xref: /linux/tools/testing/selftests/bpf/prog_tests/reg_bounds.c (revision d9104cec3e8fe4b458b74709853231385779001f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
3 
4 #define _GNU_SOURCE
5 #include <limits.h>
6 #include <test_progs.h>
7 #include <linux/filter.h>
8 #include <linux/bpf.h>
9 
10 /* =================================
11  * SHORT AND CONSISTENT NUMBER TYPES
12  * =================================
13  */
14 #define U64_MAX ((u64)UINT64_MAX)
15 #define U32_MAX ((u32)UINT_MAX)
16 #define U16_MAX ((u32)UINT_MAX)
17 #define S64_MIN ((s64)INT64_MIN)
18 #define S64_MAX ((s64)INT64_MAX)
19 #define S32_MIN ((s32)INT_MIN)
20 #define S32_MAX ((s32)INT_MAX)
21 #define S16_MIN ((s16)0x80000000)
22 #define S16_MAX ((s16)0x7fffffff)
23 
24 typedef unsigned long long ___u64;
25 typedef unsigned int ___u32;
26 typedef long long ___s64;
27 typedef int ___s32;
28 
29 /* avoid conflicts with already defined types in kernel headers */
30 #define u64 ___u64
31 #define u32 ___u32
32 #define s64 ___s64
33 #define s32 ___s32
34 
35 /* ==================================
36  * STRING BUF ABSTRACTION AND HELPERS
37  * ==================================
38  */
39 struct strbuf {
40 	size_t buf_sz;
41 	int pos;
42 	char buf[0];
43 };
44 
45 #define DEFINE_STRBUF(name, N)						\
46 	struct { struct strbuf buf; char data[(N)]; } ___##name;	\
47 	struct strbuf *name = (___##name.buf.buf_sz = (N), ___##name.buf.pos = 0, &___##name.buf)
48 
49 __printf(2, 3)
snappendf(struct strbuf * s,const char * fmt,...)50 static inline void snappendf(struct strbuf *s, const char *fmt, ...)
51 {
52 	va_list args;
53 
54 	va_start(args, fmt);
55 	s->pos += vsnprintf(s->buf + s->pos,
56 			    s->pos < s->buf_sz ? s->buf_sz - s->pos : 0,
57 			    fmt, args);
58 	va_end(args);
59 }
60 
61 /* ==================================
62  * GENERIC NUMBER TYPE AND OPERATIONS
63  * ==================================
64  */
65 enum num_t { U64, first_t = U64, U32, S64, S32, last_t = S32 };
66 
min_t(enum num_t t,u64 x,u64 y)67 static __always_inline u64 min_t(enum num_t t, u64 x, u64 y)
68 {
69 	switch (t) {
70 	case U64: return (u64)x < (u64)y ? (u64)x : (u64)y;
71 	case U32: return (u32)x < (u32)y ? (u32)x : (u32)y;
72 	case S64: return (s64)x < (s64)y ? (s64)x : (s64)y;
73 	case S32: return (s32)x < (s32)y ? (s32)x : (s32)y;
74 	default: printf("min_t!\n"); exit(1);
75 	}
76 }
77 
max_t(enum num_t t,u64 x,u64 y)78 static __always_inline u64 max_t(enum num_t t, u64 x, u64 y)
79 {
80 	switch (t) {
81 	case U64: return (u64)x > (u64)y ? (u64)x : (u64)y;
82 	case U32: return (u32)x > (u32)y ? (u32)x : (u32)y;
83 	case S64: return (s64)x > (s64)y ? (s64)x : (s64)y;
84 	case S32: return (s32)x > (s32)y ? (u32)(s32)x : (u32)(s32)y;
85 	default: printf("max_t!\n"); exit(1);
86 	}
87 }
88 
cast_t(enum num_t t,u64 x)89 static __always_inline u64 cast_t(enum num_t t, u64 x)
90 {
91 	switch (t) {
92 	case U64: return (u64)x;
93 	case U32: return (u32)x;
94 	case S64: return (s64)x;
95 	case S32: return (u32)(s32)x;
96 	default: printf("cast_t!\n"); exit(1);
97 	}
98 }
99 
t_str(enum num_t t)100 static const char *t_str(enum num_t t)
101 {
102 	switch (t) {
103 	case U64: return "u64";
104 	case U32: return "u32";
105 	case S64: return "s64";
106 	case S32: return "s32";
107 	default: printf("t_str!\n"); exit(1);
108 	}
109 }
110 
t_is_32(enum num_t t)111 static enum num_t t_is_32(enum num_t t)
112 {
113 	switch (t) {
114 	case U64: return false;
115 	case U32: return true;
116 	case S64: return false;
117 	case S32: return true;
118 	default: printf("t_is_32!\n"); exit(1);
119 	}
120 }
121 
t_signed(enum num_t t)122 static enum num_t t_signed(enum num_t t)
123 {
124 	switch (t) {
125 	case U64: return S64;
126 	case U32: return S32;
127 	case S64: return S64;
128 	case S32: return S32;
129 	default: printf("t_signed!\n"); exit(1);
130 	}
131 }
132 
t_unsigned(enum num_t t)133 static enum num_t t_unsigned(enum num_t t)
134 {
135 	switch (t) {
136 	case U64: return U64;
137 	case U32: return U32;
138 	case S64: return U64;
139 	case S32: return U32;
140 	default: printf("t_unsigned!\n"); exit(1);
141 	}
142 }
143 
144 #define UNUM_MAX_DECIMAL U16_MAX
145 #define SNUM_MAX_DECIMAL S16_MAX
146 #define SNUM_MIN_DECIMAL S16_MIN
147 
num_is_small(enum num_t t,u64 x)148 static bool num_is_small(enum num_t t, u64 x)
149 {
150 	switch (t) {
151 	case U64: return (u64)x <= UNUM_MAX_DECIMAL;
152 	case U32: return (u32)x <= UNUM_MAX_DECIMAL;
153 	case S64: return (s64)x >= SNUM_MIN_DECIMAL && (s64)x <= SNUM_MAX_DECIMAL;
154 	case S32: return (s32)x >= SNUM_MIN_DECIMAL && (s32)x <= SNUM_MAX_DECIMAL;
155 	default: printf("num_is_small!\n"); exit(1);
156 	}
157 }
158 
snprintf_num(enum num_t t,struct strbuf * sb,u64 x)159 static void snprintf_num(enum num_t t, struct strbuf *sb, u64 x)
160 {
161 	bool is_small = num_is_small(t, x);
162 
163 	if (is_small) {
164 		switch (t) {
165 		case U64: return snappendf(sb, "%llu", (u64)x);
166 		case U32: return snappendf(sb, "%u", (u32)x);
167 		case S64: return snappendf(sb, "%lld", (s64)x);
168 		case S32: return snappendf(sb, "%d", (s32)x);
169 		default: printf("snprintf_num!\n"); exit(1);
170 		}
171 	} else {
172 		switch (t) {
173 		case U64:
174 			if (x == U64_MAX)
175 				return snappendf(sb, "U64_MAX");
176 			else if (x >= U64_MAX - 256)
177 				return snappendf(sb, "U64_MAX-%llu", U64_MAX - x);
178 			else
179 				return snappendf(sb, "%#llx", (u64)x);
180 		case U32:
181 			if ((u32)x == U32_MAX)
182 				return snappendf(sb, "U32_MAX");
183 			else if ((u32)x >= U32_MAX - 256)
184 				return snappendf(sb, "U32_MAX-%u", U32_MAX - (u32)x);
185 			else
186 				return snappendf(sb, "%#x", (u32)x);
187 		case S64:
188 			if ((s64)x == S64_MAX)
189 				return snappendf(sb, "S64_MAX");
190 			else if ((s64)x >= S64_MAX - 256)
191 				return snappendf(sb, "S64_MAX-%lld", S64_MAX - (s64)x);
192 			else if ((s64)x == S64_MIN)
193 				return snappendf(sb, "S64_MIN");
194 			else if ((s64)x <= S64_MIN + 256)
195 				return snappendf(sb, "S64_MIN+%lld", (s64)x - S64_MIN);
196 			else
197 				return snappendf(sb, "%#llx", (s64)x);
198 		case S32:
199 			if ((s32)x == S32_MAX)
200 				return snappendf(sb, "S32_MAX");
201 			else if ((s32)x >= S32_MAX - 256)
202 				return snappendf(sb, "S32_MAX-%d", S32_MAX - (s32)x);
203 			else if ((s32)x == S32_MIN)
204 				return snappendf(sb, "S32_MIN");
205 			else if ((s32)x <= S32_MIN + 256)
206 				return snappendf(sb, "S32_MIN+%d", (s32)x - S32_MIN);
207 			else
208 				return snappendf(sb, "%#x", (s32)x);
209 		default: printf("snprintf_num!\n"); exit(1);
210 		}
211 	}
212 }
213 
214 /* ===================================
215  * GENERIC RANGE STRUCT AND OPERATIONS
216  * ===================================
217  */
218 struct range {
219 	u64 a, b;
220 };
221 
snprintf_range(enum num_t t,struct strbuf * sb,struct range x)222 static void snprintf_range(enum num_t t, struct strbuf *sb, struct range x)
223 {
224 	if (x.a == x.b)
225 		return snprintf_num(t, sb, x.a);
226 
227 	snappendf(sb, "[");
228 	snprintf_num(t, sb, x.a);
229 	snappendf(sb, "; ");
230 	snprintf_num(t, sb, x.b);
231 	snappendf(sb, "]");
232 }
233 
print_range(enum num_t t,struct range x,const char * sfx)234 static void print_range(enum num_t t, struct range x, const char *sfx)
235 {
236 	DEFINE_STRBUF(sb, 128);
237 
238 	snprintf_range(t, sb, x);
239 	printf("%s%s", sb->buf, sfx);
240 }
241 
242 static const struct range unkn[] = {
243 	[U64] = { 0, U64_MAX },
244 	[U32] = { 0, U32_MAX },
245 	[S64] = { (u64)S64_MIN, (u64)S64_MAX },
246 	[S32] = { (u64)(u32)S32_MIN, (u64)(u32)S32_MAX },
247 };
248 
unkn_subreg(enum num_t t)249 static struct range unkn_subreg(enum num_t t)
250 {
251 	switch (t) {
252 	case U64: return unkn[U32];
253 	case U32: return unkn[U32];
254 	case S64: return unkn[U32];
255 	case S32: return unkn[S32];
256 	default: printf("unkn_subreg!\n"); exit(1);
257 	}
258 }
259 
range(enum num_t t,u64 a,u64 b)260 static struct range range(enum num_t t, u64 a, u64 b)
261 {
262 	switch (t) {
263 	case U64: return (struct range){ (u64)a, (u64)b };
264 	case U32: return (struct range){ (u32)a, (u32)b };
265 	case S64: return (struct range){ (s64)a, (s64)b };
266 	case S32: return (struct range){ (u32)(s32)a, (u32)(s32)b };
267 	default: printf("range!\n"); exit(1);
268 	}
269 }
270 
sign64(u64 x)271 static __always_inline u32 sign64(u64 x) { return (x >> 63) & 1; }
sign32(u64 x)272 static __always_inline u32 sign32(u64 x) { return ((u32)x >> 31) & 1; }
upper32(u64 x)273 static __always_inline u32 upper32(u64 x) { return (u32)(x >> 32); }
swap_low32(u64 x,u32 y)274 static __always_inline u64 swap_low32(u64 x, u32 y) { return (x & 0xffffffff00000000ULL) | y; }
275 
range_eq(struct range x,struct range y)276 static bool range_eq(struct range x, struct range y)
277 {
278 	return x.a == y.a && x.b == y.b;
279 }
280 
range_cast_to_s32(struct range x)281 static struct range range_cast_to_s32(struct range x)
282 {
283 	u64 a = x.a, b = x.b;
284 
285 	/* if upper 32 bits are constant, lower 32 bits should form a proper
286 	 * s32 range to be correct
287 	 */
288 	if (upper32(a) == upper32(b) && (s32)a <= (s32)b)
289 		return range(S32, a, b);
290 
291 	/* Special case where upper bits form a small sequence of two
292 	 * sequential numbers (in 32-bit unsigned space, so 0xffffffff to
293 	 * 0x00000000 is also valid), while lower bits form a proper s32 range
294 	 * going from negative numbers to positive numbers.
295 	 *
296 	 * E.g.: [0xfffffff0ffffff00; 0xfffffff100000010]. Iterating
297 	 * over full 64-bit numbers range will form a proper [-16, 16]
298 	 * ([0xffffff00; 0x00000010]) range in its lower 32 bits.
