1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/cputime.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 typedef u8 rmap_age_t; 60 61 /** 62 * DOC: Overview 63 * 64 * A few notes about the KSM scanning process, 65 * to make it easier to understand the data structures below: 66 * 67 * In order to reduce excessive scanning, KSM sorts the memory pages by their 68 * contents into a data structure that holds pointers to the pages' locations. 69 * 70 * Since the contents of the pages may change at any moment, KSM cannot just 71 * insert the pages into a normal sorted tree and expect it to find anything. 72 * Therefore KSM uses two data structures - the stable and the unstable tree. 73 * 74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 75 * by their contents. Because each such page is write-protected, searching on 76 * this tree is fully assured to be working (except when pages are unmapped), 77 * and therefore this tree is called the stable tree. 78 * 79 * The stable tree node includes information required for reverse 80 * mapping from a KSM page to virtual addresses that map this page. 81 * 82 * In order to avoid large latencies of the rmap walks on KSM pages, 83 * KSM maintains two types of nodes in the stable tree: 84 * 85 * * the regular nodes that keep the reverse mapping structures in a 86 * linked list 87 * * the "chains" that link nodes ("dups") that represent the same 88 * write protected memory content, but each "dup" corresponds to a 89 * different KSM page copy of that content 90 * 91 * Internally, the regular nodes, "dups" and "chains" are represented 92 * using the same struct ksm_stable_node structure. 93 * 94 * In addition to the stable tree, KSM uses a second data structure called the 95 * unstable tree: this tree holds pointers to pages which have been found to 96 * be "unchanged for a period of time". The unstable tree sorts these pages 97 * by their contents, but since they are not write-protected, KSM cannot rely 98 * upon the unstable tree to work correctly - the unstable tree is liable to 99 * be corrupted as its contents are modified, and so it is called unstable. 100 * 101 * KSM solves this problem by several techniques: 102 * 103 * 1) The unstable tree is flushed every time KSM completes scanning all 104 * memory areas, and then the tree is rebuilt again from the beginning. 105 * 2) KSM will only insert into the unstable tree, pages whose hash value 106 * has not changed since the previous scan of all memory areas. 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 108 * colors of the nodes and not on their contents, assuring that even when 109 * the tree gets "corrupted" it won't get out of balance, so scanning time 110 * remains the same (also, searching and inserting nodes in an rbtree uses 111 * the same algorithm, so we have no overhead when we flush and rebuild). 112 * 4) KSM never flushes the stable tree, which means that even if it were to 113 * take 10 attempts to find a page in the unstable tree, once it is found, 114 * it is secured in the stable tree. (When we scan a new page, we first 115 * compare it against the stable tree, and then against the unstable tree.) 116 * 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 118 * stable trees and multiple unstable trees: one of each for each NUMA node. 119 */ 120 121 /** 122 * struct ksm_mm_slot - ksm information per mm that is being scanned 123 * @slot: hash lookup from mm to mm_slot 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 125 */ 126 struct ksm_mm_slot { 127 struct mm_slot slot; 128 struct ksm_rmap_item *rmap_list; 129 }; 130 131 /** 132 * struct ksm_scan - cursor for scanning 133 * @mm_slot: the current mm_slot we are scanning 134 * @address: the next address inside that to be scanned 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list 136 * @seqnr: count of completed full scans (needed when removing unstable node) 137 * 138 * There is only the one ksm_scan instance of this cursor structure. 139 */ 140 struct ksm_scan { 141 struct ksm_mm_slot *mm_slot; 142 unsigned long address; 143 struct ksm_rmap_item **rmap_list; 144 unsigned long seqnr; 145 }; 146 147 /** 148 * struct ksm_stable_node - node of the stable rbtree 149 * @node: rb node of this ksm page in the stable tree 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 152 * @list: linked into migrate_nodes, pending placement in the proper node tree 153 * @hlist: hlist head of rmap_items using this ksm page 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 155 * @chain_prune_time: time of the last full garbage collection 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 158 */ 159 struct ksm_stable_node { 160 union { 161 struct rb_node node; /* when node of stable tree */ 162 struct { /* when listed for migration */ 163 struct list_head *head; 164 struct { 165 struct hlist_node hlist_dup; 166 struct list_head list; 167 }; 168 }; 169 }; 170 struct hlist_head hlist; 171 union { 172 unsigned long kpfn; 173 unsigned long chain_prune_time; 174 }; 175 /* 176 * STABLE_NODE_CHAIN can be any negative number in 177 * rmap_hlist_len negative range, but better not -1 to be able 178 * to reliably detect underflows. 179 */ 180 #define STABLE_NODE_CHAIN -1024 181 int rmap_hlist_len; 182 #ifdef CONFIG_NUMA 183 int nid; 184 #endif 185 }; 186 187 /** 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 191 * @nid: NUMA node id of unstable tree in which linked (may not match page) 192 * @mm: the memory structure this rmap_item is pointing into 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 194 * @oldchecksum: previous checksum of the page at that virtual address 195 * @node: rb node of this rmap_item in the unstable tree 196 * @head: pointer to stable_node heading this list in the stable tree 197 * @hlist: link into hlist of rmap_items hanging off that stable_node 198 * @age: number of scan iterations since creation 199 * @remaining_skips: how many scans to skip 200 */ 201 struct ksm_rmap_item { 202 struct ksm_rmap_item *rmap_list; 203 union { 204 struct anon_vma *anon_vma; /* when stable */ 205 #ifdef CONFIG_NUMA 206 int nid; /* when node of unstable tree */ 207 #endif 208 }; 209 struct mm_struct *mm; 210 unsigned long address; /* + low bits used for flags below */ 211 unsigned int oldchecksum; /* when unstable */ 212 rmap_age_t age; 213 rmap_age_t remaining_skips; 214 union { 215 struct rb_node node; /* when node of unstable tree */ 216 struct { /* when listed from stable tree */ 217 struct ksm_stable_node *head; 218 struct hlist_node hlist; 219 }; 220 }; 221 }; 222 223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 226 227 /* The stable and unstable tree heads */ 228 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 229 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 230 static struct rb_root *root_stable_tree = one_stable_tree; 231 static struct rb_root *root_unstable_tree = one_unstable_tree; 232 233 /* Recently migrated nodes of stable tree, pending proper placement */ 234 static LIST_HEAD(migrate_nodes); 235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 236 237 #define MM_SLOTS_HASH_BITS 10 238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 239 240 static struct ksm_mm_slot ksm_mm_head = { 241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 242 }; 243 static struct ksm_scan ksm_scan = { 244 .mm_slot = &ksm_mm_head, 245 }; 246 247 static struct kmem_cache *rmap_item_cache; 248 static struct kmem_cache *stable_node_cache; 249 static struct kmem_cache *mm_slot_cache; 250 251 /* Default number of pages to scan per batch */ 252 #define DEFAULT_PAGES_TO_SCAN 100 253 254 /* The number of pages scanned */ 255 static unsigned long ksm_pages_scanned; 256 257 /* The number of nodes in the stable tree */ 258 static unsigned long ksm_pages_shared; 259 260 /* The number of page slots additionally sharing those nodes */ 261 static unsigned long ksm_pages_sharing; 262 263 /* The number of nodes in the unstable tree */ 264 static unsigned long ksm_pages_unshared; 265 266 /* The number of rmap_items in use: to calculate pages_volatile */ 267 static unsigned long ksm_rmap_items; 268 269 /* The number of stable_node chains */ 270 static unsigned long ksm_stable_node_chains; 271 272 /* The number of stable_node dups linked to the stable_node chains */ 273 static unsigned long ksm_stable_node_dups; 274 275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 277 278 /* Maximum number of page slots sharing a stable node */ 279 static int ksm_max_page_sharing = 256; 280 281 /* Number of pages ksmd should scan in one batch */ 282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 283 284 /* Milliseconds ksmd should sleep between batches */ 285 static unsigned int ksm_thread_sleep_millisecs = 20; 286 287 /* Checksum of an empty (zeroed) page */ 288 static unsigned int zero_checksum __read_mostly; 289 290 /* Whether to merge empty (zeroed) pages with actual zero pages */ 291 static bool ksm_use_zero_pages __read_mostly; 292 293 /* Skip pages that couldn't be de-duplicated previously */ 294 /* Default to true at least temporarily, for testing */ 295 static bool ksm_smart_scan = true; 296 297 /* The number of zero pages which is placed by KSM */ 298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); 299 300 /* The number of pages that have been skipped due to "smart scanning" */ 301 static unsigned long ksm_pages_skipped; 302 303 /* Don't scan more than max pages per batch. */ 304 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 305 306 /* Min CPU for scanning pages per scan */ 307 #define KSM_ADVISOR_MIN_CPU 10 308 309 /* Max CPU for scanning pages per scan */ 310 static unsigned int ksm_advisor_max_cpu = 70; 311 312 /* Target scan time in seconds to analyze all KSM candidate pages. */ 313 static unsigned long ksm_advisor_target_scan_time = 200; 314 315 /* Exponentially weighted moving average. */ 316 #define EWMA_WEIGHT 30 317 318 /** 319 * struct advisor_ctx - metadata for KSM advisor 320 * @start_scan: start time of the current scan 321 * @scan_time: scan time of previous scan 322 * @change: change in percent to pages_to_scan parameter 323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 324 */ 325 struct advisor_ctx { 326 ktime_t start_scan; 327 unsigned long scan_time; 328 unsigned long change; 329 unsigned long long cpu_time; 330 }; 331 static struct advisor_ctx advisor_ctx; 332 333 /* Define different advisor's */ 334 enum ksm_advisor_type { 335 KSM_ADVISOR_NONE, 336 KSM_ADVISOR_SCAN_TIME, 337 }; 338 static enum ksm_advisor_type ksm_advisor; 339 340 #ifdef CONFIG_SYSFS 341 /* 342 * Only called through the sysfs control interface: 343 */ 344 345 /* At least scan this many pages per batch. */ 346 static unsigned long ksm_advisor_min_pages_to_scan = 500; 347 348 static void set_advisor_defaults(void) 349 { 350 if (ksm_advisor == KSM_ADVISOR_NONE) { 351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 353 advisor_ctx = (const struct advisor_ctx){ 0 }; 354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 355 } 356 } 357 #endif /* CONFIG_SYSFS */ 358 359 static inline void advisor_start_scan(void) 360 { 361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 362 advisor_ctx.start_scan = ktime_get(); 363 } 364 365 /* 366 * Use previous scan time if available, otherwise use current scan time as an 367 * approximation for the previous scan time. 368 */ 369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 370 unsigned long scan_time) 371 { 372 return ctx->scan_time ? ctx->scan_time : scan_time; 373 } 374 375 /* Calculate exponential weighted moving average */ 376 static unsigned long ewma(unsigned long prev, unsigned long curr) 377 { 378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 379 } 380 381 /* 382 * The scan time advisor is based on the current scan rate and the target 383 * scan rate. 384 * 385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 386 * 387 * To avoid perturbations it calculates a change factor of previous changes. 388 * A new change factor is calculated for each iteration and it uses an 389 * exponentially weighted moving average. The new pages_to_scan value is 390 * multiplied with that change factor: 391 * 392 * new_pages_to_scan *= change facor 393 * 394 * The new_pages_to_scan value is limited by the cpu min and max values. It 395 * calculates the cpu percent for the last scan and calculates the new 396 * estimated cpu percent cost for the next scan. That value is capped by the 397 * cpu min and max setting. 398 * 399 * In addition the new pages_to_scan value is capped by the max and min 400 * limits. 