xref: /linux/mm/ksm.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 typedef u8 rmap_age_t;
60 
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120 
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127 	struct mm_slot slot;
128 	struct ksm_rmap_item *rmap_list;
129 };
130 
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141 	struct ksm_mm_slot *mm_slot;
142 	unsigned long address;
143 	struct ksm_rmap_item **rmap_list;
144 	unsigned long seqnr;
145 };
146 
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160 	union {
161 		struct rb_node node;	/* when node of stable tree */
162 		struct {		/* when listed for migration */
163 			struct list_head *head;
164 			struct {
165 				struct hlist_node hlist_dup;
166 				struct list_head list;
167 			};
168 		};
169 	};
170 	struct hlist_head hlist;
171 	union {
172 		unsigned long kpfn;
173 		unsigned long chain_prune_time;
174 	};
175 	/*
176 	 * STABLE_NODE_CHAIN can be any negative number in
177 	 * rmap_hlist_len negative range, but better not -1 to be able
178 	 * to reliably detect underflows.
179 	 */
180 #define STABLE_NODE_CHAIN -1024
181 	int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 	int nid;
184 #endif
185 };
186 
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202 	struct ksm_rmap_item *rmap_list;
203 	union {
204 		struct anon_vma *anon_vma;	/* when stable */
205 #ifdef CONFIG_NUMA
206 		int nid;		/* when node of unstable tree */
207 #endif
208 	};
209 	struct mm_struct *mm;
210 	unsigned long address;		/* + low bits used for flags below */
211 	unsigned int oldchecksum;	/* when unstable */
212 	rmap_age_t age;
213 	rmap_age_t remaining_skips;
214 	union {
215 		struct rb_node node;	/* when node of unstable tree */
216 		struct {		/* when listed from stable tree */
217 			struct ksm_stable_node *head;
218 			struct hlist_node hlist;
219 		};
220 	};
221 };
222 
223 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
225 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
226 
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232 
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236 
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239 
240 static struct ksm_mm_slot ksm_mm_head = {
241 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 	.mm_slot = &ksm_mm_head,
245 };
246 
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250 
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253 
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256 
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259 
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262 
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265 
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268 
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271 
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274 
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277 
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280 
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283 
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286 
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289 
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292 
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296 
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299 
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302 
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305 
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308 
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu =  70;
311 
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314 
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317 
318 /**
319  * struct advisor_ctx - metadata for KSM advisor
320  * @start_scan: start time of the current scan
321  * @scan_time: scan time of previous scan
322  * @change: change in percent to pages_to_scan parameter
323  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324  */
325 struct advisor_ctx {
326 	ktime_t start_scan;
327 	unsigned long scan_time;
328 	unsigned long change;
329 	unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332 
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 	KSM_ADVISOR_NONE,
336 	KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339 
340 #ifdef CONFIG_SYSFS
341 /*
342  * Only called through the sysfs control interface:
343  */
344 
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347 
348 static void set_advisor_defaults(void)
349 {
350 	if (ksm_advisor == KSM_ADVISOR_NONE) {
351 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 		advisor_ctx = (const struct advisor_ctx){ 0 };
354 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 	}
356 }
357 #endif /* CONFIG_SYSFS */
358 
359 static inline void advisor_start_scan(void)
360 {
361 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 		advisor_ctx.start_scan = ktime_get();
363 }
364 
365 /*
366  * Use previous scan time if available, otherwise use current scan time as an
367  * approximation for the previous scan time.
368  */
369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 					   unsigned long scan_time)
371 {
372 	return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374 
375 /* Calculate exponential weighted moving average */
376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380 
381 /*
382  * The scan time advisor is based on the current scan rate and the target
383  * scan rate.
384  *
385  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386  *
387  * To avoid perturbations it calculates a change factor of previous changes.
388  * A new change factor is calculated for each iteration and it uses an
389  * exponentially weighted moving average. The new pages_to_scan value is
390  * multiplied with that change factor:
391  *
392  *      new_pages_to_scan *= change facor
393  *
394  * The new_pages_to_scan value is limited by the cpu min and max values. It
395  * calculates the cpu percent for the last scan and calculates the new
396  * estimated cpu percent cost for the next scan. That value is capped by the
397  * cpu min and max setting.
398  *
399  * In addition the new pages_to_scan value is capped by the max and min
400  * limits.
401  */
402 static void scan_time_advisor(void)
403 {
404 	unsigned int cpu_percent;
405 	unsigned long cpu_time;
406 	unsigned long cpu_time_diff;
407 	unsigned long cpu_time_diff_ms;
408 	unsigned long pages;
409 	unsigned long per_page_cost;
410 	unsigned long factor;
411 	unsigned long change;
412 	unsigned long last_scan_time;
413 	unsigned long scan_time;
414 
415 	/* Convert scan time to seconds */
416 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 			    MSEC_PER_SEC);
418 	scan_time = scan_time ? scan_time : 1;
419 
420 	/* Calculate CPU consumption of ksmd background thread */
421 	cpu_time = task_sched_runtime(current);
422 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424 
425 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 	cpu_percent = cpu_percent ? cpu_percent : 1;
427 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428 
429 	/* Calculate scan time as percentage of target scan time */
430 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 	factor = factor ? factor : 1;
432 
433 	/*
434 	 * Calculate scan time as percentage of last scan time and use
435 	 * exponentially weighted average to smooth it
436 	 */
437 	change = scan_time * 100 / last_scan_time;
438 	change = change ? change : 1;
439 	change = ewma(advisor_ctx.change, change);
440 
441 	/* Calculate new scan rate based on target scan rate. */
442 	pages = ksm_thread_pages_to_scan * 100 / factor;
443 	/* Update pages_to_scan by weighted change percentage. */
444 	pages = pages * change / 100;
445 
446 	/* Cap new pages_to_scan value */
447 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 	per_page_cost = per_page_cost ? per_page_cost : 1;
449 
450 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 	pages = min(pages, ksm_advisor_max_pages_to_scan);
453 
454 	/* Update advisor context */
455 	advisor_ctx.change = change;
456 	advisor_ctx.scan_time = scan_time;
457 	advisor_ctx.cpu_time = cpu_time;
458 
459 	ksm_thread_pages_to_scan = pages;
460 	trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462 
463 static void advisor_stop_scan(void)
464 {
465 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 		scan_time_advisor();
467 }
468 
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes	1U
475 #define ksm_nr_node_ids		1
476 #endif
477 
478 #define KSM_RUN_STOP	0
479 #define KSM_RUN_MERGE	1
480 #define KSM_RUN_UNMERGE	2
481 #define KSM_RUN_OFFLINE	4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484 
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489 
490 static int __init ksm_slab_init(void)
491 {
492 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 	if (!rmap_item_cache)
494 		goto out;
495 
496 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 	if (!stable_node_cache)
498 		goto out_free1;
499 
500 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 	if (!mm_slot_cache)
502 		goto out_free2;
503 
504 	return 0;
505 
506 out_free2:
507 	kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 	kmem_cache_destroy(rmap_item_cache);
510 out:
511 	return -ENOMEM;
512 }
513 
514 static void __init ksm_slab_free(void)
515 {
516 	kmem_cache_destroy(mm_slot_cache);
517 	kmem_cache_destroy(stable_node_cache);
518 	kmem_cache_destroy(rmap_item_cache);
519 	mm_slot_cache = NULL;
520 }
521 
522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526 
527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 	return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531 
532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 					     struct ksm_stable_node *chain)
534 {
535 	VM_BUG_ON(is_stable_node_dup(dup));
536 	dup->head = STABLE_NODE_DUP_HEAD;
537 	VM_BUG_ON(!is_stable_node_chain(chain));
538 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 	ksm_stable_node_dups++;
540 }
541 
542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 	VM_BUG_ON(!is_stable_node_dup(dup));
545 	hlist_del(&dup->hlist_dup);
546 	ksm_stable_node_dups--;
547 }
548 
549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 	VM_BUG_ON(is_stable_node_chain(dup));
552 	if (is_stable_node_dup(dup))
553 		__stable_node_dup_del(dup);
554 	else
555 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 	dup->head = NULL;
558 #endif
559 }
560 
561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 	struct ksm_rmap_item *rmap_item;
564 
565 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 						__GFP_NORETRY | __GFP_NOWARN);
567 	if (rmap_item)
568 		ksm_rmap_items++;
569 	return rmap_item;
570 }
571 
572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 	ksm_rmap_items--;
575 	rmap_item->mm->ksm_rmap_items--;
576 	rmap_item->mm = NULL;	/* debug safety */
577 	kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579 
580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 	/*
583 	 * The allocation can take too long with GFP_KERNEL when memory is under
584 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
585 	 * grants access to memory reserves, helping to avoid this problem.
586 	 */
587 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589 
590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 	VM_BUG_ON(stable_node->rmap_hlist_len &&
593 		  !is_stable_node_chain(stable_node));
594 	kmem_cache_free(stable_node_cache, stable_node);
595 }
596 
597 /*
598  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599  * page tables after it has passed through ksm_exit() - which, if necessary,
600  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
601  * a special flag: they can just back out as soon as mm_users goes to zero.
602  * ksm_test_exit() is used throughout to make this test for exit: in some
603  * places for correctness, in some places just to avoid unnecessary work.
604  */
605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 	return atomic_read(&mm->mm_users) == 0;
608 }
609 
610 /*
611  * We use break_ksm to break COW on a ksm page by triggering unsharing,
612  * such that the ksm page will get replaced by an exclusive anonymous page.
613  *
614  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615  * in case the application has unmapped and remapped mm,addr meanwhile.
616  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
617  * mmap of /dev/mem, where we would not want to touch it.
618  *
619  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620  * of the process that owns 'vma'.  We also do not want to enforce
621  * protection keys here anyway.
622  */
623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624 {
625 	vm_fault_t ret = 0;
626 
627 	if (lock_vma)
628 		vma_start_write(vma);
629 
630 	do {
631 		bool ksm_page = false;
632 		struct folio_walk fw;
633 		struct folio *folio;
634 
635 		cond_resched();
636 		folio = folio_walk_start(&fw, vma, addr,
637 					 FW_MIGRATION | FW_ZEROPAGE);
638 		if (folio) {
639 			/* Small folio implies FW_LEVEL_PTE. */
640 			if (!folio_test_large(folio) &&
641 			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642 				ksm_page = true;
643 			folio_walk_end(&fw, vma);
644 		}
645 
646 		if (!ksm_page)
647 			return 0;
648 		ret = handle_mm_fault(vma, addr,
649 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650 				      NULL);
651 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652 	/*
653 	 * We must loop until we no longer find a KSM page because
654 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
655 	 * pte accessed bit gets updated concurrently.
656 	 *
657 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
658 	 * backing file, which also invalidates anonymous pages: that's
659 	 * okay, that truncation will have unmapped the KSM page for us.
660 	 *
661 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
662 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
664 	 * to user; and ksmd, having no mm, would never be chosen for that.
665 	 *
666 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
667 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668 	 * even ksmd can fail in this way - though it's usually breaking ksm
669 	 * just to undo a merge it made a moment before, so unlikely to oom.
670 	 *
671 	 * That's a pity: we might therefore have more kernel pages allocated
672 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
673 	 * will retry to break_cow on each pass, so should recover the page
674 	 * in due course.  The important thing is to not let VM_MERGEABLE
675 	 * be cleared while any such pages might remain in the area.
676 	 */
677 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678 }
679 
680 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
681 {
682 	if (vm_flags & (VM_SHARED  | VM_MAYSHARE | VM_SPECIAL |
683 			VM_HUGETLB | VM_DROPPABLE))
684 		return false;		/* just ignore the advice */
685 
686 	if (file_is_dax(file))
687 		return false;
688 
689 #ifdef VM_SAO
690 	if (vm_flags & VM_SAO)
691 		return false;
692 #endif
693 #ifdef VM_SPARC_ADI
694 	if (vm_flags & VM_SPARC_ADI)
695 		return false;
696 #endif
697 
698 	return true;
699 }
700 
701 static bool vma_ksm_compatible(struct vm_area_struct *vma)
702 {
703 	return ksm_compatible(vma->vm_file, vma->vm_flags);
704 }
705 
706 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
707 		unsigned long addr)
708 {
709 	struct vm_area_struct *vma;
710 	if (ksm_test_exit(mm))
711 		return NULL;
712 	vma = vma_lookup(mm, addr);
713 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
714 		return NULL;
715 	return vma;
716 }
717 
718 static void break_cow(struct ksm_rmap_item *rmap_item)
719 {
720 	struct mm_struct *mm = rmap_item->mm;
721 	unsigned long addr = rmap_item->address;
722 	struct vm_area_struct *vma;
723 
724 	/*
725 	 * It is not an accident that whenever we want to break COW
726 	 * to undo, we also need to drop a reference to the anon_vma.
727 	 */
728 	put_anon_vma(rmap_item->anon_vma);
729 
730 	mmap_read_lock(mm);
731 	vma = find_mergeable_vma(mm, addr);
732 	if (vma)
733 		break_ksm(vma, addr, false);
734 	mmap_read_unlock(mm);
735 }
736 
737 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
738 {
739 	struct mm_struct *mm = rmap_item->mm;
740 	unsigned long addr = rmap_item->address;
741 	struct vm_area_struct *vma;
742 	struct page *page = NULL;
743 	struct folio_walk fw;
744 	struct folio *folio;
745 
746 	mmap_read_lock(mm);
747 	vma = find_mergeable_vma(mm, addr);
748 	if (!vma)
749 		goto out;
750 
751 	folio = folio_walk_start(&fw, vma, addr, 0);
752 	if (folio) {
753 		if (!folio_is_zone_device(folio) &&
754 		    folio_test_anon(folio)) {
755 			folio_get(folio);
756 			page = fw.page;
757 		}
758 		folio_walk_end(&fw, vma);
759 	}
760 out:
761 	if (page) {
762 		flush_anon_page(vma, page, addr);
763 		flush_dcache_page(page);
764 	}
765 	mmap_read_unlock(mm);
766 	return page;
767 }
768 
769 /*
770  * This helper is used for getting right index into array of tree roots.
771  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
772  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
773  * every node has its own stable and unstable tree.
774  */
775 static inline int get_kpfn_nid(unsigned long kpfn)
776 {
777 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
778 }
779 
780 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
781 						   struct rb_root *root)
782 {
783 	struct ksm_stable_node *chain = alloc_stable_node();
784 	VM_BUG_ON(is_stable_node_chain(dup));
785 	if (likely(chain)) {
786 		INIT_HLIST_HEAD(&chain->hlist);
787 		chain->chain_prune_time = jiffies;
788 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
789 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
790 		chain->nid = NUMA_NO_NODE; /* debug */
791 #endif
792 		ksm_stable_node_chains++;
793 
794 		/*
795 		 * Put the stable node chain in the first dimension of
796 		 * the stable tree and at the same time remove the old
797 		 * stable node.