299 	 */
300 	if (upper32(a) + 1 == upper32(b) && (s32)a < 0 && (s32)b >= 0)
301 		return range(S32, a, b);
302 
303 	/* otherwise we can't derive much meaningful information */
304 	return unkn[S32];
305 }
306 
range_cast_u64(enum num_t to_t,struct range x)307 static struct range range_cast_u64(enum num_t to_t, struct range x)
308 {
309 	u64 a = (u64)x.a, b = (u64)x.b;
310 
311 	switch (to_t) {
312 	case U64:
313 		return x;
314 	case U32:
315 		if (upper32(a) != upper32(b))
316 			return unkn[U32];
317 		return range(U32, a, b);
318 	case S64:
319 		if (sign64(a) != sign64(b))
320 			return unkn[S64];
321 		return range(S64, a, b);
322 	case S32:
323 		return range_cast_to_s32(x);
324 	default: printf("range_cast_u64!\n"); exit(1);
325 	}
326 }
327 
range_cast_s64(enum num_t to_t,struct range x)328 static struct range range_cast_s64(enum num_t to_t, struct range x)
329 {
330 	s64 a = (s64)x.a, b = (s64)x.b;
331 
332 	switch (to_t) {
333 	case U64:
334 		/* equivalent to (s64)a <= (s64)b check */
335 		if (sign64(a) != sign64(b))
336 			return unkn[U64];
337 		return range(U64, a, b);
338 	case U32:
339 		if (upper32(a) != upper32(b) || sign32(a) != sign32(b))
340 			return unkn[U32];
341 		return range(U32, a, b);
342 	case S64:
343 		return x;
344 	case S32:
345 		return range_cast_to_s32(x);
346 	default: printf("range_cast_s64!\n"); exit(1);
347 	}
348 }
349 
range_cast_u32(enum num_t to_t,struct range x)350 static struct range range_cast_u32(enum num_t to_t, struct range x)
351 {
352 	u32 a = (u32)x.a, b = (u32)x.b;
353 
354 	switch (to_t) {
355 	case U64:
356 	case S64:
357 		/* u32 is always a valid zero-extended u64/s64 */
358 		return range(to_t, a, b);
359 	case U32:
360 		return x;
361 	case S32:
362 		return range_cast_to_s32(range(U32, a, b));
363 	default: printf("range_cast_u32!\n"); exit(1);
364 	}
365 }
366 
range_cast_s32(enum num_t to_t,struct range x)367 static struct range range_cast_s32(enum num_t to_t, struct range x)
368 {
369 	s32 a = (s32)x.a, b = (s32)x.b;
370 
371 	switch (to_t) {
372 	case U64:
373 	case U32:
374 	case S64:
375 		if (sign32(a) != sign32(b))
376 			return unkn[to_t];
377 		return range(to_t, a, b);
378 	case S32:
379 		return x;
380 	default: printf("range_cast_s32!\n"); exit(1);
381 	}
382 }
383 
384 /* Reinterpret range in *from_t* domain as a range in *to_t* domain preserving
385  * all possible information. Worst case, it will be unknown range within
386  * *to_t* domain, if nothing more specific can be guaranteed during the
387  * conversion
388  */
range_cast(enum num_t from_t,enum num_t to_t,struct range from)389 static struct range range_cast(enum num_t from_t, enum num_t to_t, struct range from)
390 {
391 	switch (from_t) {
392 	case U64: return range_cast_u64(to_t, from);
393 	case U32: return range_cast_u32(to_t, from);
394 	case S64: return range_cast_s64(to_t, from);
395 	case S32: return range_cast_s32(to_t, from);
396 	default: printf("range_cast!\n"); exit(1);
397 	}
398 }
399 
is_valid_num(enum num_t t,u64 x)400 static bool is_valid_num(enum num_t t, u64 x)
401 {
402 	switch (t) {
403 	case U64: return true;
404 	case U32: return upper32(x) == 0;
405 	case S64: return true;
406 	case S32: return upper32(x) == 0;
407 	default: printf("is_valid_num!\n"); exit(1);
408 	}
409 }
410 
is_valid_range(enum num_t t,struct range x)411 static bool is_valid_range(enum num_t t, struct range x)
412 {
413 	if (!is_valid_num(t, x.a) || !is_valid_num(t, x.b))
414 		return false;
415 
416 	switch (t) {
417 	case U64: return (u64)x.a <= (u64)x.b;
418 	case U32: return (u32)x.a <= (u32)x.b;
419 	case S64: return (s64)x.a <= (s64)x.b;
420 	case S32: return (s32)x.a <= (s32)x.b;
421 	default: printf("is_valid_range!\n"); exit(1);
422 	}
423 }
424 
range_improve(enum num_t t,struct range old,struct range new)425 static struct range range_improve(enum num_t t, struct range old, struct range new)
426 {
427 	return range(t, max_t(t, old.a, new.a), min_t(t, old.b, new.b));
428 }
429 
range_refine(enum num_t x_t,struct range x,enum num_t y_t,struct range y)430 static struct range range_refine(enum num_t x_t, struct range x, enum num_t y_t, struct range y)
431 {
432 	struct range y_cast;
433 
434 	y_cast = range_cast(y_t, x_t, y);
435 
436 	/* If we know that
437 	 *   - *x* is in the range of signed 32bit value, and
438 	 *   - *y_cast* range is 32-bit signed non-negative
439 	 * then *x* range can be improved with *y_cast* such that *x* range
440 	 * is 32-bit signed non-negative. Otherwise, if the new range for *x*
441 	 * allows upper 32-bit * 0xffffffff then the eventual new range for
442 	 * *x* will be out of signed 32-bit range which violates the origin
443 	 * *x* range.
444 	 */
445 	if (x_t == S64 && y_t == S32 && y_cast.a <= S32_MAX  && y_cast.b <= S32_MAX &&
446 	    (s64)x.a >= S32_MIN && (s64)x.b <= S32_MAX)
447 		return range_improve(x_t, x, y_cast);
448 
449 	/* the case when new range knowledge, *y*, is a 32-bit subregister
450 	 * range, while previous range knowledge, *x*, is a full register
451 	 * 64-bit range, needs special treatment to take into account upper 32
452 	 * bits of full register range
453 	 */
454 	if (t_is_32(y_t) && !t_is_32(x_t)) {
455 		struct range x_swap;
456 
457 		/* some combinations of upper 32 bits and sign bit can lead to
458 		 * invalid ranges, in such cases it's easier to detect them
459 		 * after cast/swap than try to enumerate all the conditions
460 		 * under which transformation and knowledge transfer is valid
461 		 */
462 		x_swap = range(x_t, swap_low32(x.a, y_cast.a), swap_low32(x.b, y_cast.b));
463 		if (!is_valid_range(x_t, x_swap))
464 			return x;
465 		return range_improve(x_t, x, x_swap);
466 	}
467 
468 	if (!t_is_32(x_t) && !t_is_32(y_t) && x_t != y_t) {
469 		if (x_t == S64 && x.a > x.b) {
470 			if (x.b < y.a && x.a <= y.b)
471 				return range(x_t, x.a, y.b);
472 			if (x.a > y.b && x.b >= y.a)
473 				return range(x_t, y.a, x.b);
474 		} else if (x_t == U64 && y.a > y.b) {
475 			if (y.b < x.a && y.a <= x.b)
476 				return range(x_t, y.a, x.b);
477 			if (y.a > x.b && y.b >= x.a)
478 				return range(x_t, x.a, y.b);
479 		}
480 	}
481 
482 	/* otherwise, plain range cast and intersection works */
483 	return range_improve(x_t, x, y_cast);
484 }
485 
486 /* =======================
487  * GENERIC CONDITIONAL OPS
488  * =======================
489  */
490 enum op { OP_LT, OP_LE, OP_GT, OP_GE, OP_EQ, OP_NE, first_op = OP_LT, last_op = OP_NE };
491 
complement_op(enum op op)492 static enum op complement_op(enum op op)
493 {
494 	switch (op) {
495 	case OP_LT: return OP_GE;
496 	case OP_LE: return OP_GT;
497 	case OP_GT: return OP_LE;
498 	case OP_GE: return OP_LT;
499 	case OP_EQ: return OP_NE;
500 	case OP_NE: return OP_EQ;
501 	default: printf("complement_op!\n"); exit(1);
502 	}
503 }
504 
op_str(enum op op)505 static const char *op_str(enum op op)
506 {
507 	switch (op) {
508 	case OP_LT: return "<";
509 	case OP_LE: return "<=";
510 	case OP_GT: return ">";
511 	case OP_GE: return ">=";
512 	case OP_EQ: return "==";
513 	case OP_NE: return "!=";
514 	default: printf("op_str!\n"); exit(1);
515 	}
516 }
517 
518 /* Can register with range [x.a, x.b] *EVER* satisfy
519  * OP (<, <=, >, >=, ==, !=) relation to
520  * a register with range [y.a, y.b]
521  * _in *num_t* domain_
522  */
range_canbe_op(enum num_t t,struct range x,struct range y,enum op op)523 static bool range_canbe_op(enum num_t t, struct range x, struct range y, enum op op)
524 {
525 #define range_canbe(T) do {									\
526 	switch (op) {										\
527 	case OP_LT: return (T)x.a < (T)y.b;							\
528 	case OP_LE: return (T)x.a <= (T)y.b;							\
529 	case OP_GT: return (T)x.b > (T)y.a;							\
530 	case OP_GE: return (T)x.b >= (T)y.a;							\
531 	case OP_EQ: return (T)max_t(t, x.a, y.a) <= (T)min_t(t, x.b, y.b);			\
532 	case OP_NE: return !((T)x.a == (T)x.b && (T)y.a == (T)y.b && (T)x.a == (T)y.a);		\
533 	default: printf("range_canbe op %d\n", op); exit(1);					\
534 	}											\
535 } while (0)
536 
537 	switch (t) {
538 	case U64: { range_canbe(u64); }
539 	case U32: { range_canbe(u32); }
540 	case S64: { range_canbe(s64); }
541 	case S32: { range_canbe(s32); }
542 	default: printf("range_canbe!\n"); exit(1);
543 	}
544 #undef range_canbe
545 }
546 
547 /* Does register with range [x.a, x.b] *ALWAYS* satisfy
548  * OP (<, <=, >, >=, ==, !=) relation to
549  * a register with range [y.a, y.b]
550  * _in *num_t* domain_
551  */
range_always_op(enum num_t t,struct range x,struct range y,enum op op)552 static bool range_always_op(enum num_t t, struct range x, struct range y, enum op op)
553 {
554 	/* always op <=> ! canbe complement(op) */
555 	return !range_canbe_op(t, x, y, complement_op(op));
556 }
557 
558 /* Does register with range [x.a, x.b] *NEVER* satisfy
559  * OP (<, <=, >, >=, ==, !=) relation to
560  * a register with range [y.a, y.b]
561  * _in *num_t* domain_
562  */
range_never_op(enum num_t t,struct range x,struct range y,enum op op)563 static bool range_never_op(enum num_t t, struct range x, struct range y, enum op op)
564 {
565 	return !range_canbe_op(t, x, y, op);
566 }
567 
568 /* similar to verifier's is_branch_taken():
569  *    1 - always taken;
570  *    0 - never taken,
571  *   -1 - unsure.
572  */
range_branch_taken_op(enum num_t t,struct range x,struct range y,enum op op)573 static int range_branch_taken_op(enum num_t t, struct range x, struct range y, enum op op)
574 {
575 	if (range_always_op(t, x, y, op))
576 		return 1;
577 	if (range_never_op(t, x, y, op))
578 		return 0;
579 	return -1;
580 }
581 
582 /* What would be the new estimates for register x and y ranges assuming truthful
583  * OP comparison between them. I.e., (x OP y == true) => x <- newx, y <- newy.
584  *
585  * We assume "interesting" cases where ranges overlap. Cases where it's
586  * obvious that (x OP y) is either always true or false should be filtered with
587  * range_never and range_always checks.