401 */ 402 static void scan_time_advisor(void) 403 { 404 unsigned int cpu_percent; 405 unsigned long cpu_time; 406 unsigned long cpu_time_diff; 407 unsigned long cpu_time_diff_ms; 408 unsigned long pages; 409 unsigned long per_page_cost; 410 unsigned long factor; 411 unsigned long change; 412 unsigned long last_scan_time; 413 unsigned long scan_time; 414 415 /* Convert scan time to seconds */ 416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 417 MSEC_PER_SEC); 418 scan_time = scan_time ? scan_time : 1; 419 420 /* Calculate CPU consumption of ksmd background thread */ 421 cpu_time = task_sched_runtime(current); 422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 424 425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 426 cpu_percent = cpu_percent ? cpu_percent : 1; 427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 428 429 /* Calculate scan time as percentage of target scan time */ 430 factor = ksm_advisor_target_scan_time * 100 / scan_time; 431 factor = factor ? factor : 1; 432 433 /* 434 * Calculate scan time as percentage of last scan time and use 435 * exponentially weighted average to smooth it 436 */ 437 change = scan_time * 100 / last_scan_time; 438 change = change ? change : 1; 439 change = ewma(advisor_ctx.change, change); 440 441 /* Calculate new scan rate based on target scan rate. */ 442 pages = ksm_thread_pages_to_scan * 100 / factor; 443 /* Update pages_to_scan by weighted change percentage. */ 444 pages = pages * change / 100; 445 446 /* Cap new pages_to_scan value */ 447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 448 per_page_cost = per_page_cost ? per_page_cost : 1; 449 450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 452 pages = min(pages, ksm_advisor_max_pages_to_scan); 453 454 /* Update advisor context */ 455 advisor_ctx.change = change; 456 advisor_ctx.scan_time = scan_time; 457 advisor_ctx.cpu_time = cpu_time; 458 459 ksm_thread_pages_to_scan = pages; 460 trace_ksm_advisor(scan_time, pages, cpu_percent); 461 } 462 463 static void advisor_stop_scan(void) 464 { 465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 466 scan_time_advisor(); 467 } 468 469 #ifdef CONFIG_NUMA 470 /* Zeroed when merging across nodes is not allowed */ 471 static unsigned int ksm_merge_across_nodes = 1; 472 static int ksm_nr_node_ids = 1; 473 #else 474 #define ksm_merge_across_nodes 1U 475 #define ksm_nr_node_ids 1 476 #endif 477 478 #define KSM_RUN_STOP 0 479 #define KSM_RUN_MERGE 1 480 #define KSM_RUN_UNMERGE 2 481 #define KSM_RUN_OFFLINE 4 482 static unsigned long ksm_run = KSM_RUN_STOP; 483 static void wait_while_offlining(void); 484 485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 487 static DEFINE_MUTEX(ksm_thread_mutex); 488 static DEFINE_SPINLOCK(ksm_mmlist_lock); 489 490 static int __init ksm_slab_init(void) 491 { 492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); 493 if (!rmap_item_cache) 494 goto out; 495 496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); 497 if (!stable_node_cache) 498 goto out_free1; 499 500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); 501 if (!mm_slot_cache) 502 goto out_free2; 503 504 return 0; 505 506 out_free2: 507 kmem_cache_destroy(stable_node_cache); 508 out_free1: 509 kmem_cache_destroy(rmap_item_cache); 510 out: 511 return -ENOMEM; 512 } 513 514 static void __init ksm_slab_free(void) 515 { 516 kmem_cache_destroy(mm_slot_cache); 517 kmem_cache_destroy(stable_node_cache); 518 kmem_cache_destroy(rmap_item_cache); 519 mm_slot_cache = NULL; 520 } 521 522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 523 { 524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 525 } 526 527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 528 { 529 return dup->head == STABLE_NODE_DUP_HEAD; 530 } 531 532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 533 struct ksm_stable_node *chain) 534 { 535 VM_BUG_ON(is_stable_node_dup(dup)); 536 dup->head = STABLE_NODE_DUP_HEAD; 537 VM_BUG_ON(!is_stable_node_chain(chain)); 538 hlist_add_head(&dup->hlist_dup, &chain->hlist); 539 ksm_stable_node_dups++; 540 } 541 542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 543 { 544 VM_BUG_ON(!is_stable_node_dup(dup)); 545 hlist_del(&dup->hlist_dup); 546 ksm_stable_node_dups--; 547 } 548 549 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 550 { 551 VM_BUG_ON(is_stable_node_chain(dup)); 552 if (is_stable_node_dup(dup)) 553 __stable_node_dup_del(dup); 554 else 555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 556 #ifdef CONFIG_DEBUG_VM 557 dup->head = NULL; 558 #endif 559 } 560 561 static inline struct ksm_rmap_item *alloc_rmap_item(void) 562 { 563 struct ksm_rmap_item *rmap_item; 564 565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 566 __GFP_NORETRY | __GFP_NOWARN); 567 if (rmap_item) 568 ksm_rmap_items++; 569 return rmap_item; 570 } 571 572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 573 { 574 ksm_rmap_items--; 575 rmap_item->mm->ksm_rmap_items--; 576 rmap_item->mm = NULL; /* debug safety */ 577 kmem_cache_free(rmap_item_cache, rmap_item); 578 } 579 580 static inline struct ksm_stable_node *alloc_stable_node(void) 581 { 582 /* 583 * The allocation can take too long with GFP_KERNEL when memory is under 584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 585 * grants access to memory reserves, helping to avoid this problem. 586 */ 587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 588 } 589 590 static inline void free_stable_node(struct ksm_stable_node *stable_node) 591 { 592 VM_BUG_ON(stable_node->rmap_hlist_len && 593 !is_stable_node_chain(stable_node)); 594 kmem_cache_free(stable_node_cache, stable_node); 595 } 596 597 /* 598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 599 * page tables after it has passed through ksm_exit() - which, if necessary, 600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 601 * a special flag: they can just back out as soon as mm_users goes to zero. 602 * ksm_test_exit() is used throughout to make this test for exit: in some 603 * places for correctness, in some places just to avoid unnecessary work. 604 */ 605 static inline bool ksm_test_exit(struct mm_struct *mm) 606 { 607 return atomic_read(&mm->mm_users) == 0; 608 } 609 610 /* 611 * We use break_ksm to break COW on a ksm page by triggering unsharing, 612 * such that the ksm page will get replaced by an exclusive anonymous page. 613 * 614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 615 * in case the application has unmapped and remapped mm,addr meanwhile. 616 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 617 * mmap of /dev/mem, where we would not want to touch it. 618 * 619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 620 * of the process that owns 'vma'. We also do not want to enforce 621 * protection keys here anyway. 622 */ 623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 624 { 625 vm_fault_t ret = 0; 626 627 if (lock_vma) 628 vma_start_write(vma); 629 630 do { 631 bool ksm_page = false; 632 struct folio_walk fw; 633 struct folio *folio; 634 635 cond_resched(); 636 folio = folio_walk_start(&fw, vma, addr, 637 FW_MIGRATION | FW_ZEROPAGE); 638 if (folio) { 639 /* Small folio implies FW_LEVEL_PTE. */ 640 if (!folio_test_large(folio) && 641 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte))) 642 ksm_page = true; 643 folio_walk_end(&fw, vma); 644 } 645 646 if (!ksm_page) 647 return 0; 648 ret = handle_mm_fault(vma, addr, 649 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 650 NULL); 651 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 652 /* 653 * We must loop until we no longer find a KSM page because 654 * handle_mm_fault() may back out if there's any difficulty e.g. if 655 * pte accessed bit gets updated concurrently. 656 * 657 * VM_FAULT_SIGBUS could occur if we race with truncation of the 658 * backing file, which also invalidates anonymous pages: that's 659 * okay, that truncation will have unmapped the KSM page for us. 660 * 661 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 662 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 663 * current task has TIF_MEMDIE set, and will be OOM killed on return 664 * to user; and ksmd, having no mm, would never be chosen for that. 665 * 666 * But if the mm is in a limited mem_cgroup, then the fault may fail 667 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 668 * even ksmd can fail in this way - though it's usually breaking ksm 669 * just to undo a merge it made a moment before, so unlikely to oom. 670 * 671 * That's a pity: we might therefore have more kernel pages allocated 672 * than we're counting as nodes in the stable tree; but ksm_do_scan 673 * will retry to break_cow on each pass, so should recover the page 674 * in due course. The important thing is to not let VM_MERGEABLE 675 * be cleared while any such pages might remain in the area. 676 */ 677 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 678 } 679 680 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags) 681 { 682 if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL | 683 VM_HUGETLB | VM_DROPPABLE)) 684 return false; /* just ignore the advice */ 685 686 if (file_is_dax(file)) 687 return false; 688 689 #ifdef VM_SAO 690 if (vm_flags & VM_SAO) 691 return false; 692 #endif 693 #ifdef VM_SPARC_ADI 694 if (vm_flags & VM_SPARC_ADI) 695 return false; 696 #endif 697 698 return true; 699 } 700 701 static bool vma_ksm_compatible(struct vm_area_struct *vma) 702 { 703 return ksm_compatible(vma->vm_file, vma->vm_flags); 704 } 705 706 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 707 unsigned long addr) 708 { 709 struct vm_area_struct *vma; 710 if (ksm_test_exit(mm)) 711 return NULL; 712 vma = vma_lookup(mm, addr); 713 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 714 return NULL; 715 return vma; 716 } 717 718 static void break_cow(struct ksm_rmap_item *rmap_item) 719 { 720 struct mm_struct *mm = rmap_item->mm; 721 unsigned long addr = rmap_item->address; 722 struct vm_area_struct *vma; 723 724 /* 725 * It is not an accident that whenever we want to break COW 726 * to undo, we also need to drop a reference to the anon_vma. 727 */ 728 put_anon_vma(rmap_item->anon_vma); 729 730 mmap_read_lock(mm); 731 vma = find_mergeable_vma(mm, addr); 732 if (vma) 733 break_ksm(vma, addr, false); 734 mmap_read_unlock(mm); 735 } 736 737 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 738 { 739 struct mm_struct *mm = rmap_item->mm; 740 unsigned long addr = rmap_item->address; 741 struct vm_area_struct *vma; 742 struct page *page = NULL; 743 struct folio_walk fw; 744 struct folio *folio; 745 746 mmap_read_lock(mm); 747 vma = find_mergeable_vma(mm, addr); 748 if (!vma) 749 goto out; 750 751 folio = folio_walk_start(&fw, vma, addr, 0); 752 if (folio) { 753 if (!folio_is_zone_device(folio) && 754 folio_test_anon(folio)) { 755 folio_get(folio); 756 page = fw.page; 757 } 758 folio_walk_end(&fw, vma); 759 } 760 out: 761 if (page) { 762 flush_anon_page(vma, page, addr); 763 flush_dcache_page(page); 764 } 765 mmap_read_unlock(mm); 766 return page; 767 } 768 769 /* 770 * This helper is used for getting right index into array of tree roots. 771 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 772 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 773 * every node has its own stable and unstable tree. 774 */ 775 static inline int get_kpfn_nid(unsigned long kpfn) 776 { 777 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 778 } 779 780 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 781 struct rb_root *root) 782 { 783 struct ksm_stable_node *chain = alloc_stable_node(); 784 VM_BUG_ON(is_stable_node_chain(dup)); 785 if (likely(chain)) { 786 INIT_HLIST_HEAD(&chain->hlist); 787 chain->chain_prune_time = jiffies; 788 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 789 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 790 chain->nid = NUMA_NO_NODE; /* debug */ 791 #endif 792 ksm_stable_node_chains++; 793 794 /* 795 * Put the stable node chain in the first dimension of 796 * the stable tree and at the same time remove the old 797 * stable node. 798 */ 799 rb_replace_node(&dup->node, &chain->node, root); 800 801 /* 802 * Move the old stable node to the second dimension 803 * queued in the hlist_dup. The invariant is that all 804 * dup stable_nodes in the chain->hlist point to pages 805 * that are write protected and have the exact same 806 * content. 807 */ 808 stable_node_chain_add_dup(dup, chain); 809 } 810 return chain; 811 } 812 813 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 814 struct rb_root *root) 815 { 816 rb_erase(&chain->node, root); 817 free_stable_node(chain); 818 ksm_stable_node_chains--; 819 } 820 821 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 822 { 823 struct ksm_rmap_item *rmap_item; 824 825 /* check it's not STABLE_NODE_CHAIN or negative */ 826 BUG_ON(stable_node->rmap_hlist_len < 0); 827 828 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 829 if (rmap_item->hlist.next) { 830 ksm_pages_sharing--; 831 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 832 } else { 833 ksm_pages_shared--; 834 } 835 836 rmap_item->mm->ksm_merging_pages--; 837 838 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 839 stable_node->rmap_hlist_len--; 840 put_anon_vma(rmap_item->anon_vma); 841 rmap_item->address &= PAGE_MASK; 842 cond_resched(); 843 } 844 845 /* 846 * We need the second aligned pointer of the migrate_nodes 847 * list_head to stay clear from the rb_parent_color union 848 * (aligned and different than any node) and also different 849 * from &migrate_nodes. This will verify that future list.h changes 850 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 851 */ 852 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 853 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 854 855 trace_ksm_remove_ksm_page(stable_node->kpfn); 856 if (stable_node->head == &migrate_nodes) 857 list_del(&stable_node->list); 858 else 859 stable_node_dup_del(stable_node); 860 free_stable_node(stable_node); 861 } 862 863 enum ksm_get_folio_flags { 864 KSM_GET_FOLIO_NOLOCK, 865 KSM_GET_FOLIO_LOCK, 866 KSM_GET_FOLIO_TRYLOCK 867 }; 868 869 /* 870 * ksm_get_folio: checks if the page indicated by the stable node 871 * is still its ksm page, despite having held no reference to it. 872 * In which case we can trust the content of the page, and it 873 * returns the gotten page; but if the page has now been zapped, 874 * remove the stale node from the stable tree and return NULL. 875 * But beware, the stable node's page might be being migrated. 876 * 877 * You would expect the stable_node to hold a reference to the ksm page. 878 * But if it increments the page's count, swapping out has to wait for 879 * ksmd to come around again before it can free the page, which may take 880 * seconds or even minutes: much too unresponsive. So instead we use a 881 * "keyhole reference": access to the ksm page from the stable node peeps 882 * out through its keyhole to see if that page still holds the right key, 883 * pointing back to this stable node. This relies on freeing a PageAnon 884 * page to reset its page->mapping to NULL, and relies on no other use of 885 * a page to put something that might look like our key in page->mapping. 886 * is on its way to being freed; but it is an anomaly to bear in mind. 887 */ 888 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 889 enum ksm_get_folio_flags flags) 890 { 891 struct folio *folio; 892 void *expected_mapping; 893 unsigned long kpfn; 894 895 expected_mapping = (void *)((unsigned long)stable_node | 896 FOLIO_MAPPING_KSM); 897 again: 898 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 899 folio = pfn_folio(kpfn); 900 if (READ_ONCE(folio->mapping) != expected_mapping) 901 goto stale; 902 903 /* 904 * We cannot do anything with the page while its refcount is 0. 905 * Usually 0 means free, or tail of a higher-order page: in which 906 * case this node is no longer referenced, and should be freed; 907 * however, it might mean that the page is under page_ref_freeze(). 