798 		 */
799 		rb_replace_node(&dup->node, &chain->node, root);
800 
801 		/*
802 		 * Move the old stable node to the second dimension
803 		 * queued in the hlist_dup. The invariant is that all
804 		 * dup stable_nodes in the chain->hlist point to pages
805 		 * that are write protected and have the exact same
806 		 * content.
807 		 */
808 		stable_node_chain_add_dup(dup, chain);
809 	}
810 	return chain;
811 }
812 
813 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
814 					  struct rb_root *root)
815 {
816 	rb_erase(&chain->node, root);
817 	free_stable_node(chain);
818 	ksm_stable_node_chains--;
819 }
820 
821 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
822 {
823 	struct ksm_rmap_item *rmap_item;
824 
825 	/* check it's not STABLE_NODE_CHAIN or negative */
826 	BUG_ON(stable_node->rmap_hlist_len < 0);
827 
828 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
829 		if (rmap_item->hlist.next) {
830 			ksm_pages_sharing--;
831 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
832 		} else {
833 			ksm_pages_shared--;
834 		}
835 
836 		rmap_item->mm->ksm_merging_pages--;
837 
838 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
839 		stable_node->rmap_hlist_len--;
840 		put_anon_vma(rmap_item->anon_vma);
841 		rmap_item->address &= PAGE_MASK;
842 		cond_resched();
843 	}
844 
845 	/*
846 	 * We need the second aligned pointer of the migrate_nodes
847 	 * list_head to stay clear from the rb_parent_color union
848 	 * (aligned and different than any node) and also different
849 	 * from &migrate_nodes. This will verify that future list.h changes
850 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
851 	 */
852 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
853 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
854 
855 	trace_ksm_remove_ksm_page(stable_node->kpfn);
856 	if (stable_node->head == &migrate_nodes)
857 		list_del(&stable_node->list);
858 	else
859 		stable_node_dup_del(stable_node);
860 	free_stable_node(stable_node);
861 }
862 
863 enum ksm_get_folio_flags {
864 	KSM_GET_FOLIO_NOLOCK,
865 	KSM_GET_FOLIO_LOCK,
866 	KSM_GET_FOLIO_TRYLOCK
867 };
868 
869 /*
870  * ksm_get_folio: checks if the page indicated by the stable node
871  * is still its ksm page, despite having held no reference to it.
872  * In which case we can trust the content of the page, and it
873  * returns the gotten page; but if the page has now been zapped,
874  * remove the stale node from the stable tree and return NULL.
875  * But beware, the stable node's page might be being migrated.
876  *
877  * You would expect the stable_node to hold a reference to the ksm page.
878  * But if it increments the page's count, swapping out has to wait for
879  * ksmd to come around again before it can free the page, which may take
880  * seconds or even minutes: much too unresponsive.  So instead we use a
881  * "keyhole reference": access to the ksm page from the stable node peeps
882  * out through its keyhole to see if that page still holds the right key,
883  * pointing back to this stable node.  This relies on freeing a PageAnon
884  * page to reset its page->mapping to NULL, and relies on no other use of
885  * a page to put something that might look like our key in page->mapping.
886  * is on its way to being freed; but it is an anomaly to bear in mind.
887  */
888 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
889 				 enum ksm_get_folio_flags flags)
890 {
891 	struct folio *folio;
892 	void *expected_mapping;
893 	unsigned long kpfn;
894 
895 	expected_mapping = (void *)((unsigned long)stable_node |
896 					FOLIO_MAPPING_KSM);
897 again:
898 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
899 	folio = pfn_folio(kpfn);
900 	if (READ_ONCE(folio->mapping) != expected_mapping)
901 		goto stale;
902 
903 	/*
904 	 * We cannot do anything with the page while its refcount is 0.
905 	 * Usually 0 means free, or tail of a higher-order page: in which
906 	 * case this node is no longer referenced, and should be freed;
907 	 * however, it might mean that the page is under page_ref_freeze().
908 	 * The __remove_mapping() case is easy, again the node is now stale;
909 	 * the same is in reuse_ksm_page() case; but if page is swapcache
910 	 * in folio_migrate_mapping(), it might still be our page,
911 	 * in which case it's essential to keep the node.
912 	 */
913 	while (!folio_try_get(folio)) {
914 		/*
915 		 * Another check for folio->mapping != expected_mapping
916 		 * would work here too.  We have chosen to test the
917 		 * swapcache flag to optimize the common case, when the
918 		 * folio is or is about to be freed: the swapcache flag
919 		 * is cleared (under spin_lock_irq) in the ref_freeze
920 		 * section of __remove_mapping(); but anon folio->mapping
921 		 * is reset to NULL later, in free_pages_prepare().
922 		 */
923 		if (!folio_test_swapcache(folio))
924 			goto stale;
925 		cpu_relax();
926 	}
927 
928 	if (READ_ONCE(folio->mapping) != expected_mapping) {
929 		folio_put(folio);
930 		goto stale;
931 	}
932 
933 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
934 		if (!folio_trylock(folio)) {
935 			folio_put(folio);
936 			return ERR_PTR(-EBUSY);
937 		}
938 	} else if (flags == KSM_GET_FOLIO_LOCK)
939 		folio_lock(folio);
940 
941 	if (flags != KSM_GET_FOLIO_NOLOCK) {
942 		if (READ_ONCE(folio->mapping) != expected_mapping) {
943 			folio_unlock(folio);
944 			folio_put(folio);
945 			goto stale;
946 		}
947 	}
948 	return folio;
949 
950 stale:
951 	/*
952 	 * We come here from above when folio->mapping or the swapcache flag
953 	 * suggests that the node is stale; but it might be under migration.
954 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
955 	 * before checking whether node->kpfn has been changed.
956 	 */
957 	smp_rmb();
958 	if (READ_ONCE(stable_node->kpfn) != kpfn)
959 		goto again;
960 	remove_node_from_stable_tree(stable_node);
961 	return NULL;
962 }
963 
964 /*
965  * Removing rmap_item from stable or unstable tree.
966  * This function will clean the information from the stable/unstable tree.
967  */
968 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
969 {
970 	if (rmap_item->address & STABLE_FLAG) {
971 		struct ksm_stable_node *stable_node;
972 		struct folio *folio;
973 
974 		stable_node = rmap_item->head;
975 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
976 		if (!folio)
977 			goto out;
978 
979 		hlist_del(&rmap_item->hlist);
980 		folio_unlock(folio);
981 		folio_put(folio);
982 
983 		if (!hlist_empty(&stable_node->hlist))
984 			ksm_pages_sharing--;
985 		else
986 			ksm_pages_shared--;
987 
988 		rmap_item->mm->ksm_merging_pages--;
989 
990 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
991 		stable_node->rmap_hlist_len--;
992 
993 		put_anon_vma(rmap_item->anon_vma);
994 		rmap_item->head = NULL;
995 		rmap_item->address &= PAGE_MASK;
996 
997 	} else if (rmap_item->address & UNSTABLE_FLAG) {
998 		unsigned char age;
999 		/*
1000 		 * Usually ksmd can and must skip the rb_erase, because
1001 		 * root_unstable_tree was already reset to RB_ROOT.
1002 		 * But be careful when an mm is exiting: do the rb_erase
1003 		 * if this rmap_item was inserted by this scan, rather
1004 		 * than left over from before.
1005 		 */
1006 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1007 		BUG_ON(age > 1);
1008 		if (!age)
1009 			rb_erase(&rmap_item->node,
1010 				 root_unstable_tree + NUMA(rmap_item->nid));
1011 		ksm_pages_unshared--;
1012 		rmap_item->address &= PAGE_MASK;
1013 	}
1014 out:
1015 	cond_resched();		/* we're called from many long loops */
1016 }
1017 
1018 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1019 {
1020 	while (*rmap_list) {
1021 		struct ksm_rmap_item *rmap_item = *rmap_list;
1022 		*rmap_list = rmap_item->rmap_list;
1023 		remove_rmap_item_from_tree(rmap_item);
1024 		free_rmap_item(rmap_item);
1025 	}
1026 }
1027 
1028 /*
1029  * Though it's very tempting to unmerge rmap_items from stable tree rather
1030  * than check every pte of a given vma, the locking doesn't quite work for
1031  * that - an rmap_item is assigned to the stable tree after inserting ksm
1032  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1033  * rmap_items from parent to child at fork time (so as not to waste time
1034  * if exit comes before the next scan reaches it).
1035  *
1036  * Similarly, although we'd like to remove rmap_items (so updating counts
1037  * and freeing memory) when unmerging an area, it's easier to leave that
1038  * to the next pass of ksmd - consider, for example, how ksmd might be
1039  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1040  */
1041 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1042 			     unsigned long start, unsigned long end, bool lock_vma)
1043 {
1044 	unsigned long addr;
1045 	int err = 0;
1046 
1047 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1048 		if (ksm_test_exit(vma->vm_mm))
1049 			break;
1050 		if (signal_pending(current))
1051 			err = -ERESTARTSYS;
1052 		else
1053 			err = break_ksm(vma, addr, lock_vma);
1054 	}
1055 	return err;
1056 }
1057 
1058 static inline
1059 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1060 {
1061 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1062 }
1063 
1064 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1065 {
1066 	return folio_stable_node(page_folio(page));
1067 }
1068 
1069 static inline void folio_set_stable_node(struct folio *folio,
1070 					 struct ksm_stable_node *stable_node)
1071 {
1072 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1073 	folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1074 }
1075 
1076 #ifdef CONFIG_SYSFS
1077 /*
1078  * Only called through the sysfs control interface:
1079  */
1080 static int remove_stable_node(struct ksm_stable_node *stable_node)
1081 {
1082 	struct folio *folio;
1083 	int err;
1084 
1085 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1086 	if (!folio) {
1087 		/*
1088 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1089 		 */
1090 		return 0;
1091 	}
1092 
1093 	/*
1094 	 * Page could be still mapped if this races with __mmput() running in
1095 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1096 	 * merge_across_nodes/max_page_sharing be switched.
1097 	 */
1098 	err = -EBUSY;
1099 	if (!folio_mapped(folio)) {
1100 		/*
1101 		 * The stable node did not yet appear stale to ksm_get_folio(),
1102 		 * since that allows for an unmapped ksm folio to be recognized
1103 		 * right up until it is freed; but the node is safe to remove.
1104 		 * This folio might be in an LRU cache waiting to be freed,
1105 		 * or it might be in the swapcache (perhaps under writeback),
1106 		 * or it might have been removed from swapcache a moment ago.
1107 		 */
1108 		folio_set_stable_node(folio, NULL);
1109 		remove_node_from_stable_tree(stable_node);
1110 		err = 0;
1111 	}
1112 
1113 	folio_unlock(folio);
1114 	folio_put(folio);
1115 	return err;
1116 }
1117 
1118 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1119 				    struct rb_root *root)
1120 {
1121 	struct ksm_stable_node *dup;
1122 	struct hlist_node *hlist_safe;
1123 
1124 	if (!is_stable_node_chain(stable_node)) {
1125 		VM_BUG_ON(is_stable_node_dup(stable_node));
1126 		if (remove_stable_node(stable_node))
1127 			return true;
1128 		else
1129 			return false;
1130 	}
1131 
1132 	hlist_for_each_entry_safe(dup, hlist_safe,
1133 				  &stable_node->hlist, hlist_dup) {
1134 		VM_BUG_ON(!is_stable_node_dup(dup));
1135 		if (remove_stable_node(dup))
1136 			return true;
1137 	}
1138 	BUG_ON(!hlist_empty(&stable_node->hlist));
1139 	free_stable_node_chain(stable_node, root);
1140 	return false;
1141 }
1142 
1143 static int remove_all_stable_nodes(void)
1144 {
1145 	struct ksm_stable_node *stable_node, *next;
1146 	int nid;
1147 	int err = 0;
1148 
1149 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1150 		while (root_stable_tree[nid].rb_node) {
1151 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1152 						struct ksm_stable_node, node);
1153 			if (remove_stable_node_chain(stable_node,
1154 						     root_stable_tree + nid)) {
1155 				err = -EBUSY;
1156 				break;	/* proceed to next nid */
1157 			}
1158 			cond_resched();
1159 		}
1160 	}
1161 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1162 		if (remove_stable_node(stable_node))
1163 			err = -EBUSY;
1164 		cond_resched();
1165 	}
1166 	return err;
1167 }
1168 
1169 static int unmerge_and_remove_all_rmap_items(void)
1170 {
1171 	struct ksm_mm_slot *mm_slot;
1172 	struct mm_slot *slot;
1173 	struct mm_struct *mm;
1174 	struct vm_area_struct *vma;
1175 	int err = 0;
1176 
1177 	spin_lock(&ksm_mmlist_lock);
1178 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1179 			  struct mm_slot, mm_node);
1180 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1181 	spin_unlock(&ksm_mmlist_lock);
1182 
1183 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1184 	     mm_slot = ksm_scan.mm_slot) {
1185 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1186 
1187 		mm = mm_slot->slot.mm;
1188 		mmap_read_lock(mm);
1189 
1190 		/*
1191 		 * Exit right away if mm is exiting to avoid lockdep issue in
1192 		 * the maple tree
1193 		 */
1194 		if (ksm_test_exit(mm))
1195 			goto mm_exiting;
1196 
1197 		for_each_vma(vmi, vma) {
1198 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1199 				continue;
1200 			err = unmerge_ksm_pages(vma,
1201 						vma->vm_start, vma->vm_end, false);
1202 			if (err)
1203 				goto error;
1204 		}
1205 
1206 mm_exiting:
1207 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1208 		mmap_read_unlock(mm);
1209 
1210 		spin_lock(&ksm_mmlist_lock);
1211 		slot = list_entry(mm_slot->slot.mm_node.next,
1212 				  struct mm_slot, mm_node);
1213 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1214 		if (ksm_test_exit(mm)) {
1215 			hash_del(&mm_slot->slot.hash);
1216 			list_del(&mm_slot->slot.mm_node);
1217 			spin_unlock(&ksm_mmlist_lock);
1218 
1219 			mm_slot_free(mm_slot_cache, mm_slot);
1220 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1221 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1222 			mmdrop(mm);
1223 		} else
1224 			spin_unlock(&ksm_mmlist_lock);
1225 	}
1226 
1227 	/* Clean up stable nodes, but don't worry if some are still busy */
1228 	remove_all_stable_nodes();
1229 	ksm_scan.seqnr = 0;
1230 	return 0;
1231 
1232 error:
1233 	mmap_read_unlock(mm);
1234 	spin_lock(&ksm_mmlist_lock);
1235 	ksm_scan.mm_slot = &ksm_mm_head;
1236 	spin_unlock(&ksm_mmlist_lock);
1237 	return err;
1238 }
1239 #endif /* CONFIG_SYSFS */
1240 
1241 static u32 calc_checksum(struct page *page)
1242 {
1243 	u32 checksum;
1244 	void *addr = kmap_local_page(page);
1245 	checksum = xxhash(addr, PAGE_SIZE, 0);
1246 	kunmap_local(addr);
1247 	return checksum;
1248 }
1249 
1250 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1251 			      pte_t *orig_pte)
1252 {
1253 	struct mm_struct *mm = vma->vm_mm;
1254 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1255 	int swapped;
1256 	int err = -EFAULT;
1257 	struct mmu_notifier_range range;
1258 	bool anon_exclusive;
1259 	pte_t entry;
1260 
1261 	if (WARN_ON_ONCE(folio_test_large(folio)))
1262 		return err;
1263 
1264 	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1265 	if (pvmw.address == -EFAULT)
1266 		goto out;
1267 
1268 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1269 				pvmw.address + PAGE_SIZE);
1270 	mmu_notifier_invalidate_range_start(&range);
1271 
1272 	if (!page_vma_mapped_walk(&pvmw))
1273 		goto out_mn;
1274 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1275 		goto out_unlock;
1276 
1277 	entry = ptep_get(pvmw.pte);
1278 	/*
1279 	 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1280 	 * map pages: give up just like the next folio_walk would.