588  */
range_cond(enum num_t t,struct range x,struct range y,enum op op,struct range * newx,struct range * newy)589 static void range_cond(enum num_t t, struct range x, struct range y,
590 		       enum op op, struct range *newx, struct range *newy)
591 {
592 	if (!range_canbe_op(t, x, y, op)) {
593 		/* nothing to adjust, can't happen, return original values */
594 		*newx = x;
595 		*newy = y;
596 		return;
597 	}
598 	switch (op) {
599 	case OP_LT:
600 		*newx = range(t, x.a, min_t(t, x.b, y.b - 1));
601 		*newy = range(t, max_t(t, x.a + 1, y.a), y.b);
602 		break;
603 	case OP_LE:
604 		*newx = range(t, x.a, min_t(t, x.b, y.b));
605 		*newy = range(t, max_t(t, x.a, y.a), y.b);
606 		break;
607 	case OP_GT:
608 		*newx = range(t, max_t(t, x.a, y.a + 1), x.b);
609 		*newy = range(t, y.a, min_t(t, x.b - 1, y.b));
610 		break;
611 	case OP_GE:
612 		*newx = range(t, max_t(t, x.a, y.a), x.b);
613 		*newy = range(t, y.a, min_t(t, x.b, y.b));
614 		break;
615 	case OP_EQ:
616 		*newx = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
617 		*newy = range(t, max_t(t, x.a, y.a), min_t(t, x.b, y.b));
618 		break;
619 	case OP_NE:
620 		/* below logic is supported by the verifier now */
621 		if (x.a == x.b && x.a == y.a) {
622 			/* X is a constant matching left side of Y */
623 			*newx = range(t, x.a, x.b);
624 			*newy = range(t, y.a + 1, y.b);
625 		} else if (x.a == x.b && x.b == y.b) {
626 			/* X is a constant matching rigth side of Y */
627 			*newx = range(t, x.a, x.b);
628 			*newy = range(t, y.a, y.b - 1);
629 		} else if (y.a == y.b && x.a == y.a) {
630 			/* Y is a constant matching left side of X */
631 			*newx = range(t, x.a + 1, x.b);
632 			*newy = range(t, y.a, y.b);
633 		} else if (y.a == y.b && x.b == y.b) {
634 			/* Y is a constant matching rigth side of X */
635 			*newx = range(t, x.a, x.b - 1);
636 			*newy = range(t, y.a, y.b);
637 		} else {
638 			/* generic case, can't derive more information */
639 			*newx = range(t, x.a, x.b);
640 			*newy = range(t, y.a, y.b);
641 		}
642 
643 		break;
644 	default:
645 		break;
646 	}
647 }
648 
649 /* =======================
650  * REGISTER STATE HANDLING
651  * =======================
652  */
653 struct reg_state {
654 	struct range r[4]; /* indexed by enum num_t: U64, U32, S64, S32 */
655 	bool valid;
656 };
657 
print_reg_state(struct reg_state * r,const char * sfx)658 static void print_reg_state(struct reg_state *r, const char *sfx)
659 {
660 	DEFINE_STRBUF(sb, 512);
661 	enum num_t t;
662 	int cnt = 0;
663 
664 	if (!r->valid) {
665 		printf("<not found>%s", sfx);
666 		return;
667 	}
668 
669 	snappendf(sb, "scalar(");
670 	for (t = first_t; t <= last_t; t++) {
671 		snappendf(sb, "%s%s=", cnt++ ? "," : "", t_str(t));
672 		snprintf_range(t, sb, r->r[t]);
673 	}
674 	snappendf(sb, ")");
675 
676 	printf("%s%s", sb->buf, sfx);
677 }
678 
print_refinement(enum num_t s_t,struct range src,enum num_t d_t,struct range old,struct range new,const char * ctx)679 static void print_refinement(enum num_t s_t, struct range src,
680 			     enum num_t d_t, struct range old, struct range new,
681 			     const char *ctx)
682 {
683 	printf("REFINING (%s) (%s)SRC=", ctx, t_str(s_t));
684 	print_range(s_t, src, "");
685 	printf(" (%s)DST_OLD=", t_str(d_t));
686 	print_range(d_t, old, "");
687 	printf(" (%s)DST_NEW=", t_str(d_t));
688 	print_range(d_t, new, "\n");
689 }
690 
reg_state_refine(struct reg_state * r,enum num_t t,struct range x,const char * ctx)691 static void reg_state_refine(struct reg_state *r, enum num_t t, struct range x, const char *ctx)
692 {
693 	enum num_t d_t, s_t;
694 	struct range old;
695 	bool keep_going = false;
696 
697 again:
698 	/* try to derive new knowledge from just learned range x of type t */
699 	for (d_t = first_t; d_t <= last_t; d_t++) {
700 		old = r->r[d_t];
701 		r->r[d_t] = range_refine(d_t, r->r[d_t], t, x);
702 		if (!range_eq(r->r[d_t], old)) {
703 			keep_going = true;
704 			if (env.verbosity >= VERBOSE_VERY)
705 				print_refinement(t, x, d_t, old, r->r[d_t], ctx);
706 		}
707 	}
708 
709 	/* now see if we can derive anything new from updated reg_state's ranges */
710 	for (s_t = first_t; s_t <= last_t; s_t++) {
711 		for (d_t = first_t; d_t <= last_t; d_t++) {
712 			old = r->r[d_t];
713 			r->r[d_t] = range_refine(d_t, r->r[d_t], s_t, r->r[s_t]);
714 			if (!range_eq(r->r[d_t], old)) {
715 				keep_going = true;
716 				if (env.verbosity >= VERBOSE_VERY)
717 					print_refinement(s_t, r->r[s_t], d_t, old, r->r[d_t], ctx);
718 			}
719 		}
720 	}
721 
722 	/* keep refining until we converge */
723 	if (keep_going) {
724 		keep_going = false;
725 		goto again;
726 	}
727 }
728 
reg_state_set_const(struct reg_state * rs,enum num_t t,u64 val)729 static void reg_state_set_const(struct reg_state *rs, enum num_t t, u64 val)
730 {
731 	enum num_t tt;
732 
733 	rs->valid = true;
734 	for (tt = first_t; tt <= last_t; tt++)
735 		rs->r[tt] = tt == t ? range(t, val, val) : unkn[tt];
736 
737 	reg_state_refine(rs, t, rs->r[t], "CONST");
738 }
739 
reg_state_cond(enum num_t t,struct reg_state * x,struct reg_state * y,enum op op,struct reg_state * newx,struct reg_state * newy,const char * ctx)740 static void reg_state_cond(enum num_t t, struct reg_state *x, struct reg_state *y, enum op op,
741 			   struct reg_state *newx, struct reg_state *newy, const char *ctx)
742 {
743 	char buf[32];
744 	enum num_t ts[2];
745 	struct reg_state xx = *x, yy = *y;
746 	int i, t_cnt;
747 	struct range z1, z2;
748 
749 	if (op == OP_EQ || op == OP_NE) {
750 		/* OP_EQ and OP_NE are sign-agnostic, so we need to process
751 		 * both signed and unsigned domains at the same time
752 		 */
753 		ts[0] = t_unsigned(t);
754 		ts[1] = t_signed(t);
755 		t_cnt = 2;
756 	} else {
757 		ts[0] = t;
758 		t_cnt = 1;
759 	}
760 
761 	for (i = 0; i < t_cnt; i++) {
762 		t = ts[i];
763 		z1 = x->r[t];
764 		z2 = y->r[t];
765 
766 		range_cond(t, z1, z2, op, &z1, &z2);
767 
768 		if (newx) {
769 			snprintf(buf, sizeof(buf), "%s R1", ctx);
770 			reg_state_refine(&xx, t, z1, buf);
771 		}
772 		if (newy) {
773 			snprintf(buf, sizeof(buf), "%s R2", ctx);
774 			reg_state_refine(&yy, t, z2, buf);
775 		}
776 	}
777 
778 	if (newx)
779 		*newx = xx;
780 	if (newy)
781 		*newy = yy;
782 }
783 
reg_state_branch_taken_op(enum num_t t,struct reg_state * x,struct reg_state * y,enum op op)784 static int reg_state_branch_taken_op(enum num_t t, struct reg_state *x, struct reg_state *y,
785 				     enum op op)
786 {
787 	if (op == OP_EQ || op == OP_NE) {
788 		/* OP_EQ and OP_NE are sign-agnostic */
789 		enum num_t tu = t_unsigned(t);
790 		enum num_t ts = t_signed(t);
791 		int br_u, br_s, br;
792 
793 		br_u = range_branch_taken_op(tu, x->r[tu], y->r[tu], op);
794 		br_s = range_branch_taken_op(ts, x->r[ts], y->r[ts], op);
795 
796 		if (br_u >= 0 && br_s >= 0 && br_u != br_s)
797 			ASSERT_FALSE(true, "branch taken inconsistency!\n");
798 
799 		/* if 64-bit ranges are indecisive, use 32-bit subranges to
800 		 * eliminate always/never taken branches, if possible
801 		 */
802 		if (br_u == -1 && (t == U64 || t == S64)) {
803 			br = range_branch_taken_op(U32, x->r[U32], y->r[U32], op);
804 			/* we can only reject for OP_EQ, never take branch
805 			 * based on lower 32 bits
806 			 */
807 			if (op == OP_EQ && br == 0)
808 				return 0;
809 			/* for OP_NEQ we can be conclusive only if lower 32 bits
810 			 * differ and thus inequality branch is always taken
811 			 */
812 			if (op == OP_NE && br == 1)
813 				return 1;
814 
815 			br = range_branch_taken_op(S32, x->r[S32], y->r[S32], op);
816 			if (op == OP_EQ && br == 0)
817 				return 0;
818 			if (op == OP_NE && br == 1)
819 				return 1;
820 		}
821 
822 		return br_u >= 0 ? br_u : br_s;
823 	}
824 	return range_branch_taken_op(t, x->r[t], y->r[t], op);
825 }
826 
827 /* =====================================
828  * BPF PROGS GENERATION AND VERIFICATION
829  * =====================================
830  */
831 struct case_spec {
832 	/* whether to init full register (r1) or sub-register (w1) */
833 	bool init_subregs;
834 	/* whether to establish initial value range on full register (r1) or
835 	 * sub-register (w1)
836 	 */
837 	bool setup_subregs;
838 	/* whether to establish initial value range using signed or unsigned
839 	 * comparisons (i.e., initialize umin/umax or smin/smax directly)
840 	 */
841 	bool setup_signed;
842 	/* whether to perform comparison on full registers or sub-registers */
843 	bool compare_subregs;
844 	/* whether to perform comparison using signed or unsigned operations */
845 	bool compare_signed;
846 };
847 
848 /* Generate test BPF program based on provided test ranges, operation, and
849  * specifications about register bitness and signedness.
850  */
load_range_cmp_prog(struct range x,struct range y,enum op op,int branch_taken,struct case_spec spec,char * log_buf,size_t log_sz,int * false_pos,int * true_pos)851 static int load_range_cmp_prog(struct range x, struct range y, enum op op,
852 			       int branch_taken, struct case_spec spec,
853 			       char *log_buf, size_t log_sz,
854 			       int *false_pos, int *true_pos)
855 {
856 #define emit(insn) ({							\
857 	struct bpf_insn __insns[] = { insn };				\
858 	int __i;							\
859 	for (__i = 0; __i < ARRAY_SIZE(__insns); __i++)			\
860 		insns[cur_pos + __i] = __insns[__i];			\
861 	cur_pos += __i;							\
862 })
863 #define JMP_TO(target) (target - cur_pos - 1)
864 	int cur_pos = 0, exit_pos, fd, op_code;
865 	struct bpf_insn insns[64];
866 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
867 		.log_level = 2,
868 		.log_buf = log_buf,
869 		.log_size = log_sz,
870 		.prog_flags = testing_prog_flags(),
871 	);
872 
873 	/* ; skip exit block below
874 	 * goto +2;
875 	 */
876 	emit(BPF_JMP_A(2));
877 	exit_pos = cur_pos;
878 	/* ; exit block for all the preparatory conditionals
879 	 * out:
880 	 * r0 = 0;
881 	 * exit;
882 	 */
883 	emit(BPF_MOV64_IMM(BPF_REG_0, 0));
884 	emit(BPF_EXIT_INSN());
885 	/*
886 	 * ; assign r6/w6 and r7/w7 unpredictable u64/u32 value
887 	 * call bpf_get_current_pid_tgid;
888 	 * r6 = r0;               | w6 = w0;
889 	 * call bpf_get_current_pid_tgid;
890 	 * r7 = r0;               | w7 = w0;
891 	 */
892 	emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
893 	if (spec.init_subregs)
894 		emit(BPF_MOV32_REG(BPF_REG_6, BPF_REG_0));
895 	else
896 		emit(BPF_MOV64_REG(BPF_REG_6, BPF_REG_0));
897 	emit(BPF_EMIT_CALL(BPF_FUNC_get_current_pid_tgid));
898 	if (spec.init_subregs)
899 		emit(BPF_MOV32_REG(BPF_REG_7, BPF_REG_0));
900 	else
901 		emit(BPF_MOV64_REG(BPF_REG_7, BPF_REG_0));
902 	/* ; setup initial r6/w6 possible value range ([x.a, x.b])
903 	 * r1 = %[x.a] ll;        | w1 = %[x.a];
904 	 * r2 = %[x.b] ll;        | w2 = %[x.b];
905 	 * if r6 < r1 goto out;   | if w6 < w1 goto out;
906 	 * if r6 > r2 goto out;   | if w6 > w2 goto out;
907 	 */
908 	if (spec.setup_subregs) {
909 		emit(BPF_MOV32_IMM(BPF_REG_1, (s32)x.a));
910 		emit(BPF_MOV32_IMM(BPF_REG_2, (s32)x.b));
911 		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
912 				   BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
913 		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
914 				   BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
915 	} else {
916 		emit(BPF_LD_IMM64(BPF_REG_1, x.a));
917 		emit(BPF_LD_IMM64(BPF_REG_2, x.b));
918 		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
919 				 BPF_REG_6, BPF_REG_1, JMP_TO(exit_pos)));
920 		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
921 				 BPF_REG_6, BPF_REG_2, JMP_TO(exit_pos)));
922 	}
923 	/* ; setup initial r7/w7 possible value range ([y.a, y.b])
924 	 * r1 = %[y.a] ll;        | w1 = %[y.a];
925 	 * r2 = %[y.b] ll;        | w2 = %[y.b];
926 	 * if r7 < r1 goto out;   | if w7 < w1 goto out;
927 	 * if r7 > r2 goto out;   | if w7 > w2 goto out;
928 	 */
929 	if (spec.setup_subregs) {
930 		emit(BPF_MOV32_IMM(BPF_REG_1, (s32)y.a));
931 		emit(BPF_MOV32_IMM(BPF_REG_2, (s32)y.b));
932 		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
933 				   BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
934 		emit(BPF_JMP32_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
935 				   BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
936 	} else {
937 		emit(BPF_LD_IMM64(BPF_REG_1, y.a));
938 		emit(BPF_LD_IMM64(BPF_REG_2, y.b));
939 		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSLT : BPF_JLT,
940 				 BPF_REG_7, BPF_REG_1, JMP_TO(exit_pos)));
941 		emit(BPF_JMP_REG(spec.setup_signed ? BPF_JSGT : BPF_JGT,
942 				 BPF_REG_7, BPF_REG_2, JMP_TO(exit_pos)));
943 	}
944 	/* ; range test instruction
945 	 * if r6 <op> r7 goto +3; | if w6 <op> w7 goto +3;
946 	 */
947 	switch (op) {
948 	case OP_LT: op_code = spec.compare_signed ? BPF_JSLT : BPF_JLT; break;
949 	case OP_LE: op_code = spec.compare_signed ? BPF_JSLE : BPF_JLE; break;
950 	case OP_GT: op_code = spec.compare_signed ? BPF_JSGT : BPF_JGT; break;
951 	case OP_GE: op_code = spec.compare_signed ? BPF_JSGE : BPF_JGE; break;
952 	case OP_EQ: op_code = BPF_JEQ; break;
953 	case OP_NE: op_code = BPF_JNE; break;
954 	default:
955 		printf("unrecognized op %d\n", op);
956 		return -ENOTSUP;
957 	}
958 	/* ; BEFORE conditional, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
959 	 * ; this is used for debugging, as verifier doesn't always print
960 	 * ; registers states as of condition jump instruction (e.g., when
961 	 * ; precision marking happens)
962 	 * r0 = r6;               | w0 = w6;
963 	 * r0 = r7;               | w0 = w7;
964 	 */
965 	if (spec.compare_subregs) {
966 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
967 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
968 	} else {
969 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
970 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
971 	}
972 	if (spec.compare_subregs)
973 		emit(BPF_JMP32_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
974 	else
975 		emit(BPF_JMP_REG(op_code, BPF_REG_6, BPF_REG_7, 3));
976 	/* ; FALSE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
977 	 * r0 = r6;               | w0 = w6;
978 	 * r0 = r7;               | w0 = w7;
979 	 * exit;
980 	 */
981 	*false_pos = cur_pos;
982 	if (spec.compare_subregs) {
983 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
984 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
985 	} else {
986 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
987 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
988 	}
989 	if (branch_taken == 1) /* false branch is never taken */
990 		emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
991 	else
992 		emit(BPF_EXIT_INSN());
993 	/* ; TRUE branch, r0/w0 = {r6/w6,r7/w7} is to extract verifier state reliably
994 	 * r0 = r6;               | w0 = w6;
995 	 * r0 = r7;               | w0 = w7;
996 	 * exit;
997 	 */
998 	*true_pos = cur_pos;
999 	if (spec.compare_subregs) {
1000 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_6));
1001 		emit(BPF_MOV32_REG(BPF_REG_0, BPF_REG_7));
1002 	} else {
1003 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_6));
1004 		emit(BPF_MOV64_REG(BPF_REG_0, BPF_REG_7));
1005 	}
1006 	if (branch_taken == 0) /* true branch is never taken */
1007 		emit(BPF_EMIT_CALL(0xDEAD)); /* poison this branch */
1008 	emit(BPF_EXIT_INSN()); /* last instruction has to be exit */
1009 
1010 	fd = bpf_prog_load(BPF_PROG_TYPE_RAW_TRACEPOINT, "reg_bounds_test",
1011 			   "GPL", insns, cur_pos, &opts);
1012 	if (fd < 0)
1013 		return fd;
1014 
1015 	close(fd);
1016 	return 0;
1017 #undef emit
1018 #undef JMP_TO
1019 }
1020 
1021 #define str_has_pfx(str, pfx) (strncmp(str, pfx, strlen(pfx)) == 0)
1022 
1023 /* Parse register state from verifier log.
