
7158 		unsigned long flags;
7159 
7160 		for (i = 0; i <= highest_zoneidx; i++) {
7161 			if (!zone_boosts[i])
7162 				continue;
7163 
7164 			/* Increments are under the zone lock */
7165 			zone = pgdat->node_zones + i;
7166 			spin_lock_irqsave(&zone->lock, flags);
7167 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7168 			spin_unlock_irqrestore(&zone->lock, flags);
7169 		}
7170 
7171 		/*
7172 		 * As there is now likely space, wakeup kcompact to defragment
7173 		 * pageblocks.
7174 		 */
7175 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7176 	}
7177 
7178 	snapshot_refaults(NULL, pgdat);
7179 	__fs_reclaim_release(_THIS_IP_);
7180 	psi_memstall_leave(&pflags);
7181 	set_task_reclaim_state(current, NULL);
7182 
7183 	/*
7184 	 * Return the order kswapd stopped reclaiming at as
7185 	 * prepare_kswapd_sleep() takes it into account. If another caller
7186 	 * entered the allocator slow path while kswapd was awake, order will
7187 	 * remain at the higher level.
7188 	 */
7189 	return sc.order;
7190 }
7191 
7192 /*
7193  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7194  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7195  * not a valid index then either kswapd runs for first time or kswapd couldn't
7196  * sleep after previous reclaim attempt (node is still unbalanced). In that
7197  * case return the zone index of the previous kswapd reclaim cycle.
7198  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7199 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7200 					   enum zone_type prev_highest_zoneidx)
7201 {
7202 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7203 
7204 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7205 }
7206 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7207 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7208 				unsigned int highest_zoneidx)
7209 {
7210 	long remaining = 0;
7211 	DEFINE_WAIT(wait);
7212 
7213 	if (freezing(current) || kthread_should_stop())
7214 		return;
7215 
7216 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7217 
7218 	/*
7219 	 * Try to sleep for a short interval. Note that kcompactd will only be
7220 	 * woken if it is possible to sleep for a short interval. This is
7221 	 * deliberate on the assumption that if reclaim cannot keep an
7222 	 * eligible zone balanced that it's also unlikely that compaction will
7223 	 * succeed.
7224 	 */
7225 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7226 		/*
7227 		 * Compaction records what page blocks it recently failed to
7228 		 * isolate pages from and skips them in the future scanning.
7229 		 * When kswapd is going to sleep, it is reasonable to assume
7230 		 * that pages and compaction may succeed so reset the cache.
7231 		 */
7232 		reset_isolation_suitable(pgdat);
7233 
7234 		/*
7235 		 * We have freed the memory, now we should compact it to make
7236 		 * allocation of the requested order possible.
7237 		 */
7238 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7239 
7240 		remaining = schedule_timeout(HZ/10);
7241 
7242 		/*
7243 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7244 		 * order. The values will either be from a wakeup request or
7245 		 * the previous request that slept prematurely.
7246 		 */
7247 		if (remaining) {
7248 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7249 					kswapd_highest_zoneidx(pgdat,
7250 							highest_zoneidx));
7251 
7252 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7253 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7254 		}
7255 
7256 		finish_wait(&pgdat->kswapd_wait, &wait);
7257 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7258 	}
7259 
7260 	/*
7261 	 * After a short sleep, check if it was a premature sleep. If not, then
7262 	 * go fully to sleep until explicitly woken up.
7263 	 */
7264 	if (!remaining &&
7265 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7266 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7267 
7268 		/*
7269 		 * vmstat counters are not perfectly accurate and the estimated
7270 		 * value for counters such as NR_FREE_PAGES can deviate from the
7271 		 * true value by nr_online_cpus * threshold. To avoid the zone
7272 		 * watermarks being breached while under pressure, we reduce the
7273 		 * per-cpu vmstat threshold while kswapd is awake and restore
7274 		 * them before going back to sleep.