908 * The __remove_mapping() case is easy, again the node is now stale; 909 * the same is in reuse_ksm_page() case; but if page is swapcache 910 * in folio_migrate_mapping(), it might still be our page, 911 * in which case it's essential to keep the node. 912 */ 913 while (!folio_try_get(folio)) { 914 /* 915 * Another check for folio->mapping != expected_mapping 916 * would work here too. We have chosen to test the 917 * swapcache flag to optimize the common case, when the 918 * folio is or is about to be freed: the swapcache flag 919 * is cleared (under spin_lock_irq) in the ref_freeze 920 * section of __remove_mapping(); but anon folio->mapping 921 * is reset to NULL later, in free_pages_prepare(). 922 */ 923 if (!folio_test_swapcache(folio)) 924 goto stale; 925 cpu_relax(); 926 } 927 928 if (READ_ONCE(folio->mapping) != expected_mapping) { 929 folio_put(folio); 930 goto stale; 931 } 932 933 if (flags == KSM_GET_FOLIO_TRYLOCK) { 934 if (!folio_trylock(folio)) { 935 folio_put(folio); 936 return ERR_PTR(-EBUSY); 937 } 938 } else if (flags == KSM_GET_FOLIO_LOCK) 939 folio_lock(folio); 940 941 if (flags != KSM_GET_FOLIO_NOLOCK) { 942 if (READ_ONCE(folio->mapping) != expected_mapping) { 943 folio_unlock(folio); 944 folio_put(folio); 945 goto stale; 946 } 947 } 948 return folio; 949 950 stale: 951 /* 952 * We come here from above when folio->mapping or the swapcache flag 953 * suggests that the node is stale; but it might be under migration. 954 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 955 * before checking whether node->kpfn has been changed. 956 */ 957 smp_rmb(); 958 if (READ_ONCE(stable_node->kpfn) != kpfn) 959 goto again; 960 remove_node_from_stable_tree(stable_node); 961 return NULL; 962 } 963 964 /* 965 * Removing rmap_item from stable or unstable tree. 966 * This function will clean the information from the stable/unstable tree. 967 */ 968 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 969 { 970 if (rmap_item->address & STABLE_FLAG) { 971 struct ksm_stable_node *stable_node; 972 struct folio *folio; 973 974 stable_node = rmap_item->head; 975 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 976 if (!folio) 977 goto out; 978 979 hlist_del(&rmap_item->hlist); 980 folio_unlock(folio); 981 folio_put(folio); 982 983 if (!hlist_empty(&stable_node->hlist)) 984 ksm_pages_sharing--; 985 else 986 ksm_pages_shared--; 987 988 rmap_item->mm->ksm_merging_pages--; 989 990 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 991 stable_node->rmap_hlist_len--; 992 993 put_anon_vma(rmap_item->anon_vma); 994 rmap_item->head = NULL; 995 rmap_item->address &= PAGE_MASK; 996 997 } else if (rmap_item->address & UNSTABLE_FLAG) { 998 unsigned char age; 999 /* 1000 * Usually ksmd can and must skip the rb_erase, because 1001 * root_unstable_tree was already reset to RB_ROOT. 1002 * But be careful when an mm is exiting: do the rb_erase 1003 * if this rmap_item was inserted by this scan, rather 1004 * than left over from before. 1005 */ 1006 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1007 BUG_ON(age > 1); 1008 if (!age) 1009 rb_erase(&rmap_item->node, 1010 root_unstable_tree + NUMA(rmap_item->nid)); 1011 ksm_pages_unshared--; 1012 rmap_item->address &= PAGE_MASK; 1013 } 1014 out: 1015 cond_resched(); /* we're called from many long loops */ 1016 } 1017 1018 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1019 { 1020 while (*rmap_list) { 1021 struct ksm_rmap_item *rmap_item = *rmap_list; 1022 *rmap_list = rmap_item->rmap_list; 1023 remove_rmap_item_from_tree(rmap_item); 1024 free_rmap_item(rmap_item); 1025 } 1026 } 1027 1028 /* 1029 * Though it's very tempting to unmerge rmap_items from stable tree rather 1030 * than check every pte of a given vma, the locking doesn't quite work for 1031 * that - an rmap_item is assigned to the stable tree after inserting ksm 1032 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1033 * rmap_items from parent to child at fork time (so as not to waste time 1034 * if exit comes before the next scan reaches it). 1035 * 1036 * Similarly, although we'd like to remove rmap_items (so updating counts 1037 * and freeing memory) when unmerging an area, it's easier to leave that 1038 * to the next pass of ksmd - consider, for example, how ksmd might be 1039 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1040 */ 1041 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1042 unsigned long start, unsigned long end, bool lock_vma) 1043 { 1044 unsigned long addr; 1045 int err = 0; 1046 1047 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1048 if (ksm_test_exit(vma->vm_mm)) 1049 break; 1050 if (signal_pending(current)) 1051 err = -ERESTARTSYS; 1052 else 1053 err = break_ksm(vma, addr, lock_vma); 1054 } 1055 return err; 1056 } 1057 1058 static inline 1059 struct ksm_stable_node *folio_stable_node(const struct folio *folio) 1060 { 1061 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1062 } 1063 1064 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1065 { 1066 return folio_stable_node(page_folio(page)); 1067 } 1068 1069 static inline void folio_set_stable_node(struct folio *folio, 1070 struct ksm_stable_node *stable_node) 1071 { 1072 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1073 folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM); 1074 } 1075 1076 #ifdef CONFIG_SYSFS 1077 /* 1078 * Only called through the sysfs control interface: 1079 */ 1080 static int remove_stable_node(struct ksm_stable_node *stable_node) 1081 { 1082 struct folio *folio; 1083 int err; 1084 1085 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1086 if (!folio) { 1087 /* 1088 * ksm_get_folio did remove_node_from_stable_tree itself. 1089 */ 1090 return 0; 1091 } 1092 1093 /* 1094 * Page could be still mapped if this races with __mmput() running in 1095 * between ksm_exit() and exit_mmap(). Just refuse to let 1096 * merge_across_nodes/max_page_sharing be switched. 1097 */ 1098 err = -EBUSY; 1099 if (!folio_mapped(folio)) { 1100 /* 1101 * The stable node did not yet appear stale to ksm_get_folio(), 1102 * since that allows for an unmapped ksm folio to be recognized 1103 * right up until it is freed; but the node is safe to remove. 1104 * This folio might be in an LRU cache waiting to be freed, 1105 * or it might be in the swapcache (perhaps under writeback), 1106 * or it might have been removed from swapcache a moment ago. 1107 */ 1108 folio_set_stable_node(folio, NULL); 1109 remove_node_from_stable_tree(stable_node); 1110 err = 0; 1111 } 1112 1113 folio_unlock(folio); 1114 folio_put(folio); 1115 return err; 1116 } 1117 1118 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1119 struct rb_root *root) 1120 { 1121 struct ksm_stable_node *dup; 1122 struct hlist_node *hlist_safe; 1123 1124 if (!is_stable_node_chain(stable_node)) { 1125 VM_BUG_ON(is_stable_node_dup(stable_node)); 1126 if (remove_stable_node(stable_node)) 1127 return true; 1128 else 1129 return false; 1130 } 1131 1132 hlist_for_each_entry_safe(dup, hlist_safe, 1133 &stable_node->hlist, hlist_dup) { 1134 VM_BUG_ON(!is_stable_node_dup(dup)); 1135 if (remove_stable_node(dup)) 1136 return true; 1137 } 1138 BUG_ON(!hlist_empty(&stable_node->hlist)); 1139 free_stable_node_chain(stable_node, root); 1140 return false; 1141 } 1142 1143 static int remove_all_stable_nodes(void) 1144 { 1145 struct ksm_stable_node *stable_node, *next; 1146 int nid; 1147 int err = 0; 1148 1149 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1150 while (root_stable_tree[nid].rb_node) { 1151 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1152 struct ksm_stable_node, node); 1153 if (remove_stable_node_chain(stable_node, 1154 root_stable_tree + nid)) { 1155 err = -EBUSY; 1156 break; /* proceed to next nid */ 1157 } 1158 cond_resched(); 1159 } 1160 } 1161 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1162 if (remove_stable_node(stable_node)) 1163 err = -EBUSY; 1164 cond_resched(); 1165 } 1166 return err; 1167 } 1168 1169 static int unmerge_and_remove_all_rmap_items(void) 1170 { 1171 struct ksm_mm_slot *mm_slot; 1172 struct mm_slot *slot; 1173 struct mm_struct *mm; 1174 struct vm_area_struct *vma; 1175 int err = 0; 1176 1177 spin_lock(&ksm_mmlist_lock); 1178 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1179 struct mm_slot, mm_node); 1180 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1181 spin_unlock(&ksm_mmlist_lock); 1182 1183 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1184 mm_slot = ksm_scan.mm_slot) { 1185 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1186 1187 mm = mm_slot->slot.mm; 1188 mmap_read_lock(mm); 1189 1190 /* 1191 * Exit right away if mm is exiting to avoid lockdep issue in 1192 * the maple tree 1193 */ 1194 if (ksm_test_exit(mm)) 1195 goto mm_exiting; 1196 1197 for_each_vma(vmi, vma) { 1198 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1199 continue; 1200 err = unmerge_ksm_pages(vma, 1201 vma->vm_start, vma->vm_end, false); 1202 if (err) 1203 goto error; 1204 } 1205 1206 mm_exiting: 1207 remove_trailing_rmap_items(&mm_slot->rmap_list); 1208 mmap_read_unlock(mm); 1209 1210 spin_lock(&ksm_mmlist_lock); 1211 slot = list_entry(mm_slot->slot.mm_node.next, 1212 struct mm_slot, mm_node); 1213 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1214 if (ksm_test_exit(mm)) { 1215 hash_del(&mm_slot->slot.hash); 1216 list_del(&mm_slot->slot.mm_node); 1217 spin_unlock(&ksm_mmlist_lock); 1218 1219 mm_slot_free(mm_slot_cache, mm_slot); 1220 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1221 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1222 mmdrop(mm); 1223 } else 1224 spin_unlock(&ksm_mmlist_lock); 1225 } 1226 1227 /* Clean up stable nodes, but don't worry if some are still busy */ 1228 remove_all_stable_nodes(); 1229 ksm_scan.seqnr = 0; 1230 return 0; 1231 1232 error: 1233 mmap_read_unlock(mm); 1234 spin_lock(&ksm_mmlist_lock); 1235 ksm_scan.mm_slot = &ksm_mm_head; 1236 spin_unlock(&ksm_mmlist_lock); 1237 return err; 1238 } 1239 #endif /* CONFIG_SYSFS */ 1240 1241 static u32 calc_checksum(struct page *page) 1242 { 1243 u32 checksum; 1244 void *addr = kmap_local_page(page); 1245 checksum = xxhash(addr, PAGE_SIZE, 0); 1246 kunmap_local(addr); 1247 return checksum; 1248 } 1249 1250 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1251 pte_t *orig_pte) 1252 { 1253 struct mm_struct *mm = vma->vm_mm; 1254 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1255 int swapped; 1256 int err = -EFAULT; 1257 struct mmu_notifier_range range; 1258 bool anon_exclusive; 1259 pte_t entry; 1260 1261 if (WARN_ON_ONCE(folio_test_large(folio))) 1262 return err; 1263 1264 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma); 1265 if (pvmw.address == -EFAULT) 1266 goto out; 1267 1268 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1269 pvmw.address + PAGE_SIZE); 1270 mmu_notifier_invalidate_range_start(&range); 1271 1272 if (!page_vma_mapped_walk(&pvmw)) 1273 goto out_mn; 1274 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1275 goto out_unlock; 1276 1277 entry = ptep_get(pvmw.pte); 1278 /* 1279 * Handle PFN swap PTEs, such as device-exclusive ones, that actually 1280 * map pages: give up just like the next folio_walk would. 1281 */ 1282 if (unlikely(!pte_present(entry))) 1283 goto out_unlock; 1284 1285 anon_exclusive = PageAnonExclusive(&folio->page); 1286 if (pte_write(entry) || pte_dirty(entry) || 1287 anon_exclusive || mm_tlb_flush_pending(mm)) { 1288 swapped = folio_test_swapcache(folio); 1289 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1290 /* 1291 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1292 * take any lock, therefore the check that we are going to make 1293 * with the pagecount against the mapcount is racy and 1294 * O_DIRECT can happen right after the check. 1295 * So we clear the pte and flush the tlb before the check 1296 * this assure us that no O_DIRECT can happen after the check 1297 * or in the middle of the check. 1298 * 1299 * No need to notify as we are downgrading page table to read 1300 * only not changing it to point to a new page. 1301 * 1302 * See Documentation/mm/mmu_notifier.rst 1303 */ 1304 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1305 /* 1306 * Check that no O_DIRECT or similar I/O is in progress on the 1307 * page 1308 */ 1309 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1310 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1311 goto out_unlock; 1312 } 1313 1314 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1315 if (anon_exclusive && 1316 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1317 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1318 goto out_unlock; 1319 } 1320 1321 if (pte_dirty(entry)) 1322 folio_mark_dirty(folio); 1323 entry = pte_mkclean(entry); 1324 1325 if (pte_write(entry)) 1326 entry = pte_wrprotect(entry); 1327 1328 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1329 } 1330 *orig_pte = entry; 1331 err = 0; 1332 1333 out_unlock: 1334 page_vma_mapped_walk_done(&pvmw); 1335 out_mn: 1336 mmu_notifier_invalidate_range_end(&range); 1337 out: 1338 return err; 1339 } 1340 1341 /** 1342 * replace_page - replace page in vma by new ksm page 1343 * @vma: vma that holds the pte pointing to page 1344 * @page: the page we are replacing by kpage 1345 * @kpage: the ksm page we replace page by 1346 * @orig_pte: the original value of the pte 1347 * 1348 * Returns 0 on success, -EFAULT on failure. 1349 */ 1350 static int replace_page(struct vm_area_struct *vma, struct page *page, 1351 struct page *kpage, pte_t orig_pte) 1352 { 1353 struct folio *kfolio = page_folio(kpage); 1354 struct mm_struct *mm = vma->vm_mm; 1355 struct folio *folio = page_folio(page); 1356 pmd_t *pmd; 1357 pmd_t pmde; 1358 pte_t *ptep; 1359 pte_t newpte; 1360 spinlock_t *ptl; 1361 unsigned long addr; 1362 int err = -EFAULT; 1363 struct mmu_notifier_range range; 1364 1365 addr = page_address_in_vma(folio, page, vma); 1366 if (addr == -EFAULT) 1367 goto out; 1368 1369 pmd = mm_find_pmd(mm, addr); 1370 if (!pmd) 1371 goto out; 1372 /* 1373 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1374 * without holding anon_vma lock for write. So when looking for a 1375 * genuine pmde (in which to find pte), test present and !THP together. 1376 */ 1377 pmde = pmdp_get_lockless(pmd); 1378 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1379 goto out; 1380 1381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1382 addr + PAGE_SIZE); 1383 mmu_notifier_invalidate_range_start(&range); 1384 1385 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1386 if (!ptep) 1387 goto out_mn; 1388 if (!pte_same(ptep_get(ptep), orig_pte)) { 1389 pte_unmap_unlock(ptep, ptl); 1390 goto out_mn; 1391 } 1392 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1393 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1394 kfolio); 1395 1396 /* 1397 * No need to check ksm_use_zero_pages here: we can only have a 1398 * zero_page here if ksm_use_zero_pages was enabled already. 