1024  * `s` should point to the start of "Rx = ..." substring in the verifier log.
1025  */
parse_reg_state(const char * s,struct reg_state * reg)1026 static int parse_reg_state(const char *s, struct reg_state *reg)
1027 {
1028 	/* There are two generic forms for SCALAR register:
1029 	 * - known constant: R6_rwD=P%lld
1030 	 * - range: R6_rwD=scalar(id=1,...), where "..." is a comma-separated
1031 	 *   list of optional range specifiers:
1032 	 *     - umin=%llu, if missing, assumed 0;
1033 	 *     - umax=%llu, if missing, assumed U64_MAX;
1034 	 *     - smin=%lld, if missing, assumed S64_MIN;
1035 	 *     - smax=%lld, if missing, assumed S64_MAX;
1036 	 *     - umin32=%d, if missing, assumed 0;
1037 	 *     - umax32=%d, if missing, assumed U32_MAX;
1038 	 *     - smin32=%d, if missing, assumed S32_MIN;
1039 	 *     - smax32=%d, if missing, assumed S32_MAX;
1040 	 *     - var_off=(%#llx; %#llx), tnum part, we don't care about it.
1041 	 *
1042 	 * If some of the values are equal, they will be grouped (but min/max
1043 	 * are not mixed together, and similarly negative values are not
1044 	 * grouped with non-negative ones). E.g.:
1045 	 *
1046 	 *   R6_w=Pscalar(smin=smin32=0, smax=umax=umax32=1000)
1047 	 *
1048 	 * _rwD part is optional (and any of the letters can be missing).
1049 	 * P (precision mark) is optional as well.
1050 	 *
1051 	 * Anything inside scalar() is optional, including id, of course.
1052 	 */
1053 	struct {
1054 		const char *pfx;
1055 		u64 *dst, def;
1056 		bool is_32, is_set;
1057 	} *f, fields[8] = {
1058 		{"smin=", &reg->r[S64].a, S64_MIN},
1059 		{"smax=", &reg->r[S64].b, S64_MAX},
1060 		{"umin=", &reg->r[U64].a, 0},
1061 		{"umax=", &reg->r[U64].b, U64_MAX},
1062 		{"smin32=", &reg->r[S32].a, (u32)S32_MIN, true},
1063 		{"smax32=", &reg->r[S32].b, (u32)S32_MAX, true},
1064 		{"umin32=", &reg->r[U32].a, 0,            true},
1065 		{"umax32=", &reg->r[U32].b, U32_MAX,      true},
1066 	};
1067 	const char *p;
1068 	int i;
1069 
1070 	p = strchr(s, '=');
1071 	if (!p)
1072 		return -EINVAL;
1073 	p++;
1074 	if (*p == 'P')
1075 		p++;
1076 
1077 	if (!str_has_pfx(p, "scalar(")) {
1078 		long long sval;
1079 		enum num_t t;
1080 
1081 		if (p[0] == '0' && p[1] == 'x') {
1082 			if (sscanf(p, "%llx", &sval) != 1)
1083 				return -EINVAL;
1084 		} else {
1085 			if (sscanf(p, "%lld", &sval) != 1)
1086 				return -EINVAL;
1087 		}
1088 
1089 		reg->valid = true;
1090 		for (t = first_t; t <= last_t; t++) {
1091 			reg->r[t] = range(t, sval, sval);
1092 		}
1093 		return 0;
1094 	}
1095 
1096 	p += sizeof("scalar");
1097 	while (p) {
1098 		int midxs[ARRAY_SIZE(fields)], mcnt = 0;
1099 		u64 val;
1100 
1101 		for (i = 0; i < ARRAY_SIZE(fields); i++) {
1102 			f = &fields[i];
1103 			if (!str_has_pfx(p, f->pfx))
1104 				continue;
1105 			midxs[mcnt++] = i;
1106 			p += strlen(f->pfx);
1107 		}
1108 
1109 		if (mcnt) {
1110 			/* populate all matched fields */
1111 			if (p[0] == '0' && p[1] == 'x') {
1112 				if (sscanf(p, "%llx", &val) != 1)
1113 					return -EINVAL;
1114 			} else {
1115 				if (sscanf(p, "%lld", &val) != 1)
1116 					return -EINVAL;
1117 			}
1118 
1119 			for (i = 0; i < mcnt; i++) {
1120 				f = &fields[midxs[i]];
1121 				f->is_set = true;
1122 				*f->dst = f->is_32 ? (u64)(u32)val : val;
1123 			}
1124 		} else if (str_has_pfx(p, "var_off")) {
1125 			/* skip "var_off=(0x0; 0x3f)" part completely */
1126 			p = strchr(p, ')');
1127 			if (!p)
1128 				return -EINVAL;
1129 			p++;
1130 		}
1131 
1132 		p = strpbrk(p, ",)");
1133 		if (*p == ')')
1134 			break;
1135 		if (p)
1136 			p++;
1137 	}
1138 
1139 	reg->valid = true;
1140 
1141 	for (i = 0; i < ARRAY_SIZE(fields); i++) {
1142 		f = &fields[i];
1143 		if (!f->is_set)
1144 			*f->dst = f->def;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 
1151 /* Parse all register states (TRUE/FALSE branches and DST/SRC registers)
1152  * out of the verifier log for a corresponding test case BPF program.
1153  */
parse_range_cmp_log(const char * log_buf,struct case_spec spec,int false_pos,int true_pos,struct reg_state * false1_reg,struct reg_state * false2_reg,struct reg_state * true1_reg,struct reg_state * true2_reg)1154 static int parse_range_cmp_log(const char *log_buf, struct case_spec spec,
1155 			       int false_pos, int true_pos,
1156 			       struct reg_state *false1_reg, struct reg_state *false2_reg,
1157 			       struct reg_state *true1_reg, struct reg_state *true2_reg)
1158 {
1159 	struct {
1160 		int insn_idx;
1161 		int reg_idx;
1162 		const char *reg_upper;
1163 		struct reg_state *state;
1164 	} specs[] = {
1165 		{false_pos,     6, "R6=", false1_reg},
1166 		{false_pos + 1, 7, "R7=", false2_reg},
1167 		{true_pos,      6, "R6=", true1_reg},
1168 		{true_pos + 1,  7, "R7=", true2_reg},
1169 	};
1170 	char buf[32];
1171 	const char *p = log_buf, *q;
1172 	int i, err;
1173 
1174 	for (i = 0; i < 4; i++) {
1175 		sprintf(buf, "%d: (%s) %s = %s%d", specs[i].insn_idx,
1176 			spec.compare_subregs ? "bc" : "bf",
1177 			spec.compare_subregs ? "w0" : "r0",
1178 			spec.compare_subregs ? "w" : "r", specs[i].reg_idx);
1179 
1180 		q = strstr(p, buf);
1181 		if (!q) {
1182 			*specs[i].state = (struct reg_state){.valid = false};
1183 			continue;
1184 		}
1185 		p = strstr(q, specs[i].reg_upper);
1186 		if (!p)
1187 			return -EINVAL;
1188 		err = parse_reg_state(p, specs[i].state);
1189 		if (err)
1190 			return -EINVAL;
1191 	}
1192 	return 0;
1193 }
1194 
1195 /* Validate ranges match, and print details if they don't */
assert_range_eq(enum num_t t,struct range x,struct range y,const char * ctx1,const char * ctx2)1196 static bool assert_range_eq(enum num_t t, struct range x, struct range y,
1197 			    const char *ctx1, const char *ctx2)
1198 {
1199 	DEFINE_STRBUF(sb, 512);
1200 
1201 	if (range_eq(x, y))
1202 		return true;
1203 
1204 	snappendf(sb, "MISMATCH %s.%s: ", ctx1, ctx2);
1205 	snprintf_range(t, sb, x);
1206 	snappendf(sb, " != ");
1207 	snprintf_range(t, sb, y);
1208 
1209 	printf("%s\n", sb->buf);
1210 
1211 	return false;
1212 }
1213 
1214 /* Validate that register states match, and print details if they don't */
assert_reg_state_eq(struct reg_state * r,struct reg_state * e,const char * ctx)1215 static bool assert_reg_state_eq(struct reg_state *r, struct reg_state *e, const char *ctx)
1216 {
1217 	bool ok = true;
1218 	enum num_t t;
1219 
1220 	if (r->valid != e->valid) {
1221 		printf("MISMATCH %s: actual %s != expected %s\n", ctx,
1222 		       r->valid ? "<valid>" : "<invalid>",
1223 		       e->valid ? "<valid>" : "<invalid>");
1224 		return false;
1225 	}
1226 
1227 	if (!r->valid)
1228 		return true;
1229 
1230 	for (t = first_t; t <= last_t; t++) {
1231 		if (!assert_range_eq(t, r->r[t], e->r[t], ctx, t_str(t)))
1232 			ok = false;
1233 	}
1234 
1235 	return ok;
1236 }
1237 
1238 /* Printf verifier log, filtering out irrelevant noise */
print_verifier_log(const char * buf)1239 static void print_verifier_log(const char *buf)
1240 {
1241 	const char *p;
1242 
1243 	while (buf[0]) {
1244 		p = strchrnul(buf, '\n');
1245 
1246 		/* filter out irrelevant precision backtracking logs */
1247 		if (str_has_pfx(buf, "mark_precise: "))
1248 			goto skip_line;
1249 
1250 		printf("%.*s\n", (int)(p - buf), buf);
1251 
1252 skip_line:
1253 		buf = *p == '\0' ? p : p + 1;
1254 	}
1255 }
1256 
1257 /* Simulate provided test case purely with our own range-based logic.