7275 		 */
7276 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7277 
7278 		if (!kthread_should_stop())
7279 			schedule();
7280 
7281 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7282 	} else {
7283 		if (remaining)
7284 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7285 		else
7286 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7287 	}
7288 	finish_wait(&pgdat->kswapd_wait, &wait);
7289 }
7290 
7291 /*
7292  * The background pageout daemon, started as a kernel thread
7293  * from the init process.
7294  *
7295  * This basically trickles out pages so that we have _some_
7296  * free memory available even if there is no other activity
7297  * that frees anything up. This is needed for things like routing
7298  * etc, where we otherwise might have all activity going on in
7299  * asynchronous contexts that cannot page things out.
7300  *
7301  * If there are applications that are active memory-allocators
7302  * (most normal use), this basically shouldn't matter.
7303  */
kswapd(void * p)7304 static int kswapd(void *p)
7305 {
7306 	unsigned int alloc_order, reclaim_order;
7307 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7308 	pg_data_t *pgdat = (pg_data_t *)p;
7309 	struct task_struct *tsk = current;
7310 
7311 	/*
7312 	 * Tell the memory management that we're a "memory allocator",
7313 	 * and that if we need more memory we should get access to it
7314 	 * regardless (see "__alloc_pages()"). "kswapd" should
7315 	 * never get caught in the normal page freeing logic.
7316 	 *
7317 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7318 	 * you need a small amount of memory in order to be able to
7319 	 * page out something else, and this flag essentially protects
7320 	 * us from recursively trying to free more memory as we're
7321 	 * trying to free the first piece of memory in the first place).
7322 	 */
7323 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7324 	set_freezable();
7325 
7326 	WRITE_ONCE(pgdat->kswapd_order, 0);
7327 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7328 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7329 	for ( ; ; ) {
7330 		bool was_frozen;
7331 
7332 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7333 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7334 							highest_zoneidx);
7335 
7336 kswapd_try_sleep:
7337 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7338 					highest_zoneidx);
7339 
7340 		/* Read the new order and highest_zoneidx */
7341 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7342 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7343 							highest_zoneidx);
7344 		WRITE_ONCE(pgdat->kswapd_order, 0);
7345 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7346 
7347 		if (kthread_freezable_should_stop(&was_frozen))
7348 			break;
7349 
7350 		/*
7351 		 * We can speed up thawing tasks if we don't call balance_pgdat
7352 		 * after returning from the refrigerator
7353 		 */
7354 		if (was_frozen)
7355 			continue;
7356 
7357 		/*
7358 		 * Reclaim begins at the requested order but if a high-order
7359 		 * reclaim fails then kswapd falls back to reclaiming for
7360 		 * order-0. If that happens, kswapd will consider sleeping
7361 		 * for the order it finished reclaiming at (reclaim_order)
7362 		 * but kcompactd is woken to compact for the original
7363 		 * request (alloc_order).
7364 		 */
7365 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7366 						alloc_order);
7367 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7368 						highest_zoneidx);
7369 		if (reclaim_order < alloc_order)
7370 			goto kswapd_try_sleep;
7371 	}
7372 
7373 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7374 
7375 	return 0;
7376 }
7377 
7378 /*
7379  * A zone is low on free memory or too fragmented for high-order memory.  If
7380  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7381  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7382  * has failed or is not needed, still wake up kcompactd if only compaction is
7383  * needed.
7384  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7385 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7386 		   enum zone_type highest_zoneidx)
7387 {
7388 	pg_data_t *pgdat;
7389 	enum zone_type curr_idx;
7390 
7391 	if (!managed_zone(zone))
7392 		return;
7393 
7394 	if (!cpuset_zone_allowed(zone, gfp_flags))
7395 		return;
7396 
7397 	pgdat = zone->zone_pgdat;
7398 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7399 
7400 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7401 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7402 
7403 	if (READ_ONCE(pgdat->kswapd_order) < order)
7404 		WRITE_ONCE(pgdat->kswapd_order, order);
7405 
7406 	if (!waitqueue_active(&pgdat->kswapd_wait))
7407 		return;
7408 
7409 	/* Hopeless node, leave it to direct reclaim if possible */
7410 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7411 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7412 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7413 		/*
7414 		 * There may be plenty of free memory available, but it's too
7415 		 * fragmented for high-order allocations.  Wake up kcompactd
7416 		 * and rely on compaction_suitable() to determine if it's
7417 		 * needed.  If it fails, it will defer subsequent attempts to
7418 		 * ratelimit its work.