1399 */ 1400 if (!is_zero_pfn(page_to_pfn(kpage))) { 1401 folio_get(kfolio); 1402 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1403 newpte = mk_pte(kpage, vma->vm_page_prot); 1404 } else { 1405 /* 1406 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1407 * we can easily track all KSM-placed zero pages by checking if 1408 * the dirty bit in zero page's PTE is set. 1409 */ 1410 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1411 ksm_map_zero_page(mm); 1412 /* 1413 * We're replacing an anonymous page with a zero page, which is 1414 * not anonymous. We need to do proper accounting otherwise we 1415 * will get wrong values in /proc, and a BUG message in dmesg 1416 * when tearing down the mm. 1417 */ 1418 dec_mm_counter(mm, MM_ANONPAGES); 1419 } 1420 1421 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1422 /* 1423 * No need to notify as we are replacing a read only page with another 1424 * read only page with the same content. 1425 * 1426 * See Documentation/mm/mmu_notifier.rst 1427 */ 1428 ptep_clear_flush(vma, addr, ptep); 1429 set_pte_at(mm, addr, ptep, newpte); 1430 1431 folio_remove_rmap_pte(folio, page, vma); 1432 if (!folio_mapped(folio)) 1433 folio_free_swap(folio); 1434 folio_put(folio); 1435 1436 pte_unmap_unlock(ptep, ptl); 1437 err = 0; 1438 out_mn: 1439 mmu_notifier_invalidate_range_end(&range); 1440 out: 1441 return err; 1442 } 1443 1444 /* 1445 * try_to_merge_one_page - take two pages and merge them into one 1446 * @vma: the vma that holds the pte pointing to page 1447 * @page: the PageAnon page that we want to replace with kpage 1448 * @kpage: the KSM page that we want to map instead of page, 1449 * or NULL the first time when we want to use page as kpage. 1450 * 1451 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1452 */ 1453 static int try_to_merge_one_page(struct vm_area_struct *vma, 1454 struct page *page, struct page *kpage) 1455 { 1456 struct folio *folio = page_folio(page); 1457 pte_t orig_pte = __pte(0); 1458 int err = -EFAULT; 1459 1460 if (page == kpage) /* ksm page forked */ 1461 return 0; 1462 1463 if (!folio_test_anon(folio)) 1464 goto out; 1465 1466 /* 1467 * We need the folio lock to read a stable swapcache flag in 1468 * write_protect_page(). We trylock because we don't want to wait 1469 * here - we prefer to continue scanning and merging different 1470 * pages, then come back to this page when it is unlocked. 1471 */ 1472 if (!folio_trylock(folio)) 1473 goto out; 1474 1475 if (folio_test_large(folio)) { 1476 if (split_huge_page(page)) 1477 goto out_unlock; 1478 folio = page_folio(page); 1479 } 1480 1481 /* 1482 * If this anonymous page is mapped only here, its pte may need 1483 * to be write-protected. If it's mapped elsewhere, all of its 1484 * ptes are necessarily already write-protected. But in either 1485 * case, we need to lock and check page_count is not raised. 1486 */ 1487 if (write_protect_page(vma, folio, &orig_pte) == 0) { 1488 if (!kpage) { 1489 /* 1490 * While we hold folio lock, upgrade folio from 1491 * anon to a NULL stable_node with the KSM flag set: 1492 * stable_tree_insert() will update stable_node. 1493 */ 1494 folio_set_stable_node(folio, NULL); 1495 folio_mark_accessed(folio); 1496 /* 1497 * Page reclaim just frees a clean folio with no dirty 1498 * ptes: make sure that the ksm page would be swapped. 1499 */ 1500 if (!folio_test_dirty(folio)) 1501 folio_mark_dirty(folio); 1502 err = 0; 1503 } else if (pages_identical(page, kpage)) 1504 err = replace_page(vma, page, kpage, orig_pte); 1505 } 1506 1507 out_unlock: 1508 folio_unlock(folio); 1509 out: 1510 return err; 1511 } 1512 1513 /* 1514 * This function returns 0 if the pages were merged or if they are 1515 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. 1516 */ 1517 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, 1518 struct page *page) 1519 { 1520 struct mm_struct *mm = rmap_item->mm; 1521 int err = -EFAULT; 1522 1523 /* 1524 * Same checksum as an empty page. We attempt to merge it with the 1525 * appropriate zero page if the user enabled this via sysfs. 1526 */ 1527 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { 1528 struct vm_area_struct *vma; 1529 1530 mmap_read_lock(mm); 1531 vma = find_mergeable_vma(mm, rmap_item->address); 1532 if (vma) { 1533 err = try_to_merge_one_page(vma, page, 1534 ZERO_PAGE(rmap_item->address)); 1535 trace_ksm_merge_one_page( 1536 page_to_pfn(ZERO_PAGE(rmap_item->address)), 1537 rmap_item, mm, err); 1538 } else { 1539 /* 1540 * If the vma is out of date, we do not need to 1541 * continue. 1542 */ 1543 err = 0; 1544 } 1545 mmap_read_unlock(mm); 1546 } 1547 1548 return err; 1549 } 1550 1551 /* 1552 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1553 * but no new kernel page is allocated: kpage must already be a ksm page. 1554 * 1555 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1556 */ 1557 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1558 struct page *page, struct page *kpage) 1559 { 1560 struct mm_struct *mm = rmap_item->mm; 1561 struct vm_area_struct *vma; 1562 int err = -EFAULT; 1563 1564 mmap_read_lock(mm); 1565 vma = find_mergeable_vma(mm, rmap_item->address); 1566 if (!vma) 1567 goto out; 1568 1569 err = try_to_merge_one_page(vma, page, kpage); 1570 if (err) 1571 goto out; 1572 1573 /* Unstable nid is in union with stable anon_vma: remove first */ 1574 remove_rmap_item_from_tree(rmap_item); 1575 1576 /* Must get reference to anon_vma while still holding mmap_lock */ 1577 rmap_item->anon_vma = vma->anon_vma; 1578 get_anon_vma(vma->anon_vma); 1579 out: 1580 mmap_read_unlock(mm); 1581 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1582 rmap_item, mm, err); 1583 return err; 1584 } 1585 1586 /* 1587 * try_to_merge_two_pages - take two identical pages and prepare them 1588 * to be merged into one page. 1589 * 1590 * This function returns the kpage if we successfully merged two identical 1591 * pages into one ksm page, NULL otherwise. 1592 * 1593 * Note that this function upgrades page to ksm page: if one of the pages 1594 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1595 */ 1596 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1597 struct page *page, 1598 struct ksm_rmap_item *tree_rmap_item, 1599 struct page *tree_page) 1600 { 1601 int err; 1602 1603 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1604 if (!err) { 1605 err = try_to_merge_with_ksm_page(tree_rmap_item, 1606 tree_page, page); 1607 /* 1608 * If that fails, we have a ksm page with only one pte 1609 * pointing to it: so break it. 1610 */ 1611 if (err) 1612 break_cow(rmap_item); 1613 } 1614 return err ? NULL : page_folio(page); 1615 } 1616 1617 static __always_inline 1618 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1619 { 1620 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1621 /* 1622 * Check that at least one mapping still exists, otherwise 1623 * there's no much point to merge and share with this 1624 * stable_node, as the underlying tree_page of the other 1625 * sharer is going to be freed soon. 1626 */ 1627 return stable_node->rmap_hlist_len && 1628 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1629 } 1630 1631 static __always_inline 1632 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1633 { 1634 return __is_page_sharing_candidate(stable_node, 0); 1635 } 1636 1637 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1638 struct ksm_stable_node **_stable_node, 1639 struct rb_root *root, 1640 bool prune_stale_stable_nodes) 1641 { 1642 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1643 struct hlist_node *hlist_safe; 1644 struct folio *folio, *tree_folio = NULL; 1645 int found_rmap_hlist_len; 1646 1647 if (!prune_stale_stable_nodes || 1648 time_before(jiffies, stable_node->chain_prune_time + 1649 msecs_to_jiffies( 1650 ksm_stable_node_chains_prune_millisecs))) 1651 prune_stale_stable_nodes = false; 1652 else 1653 stable_node->chain_prune_time = jiffies; 1654 1655 hlist_for_each_entry_safe(dup, hlist_safe, 1656 &stable_node->hlist, hlist_dup) { 1657 cond_resched(); 1658 /* 1659 * We must walk all stable_node_dup to prune the stale 1660 * stable nodes during lookup. 1661 * 1662 * ksm_get_folio can drop the nodes from the 1663 * stable_node->hlist if they point to freed pages 1664 * (that's why we do a _safe walk). The "dup" 1665 * stable_node parameter itself will be freed from 1666 * under us if it returns NULL. 1667 */ 1668 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1669 if (!folio) 1670 continue; 1671 /* Pick the best candidate if possible. */ 1672 if (!found || (is_page_sharing_candidate(dup) && 1673 (!is_page_sharing_candidate(found) || 1674 dup->rmap_hlist_len > found_rmap_hlist_len))) { 1675 if (found) 1676 folio_put(tree_folio); 1677 found = dup; 1678 found_rmap_hlist_len = found->rmap_hlist_len; 1679 tree_folio = folio; 1680 /* skip put_page for found candidate */ 1681 if (!prune_stale_stable_nodes && 1682 is_page_sharing_candidate(found)) 1683 break; 1684 continue; 1685 } 1686 folio_put(folio); 1687 } 1688 1689 if (found) { 1690 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { 1691 /* 1692 * If there's not just one entry it would 1693 * corrupt memory, better BUG_ON. In KSM 1694 * context with no lock held it's not even 1695 * fatal. 1696 */ 1697 BUG_ON(stable_node->hlist.first->next); 1698 1699 /* 1700 * There's just one entry and it is below the 1701 * deduplication limit so drop the chain. 1702 */ 1703 rb_replace_node(&stable_node->node, &found->node, 1704 root); 1705 free_stable_node(stable_node); 1706 ksm_stable_node_chains--; 1707 ksm_stable_node_dups--; 1708 /* 1709 * NOTE: the caller depends on the stable_node 1710 * to be equal to stable_node_dup if the chain 1711 * was collapsed. 1712 */ 1713 *_stable_node = found; 1714 /* 1715 * Just for robustness, as stable_node is 1716 * otherwise left as a stable pointer, the 1717 * compiler shall optimize it away at build 1718 * time. 1719 */ 1720 stable_node = NULL; 1721 } else if (stable_node->hlist.first != &found->hlist_dup && 1722 __is_page_sharing_candidate(found, 1)) { 1723 /* 1724 * If the found stable_node dup can accept one 1725 * more future merge (in addition to the one 1726 * that is underway) and is not at the head of 1727 * the chain, put it there so next search will 1728 * be quicker in the !prune_stale_stable_nodes 1729 * case. 1730 * 1731 * NOTE: it would be inaccurate to use nr > 1 1732 * instead of checking the hlist.first pointer 1733 * directly, because in the 1734 * prune_stale_stable_nodes case "nr" isn't 1735 * the position of the found dup in the chain, 1736 * but the total number of dups in the chain. 1737 */ 1738 hlist_del(&found->hlist_dup); 1739 hlist_add_head(&found->hlist_dup, 1740 &stable_node->hlist); 1741 } 1742 } else { 1743 /* Its hlist must be empty if no one found. */ 1744 free_stable_node_chain(stable_node, root); 1745 } 1746 1747 *_stable_node_dup = found; 1748 return tree_folio; 1749 } 1750 1751 /* 1752 * Like for ksm_get_folio, this function can free the *_stable_node and 1753 * *_stable_node_dup if the returned tree_page is NULL. 1754 * 1755 * It can also free and overwrite *_stable_node with the found 1756 * stable_node_dup if the chain is collapsed (in which case 1757 * *_stable_node will be equal to *_stable_node_dup like if the chain 1758 * never existed). It's up to the caller to verify tree_page is not 1759 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1760 * 1761 * *_stable_node_dup is really a second output parameter of this 1762 * function and will be overwritten in all cases, the caller doesn't 1763 * need to initialize it. 1764 */ 1765 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1766 struct ksm_stable_node **_stable_node, 1767 struct rb_root *root, 1768 bool prune_stale_stable_nodes) 1769 { 1770 struct ksm_stable_node *stable_node = *_stable_node; 1771 1772 if (!is_stable_node_chain(stable_node)) { 1773 *_stable_node_dup = stable_node; 1774 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1775 } 1776 return stable_node_dup(_stable_node_dup, _stable_node, root, 1777 prune_stale_stable_nodes); 1778 } 1779 1780 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1781 struct ksm_stable_node **s_n, 1782 struct rb_root *root) 1783 { 1784 return __stable_node_chain(s_n_d, s_n, root, true); 1785 } 1786 1787 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1788 struct ksm_stable_node **s_n, 1789 struct rb_root *root) 1790 { 1791 return __stable_node_chain(s_n_d, s_n, root, false); 1792 } 1793 1794 /* 1795 * stable_tree_search - search for page inside the stable tree 1796 * 1797 * This function checks if there is a page inside the stable tree 1798 * with identical content to the page that we are scanning right now. 1799 * 1800 * This function returns the stable tree node of identical content if found, 1801 * -EBUSY if the stable node's page is being migrated, NULL otherwise. 1802 */ 1803 static struct folio *stable_tree_search(struct page *page) 1804 { 1805 int nid; 1806 struct rb_root *root; 1807 struct rb_node **new; 1808 struct rb_node *parent; 1809 struct ksm_stable_node *stable_node, *stable_node_dup; 1810 struct ksm_stable_node *page_node; 1811 struct folio *folio; 1812 1813 folio = page_folio(page); 1814 page_node = folio_stable_node(folio); 1815 if (page_node && page_node->head != &migrate_nodes) { 1816 /* ksm page forked */ 1817 folio_get(folio); 1818 return folio; 1819 } 1820 1821 nid = get_kpfn_nid(folio_pfn(folio)); 1822 root = root_stable_tree + nid; 1823 again: 1824 new = &root->rb_node; 1825 parent = NULL; 1826 1827 while (*new) { 1828 struct folio *tree_folio; 1829 int ret; 1830 1831 cond_resched(); 1832 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1833 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1834 if (!tree_folio) { 1835 /* 1836 * If we walked over a stale stable_node, 1837 * ksm_get_folio() will call rb_erase() and it 1838 * may rebalance the tree from under us. So 1839 * restart the search from scratch. Returning 1840 * NULL would be safe too, but we'd generate 1841 * false negative insertions just because some 1842 * stable_node was stale. 