1258  * This is done to set up expectations for verifier's branch_taken logic and
1259  * verifier's register states in the verifier log.
1260  */
sim_case(enum num_t init_t,enum num_t cond_t,struct range x,struct range y,enum op op,struct reg_state * fr1,struct reg_state * fr2,struct reg_state * tr1,struct reg_state * tr2,int * branch_taken)1261 static void sim_case(enum num_t init_t, enum num_t cond_t,
1262 		     struct range x, struct range y, enum op op,
1263 		     struct reg_state *fr1, struct reg_state *fr2,
1264 		     struct reg_state *tr1, struct reg_state *tr2,
1265 		     int *branch_taken)
1266 {
1267 	const u64 A = x.a;
1268 	const u64 B = x.b;
1269 	const u64 C = y.a;
1270 	const u64 D = y.b;
1271 	struct reg_state rc;
1272 	enum op rev_op = complement_op(op);
1273 	enum num_t t;
1274 
1275 	fr1->valid = fr2->valid = true;
1276 	tr1->valid = tr2->valid = true;
1277 	for (t = first_t; t <= last_t; t++) {
1278 		/* if we are initializing using 32-bit subregisters,
1279 		 * full registers get upper 32 bits zeroed automatically
1280 		 */
1281 		struct range z = t_is_32(init_t) ? unkn_subreg(t) : unkn[t];
1282 
1283 		fr1->r[t] = fr2->r[t] = tr1->r[t] = tr2->r[t] = z;
1284 	}
1285 
1286 	/* step 1: r1 >= A, r2 >= C */
1287 	reg_state_set_const(&rc, init_t, A);
1288 	reg_state_cond(init_t, fr1, &rc, OP_GE, fr1, NULL, "r1>=A");
1289 	reg_state_set_const(&rc, init_t, C);
1290 	reg_state_cond(init_t, fr2, &rc, OP_GE, fr2, NULL, "r2>=C");
1291 	*tr1 = *fr1;
1292 	*tr2 = *fr2;
1293 	if (env.verbosity >= VERBOSE_VERY) {
1294 		printf("STEP1 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
1295 		printf("STEP1 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
1296 	}
1297 
1298 	/* step 2: r1 <= B, r2 <= D */
1299 	reg_state_set_const(&rc, init_t, B);
1300 	reg_state_cond(init_t, fr1, &rc, OP_LE, fr1, NULL, "r1<=B");
1301 	reg_state_set_const(&rc, init_t, D);
1302 	reg_state_cond(init_t, fr2, &rc, OP_LE, fr2, NULL, "r2<=D");
1303 	*tr1 = *fr1;
1304 	*tr2 = *fr2;
1305 	if (env.verbosity >= VERBOSE_VERY) {
1306 		printf("STEP2 (%s) R1: ", t_str(init_t)); print_reg_state(fr1, "\n");
1307 		printf("STEP2 (%s) R2: ", t_str(init_t)); print_reg_state(fr2, "\n");
1308 	}
1309 
1310 	/* step 3: r1 <op> r2 */
1311 	*branch_taken = reg_state_branch_taken_op(cond_t, fr1, fr2, op);
1312 	fr1->valid = fr2->valid = false;
1313 	tr1->valid = tr2->valid = false;
1314 	if (*branch_taken != 1) { /* FALSE is possible */
1315 		fr1->valid = fr2->valid = true;
1316 		reg_state_cond(cond_t, fr1, fr2, rev_op, fr1, fr2, "FALSE");
1317 	}
1318 	if (*branch_taken != 0) { /* TRUE is possible */
1319 		tr1->valid = tr2->valid = true;
1320 		reg_state_cond(cond_t, tr1, tr2, op, tr1, tr2, "TRUE");
1321 	}
1322 	if (env.verbosity >= VERBOSE_VERY) {
1323 		printf("STEP3 (%s) FALSE R1:", t_str(cond_t)); print_reg_state(fr1, "\n");
1324 		printf("STEP3 (%s) FALSE R2:", t_str(cond_t)); print_reg_state(fr2, "\n");
1325 		printf("STEP3 (%s) TRUE  R1:", t_str(cond_t)); print_reg_state(tr1, "\n");
1326 		printf("STEP3 (%s) TRUE  R2:", t_str(cond_t)); print_reg_state(tr2, "\n");
1327 	}
1328 }
1329 
1330 /* ===============================
1331  * HIGH-LEVEL TEST CASE VALIDATION
1332  * ===============================
1333  */
1334 static u32 upper_seeds[] = {
1335 	0,
1336 	1,
1337 	U32_MAX,
1338 	U32_MAX - 1,
1339 	S32_MAX,
1340 	(u32)S32_MIN,
1341 };
1342 
1343 static u32 lower_seeds[] = {
1344 	0,
1345 	1,
1346 	2, (u32)-2,
1347 	255, (u32)-255,
1348 	UINT_MAX,
1349 	UINT_MAX - 1,
1350 	INT_MAX,
1351 	(u32)INT_MIN,
1352 };
1353 
1354 struct ctx {
1355 	int val_cnt, subval_cnt, range_cnt, subrange_cnt;
1356 	u64 uvals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
1357 	s64 svals[ARRAY_SIZE(upper_seeds) * ARRAY_SIZE(lower_seeds)];
1358 	u32 usubvals[ARRAY_SIZE(lower_seeds)];
1359 	s32 ssubvals[ARRAY_SIZE(lower_seeds)];
1360 	struct range *uranges, *sranges;
1361 	struct range *usubranges, *ssubranges;
1362 	int max_failure_cnt, cur_failure_cnt;
1363 	int total_case_cnt, case_cnt;
1364 	int rand_case_cnt;
1365 	unsigned rand_seed;
1366 	__u64 start_ns;
1367 	char progress_ctx[64];
1368 };
1369 
cleanup_ctx(struct ctx * ctx)1370 static void cleanup_ctx(struct ctx *ctx)
1371 {
1372 	free(ctx->uranges);
1373 	free(ctx->sranges);
1374 	free(ctx->usubranges);
1375 	free(ctx->ssubranges);
1376 }
1377 
1378 struct subtest_case {
1379 	enum num_t init_t;
1380 	enum num_t cond_t;
1381 	struct range x;
1382 	struct range y;
1383 	enum op op;
1384 };
1385 
subtest_case_str(struct strbuf * sb,struct subtest_case * t,bool use_op)1386 static void subtest_case_str(struct strbuf *sb, struct subtest_case *t, bool use_op)
1387 {
1388 	snappendf(sb, "(%s)", t_str(t->init_t));
1389 	snprintf_range(t->init_t, sb, t->x);
1390 	snappendf(sb, " (%s)%s ", t_str(t->cond_t), use_op ? op_str(t->op) : "<op>");
1391 	snprintf_range(t->init_t, sb, t->y);
1392 }
1393 
1394 /* Generate and validate test case based on specific combination of setup
1395  * register ranges (including their expected num_t domain), and conditional
1396  * operation to perform (including num_t domain in which it has to be
1397  * performed)
1398  */
verify_case_op(enum num_t init_t,enum num_t cond_t,struct range x,struct range y,enum op op)1399 static int verify_case_op(enum num_t init_t, enum num_t cond_t,
1400 			  struct range x, struct range y, enum op op)
1401 {
1402 	char log_buf[256 * 1024];
1403 	size_t log_sz = sizeof(log_buf);
1404 	int err, false_pos = 0, true_pos = 0, branch_taken;
1405 	struct reg_state fr1, fr2, tr1, tr2;
1406 	struct reg_state fe1, fe2, te1, te2;
1407 	bool failed = false;
1408 	struct case_spec spec = {
1409 		.init_subregs = (init_t == U32 || init_t == S32),
1410 		.setup_subregs = (init_t == U32 || init_t == S32),
1411 		.setup_signed = (init_t == S64 || init_t == S32),
1412 		.compare_subregs = (cond_t == U32 || cond_t == S32),
1413 		.compare_signed = (cond_t == S64 || cond_t == S32),
1414 	};
1415 
1416 	log_buf[0] = '\0';
1417 
1418 	sim_case(init_t, cond_t, x, y, op, &fe1, &fe2, &te1, &te2, &branch_taken);
1419 
1420 	err = load_range_cmp_prog(x, y, op, branch_taken, spec,
1421 				  log_buf, log_sz, &false_pos, &true_pos);
1422 	if (err) {
1423 		ASSERT_OK(err, "load_range_cmp_prog");
1424 		failed = true;
1425 	}
1426 
1427 	err = parse_range_cmp_log(log_buf, spec, false_pos, true_pos,
1428 				  &fr1, &fr2, &tr1, &tr2);
1429 	if (err) {
1430 		ASSERT_OK(err, "parse_range_cmp_log");
1431 		failed = true;
1432 	}
1433 
1434 	if (!assert_reg_state_eq(&fr1, &fe1, "false_reg1") ||
1435 	    !assert_reg_state_eq(&fr2, &fe2, "false_reg2") ||
1436 	    !assert_reg_state_eq(&tr1, &te1, "true_reg1") ||
1437 	    !assert_reg_state_eq(&tr2, &te2, "true_reg2")) {
1438 		failed = true;
1439 	}
1440 
1441 	if (failed || env.verbosity >= VERBOSE_NORMAL) {
1442 		if (failed || env.verbosity >= VERBOSE_VERY) {
1443 			printf("VERIFIER LOG:\n========================\n");
1444 			print_verifier_log(log_buf);
1445 			printf("=====================\n");
1446 		}
1447 		printf("ACTUAL   FALSE1: "); print_reg_state(&fr1, "\n");
1448 		printf("EXPECTED FALSE1: "); print_reg_state(&fe1, "\n");
1449 		printf("ACTUAL   FALSE2: "); print_reg_state(&fr2, "\n");
1450 		printf("EXPECTED FALSE2: "); print_reg_state(&fe2, "\n");
1451 		printf("ACTUAL   TRUE1:  "); print_reg_state(&tr1, "\n");
1452 		printf("EXPECTED TRUE1:  "); print_reg_state(&te1, "\n");
1453 		printf("ACTUAL   TRUE2:  "); print_reg_state(&tr2, "\n");
1454 		printf("EXPECTED TRUE2:  "); print_reg_state(&te2, "\n");
1455 
1456 		return failed ? -EINVAL : 0;
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 /* Given setup ranges and number types, go over all supported operations,
1463  * generating individual subtest for each allowed combination
1464  */
verify_case_opt(struct ctx * ctx,enum num_t init_t,enum num_t cond_t,struct range x,struct range y,bool is_subtest)1465 static int verify_case_opt(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
1466 			   struct range x, struct range y, bool is_subtest)
1467 {
1468 	DEFINE_STRBUF(sb, 256);
1469 	int err;
1470 	struct subtest_case sub = {
1471 		.init_t = init_t,
1472 		.cond_t = cond_t,
1473 		.x = x,
1474 		.y = y,
1475 	};
1476 
1477 	sb->pos = 0; /* reset position in strbuf */
1478 	subtest_case_str(sb, &sub, false /* ignore op */);
1479 	if (is_subtest && !test__start_subtest(sb->buf))
1480 		return 0;
1481 
1482 	for (sub.op = first_op; sub.op <= last_op; sub.op++) {
1483 		sb->pos = 0; /* reset position in strbuf */
1484 		subtest_case_str(sb, &sub, true /* print op */);
1485 
1486 		if (env.verbosity >= VERBOSE_NORMAL) /* this speeds up debugging */
1487 			printf("TEST CASE: %s\n", sb->buf);
1488 
1489 		err = verify_case_op(init_t, cond_t, x, y, sub.op);
1490 		if (err || env.verbosity >= VERBOSE_NORMAL)
1491 			ASSERT_OK(err, sb->buf);
1492 		if (err) {
1493 			ctx->cur_failure_cnt++;
1494 			if (ctx->cur_failure_cnt > ctx->max_failure_cnt)
1495 				return err;
1496 			return 0; /* keep testing other cases */
1497 		}
1498 		ctx->case_cnt++;
1499 		if ((ctx->case_cnt % 10000) == 0) {
1500 			double progress = (ctx->case_cnt + 0.0) / ctx->total_case_cnt;
1501 			u64 elapsed_ns = get_time_ns() - ctx->start_ns;
1502 			double remain_ns = elapsed_ns / progress * (1 - progress);
1503 
1504 			fprintf(env.stderr_saved, "PROGRESS (%s): %d/%d (%.2lf%%), "
1505 					    "elapsed %llu mins (%.2lf hrs), "
1506 					    "ETA %.0lf mins (%.2lf hrs)\n",
1507 				ctx->progress_ctx,
1508 				ctx->case_cnt, ctx->total_case_cnt, 100.0 * progress,
1509 				elapsed_ns / 1000000000 / 60,
1510 				elapsed_ns / 1000000000.0 / 3600,
1511 				remain_ns / 1000000000.0 / 60,
1512 				remain_ns / 1000000000.0 / 3600);
1513 		}
1514 	}
1515 
1516 	return 0;
1517 }
1518 
verify_case(struct ctx * ctx,enum num_t init_t,enum num_t cond_t,struct range x,struct range y)1519 static int verify_case(struct ctx *ctx, enum num_t init_t, enum num_t cond_t,
1520 		       struct range x, struct range y)
1521 {
1522 	return verify_case_opt(ctx, init_t, cond_t, x, y, true /* is_subtest */);
1523 }
1524 
1525 /* ================================
1526  * GENERATED CASES FROM SEED VALUES
1527  * ================================
1528  */
u64_cmp(const void * p1,const void * p2)1529 static int u64_cmp(const void *p1, const void *p2)
1530 {
1531 	u64 x1 = *(const u64 *)p1, x2 = *(const u64 *)p2;
1532 
1533 	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
1534 }
1535 
u32_cmp(const void * p1,const void * p2)1536 static int u32_cmp(const void *p1, const void *p2)
1537 {
1538 	u32 x1 = *(const u32 *)p1, x2 = *(const u32 *)p2;
1539 
1540 	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
1541 }
1542 
s64_cmp(const void * p1,const void * p2)1543 static int s64_cmp(const void *p1, const void *p2)
1544 {
1545 	s64 x1 = *(const s64 *)p1, x2 = *(const s64 *)p2;
1546 
1547 	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