7419 		 */
7420 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7421 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7422 		return;
7423 	}
7424 
7425 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7426 				      gfp_flags);
7427 	wake_up_interruptible(&pgdat->kswapd_wait);
7428 }
7429 
7430 #ifdef CONFIG_HIBERNATION
7431 /*
7432  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7433  * freed pages.
7434  *
7435  * Rather than trying to age LRUs the aim is to preserve the overall
7436  * LRU order by reclaiming preferentially
7437  * inactive > active > active referenced > active mapped
7438  */
shrink_all_memory(unsigned long nr_to_reclaim)7439 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7440 {
7441 	struct scan_control sc = {
7442 		.nr_to_reclaim = nr_to_reclaim,
7443 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7444 		.reclaim_idx = MAX_NR_ZONES - 1,
7445 		.priority = DEF_PRIORITY,
7446 		.may_writepage = 1,
7447 		.may_unmap = 1,
7448 		.may_swap = 1,
7449 		.hibernation_mode = 1,
7450 	};
7451 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7452 	unsigned long nr_reclaimed;
7453 	unsigned int noreclaim_flag;
7454 
7455 	fs_reclaim_acquire(sc.gfp_mask);
7456 	noreclaim_flag = memalloc_noreclaim_save();
7457 	set_task_reclaim_state(current, &sc.reclaim_state);
7458 
7459 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7460 
7461 	set_task_reclaim_state(current, NULL);
7462 	memalloc_noreclaim_restore(noreclaim_flag);
7463 	fs_reclaim_release(sc.gfp_mask);
7464 
7465 	return nr_reclaimed;
7466 }
7467 #endif /* CONFIG_HIBERNATION */
7468 
7469 /*
7470  * This kswapd start function will be called by init and node-hot-add.
7471  */
kswapd_run(int nid)7472 void __meminit kswapd_run(int nid)
7473 {
7474 	pg_data_t *pgdat = NODE_DATA(nid);
7475 
7476 	pgdat_kswapd_lock(pgdat);
7477 	if (!pgdat->kswapd) {
7478 		pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7479 		if (IS_ERR(pgdat->kswapd)) {
7480 			/* failure at boot is fatal */
7481 			pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7482 				   nid, PTR_ERR(pgdat->kswapd));
7483 			BUG_ON(system_state < SYSTEM_RUNNING);
7484 			pgdat->kswapd = NULL;
7485 		} else {
7486 			wake_up_process(pgdat->kswapd);
7487 		}
7488 	}
7489 	pgdat_kswapd_unlock(pgdat);
7490 }
7491 
7492 /*
7493  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7494  * be holding mem_hotplug_begin/done().
