1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 #include <linux/nodemask.h>
18
19 struct ctl_table;
20 struct user_struct;
21 struct mmu_gather;
22 struct node;
23
24 void free_huge_folio(struct folio *folio);
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #include <linux/pagemap.h>
29 #include <linux/shm.h>
30 #include <asm/tlbflush.h>
31
32 /*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
35 * struct page to store the metadata.
36 */
37 #define __NR_USED_SUBPAGE 3
38
39 struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
44 /* both allocated and reserved pages. */
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
48 /* satisfy minimum size. */
49 };
50
51 struct resv_map {
52 struct kref refs;
53 spinlock_t lock;
54 struct list_head regions;
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
58 struct rw_semaphore rw_sema;
59 #ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68 #endif
69 };
70
71 /*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
79 * indices into the associated mapping. from indicates the starting index
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90 struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94 #ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102 #endif
103 };
104
105 struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109 };
110
111 extern struct resv_map *resv_map_alloc(void);
112 void resv_map_release(struct kref *ref);
113
114 extern spinlock_t hugetlb_lock;
115 extern int hugetlb_max_hstate __read_mostly;
116 #define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
119 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
121 void hugepage_put_subpool(struct hugepage_subpool *spool);
122
123 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
124 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
125 int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
129 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
131 void unmap_hugepage_range(struct vm_area_struct *,
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
134 void __unmap_hugepage_range(struct mmu_gather *tlb,
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
137 struct folio *, zap_flags_t zap_flags);
138 void hugetlb_report_meminfo(struct seq_file *);
139 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
140 void hugetlb_show_meminfo_node(int nid);
141 unsigned long hugetlb_total_pages(void);
142 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
143 unsigned long address, unsigned int flags);
144 #ifdef CONFIG_USERFAULTFD
145 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
149 uffd_flags_t flags,
150 struct folio **foliop);
151 #endif /* CONFIG_USERFAULTFD */
152 long hugetlb_reserve_pages(struct inode *inode, long from, long to,
153 struct vm_area_struct *vma,
154 vm_flags_t vm_flags);
155 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
156 long freed);
157 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
158 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
159 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
160 bool *migratable_cleared);
161 void folio_putback_hugetlb(struct folio *folio);
162 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
163 void hugetlb_fix_reserve_counts(struct inode *inode);
164 extern struct mutex *hugetlb_fault_mutex_table;
165 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
166
167 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
168 unsigned long addr, pud_t *pud);
169 bool hugetlbfs_pagecache_present(struct hstate *h,
170 struct vm_area_struct *vma,
171 unsigned long address);
172
173 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
174
175 extern int sysctl_hugetlb_shm_group;
176 extern struct list_head huge_boot_pages[MAX_NUMNODES];
177
178 void hugetlb_bootmem_alloc(void);
179 bool hugetlb_bootmem_allocated(void);
180 extern nodemask_t hugetlb_bootmem_nodes;
181 void hugetlb_bootmem_set_nodes(void);
182
183 /* arch callbacks */
184
185 #ifndef CONFIG_HIGHPTE
186 /*
187 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188 * which may go down to the lowest PTE level in their huge_pte_offset() and
189 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190 */
pte_offset_huge(pmd_t * pmd,unsigned long address)191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 return pte_offset_kernel(pmd, address);
194 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 unsigned long address)
197 {
198 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 unsigned long addr, unsigned long sz);
204 /*
205 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206 * Returns the pte_t* if found, or NULL if the address is not mapped.
207 *
208 * IMPORTANT: we should normally not directly call this function, instead
209 * this is only a common interface to implement arch-specific
210 * walker. Please use hugetlb_walk() instead, because that will attempt to
211 * verify the locking for you.
212 *
213 * Since this function will walk all the pgtable pages (including not only
214 * high-level pgtable page, but also PUD entry that can be unshared
215 * concurrently for VM_SHARED), the caller of this function should be
216 * responsible of its thread safety. One can follow this rule:
217 *
218 * (1) For private mappings: pmd unsharing is not possible, so holding the
219 * mmap_lock for either read or write is sufficient. Most callers
220 * already hold the mmap_lock, so normally, no special action is
221 * required.
222 *
223 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224 * pgtable page can go away from under us! It can be done by a pmd
225 * unshare with a follow up munmap() on the other process), then we
226 * need either:
227 *
228 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229 * won't happen upon the range (it also makes sure the pte_t we
230 * read is the right and stable one), or,
231 *
232 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233 * sure even if unshare happened the racy unmap() will wait until
234 * i_mmap_rwsem is released.