1281 	 */
1282 	if (unlikely(!pte_present(entry)))
1283 		goto out_unlock;
1284 
1285 	anon_exclusive = PageAnonExclusive(&folio->page);
1286 	if (pte_write(entry) || pte_dirty(entry) ||
1287 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1288 		swapped = folio_test_swapcache(folio);
1289 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1290 		/*
1291 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1292 		 * take any lock, therefore the check that we are going to make
1293 		 * with the pagecount against the mapcount is racy and
1294 		 * O_DIRECT can happen right after the check.
1295 		 * So we clear the pte and flush the tlb before the check
1296 		 * this assure us that no O_DIRECT can happen after the check
1297 		 * or in the middle of the check.
1298 		 *
1299 		 * No need to notify as we are downgrading page table to read
1300 		 * only not changing it to point to a new page.
1301 		 *
1302 		 * See Documentation/mm/mmu_notifier.rst
1303 		 */
1304 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1305 		/*
1306 		 * Check that no O_DIRECT or similar I/O is in progress on the
1307 		 * page
1308 		 */
1309 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1310 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1311 			goto out_unlock;
1312 		}
1313 
1314 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1315 		if (anon_exclusive &&
1316 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1317 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1318 			goto out_unlock;
1319 		}
1320 
1321 		if (pte_dirty(entry))
1322 			folio_mark_dirty(folio);
1323 		entry = pte_mkclean(entry);
1324 
1325 		if (pte_write(entry))
1326 			entry = pte_wrprotect(entry);
1327 
1328 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1329 	}
1330 	*orig_pte = entry;
1331 	err = 0;
1332 
1333 out_unlock:
1334 	page_vma_mapped_walk_done(&pvmw);
1335 out_mn:
1336 	mmu_notifier_invalidate_range_end(&range);
1337 out:
1338 	return err;
1339 }
1340 
1341 /**
1342  * replace_page - replace page in vma by new ksm page
1343  * @vma:      vma that holds the pte pointing to page
1344  * @page:     the page we are replacing by kpage
1345  * @kpage:    the ksm page we replace page by
1346  * @orig_pte: the original value of the pte
1347  *
1348  * Returns 0 on success, -EFAULT on failure.
1349  */
1350 static int replace_page(struct vm_area_struct *vma, struct page *page,
1351 			struct page *kpage, pte_t orig_pte)
1352 {
1353 	struct folio *kfolio = page_folio(kpage);
1354 	struct mm_struct *mm = vma->vm_mm;
1355 	struct folio *folio = page_folio(page);
1356 	pmd_t *pmd;
1357 	pmd_t pmde;
1358 	pte_t *ptep;
1359 	pte_t newpte;
1360 	spinlock_t *ptl;
1361 	unsigned long addr;
1362 	int err = -EFAULT;
1363 	struct mmu_notifier_range range;
1364 
1365 	addr = page_address_in_vma(folio, page, vma);
1366 	if (addr == -EFAULT)
1367 		goto out;
1368 
1369 	pmd = mm_find_pmd(mm, addr);
1370 	if (!pmd)
1371 		goto out;
1372 	/*
1373 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1374 	 * without holding anon_vma lock for write.  So when looking for a
1375 	 * genuine pmde (in which to find pte), test present and !THP together.
1376 	 */
1377 	pmde = pmdp_get_lockless(pmd);
1378 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1379 		goto out;
1380 
1381 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1382 				addr + PAGE_SIZE);
1383 	mmu_notifier_invalidate_range_start(&range);
1384 
1385 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1386 	if (!ptep)
1387 		goto out_mn;
1388 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1389 		pte_unmap_unlock(ptep, ptl);
1390 		goto out_mn;
1391 	}
1392 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1393 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1394 			kfolio);
1395 
1396 	/*
1397 	 * No need to check ksm_use_zero_pages here: we can only have a
1398 	 * zero_page here if ksm_use_zero_pages was enabled already.
1399 	 */
1400 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1401 		folio_get(kfolio);
1402 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1403 		newpte = mk_pte(kpage, vma->vm_page_prot);
1404 	} else {
1405 		/*
1406 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1407 		 * we can easily track all KSM-placed zero pages by checking if
1408 		 * the dirty bit in zero page's PTE is set.
1409 		 */
1410 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1411 		ksm_map_zero_page(mm);
1412 		/*
1413 		 * We're replacing an anonymous page with a zero page, which is
1414 		 * not anonymous. We need to do proper accounting otherwise we
1415 		 * will get wrong values in /proc, and a BUG message in dmesg
1416 		 * when tearing down the mm.
1417 		 */
1418 		dec_mm_counter(mm, MM_ANONPAGES);
1419 	}
1420 
1421 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1422 	/*
1423 	 * No need to notify as we are replacing a read only page with another
1424 	 * read only page with the same content.
1425 	 *
1426 	 * See Documentation/mm/mmu_notifier.rst
1427 	 */
1428 	ptep_clear_flush(vma, addr, ptep);
1429 	set_pte_at(mm, addr, ptep, newpte);
1430 
1431 	folio_remove_rmap_pte(folio, page, vma);
1432 	if (!folio_mapped(folio))
1433 		folio_free_swap(folio);
1434 	folio_put(folio);
1435 
1436 	pte_unmap_unlock(ptep, ptl);
1437 	err = 0;
1438 out_mn:
1439 	mmu_notifier_invalidate_range_end(&range);
1440 out:
1441 	return err;
1442 }
1443 
1444 /*
1445  * try_to_merge_one_page - take two pages and merge them into one
1446  * @vma: the vma that holds the pte pointing to page
1447  * @page: the PageAnon page that we want to replace with kpage
1448  * @kpage: the KSM page that we want to map instead of page,
1449  *         or NULL the first time when we want to use page as kpage.
1450  *
1451  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1452  */
1453 static int try_to_merge_one_page(struct vm_area_struct *vma,
1454 				 struct page *page, struct page *kpage)
1455 {
1456 	struct folio *folio = page_folio(page);
1457 	pte_t orig_pte = __pte(0);
1458 	int err = -EFAULT;
1459 
1460 	if (page == kpage)			/* ksm page forked */
1461 		return 0;
1462 
1463 	if (!folio_test_anon(folio))
1464 		goto out;
1465 
1466 	/*
1467 	 * We need the folio lock to read a stable swapcache flag in
1468 	 * write_protect_page().  We trylock because we don't want to wait
1469 	 * here - we prefer to continue scanning and merging different
1470 	 * pages, then come back to this page when it is unlocked.
1471 	 */
1472 	if (!folio_trylock(folio))
1473 		goto out;
1474 
1475 	if (folio_test_large(folio)) {
1476 		if (split_huge_page(page))
1477 			goto out_unlock;
1478 		folio = page_folio(page);
1479 	}
1480 
1481 	/*
1482 	 * If this anonymous page is mapped only here, its pte may need
1483 	 * to be write-protected.  If it's mapped elsewhere, all of its
1484 	 * ptes are necessarily already write-protected.  But in either
1485 	 * case, we need to lock and check page_count is not raised.
1486 	 */
1487 	if (write_protect_page(vma, folio, &orig_pte) == 0) {
1488 		if (!kpage) {
1489 			/*
1490 			 * While we hold folio lock, upgrade folio from
1491 			 * anon to a NULL stable_node with the KSM flag set:
1492 			 * stable_tree_insert() will update stable_node.
1493 			 */
1494 			folio_set_stable_node(folio, NULL);
1495 			folio_mark_accessed(folio);
1496 			/*
1497 			 * Page reclaim just frees a clean folio with no dirty
1498 			 * ptes: make sure that the ksm page would be swapped.
1499 			 */
1500 			if (!folio_test_dirty(folio))
1501 				folio_mark_dirty(folio);
1502 			err = 0;
1503 		} else if (pages_identical(page, kpage))
1504 			err = replace_page(vma, page, kpage, orig_pte);
1505 	}
1506 
1507 out_unlock:
1508 	folio_unlock(folio);
1509 out:
1510 	return err;
1511 }
1512 
1513 /*
1514  * This function returns 0 if the pages were merged or if they are
1515  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1516  */
1517 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1518 				       struct page *page)
1519 {
1520 	struct mm_struct *mm = rmap_item->mm;
1521 	int err = -EFAULT;
1522 
1523 	/*
1524 	 * Same checksum as an empty page. We attempt to merge it with the
1525 	 * appropriate zero page if the user enabled this via sysfs.
1526 	 */
1527 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1528 		struct vm_area_struct *vma;
1529 
1530 		mmap_read_lock(mm);
1531 		vma = find_mergeable_vma(mm, rmap_item->address);
1532 		if (vma) {
1533 			err = try_to_merge_one_page(vma, page,
1534 					ZERO_PAGE(rmap_item->address));
1535 			trace_ksm_merge_one_page(
1536 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1537 				rmap_item, mm, err);
1538 		} else {
1539 			/*
1540 			 * If the vma is out of date, we do not need to
1541 			 * continue.
1542 			 */
1543 			err = 0;
1544 		}
1545 		mmap_read_unlock(mm);
1546 	}
1547 
1548 	return err;
1549 }
1550 
1551 /*
1552  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1553  * but no new kernel page is allocated: kpage must already be a ksm page.
1554  *
1555  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1556  */
1557 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1558 				      struct page *page, struct page *kpage)
1559 {
1560 	struct mm_struct *mm = rmap_item->mm;
1561 	struct vm_area_struct *vma;
1562 	int err = -EFAULT;
1563 
1564 	mmap_read_lock(mm);
1565 	vma = find_mergeable_vma(mm, rmap_item->address);
1566 	if (!vma)
1567 		goto out;
1568 
1569 	err = try_to_merge_one_page(vma, page, kpage);
1570 	if (err)
1571 		goto out;
1572 
1573 	/* Unstable nid is in union with stable anon_vma: remove first */
1574 	remove_rmap_item_from_tree(rmap_item);
1575 
1576 	/* Must get reference to anon_vma while still holding mmap_lock */
1577 	rmap_item->anon_vma = vma->anon_vma;
1578 	get_anon_vma(vma->anon_vma);
1579 out:
1580 	mmap_read_unlock(mm);
1581 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1582 				rmap_item, mm, err);
1583 	return err;
1584 }
1585 
1586 /*
1587  * try_to_merge_two_pages - take two identical pages and prepare them
1588  * to be merged into one page.
1589  *
1590  * This function returns the kpage if we successfully merged two identical
1591  * pages into one ksm page, NULL otherwise.
1592  *
1593  * Note that this function upgrades page to ksm page: if one of the pages
1594  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1595  */
1596 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1597 					   struct page *page,
1598 					   struct ksm_rmap_item *tree_rmap_item,
1599 					   struct page *tree_page)
1600 {
1601 	int err;
1602 
1603 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1604 	if (!err) {
1605 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1606 							tree_page, page);
1607 		/*
1608 		 * If that fails, we have a ksm page with only one pte
1609 		 * pointing to it: so break it.
1610 		 */
1611 		if (err)
1612 			break_cow(rmap_item);
1613 	}
1614 	return err ? NULL : page_folio(page);
1615 }
1616 
1617 static __always_inline
1618 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1619 {
1620 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1621 	/*
1622 	 * Check that at least one mapping still exists, otherwise
1623 	 * there's no much point to merge and share with this
1624 	 * stable_node, as the underlying tree_page of the other
1625 	 * sharer is going to be freed soon.
1626 	 */
1627 	return stable_node->rmap_hlist_len &&
1628 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1629 }
1630 
1631 static __always_inline
1632 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1633 {
1634 	return __is_page_sharing_candidate(stable_node, 0);
1635 }
1636 
1637 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1638 				     struct ksm_stable_node **_stable_node,
1639 				     struct rb_root *root,
1640 				     bool prune_stale_stable_nodes)
1641 {
1642 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1643 	struct hlist_node *hlist_safe;
1644 	struct folio *folio, *tree_folio = NULL;
1645 	int found_rmap_hlist_len;
1646 
1647 	if (!prune_stale_stable_nodes ||
1648 	    time_before(jiffies, stable_node->chain_prune_time +
1649 			msecs_to_jiffies(
1650 				ksm_stable_node_chains_prune_millisecs)))
1651 		prune_stale_stable_nodes = false;
1652 	else
1653 		stable_node->chain_prune_time = jiffies;
1654 
1655 	hlist_for_each_entry_safe(dup, hlist_safe,
1656 				  &stable_node->hlist, hlist_dup) {
1657 		cond_resched();
1658 		/*
1659 		 * We must walk all stable_node_dup to prune the stale
1660 		 * stable nodes during lookup.
1661 		 *
1662 		 * ksm_get_folio can drop the nodes from the
1663 		 * stable_node->hlist if they point to freed pages
1664 		 * (that's why we do a _safe walk). The "dup"
1665 		 * stable_node parameter itself will be freed from
1666 		 * under us if it returns NULL.