7495  */
kswapd_stop(int nid)7496 void __meminit kswapd_stop(int nid)
7497 {
7498 	pg_data_t *pgdat = NODE_DATA(nid);
7499 	struct task_struct *kswapd;
7500 
7501 	pgdat_kswapd_lock(pgdat);
7502 	kswapd = pgdat->kswapd;
7503 	if (kswapd) {
7504 		kthread_stop(kswapd);
7505 		pgdat->kswapd = NULL;
7506 	}
7507 	pgdat_kswapd_unlock(pgdat);
7508 }
7509 
7510 static const struct ctl_table vmscan_sysctl_table[] = {
7511 	{
7512 		.procname	= "swappiness",
7513 		.data		= &vm_swappiness,
7514 		.maxlen		= sizeof(vm_swappiness),
7515 		.mode		= 0644,
7516 		.proc_handler	= proc_dointvec_minmax,
7517 		.extra1		= SYSCTL_ZERO,
7518 		.extra2		= SYSCTL_TWO_HUNDRED,
7519 	},
7520 #ifdef CONFIG_NUMA
7521 	{
7522 		.procname	= "zone_reclaim_mode",
7523 		.data		= &node_reclaim_mode,
7524 		.maxlen		= sizeof(node_reclaim_mode),
7525 		.mode		= 0644,
7526 		.proc_handler	= proc_dointvec_minmax,
7527 		.extra1		= SYSCTL_ZERO,
7528 	}
7529 #endif
7530 };
7531 
kswapd_init(void)7532 static int __init kswapd_init(void)
7533 {
7534 	int nid;
7535 
7536 	swap_setup();
7537 	for_each_node_state(nid, N_MEMORY)
7538  		kswapd_run(nid);
7539 	register_sysctl_init("vm", vmscan_sysctl_table);
7540 	return 0;
7541 }
7542 
7543 module_init(kswapd_init)
7544 
7545 #ifdef CONFIG_NUMA
7546 /*
7547  * Node reclaim mode
7548  *
7549  * If non-zero call node_reclaim when the number of free pages falls below
7550  * the watermarks.
7551  */
7552 int node_reclaim_mode __read_mostly;
7553 
7554 /*
7555  * Priority for NODE_RECLAIM. This determines the fraction of pages
7556  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7557  * a zone.
7558  */
7559 #define NODE_RECLAIM_PRIORITY 4
7560 
7561 /*
7562  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7563  * occur.
7564  */
7565 int sysctl_min_unmapped_ratio = 1;
7566 
7567 /*
7568  * If the number of slab pages in a zone grows beyond this percentage then
7569  * slab reclaim needs to occur.
7570  */
7571 int sysctl_min_slab_ratio = 5;
7572 
node_unmapped_file_pages(struct pglist_data * pgdat)7573 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7574 {
7575 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7576 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7577 		node_page_state(pgdat, NR_ACTIVE_FILE);
7578 
7579 	/*
7580 	 * It's possible for there to be more file mapped pages than
7581 	 * accounted for by the pages on the file LRU lists because
7582 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7583 	 */
7584 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7585 }
7586 
7587 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7588 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7589 {
7590 	unsigned long nr_pagecache_reclaimable;
7591 	unsigned long delta = 0;
7592 
7593 	/*
7594 	 * If RECLAIM_UNMAP is set, then all file pages are considered
7595 	 * potentially reclaimable. Otherwise, we have to worry about
7596 	 * pages like swapcache and node_unmapped_file_pages() provides
7597 	 * a better estimate
7598 	 */
7599 	if (node_reclaim_mode & RECLAIM_UNMAP)
7600 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7601 	else
7602 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7603 
7604 	/* If we can't clean pages, remove dirty pages from consideration */
7605 	if (!(node_reclaim_mode & RECLAIM_WRITE))
7606 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
7607 
7608 	/* Watch for any possible underflows due to delta */
7609 	if (unlikely(delta > nr_pagecache_reclaimable))
7610 		delta = nr_pagecache_reclaimable;
7611 
7612 	return nr_pagecache_reclaimable - delta;
7613 }
7614 
7615 /*
7616  * Try to free up some pages from this node through reclaim.
7617  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7618 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7619 {
7620 	/* Minimum pages needed in order to stay on node */
7621 	const unsigned long nr_pages = 1 << order;
7622 	struct task_struct *p = current;
7623 	unsigned int noreclaim_flag;
7624 	struct scan_control sc = {
7625 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7626 		.gfp_mask = current_gfp_context(gfp_mask),
7627 		.order = order,
7628 		.priority = NODE_RECLAIM_PRIORITY,
7629 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7630 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7631 		.may_swap = 1,
7632 		.reclaim_idx = gfp_zone(gfp_mask),
7633 	};
7634 	unsigned long pflags;
7635 
7636 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7637 					   sc.gfp_mask);
7638 
7639 	cond_resched();
7640 	psi_memstall_enter(&pflags);
7641 	delayacct_freepages_start();
7642 	fs_reclaim_acquire(sc.gfp_mask);
7643 	/*
7644 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7645 	 */
7646 	noreclaim_flag = memalloc_noreclaim_save();
7647 	set_task_reclaim_state(p, &sc.reclaim_state);
7648 
7649 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7650 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7651 		/*
7652 		 * Free memory by calling shrink node with increasing
7653 		 * priorities until we have enough memory freed.