235 *
236 * Option (2.1) is the safest, which guarantees pte stability from pmd
237 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
238 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239 * access.
240 */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 unsigned long *start, unsigned long *end);
248
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 struct zap_details *details);
253
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 unsigned long *start, unsigned long *end)
256 {
257 if (is_vm_hugetlb_page(vma))
258 __hugetlb_zap_begin(vma, start, end);
259 }
260
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 struct zap_details *details)
263 {
264 if (is_vm_hugetlb_page(vma))
265 __hugetlb_zap_end(vma, details);
266 }
267
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 long hugetlb_change_protection(struct vm_area_struct *vma,
276 unsigned long address, unsigned long end, pgprot_t newprot,
277 unsigned long cp_flags);
278 bool is_hugetlb_entry_migration(pte_t pte);
279 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
280 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
281 void fixup_hugetlb_reservations(struct vm_area_struct *vma);
282 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
283
284 #else /* !CONFIG_HUGETLB_PAGE */
285
hugetlb_dup_vma_private(struct vm_area_struct * vma)286 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
287 {
288 }
289
clear_vma_resv_huge_pages(struct vm_area_struct * vma)290 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
291 {
292 }
293
hugetlb_total_pages(void)294 static inline unsigned long hugetlb_total_pages(void)
295 {
296 return 0;
297 }
298
hugetlb_folio_mapping_lock_write(struct folio * folio)299 static inline struct address_space *hugetlb_folio_mapping_lock_write(
300 struct folio *folio)
301 {
302 return NULL;
303 }
304
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)305 static inline int huge_pmd_unshare(struct mm_struct *mm,
306 struct vm_area_struct *vma,
307 unsigned long addr, pte_t *ptep)
308 {
309 return 0;
310 }
311
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)312 static inline void adjust_range_if_pmd_sharing_possible(
313 struct vm_area_struct *vma,
314 unsigned long *start, unsigned long *end)
315 {
316 }
317
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)318 static inline void hugetlb_zap_begin(
319 struct vm_area_struct *vma,
320 unsigned long *start, unsigned long *end)
321 {
322 }
323
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)324 static inline void hugetlb_zap_end(
325 struct vm_area_struct *vma,
326 struct zap_details *details)
327 {
328 }
329
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)330 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
331 struct mm_struct *src,
332 struct vm_area_struct *dst_vma,
333 struct vm_area_struct *src_vma)
334 {
335 BUG();
336 return 0;
337 }
338
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)339 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
340 struct vm_area_struct *new_vma,
341 unsigned long old_addr,
342 unsigned long new_addr,
343 unsigned long len)
344 {
345 BUG();
346 return 0;
347 }
348
hugetlb_report_meminfo(struct seq_file * m)349 static inline void hugetlb_report_meminfo(struct seq_file *m)
350 {
351 }
352
hugetlb_report_node_meminfo(char * buf,int len,int nid)353 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
354 {
355 return 0;
356 }
357
hugetlb_show_meminfo_node(int nid)358 static inline void hugetlb_show_meminfo_node(int nid)
359 {
360 }
361
hugetlb_vma_lock_read(struct vm_area_struct * vma)362 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
363 {
364 }
365
hugetlb_vma_unlock_read(struct vm_area_struct * vma)366 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
367 {
368 }
369
hugetlb_vma_lock_write(struct vm_area_struct * vma)370 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
371 {
372 }
373
hugetlb_vma_unlock_write(struct vm_area_struct * vma)374 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
375 {
376 }
377
hugetlb_vma_trylock_write(struct vm_area_struct * vma)378 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
379 {
380 return 1;
381 }
382
hugetlb_vma_assert_locked(struct vm_area_struct * vma)383 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
384 {
385 }
386
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)387 static inline int is_hugepage_only_range(struct mm_struct *mm,
388 unsigned long addr, unsigned long len)
389 {
390 return 0;
391 }
392
393 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)394 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
395 struct vm_area_struct *dst_vma,
396 unsigned long dst_addr,
397 unsigned long src_addr,
398 uffd_flags_t flags,
399 struct folio **foliop)
400 {
401 BUG();
402 return 0;
403 }
404 #endif /* CONFIG_USERFAULTFD */
405
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)406 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
407 unsigned long sz)
408 {
409 return NULL;
410 }
411
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)412 static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
413 {
414 return false;
415 }
416