1843 */ 1844 goto again; 1845 } 1846 1847 ret = memcmp_pages(page, &tree_folio->page); 1848 folio_put(tree_folio); 1849 1850 parent = *new; 1851 if (ret < 0) 1852 new = &parent->rb_left; 1853 else if (ret > 0) 1854 new = &parent->rb_right; 1855 else { 1856 if (page_node) { 1857 VM_BUG_ON(page_node->head != &migrate_nodes); 1858 /* 1859 * If the mapcount of our migrated KSM folio is 1860 * at most 1, we can merge it with another 1861 * KSM folio where we know that we have space 1862 * for one more mapping without exceeding the 1863 * ksm_max_page_sharing limit: see 1864 * chain_prune(). This way, we can avoid adding 1865 * this stable node to the chain. 1866 */ 1867 if (folio_mapcount(folio) > 1) 1868 goto chain_append; 1869 } 1870 1871 if (!is_page_sharing_candidate(stable_node_dup)) { 1872 /* 1873 * If the stable_node is a chain and 1874 * we got a payload match in memcmp 1875 * but we cannot merge the scanned 1876 * page in any of the existing 1877 * stable_node dups because they're 1878 * all full, we need to wait the 1879 * scanned page to find itself a match 1880 * in the unstable tree to create a 1881 * brand new KSM page to add later to 1882 * the dups of this stable_node. 1883 */ 1884 return NULL; 1885 } 1886 1887 /* 1888 * Lock and unlock the stable_node's page (which 1889 * might already have been migrated) so that page 1890 * migration is sure to notice its raised count. 1891 * It would be more elegant to return stable_node 1892 * than kpage, but that involves more changes. 1893 */ 1894 tree_folio = ksm_get_folio(stable_node_dup, 1895 KSM_GET_FOLIO_TRYLOCK); 1896 1897 if (PTR_ERR(tree_folio) == -EBUSY) 1898 return ERR_PTR(-EBUSY); 1899 1900 if (unlikely(!tree_folio)) 1901 /* 1902 * The tree may have been rebalanced, 1903 * so re-evaluate parent and new. 1904 */ 1905 goto again; 1906 folio_unlock(tree_folio); 1907 1908 if (get_kpfn_nid(stable_node_dup->kpfn) != 1909 NUMA(stable_node_dup->nid)) { 1910 folio_put(tree_folio); 1911 goto replace; 1912 } 1913 return tree_folio; 1914 } 1915 } 1916 1917 if (!page_node) 1918 return NULL; 1919 1920 list_del(&page_node->list); 1921 DO_NUMA(page_node->nid = nid); 1922 rb_link_node(&page_node->node, parent, new); 1923 rb_insert_color(&page_node->node, root); 1924 out: 1925 if (is_page_sharing_candidate(page_node)) { 1926 folio_get(folio); 1927 return folio; 1928 } else 1929 return NULL; 1930 1931 replace: 1932 /* 1933 * If stable_node was a chain and chain_prune collapsed it, 1934 * stable_node has been updated to be the new regular 1935 * stable_node. A collapse of the chain is indistinguishable 1936 * from the case there was no chain in the stable 1937 * rbtree. Otherwise stable_node is the chain and 1938 * stable_node_dup is the dup to replace. 1939 */ 1940 if (stable_node_dup == stable_node) { 1941 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1942 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1943 /* there is no chain */ 1944 if (page_node) { 1945 VM_BUG_ON(page_node->head != &migrate_nodes); 1946 list_del(&page_node->list); 1947 DO_NUMA(page_node->nid = nid); 1948 rb_replace_node(&stable_node_dup->node, 1949 &page_node->node, 1950 root); 1951 if (is_page_sharing_candidate(page_node)) 1952 folio_get(folio); 1953 else 1954 folio = NULL; 1955 } else { 1956 rb_erase(&stable_node_dup->node, root); 1957 folio = NULL; 1958 } 1959 } else { 1960 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1961 __stable_node_dup_del(stable_node_dup); 1962 if (page_node) { 1963 VM_BUG_ON(page_node->head != &migrate_nodes); 1964 list_del(&page_node->list); 1965 DO_NUMA(page_node->nid = nid); 1966 stable_node_chain_add_dup(page_node, stable_node); 1967 if (is_page_sharing_candidate(page_node)) 1968 folio_get(folio); 1969 else 1970 folio = NULL; 1971 } else { 1972 folio = NULL; 1973 } 1974 } 1975 stable_node_dup->head = &migrate_nodes; 1976 list_add(&stable_node_dup->list, stable_node_dup->head); 1977 return folio; 1978 1979 chain_append: 1980 /* 1981 * If stable_node was a chain and chain_prune collapsed it, 1982 * stable_node has been updated to be the new regular 1983 * stable_node. A collapse of the chain is indistinguishable 1984 * from the case there was no chain in the stable 1985 * rbtree. Otherwise stable_node is the chain and 1986 * stable_node_dup is the dup to replace. 1987 */ 1988 if (stable_node_dup == stable_node) { 1989 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1990 /* chain is missing so create it */ 1991 stable_node = alloc_stable_node_chain(stable_node_dup, 1992 root); 1993 if (!stable_node) 1994 return NULL; 1995 } 1996 /* 1997 * Add this stable_node dup that was 1998 * migrated to the stable_node chain 1999 * of the current nid for this page 2000 * content. 2001 */ 2002 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 2003 VM_BUG_ON(page_node->head != &migrate_nodes); 2004 list_del(&page_node->list); 2005 DO_NUMA(page_node->nid = nid); 2006 stable_node_chain_add_dup(page_node, stable_node); 2007 goto out; 2008 } 2009 2010 /* 2011 * stable_tree_insert - insert stable tree node pointing to new ksm page 2012 * into the stable tree. 2013 * 2014 * This function returns the stable tree node just allocated on success, 2015 * NULL otherwise. 2016 */ 2017 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2018 { 2019 int nid; 2020 unsigned long kpfn; 2021 struct rb_root *root; 2022 struct rb_node **new; 2023 struct rb_node *parent; 2024 struct ksm_stable_node *stable_node, *stable_node_dup; 2025 bool need_chain = false; 2026 2027 kpfn = folio_pfn(kfolio); 2028 nid = get_kpfn_nid(kpfn); 2029 root = root_stable_tree + nid; 2030 again: 2031 parent = NULL; 2032 new = &root->rb_node; 2033 2034 while (*new) { 2035 struct folio *tree_folio; 2036 int ret; 2037 2038 cond_resched(); 2039 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2040 tree_folio = chain(&stable_node_dup, &stable_node, root); 2041 if (!tree_folio) { 2042 /* 2043 * If we walked over a stale stable_node, 2044 * ksm_get_folio() will call rb_erase() and it 2045 * may rebalance the tree from under us. So 2046 * restart the search from scratch. Returning 2047 * NULL would be safe too, but we'd generate 2048 * false negative insertions just because some 2049 * stable_node was stale. 2050 */ 2051 goto again; 2052 } 2053 2054 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2055 folio_put(tree_folio); 2056 2057 parent = *new; 2058 if (ret < 0) 2059 new = &parent->rb_left; 2060 else if (ret > 0) 2061 new = &parent->rb_right; 2062 else { 2063 need_chain = true; 2064 break; 2065 } 2066 } 2067 2068 stable_node_dup = alloc_stable_node(); 2069 if (!stable_node_dup) 2070 return NULL; 2071 2072 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2073 stable_node_dup->kpfn = kpfn; 2074 stable_node_dup->rmap_hlist_len = 0; 2075 DO_NUMA(stable_node_dup->nid = nid); 2076 if (!need_chain) { 2077 rb_link_node(&stable_node_dup->node, parent, new); 2078 rb_insert_color(&stable_node_dup->node, root); 2079 } else { 2080 if (!is_stable_node_chain(stable_node)) { 2081 struct ksm_stable_node *orig = stable_node; 2082 /* chain is missing so create it */ 2083 stable_node = alloc_stable_node_chain(orig, root); 2084 if (!stable_node) { 2085 free_stable_node(stable_node_dup); 2086 return NULL; 2087 } 2088 } 2089 stable_node_chain_add_dup(stable_node_dup, stable_node); 2090 } 2091 2092 folio_set_stable_node(kfolio, stable_node_dup); 2093 2094 return stable_node_dup; 2095 } 2096 2097 /* 2098 * unstable_tree_search_insert - search for identical page, 2099 * else insert rmap_item into the unstable tree. 2100 * 2101 * This function searches for a page in the unstable tree identical to the 2102 * page currently being scanned; and if no identical page is found in the 2103 * tree, we insert rmap_item as a new object into the unstable tree. 2104 * 2105 * This function returns pointer to rmap_item found to be identical 2106 * to the currently scanned page, NULL otherwise. 2107 * 2108 * This function does both searching and inserting, because they share 2109 * the same walking algorithm in an rbtree. 2110 */ 2111 static 2112 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2113 struct page *page, 2114 struct page **tree_pagep) 2115 { 2116 struct rb_node **new; 2117 struct rb_root *root; 2118 struct rb_node *parent = NULL; 2119 int nid; 2120 2121 nid = get_kpfn_nid(page_to_pfn(page)); 2122 root = root_unstable_tree + nid; 2123 new = &root->rb_node; 2124 2125 while (*new) { 2126 struct ksm_rmap_item *tree_rmap_item; 2127 struct page *tree_page; 2128 int ret; 2129 2130 cond_resched(); 2131 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2132 tree_page = get_mergeable_page(tree_rmap_item); 2133 if (!tree_page) 2134 return NULL; 2135 2136 /* 2137 * Don't substitute a ksm page for a forked page. 2138 */ 2139 if (page == tree_page) { 2140 put_page(tree_page); 2141 return NULL; 2142 } 2143 2144 ret = memcmp_pages(page, tree_page); 2145 2146 parent = *new; 2147 if (ret < 0) { 2148 put_page(tree_page); 2149 new = &parent->rb_left; 2150 } else if (ret > 0) { 2151 put_page(tree_page); 2152 new = &parent->rb_right; 2153 } else if (!ksm_merge_across_nodes && 2154 page_to_nid(tree_page) != nid) { 2155 /* 2156 * If tree_page has been migrated to another NUMA node, 2157 * it will be flushed out and put in the right unstable 2158 * tree next time: only merge with it when across_nodes. 2159 */ 2160 put_page(tree_page); 2161 return NULL; 2162 } else { 2163 *tree_pagep = tree_page; 2164 return tree_rmap_item; 2165 } 2166 } 2167 2168 rmap_item->address |= UNSTABLE_FLAG; 2169 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2170 DO_NUMA(rmap_item->nid = nid); 2171 rb_link_node(&rmap_item->node, parent, new); 2172 rb_insert_color(&rmap_item->node, root); 2173 2174 ksm_pages_unshared++; 2175 return NULL; 2176 } 2177 2178 /* 2179 * stable_tree_append - add another rmap_item to the linked list of 2180 * rmap_items hanging off a given node of the stable tree, all sharing 2181 * the same ksm page. 2182 */ 2183 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2184 struct ksm_stable_node *stable_node, 2185 bool max_page_sharing_bypass) 2186 { 2187 /* 2188 * rmap won't find this mapping if we don't insert the 2189 * rmap_item in the right stable_node 2190 * duplicate. page_migration could break later if rmap breaks, 2191 * so we can as well crash here. We really need to check for 2192 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2193 * for other negative values as an underflow if detected here 2194 * for the first time (and not when decreasing rmap_hlist_len) 2195 * would be sign of memory corruption in the stable_node. 2196 */ 2197 BUG_ON(stable_node->rmap_hlist_len < 0); 2198 2199 stable_node->rmap_hlist_len++; 2200 if (!max_page_sharing_bypass) 2201 /* possibly non fatal but unexpected overflow, only warn */ 2202 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2203 ksm_max_page_sharing); 2204 2205 rmap_item->head = stable_node; 2206 rmap_item->address |= STABLE_FLAG; 2207 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2208 2209 if (rmap_item->hlist.next) 2210 ksm_pages_sharing++; 2211 else 2212 ksm_pages_shared++; 2213 2214 rmap_item->mm->ksm_merging_pages++; 2215 } 2216 2217 /* 2218 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2219 * if not, compare checksum to previous and if it's the same, see if page can 2220 * be inserted into the unstable tree, or merged with a page already there and 2221 * both transferred to the stable tree. 2222 * 2223 * @page: the page that we are searching identical page to. 2224 * @rmap_item: the reverse mapping into the virtual address of this page 2225 */ 2226 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2227 { 2228 struct ksm_rmap_item *tree_rmap_item; 2229 struct page *tree_page = NULL; 2230 struct ksm_stable_node *stable_node; 2231 struct folio *kfolio; 2232 unsigned int checksum; 2233 int err; 2234 bool max_page_sharing_bypass = false; 2235 2236 stable_node = page_stable_node(page); 2237 if (stable_node) { 2238 if (stable_node->head != &migrate_nodes && 2239 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2240 NUMA(stable_node->nid)) { 2241 stable_node_dup_del(stable_node); 2242 stable_node->head = &migrate_nodes; 2243 list_add(&stable_node->list, stable_node->head); 2244 } 2245 if (stable_node->head != &migrate_nodes && 2246 rmap_item->head == stable_node) 2247 return; 2248 /* 2249 * If it's a KSM fork, allow it to go over the sharing limit 2250 * without warnings. 2251 */ 2252 if (!is_page_sharing_candidate(stable_node)) 2253 max_page_sharing_bypass = true; 2254 } else { 2255 remove_rmap_item_from_tree(rmap_item); 2256 2257 /* 2258 * If the hash value of the page has changed from the last time 2259 * we calculated it, this page is changing frequently: therefore we 2260 * don't want to insert it in the unstable tree, and we don't want 2261 * to waste our time searching for something identical to it there. 2262 */ 2263 checksum = calc_checksum(page); 2264 if (rmap_item->oldchecksum != checksum) { 2265 rmap_item->oldchecksum = checksum; 2266 return; 2267 } 2268 2269 if (!try_to_merge_with_zero_page(rmap_item, page)) 2270 return; 2271 } 2272 2273 /* Start by searching for the folio in the stable tree */ 2274 kfolio = stable_tree_search(page); 2275 if (&kfolio->page == page && rmap_item->head == stable_node) { 2276 folio_put(kfolio); 2277 return; 2278 } 2279 2280 remove_rmap_item_from_tree(rmap_item); 2281 2282 if (kfolio) { 2283 if (kfolio == ERR_PTR(-EBUSY)) 2284 return; 2285 2286 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page); 2287 if (!err) { 2288 /* 2289 * The page was successfully merged: 2290 * add its rmap_item to the stable tree. 2291 */ 2292 folio_lock(kfolio); 2293 stable_tree_append(rmap_item, folio_stable_node(kfolio), 2294 max_page_sharing_bypass); 2295 folio_unlock(kfolio); 2296 } 2297 folio_put(kfolio); 2298 return; 2299 } 2300 2301 tree_rmap_item = 2302 unstable_tree_search_insert(rmap_item, page, &tree_page); 2303 if (tree_rmap_item) { 2304 bool split; 2305 2306 kfolio = try_to_merge_two_pages(rmap_item, page, 2307 tree_rmap_item, tree_page); 2308 /* 2309 * If both pages we tried to merge belong to the same compound 2310 * page, then we actually ended up increasing the reference 2311 * count of the same compound page twice, and split_huge_page 2312 * failed. 2313 * Here we set a flag if that happened, and we use it later to 2314 * try split_huge_page again. Since we call put_page right 2315 * afterwards, the reference count will be correct and 2316 * split_huge_page should succeed. 