1667 		 */
1668 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1669 		if (!folio)
1670 			continue;
1671 		/* Pick the best candidate if possible. */
1672 		if (!found || (is_page_sharing_candidate(dup) &&
1673 		    (!is_page_sharing_candidate(found) ||
1674 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1675 			if (found)
1676 				folio_put(tree_folio);
1677 			found = dup;
1678 			found_rmap_hlist_len = found->rmap_hlist_len;
1679 			tree_folio = folio;
1680 			/* skip put_page for found candidate */
1681 			if (!prune_stale_stable_nodes &&
1682 			    is_page_sharing_candidate(found))
1683 				break;
1684 			continue;
1685 		}
1686 		folio_put(folio);
1687 	}
1688 
1689 	if (found) {
1690 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1691 			/*
1692 			 * If there's not just one entry it would
1693 			 * corrupt memory, better BUG_ON. In KSM
1694 			 * context with no lock held it's not even
1695 			 * fatal.
1696 			 */
1697 			BUG_ON(stable_node->hlist.first->next);
1698 
1699 			/*
1700 			 * There's just one entry and it is below the
1701 			 * deduplication limit so drop the chain.
1702 			 */
1703 			rb_replace_node(&stable_node->node, &found->node,
1704 					root);
1705 			free_stable_node(stable_node);
1706 			ksm_stable_node_chains--;
1707 			ksm_stable_node_dups--;
1708 			/*
1709 			 * NOTE: the caller depends on the stable_node
1710 			 * to be equal to stable_node_dup if the chain
1711 			 * was collapsed.
1712 			 */
1713 			*_stable_node = found;
1714 			/*
1715 			 * Just for robustness, as stable_node is
1716 			 * otherwise left as a stable pointer, the
1717 			 * compiler shall optimize it away at build
1718 			 * time.
1719 			 */
1720 			stable_node = NULL;
1721 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1722 			   __is_page_sharing_candidate(found, 1)) {
1723 			/*
1724 			 * If the found stable_node dup can accept one
1725 			 * more future merge (in addition to the one
1726 			 * that is underway) and is not at the head of
1727 			 * the chain, put it there so next search will
1728 			 * be quicker in the !prune_stale_stable_nodes
1729 			 * case.
1730 			 *
1731 			 * NOTE: it would be inaccurate to use nr > 1
1732 			 * instead of checking the hlist.first pointer
1733 			 * directly, because in the
1734 			 * prune_stale_stable_nodes case "nr" isn't
1735 			 * the position of the found dup in the chain,
1736 			 * but the total number of dups in the chain.
1737 			 */
1738 			hlist_del(&found->hlist_dup);
1739 			hlist_add_head(&found->hlist_dup,
1740 				       &stable_node->hlist);
1741 		}
1742 	} else {
1743 		/* Its hlist must be empty if no one found. */
1744 		free_stable_node_chain(stable_node, root);
1745 	}
1746 
1747 	*_stable_node_dup = found;
1748 	return tree_folio;
1749 }
1750 
1751 /*
1752  * Like for ksm_get_folio, this function can free the *_stable_node and
1753  * *_stable_node_dup if the returned tree_page is NULL.
1754  *
1755  * It can also free and overwrite *_stable_node with the found
1756  * stable_node_dup if the chain is collapsed (in which case
1757  * *_stable_node will be equal to *_stable_node_dup like if the chain
1758  * never existed). It's up to the caller to verify tree_page is not
1759  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1760  *
1761  * *_stable_node_dup is really a second output parameter of this
1762  * function and will be overwritten in all cases, the caller doesn't
1763  * need to initialize it.
1764  */
1765 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1766 					 struct ksm_stable_node **_stable_node,
1767 					 struct rb_root *root,
1768 					 bool prune_stale_stable_nodes)
1769 {
1770 	struct ksm_stable_node *stable_node = *_stable_node;
1771 
1772 	if (!is_stable_node_chain(stable_node)) {
1773 		*_stable_node_dup = stable_node;
1774 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1775 	}
1776 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1777 			       prune_stale_stable_nodes);
1778 }
1779 
1780 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1781 						 struct ksm_stable_node **s_n,
1782 						 struct rb_root *root)
1783 {
1784 	return __stable_node_chain(s_n_d, s_n, root, true);
1785 }
1786 
1787 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1788 					   struct ksm_stable_node **s_n,
1789 					   struct rb_root *root)
1790 {
1791 	return __stable_node_chain(s_n_d, s_n, root, false);
1792 }
1793 
1794 /*
1795  * stable_tree_search - search for page inside the stable tree
1796  *
1797  * This function checks if there is a page inside the stable tree
1798  * with identical content to the page that we are scanning right now.
1799  *
1800  * This function returns the stable tree node of identical content if found,
1801  * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1802  */
1803 static struct folio *stable_tree_search(struct page *page)
1804 {
1805 	int nid;
1806 	struct rb_root *root;
1807 	struct rb_node **new;
1808 	struct rb_node *parent;
1809 	struct ksm_stable_node *stable_node, *stable_node_dup;
1810 	struct ksm_stable_node *page_node;
1811 	struct folio *folio;
1812 
1813 	folio = page_folio(page);
1814 	page_node = folio_stable_node(folio);
1815 	if (page_node && page_node->head != &migrate_nodes) {
1816 		/* ksm page forked */
1817 		folio_get(folio);
1818 		return folio;
1819 	}
1820 
1821 	nid = get_kpfn_nid(folio_pfn(folio));
1822 	root = root_stable_tree + nid;
1823 again:
1824 	new = &root->rb_node;
1825 	parent = NULL;
1826 
1827 	while (*new) {
1828 		struct folio *tree_folio;
1829 		int ret;
1830 
1831 		cond_resched();
1832 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1833 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1834 		if (!tree_folio) {
1835 			/*
1836 			 * If we walked over a stale stable_node,
1837 			 * ksm_get_folio() will call rb_erase() and it
1838 			 * may rebalance the tree from under us. So
1839 			 * restart the search from scratch. Returning
1840 			 * NULL would be safe too, but we'd generate
1841 			 * false negative insertions just because some
1842 			 * stable_node was stale.
1843 			 */
1844 			goto again;
1845 		}
1846 
1847 		ret = memcmp_pages(page, &tree_folio->page);
1848 		folio_put(tree_folio);
1849 
1850 		parent = *new;
1851 		if (ret < 0)
1852 			new = &parent->rb_left;
1853 		else if (ret > 0)
1854 			new = &parent->rb_right;
1855 		else {
1856 			if (page_node) {
1857 				VM_BUG_ON(page_node->head != &migrate_nodes);
1858 				/*
1859 				 * If the mapcount of our migrated KSM folio is
1860 				 * at most 1, we can merge it with another
1861 				 * KSM folio where we know that we have space
1862 				 * for one more mapping without exceeding the
1863 				 * ksm_max_page_sharing limit: see
1864 				 * chain_prune(). This way, we can avoid adding
1865 				 * this stable node to the chain.
1866 				 */
1867 				if (folio_mapcount(folio) > 1)
1868 					goto chain_append;
1869 			}
1870 
1871 			if (!is_page_sharing_candidate(stable_node_dup)) {
1872 				/*
1873 				 * If the stable_node is a chain and
1874 				 * we got a payload match in memcmp
1875 				 * but we cannot merge the scanned
1876 				 * page in any of the existing
1877 				 * stable_node dups because they're
1878 				 * all full, we need to wait the
1879 				 * scanned page to find itself a match
1880 				 * in the unstable tree to create a
1881 				 * brand new KSM page to add later to
1882 				 * the dups of this stable_node.
1883 				 */
1884 				return NULL;
1885 			}
1886 
1887 			/*
1888 			 * Lock and unlock the stable_node's page (which
1889 			 * might already have been migrated) so that page
1890 			 * migration is sure to notice its raised count.
1891 			 * It would be more elegant to return stable_node
1892 			 * than kpage, but that involves more changes.
1893 			 */
1894 			tree_folio = ksm_get_folio(stable_node_dup,
1895 						   KSM_GET_FOLIO_TRYLOCK);
1896 
1897 			if (PTR_ERR(tree_folio) == -EBUSY)
1898 				return ERR_PTR(-EBUSY);
1899 
1900 			if (unlikely(!tree_folio))
1901 				/*
1902 				 * The tree may have been rebalanced,
1903 				 * so re-evaluate parent and new.
1904 				 */
1905 				goto again;
1906 			folio_unlock(tree_folio);
1907 
1908 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1909 			    NUMA(stable_node_dup->nid)) {
1910 				folio_put(tree_folio);
1911 				goto replace;
1912 			}
1913 			return tree_folio;
1914 		}
1915 	}
1916 
1917 	if (!page_node)
1918 		return NULL;
1919 
1920 	list_del(&page_node->list);
1921 	DO_NUMA(page_node->nid = nid);
1922 	rb_link_node(&page_node->node, parent, new);
1923 	rb_insert_color(&page_node->node, root);
1924 out:
1925 	if (is_page_sharing_candidate(page_node)) {
1926 		folio_get(folio);
1927 		return folio;
1928 	} else
1929 		return NULL;
1930 
1931 replace:
1932 	/*
1933 	 * If stable_node was a chain and chain_prune collapsed it,
1934 	 * stable_node has been updated to be the new regular
1935 	 * stable_node. A collapse of the chain is indistinguishable
1936 	 * from the case there was no chain in the stable
1937 	 * rbtree. Otherwise stable_node is the chain and
1938 	 * stable_node_dup is the dup to replace.
1939 	 */
1940 	if (stable_node_dup == stable_node) {
1941 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1942 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1943 		/* there is no chain */
1944 		if (page_node) {
1945 			VM_BUG_ON(page_node->head != &migrate_nodes);
1946 			list_del(&page_node->list);
1947 			DO_NUMA(page_node->nid = nid);
1948 			rb_replace_node(&stable_node_dup->node,
1949 					&page_node->node,
1950 					root);
1951 			if (is_page_sharing_candidate(page_node))
1952 				folio_get(folio);
1953 			else
1954 				folio = NULL;
1955 		} else {
1956 			rb_erase(&stable_node_dup->node, root);
1957 			folio = NULL;
1958 		}
1959 	} else {
1960 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1961 		__stable_node_dup_del(stable_node_dup);
1962 		if (page_node) {
1963 			VM_BUG_ON(page_node->head != &migrate_nodes);
1964 			list_del(&page_node->list);
1965 			DO_NUMA(page_node->nid = nid);
1966 			stable_node_chain_add_dup(page_node, stable_node);
1967 			if (is_page_sharing_candidate(page_node))
1968 				folio_get(folio);
1969 			else
1970 				folio = NULL;
1971 		} else {
1972 			folio = NULL;
1973 		}
1974 	}
1975 	stable_node_dup->head = &migrate_nodes;
1976 	list_add(&stable_node_dup->list, stable_node_dup->head);
1977 	return folio;
1978 
1979 chain_append:
1980 	/*
1981 	 * If stable_node was a chain and chain_prune collapsed it,
1982 	 * stable_node has been updated to be the new regular
1983 	 * stable_node. A collapse of the chain is indistinguishable
1984 	 * from the case there was no chain in the stable
1985 	 * rbtree. Otherwise stable_node is the chain and
1986 	 * stable_node_dup is the dup to replace.
1987 	 */
1988 	if (stable_node_dup == stable_node) {
1989 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1990 		/* chain is missing so create it */
1991 		stable_node = alloc_stable_node_chain(stable_node_dup,
1992 						      root);
1993 		if (!stable_node)
1994 			return NULL;
1995 	}
1996 	/*
1997 	 * Add this stable_node dup that was
1998 	 * migrated to the stable_node chain
1999 	 * of the current nid for this page
2000 	 * content.
2001 	 */
2002 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2003 	VM_BUG_ON(page_node->head != &migrate_nodes);
2004 	list_del(&page_node->list);
2005 	DO_NUMA(page_node->nid = nid);
2006 	stable_node_chain_add_dup(page_node, stable_node);
2007 	goto out;
2008 }
2009 
2010 /*
2011  * stable_tree_insert - insert stable tree node pointing to new ksm page
2012  * into the stable tree.
2013  *
2014  * This function returns the stable tree node just allocated on success,
2015  * NULL otherwise.
2016  */
2017 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2018 {
2019 	int nid;
2020 	unsigned long kpfn;
2021 	struct rb_root *root;
2022 	struct rb_node **new;
2023 	struct rb_node *parent;
2024 	struct ksm_stable_node *stable_node, *stable_node_dup;
2025 	bool need_chain = false;
2026 
2027 	kpfn = folio_pfn(kfolio);
2028 	nid = get_kpfn_nid(kpfn);
2029 	root = root_stable_tree + nid;
2030 again:
2031 	parent = NULL;
2032 	new = &root->rb_node;
2033 
2034 	while (*new) {
2035 		struct folio *tree_folio;
2036 		int ret;
2037 
2038 		cond_resched();
2039 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2040 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2041 		if (!tree_folio) {
2042 			/*
2043 			 * If we walked over a stale stable_node,
2044 			 * ksm_get_folio() will call rb_erase() and it
2045 			 * may rebalance the tree from under us. So
2046 			 * restart the search from scratch. Returning
2047 			 * NULL would be safe too, but we'd generate
2048 			 * false negative insertions just because some
2049 			 * stable_node was stale.
2050 			 */
2051 			goto again;
2052 		}
2053 
2054 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2055 		folio_put(tree_folio);
2056 
2057 		parent = *new;
2058 		if (ret < 0)
2059 			new = &parent->rb_left;
2060 		else if (ret > 0)
2061 			new = &parent->rb_right;
2062 		else {
2063 			need_chain = true;
2064 			break;
2065 		}
2066 	}
2067 
2068 	stable_node_dup = alloc_stable_node();
2069 	if (!stable_node_dup)
2070 		return NULL;
2071 
2072 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2073 	stable_node_dup->kpfn = kpfn;
2074 	stable_node_dup->rmap_hlist_len = 0;
2075 	DO_NUMA(stable_node_dup->nid = nid);
2076 	if (!need_chain) {
2077 		rb_link_node(&stable_node_dup->node, parent, new);
2078 		rb_insert_color(&stable_node_dup->node, root);
2079 	} else {
2080 		if (!is_stable_node_chain(stable_node)) {
2081 			struct ksm_stable_node *orig = stable_node;
2082 			/* chain is missing so create it */
2083 			stable_node = alloc_stable_node_chain(orig, root);
2084 			if (!stable_node) {
2085 				free_stable_node(stable_node_dup);
2086 				return NULL;
2087 			}
2088 		}
2089 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2090 	}
2091 
2092 	folio_set_stable_node(kfolio, stable_node_dup);
2093 
2094 	return stable_node_dup;
2095 }
2096 
2097 /*
2098  * unstable_tree_search_insert - search for identical page,
2099  * else insert rmap_item into the unstable tree.