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)417 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
418 {
419 return 0;
420 }
421
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)422 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
423 bool *migratable_cleared)
424 {
425 return 0;
426 }
427
folio_putback_hugetlb(struct folio * folio)428 static inline void folio_putback_hugetlb(struct folio *folio)
429 {
430 }
431
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)432 static inline void move_hugetlb_state(struct folio *old_folio,
433 struct folio *new_folio, int reason)
434 {
435 }
436
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)437 static inline long hugetlb_change_protection(
438 struct vm_area_struct *vma, unsigned long address,
439 unsigned long end, pgprot_t newprot,
440 unsigned long cp_flags)
441 {
442 return 0;
443 }
444
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)445 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
446 struct vm_area_struct *vma, unsigned long start,
447 unsigned long end, struct folio *folio,
448 zap_flags_t zap_flags)
449 {
450 BUG();
451 }
452
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)453 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
454 struct vm_area_struct *vma, unsigned long address,
455 unsigned int flags)
456 {
457 BUG();
458 return 0;
459 }
460
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)461 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
462
fixup_hugetlb_reservations(struct vm_area_struct * vma)463 static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
464 {
465 }
466
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)467 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
468
469 #endif /* !CONFIG_HUGETLB_PAGE */
470
471 #ifndef pgd_write
pgd_write(pgd_t pgd)472 static inline int pgd_write(pgd_t pgd)
473 {
474 BUG();
475 return 0;
476 }
477 #endif
478
479 #define HUGETLB_ANON_FILE "anon_hugepage"
480
481 enum {
482 /*
483 * The file will be used as an shm file so shmfs accounting rules
484 * apply
485 */
486 HUGETLB_SHMFS_INODE = 1,
487 /*
488 * The file is being created on the internal vfs mount and shmfs
489 * accounting rules do not apply
490 */
491 HUGETLB_ANONHUGE_INODE = 2,
492 };
493
494 #ifdef CONFIG_HUGETLBFS
495 struct hugetlbfs_sb_info {
496 long max_inodes; /* inodes allowed */
497 long free_inodes; /* inodes free */
498 spinlock_t stat_lock;
499 struct hstate *hstate;
500 struct hugepage_subpool *spool;
501 kuid_t uid;
502 kgid_t gid;
503 umode_t mode;
504 };
505
HUGETLBFS_SB(struct super_block * sb)506 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
507 {
508 return sb->s_fs_info;
509 }
510
511 struct hugetlbfs_inode_info {
512 struct inode vfs_inode;
513 unsigned int seals;
514 };
515
HUGETLBFS_I(struct inode * inode)516 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
517 {
518 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
519 }
520
521 extern const struct vm_operations_struct hugetlb_vm_ops;
522 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
523 int creat_flags, int page_size_log);
524
is_file_hugepages(const struct file * file)525 static inline bool is_file_hugepages(const struct file *file)
526 {
527 return file->f_op->fop_flags & FOP_HUGE_PAGES;
528 }
529
hstate_inode(struct inode * i)530 static inline struct hstate *hstate_inode(struct inode *i)
531 {
532 return HUGETLBFS_SB(i->i_sb)->hstate;
533 }
534 #else /* !CONFIG_HUGETLBFS */
535
536 #define is_file_hugepages(file) false
537 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)538 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
539 int creat_flags, int page_size_log)
540 {
541 return ERR_PTR(-ENOSYS);
542 }
543
hstate_inode(struct inode * i)544 static inline struct hstate *hstate_inode(struct inode *i)
545 {
546 return NULL;
547 }
548 #endif /* !CONFIG_HUGETLBFS */
549
550 unsigned long
551 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
552 unsigned long len, unsigned long pgoff,
553 unsigned long flags);
554
555 /*
556 * huegtlb page specific state flags. These flags are located in page.private
557 * of the hugetlb head page. Functions created via the below macros should be
558 * used to manipulate these flags.
559 *
560 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
561 * allocation time. Cleared when page is fully instantiated. Free
562 * routine checks flag to restore a reservation on error paths.
563 * Synchronization: Examined or modified by code that knows it has
564 * the only reference to page. i.e. After allocation but before use
565 * or when the page is being freed.
566 * HPG_migratable - Set after a newly allocated page is added to the page
567 * cache and/or page tables. Indicates the page is a candidate for
568 * migration.
569 * Synchronization: Initially set after new page allocation with no
570 * locking. When examined and modified during migration processing
571 * (isolate, migrate, putback) the hugetlb_lock is held.
572 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
573 * allocator. Typically used for migration target pages when no pages
574 * are available in the pool. The hugetlb free page path will
575 * immediately free pages with this flag set to the buddy allocator.