1548 }
1549 
s32_cmp(const void * p1,const void * p2)1550 static int s32_cmp(const void *p1, const void *p2)
1551 {
1552 	s32 x1 = *(const s32 *)p1, x2 = *(const s32 *)p2;
1553 
1554 	return x1 != x2 ? (x1 < x2 ? -1 : 1) : 0;
1555 }
1556 
1557 /* Generate valid unique constants from seeds, both signed and unsigned */
gen_vals(struct ctx * ctx)1558 static void gen_vals(struct ctx *ctx)
1559 {
1560 	int i, j, cnt = 0;
1561 
1562 	for (i = 0; i < ARRAY_SIZE(upper_seeds); i++) {
1563 		for (j = 0; j < ARRAY_SIZE(lower_seeds); j++) {
1564 			ctx->uvals[cnt++] = (((u64)upper_seeds[i]) << 32) | lower_seeds[j];
1565 		}
1566 	}
1567 
1568 	/* sort and compact uvals (i.e., it's `sort | uniq`) */
1569 	qsort(ctx->uvals, cnt, sizeof(*ctx->uvals), u64_cmp);
1570 	for (i = 1, j = 0; i < cnt; i++) {
1571 		if (ctx->uvals[j] == ctx->uvals[i])
1572 			continue;
1573 		j++;
1574 		ctx->uvals[j] = ctx->uvals[i];
1575 	}
1576 	ctx->val_cnt = j + 1;
1577 
1578 	/* we have exactly the same number of s64 values, they are just in
1579 	 * a different order than u64s, so just sort them differently
1580 	 */
1581 	for (i = 0; i < ctx->val_cnt; i++)
1582 		ctx->svals[i] = ctx->uvals[i];
1583 	qsort(ctx->svals, ctx->val_cnt, sizeof(*ctx->svals), s64_cmp);
1584 
1585 	if (env.verbosity >= VERBOSE_SUPER) {
1586 		DEFINE_STRBUF(sb1, 256);
1587 		DEFINE_STRBUF(sb2, 256);
1588 
1589 		for (i = 0; i < ctx->val_cnt; i++) {
1590 			sb1->pos = sb2->pos = 0;
1591 			snprintf_num(U64, sb1, ctx->uvals[i]);
1592 			snprintf_num(S64, sb2, ctx->svals[i]);
1593 			printf("SEED #%d: u64=%-20s s64=%-20s\n", i, sb1->buf, sb2->buf);
1594 		}
1595 	}
1596 
1597 	/* 32-bit values are generated separately */
1598 	cnt = 0;
1599 	for (i = 0; i < ARRAY_SIZE(lower_seeds); i++) {
1600 		ctx->usubvals[cnt++] = lower_seeds[i];
1601 	}
1602 
1603 	/* sort and compact usubvals (i.e., it's `sort | uniq`) */
1604 	qsort(ctx->usubvals, cnt, sizeof(*ctx->usubvals), u32_cmp);
1605 	for (i = 1, j = 0; i < cnt; i++) {
1606 		if (ctx->usubvals[j] == ctx->usubvals[i])
1607 			continue;
1608 		j++;
1609 		ctx->usubvals[j] = ctx->usubvals[i];
1610 	}
1611 	ctx->subval_cnt = j + 1;
1612 
1613 	for (i = 0; i < ctx->subval_cnt; i++)
1614 		ctx->ssubvals[i] = ctx->usubvals[i];
1615 	qsort(ctx->ssubvals, ctx->subval_cnt, sizeof(*ctx->ssubvals), s32_cmp);
1616 
1617 	if (env.verbosity >= VERBOSE_SUPER) {
1618 		DEFINE_STRBUF(sb1, 256);
1619 		DEFINE_STRBUF(sb2, 256);
1620 
1621 		for (i = 0; i < ctx->subval_cnt; i++) {
1622 			sb1->pos = sb2->pos = 0;
1623 			snprintf_num(U32, sb1, ctx->usubvals[i]);
1624 			snprintf_num(S32, sb2, ctx->ssubvals[i]);
1625 			printf("SUBSEED #%d: u32=%-10s s32=%-10s\n", i, sb1->buf, sb2->buf);
1626 		}
1627 	}
1628 }
1629 
1630 /* Generate valid ranges from upper/lower seeds */
gen_ranges(struct ctx * ctx)1631 static int gen_ranges(struct ctx *ctx)
1632 {
1633 	int i, j, cnt = 0;
1634 
1635 	for (i = 0; i < ctx->val_cnt; i++) {
1636 		for (j = i; j < ctx->val_cnt; j++) {
1637 			if (env.verbosity >= VERBOSE_SUPER) {
1638 				DEFINE_STRBUF(sb1, 256);
1639 				DEFINE_STRBUF(sb2, 256);
1640 
1641 				sb1->pos = sb2->pos = 0;
1642 				snprintf_range(U64, sb1, range(U64, ctx->uvals[i], ctx->uvals[j]));
1643 				snprintf_range(S64, sb2, range(S64, ctx->svals[i], ctx->svals[j]));
1644 				printf("RANGE #%d: u64=%-40s s64=%-40s\n", cnt, sb1->buf, sb2->buf);
1645 			}
1646 			cnt++;
1647 		}
1648 	}
1649 	ctx->range_cnt = cnt;
1650 
1651 	ctx->uranges = calloc(ctx->range_cnt, sizeof(*ctx->uranges));
1652 	if (!ASSERT_OK_PTR(ctx->uranges, "uranges_calloc"))
1653 		return -EINVAL;
1654 	ctx->sranges = calloc(ctx->range_cnt, sizeof(*ctx->sranges));
1655 	if (!ASSERT_OK_PTR(ctx->sranges, "sranges_calloc"))
1656 		return -EINVAL;
1657 
1658 	cnt = 0;
1659 	for (i = 0; i < ctx->val_cnt; i++) {
1660 		for (j = i; j < ctx->val_cnt; j++) {
1661 			ctx->uranges[cnt] = range(U64, ctx->uvals[i], ctx->uvals[j]);
1662 			ctx->sranges[cnt] = range(S64, ctx->svals[i], ctx->svals[j]);
1663 			cnt++;
1664 		}
1665 	}
1666 
1667 	cnt = 0;
1668 	for (i = 0; i < ctx->subval_cnt; i++) {
1669 		for (j = i; j < ctx->subval_cnt; j++) {
1670 			if (env.verbosity >= VERBOSE_SUPER) {
1671 				DEFINE_STRBUF(sb1, 256);
1672 				DEFINE_STRBUF(sb2, 256);
1673 
1674 				sb1->pos = sb2->pos = 0;
1675 				snprintf_range(U32, sb1, range(U32, ctx->usubvals[i], ctx->usubvals[j]));
1676 				snprintf_range(S32, sb2, range(S32, ctx->ssubvals[i], ctx->ssubvals[j]));
1677 				printf("SUBRANGE #%d: u32=%-20s s32=%-20s\n", cnt, sb1->buf, sb2->buf);
1678 			}
1679 			cnt++;
1680 		}
1681 	}
1682 	ctx->subrange_cnt = cnt;
1683 
1684 	ctx->usubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->usubranges));
1685 	if (!ASSERT_OK_PTR(ctx->usubranges, "usubranges_calloc"))
1686 		return -EINVAL;
1687 	ctx->ssubranges = calloc(ctx->subrange_cnt, sizeof(*ctx->ssubranges));
1688 	if (!ASSERT_OK_PTR(ctx->ssubranges, "ssubranges_calloc"))
1689 		return -EINVAL;
1690 
1691 	cnt = 0;
1692 	for (i = 0; i < ctx->subval_cnt; i++) {
1693 		for (j = i; j < ctx->subval_cnt; j++) {
1694 			ctx->usubranges[cnt] = range(U32, ctx->usubvals[i], ctx->usubvals[j]);
1695 			ctx->ssubranges[cnt] = range(S32, ctx->ssubvals[i], ctx->ssubvals[j]);
1696 			cnt++;
1697 		}
1698 	}
1699 
1700 	return 0;
1701 }
1702 
parse_env_vars(struct ctx * ctx)1703 static int parse_env_vars(struct ctx *ctx)
1704 {
1705 	const char *s;
1706 
1707 	if ((s = getenv("REG_BOUNDS_MAX_FAILURE_CNT"))) {
1708 		errno = 0;
1709 		ctx->max_failure_cnt = strtol(s, NULL, 10);
1710 		if (errno || ctx->max_failure_cnt < 0) {
1711 			ASSERT_OK(-errno, "REG_BOUNDS_MAX_FAILURE_CNT");
1712 			return -EINVAL;
1713 		}
1714 	}
1715 
1716 	if ((s = getenv("REG_BOUNDS_RAND_CASE_CNT"))) {
1717 		errno = 0;
1718 		ctx->rand_case_cnt = strtol(s, NULL, 10);
1719 		if (errno || ctx->rand_case_cnt < 0) {
1720 			ASSERT_OK(-errno, "REG_BOUNDS_RAND_CASE_CNT");
1721 			return -EINVAL;
1722 		}
1723 	}
1724 
1725 	if ((s = getenv("REG_BOUNDS_RAND_SEED"))) {
1726 		errno = 0;
1727 		ctx->rand_seed = strtoul(s, NULL, 10);
1728 		if (errno) {
1729 			ASSERT_OK(-errno, "REG_BOUNDS_RAND_SEED");
1730 			return -EINVAL;
1731 		}
1732 	}
1733 
1734 	return 0;
1735 }
1736 
prepare_gen_tests(struct ctx * ctx)1737 static int prepare_gen_tests(struct ctx *ctx)
1738 {
1739 	const char *s;
1740 	int err;
1741 
1742 	if (!(s = getenv("SLOW_TESTS")) || strcmp(s, "1") != 0) {
1743 		test__skip();
1744 		return -ENOTSUP;
1745 	}
1746 
1747 	err = parse_env_vars(ctx);
1748 	if (err)
1749 		return err;
1750 
1751 	gen_vals(ctx);
1752 	err = gen_ranges(ctx);
1753 	if (err) {
1754 		ASSERT_OK(err, "gen_ranges");
1755 		return err;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 /* Go over generated constants and ranges and validate various supported
1762  * combinations of them
1763  */
validate_gen_range_vs_const_64(enum num_t init_t,enum num_t cond_t)1764 static void validate_gen_range_vs_const_64(enum num_t init_t, enum num_t cond_t)
1765 {
1766 	struct ctx ctx;
1767 	struct range rconst;
1768 	const struct range *ranges;
1769 	const u64 *vals;
1770 	int i, j;
1771 
1772 	memset(&ctx, 0, sizeof(ctx));
1773 
1774 	if (prepare_gen_tests(&ctx))
1775 		goto cleanup;
1776 
1777 	ranges = init_t == U64 ? ctx.uranges : ctx.sranges;
1778 	vals = init_t == U64 ? ctx.uvals : (const u64 *)ctx.svals;
1779 
1780 	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.range_cnt * ctx.val_cnt);
1781 	ctx.start_ns = get_time_ns();
1782 	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
1783 		 "RANGE x CONST, %s -> %s",
1784 		 t_str(init_t), t_str(cond_t));
1785 
1786 	for (i = 0; i < ctx.val_cnt; i++) {
1787 		for (j = 0; j < ctx.range_cnt; j++) {
1788 			rconst = range(init_t, vals[i], vals[i]);
1789 
1790 			/* (u64|s64)(<range> x <const>) */
1791 			if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
1792 				goto cleanup;
1793 			/* (u64|s64)(<const> x <range>) */
1794 			if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
1795 				goto cleanup;
1796 		}
1797 	}
1798 
1799 cleanup:
1800 	cleanup_ctx(&ctx);
1801 }
1802 
validate_gen_range_vs_const_32(enum num_t init_t,enum num_t cond_t)1803 static void validate_gen_range_vs_const_32(enum num_t init_t, enum num_t cond_t)
1804 {
1805 	struct ctx ctx;
1806 	struct range rconst;
1807 	const struct range *ranges;
1808 	const u32 *vals;
1809 	int i, j;
1810 
1811 	memset(&ctx, 0, sizeof(ctx));
1812 
1813 	if (prepare_gen_tests(&ctx))
1814 		goto cleanup;
1815 
1816 	ranges = init_t == U32 ? ctx.usubranges : ctx.ssubranges;
1817 	vals = init_t == U32 ? ctx.usubvals : (const u32 *)ctx.ssubvals;
1818 
1819 	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.subrange_cnt * ctx.subval_cnt);
1820 	ctx.start_ns = get_time_ns();
1821 	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
1822 		 "RANGE x CONST, %s -> %s",
1823 		 t_str(init_t), t_str(cond_t));
1824 
1825 	for (i = 0; i < ctx.subval_cnt; i++) {
1826 		for (j = 0; j < ctx.subrange_cnt; j++) {
1827 			rconst = range(init_t, vals[i], vals[i]);
1828 
1829 			/* (u32|s32)(<range> x <const>) */
1830 			if (verify_case(&ctx, init_t, cond_t, ranges[j], rconst))
1831 				goto cleanup;
1832 			/* (u32|s32)(<const> x <range>) */
1833 			if (verify_case(&ctx, init_t, cond_t, rconst, ranges[j]))
1834 				goto cleanup;
1835 		}
1836 	}
1837 
1838 cleanup:
1839 	cleanup_ctx(&ctx);
1840 }
1841 
validate_gen_range_vs_range(enum num_t init_t,enum num_t cond_t)1842 static void validate_gen_range_vs_range(enum num_t init_t, enum num_t cond_t)
1843 {
1844 	struct ctx ctx;
1845 	const struct range *ranges;
1846 	int i, j, rcnt;
1847 
1848 	memset(&ctx, 0, sizeof(ctx));
1849 
1850 	if (prepare_gen_tests(&ctx))
1851 		goto cleanup;
1852 
1853 	switch (init_t)
1854 	{
1855 	case U64:
1856 		ranges = ctx.uranges;
1857 		rcnt = ctx.range_cnt;
1858 		break;
1859 	case U32:
1860 		ranges = ctx.usubranges;
1861 		rcnt = ctx.subrange_cnt;
1862 		break;
1863 	case S64:
1864 		ranges = ctx.sranges;
1865 		rcnt = ctx.range_cnt;
1866 		break;
1867 	case S32:
1868 		ranges = ctx.ssubranges;
1869 		rcnt = ctx.subrange_cnt;
1870 		break;
1871 	default:
1872 		printf("validate_gen_range_vs_range!\n");
1873 		exit(1);
1874 	}
1875 
1876 	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * rcnt * (rcnt + 1) / 2);
1877 	ctx.start_ns = get_time_ns();
1878 	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
1879 		 "RANGE x RANGE, %s -> %s",
1880 		 t_str(init_t), t_str(cond_t));
1881 
1882 	for (i = 0; i < rcnt; i++) {
1883 		for (j = i; j < rcnt; j++) {
1884 			/* (<range> x <range>) */
1885 			if (verify_case(&ctx, init_t, cond_t, ranges[i], ranges[j]))
1886 				goto cleanup;
1887 			if (verify_case(&ctx, init_t, cond_t, ranges[j], ranges[i]))
1888 				goto cleanup;
1889 		}
1890 	}
1891 
1892 cleanup:
1893 	cleanup_ctx(&ctx);
1894 }
1895 
1896 /* Go over thousands of test cases generated from initial seed values.