2317 */ 2318 split = PageTransCompound(page) 2319 && compound_head(page) == compound_head(tree_page); 2320 put_page(tree_page); 2321 if (kfolio) { 2322 /* 2323 * The pages were successfully merged: insert new 2324 * node in the stable tree and add both rmap_items. 2325 */ 2326 folio_lock(kfolio); 2327 stable_node = stable_tree_insert(kfolio); 2328 if (stable_node) { 2329 stable_tree_append(tree_rmap_item, stable_node, 2330 false); 2331 stable_tree_append(rmap_item, stable_node, 2332 false); 2333 } 2334 folio_unlock(kfolio); 2335 2336 /* 2337 * If we fail to insert the page into the stable tree, 2338 * we will have 2 virtual addresses that are pointing 2339 * to a ksm page left outside the stable tree, 2340 * in which case we need to break_cow on both. 2341 */ 2342 if (!stable_node) { 2343 break_cow(tree_rmap_item); 2344 break_cow(rmap_item); 2345 } 2346 } else if (split) { 2347 /* 2348 * We are here if we tried to merge two pages and 2349 * failed because they both belonged to the same 2350 * compound page. We will split the page now, but no 2351 * merging will take place. 2352 * We do not want to add the cost of a full lock; if 2353 * the page is locked, it is better to skip it and 2354 * perhaps try again later. 2355 */ 2356 if (!trylock_page(page)) 2357 return; 2358 split_huge_page(page); 2359 unlock_page(page); 2360 } 2361 } 2362 } 2363 2364 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2365 struct ksm_rmap_item **rmap_list, 2366 unsigned long addr) 2367 { 2368 struct ksm_rmap_item *rmap_item; 2369 2370 while (*rmap_list) { 2371 rmap_item = *rmap_list; 2372 if ((rmap_item->address & PAGE_MASK) == addr) 2373 return rmap_item; 2374 if (rmap_item->address > addr) 2375 break; 2376 *rmap_list = rmap_item->rmap_list; 2377 remove_rmap_item_from_tree(rmap_item); 2378 free_rmap_item(rmap_item); 2379 } 2380 2381 rmap_item = alloc_rmap_item(); 2382 if (rmap_item) { 2383 /* It has already been zeroed */ 2384 rmap_item->mm = mm_slot->slot.mm; 2385 rmap_item->mm->ksm_rmap_items++; 2386 rmap_item->address = addr; 2387 rmap_item->rmap_list = *rmap_list; 2388 *rmap_list = rmap_item; 2389 } 2390 return rmap_item; 2391 } 2392 2393 /* 2394 * Calculate skip age for the ksm page age. The age determines how often 2395 * de-duplicating has already been tried unsuccessfully. If the age is 2396 * smaller, the scanning of this page is skipped for less scans. 2397 * 2398 * @age: rmap_item age of page 2399 */ 2400 static unsigned int skip_age(rmap_age_t age) 2401 { 2402 if (age <= 3) 2403 return 1; 2404 if (age <= 5) 2405 return 2; 2406 if (age <= 8) 2407 return 4; 2408 2409 return 8; 2410 } 2411 2412 /* 2413 * Determines if a page should be skipped for the current scan. 2414 * 2415 * @folio: folio containing the page to check 2416 * @rmap_item: associated rmap_item of page 2417 */ 2418 static bool should_skip_rmap_item(struct folio *folio, 2419 struct ksm_rmap_item *rmap_item) 2420 { 2421 rmap_age_t age; 2422 2423 if (!ksm_smart_scan) 2424 return false; 2425 2426 /* 2427 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2428 * will essentially ignore them, but we still have to process them 2429 * properly. 2430 */ 2431 if (folio_test_ksm(folio)) 2432 return false; 2433 2434 age = rmap_item->age; 2435 if (age != U8_MAX) 2436 rmap_item->age++; 2437 2438 /* 2439 * Smaller ages are not skipped, they need to get a chance to go 2440 * through the different phases of the KSM merging. 2441 */ 2442 if (age < 3) 2443 return false; 2444 2445 /* 2446 * Are we still allowed to skip? If not, then don't skip it 2447 * and determine how much more often we are allowed to skip next. 2448 */ 2449 if (!rmap_item->remaining_skips) { 2450 rmap_item->remaining_skips = skip_age(age); 2451 return false; 2452 } 2453 2454 /* Skip this page */ 2455 ksm_pages_skipped++; 2456 rmap_item->remaining_skips--; 2457 remove_rmap_item_from_tree(rmap_item); 2458 return true; 2459 } 2460 2461 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2462 { 2463 struct mm_struct *mm; 2464 struct ksm_mm_slot *mm_slot; 2465 struct mm_slot *slot; 2466 struct vm_area_struct *vma; 2467 struct ksm_rmap_item *rmap_item; 2468 struct vma_iterator vmi; 2469 int nid; 2470 2471 if (list_empty(&ksm_mm_head.slot.mm_node)) 2472 return NULL; 2473 2474 mm_slot = ksm_scan.mm_slot; 2475 if (mm_slot == &ksm_mm_head) { 2476 advisor_start_scan(); 2477 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2478 2479 /* 2480 * A number of pages can hang around indefinitely in per-cpu 2481 * LRU cache, raised page count preventing write_protect_page 2482 * from merging them. Though it doesn't really matter much, 2483 * it is puzzling to see some stuck in pages_volatile until 2484 * other activity jostles them out, and they also prevented 2485 * LTP's KSM test from succeeding deterministically; so drain 2486 * them here (here rather than on entry to ksm_do_scan(), 2487 * so we don't IPI too often when pages_to_scan is set low). 2488 */ 2489 lru_add_drain_all(); 2490 2491 /* 2492 * Whereas stale stable_nodes on the stable_tree itself 2493 * get pruned in the regular course of stable_tree_search(), 2494 * those moved out to the migrate_nodes list can accumulate: 2495 * so prune them once before each full scan. 2496 */ 2497 if (!ksm_merge_across_nodes) { 2498 struct ksm_stable_node *stable_node, *next; 2499 struct folio *folio; 2500 2501 list_for_each_entry_safe(stable_node, next, 2502 &migrate_nodes, list) { 2503 folio = ksm_get_folio(stable_node, 2504 KSM_GET_FOLIO_NOLOCK); 2505 if (folio) 2506 folio_put(folio); 2507 cond_resched(); 2508 } 2509 } 2510 2511 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2512 root_unstable_tree[nid] = RB_ROOT; 2513 2514 spin_lock(&ksm_mmlist_lock); 2515 slot = list_entry(mm_slot->slot.mm_node.next, 2516 struct mm_slot, mm_node); 2517 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2518 ksm_scan.mm_slot = mm_slot; 2519 spin_unlock(&ksm_mmlist_lock); 2520 /* 2521 * Although we tested list_empty() above, a racing __ksm_exit 2522 * of the last mm on the list may have removed it since then. 2523 */ 2524 if (mm_slot == &ksm_mm_head) 2525 return NULL; 2526 next_mm: 2527 ksm_scan.address = 0; 2528 ksm_scan.rmap_list = &mm_slot->rmap_list; 2529 } 2530 2531 slot = &mm_slot->slot; 2532 mm = slot->mm; 2533 vma_iter_init(&vmi, mm, ksm_scan.address); 2534 2535 mmap_read_lock(mm); 2536 if (ksm_test_exit(mm)) 2537 goto no_vmas; 2538 2539 for_each_vma(vmi, vma) { 2540 if (!(vma->vm_flags & VM_MERGEABLE)) 2541 continue; 2542 if (ksm_scan.address < vma->vm_start) 2543 ksm_scan.address = vma->vm_start; 2544 if (!vma->anon_vma) 2545 ksm_scan.address = vma->vm_end; 2546 2547 while (ksm_scan.address < vma->vm_end) { 2548 struct page *tmp_page = NULL; 2549 struct folio_walk fw; 2550 struct folio *folio; 2551 2552 if (ksm_test_exit(mm)) 2553 break; 2554 2555 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0); 2556 if (folio) { 2557 if (!folio_is_zone_device(folio) && 2558 folio_test_anon(folio)) { 2559 folio_get(folio); 2560 tmp_page = fw.page; 2561 } 2562 folio_walk_end(&fw, vma); 2563 } 2564 2565 if (tmp_page) { 2566 flush_anon_page(vma, tmp_page, ksm_scan.address); 2567 flush_dcache_page(tmp_page); 2568 rmap_item = get_next_rmap_item(mm_slot, 2569 ksm_scan.rmap_list, ksm_scan.address); 2570 if (rmap_item) { 2571 ksm_scan.rmap_list = 2572 &rmap_item->rmap_list; 2573 2574 if (should_skip_rmap_item(folio, rmap_item)) { 2575 folio_put(folio); 2576 goto next_page; 2577 } 2578 2579 ksm_scan.address += PAGE_SIZE; 2580 *page = tmp_page; 2581 } else { 2582 folio_put(folio); 2583 } 2584 mmap_read_unlock(mm); 2585 return rmap_item; 2586 } 2587 next_page: 2588 ksm_scan.address += PAGE_SIZE; 2589 cond_resched(); 2590 } 2591 } 2592 2593 if (ksm_test_exit(mm)) { 2594 no_vmas: 2595 ksm_scan.address = 0; 2596 ksm_scan.rmap_list = &mm_slot->rmap_list; 2597 } 2598 /* 2599 * Nuke all the rmap_items that are above this current rmap: 2600 * because there were no VM_MERGEABLE vmas with such addresses. 2601 */ 2602 remove_trailing_rmap_items(ksm_scan.rmap_list); 2603 2604 spin_lock(&ksm_mmlist_lock); 2605 slot = list_entry(mm_slot->slot.mm_node.next, 2606 struct mm_slot, mm_node); 2607 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2608 if (ksm_scan.address == 0) { 2609 /* 2610 * We've completed a full scan of all vmas, holding mmap_lock 2611 * throughout, and found no VM_MERGEABLE: so do the same as 2612 * __ksm_exit does to remove this mm from all our lists now. 2613 * This applies either when cleaning up after __ksm_exit 2614 * (but beware: we can reach here even before __ksm_exit), 2615 * or when all VM_MERGEABLE areas have been unmapped (and 2616 * mmap_lock then protects against race with MADV_MERGEABLE). 2617 */ 2618 hash_del(&mm_slot->slot.hash); 2619 list_del(&mm_slot->slot.mm_node); 2620 spin_unlock(&ksm_mmlist_lock); 2621 2622 mm_slot_free(mm_slot_cache, mm_slot); 2623 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2624 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2625 mmap_read_unlock(mm); 2626 mmdrop(mm); 2627 } else { 2628 mmap_read_unlock(mm); 2629 /* 2630 * mmap_read_unlock(mm) first because after 2631 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2632 * already have been freed under us by __ksm_exit() 2633 * because the "mm_slot" is still hashed and 2634 * ksm_scan.mm_slot doesn't point to it anymore. 2635 */ 2636 spin_unlock(&ksm_mmlist_lock); 2637 } 2638 2639 /* Repeat until we've completed scanning the whole list */ 2640 mm_slot = ksm_scan.mm_slot; 2641 if (mm_slot != &ksm_mm_head) 2642 goto next_mm; 2643 2644 advisor_stop_scan(); 2645 2646 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2647 ksm_scan.seqnr++; 2648 return NULL; 2649 } 2650 2651 /** 2652 * ksm_do_scan - the ksm scanner main worker function. 2653 * @scan_npages: number of pages we want to scan before we return. 2654 */ 2655 static void ksm_do_scan(unsigned int scan_npages) 2656 { 2657 struct ksm_rmap_item *rmap_item; 2658 struct page *page; 2659 2660 while (scan_npages-- && likely(!freezing(current))) { 2661 cond_resched(); 2662 rmap_item = scan_get_next_rmap_item(&page); 2663 if (!rmap_item) 2664 return; 2665 cmp_and_merge_page(page, rmap_item); 2666 put_page(page); 2667 ksm_pages_scanned++; 2668 } 2669 } 2670 2671 static int ksmd_should_run(void) 2672 { 2673 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2674 } 2675 2676 static int ksm_scan_thread(void *nothing) 2677 { 2678 unsigned int sleep_ms; 2679 2680 set_freezable(); 2681 set_user_nice(current, 5); 2682 2683 while (!kthread_should_stop()) { 2684 mutex_lock(&ksm_thread_mutex); 2685 wait_while_offlining(); 2686 if (ksmd_should_run()) 2687 ksm_do_scan(ksm_thread_pages_to_scan); 2688 mutex_unlock(&ksm_thread_mutex); 2689 2690 if (ksmd_should_run()) { 2691 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2692 wait_event_freezable_timeout(ksm_iter_wait, 2693 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2694 msecs_to_jiffies(sleep_ms)); 2695 } else { 2696 wait_event_freezable(ksm_thread_wait, 2697 ksmd_should_run() || kthread_should_stop()); 2698 } 2699 } 2700 return 0; 2701 } 2702 2703 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags) 2704 { 2705 if (vm_flags & VM_MERGEABLE) 2706 return false; 2707 2708 return ksm_compatible(file, vm_flags); 2709 } 2710 2711 static void __ksm_add_vma(struct vm_area_struct *vma) 2712 { 2713 if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags)) 2714 vm_flags_set(vma, VM_MERGEABLE); 2715 } 2716 2717 static int __ksm_del_vma(struct vm_area_struct *vma) 2718 { 2719 int err; 2720 2721 if (!(vma->vm_flags & VM_MERGEABLE)) 2722 return 0; 2723 2724 if (vma->anon_vma) { 2725 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2726 if (err) 2727 return err; 2728 } 2729 2730 vm_flags_clear(vma, VM_MERGEABLE); 2731 return 0; 2732 } 2733 /** 2734 * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible 2735 * 2736 * @mm: Proposed VMA's mm_struct 2737 * @file: Proposed VMA's file-backed mapping, if any. 2738 * @vm_flags: Proposed VMA"s flags. 2739 * 2740 * Returns: @vm_flags possibly updated to mark mergeable. 2741 */ 2742 vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file, 2743 vm_flags_t vm_flags) 2744 { 2745 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags) && 2746 __ksm_should_add_vma(file, vm_flags)) 2747 vm_flags |= VM_MERGEABLE; 2748 2749 return vm_flags; 2750 } 2751 2752 static void ksm_add_vmas(struct mm_struct *mm) 2753 { 2754 struct vm_area_struct *vma; 2755 2756 VMA_ITERATOR(vmi, mm, 0); 2757 for_each_vma(vmi, vma) 2758 __ksm_add_vma(vma); 2759 } 2760 2761 static int ksm_del_vmas(struct mm_struct *mm) 2762 { 2763 struct vm_area_struct *vma; 2764 int err; 2765 2766 VMA_ITERATOR(vmi, mm, 0); 2767 for_each_vma(vmi, vma) { 2768 err = __ksm_del_vma(vma); 2769 if (err) 2770 return err; 2771 } 2772 return 0; 2773 } 2774 2775 /** 2776 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2777 * compatible VMA's 2778 * 2779 * @mm: Pointer to mm 2780 * 2781 * Returns 0 on success, otherwise error code 2782 */ 2783 int ksm_enable_merge_any(struct mm_struct *mm) 2784 { 2785 int err; 2786 2787 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2788 return 0; 2789 2790 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2791 err = __ksm_enter(mm); 2792 if (err) 2793 return err; 2794 } 2795 2796 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2797 ksm_add_vmas(mm); 2798 2799 return 0; 2800 } 2801 2802 /** 2803 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2804 * previously enabled via ksm_enable_merge_any(). 2805 * 2806 * Disabling merging implies unmerging any merged pages, like setting 2807 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2808 * merging on all compatible VMA's remains enabled. 2809 * 2810 * @mm: Pointer to mm 2811 * 2812 * Returns 0 on success, otherwise error code 2813 */ 2814 int ksm_disable_merge_any(struct mm_struct *mm) 2815 { 2816 int err; 2817 2818 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2819 return 0; 2820 2821 err = ksm_del_vmas(mm); 2822 if (err) { 2823 ksm_add_vmas(mm); 2824 return err; 2825 } 2826 2827 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2828 return 0; 2829 } 2830 2831 int ksm_disable(struct mm_struct *mm) 2832 { 2833 mmap_assert_write_locked(mm); 2834 2835 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2836 return 0; 2837 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2838 return ksm_disable_merge_any(mm); 2839 return ksm_del_vmas(mm); 2840 } 2841 2842 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2843 unsigned long end, int advice, vm_flags_t *vm_flags) 2844 { 2845 struct mm_struct *mm = vma->vm_mm; 2846 int err; 2847 2848 switch (advice) { 2849 case MADV_MERGEABLE: 2850 if (vma->vm_flags & VM_MERGEABLE) 2851 return 0; 2852 if (!vma_ksm_compatible(vma)) 2853 return 0; 2854 2855 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2856 err = __ksm_enter(mm); 2857 if (err) 2858 return err; 2859 } 2860 2861 *vm_flags |= VM_MERGEABLE; 2862 break; 2863 2864 case MADV_UNMERGEABLE: 2865 if (!