576 * Synchronization: Can be set after huge page allocation from buddy when
577 * code knows it has only reference. All other examinations and
578 * modifications require hugetlb_lock.
579 * HPG_freed - Set when page is on the free lists.
580 * Synchronization: hugetlb_lock held for examination and modification.
581 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
582 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
583 * that is not tracked by raw_hwp_page list.
584 */
585 enum hugetlb_page_flags {
586 HPG_restore_reserve = 0,
587 HPG_migratable,
588 HPG_temporary,
589 HPG_freed,
590 HPG_vmemmap_optimized,
591 HPG_raw_hwp_unreliable,
592 HPG_cma,
593 __NR_HPAGEFLAGS,
594 };
595
596 /*
597 * Macros to create test, set and clear function definitions for
598 * hugetlb specific page flags.
599 */
600 #ifdef CONFIG_HUGETLB_PAGE
601 #define TESTHPAGEFLAG(uname, flname) \
602 static __always_inline \
603 bool folio_test_hugetlb_##flname(struct folio *folio) \
604 { void *private = &folio->private; \
605 return test_bit(HPG_##flname, private); \
606 }
607
608 #define SETHPAGEFLAG(uname, flname) \
609 static __always_inline \
610 void folio_set_hugetlb_##flname(struct folio *folio) \
611 { void *private = &folio->private; \
612 set_bit(HPG_##flname, private); \
613 }
614
615 #define CLEARHPAGEFLAG(uname, flname) \
616 static __always_inline \
617 void folio_clear_hugetlb_##flname(struct folio *folio) \
618 { void *private = &folio->private; \
619 clear_bit(HPG_##flname, private); \
620 }
621 #else
622 #define TESTHPAGEFLAG(uname, flname) \
623 static inline bool \
624 folio_test_hugetlb_##flname(struct folio *folio) \
625 { return 0; }
626
627 #define SETHPAGEFLAG(uname, flname) \
628 static inline void \
629 folio_set_hugetlb_##flname(struct folio *folio) \
630 { }
631
632 #define CLEARHPAGEFLAG(uname, flname) \
633 static inline void \
634 folio_clear_hugetlb_##flname(struct folio *folio) \
635 { }
636 #endif
637
638 #define HPAGEFLAG(uname, flname) \
639 TESTHPAGEFLAG(uname, flname) \
640 SETHPAGEFLAG(uname, flname) \
641 CLEARHPAGEFLAG(uname, flname) \
642
643 /*
644 * Create functions associated with hugetlb page flags
645 */
646 HPAGEFLAG(RestoreReserve, restore_reserve)
647 HPAGEFLAG(Migratable, migratable)
648 HPAGEFLAG(Temporary, temporary)
649 HPAGEFLAG(Freed, freed)
650 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
651 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
652 HPAGEFLAG(Cma, cma)
653
654 #ifdef CONFIG_HUGETLB_PAGE
655
656 #define HSTATE_NAME_LEN 32
657 /* Defines one hugetlb page size */
658 struct hstate {
659 struct mutex resize_lock;
660 struct lock_class_key resize_key;
661 int next_nid_to_alloc;
662 int next_nid_to_free;
663 unsigned int order;
664 unsigned int demote_order;
665 unsigned long mask;
666 unsigned long max_huge_pages;
667 unsigned long nr_huge_pages;
668 unsigned long free_huge_pages;
669 unsigned long resv_huge_pages;
670 unsigned long surplus_huge_pages;
671 unsigned long nr_overcommit_huge_pages;
672 struct list_head hugepage_activelist;
673 struct list_head hugepage_freelists[MAX_NUMNODES];
674 unsigned int max_huge_pages_node[MAX_NUMNODES];
675 unsigned int nr_huge_pages_node[MAX_NUMNODES];
676 unsigned int free_huge_pages_node[MAX_NUMNODES];
677 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
678 char name[HSTATE_NAME_LEN];
679 };
680
681 struct cma;
682
683 struct huge_bootmem_page {
684 struct list_head list;
685 struct hstate *hstate;
686 unsigned long flags;
687 struct cma *cma;
688 };
689
690 #define HUGE_BOOTMEM_HVO 0x0001
691 #define HUGE_BOOTMEM_ZONES_VALID 0x0002
692 #define HUGE_BOOTMEM_CMA 0x0004
693
694 bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
695
696 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
697 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
698 void wait_for_freed_hugetlb_folios(void);
699 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
700 unsigned long addr, bool cow_from_owner);
701 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
702 nodemask_t *nmask, gfp_t gfp_mask,
703 bool allow_alloc_fallback);
704 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
705 nodemask_t *nmask, gfp_t gfp_mask);