1897  * Given this take a long time, guard this begind SLOW_TESTS=1 envvar. If
1898  * envvar is not set, this test is skipped during test_progs testing.
1899  *
1900  * We split this up into smaller subsets based on initialization and
1901  * conditional numeric domains to get an easy parallelization with test_progs'
1902  * -j argument.
1903  */
1904 
1905 /* RANGE x CONST, U64 initial range */
test_reg_bounds_gen_consts_u64_u64(void)1906 void test_reg_bounds_gen_consts_u64_u64(void) { validate_gen_range_vs_const_64(U64, U64); }
test_reg_bounds_gen_consts_u64_s64(void)1907 void test_reg_bounds_gen_consts_u64_s64(void) { validate_gen_range_vs_const_64(U64, S64); }
test_reg_bounds_gen_consts_u64_u32(void)1908 void test_reg_bounds_gen_consts_u64_u32(void) { validate_gen_range_vs_const_64(U64, U32); }
test_reg_bounds_gen_consts_u64_s32(void)1909 void test_reg_bounds_gen_consts_u64_s32(void) { validate_gen_range_vs_const_64(U64, S32); }
1910 /* RANGE x CONST, S64 initial range */
test_reg_bounds_gen_consts_s64_u64(void)1911 void test_reg_bounds_gen_consts_s64_u64(void) { validate_gen_range_vs_const_64(S64, U64); }
test_reg_bounds_gen_consts_s64_s64(void)1912 void test_reg_bounds_gen_consts_s64_s64(void) { validate_gen_range_vs_const_64(S64, S64); }
test_reg_bounds_gen_consts_s64_u32(void)1913 void test_reg_bounds_gen_consts_s64_u32(void) { validate_gen_range_vs_const_64(S64, U32); }
test_reg_bounds_gen_consts_s64_s32(void)1914 void test_reg_bounds_gen_consts_s64_s32(void) { validate_gen_range_vs_const_64(S64, S32); }
1915 /* RANGE x CONST, U32 initial range */
test_reg_bounds_gen_consts_u32_u64(void)1916 void test_reg_bounds_gen_consts_u32_u64(void) { validate_gen_range_vs_const_32(U32, U64); }
test_reg_bounds_gen_consts_u32_s64(void)1917 void test_reg_bounds_gen_consts_u32_s64(void) { validate_gen_range_vs_const_32(U32, S64); }
test_reg_bounds_gen_consts_u32_u32(void)1918 void test_reg_bounds_gen_consts_u32_u32(void) { validate_gen_range_vs_const_32(U32, U32); }
test_reg_bounds_gen_consts_u32_s32(void)1919 void test_reg_bounds_gen_consts_u32_s32(void) { validate_gen_range_vs_const_32(U32, S32); }
1920 /* RANGE x CONST, S32 initial range */
test_reg_bounds_gen_consts_s32_u64(void)1921 void test_reg_bounds_gen_consts_s32_u64(void) { validate_gen_range_vs_const_32(S32, U64); }
test_reg_bounds_gen_consts_s32_s64(void)1922 void test_reg_bounds_gen_consts_s32_s64(void) { validate_gen_range_vs_const_32(S32, S64); }
test_reg_bounds_gen_consts_s32_u32(void)1923 void test_reg_bounds_gen_consts_s32_u32(void) { validate_gen_range_vs_const_32(S32, U32); }
test_reg_bounds_gen_consts_s32_s32(void)1924 void test_reg_bounds_gen_consts_s32_s32(void) { validate_gen_range_vs_const_32(S32, S32); }
1925 
1926 /* RANGE x RANGE, U64 initial range */
test_reg_bounds_gen_ranges_u64_u64(void)1927 void test_reg_bounds_gen_ranges_u64_u64(void) { validate_gen_range_vs_range(U64, U64); }
test_reg_bounds_gen_ranges_u64_s64(void)1928 void test_reg_bounds_gen_ranges_u64_s64(void) { validate_gen_range_vs_range(U64, S64); }
test_reg_bounds_gen_ranges_u64_u32(void)1929 void test_reg_bounds_gen_ranges_u64_u32(void) { validate_gen_range_vs_range(U64, U32); }
test_reg_bounds_gen_ranges_u64_s32(void)1930 void test_reg_bounds_gen_ranges_u64_s32(void) { validate_gen_range_vs_range(U64, S32); }
1931 /* RANGE x RANGE, S64 initial range */
test_reg_bounds_gen_ranges_s64_u64(void)1932 void test_reg_bounds_gen_ranges_s64_u64(void) { validate_gen_range_vs_range(S64, U64); }
test_reg_bounds_gen_ranges_s64_s64(void)1933 void test_reg_bounds_gen_ranges_s64_s64(void) { validate_gen_range_vs_range(S64, S64); }
test_reg_bounds_gen_ranges_s64_u32(void)1934 void test_reg_bounds_gen_ranges_s64_u32(void) { validate_gen_range_vs_range(S64, U32); }
test_reg_bounds_gen_ranges_s64_s32(void)1935 void test_reg_bounds_gen_ranges_s64_s32(void) { validate_gen_range_vs_range(S64, S32); }
1936 /* RANGE x RANGE, U32 initial range */
test_reg_bounds_gen_ranges_u32_u64(void)1937 void test_reg_bounds_gen_ranges_u32_u64(void) { validate_gen_range_vs_range(U32, U64); }
test_reg_bounds_gen_ranges_u32_s64(void)1938 void test_reg_bounds_gen_ranges_u32_s64(void) { validate_gen_range_vs_range(U32, S64); }
test_reg_bounds_gen_ranges_u32_u32(void)1939 void test_reg_bounds_gen_ranges_u32_u32(void) { validate_gen_range_vs_range(U32, U32); }
test_reg_bounds_gen_ranges_u32_s32(void)1940 void test_reg_bounds_gen_ranges_u32_s32(void) { validate_gen_range_vs_range(U32, S32); }
1941 /* RANGE x RANGE, S32 initial range */
test_reg_bounds_gen_ranges_s32_u64(void)1942 void test_reg_bounds_gen_ranges_s32_u64(void) { validate_gen_range_vs_range(S32, U64); }
test_reg_bounds_gen_ranges_s32_s64(void)1943 void test_reg_bounds_gen_ranges_s32_s64(void) { validate_gen_range_vs_range(S32, S64); }
test_reg_bounds_gen_ranges_s32_u32(void)1944 void test_reg_bounds_gen_ranges_s32_u32(void) { validate_gen_range_vs_range(S32, U32); }
test_reg_bounds_gen_ranges_s32_s32(void)1945 void test_reg_bounds_gen_ranges_s32_s32(void) { validate_gen_range_vs_range(S32, S32); }
1946 
1947 #define DEFAULT_RAND_CASE_CNT 100
1948 
1949 #define RAND_21BIT_MASK ((1 << 22) - 1)
1950 
rand_u64()1951 static u64 rand_u64()
1952 {
1953 	/* RAND_MAX is guaranteed to be at least 1<<15, but in practice it
1954 	 * seems to be 1<<31, so we need to call it thrice to get full u64;
1955 	 * we'll use roughly equal split: 22 + 21 + 21 bits
1956 	 */
1957 	return ((u64)random() << 42) |
1958 	       (((u64)random() & RAND_21BIT_MASK) << 21) |
1959 	       (random() & RAND_21BIT_MASK);
1960 }
1961 
rand_const(enum num_t t)1962 static u64 rand_const(enum num_t t)
1963 {
1964 	return cast_t(t, rand_u64());
1965 }
1966 
rand_range(enum num_t t)1967 static struct range rand_range(enum num_t t)
1968 {
1969 	u64 x = rand_const(t), y = rand_const(t);
1970 
1971 	return range(t, min_t(t, x, y), max_t(t, x, y));
1972 }
1973 
validate_rand_ranges(enum num_t init_t,enum num_t cond_t,bool const_range)1974 static void validate_rand_ranges(enum num_t init_t, enum num_t cond_t, bool const_range)
1975 {
1976 	struct ctx ctx;
1977 	struct range range1, range2;
1978 	int err, i;
1979 	u64 t;
1980 
1981 	memset(&ctx, 0, sizeof(ctx));
1982 
1983 	err = parse_env_vars(&ctx);
1984 	if (err) {
1985 		ASSERT_OK(err, "parse_env_vars");
1986 		return;
1987 	}
1988 
1989 	if (ctx.rand_case_cnt == 0)
1990 		ctx.rand_case_cnt = DEFAULT_RAND_CASE_CNT;
1991 	if (ctx.rand_seed == 0)
1992 		ctx.rand_seed = (unsigned)get_time_ns();
1993 
1994 	srandom(ctx.rand_seed);
1995 
1996 	ctx.total_case_cnt = (last_op - first_op + 1) * (2 * ctx.rand_case_cnt);
1997 	ctx.start_ns = get_time_ns();
1998 	snprintf(ctx.progress_ctx, sizeof(ctx.progress_ctx),
1999 		 "[RANDOM SEED %u] RANGE x %s, %s -> %s",
2000 		 ctx.rand_seed, const_range ? "CONST" : "RANGE",
2001 		 t_str(init_t), t_str(cond_t));
2002 
2003 	for (i = 0; i < ctx.rand_case_cnt; i++) {
2004 		range1 = rand_range(init_t);
2005 		if (const_range) {
2006 			t = rand_const(init_t);
2007 			range2 = range(init_t, t, t);
2008 		} else {
2009 			range2 = rand_range(init_t);
2010 		}
2011 
2012 		/* <range1> x <range2> */
2013 		if (verify_case_opt(&ctx, init_t, cond_t, range1, range2, false /* !is_subtest */))
2014 			goto cleanup;
2015 		/* <range2> x <range1> */
2016 		if (verify_case_opt(&ctx, init_t, cond_t, range2, range1, false /* !is_subtest */))
2017 			goto cleanup;
2018 	}
2019 
2020 cleanup:
2021 	/* make sure we report random seed for reproducing */
2022 	ASSERT_TRUE(true, ctx.progress_ctx);
2023 	cleanup_ctx(&ctx);
2024 }
2025 
2026 /* [RANDOM] RANGE x CONST, U64 initial range */
test_reg_bounds_rand_consts_u64_u64(void)2027 void test_reg_bounds_rand_consts_u64_u64(void) { validate_rand_ranges(U64, U64, true /* const */); }
test_reg_bounds_rand_consts_u64_s64(void)2028 void test_reg_bounds_rand_consts_u64_s64(void) { validate_rand_ranges(U64, S64, true /* const */); }
test_reg_bounds_rand_consts_u64_u32(void)2029 void test_reg_bounds_rand_consts_u64_u32(void) { validate_rand_ranges(U64, U32, true /* const */); }
test_reg_bounds_rand_consts_u64_s32(void)2030 void test_reg_bounds_rand_consts_u64_s32(void) { validate_rand_ranges(U64, S32, true /* const */); }
2031 /* [RANDOM] RANGE x CONST, S64 initial range */
test_reg_bounds_rand_consts_s64_u64(void)2032 void test_reg_bounds_rand_consts_s64_u64(void) { validate_rand_ranges(S64, U64, true /* const */); }