2100  *
2101  * This function searches for a page in the unstable tree identical to the
2102  * page currently being scanned; and if no identical page is found in the
2103  * tree, we insert rmap_item as a new object into the unstable tree.
2104  *
2105  * This function returns pointer to rmap_item found to be identical
2106  * to the currently scanned page, NULL otherwise.
2107  *
2108  * This function does both searching and inserting, because they share
2109  * the same walking algorithm in an rbtree.
2110  */
2111 static
2112 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2113 					      struct page *page,
2114 					      struct page **tree_pagep)
2115 {
2116 	struct rb_node **new;
2117 	struct rb_root *root;
2118 	struct rb_node *parent = NULL;
2119 	int nid;
2120 
2121 	nid = get_kpfn_nid(page_to_pfn(page));
2122 	root = root_unstable_tree + nid;
2123 	new = &root->rb_node;
2124 
2125 	while (*new) {
2126 		struct ksm_rmap_item *tree_rmap_item;
2127 		struct page *tree_page;
2128 		int ret;
2129 
2130 		cond_resched();
2131 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2132 		tree_page = get_mergeable_page(tree_rmap_item);
2133 		if (!tree_page)
2134 			return NULL;
2135 
2136 		/*
2137 		 * Don't substitute a ksm page for a forked page.
2138 		 */
2139 		if (page == tree_page) {
2140 			put_page(tree_page);
2141 			return NULL;
2142 		}
2143 
2144 		ret = memcmp_pages(page, tree_page);
2145 
2146 		parent = *new;
2147 		if (ret < 0) {
2148 			put_page(tree_page);
2149 			new = &parent->rb_left;
2150 		} else if (ret > 0) {
2151 			put_page(tree_page);
2152 			new = &parent->rb_right;
2153 		} else if (!ksm_merge_across_nodes &&
2154 			   page_to_nid(tree_page) != nid) {
2155 			/*
2156 			 * If tree_page has been migrated to another NUMA node,
2157 			 * it will be flushed out and put in the right unstable
2158 			 * tree next time: only merge with it when across_nodes.
2159 			 */
2160 			put_page(tree_page);
2161 			return NULL;
2162 		} else {
2163 			*tree_pagep = tree_page;
2164 			return tree_rmap_item;
2165 		}
2166 	}
2167 
2168 	rmap_item->address |= UNSTABLE_FLAG;
2169 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2170 	DO_NUMA(rmap_item->nid = nid);
2171 	rb_link_node(&rmap_item->node, parent, new);
2172 	rb_insert_color(&rmap_item->node, root);
2173 
2174 	ksm_pages_unshared++;
2175 	return NULL;
2176 }
2177 
2178 /*
2179  * stable_tree_append - add another rmap_item to the linked list of
2180  * rmap_items hanging off a given node of the stable tree, all sharing
2181  * the same ksm page.
2182  */
2183 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2184 			       struct ksm_stable_node *stable_node,
2185 			       bool max_page_sharing_bypass)
2186 {
2187 	/*
2188 	 * rmap won't find this mapping if we don't insert the
2189 	 * rmap_item in the right stable_node
2190 	 * duplicate. page_migration could break later if rmap breaks,
2191 	 * so we can as well crash here. We really need to check for
2192 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2193 	 * for other negative values as an underflow if detected here
2194 	 * for the first time (and not when decreasing rmap_hlist_len)
2195 	 * would be sign of memory corruption in the stable_node.
2196 	 */
2197 	BUG_ON(stable_node->rmap_hlist_len < 0);
2198 
2199 	stable_node->rmap_hlist_len++;
2200 	if (!max_page_sharing_bypass)
2201 		/* possibly non fatal but unexpected overflow, only warn */
2202 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2203 			     ksm_max_page_sharing);
2204 
2205 	rmap_item->head = stable_node;
2206 	rmap_item->address |= STABLE_FLAG;
2207 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2208 
2209 	if (rmap_item->hlist.next)
2210 		ksm_pages_sharing++;
2211 	else
2212 		ksm_pages_shared++;
2213 
2214 	rmap_item->mm->ksm_merging_pages++;
2215 }
2216 
2217 /*
2218  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2219  * if not, compare checksum to previous and if it's the same, see if page can
2220  * be inserted into the unstable tree, or merged with a page already there and
2221  * both transferred to the stable tree.
2222  *
2223  * @page: the page that we are searching identical page to.
2224  * @rmap_item: the reverse mapping into the virtual address of this page
2225  */
2226 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2227 {
2228 	struct ksm_rmap_item *tree_rmap_item;
2229 	struct page *tree_page = NULL;
2230 	struct ksm_stable_node *stable_node;
2231 	struct folio *kfolio;
2232 	unsigned int checksum;
2233 	int err;
2234 	bool max_page_sharing_bypass = false;
2235 
2236 	stable_node = page_stable_node(page);
2237 	if (stable_node) {
2238 		if (stable_node->head != &migrate_nodes &&
2239 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2240 		    NUMA(stable_node->nid)) {
2241 			stable_node_dup_del(stable_node);
2242 			stable_node->head = &migrate_nodes;
2243 			list_add(&stable_node->list, stable_node->head);
2244 		}
2245 		if (stable_node->head != &migrate_nodes &&
2246 		    rmap_item->head == stable_node)
2247 			return;
2248 		/*
2249 		 * If it's a KSM fork, allow it to go over the sharing limit
2250 		 * without warnings.
2251 		 */
2252 		if (!is_page_sharing_candidate(stable_node))
2253 			max_page_sharing_bypass = true;
2254 	} else {
2255 		remove_rmap_item_from_tree(rmap_item);
2256 
2257 		/*
2258 		 * If the hash value of the page has changed from the last time
2259 		 * we calculated it, this page is changing frequently: therefore we
2260 		 * don't want to insert it in the unstable tree, and we don't want
2261 		 * to waste our time searching for something identical to it there.
2262 		 */
2263 		checksum = calc_checksum(page);
2264 		if (rmap_item->oldchecksum != checksum) {
2265 			rmap_item->oldchecksum = checksum;
2266 			return;
2267 		}
2268 
2269 		if (!try_to_merge_with_zero_page(rmap_item, page))
2270 			return;
2271 	}
2272 
2273 	/* Start by searching for the folio in the stable tree */
2274 	kfolio = stable_tree_search(page);
2275 	if (&kfolio->page == page && rmap_item->head == stable_node) {
2276 		folio_put(kfolio);
2277 		return;
2278 	}
2279 
2280 	remove_rmap_item_from_tree(rmap_item);
2281 
2282 	if (kfolio) {
2283 		if (kfolio == ERR_PTR(-EBUSY))
2284 			return;
2285 
2286 		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2287 		if (!err) {
2288 			/*
2289 			 * The page was successfully merged:
2290 			 * add its rmap_item to the stable tree.
2291 			 */
2292 			folio_lock(kfolio);
2293 			stable_tree_append(rmap_item, folio_stable_node(kfolio),
2294 					   max_page_sharing_bypass);
2295 			folio_unlock(kfolio);
2296 		}
2297 		folio_put(kfolio);
2298 		return;
2299 	}
2300 
2301 	tree_rmap_item =
2302 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2303 	if (tree_rmap_item) {
2304 		bool split;
2305 
2306 		kfolio = try_to_merge_two_pages(rmap_item, page,
2307 						tree_rmap_item, tree_page);
2308 		/*
2309 		 * If both pages we tried to merge belong to the same compound
2310 		 * page, then we actually ended up increasing the reference
2311 		 * count of the same compound page twice, and split_huge_page
2312 		 * failed.
2313 		 * Here we set a flag if that happened, and we use it later to
2314 		 * try split_huge_page again. Since we call put_page right
2315 		 * afterwards, the reference count will be correct and
2316 		 * split_huge_page should succeed.
2317 		 */
2318 		split = PageTransCompound(page)
2319 			&& compound_head(page) == compound_head(tree_page);
2320 		put_page(tree_page);
2321 		if (kfolio) {
2322 			/*
2323 			 * The pages were successfully merged: insert new
2324 			 * node in the stable tree and add both rmap_items.
2325 			 */
2326 			folio_lock(kfolio);
2327 			stable_node = stable_tree_insert(kfolio);
2328 			if (stable_node) {
2329 				stable_tree_append(tree_rmap_item, stable_node,
2330 						   false);
2331 				stable_tree_append(rmap_item, stable_node,
2332 						   false);
2333 			}
2334 			folio_unlock(kfolio);
2335 
2336 			/*
2337 			 * If we fail to insert the page into the stable tree,
2338 			 * we will have 2 virtual addresses that are pointing
2339 			 * to a ksm page left outside the stable tree,
2340 			 * in which case we need to break_cow on both.
2341 			 */
2342 			if (!stable_node) {
2343 				break_cow(tree_rmap_item);
2344 				break_cow(rmap_item);
2345 			}
2346 		} else if (split) {
2347 			/*
2348 			 * We are here if we tried to merge two pages and
2349 			 * failed because they both belonged to the same
2350 			 * compound page. We will split the page now, but no
2351 			 * merging will take place.
2352 			 * We do not want to add the cost of a full lock; if
2353 			 * the page is locked, it is better to skip it and
2354 			 * perhaps try again later.
2355 			 */
2356 			if (!trylock_page(page))
2357 				return;
2358 			split_huge_page(page);
2359 			unlock_page(page);
2360 		}
2361 	}
2362 }
2363 
2364 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2365 					    struct ksm_rmap_item **rmap_list,
2366 					    unsigned long addr)
2367 {
2368 	struct ksm_rmap_item *rmap_item;
2369 
2370 	while (*rmap_list) {
2371 		rmap_item = *rmap_list;
2372 		if ((rmap_item->address & PAGE_MASK) == addr)
2373 			return rmap_item;
2374 		if (rmap_item->address > addr)
2375 			break;
2376 		*rmap_list = rmap_item->rmap_list;
2377 		remove_rmap_item_from_tree(rmap_item);
2378 		free_rmap_item(rmap_item);
2379 	}
2380 
2381 	rmap_item = alloc_rmap_item();
2382 	if (rmap_item) {
2383 		/* It has already been zeroed */
2384 		rmap_item->mm = mm_slot->slot.mm;
2385 		rmap_item->mm->ksm_rmap_items++;
2386 		rmap_item->address = addr;
2387 		rmap_item->rmap_list = *rmap_list;
2388 		*rmap_list = rmap_item;
2389 	}
2390 	return rmap_item;
2391 }
2392 
2393 /*
2394  * Calculate skip age for the ksm page age. The age determines how often
2395  * de-duplicating has already been tried unsuccessfully. If the age is
2396  * smaller, the scanning of this page is skipped for less scans.
2397  *
2398  * @age: rmap_item age of page
2399  */
2400 static unsigned int skip_age(rmap_age_t age)
2401 {
2402 	if (age <= 3)
2403 		return 1;
2404 	if (age <= 5)
2405 		return 2;
2406 	if (age <= 8)
2407 		return 4;
2408 
2409 	return 8;
2410 }
2411 
2412 /*
2413  * Determines if a page should be skipped for the current scan.
2414  *
2415  * @folio: folio containing the page to check
2416  * @rmap_item: associated rmap_item of page
2417  */
2418 static bool should_skip_rmap_item(struct folio *folio,
2419 				  struct ksm_rmap_item *rmap_item)
2420 {
2421 	rmap_age_t age;
2422 
2423 	if (!ksm_smart_scan)
2424 		return false;
2425 
2426 	/*
2427 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2428 	 * will essentially ignore them, but we still have to process them
2429 	 * properly.
2430 	 */
2431 	if (folio_test_ksm(folio))
2432 		return false;
2433 
2434 	age = rmap_item->age;
2435 	if (age != U8_MAX)
2436 		rmap_item->age++;
2437 
2438 	/*
2439 	 * Smaller ages are not skipped, they need to get a chance to go
2440 	 * through the different phases of the KSM merging.
2441 	 */
2442 	if (age < 3)
2443 		return false;
2444 
2445 	/*
2446 	 * Are we still allowed to skip? If not, then don't skip it
2447 	 * and determine how much more often we are allowed to skip next.
2448 	 */
2449 	if (!rmap_item->remaining_skips) {
2450 		rmap_item->remaining_skips = skip_age(age);
2451 		return false;
2452 	}
2453 
2454 	/* Skip this page */
2455 	ksm_pages_skipped++;
2456 	rmap_item->remaining_skips--;
2457 	remove_rmap_item_from_tree(rmap_item);
2458 	return true;
2459 }
2460 
2461 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2462 {
2463 	struct mm_struct *mm;
2464 	struct ksm_mm_slot *mm_slot;
2465 	struct mm_slot *slot;
2466 	struct vm_area_struct *vma;
2467 	struct ksm_rmap_item *rmap_item;
2468 	struct vma_iterator vmi;
2469 	int nid;
2470 
2471 	if (list_empty(&ksm_mm_head.slot.mm_node))
2472 		return NULL;
2473 
2474 	mm_slot = ksm_scan.mm_slot;
2475 	if (mm_slot == &ksm_mm_head) {
2476 		advisor_start_scan();
2477 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2478 
2479 		/*
2480 		 * A number of pages can hang around indefinitely in per-cpu
2481 		 * LRU cache, raised page count preventing write_protect_page
2482 		 * from merging them.  Though it doesn't really matter much,
2483 		 * it is puzzling to see some stuck in pages_volatile until
2484 		 * other activity jostles them out, and they also prevented
2485 		 * LTP's KSM test from succeeding deterministically; so drain
2486 		 * them here (here rather than on entry to ksm_do_scan(),
2487 		 * so we don't IPI too often when pages_to_scan is set low).
2488 		 */
2489 		lru_add_drain_all();
2490 
2491 		/*
2492 		 * Whereas stale stable_nodes on the stable_tree itself
2493 		 * get pruned in the regular course of stable_tree_search(),
2494 		 * those moved out to the migrate_nodes list can accumulate:
2495 		 * so prune them once before each full scan.