706
707 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
708 pgoff_t idx);
709 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
710 unsigned long address, struct folio *folio);
711
712 /* arch callback */
713 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
714 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
715 bool __init hugetlb_node_alloc_supported(void);
716
717 void __init hugetlb_add_hstate(unsigned order);
718 bool __init arch_hugetlb_valid_size(unsigned long size);
719 struct hstate *size_to_hstate(unsigned long size);
720
721 #ifndef HUGE_MAX_HSTATE
722 #define HUGE_MAX_HSTATE 1
723 #endif
724
725 extern struct hstate hstates[HUGE_MAX_HSTATE];
726 extern unsigned int default_hstate_idx;
727
728 #define default_hstate (hstates[default_hstate_idx])
729
subpool_inode(struct inode * inode)730 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
731 {
732 return HUGETLBFS_SB(inode->i_sb)->spool;
733 }
734
hugetlb_folio_subpool(struct folio * folio)735 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
736 {
737 return folio->_hugetlb_subpool;
738 }
739
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)740 static inline void hugetlb_set_folio_subpool(struct folio *folio,
741 struct hugepage_subpool *subpool)
742 {
743 folio->_hugetlb_subpool = subpool;
744 }
745
hstate_file(struct file * f)746 static inline struct hstate *hstate_file(struct file *f)
747 {
748 return hstate_inode(file_inode(f));
749 }
750
hstate_sizelog(int page_size_log)751 static inline struct hstate *hstate_sizelog(int page_size_log)
752 {
753 if (!page_size_log)
754 return &default_hstate;
755
756 if (page_size_log < BITS_PER_LONG)
757 return size_to_hstate(1UL << page_size_log);
758
759 return NULL;
760 }
761
hstate_vma(struct vm_area_struct * vma)762 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
763 {
764 return hstate_file(vma->vm_file);
765 }
766
huge_page_size(const struct hstate * h)767 static inline unsigned long huge_page_size(const struct hstate *h)
768 {
769 return (unsigned long)PAGE_SIZE << h->order;
770 }
771
772 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
773
774 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
775
huge_page_mask(struct hstate * h)776 static inline unsigned long huge_page_mask(struct hstate *h)
777 {
778 return h->mask;
779 }
780
huge_page_order(struct hstate * h)781 static inline unsigned int huge_page_order(struct hstate *h)
782 {
783 return h->order;
784 }
785
huge_page_shift(struct hstate * h)786 static inline unsigned huge_page_shift(struct hstate *h)
787 {
788 return h->order + PAGE_SHIFT;
789 }
790
hstate_is_gigantic(struct hstate * h)791 static inline bool hstate_is_gigantic(struct hstate *h)
792 {
793 return huge_page_order(h) > MAX_PAGE_ORDER;
794 }
795
pages_per_huge_page(const struct hstate * h)796 static inline unsigned int pages_per_huge_page(const struct hstate *h)
797 {
798 return 1 << h->order;
799 }
800
blocks_per_huge_page(struct hstate * h)801 static inline unsigned int blocks_per_huge_page(struct hstate *h)
802 {
803 return huge_page_size(h) / 512;
804 }
805
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)806 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
807 struct address_space *mapping, pgoff_t idx)
808 {
809 return filemap_lock_folio(mapping, idx << huge_page_order(h));
810 }
811
812 #include <asm/hugetlb.h>
813
814 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)815 static inline int is_hugepage_only_range(struct mm_struct *mm,
816 unsigned long addr, unsigned long len)
817 {
818 return 0;
819 }
820 #define is_hugepage_only_range is_hugepage_only_range
821 #endif
822
823 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)824 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
825 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
826 #endif
827
828 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)829 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
830 vm_flags_t flags)
831 {
832 return pte_mkhuge(entry);
833 }
834 #endif
835
836 #ifndef arch_has_huge_bootmem_alloc
837 /*
838 * Some architectures do their own bootmem allocation, so they can't use
839 * early CMA allocation.