(*vm_flags & VM_MERGEABLE)) 2866 return 0; /* just ignore the advice */ 2867 2868 if (vma->anon_vma) { 2869 err = unmerge_ksm_pages(vma, start, end, true); 2870 if (err) 2871 return err; 2872 } 2873 2874 *vm_flags &= ~VM_MERGEABLE; 2875 break; 2876 } 2877 2878 return 0; 2879 } 2880 EXPORT_SYMBOL_GPL(ksm_madvise); 2881 2882 int __ksm_enter(struct mm_struct *mm) 2883 { 2884 struct ksm_mm_slot *mm_slot; 2885 struct mm_slot *slot; 2886 int needs_wakeup; 2887 2888 mm_slot = mm_slot_alloc(mm_slot_cache); 2889 if (!mm_slot) 2890 return -ENOMEM; 2891 2892 slot = &mm_slot->slot; 2893 2894 /* Check ksm_run too? Would need tighter locking */ 2895 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2896 2897 spin_lock(&ksm_mmlist_lock); 2898 mm_slot_insert(mm_slots_hash, mm, slot); 2899 /* 2900 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2901 * insert just behind the scanning cursor, to let the area settle 2902 * down a little; when fork is followed by immediate exec, we don't 2903 * want ksmd to waste time setting up and tearing down an rmap_list. 2904 * 2905 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2906 * scanning cursor, otherwise KSM pages in newly forked mms will be 2907 * missed: then we might as well insert at the end of the list. 2908 */ 2909 if (ksm_run & KSM_RUN_UNMERGE) 2910 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2911 else 2912 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2913 spin_unlock(&ksm_mmlist_lock); 2914 2915 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2916 mmgrab(mm); 2917 2918 if (needs_wakeup) 2919 wake_up_interruptible(&ksm_thread_wait); 2920 2921 trace_ksm_enter(mm); 2922 return 0; 2923 } 2924 2925 void __ksm_exit(struct mm_struct *mm) 2926 { 2927 struct ksm_mm_slot *mm_slot; 2928 struct mm_slot *slot; 2929 int easy_to_free = 0; 2930 2931 /* 2932 * This process is exiting: if it's straightforward (as is the 2933 * case when ksmd was never running), free mm_slot immediately. 2934 * But if it's at the cursor or has rmap_items linked to it, use 2935 * mmap_lock to synchronize with any break_cows before pagetables 2936 * are freed, and leave the mm_slot on the list for ksmd to free. 2937 * Beware: ksm may already have noticed it exiting and freed the slot. 2938 */ 2939 2940 spin_lock(&ksm_mmlist_lock); 2941 slot = mm_slot_lookup(mm_slots_hash, mm); 2942 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2943 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2944 if (!mm_slot->rmap_list) { 2945 hash_del(&slot->hash); 2946 list_del(&slot->mm_node); 2947 easy_to_free = 1; 2948 } else { 2949 list_move(&slot->mm_node, 2950 &ksm_scan.mm_slot->slot.mm_node); 2951 } 2952 } 2953 spin_unlock(&ksm_mmlist_lock); 2954 2955 if (easy_to_free) { 2956 mm_slot_free(mm_slot_cache, mm_slot); 2957 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2958 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2959 mmdrop(mm); 2960 } else if (mm_slot) { 2961 mmap_write_lock(mm); 2962 mmap_write_unlock(mm); 2963 } 2964 2965 trace_ksm_exit(mm); 2966 } 2967 2968 struct folio *ksm_might_need_to_copy(struct folio *folio, 2969 struct vm_area_struct *vma, unsigned long addr) 2970 { 2971 struct page *page = folio_page(folio, 0); 2972 struct anon_vma *anon_vma = folio_anon_vma(folio); 2973 struct folio *new_folio; 2974 2975 if (folio_test_large(folio)) 2976 return folio; 2977 2978 if (folio_test_ksm(folio)) { 2979 if (folio_stable_node(folio) && 2980 !(ksm_run & KSM_RUN_UNMERGE)) 2981 return folio; /* no need to copy it */ 2982 } else if (!anon_vma) { 2983 return folio; /* no need to copy it */ 2984 } else if (folio->index == linear_page_index(vma, addr) && 2985 anon_vma->root == vma->anon_vma->root) { 2986 return folio; /* still no need to copy it */ 2987 } 2988 if (PageHWPoison(page)) 2989 return ERR_PTR(-EHWPOISON); 2990 if (!folio_test_uptodate(folio)) 2991 return folio; /* let do_swap_page report the error */ 2992 2993 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 2994 if (new_folio && 2995 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 2996 folio_put(new_folio); 2997 new_folio = NULL; 2998 } 2999 if (new_folio) { 3000 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 3001 addr, vma)) { 3002 folio_put(new_folio); 3003 return ERR_PTR(-EHWPOISON); 3004 } 3005 folio_set_dirty(new_folio); 3006 __folio_mark_uptodate(new_folio); 3007 __folio_set_locked(new_folio); 3008 #ifdef CONFIG_SWAP 3009 count_vm_event(KSM_SWPIN_COPY); 3010 #endif 3011 } 3012 3013 return new_folio; 3014 } 3015 3016 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3017 { 3018 struct ksm_stable_node *stable_node; 3019 struct ksm_rmap_item *rmap_item; 3020 int search_new_forks = 0; 3021 3022 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3023 3024 /* 3025 * Rely on the page lock to protect against concurrent modifications 3026 * to that page's node of the stable tree. 3027 */ 3028 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3029 3030 stable_node = folio_stable_node(folio); 3031 if (!stable_node) 3032 return; 3033 again: 3034 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3035 struct anon_vma *anon_vma = rmap_item->anon_vma; 3036 struct anon_vma_chain *vmac; 3037 struct vm_area_struct *vma; 3038 3039 cond_resched(); 3040 if (!anon_vma_trylock_read(anon_vma)) { 3041 if (rwc->try_lock) { 3042 rwc->contended = true; 3043 return; 3044 } 3045 anon_vma_lock_read(anon_vma); 3046 } 3047 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3048 0, ULONG_MAX) { 3049 unsigned long addr; 3050 3051 cond_resched(); 3052 vma = vmac->vma; 3053 3054 /* Ignore the stable/unstable/sqnr flags */ 3055 addr = rmap_item->address & PAGE_MASK; 3056 3057 if (addr < vma->vm_start || addr >= vma->vm_end) 3058 continue; 3059 /* 3060 * Initially we examine only the vma which covers this 3061 * rmap_item; but later, if there is still work to do, 3062 * we examine covering vmas in other mms: in case they 3063 * were forked from the original since ksmd passed. 3064 */ 3065 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3066 continue; 3067 3068 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3069 continue; 3070 3071 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3072 anon_vma_unlock_read(anon_vma); 3073 return; 3074 } 3075 if (rwc->done && rwc->done(folio)) { 3076 anon_vma_unlock_read(anon_vma); 3077 return; 3078 } 3079 } 3080 anon_vma_unlock_read(anon_vma); 3081 } 3082 if (!search_new_forks++) 3083 goto again; 3084 } 3085 3086 #ifdef CONFIG_MEMORY_FAILURE 3087 /* 3088 * Collect processes when the error hit an ksm page. 3089 */ 3090 void collect_procs_ksm(const struct folio *folio, const struct page *page, 3091 struct list_head *to_kill, int force_early) 3092 { 3093 struct ksm_stable_node *stable_node; 3094 struct ksm_rmap_item *rmap_item; 3095 struct vm_area_struct *vma; 3096 struct task_struct *tsk; 3097 3098 stable_node = folio_stable_node(folio); 3099 if (!stable_node) 3100 return; 3101 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3102 struct anon_vma *av = rmap_item->anon_vma; 3103 3104 anon_vma_lock_read(av); 3105 rcu_read_lock(); 3106 for_each_process(tsk) { 3107 struct anon_vma_chain *vmac; 3108 unsigned long addr; 3109 struct task_struct *t = 3110 task_early_kill(tsk, force_early); 3111 if (!t) 3112 continue; 3113 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3114 ULONG_MAX) 3115 { 3116 vma = vmac->vma; 3117 if (vma->vm_mm == t->mm) { 3118 addr = rmap_item->address & PAGE_MASK; 3119 add_to_kill_ksm(t, page, vma, to_kill, 3120 addr); 3121 } 3122 } 3123 } 3124 rcu_read_unlock(); 3125 anon_vma_unlock_read(av); 3126 } 3127 } 3128 #endif 3129 3130 #ifdef CONFIG_MIGRATION 3131 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3132 { 3133 struct ksm_stable_node *stable_node; 3134 3135 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3136 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3137 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3138 3139 stable_node = folio_stable_node(folio); 3140 if (stable_node) { 3141 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3142 stable_node->kpfn = folio_pfn(newfolio); 3143 /* 3144 * newfolio->mapping was set in advance; now we need smp_wmb() 3145 * to make sure that the new stable_node->kpfn is visible 3146 * to ksm_get_folio() before it can see that folio->mapping 3147 * has gone stale (or that the swapcache flag has been cleared). 3148 */ 3149 smp_wmb(); 3150 folio_set_stable_node(folio, NULL); 3151 } 3152 } 3153 #endif /* CONFIG_MIGRATION */ 3154 3155 #ifdef CONFIG_MEMORY_HOTREMOVE 3156 static void wait_while_offlining(void) 3157 { 3158 while (ksm_run & KSM_RUN_OFFLINE) { 3159 mutex_unlock(&ksm_thread_mutex); 3160 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3161 TASK_UNINTERRUPTIBLE); 3162 mutex_lock(&ksm_thread_mutex); 3163 } 3164 } 3165 3166 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3167 unsigned long start_pfn, 3168 unsigned long end_pfn) 3169 { 3170 if (stable_node->kpfn >= start_pfn && 3171 stable_node->kpfn < end_pfn) { 3172 /* 3173 * Don't ksm_get_folio, page has already gone: 3174 * which is why we keep kpfn instead of page* 3175 */ 3176 remove_node_from_stable_tree(stable_node); 3177 return true; 3178 } 3179 return false; 3180 } 3181 3182 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3183 unsigned long start_pfn, 3184 unsigned long end_pfn, 3185 struct rb_root *root) 3186 { 3187 struct ksm_stable_node *dup; 3188 struct hlist_node *hlist_safe; 3189 3190 if (!is_stable_node_chain(stable_node)) { 3191 VM_BUG_ON(is_stable_node_dup(stable_node)); 3192 return stable_node_dup_remove_range(stable_node, start_pfn, 3193 end_pfn); 3194 } 3195 3196 hlist_for_each_entry_safe(dup, hlist_safe, 3197 &stable_node->hlist, hlist_dup) { 3198 VM_BUG_ON(!is_stable_node_dup(dup)); 3199 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3200 } 3201 if (hlist_empty(&stable_node->hlist)) { 3202 free_stable_node_chain(stable_node, root); 3203 return true; /* notify caller that tree was rebalanced */ 3204 } else 3205 return false; 3206 } 3207 3208 static void ksm_check_stable_tree(unsigned long start_pfn, 3209 unsigned long end_pfn) 3210 { 3211 struct ksm_stable_node *stable_node, *next; 3212 struct rb_node *node; 3213 int nid; 3214 3215 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3216 node = rb_first(root_stable_tree + nid); 3217 while (node) { 3218 stable_node = rb_entry(node, struct ksm_stable_node, node); 3219 if (stable_node_chain_remove_range(stable_node, 3220 start_pfn, end_pfn, 3221 root_stable_tree + 3222 nid)) 3223 node = rb_first(root_stable_tree + nid); 3224 else 3225 node = rb_next(node); 3226 cond_resched(); 3227 } 3228 } 3229 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3230 if (stable_node->kpfn >= start_pfn && 3231 stable_node->kpfn < end_pfn) 3232 remove_node_from_stable_tree(stable_node); 3233 cond_resched(); 3234 } 3235 } 3236 3237 static int ksm_memory_callback(struct notifier_block *self, 3238 unsigned long action, void *arg) 3239 { 3240 struct memory_notify *mn = arg; 3241 3242 switch (action) { 3243 case MEM_GOING_OFFLINE: 3244 /* 3245 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3246 * and remove_all_stable_nodes() while memory is going offline: 3247 * it is unsafe for them to touch the stable tree at this time. 3248 * But unmerge_ksm_pages(), rmap lookups and other entry points 3249 * which do not need the ksm_thread_mutex are all safe. 3250 */ 3251 mutex_lock(&ksm_thread_mutex); 3252 ksm_run |= KSM_RUN_OFFLINE; 3253 mutex_unlock(&ksm_thread_mutex); 3254 break; 3255 3256 case MEM_OFFLINE: 3257 /* 3258 * Most of the work is done by page migration; but there might 3259 * be a few stable_nodes left over, still pointing to struct 3260 * pages which have been offlined: prune those from the tree, 3261 * otherwise ksm_get_folio() might later try to access a 3262 * non-existent struct page. 3263 */ 3264 ksm_check_stable_tree(mn->start_pfn, 3265 mn->start_pfn + mn->nr_pages); 3266 fallthrough; 3267 case MEM_CANCEL_OFFLINE: 3268 mutex_lock(&ksm_thread_mutex); 3269 ksm_run &= ~KSM_RUN_OFFLINE; 3270 mutex_unlock(&ksm_thread_mutex); 3271 3272 smp_mb(); /* wake_up_bit advises this */ 3273 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3274 break; 3275 } 3276 return NOTIFY_OK; 3277 } 3278 #else 3279 static void wait_while_offlining(void) 3280 { 3281 } 3282 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3283 3284 #ifdef CONFIG_PROC_FS 3285 /* 3286 * The process is mergeable only if any VMA is currently 3287 * applicable to KSM. 3288 * 3289 * The mmap lock must be held in read mode. 3290 */ 3291 bool ksm_process_mergeable(struct mm_struct *mm) 3292 { 3293 struct vm_area_struct *vma; 3294 3295 mmap_assert_locked(mm); 3296 VMA_ITERATOR(vmi, mm, 0); 3297 for_each_vma(vmi, vma) 3298 if (vma->vm_flags & VM_MERGEABLE) 3299 return true; 3300 3301 return false; 3302 } 3303 3304 long ksm_process_profit(struct mm_struct *mm) 3305 { 3306 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - 3307 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3308 } 3309 #endif /* CONFIG_PROC_FS */ 3310 3311 #ifdef CONFIG_SYSFS 3312 /* 3313 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3314 */ 3315 3316 #define KSM_ATTR_RO(_name) \ 3317 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3318 #define KSM_ATTR(_name) \ 3319 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3320 3321 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3322 struct kobj_attribute *attr, char *buf) 3323 { 3324 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3325 } 3326 3327 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3328 struct kobj_attribute *attr, 3329 const char *buf, size_t count) 3330 { 3331 unsigned int msecs; 3332 int err; 3333 3334 err = kstrtouint(buf, 10, &msecs); 3335 if (err) 3336 return -EINVAL; 3337 3338 ksm_thread_sleep_millisecs = msecs; 3339 wake_up_interruptible(&ksm_iter_wait); 3340 3341 return count; 3342 } 3343 KSM_ATTR(sleep_millisecs); 3344 3345 static ssize_t pages_to_scan_show(struct kobject *kobj, 3346 struct kobj_attribute *attr, char *buf) 3347 { 3348 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3349 } 3350 3351 static ssize_t pages_to_scan_store(struct kobject *kobj, 3352 struct kobj_attribute *attr, 3353 const char *buf, size_t count) 3354 { 3355 unsigned int nr_pages; 3356 int err; 3357 3358 if (ksm_advisor != KSM_ADVISOR_NONE) 3359 return -EINVAL; 3360 3361 err = kstrtouint(buf, 10, &nr_pages); 3362 if (err) 3363 return -EINVAL; 3364 3365 ksm_thread_pages_to_scan = nr_pages; 3366 3367 return count; 3368 } 3369 KSM_ATTR(pages_to_scan); 3370 3371 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3372 char *buf) 3373 { 3374 return sysfs_emit(buf, "%lu\n", ksm_run); 3375 } 3376 3377 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3378 const char *buf, size_t count) 3379 { 3380 unsigned int flags; 3381 int err; 3382 3383 err = kstrtouint(buf, 10, &flags); 3384 if (err) 3385 return -EINVAL; 3386 if (flags > KSM_RUN_UNMERGE) 3387 return -EINVAL; 3388 3389 /* 3390 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3391 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3392 * breaking COW to free the pages_shared (but leaves mm_slots 3393 * on the list for when ksmd may be set running again). 