2496 		 */
2497 		if (!ksm_merge_across_nodes) {
2498 			struct ksm_stable_node *stable_node, *next;
2499 			struct folio *folio;
2500 
2501 			list_for_each_entry_safe(stable_node, next,
2502 						 &migrate_nodes, list) {
2503 				folio = ksm_get_folio(stable_node,
2504 						      KSM_GET_FOLIO_NOLOCK);
2505 				if (folio)
2506 					folio_put(folio);
2507 				cond_resched();
2508 			}
2509 		}
2510 
2511 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2512 			root_unstable_tree[nid] = RB_ROOT;
2513 
2514 		spin_lock(&ksm_mmlist_lock);
2515 		slot = list_entry(mm_slot->slot.mm_node.next,
2516 				  struct mm_slot, mm_node);
2517 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2518 		ksm_scan.mm_slot = mm_slot;
2519 		spin_unlock(&ksm_mmlist_lock);
2520 		/*
2521 		 * Although we tested list_empty() above, a racing __ksm_exit
2522 		 * of the last mm on the list may have removed it since then.
2523 		 */
2524 		if (mm_slot == &ksm_mm_head)
2525 			return NULL;
2526 next_mm:
2527 		ksm_scan.address = 0;
2528 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2529 	}
2530 
2531 	slot = &mm_slot->slot;
2532 	mm = slot->mm;
2533 	vma_iter_init(&vmi, mm, ksm_scan.address);
2534 
2535 	mmap_read_lock(mm);
2536 	if (ksm_test_exit(mm))
2537 		goto no_vmas;
2538 
2539 	for_each_vma(vmi, vma) {
2540 		if (!(vma->vm_flags & VM_MERGEABLE))
2541 			continue;
2542 		if (ksm_scan.address < vma->vm_start)
2543 			ksm_scan.address = vma->vm_start;
2544 		if (!vma->anon_vma)
2545 			ksm_scan.address = vma->vm_end;
2546 
2547 		while (ksm_scan.address < vma->vm_end) {
2548 			struct page *tmp_page = NULL;
2549 			struct folio_walk fw;
2550 			struct folio *folio;
2551 
2552 			if (ksm_test_exit(mm))
2553 				break;
2554 
2555 			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2556 			if (folio) {
2557 				if (!folio_is_zone_device(folio) &&
2558 				     folio_test_anon(folio)) {
2559 					folio_get(folio);
2560 					tmp_page = fw.page;
2561 				}
2562 				folio_walk_end(&fw, vma);
2563 			}
2564 
2565 			if (tmp_page) {
2566 				flush_anon_page(vma, tmp_page, ksm_scan.address);
2567 				flush_dcache_page(tmp_page);
2568 				rmap_item = get_next_rmap_item(mm_slot,
2569 					ksm_scan.rmap_list, ksm_scan.address);
2570 				if (rmap_item) {
2571 					ksm_scan.rmap_list =
2572 							&rmap_item->rmap_list;
2573 
2574 					if (should_skip_rmap_item(folio, rmap_item)) {
2575 						folio_put(folio);
2576 						goto next_page;
2577 					}
2578 
2579 					ksm_scan.address += PAGE_SIZE;
2580 					*page = tmp_page;
2581 				} else {
2582 					folio_put(folio);
2583 				}
2584 				mmap_read_unlock(mm);
2585 				return rmap_item;
2586 			}
2587 next_page:
2588 			ksm_scan.address += PAGE_SIZE;
2589 			cond_resched();
2590 		}
2591 	}
2592 
2593 	if (ksm_test_exit(mm)) {
2594 no_vmas:
2595 		ksm_scan.address = 0;
2596 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2597 	}
2598 	/*
2599 	 * Nuke all the rmap_items that are above this current rmap:
2600 	 * because there were no VM_MERGEABLE vmas with such addresses.
2601 	 */
2602 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2603 
2604 	spin_lock(&ksm_mmlist_lock);
2605 	slot = list_entry(mm_slot->slot.mm_node.next,
2606 			  struct mm_slot, mm_node);
2607 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2608 	if (ksm_scan.address == 0) {
2609 		/*
2610 		 * We've completed a full scan of all vmas, holding mmap_lock
2611 		 * throughout, and found no VM_MERGEABLE: so do the same as
2612 		 * __ksm_exit does to remove this mm from all our lists now.
2613 		 * This applies either when cleaning up after __ksm_exit
2614 		 * (but beware: we can reach here even before __ksm_exit),
2615 		 * or when all VM_MERGEABLE areas have been unmapped (and
2616 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2617 		 */
2618 		hash_del(&mm_slot->slot.hash);
2619 		list_del(&mm_slot->slot.mm_node);
2620 		spin_unlock(&ksm_mmlist_lock);
2621 
2622 		mm_slot_free(mm_slot_cache, mm_slot);
2623 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2624 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2625 		mmap_read_unlock(mm);
2626 		mmdrop(mm);
2627 	} else {
2628 		mmap_read_unlock(mm);
2629 		/*
2630 		 * mmap_read_unlock(mm) first because after
2631 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2632 		 * already have been freed under us by __ksm_exit()
2633 		 * because the "mm_slot" is still hashed and
2634 		 * ksm_scan.mm_slot doesn't point to it anymore.
2635 		 */
2636 		spin_unlock(&ksm_mmlist_lock);
2637 	}
2638 
2639 	/* Repeat until we've completed scanning the whole list */
2640 	mm_slot = ksm_scan.mm_slot;
2641 	if (mm_slot != &ksm_mm_head)
2642 		goto next_mm;
2643 
2644 	advisor_stop_scan();
2645 
2646 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2647 	ksm_scan.seqnr++;
2648 	return NULL;
2649 }
2650 
2651 /**
2652  * ksm_do_scan  - the ksm scanner main worker function.
2653  * @scan_npages:  number of pages we want to scan before we return.
2654  */
2655 static void ksm_do_scan(unsigned int scan_npages)
2656 {
2657 	struct ksm_rmap_item *rmap_item;
2658 	struct page *page;
2659 
2660 	while (scan_npages-- && likely(!freezing(current))) {
2661 		cond_resched();
2662 		rmap_item = scan_get_next_rmap_item(&page);
2663 		if (!rmap_item)
2664 			return;
2665 		cmp_and_merge_page(page, rmap_item);
2666 		put_page(page);
2667 		ksm_pages_scanned++;
2668 	}
2669 }
2670 
2671 static int ksmd_should_run(void)
2672 {
2673 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2674 }
2675 
2676 static int ksm_scan_thread(void *nothing)
2677 {
2678 	unsigned int sleep_ms;
2679 
2680 	set_freezable();
2681 	set_user_nice(current, 5);
2682 
2683 	while (!kthread_should_stop()) {
2684 		mutex_lock(&ksm_thread_mutex);
2685 		wait_while_offlining();
2686 		if (ksmd_should_run())
2687 			ksm_do_scan(ksm_thread_pages_to_scan);
2688 		mutex_unlock(&ksm_thread_mutex);
2689 
2690 		if (ksmd_should_run()) {
2691 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2692 			wait_event_freezable_timeout(ksm_iter_wait,
2693 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2694 				msecs_to_jiffies(sleep_ms));
2695 		} else {
2696 			wait_event_freezable(ksm_thread_wait,
2697 				ksmd_should_run() || kthread_should_stop());
2698 		}
2699 	}
2700 	return 0;
2701 }
2702 
2703 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2704 {
2705 	if (vm_flags & VM_MERGEABLE)
2706 		return false;
2707 
2708 	return ksm_compatible(file, vm_flags);
2709 }
2710 
2711 static void __ksm_add_vma(struct vm_area_struct *vma)
2712 {
2713 	if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2714 		vm_flags_set(vma, VM_MERGEABLE);
2715 }
2716 
2717 static int __ksm_del_vma(struct vm_area_struct *vma)
2718 {
2719 	int err;
2720 
2721 	if (!(vma->vm_flags & VM_MERGEABLE))
2722 		return 0;
2723 
2724 	if (vma->anon_vma) {
2725 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2726 		if (err)
2727 			return err;
2728 	}
2729 
2730 	vm_flags_clear(vma, VM_MERGEABLE);
2731 	return 0;
2732 }
2733 /**
2734  * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2735  *
2736  * @mm:       Proposed VMA's mm_struct
2737  * @file:     Proposed VMA's file-backed mapping, if any.
2738  * @vm_flags: Proposed VMA"s flags.
2739  *
2740  * Returns: @vm_flags possibly updated to mark mergeable.
2741  */
2742 vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file,
2743 			 vm_flags_t vm_flags)
2744 {
2745 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags) &&
2746 	    __ksm_should_add_vma(file, vm_flags))
2747 		vm_flags |= VM_MERGEABLE;
2748 
2749 	return vm_flags;
2750 }
2751 
2752 static void ksm_add_vmas(struct mm_struct *mm)
2753 {
2754 	struct vm_area_struct *vma;
2755 
2756 	VMA_ITERATOR(vmi, mm, 0);
2757 	for_each_vma(vmi, vma)
2758 		__ksm_add_vma(vma);
2759 }
2760 
2761 static int ksm_del_vmas(struct mm_struct *mm)
2762 {
2763 	struct vm_area_struct *vma;
2764 	int err;
2765 
2766 	VMA_ITERATOR(vmi, mm, 0);
2767 	for_each_vma(vmi, vma) {
2768 		err = __ksm_del_vma(vma);
2769 		if (err)
2770 			return err;
2771 	}
2772 	return 0;
2773 }
2774 
2775 /**
2776  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2777  *                        compatible VMA's
2778  *
2779  * @mm:  Pointer to mm
2780  *
2781  * Returns 0 on success, otherwise error code
2782  */
2783 int ksm_enable_merge_any(struct mm_struct *mm)
2784 {
2785 	int err;
2786 
2787 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2788 		return 0;
2789 
2790 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2791 		err = __ksm_enter(mm);
2792 		if (err)
2793 			return err;
2794 	}
2795 
2796 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2797 	ksm_add_vmas(mm);
2798 
2799 	return 0;
2800 }
2801 
2802 /**
2803  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2804  *			   previously enabled via ksm_enable_merge_any().
2805  *
2806  * Disabling merging implies unmerging any merged pages, like setting
2807  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2808  * merging on all compatible VMA's remains enabled.
2809  *
2810  * @mm: Pointer to mm
2811  *
2812  * Returns 0 on success, otherwise error code
2813  */
2814 int ksm_disable_merge_any(struct mm_struct *mm)
2815 {
2816 	int err;
2817 
2818 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2819 		return 0;
2820 
2821 	err = ksm_del_vmas(mm);
2822 	if (err) {
2823 		ksm_add_vmas(mm);
2824 		return err;
2825 	}
2826 
2827 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2828 	return 0;
2829 }
2830 
2831 int ksm_disable(struct mm_struct *mm)
2832 {
2833 	mmap_assert_write_locked(mm);
2834 
2835 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2836 		return 0;
2837 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2838 		return ksm_disable_merge_any(mm);
2839 	return ksm_del_vmas(mm);
2840 }
2841 
2842 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2843 		unsigned long end, int advice, vm_flags_t *vm_flags)
2844 {
2845 	struct mm_struct *mm = vma->vm_mm;
2846 	int err;
2847 
2848 	switch (advice) {
2849 	case MADV_MERGEABLE:
2850 		if (vma->vm_flags & VM_MERGEABLE)
2851 			return 0;
2852 		if (!vma_ksm_compatible(vma))
2853 			return 0;
2854 
2855 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2856 			err = __ksm_enter(mm);
2857 			if (err)
2858 				return err;
2859 		}
2860 
2861 		*vm_flags |= VM_MERGEABLE;
2862 		break;
2863 
2864 	case MADV_UNMERGEABLE:
2865 		if (!(*vm_flags & VM_MERGEABLE))
2866 			return 0;		/* just ignore the advice */
2867 
2868 		if (vma->anon_vma) {
2869 			err = unmerge_ksm_pages(vma, start, end, true);
2870 			if (err)
2871 				return err;
2872 		}
2873 
2874 		*vm_flags &= ~VM_MERGEABLE;
2875 		break;
2876 	}
2877 
2878 	return 0;
2879 }
2880 EXPORT_SYMBOL_GPL(ksm_madvise);
2881 
2882 int __ksm_enter(struct mm_struct *mm)
2883 {
2884 	struct ksm_mm_slot *mm_slot;
2885 	struct mm_slot *slot;
2886 	int needs_wakeup;
2887 
2888 	mm_slot = mm_slot_alloc(mm_slot_cache);
2889 	if (!mm_slot)
2890 		return -ENOMEM;
2891 
2892 	slot = &mm_slot->slot;
2893 
2894 	/* Check ksm_run too?  Would need tighter locking */
2895 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2896 
2897 	spin_lock(&ksm_mmlist_lock);
2898 	mm_slot_insert(mm_slots_hash, mm, slot);
2899 	/*
2900 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2901 	 * insert just behind the scanning cursor, to let the area settle
2902 	 * down a little; when fork is followed by immediate exec, we don't
2903 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2904 	 *
2905 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2906 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2907 	 * missed: then we might as well insert at the end of the list.
2908 	 */
2909 	if (ksm_run & KSM_RUN_UNMERGE)
2910 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2911 	else
2912 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2913 	spin_unlock(&ksm_mmlist_lock);
2914 
2915 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2916 	mmgrab(mm);
2917 
2918 	if (needs_wakeup)
2919 		wake_up_interruptible(&ksm_thread_wait);
2920 
2921 	trace_ksm_enter(mm);
2922 	return 0;
2923 }
2924 
2925 void __ksm_exit(struct mm_struct *mm)
2926 {
2927 	struct ksm_mm_slot *mm_slot;
2928 	struct mm_slot *slot;
2929 	int easy_to_free = 0;
2930 
2931 	/*
2932 	 * This process is exiting: if it's straightforward (as is the
2933 	 * case when ksmd was never running), free mm_slot immediately.