840 */
arch_has_huge_bootmem_alloc(void)841 static inline bool arch_has_huge_bootmem_alloc(void)
842 {
843 return false;
844 }
845 #endif
846
folio_hstate(struct folio * folio)847 static inline struct hstate *folio_hstate(struct folio *folio)
848 {
849 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
850 return size_to_hstate(folio_size(folio));
851 }
852
hstate_index_to_shift(unsigned index)853 static inline unsigned hstate_index_to_shift(unsigned index)
854 {
855 return hstates[index].order + PAGE_SHIFT;
856 }
857
hstate_index(struct hstate * h)858 static inline int hstate_index(struct hstate *h)
859 {
860 return h - hstates;
861 }
862
863 int dissolve_free_hugetlb_folio(struct folio *folio);
864 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
865 unsigned long end_pfn);
866
867 #ifdef CONFIG_MEMORY_FAILURE
868 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
869 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)870 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
871 {
872 }
873 #endif
874
875 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
876 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)877 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
878 {
879 if ((huge_page_shift(h) == PMD_SHIFT) ||
880 (huge_page_shift(h) == PUD_SHIFT) ||
881 (huge_page_shift(h) == PGDIR_SHIFT))
882 return true;
883 else
884 return false;
885 }
886 #endif
887 #else
arch_hugetlb_migration_supported(struct hstate * h)888 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
889 {
890 return false;
891 }
892 #endif
893
hugepage_migration_supported(struct hstate * h)894 static inline bool hugepage_migration_supported(struct hstate *h)
895 {
896 return arch_hugetlb_migration_supported(h);
897 }
898
899 /*
900 * Movability check is different as compared to migration check.
901 * It determines whether or not a huge page should be placed on
902 * movable zone or not. Movability of any huge page should be
903 * required only if huge page size is supported for migration.
904 * There won't be any reason for the huge page to be movable if
905 * it is not migratable to start with. Also the size of the huge
906 * page should be large enough to be placed under a movable zone
907 * and still feasible enough to be migratable. Just the presence
908 * in movable zone does not make the migration feasible.
909 *
910 * So even though large huge page sizes like the gigantic ones
911 * are migratable they should not be movable because its not
912 * feasible to migrate them from movable zone.
913 */
hugepage_movable_supported(struct hstate * h)914 static inline bool hugepage_movable_supported(struct hstate *h)
915 {
916 if (!hugepage_migration_supported(h))
917 return false;
918
919 if (hstate_is_gigantic(h))
920 return false;
921 return true;
922 }
923
924 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)925 static inline gfp_t htlb_alloc_mask(struct hstate *h)
926 {
927 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
928
929 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
930
931 return gfp;
932 }
933
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)934 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
935 {
936 gfp_t modified_mask = htlb_alloc_mask(h);
937
938 /* Some callers might want to enforce node */
939 modified_mask |= (gfp_mask & __GFP_THISNODE);
940
941 modified_mask |= (gfp_mask & __GFP_NOWARN);
942
943 return modified_mask;
944 }
945
htlb_allow_alloc_fallback(int reason)946 static inline bool htlb_allow_alloc_fallback(int reason)
947 {
948 bool allowed_fallback = false;
949
950 /*
951 * Note: the memory offline, memory failure and migration syscalls will
952 * be allowed to fallback to other nodes due to lack of a better chioce,
953 * that might break the per-node hugetlb pool. While other cases will
954 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
955 */
956 switch (reason) {
957 case MR_MEMORY_HOTPLUG:
958 case MR_MEMORY_FAILURE:
959 case MR_SYSCALL:
960 case MR_MEMPOLICY_MBIND:
961 allowed_fallback = true;
962 break;
963 default:
964 break;
965 }
966
967 return allowed_fallback;
968 }
969
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)970 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
971 struct mm_struct *mm, pte_t *pte)
972 {
973 const unsigned long size = huge_page_size(h);
974
975 VM_WARN_ON(size == PAGE_SIZE);
976
977 /*
978 * hugetlb must use the exact same PT locks as core-mm page table
979 * walkers would. When modifying a PTE table, hugetlb must take the
980 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
981 * PT lock etc.
982 *
983 * The expectation is that any hugetlb folio smaller than a PMD is
984 * always mapped into a single PTE table and that any hugetlb folio
985 * smaller than a PUD (but at least as big as a PMD) is always mapped
986 * into a single PMD table.
987 *
988 * If that does not hold for an architecture, then that architecture
989 * must disable split PT locks such that all *_lockptr() functions
990 * will give us the same result: the per-MM PT lock.
991 *
992 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
993 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
994 * and core-mm would use pmd_lockptr(). However, in such configurations
995 * split PMD locks are disabled -- they don't make sense on a single
996 * PGDIR page table -- and the end result is the same.