test_reg_bounds_rand_consts_s64_s64(void)2033 void test_reg_bounds_rand_consts_s64_s64(void) { validate_rand_ranges(S64, S64, true /* const */); }
test_reg_bounds_rand_consts_s64_u32(void)2034 void test_reg_bounds_rand_consts_s64_u32(void) { validate_rand_ranges(S64, U32, true /* const */); }
test_reg_bounds_rand_consts_s64_s32(void)2035 void test_reg_bounds_rand_consts_s64_s32(void) { validate_rand_ranges(S64, S32, true /* const */); }
2036 /* [RANDOM] RANGE x CONST, U32 initial range */
test_reg_bounds_rand_consts_u32_u64(void)2037 void test_reg_bounds_rand_consts_u32_u64(void) { validate_rand_ranges(U32, U64, true /* const */); }
test_reg_bounds_rand_consts_u32_s64(void)2038 void test_reg_bounds_rand_consts_u32_s64(void) { validate_rand_ranges(U32, S64, true /* const */); }
test_reg_bounds_rand_consts_u32_u32(void)2039 void test_reg_bounds_rand_consts_u32_u32(void) { validate_rand_ranges(U32, U32, true /* const */); }
test_reg_bounds_rand_consts_u32_s32(void)2040 void test_reg_bounds_rand_consts_u32_s32(void) { validate_rand_ranges(U32, S32, true /* const */); }
2041 /* [RANDOM] RANGE x CONST, S32 initial range */
test_reg_bounds_rand_consts_s32_u64(void)2042 void test_reg_bounds_rand_consts_s32_u64(void) { validate_rand_ranges(S32, U64, true /* const */); }
test_reg_bounds_rand_consts_s32_s64(void)2043 void test_reg_bounds_rand_consts_s32_s64(void) { validate_rand_ranges(S32, S64, true /* const */); }
test_reg_bounds_rand_consts_s32_u32(void)2044 void test_reg_bounds_rand_consts_s32_u32(void) { validate_rand_ranges(S32, U32, true /* const */); }
test_reg_bounds_rand_consts_s32_s32(void)2045 void test_reg_bounds_rand_consts_s32_s32(void) { validate_rand_ranges(S32, S32, true /* const */); }
2046 
2047 /* [RANDOM] RANGE x RANGE, U64 initial range */
test_reg_bounds_rand_ranges_u64_u64(void)2048 void test_reg_bounds_rand_ranges_u64_u64(void) { validate_rand_ranges(U64, U64, false /* range */); }
test_reg_bounds_rand_ranges_u64_s64(void)2049 void test_reg_bounds_rand_ranges_u64_s64(void) { validate_rand_ranges(U64, S64, false /* range */); }
test_reg_bounds_rand_ranges_u64_u32(void)2050 void test_reg_bounds_rand_ranges_u64_u32(void) { validate_rand_ranges(U64, U32, false /* range */); }
test_reg_bounds_rand_ranges_u64_s32(void)2051 void test_reg_bounds_rand_ranges_u64_s32(void) { validate_rand_ranges(U64, S32, false /* range */); }
2052 /* [RANDOM] RANGE x RANGE, S64 initial range */
test_reg_bounds_rand_ranges_s64_u64(void)2053 void test_reg_bounds_rand_ranges_s64_u64(void) { validate_rand_ranges(S64, U64, false /* range */); }
test_reg_bounds_rand_ranges_s64_s64(void)2054 void test_reg_bounds_rand_ranges_s64_s64(void) { validate_rand_ranges(S64, S64, false /* range */); }
test_reg_bounds_rand_ranges_s64_u32(void)2055 void test_reg_bounds_rand_ranges_s64_u32(void) { validate_rand_ranges(S64, U32, false /* range */); }
test_reg_bounds_rand_ranges_s64_s32(void)2056 void test_reg_bounds_rand_ranges_s64_s32(void) { validate_rand_ranges(S64, S32, false /* range */); }
2057 /* [RANDOM] RANGE x RANGE, U32 initial range */
test_reg_bounds_rand_ranges_u32_u64(void)2058 void test_reg_bounds_rand_ranges_u32_u64(void) { validate_rand_ranges(U32, U64, false /* range */); }
test_reg_bounds_rand_ranges_u32_s64(void)2059 void test_reg_bounds_rand_ranges_u32_s64(void) { validate_rand_ranges(U32, S64, false /* range */); }
test_reg_bounds_rand_ranges_u32_u32(void)2060 void test_reg_bounds_rand_ranges_u32_u32(void) { validate_rand_ranges(U32, U32, false /* range */); }
test_reg_bounds_rand_ranges_u32_s32(void)2061 void test_reg_bounds_rand_ranges_u32_s32(void) { validate_rand_ranges(U32, S32, false /* range */); }
2062 /* [RANDOM] RANGE x RANGE, S32 initial range */
test_reg_bounds_rand_ranges_s32_u64(void)2063 void test_reg_bounds_rand_ranges_s32_u64(void) { validate_rand_ranges(S32, U64, false /* range */); }
test_reg_bounds_rand_ranges_s32_s64(void)2064 void test_reg_bounds_rand_ranges_s32_s64(void) { validate_rand_ranges(S32, S64, false /* range */); }
test_reg_bounds_rand_ranges_s32_u32(void)2065 void test_reg_bounds_rand_ranges_s32_u32(void) { validate_rand_ranges(S32, U32, false /* range */); }
test_reg_bounds_rand_ranges_s32_s32(void)2066 void test_reg_bounds_rand_ranges_s32_s32(void) { validate_rand_ranges(S32, S32, false /* range */); }
2067 
2068 /* A set of hard-coded "interesting" cases to validate as part of normal
2069  * test_progs test runs
2070  */
2071 static struct subtest_case crafted_cases[] = {
2072 	{U64, U64, {0, 0xffffffff}, {0, 0}},
2073 	{U64, U64, {0, 0x80000000}, {0, 0}},
2074 	{U64, U64, {0x100000000ULL, 0x100000100ULL}, {0, 0}},
2075 	{U64, U64, {0x100000000ULL, 0x180000000ULL}, {0, 0}},
2076 	{U64, U64, {0x100000000ULL, 0x1ffffff00ULL}, {0, 0}},
2077 	{U64, U64, {0x100000000ULL, 0x1ffffff01ULL}, {0, 0}},
2078 	{U64, U64, {0x100000000ULL, 0x1fffffffeULL}, {0, 0}},
2079 	{U64, U64, {0x100000001ULL, 0x1000000ffULL}, {0, 0}},
2080 
2081 	/* single point overlap, interesting BPF_EQ and BPF_NE interactions */
2082 	{U64, U64, {0, 1}, {1, 0x80000000}},
2083 	{U64, S64, {0, 1}, {1, 0x80000000}},
2084 	{U64, U32, {0, 1}, {1, 0x80000000}},
2085 	{U64, S32, {0, 1}, {1, 0x80000000}},
2086 
2087 	{U64, S64, {0, 0xffffffff00000000ULL}, {0, 0}},
2088 	{U64, S64, {0x7fffffffffffffffULL, 0xffffffff00000000ULL}, {0, 0}},
2089 	{U64, S64, {0x7fffffff00000001ULL, 0xffffffff00000000ULL}, {0, 0}},
2090 	{U64, S64, {0, 0xffffffffULL}, {1, 1}},
2091 	{U64, S64, {0, 0xffffffffULL}, {0x7fffffff, 0x7fffffff}},
2092 
2093 	{U64, U32, {0, 0x100000000}, {0, 0}},
2094 	{U64, U32, {0xfffffffe, 0x100000000}, {0x80000000, 0x80000000}},
2095 
2096 	{U64, S32, {0, 0xffffffff00000000ULL}, {0, 0}},
2097 	/* these are tricky cases where lower 32 bits allow to tighten 64
2098 	 * bit boundaries based on tightened lower 32 bit boundaries
2099 	 */
2100 	{U64, S32, {0, 0x0ffffffffULL}, {0, 0}},
2101 	{U64, S32, {0, 0x100000000ULL}, {0, 0}},
2102 	{U64, S32, {0, 0x100000001ULL}, {0, 0}},
2103 	{U64, S32, {0, 0x180000000ULL}, {0, 0}},
2104 	{U64, S32, {0, 0x17fffffffULL}, {0, 0}},
2105 	{U64, S32, {0, 0x180000001ULL}, {0, 0}},
2106 
2107 	/* verifier knows about [-1, 0] range for s32 for this case already */
2108 	{S64, S64, {0xffffffffffffffffULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},
2109 	/* but didn't know about these cases initially */
2110 	{U64, U64, {0xffffffff, 0x100000000ULL}, {0, 0}}, /* s32: [-1, 0] */
2111 	{U64, U64, {0xffffffff, 0x100000001ULL}, {0, 0}}, /* s32: [-1, 1] */
2112 
2113 	/* longer convergence case: learning from u64 -> s64 -> u64 -> u32,
2114 	 * arriving at u32: [1, U32_MAX] (instead of more pessimistic [0, U32_MAX])
2115 	 */
2116 	{S64, U64, {0xffffffff00000001ULL, 0}, {0xffffffff00000000ULL, 0xffffffff00000000ULL}},
2117 
2118 	{U32, U32, {1, U32_MAX}, {0, 0}},
2119 
2120 	{U32, S32, {0, U32_MAX}, {U32_MAX, U32_MAX}},
2121 
2122 	{S32, U64, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)(s32)-255, 0}},
2123 	{S32, S64, {(u32)S32_MIN, (u32)(s32)-255}, {(u32)(s32)-2, 0}},
2124 	{S32, S64, {0, 1}, {(u32)S32_MIN, (u32)S32_MIN}},
2125 	{S32, U32, {(u32)S32_MIN, (u32)S32_MIN}, {(u32)S32_MIN, (u32)S32_MIN}},
2126 
2127 	/* edge overlap testings for BPF_NE */
2128 	{U64, U64, {0, U64_MAX}, {U64_MAX, U64_MAX}},
2129 	{U64, U64, {0, U64_MAX}, {0, 0}},
2130 	{S64, U64, {S64_MIN, 0}, {S64_MIN, S64_MIN}},
2131 	{S64, U64, {S64_MIN, 0}, {0, 0}},
2132 	{S64, U64, {S64_MIN, S64_MAX}, {S64_MAX, S64_MAX}},
2133 	{U32, U32, {0, U32_MAX}, {0, 0}},
2134 	{U32, U32, {0, U32_MAX}, {U32_MAX, U32_MAX}},
2135 	{S32, U32, {(u32)S32_MIN, 0}, {0, 0}},
2136 	{S32, U32, {(u32)S32_MIN, 0}, {(u32)S32_MIN, (u32)S32_MIN}},
2137 	{S32, U32, {(u32)S32_MIN, S32_MAX}, {S32_MAX, S32_MAX}},
2138 	{S64, U32, {0x0, 0x1f}, {0xffffffff80000000ULL, 0x000000007fffffffULL}},
2139 	{S64, U32, {0x0, 0x1f}, {0xffffffffffff8000ULL, 0x0000000000007fffULL}},
2140 	{S64, U32, {0x0, 0x1f}, {0xffffffffffffff80ULL, 0x000000000000007fULL}},
2141 };
2142 
2143 /* Go over crafted hard-coded cases. This is fast, so we do it as part of
2144  * normal test_progs run.
2145  */
test_reg_bounds_crafted(void)2146 void test_reg_bounds_crafted(void)
2147 {
2148 	struct ctx ctx;
2149 	int i;
2150 
2151 	memset(&ctx, 0, sizeof(ctx));
2152 
2153 	for (i = 0; i < ARRAY_SIZE(crafted_cases); i++) {
2154 		struct subtest_case *c = &crafted_cases[i];
2155 
2156 		verify_case(&ctx, c->init_t, c->cond_t, c->x, c->y);
2157 		verify_case(&ctx, c->init_t, c->cond_t, c->y, c->x);
2158 	}
2159 
2160 	cleanup_ctx(&ctx);
2161 }
2162