2934 	 * But if it's at the cursor or has rmap_items linked to it, use
2935 	 * mmap_lock to synchronize with any break_cows before pagetables
2936 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2937 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2938 	 */
2939 
2940 	spin_lock(&ksm_mmlist_lock);
2941 	slot = mm_slot_lookup(mm_slots_hash, mm);
2942 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2943 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2944 		if (!mm_slot->rmap_list) {
2945 			hash_del(&slot->hash);
2946 			list_del(&slot->mm_node);
2947 			easy_to_free = 1;
2948 		} else {
2949 			list_move(&slot->mm_node,
2950 				  &ksm_scan.mm_slot->slot.mm_node);
2951 		}
2952 	}
2953 	spin_unlock(&ksm_mmlist_lock);
2954 
2955 	if (easy_to_free) {
2956 		mm_slot_free(mm_slot_cache, mm_slot);
2957 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2958 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2959 		mmdrop(mm);
2960 	} else if (mm_slot) {
2961 		mmap_write_lock(mm);
2962 		mmap_write_unlock(mm);
2963 	}
2964 
2965 	trace_ksm_exit(mm);
2966 }
2967 
2968 struct folio *ksm_might_need_to_copy(struct folio *folio,
2969 			struct vm_area_struct *vma, unsigned long addr)
2970 {
2971 	struct page *page = folio_page(folio, 0);
2972 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2973 	struct folio *new_folio;
2974 
2975 	if (folio_test_large(folio))
2976 		return folio;
2977 
2978 	if (folio_test_ksm(folio)) {
2979 		if (folio_stable_node(folio) &&
2980 		    !(ksm_run & KSM_RUN_UNMERGE))
2981 			return folio;	/* no need to copy it */
2982 	} else if (!anon_vma) {
2983 		return folio;		/* no need to copy it */
2984 	} else if (folio->index == linear_page_index(vma, addr) &&
2985 			anon_vma->root == vma->anon_vma->root) {
2986 		return folio;		/* still no need to copy it */
2987 	}
2988 	if (PageHWPoison(page))
2989 		return ERR_PTR(-EHWPOISON);
2990 	if (!folio_test_uptodate(folio))
2991 		return folio;		/* let do_swap_page report the error */
2992 
2993 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2994 	if (new_folio &&
2995 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2996 		folio_put(new_folio);
2997 		new_folio = NULL;
2998 	}
2999 	if (new_folio) {
3000 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3001 								addr, vma)) {
3002 			folio_put(new_folio);
3003 			return ERR_PTR(-EHWPOISON);
3004 		}
3005 		folio_set_dirty(new_folio);
3006 		__folio_mark_uptodate(new_folio);
3007 		__folio_set_locked(new_folio);
3008 #ifdef CONFIG_SWAP
3009 		count_vm_event(KSM_SWPIN_COPY);
3010 #endif
3011 	}
3012 
3013 	return new_folio;
3014 }
3015 
3016 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3017 {
3018 	struct ksm_stable_node *stable_node;
3019 	struct ksm_rmap_item *rmap_item;
3020 	int search_new_forks = 0;
3021 
3022 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3023 
3024 	/*
3025 	 * Rely on the page lock to protect against concurrent modifications
3026 	 * to that page's node of the stable tree.
3027 	 */
3028 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3029 
3030 	stable_node = folio_stable_node(folio);
3031 	if (!stable_node)
3032 		return;
3033 again:
3034 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3035 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3036 		struct anon_vma_chain *vmac;
3037 		struct vm_area_struct *vma;
3038 
3039 		cond_resched();
3040 		if (!anon_vma_trylock_read(anon_vma)) {
3041 			if (rwc->try_lock) {
3042 				rwc->contended = true;
3043 				return;
3044 			}
3045 			anon_vma_lock_read(anon_vma);
3046 		}
3047 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3048 					       0, ULONG_MAX) {
3049 			unsigned long addr;
3050 
3051 			cond_resched();
3052 			vma = vmac->vma;
3053 
3054 			/* Ignore the stable/unstable/sqnr flags */
3055 			addr = rmap_item->address & PAGE_MASK;
3056 
3057 			if (addr < vma->vm_start || addr >= vma->vm_end)
3058 				continue;
3059 			/*
3060 			 * Initially we examine only the vma which covers this
3061 			 * rmap_item; but later, if there is still work to do,
3062 			 * we examine covering vmas in other mms: in case they
3063 			 * were forked from the original since ksmd passed.
3064 			 */
3065 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3066 				continue;
3067 
3068 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3069 				continue;
3070 
3071 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3072 				anon_vma_unlock_read(anon_vma);
3073 				return;
3074 			}
3075 			if (rwc->done && rwc->done(folio)) {
3076 				anon_vma_unlock_read(anon_vma);
3077 				return;
3078 			}
3079 		}
3080 		anon_vma_unlock_read(anon_vma);
3081 	}
3082 	if (!search_new_forks++)
3083 		goto again;
3084 }
3085 
3086 #ifdef CONFIG_MEMORY_FAILURE
3087 /*
3088  * Collect processes when the error hit an ksm page.
3089  */
3090 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3091 		struct list_head *to_kill, int force_early)
3092 {
3093 	struct ksm_stable_node *stable_node;
3094 	struct ksm_rmap_item *rmap_item;
3095 	struct vm_area_struct *vma;
3096 	struct task_struct *tsk;
3097 
3098 	stable_node = folio_stable_node(folio);
3099 	if (!stable_node)
3100 		return;
3101 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3102 		struct anon_vma *av = rmap_item->anon_vma;
3103 
3104 		anon_vma_lock_read(av);
3105 		rcu_read_lock();
3106 		for_each_process(tsk) {
3107 			struct anon_vma_chain *vmac;
3108 			unsigned long addr;
3109 			struct task_struct *t =
3110 				task_early_kill(tsk, force_early);
3111 			if (!t)
3112 				continue;
3113 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3114 						       ULONG_MAX)
3115 			{
3116 				vma = vmac->vma;
3117 				if (vma->vm_mm == t->mm) {
3118 					addr = rmap_item->address & PAGE_MASK;
3119 					add_to_kill_ksm(t, page, vma, to_kill,
3120 							addr);
3121 				}
3122 			}
3123 		}
3124 		rcu_read_unlock();
3125 		anon_vma_unlock_read(av);
3126 	}
3127 }
3128 #endif
3129 
3130 #ifdef CONFIG_MIGRATION
3131 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3132 {
3133 	struct ksm_stable_node *stable_node;
3134 
3135 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3136 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3137 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3138 
3139 	stable_node = folio_stable_node(folio);
3140 	if (stable_node) {
3141 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3142 		stable_node->kpfn = folio_pfn(newfolio);
3143 		/*
3144 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3145 		 * to make sure that the new stable_node->kpfn is visible
3146 		 * to ksm_get_folio() before it can see that folio->mapping
3147 		 * has gone stale (or that the swapcache flag has been cleared).
3148 		 */
3149 		smp_wmb();
3150 		folio_set_stable_node(folio, NULL);
3151 	}
3152 }
3153 #endif /* CONFIG_MIGRATION */
3154 
3155 #ifdef CONFIG_MEMORY_HOTREMOVE
3156 static void wait_while_offlining(void)
3157 {
3158 	while (ksm_run & KSM_RUN_OFFLINE) {
3159 		mutex_unlock(&ksm_thread_mutex);
3160 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3161 			    TASK_UNINTERRUPTIBLE);
3162 		mutex_lock(&ksm_thread_mutex);
3163 	}
3164 }
3165 
3166 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3167 					 unsigned long start_pfn,
3168 					 unsigned long end_pfn)
3169 {
3170 	if (stable_node->kpfn >= start_pfn &&
3171 	    stable_node->kpfn < end_pfn) {
3172 		/*
3173 		 * Don't ksm_get_folio, page has already gone:
3174 		 * which is why we keep kpfn instead of page*
3175 		 */
3176 		remove_node_from_stable_tree(stable_node);
3177 		return true;
3178 	}
3179 	return false;
3180 }
3181 
3182 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3183 					   unsigned long start_pfn,
3184 					   unsigned long end_pfn,
3185 					   struct rb_root *root)
3186 {
3187 	struct ksm_stable_node *dup;
3188 	struct hlist_node *hlist_safe;
3189 
3190 	if (!is_stable_node_chain(stable_node)) {
3191 		VM_BUG_ON(is_stable_node_dup(stable_node));
3192 		return stable_node_dup_remove_range(stable_node, start_pfn,
3193 						    end_pfn);
3194 	}
3195 
3196 	hlist_for_each_entry_safe(dup, hlist_safe,
3197 				  &stable_node->hlist, hlist_dup) {
3198 		VM_BUG_ON(!is_stable_node_dup(dup));
3199 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3200 	}
3201 	if (hlist_empty(&stable_node->hlist)) {
3202 		free_stable_node_chain(stable_node, root);
3203 		return true; /* notify caller that tree was rebalanced */
3204 	} else
3205 		return false;
3206 }
3207 
3208 static void ksm_check_stable_tree(unsigned long start_pfn,
3209 				  unsigned long end_pfn)
3210 {
3211 	struct ksm_stable_node *stable_node, *next;
3212 	struct rb_node *node;
3213 	int nid;
3214 
3215 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3216 		node = rb_first(root_stable_tree + nid);
3217 		while (node) {
3218 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3219 			if (stable_node_chain_remove_range(stable_node,
3220 							   start_pfn, end_pfn,
3221 							   root_stable_tree +
3222 							   nid))
3223 				node = rb_first(root_stable_tree + nid);
3224 			else
3225 				node = rb_next(node);
3226 			cond_resched();
3227 		}
3228 	}
3229 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3230 		if (stable_node->kpfn >= start_pfn &&
3231 		    stable_node->kpfn < end_pfn)
3232 			remove_node_from_stable_tree(stable_node);
3233 		cond_resched();
3234 	}
3235 }
3236 
3237 static int ksm_memory_callback(struct notifier_block *self,
3238 			       unsigned long action, void *arg)
3239 {
3240 	struct memory_notify *mn = arg;
3241 
3242 	switch (action) {
3243 	case MEM_GOING_OFFLINE:
3244 		/*
3245 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3246 		 * and remove_all_stable_nodes() while memory is going offline:
3247 		 * it is unsafe for them to touch the stable tree at this time.
3248 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3249 		 * which do not need the ksm_thread_mutex are all safe.
3250 		 */
3251 		mutex_lock(&ksm_thread_mutex);
3252 		ksm_run |= KSM_RUN_OFFLINE;
3253 		mutex_unlock(&ksm_thread_mutex);
3254 		break;
3255 
3256 	case MEM_OFFLINE:
3257 		/*
3258 		 * Most of the work is done by page migration; but there might
3259 		 * be a few stable_nodes left over, still pointing to struct
3260 		 * pages which have been offlined: prune those from the tree,
3261 		 * otherwise ksm_get_folio() might later try to access a
3262 		 * non-existent struct page.
3263 		 */
3264 		ksm_check_stable_tree(mn->start_pfn,
3265 				      mn->start_pfn + mn->nr_pages);
3266 		fallthrough;
3267 	case MEM_CANCEL_OFFLINE:
3268 		mutex_lock(&ksm_thread_mutex);
3269 		ksm_run &= ~KSM_RUN_OFFLINE;
3270 		mutex_unlock(&ksm_thread_mutex);
3271 
3272 		smp_mb();	/* wake_up_bit advises this */
3273 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3274 		break;
3275 	}
3276 	return NOTIFY_OK;
3277 }
3278 #else
3279 static void wait_while_offlining(void)
3280 {
3281 }
3282 #endif /* CONFIG_MEMORY_HOTREMOVE */
3283 
3284 #ifdef CONFIG_PROC_FS
3285 /*
3286  * The process is mergeable only if any VMA is currently
3287  * applicable to KSM.
3288  *
3289  * The mmap lock must be held in read mode.
3290  */
3291 bool ksm_process_mergeable(struct mm_struct *mm)
3292 {
3293 	struct vm_area_struct *vma;
3294 
3295 	mmap_assert_locked(mm);
3296 	VMA_ITERATOR(vmi, mm, 0);
3297 	for_each_vma(vmi, vma)
3298 		if (vma->vm_flags & VM_MERGEABLE)
3299 			return true;
3300 
3301 	return false;
3302 }
3303 
3304 long ksm_process_profit(struct mm_struct *mm)
3305 {
3306 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3307 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3308 }
3309 #endif /* CONFIG_PROC_FS */
3310 
3311 #ifdef CONFIG_SYSFS
3312 /*
3313  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3314  */
3315 
3316 #define KSM_ATTR_RO(_name) \
3317 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3318 #define KSM_ATTR(_name) \
3319 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3320 
3321 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3322 				    struct kobj_attribute *attr, char *buf)
3323 {
3324 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3325 }
3326 
3327 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3328 				     struct kobj_attribute *attr,
3329 				     const char *buf, size_t count)
3330 {
3331 	unsigned int msecs;
3332 	int err;
3333 
3334 	err = kstrtouint(buf, 10, &msecs);
3335 	if (err)
3336 		return -EINVAL;
3337 
3338 	ksm_thread_sleep_millisecs = msecs;
3339 	wake_up_interruptible(&ksm_iter_wait);
3340 
3341 	return count;
3342 }
3343 KSM_ATTR(sleep_millisecs);
3344 
3345 static ssize_t pages_to_scan_show(struct kobject *kobj,
3346 				  struct kobj_attribute *attr, char *buf)
3347 {
3348 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3349 }
3350 
3351 static ssize_t pages_to_scan_store(struct kobject *kobj,
3352 				   struct kobj_attribute *attr,
3353 				   const char *buf, size_t count)
3354 {
3355 	unsigned int nr_pages;
3356 	int err;
3357 
3358 	if (ksm_advisor != KSM_ADVISOR_NONE)
3359 		return -EINVAL;
3360 
3361 	err = kstrtouint(buf, 10, &nr_pages);
3362 	if (err)
3363 		return -EINVAL;
3364 
3365 	ksm_thread_pages_to_scan = nr_pages;
3366 
3367 	return count;
3368 }
3369 KSM_ATTR(pages_to_scan);
3370 
3371 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3372 			char *buf)
3373 {
3374 	return sysfs_emit(buf, "%lu\n", ksm_run);
3375 }
3376 
3377 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3378 			 const char *buf, size_t count)
3379 {
3380 	unsigned int flags;
3381 	int err;
3382 
3383 	err = kstrtouint(buf, 10, &flags);
3384 	if (err)
3385 		return -EINVAL;
3386 	if (flags > KSM_RUN_UNMERGE)
3387 		return -EINVAL;
3388 
3389 	/*
3390 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3391 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3392 	 * breaking COW to free the pages_shared (but leaves mm_slots
3393 	 * on the list for when ksmd may be set running again).
