1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 loff_t start, loff_t end);
47
filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65
filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70
71 /**
72 * filemap_set_wb_err - set a writeback error on an address_space
73 * @mapping: mapping in which to set writeback error
74 * @err: error to be set in mapping
75 *
76 * When writeback fails in some way, we must record that error so that
77 * userspace can be informed when fsync and the like are called. We endeavor
78 * to report errors on any file that was open at the time of the error. Some
79 * internal callers also need to know when writeback errors have occurred.
80 *
81 * When a writeback error occurs, most filesystems will want to call
82 * filemap_set_wb_err to record the error in the mapping so that it will be
83 * automatically reported whenever fsync is called on the file.
84 */
filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 /* Fastpath for common case of no error */
88 if (unlikely(err))
89 __filemap_set_wb_err(mapping, err);
90 }
91
92 /**
93 * filemap_check_wb_err - has an error occurred since the mark was sampled?
94 * @mapping: mapping to check for writeback errors
95 * @since: previously-sampled errseq_t
96 *
97 * Grab the errseq_t value from the mapping, and see if it has changed "since"
98 * the given value was sampled.
99 *
100 * If it has then report the latest error set, otherwise return 0.
101 */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 errseq_t since)
104 {
105 return errseq_check(&mapping->wb_err, since);
106 }
107
108 /**
109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110 * @mapping: mapping to be sampled
111 *
112 * Writeback errors are always reported relative to a particular sample point
113 * in the past. This function provides those sample points.
114 */
filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 return errseq_sample(&mapping->wb_err);
118 }
119
120 /**
121 * file_sample_sb_err - sample the current errseq_t to test for later errors
122 * @file: file pointer to be sampled
123 *
124 * Grab the most current superblock-level errseq_t value for the given
125 * struct file.
126 */
file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131
132 /*
133 * Flush file data before changing attributes. Caller must hold any locks
134 * required to prevent further writes to this file until we're done setting
135 * flags.
136 */
inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 inode_dio_wait(inode);
140 return filemap_write_and_wait(inode->i_mapping);
141 }
142
mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 return xa_empty(&mapping->i_pages);
146 }
147
148 /*
149 * mapping_shrinkable - test if page cache state allows inode reclaim
150 * @mapping: the page cache mapping
151 *
152 * This checks the mapping's cache state for the pupose of inode
153 * reclaim and LRU management.
154 *
155 * The caller is expected to hold the i_lock, but is not required to
156 * hold the i_pages lock, which usually protects cache state. That's
157 * because the i_lock and the list_lru lock that protect the inode and
158 * its LRU state don't nest inside the irq-safe i_pages lock.
159 *
160 * Cache deletions are performed under the i_lock, which ensures that
161 * when an inode goes empty, it will reliably get queued on the LRU.
162 *
163 * Cache additions do not acquire the i_lock and may race with this
164 * check, in which case we'll report the inode as shrinkable when it
165 * has cache pages. This is okay: the shrinker also checks the
166 * refcount and the referenced bit, which will be elevated or set in
167 * the process of adding new cache pages to an inode.
168 */
mapping_shrinkable(struct address_space * mapping)169 static inline bool mapping_shrinkable(struct address_space *mapping)
170 {
171 void *head;
172
173 /*
174 * On highmem systems, there could be lowmem pressure from the
175 * inodes before there is highmem pressure from the page
176 * cache. Make inodes shrinkable regardless of cache state.
177 */
178 if (IS_ENABLED(CONFIG_HIGHMEM))
179 return true;
180
181 /* Cache completely empty? Shrink away. */
182 head = rcu_access_pointer(mapping->i_pages.xa_head);
183 if (!head)
184 return true;
185
186 /*
187 * The xarray stores single offset-0 entries directly in the
188 * head pointer, which allows non-resident page cache entries
189 * to escape the shadow shrinker's list of xarray nodes. The
190 * inode shrinker needs to pick them up under memory pressure.
191 */
192 if (!xa_is_node(head) && xa_is_value(head))
193 return true;
194
195 return false;
196 }
197
198 /*
199 * Bits in mapping->flags.
200 */
201 enum mapping_flags {
202 AS_EIO = 0, /* IO error on async write */
203 AS_ENOSPC = 1, /* ENOSPC on async write */
204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
206 AS_EXITING = 4, /* final truncate in progress */
207 /* writeback related tags are not used */
208 AS_NO_WRITEBACK_TAGS = 5,
209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
211 folio contents */
212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
213 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9,
214 /* Bits 16-25 are used for FOLIO_ORDER */
215 AS_FOLIO_ORDER_BITS = 5,
216 AS_FOLIO_ORDER_MIN = 16,
217 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
218 };
219
220 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
221 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
222 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
223 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
224
225 /**
226 * mapping_set_error - record a writeback error in the address_space
227 * @mapping: the mapping in which an error should be set
228 * @error: the error to set in the mapping
229 *
230 * When writeback fails in some way, we must record that error so that
231 * userspace can be informed when fsync and the like are called. We endeavor
232 * to report errors on any file that was open at the time of the error. Some
233 * internal callers also need to know when writeback errors have occurred.