3394 */ 3395 3396 mutex_lock(&ksm_thread_mutex); 3397 wait_while_offlining(); 3398 if (ksm_run != flags) { 3399 ksm_run = flags; 3400 if (flags & KSM_RUN_UNMERGE) { 3401 set_current_oom_origin(); 3402 err = unmerge_and_remove_all_rmap_items(); 3403 clear_current_oom_origin(); 3404 if (err) { 3405 ksm_run = KSM_RUN_STOP; 3406 count = err; 3407 } 3408 } 3409 } 3410 mutex_unlock(&ksm_thread_mutex); 3411 3412 if (flags & KSM_RUN_MERGE) 3413 wake_up_interruptible(&ksm_thread_wait); 3414 3415 return count; 3416 } 3417 KSM_ATTR(run); 3418 3419 #ifdef CONFIG_NUMA 3420 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3421 struct kobj_attribute *attr, char *buf) 3422 { 3423 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3424 } 3425 3426 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3427 struct kobj_attribute *attr, 3428 const char *buf, size_t count) 3429 { 3430 int err; 3431 unsigned long knob; 3432 3433 err = kstrtoul(buf, 10, &knob); 3434 if (err) 3435 return err; 3436 if (knob > 1) 3437 return -EINVAL; 3438 3439 mutex_lock(&ksm_thread_mutex); 3440 wait_while_offlining(); 3441 if (ksm_merge_across_nodes != knob) { 3442 if (ksm_pages_shared || remove_all_stable_nodes()) 3443 err = -EBUSY; 3444 else if (root_stable_tree == one_stable_tree) { 3445 struct rb_root *buf; 3446 /* 3447 * This is the first time that we switch away from the 3448 * default of merging across nodes: must now allocate 3449 * a buffer to hold as many roots as may be needed. 3450 * Allocate stable and unstable together: 3451 * MAXSMP NODES_SHIFT 10 will use 16kB. 3452 */ 3453 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3454 GFP_KERNEL); 3455 /* Let us assume that RB_ROOT is NULL is zero */ 3456 if (!buf) 3457 err = -ENOMEM; 3458 else { 3459 root_stable_tree = buf; 3460 root_unstable_tree = buf + nr_node_ids; 3461 /* Stable tree is empty but not the unstable */ 3462 root_unstable_tree[0] = one_unstable_tree[0]; 3463 } 3464 } 3465 if (!err) { 3466 ksm_merge_across_nodes = knob; 3467 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3468 } 3469 } 3470 mutex_unlock(&ksm_thread_mutex); 3471 3472 return err ? err : count; 3473 } 3474 KSM_ATTR(merge_across_nodes); 3475 #endif 3476 3477 static ssize_t use_zero_pages_show(struct kobject *kobj, 3478 struct kobj_attribute *attr, char *buf) 3479 { 3480 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3481 } 3482 static ssize_t use_zero_pages_store(struct kobject *kobj, 3483 struct kobj_attribute *attr, 3484 const char *buf, size_t count) 3485 { 3486 int err; 3487 bool value; 3488 3489 err = kstrtobool(buf, &value); 3490 if (err) 3491 return -EINVAL; 3492 3493 ksm_use_zero_pages = value; 3494 3495 return count; 3496 } 3497 KSM_ATTR(use_zero_pages); 3498 3499 static ssize_t max_page_sharing_show(struct kobject *kobj, 3500 struct kobj_attribute *attr, char *buf) 3501 { 3502 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3503 } 3504 3505 static ssize_t max_page_sharing_store(struct kobject *kobj, 3506 struct kobj_attribute *attr, 3507 const char *buf, size_t count) 3508 { 3509 int err; 3510 int knob; 3511 3512 err = kstrtoint(buf, 10, &knob); 3513 if (err) 3514 return err; 3515 /* 3516 * When a KSM page is created it is shared by 2 mappings. This 3517 * being a signed comparison, it implicitly verifies it's not 3518 * negative. 3519 */ 3520 if (knob < 2) 3521 return -EINVAL; 3522 3523 if (READ_ONCE(ksm_max_page_sharing) == knob) 3524 return count; 3525 3526 mutex_lock(&ksm_thread_mutex); 3527 wait_while_offlining(); 3528 if (ksm_max_page_sharing != knob) { 3529 if (ksm_pages_shared || remove_all_stable_nodes()) 3530 err = -EBUSY; 3531 else 3532 ksm_max_page_sharing = knob; 3533 } 3534 mutex_unlock(&ksm_thread_mutex); 3535 3536 return err ? err : count; 3537 } 3538 KSM_ATTR(max_page_sharing); 3539 3540 static ssize_t pages_scanned_show(struct kobject *kobj, 3541 struct kobj_attribute *attr, char *buf) 3542 { 3543 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3544 } 3545 KSM_ATTR_RO(pages_scanned); 3546 3547 static ssize_t pages_shared_show(struct kobject *kobj, 3548 struct kobj_attribute *attr, char *buf) 3549 { 3550 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3551 } 3552 KSM_ATTR_RO(pages_shared); 3553 3554 static ssize_t pages_sharing_show(struct kobject *kobj, 3555 struct kobj_attribute *attr, char *buf) 3556 { 3557 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3558 } 3559 KSM_ATTR_RO(pages_sharing); 3560 3561 static ssize_t pages_unshared_show(struct kobject *kobj, 3562 struct kobj_attribute *attr, char *buf) 3563 { 3564 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3565 } 3566 KSM_ATTR_RO(pages_unshared); 3567 3568 static ssize_t pages_volatile_show(struct kobject *kobj, 3569 struct kobj_attribute *attr, char *buf) 3570 { 3571 long ksm_pages_volatile; 3572 3573 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3574 - ksm_pages_sharing - ksm_pages_unshared; 3575 /* 3576 * It was not worth any locking to calculate that statistic, 3577 * but it might therefore sometimes be negative: conceal that. 3578 */ 3579 if (ksm_pages_volatile < 0) 3580 ksm_pages_volatile = 0; 3581 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3582 } 3583 KSM_ATTR_RO(pages_volatile); 3584 3585 static ssize_t pages_skipped_show(struct kobject *kobj, 3586 struct kobj_attribute *attr, char *buf) 3587 { 3588 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3589 } 3590 KSM_ATTR_RO(pages_skipped); 3591 3592 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3593 struct kobj_attribute *attr, char *buf) 3594 { 3595 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); 3596 } 3597 KSM_ATTR_RO(ksm_zero_pages); 3598 3599 static ssize_t general_profit_show(struct kobject *kobj, 3600 struct kobj_attribute *attr, char *buf) 3601 { 3602 long general_profit; 3603 3604 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - 3605 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3606 3607 return sysfs_emit(buf, "%ld\n", general_profit); 3608 } 3609 KSM_ATTR_RO(general_profit); 3610 3611 static ssize_t stable_node_dups_show(struct kobject *kobj, 3612 struct kobj_attribute *attr, char *buf) 3613 { 3614 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3615 } 3616 KSM_ATTR_RO(stable_node_dups); 3617 3618 static ssize_t stable_node_chains_show(struct kobject *kobj, 3619 struct kobj_attribute *attr, char *buf) 3620 { 3621 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3622 } 3623 KSM_ATTR_RO(stable_node_chains); 3624 3625 static ssize_t 3626 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3627 struct kobj_attribute *attr, 3628 char *buf) 3629 { 3630 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3631 } 3632 3633 static ssize_t 3634 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3635 struct kobj_attribute *attr, 3636 const char *buf, size_t count) 3637 { 3638 unsigned int msecs; 3639 int err; 3640 3641 err = kstrtouint(buf, 10, &msecs); 3642 if (err) 3643 return -EINVAL; 3644 3645 ksm_stable_node_chains_prune_millisecs = msecs; 3646 3647 return count; 3648 } 3649 KSM_ATTR(stable_node_chains_prune_millisecs); 3650 3651 static ssize_t full_scans_show(struct kobject *kobj, 3652 struct kobj_attribute *attr, char *buf) 3653 { 3654 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3655 } 3656 KSM_ATTR_RO(full_scans); 3657 3658 static ssize_t smart_scan_show(struct kobject *kobj, 3659 struct kobj_attribute *attr, char *buf) 3660 { 3661 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3662 } 3663 3664 static ssize_t smart_scan_store(struct kobject *kobj, 3665 struct kobj_attribute *attr, 3666 const char *buf, size_t count) 3667 { 3668 int err; 3669 bool value; 3670 3671 err = kstrtobool(buf, &value); 3672 if (err) 3673 return -EINVAL; 3674 3675 ksm_smart_scan = value; 3676 return count; 3677 } 3678 KSM_ATTR(smart_scan); 3679 3680 static ssize_t advisor_mode_show(struct kobject *kobj, 3681 struct kobj_attribute *attr, char *buf) 3682 { 3683 const char *output; 3684 3685 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3686 output = "none [scan-time]"; 3687 else 3688 output = "[none] scan-time"; 3689 3690 return sysfs_emit(buf, "%s\n", output); 3691 } 3692 3693 static ssize_t advisor_mode_store(struct kobject *kobj, 3694 struct kobj_attribute *attr, const char *buf, 3695 size_t count) 3696 { 3697 enum ksm_advisor_type curr_advisor = ksm_advisor; 3698 3699 if (sysfs_streq("scan-time", buf)) 3700 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3701 else if (sysfs_streq("none", buf)) 3702 ksm_advisor = KSM_ADVISOR_NONE; 3703 else 3704 return -EINVAL; 3705 3706 /* Set advisor default values */ 3707 if (curr_advisor != ksm_advisor) 3708 set_advisor_defaults(); 3709 3710 return count; 3711 } 3712 KSM_ATTR(advisor_mode); 3713 3714 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3715 struct kobj_attribute *attr, char *buf) 3716 { 3717 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3718 } 3719 3720 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3721 struct kobj_attribute *attr, 3722 const char *buf, size_t count) 3723 { 3724 int err; 3725 unsigned long value; 3726 3727 err = kstrtoul(buf, 10, &value); 3728 if (err) 3729 return -EINVAL; 3730 3731 ksm_advisor_max_cpu = value; 3732 return count; 3733 } 3734 KSM_ATTR(advisor_max_cpu); 3735 3736 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3737 struct kobj_attribute *attr, char *buf) 3738 { 3739 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3740 } 3741 3742 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3743 struct kobj_attribute *attr, 3744 const char *buf, size_t count) 3745 { 3746 int err; 3747 unsigned long value; 3748 3749 err = kstrtoul(buf, 10, &value); 3750 if (err) 3751 return -EINVAL; 3752 3753 ksm_advisor_min_pages_to_scan = value; 3754 return count; 3755 } 3756 KSM_ATTR(advisor_min_pages_to_scan); 3757 3758 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3759 struct kobj_attribute *attr, char *buf) 3760 { 3761 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3762 } 3763 3764 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3765 struct kobj_attribute *attr, 3766 const char *buf, size_t count) 3767 { 3768 int err; 3769 unsigned long value; 3770 3771 err = kstrtoul(buf, 10, &value); 3772 if (err) 3773 return -EINVAL; 3774 3775 ksm_advisor_max_pages_to_scan = value; 3776 return count; 3777 } 3778 KSM_ATTR(advisor_max_pages_to_scan); 3779 3780 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3781 struct kobj_attribute *attr, char *buf) 3782 { 3783 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3784 } 3785 3786 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3787 struct kobj_attribute *attr, 3788 const char *buf, size_t count) 3789 { 3790 int err; 3791 unsigned long value; 3792 3793 err = kstrtoul(buf, 10, &value); 3794 if (err) 3795 return -EINVAL; 3796 if (value < 1) 3797 return -EINVAL; 3798 3799 ksm_advisor_target_scan_time = value; 3800 return count; 3801 } 3802 KSM_ATTR(advisor_target_scan_time); 3803 3804 static struct attribute *ksm_attrs[] = { 3805 &sleep_millisecs_attr.attr, 3806 &pages_to_scan_attr.attr, 3807 &run_attr.attr, 3808 &pages_scanned_attr.attr, 3809 &pages_shared_attr.attr, 3810 &pages_sharing_attr.attr, 3811 &pages_unshared_attr.attr, 3812 &pages_volatile_attr.attr, 3813 &pages_skipped_attr.attr, 3814 &ksm_zero_pages_attr.attr, 3815 &full_scans_attr.attr, 3816 #ifdef CONFIG_NUMA 3817 &merge_across_nodes_attr.attr, 3818 #endif 3819 &max_page_sharing_attr.attr, 3820 &stable_node_chains_attr.attr, 3821 &stable_node_dups_attr.attr, 3822 &stable_node_chains_prune_millisecs_attr.attr, 3823 &use_zero_pages_attr.attr, 3824 &general_profit_attr.attr, 3825 &smart_scan_attr.attr, 3826 &advisor_mode_attr.attr, 3827 &advisor_max_cpu_attr.attr, 3828 &advisor_min_pages_to_scan_attr.attr, 3829 &advisor_max_pages_to_scan_attr.attr, 3830 &advisor_target_scan_time_attr.attr, 3831 NULL, 3832 }; 3833 3834 static const struct attribute_group ksm_attr_group = { 3835 .attrs = ksm_attrs, 3836 .name = "ksm", 3837 }; 3838 #endif /* CONFIG_SYSFS */ 3839 3840 static int __init ksm_init(void) 3841 { 3842 struct task_struct *ksm_thread; 3843 int err; 3844 3845 /* The correct value depends on page size and endianness */ 3846 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3847 /* Default to false for backwards compatibility */ 3848 ksm_use_zero_pages = false; 3849 3850 err = ksm_slab_init(); 3851 if (err) 3852 goto out; 3853 3854 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3855 if (IS_ERR(ksm_thread)) { 3856 pr_err("ksm: creating kthread failed\n"); 3857 err = PTR_ERR(ksm_thread); 3858 goto out_free; 3859 } 3860 3861 #ifdef CONFIG_SYSFS 3862 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3863 if (err) { 3864 pr_err("ksm: register sysfs failed\n"); 3865 kthread_stop(ksm_thread); 3866 goto out_free; 3867 } 3868 #else 3869 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3870 3871 #endif /* CONFIG_SYSFS */ 3872 3873 #ifdef CONFIG_MEMORY_HOTREMOVE 3874 /* There is no significance to this priority 100 */ 3875 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3876 #endif 3877 return 0; 3878 3879 out_free: 3880 ksm_slab_free(); 3881 out: 3882 return err; 3883 } 3884 subsys_initcall(ksm_init); 3885