997 */
998 if (size >= PUD_SIZE)
999 return pud_lockptr(mm, (pud_t *) pte);
1000 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
1001 return pmd_lockptr(mm, (pmd_t *) pte);
1002 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1003 return ptep_lockptr(mm, pte);
1004 }
1005
1006 #ifndef hugepages_supported
1007 /*
1008 * Some platform decide whether they support huge pages at boot
1009 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1010 * when there is no such support
1011 */
1012 #define hugepages_supported() (HPAGE_SHIFT != 0)
1013 #endif
1014
1015 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1016
hugetlb_count_init(struct mm_struct * mm)1017 static inline void hugetlb_count_init(struct mm_struct *mm)
1018 {
1019 atomic_long_set(&mm->hugetlb_usage, 0);
1020 }
1021
hugetlb_count_add(long l,struct mm_struct * mm)1022 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1023 {
1024 atomic_long_add(l, &mm->hugetlb_usage);
1025 }
1026
hugetlb_count_sub(long l,struct mm_struct * mm)1027 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1028 {
1029 atomic_long_sub(l, &mm->hugetlb_usage);
1030 }
1031
1032 #ifndef huge_ptep_modify_prot_start
1033 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1034 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1035 unsigned long addr, pte_t *ptep)
1036 {
1037 unsigned long psize = huge_page_size(hstate_vma(vma));
1038
1039 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1040 }
1041 #endif
1042
1043 #ifndef huge_ptep_modify_prot_commit
1044 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1045 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1046 unsigned long addr, pte_t *ptep,
1047 pte_t old_pte, pte_t pte)
1048 {
1049 unsigned long psize = huge_page_size(hstate_vma(vma));
1050
1051 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1052 }
1053 #endif
1054
1055 #ifdef CONFIG_NUMA
1056 void hugetlb_register_node(struct node *node);
1057 void hugetlb_unregister_node(struct node *node);
1058 #endif
1059
1060 /*
1061 * Check if a given raw @page in a hugepage is HWPOISON.
1062 */
1063 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1064
huge_page_mask_align(struct file * file)1065 static inline unsigned long huge_page_mask_align(struct file *file)
1066 {
1067 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1068 }
1069
1070 #else /* CONFIG_HUGETLB_PAGE */
1071 struct hstate {};
1072
1073 static inline unsigned long huge_page_mask_align(struct file *file)
1074 {
1075 return 0;
1076 }
1077
1078 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1079 {
1080 return NULL;
1081 }
1082
1083 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1084 struct address_space *mapping, pgoff_t idx)
1085 {
1086 return NULL;
1087 }
1088
1089 static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
1090 struct list_head *list)
1091 {
1092 return -ENOMEM;
1093 }
1094
1095 static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1096 unsigned long end_pfn)
1097 {
1098 return 0;
1099 }
1100
1101 static inline void wait_for_freed_hugetlb_folios(void)
1102 {
1103 }
1104
1105 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1106 unsigned long addr,
1107 bool cow_from_owner)
1108 {
1109 return NULL;
1110 }
1111
1112 static inline struct folio *
1113 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1114 nodemask_t *nmask, gfp_t gfp_mask)
1115 {
1116 return NULL;
1117 }
1118
1119 static inline struct folio *
1120 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1121 nodemask_t *nmask, gfp_t gfp_mask,
1122 bool allow_alloc_fallback)
1123 {
1124 return NULL;
1125 }
1126
1127 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1128 {
1129 return 0;
1130 }
1131
1132 static inline struct hstate *hstate_file(struct file *f)
1133 {
1134 return NULL;
1135 }
1136
1137 static inline struct hstate *hstate_sizelog(int page_size_log)
1138 {
1139 return NULL;
1140 }
1141
1142 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1143 {
1144 return NULL;
1145 }
1146
1147 static inline struct hstate *folio_hstate(struct folio *folio)
1148 {
1149 return NULL;
1150 }
1151
1152 static inline struct hstate *size_to_hstate(unsigned long size)
1153 {
1154 return NULL;
1155 }
1156
1157 static inline unsigned long huge_page_size(struct hstate *h)
1158 {
1159 return PAGE_SIZE;
1160 }
1161
1162 static inline unsigned long huge_page_mask(struct hstate *h)
1163 {
1164 return PAGE_MASK;
1165 }
1166
1167 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1168 {
1169 return PAGE_SIZE;
1170 }
1171
1172 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1173 {
1174 return PAGE_SIZE;
1175 }
1176
1177 static inline unsigned int huge_page_order(struct hstate *h)
1178 {