7654 		 */
7655 		do {
7656 			shrink_node(pgdat, &sc);
7657 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7658 	}
7659 
7660 	set_task_reclaim_state(p, NULL);
7661 	memalloc_noreclaim_restore(noreclaim_flag);
7662 	fs_reclaim_release(sc.gfp_mask);
7663 	psi_memstall_leave(&pflags);
7664 	delayacct_freepages_end();
7665 
7666 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7667 
7668 	return sc.nr_reclaimed >= nr_pages;
7669 }
7670 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7671 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7672 {
7673 	int ret;
7674 
7675 	/*
7676 	 * Node reclaim reclaims unmapped file backed pages and
7677 	 * slab pages if we are over the defined limits.
7678 	 *
7679 	 * A small portion of unmapped file backed pages is needed for
7680 	 * file I/O otherwise pages read by file I/O will be immediately
7681 	 * thrown out if the node is overallocated. So we do not reclaim
7682 	 * if less than a specified percentage of the node is used by
7683 	 * unmapped file backed pages.
7684 	 */
7685 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7686 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7687 	    pgdat->min_slab_pages)
7688 		return NODE_RECLAIM_FULL;
7689 
7690 	/*
7691 	 * Do not scan if the allocation should not be delayed.
7692 	 */
7693 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7694 		return NODE_RECLAIM_NOSCAN;
7695 
7696 	/*
7697 	 * Only run node reclaim on the local node or on nodes that do not
7698 	 * have associated processors. This will favor the local processor
7699 	 * over remote processors and spread off node memory allocations
7700 	 * as wide as possible.
7701 	 */
7702 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7703 		return NODE_RECLAIM_NOSCAN;
7704 
7705 	if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7706 		return NODE_RECLAIM_NOSCAN;
7707 
7708 	ret = __node_reclaim(pgdat, gfp_mask, order);
7709 	clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7710 
7711 	if (ret)
7712 		count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7713 	else
7714 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7715 
7716 	return ret;
7717 }
7718 #endif
7719 
7720 /**
7721  * check_move_unevictable_folios - Move evictable folios to appropriate zone
7722  * lru list
7723  * @fbatch: Batch of lru folios to check.
7724  *
7725  * Checks folios for evictability, if an evictable folio is in the unevictable
7726  * lru list, moves it to the appropriate evictable lru list. This function
7727  * should be only used for lru folios.
7728  */
check_move_unevictable_folios(struct folio_batch * fbatch)7729 void check_move_unevictable_folios(struct folio_batch *fbatch)
7730 {
7731 	struct lruvec *lruvec = NULL;
7732 	int pgscanned = 0;
7733 	int pgrescued = 0;
7734 	int i;
7735 
7736 	for (i = 0; i < fbatch->nr; i++) {
7737 		struct folio *folio = fbatch->folios[i];
7738 		int nr_pages = folio_nr_pages(folio);
7739 
7740 		pgscanned += nr_pages;
7741 
7742 		/* block memcg migration while the folio moves between lrus */
7743 		if (!folio_test_clear_lru(folio))
7744 			continue;
7745 
7746 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
7747 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7748 			lruvec_del_folio(lruvec, folio);
7749 			folio_clear_unevictable(folio);
7750 			lruvec_add_folio(lruvec, folio);
7751 			pgrescued += nr_pages;
7752 		}
7753 		folio_set_lru(folio);
7754 	}
7755 
7756 	if (lruvec) {
7757 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7758 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7759 		unlock_page_lruvec_irq(lruvec);
7760 	} else if (pgscanned) {
7761 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7762 	}
7763 }
7764 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7765