3394 	 */
3395 
3396 	mutex_lock(&ksm_thread_mutex);
3397 	wait_while_offlining();
3398 	if (ksm_run != flags) {
3399 		ksm_run = flags;
3400 		if (flags & KSM_RUN_UNMERGE) {
3401 			set_current_oom_origin();
3402 			err = unmerge_and_remove_all_rmap_items();
3403 			clear_current_oom_origin();
3404 			if (err) {
3405 				ksm_run = KSM_RUN_STOP;
3406 				count = err;
3407 			}
3408 		}
3409 	}
3410 	mutex_unlock(&ksm_thread_mutex);
3411 
3412 	if (flags & KSM_RUN_MERGE)
3413 		wake_up_interruptible(&ksm_thread_wait);
3414 
3415 	return count;
3416 }
3417 KSM_ATTR(run);
3418 
3419 #ifdef CONFIG_NUMA
3420 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3421 				       struct kobj_attribute *attr, char *buf)
3422 {
3423 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3424 }
3425 
3426 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3427 				   struct kobj_attribute *attr,
3428 				   const char *buf, size_t count)
3429 {
3430 	int err;
3431 	unsigned long knob;
3432 
3433 	err = kstrtoul(buf, 10, &knob);
3434 	if (err)
3435 		return err;
3436 	if (knob > 1)
3437 		return -EINVAL;
3438 
3439 	mutex_lock(&ksm_thread_mutex);
3440 	wait_while_offlining();
3441 	if (ksm_merge_across_nodes != knob) {
3442 		if (ksm_pages_shared || remove_all_stable_nodes())
3443 			err = -EBUSY;
3444 		else if (root_stable_tree == one_stable_tree) {
3445 			struct rb_root *buf;
3446 			/*
3447 			 * This is the first time that we switch away from the
3448 			 * default of merging across nodes: must now allocate
3449 			 * a buffer to hold as many roots as may be needed.
3450 			 * Allocate stable and unstable together:
3451 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3452 			 */
3453 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3454 				      GFP_KERNEL);
3455 			/* Let us assume that RB_ROOT is NULL is zero */
3456 			if (!buf)
3457 				err = -ENOMEM;
3458 			else {
3459 				root_stable_tree = buf;
3460 				root_unstable_tree = buf + nr_node_ids;
3461 				/* Stable tree is empty but not the unstable */
3462 				root_unstable_tree[0] = one_unstable_tree[0];
3463 			}
3464 		}
3465 		if (!err) {
3466 			ksm_merge_across_nodes = knob;
3467 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3468 		}
3469 	}
3470 	mutex_unlock(&ksm_thread_mutex);
3471 
3472 	return err ? err : count;
3473 }
3474 KSM_ATTR(merge_across_nodes);
3475 #endif
3476 
3477 static ssize_t use_zero_pages_show(struct kobject *kobj,
3478 				   struct kobj_attribute *attr, char *buf)
3479 {
3480 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3481 }
3482 static ssize_t use_zero_pages_store(struct kobject *kobj,
3483 				   struct kobj_attribute *attr,
3484 				   const char *buf, size_t count)
3485 {
3486 	int err;
3487 	bool value;
3488 
3489 	err = kstrtobool(buf, &value);
3490 	if (err)
3491 		return -EINVAL;
3492 
3493 	ksm_use_zero_pages = value;
3494 
3495 	return count;
3496 }
3497 KSM_ATTR(use_zero_pages);
3498 
3499 static ssize_t max_page_sharing_show(struct kobject *kobj,
3500 				     struct kobj_attribute *attr, char *buf)
3501 {
3502 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3503 }
3504 
3505 static ssize_t max_page_sharing_store(struct kobject *kobj,
3506 				      struct kobj_attribute *attr,
3507 				      const char *buf, size_t count)
3508 {
3509 	int err;
3510 	int knob;
3511 
3512 	err = kstrtoint(buf, 10, &knob);
3513 	if (err)
3514 		return err;
3515 	/*
3516 	 * When a KSM page is created it is shared by 2 mappings. This
3517 	 * being a signed comparison, it implicitly verifies it's not
3518 	 * negative.
3519 	 */
3520 	if (knob < 2)
3521 		return -EINVAL;
3522 
3523 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3524 		return count;
3525 
3526 	mutex_lock(&ksm_thread_mutex);
3527 	wait_while_offlining();
3528 	if (ksm_max_page_sharing != knob) {
3529 		if (ksm_pages_shared || remove_all_stable_nodes())
3530 			err = -EBUSY;
3531 		else
3532 			ksm_max_page_sharing = knob;
3533 	}
3534 	mutex_unlock(&ksm_thread_mutex);
3535 
3536 	return err ? err : count;
3537 }
3538 KSM_ATTR(max_page_sharing);
3539 
3540 static ssize_t pages_scanned_show(struct kobject *kobj,
3541 				  struct kobj_attribute *attr, char *buf)
3542 {
3543 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3544 }
3545 KSM_ATTR_RO(pages_scanned);
3546 
3547 static ssize_t pages_shared_show(struct kobject *kobj,
3548 				 struct kobj_attribute *attr, char *buf)
3549 {
3550 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3551 }
3552 KSM_ATTR_RO(pages_shared);
3553 
3554 static ssize_t pages_sharing_show(struct kobject *kobj,
3555 				  struct kobj_attribute *attr, char *buf)
3556 {
3557 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3558 }
3559 KSM_ATTR_RO(pages_sharing);
3560 
3561 static ssize_t pages_unshared_show(struct kobject *kobj,
3562 				   struct kobj_attribute *attr, char *buf)
3563 {
3564 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3565 }
3566 KSM_ATTR_RO(pages_unshared);
3567 
3568 static ssize_t pages_volatile_show(struct kobject *kobj,
3569 				   struct kobj_attribute *attr, char *buf)
3570 {
3571 	long ksm_pages_volatile;
3572 
3573 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3574 				- ksm_pages_sharing - ksm_pages_unshared;
3575 	/*
3576 	 * It was not worth any locking to calculate that statistic,
3577 	 * but it might therefore sometimes be negative: conceal that.
3578 	 */
3579 	if (ksm_pages_volatile < 0)
3580 		ksm_pages_volatile = 0;
3581 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3582 }
3583 KSM_ATTR_RO(pages_volatile);
3584 
3585 static ssize_t pages_skipped_show(struct kobject *kobj,
3586 				  struct kobj_attribute *attr, char *buf)
3587 {
3588 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3589 }
3590 KSM_ATTR_RO(pages_skipped);
3591 
3592 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3593 				struct kobj_attribute *attr, char *buf)
3594 {
3595 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3596 }
3597 KSM_ATTR_RO(ksm_zero_pages);
3598 
3599 static ssize_t general_profit_show(struct kobject *kobj,
3600 				   struct kobj_attribute *attr, char *buf)
3601 {
3602 	long general_profit;
3603 
3604 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3605 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3606 
3607 	return sysfs_emit(buf, "%ld\n", general_profit);
3608 }
3609 KSM_ATTR_RO(general_profit);
3610 
3611 static ssize_t stable_node_dups_show(struct kobject *kobj,
3612 				     struct kobj_attribute *attr, char *buf)
3613 {
3614 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3615 }
3616 KSM_ATTR_RO(stable_node_dups);
3617 
3618 static ssize_t stable_node_chains_show(struct kobject *kobj,
3619 				       struct kobj_attribute *attr, char *buf)
3620 {
3621 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3622 }
3623 KSM_ATTR_RO(stable_node_chains);
3624 
3625 static ssize_t
3626 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3627 					struct kobj_attribute *attr,
3628 					char *buf)
3629 {
3630 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3631 }
3632 
3633 static ssize_t
3634 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3635 					 struct kobj_attribute *attr,
3636 					 const char *buf, size_t count)
3637 {
3638 	unsigned int msecs;
3639 	int err;
3640 
3641 	err = kstrtouint(buf, 10, &msecs);
3642 	if (err)
3643 		return -EINVAL;
3644 
3645 	ksm_stable_node_chains_prune_millisecs = msecs;
3646 
3647 	return count;
3648 }
3649 KSM_ATTR(stable_node_chains_prune_millisecs);
3650 
3651 static ssize_t full_scans_show(struct kobject *kobj,
3652 			       struct kobj_attribute *attr, char *buf)
3653 {
3654 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3655 }
3656 KSM_ATTR_RO(full_scans);
3657 
3658 static ssize_t smart_scan_show(struct kobject *kobj,
3659 			       struct kobj_attribute *attr, char *buf)
3660 {
3661 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3662 }
3663 
3664 static ssize_t smart_scan_store(struct kobject *kobj,
3665 				struct kobj_attribute *attr,
3666 				const char *buf, size_t count)
3667 {
3668 	int err;
3669 	bool value;
3670 
3671 	err = kstrtobool(buf, &value);
3672 	if (err)
3673 		return -EINVAL;
3674 
3675 	ksm_smart_scan = value;
3676 	return count;
3677 }
3678 KSM_ATTR(smart_scan);
3679 
3680 static ssize_t advisor_mode_show(struct kobject *kobj,
3681 				 struct kobj_attribute *attr, char *buf)
3682 {
3683 	const char *output;
3684 
3685 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3686 		output = "none [scan-time]";
3687 	else
3688 		output = "[none] scan-time";
3689 
3690 	return sysfs_emit(buf, "%s\n", output);
3691 }
3692 
3693 static ssize_t advisor_mode_store(struct kobject *kobj,
3694 				  struct kobj_attribute *attr, const char *buf,
3695 				  size_t count)
3696 {
3697 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3698 
3699 	if (sysfs_streq("scan-time", buf))
3700 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3701 	else if (sysfs_streq("none", buf))
3702 		ksm_advisor = KSM_ADVISOR_NONE;
3703 	else
3704 		return -EINVAL;
3705 
3706 	/* Set advisor default values */
3707 	if (curr_advisor != ksm_advisor)
3708 		set_advisor_defaults();
3709 
3710 	return count;
3711 }
3712 KSM_ATTR(advisor_mode);
3713 
3714 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3715 				    struct kobj_attribute *attr, char *buf)
3716 {
3717 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3718 }
3719 
3720 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3721 				     struct kobj_attribute *attr,
3722 				     const char *buf, size_t count)
3723 {
3724 	int err;
3725 	unsigned long value;
3726 
3727 	err = kstrtoul(buf, 10, &value);
3728 	if (err)
3729 		return -EINVAL;
3730 
3731 	ksm_advisor_max_cpu = value;
3732 	return count;
3733 }
3734 KSM_ATTR(advisor_max_cpu);
3735 
3736 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3737 					struct kobj_attribute *attr, char *buf)
3738 {
3739 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3740 }
3741 
3742 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3743 					struct kobj_attribute *attr,
3744 					const char *buf, size_t count)
3745 {
3746 	int err;
3747 	unsigned long value;
3748 
3749 	err = kstrtoul(buf, 10, &value);
3750 	if (err)
3751 		return -EINVAL;
3752 
3753 	ksm_advisor_min_pages_to_scan = value;
3754 	return count;
3755 }
3756 KSM_ATTR(advisor_min_pages_to_scan);
3757 
3758 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3759 					struct kobj_attribute *attr, char *buf)
3760 {
3761 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3762 }
3763 
3764 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3765 					struct kobj_attribute *attr,
3766 					const char *buf, size_t count)
3767 {
3768 	int err;
3769 	unsigned long value;
3770 
3771 	err = kstrtoul(buf, 10, &value);
3772 	if (err)
3773 		return -EINVAL;
3774 
3775 	ksm_advisor_max_pages_to_scan = value;
3776 	return count;
3777 }
3778 KSM_ATTR(advisor_max_pages_to_scan);
3779 
3780 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3781 					     struct kobj_attribute *attr, char *buf)
3782 {
3783 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3784 }
3785 
3786 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3787 					      struct kobj_attribute *attr,
3788 					      const char *buf, size_t count)
3789 {
3790 	int err;
3791 	unsigned long value;
3792 
3793 	err = kstrtoul(buf, 10, &value);
3794 	if (err)
3795 		return -EINVAL;
3796 	if (value < 1)
3797 		return -EINVAL;
3798 
3799 	ksm_advisor_target_scan_time = value;
3800 	return count;
3801 }
3802 KSM_ATTR(advisor_target_scan_time);
3803 
3804 static struct attribute *ksm_attrs[] = {
3805 	&sleep_millisecs_attr.attr,
3806 	&pages_to_scan_attr.attr,
3807 	&run_attr.attr,
3808 	&pages_scanned_attr.attr,
3809 	&pages_shared_attr.attr,
3810 	&pages_sharing_attr.attr,
3811 	&pages_unshared_attr.attr,
3812 	&pages_volatile_attr.attr,
3813 	&pages_skipped_attr.attr,
3814 	&ksm_zero_pages_attr.attr,
3815 	&full_scans_attr.attr,
3816 #ifdef CONFIG_NUMA
3817 	&merge_across_nodes_attr.attr,
3818 #endif
3819 	&max_page_sharing_attr.attr,
3820 	&stable_node_chains_attr.attr,
3821 	&stable_node_dups_attr.attr,
3822 	&stable_node_chains_prune_millisecs_attr.attr,
3823 	&use_zero_pages_attr.attr,
3824 	&general_profit_attr.attr,
3825 	&smart_scan_attr.attr,
3826 	&advisor_mode_attr.attr,
3827 	&advisor_max_cpu_attr.attr,
3828 	&advisor_min_pages_to_scan_attr.attr,
3829 	&advisor_max_pages_to_scan_attr.attr,
3830 	&advisor_target_scan_time_attr.attr,
3831 	NULL,
3832 };
3833 
3834 static const struct attribute_group ksm_attr_group = {
3835 	.attrs = ksm_attrs,
3836 	.name = "ksm",
3837 };
3838 #endif /* CONFIG_SYSFS */
3839 
3840 static int __init ksm_init(void)
3841 {
3842 	struct task_struct *ksm_thread;
3843 	int err;
3844 
3845 	/* The correct value depends on page size and endianness */
3846 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3847 	/* Default to false for backwards compatibility */
3848 	ksm_use_zero_pages = false;
3849 
3850 	err = ksm_slab_init();
3851 	if (err)
3852 		goto out;
3853 
3854 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3855 	if (IS_ERR(ksm_thread)) {
3856 		pr_err("ksm: creating kthread failed\n");
3857 		err = PTR_ERR(ksm_thread);
3858 		goto out_free;
3859 	}
3860 
3861 #ifdef CONFIG_SYSFS
3862 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3863 	if (err) {
3864 		pr_err("ksm: register sysfs failed\n");
3865 		kthread_stop(ksm_thread);
3866 		goto out_free;
3867 	}
3868 #else
3869 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3870 
3871 #endif /* CONFIG_SYSFS */
3872 
3873 #ifdef CONFIG_MEMORY_HOTREMOVE
3874 	/* There is no significance to this priority 100 */
3875 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3876 #endif
3877 	return 0;
3878 
3879 out_free:
3880 	ksm_slab_free();
3881 out:
3882 	return err;
3883 }
3884 subsys_initcall(ksm_init);
3885