1179 return 0;
1180 }
1181
1182 static inline unsigned int huge_page_shift(struct hstate *h)
1183 {
1184 return PAGE_SHIFT;
1185 }
1186
1187 static inline bool hstate_is_gigantic(struct hstate *h)
1188 {
1189 return false;
1190 }
1191
1192 static inline unsigned int pages_per_huge_page(struct hstate *h)
1193 {
1194 return 1;
1195 }
1196
1197 static inline unsigned hstate_index_to_shift(unsigned index)
1198 {
1199 return 0;
1200 }
1201
1202 static inline int hstate_index(struct hstate *h)
1203 {
1204 return 0;
1205 }
1206
1207 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1208 {
1209 return 0;
1210 }
1211
1212 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1213 unsigned long end_pfn)
1214 {
1215 return 0;
1216 }
1217
1218 static inline bool hugepage_migration_supported(struct hstate *h)
1219 {
1220 return false;
1221 }
1222
1223 static inline bool hugepage_movable_supported(struct hstate *h)
1224 {
1225 return false;
1226 }
1227
1228 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1229 {
1230 return 0;
1231 }
1232
1233 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1234 {
1235 return 0;
1236 }
1237
1238 static inline bool htlb_allow_alloc_fallback(int reason)
1239 {
1240 return false;
1241 }
1242
1243 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1244 struct mm_struct *mm, pte_t *pte)
1245 {
1246 return &mm->page_table_lock;
1247 }
1248
1249 static inline void hugetlb_count_init(struct mm_struct *mm)
1250 {
1251 }
1252
1253 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1254 {
1255 }
1256
1257 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1258 {
1259 }
1260
1261 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1262 unsigned long addr, pte_t *ptep)
1263 {
1264 #ifdef CONFIG_MMU
1265 return ptep_get(ptep);
1266 #else
1267 return *ptep;
1268 #endif
1269 }
1270
1271 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1272 pte_t *ptep, pte_t pte, unsigned long sz)
1273 {
1274 }
1275
1276 static inline void hugetlb_register_node(struct node *node)
1277 {
1278 }
1279
1280 static inline void hugetlb_unregister_node(struct node *node)
1281 {
1282 }
1283
1284 static inline bool hugetlbfs_pagecache_present(
1285 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1286 {
1287 return false;
1288 }
1289
1290 static inline void hugetlb_bootmem_alloc(void)
1291 {
1292 }
1293
1294 static inline bool hugetlb_bootmem_allocated(void)
1295 {
1296 return false;
1297 }
1298 #endif /* CONFIG_HUGETLB_PAGE */
1299
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1300 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1301 struct mm_struct *mm, pte_t *pte)
1302 {
1303 spinlock_t *ptl;
1304
1305 ptl = huge_pte_lockptr(h, mm, pte);
1306 spin_lock(ptl);
1307 return ptl;
1308 }
1309
1310 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1311 extern void __init hugetlb_cma_reserve(int order);
1312 #else
hugetlb_cma_reserve(int order)1313 static inline __init void hugetlb_cma_reserve(int order)
1314 {
1315 }
1316 #endif
1317
1318 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1319 static inline bool hugetlb_pmd_shared(pte_t *pte)
1320 {
1321 return page_count(virt_to_page(pte)) > 1;
1322 }
1323 #else
hugetlb_pmd_shared(pte_t * pte)1324 static inline bool hugetlb_pmd_shared(pte_t *pte)
1325 {
1326 return false;
1327 }
1328 #endif
1329
1330 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1331
1332 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1333 /*
1334 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1335 * implement this.
1336 */
1337 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1338 #endif
1339
__vma_shareable_lock(struct vm_area_struct * vma)1340 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1341 {
1342 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1343 }
1344
1345 bool __vma_private_lock(struct vm_area_struct *vma);
1346
1347 /*
1348 * Safe version of huge_pte_offset() to check the locks. See comments
1349 * above huge_pte_offset().
1350 */
1351 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1352 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1353 {
1354 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1356
1357 /*
1358 * If pmd sharing possible, locking needed to safely walk the
1359 * hugetlb pgtables. More information can be found at the comment
1360 * above huge_pte_offset() in the same file.
1361 *
1362 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1363 */
1364 if (__vma_shareable_lock(vma))
1365 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1366 !lockdep_is_held(
1367 &vma->vm_file->f_mapping->i_mmap_rwsem));
1368 #endif
1369 return huge_pte_offset(vma->vm_mm, addr, sz);
1370 }
1371
1372 #endif /* _LINUX_HUGETLB_H */
1373