234 *
235 * When a writeback error occurs, most filesystems will want to call
236 * mapping_set_error to record the error in the mapping so that it can be
237 * reported when the application calls fsync(2).
238 */
mapping_set_error(struct address_space * mapping,int error)239 static inline void mapping_set_error(struct address_space *mapping, int error)
240 {
241 if (likely(!error))
242 return;
243
244 /* Record in wb_err for checkers using errseq_t based tracking */
245 __filemap_set_wb_err(mapping, error);
246
247 /* Record it in superblock */
248 if (mapping->host)
249 errseq_set(&mapping->host->i_sb->s_wb_err, error);
250
251 /* Record it in flags for now, for legacy callers */
252 if (error == -ENOSPC)
253 set_bit(AS_ENOSPC, &mapping->flags);
254 else
255 set_bit(AS_EIO, &mapping->flags);
256 }
257
mapping_set_unevictable(struct address_space * mapping)258 static inline void mapping_set_unevictable(struct address_space *mapping)
259 {
260 set_bit(AS_UNEVICTABLE, &mapping->flags);
261 }
262
mapping_clear_unevictable(struct address_space * mapping)263 static inline void mapping_clear_unevictable(struct address_space *mapping)
264 {
265 clear_bit(AS_UNEVICTABLE, &mapping->flags);
266 }
267
mapping_unevictable(struct address_space * mapping)268 static inline bool mapping_unevictable(struct address_space *mapping)
269 {
270 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
271 }
272
mapping_set_exiting(struct address_space * mapping)273 static inline void mapping_set_exiting(struct address_space *mapping)
274 {
275 set_bit(AS_EXITING, &mapping->flags);
276 }
277
mapping_exiting(struct address_space * mapping)278 static inline int mapping_exiting(struct address_space *mapping)
279 {
280 return test_bit(AS_EXITING, &mapping->flags);
281 }
282
mapping_set_no_writeback_tags(struct address_space * mapping)283 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
284 {
285 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
286 }
287
mapping_use_writeback_tags(struct address_space * mapping)288 static inline int mapping_use_writeback_tags(struct address_space *mapping)
289 {
290 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
291 }
292
mapping_release_always(const struct address_space * mapping)293 static inline bool mapping_release_always(const struct address_space *mapping)
294 {
295 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
296 }
297
mapping_set_release_always(struct address_space * mapping)298 static inline void mapping_set_release_always(struct address_space *mapping)
299 {
300 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
301 }
302
mapping_clear_release_always(struct address_space * mapping)303 static inline void mapping_clear_release_always(struct address_space *mapping)
304 {
305 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
306 }
307
mapping_stable_writes(const struct address_space * mapping)308 static inline bool mapping_stable_writes(const struct address_space *mapping)
309 {
310 return test_bit(AS_STABLE_WRITES, &mapping->flags);
311 }
312
mapping_set_stable_writes(struct address_space * mapping)313 static inline void mapping_set_stable_writes(struct address_space *mapping)
314 {
315 set_bit(AS_STABLE_WRITES, &mapping->flags);
316 }
317
mapping_clear_stable_writes(struct address_space * mapping)318 static inline void mapping_clear_stable_writes(struct address_space *mapping)
319 {
320 clear_bit(AS_STABLE_WRITES, &mapping->flags);
321 }
322
mapping_set_inaccessible(struct address_space * mapping)323 static inline void mapping_set_inaccessible(struct address_space *mapping)
324 {
325 /*
326 * It's expected inaccessible mappings are also unevictable. Compaction
327 * migrate scanner (isolate_migratepages_block()) relies on this to
328 * reduce page locking.
329 */
330 set_bit(AS_UNEVICTABLE, &mapping->flags);
331 set_bit(AS_INACCESSIBLE, &mapping->flags);
332 }
333
mapping_inaccessible(struct address_space * mapping)334 static inline bool mapping_inaccessible(struct address_space *mapping)
335 {
336 return test_bit(AS_INACCESSIBLE, &mapping->flags);
337 }
338
mapping_set_writeback_may_deadlock_on_reclaim(struct address_space * mapping)339 static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
340 {
341 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
342 }
343
mapping_writeback_may_deadlock_on_reclaim(struct address_space * mapping)344 static inline bool mapping_writeback_may_deadlock_on_reclaim(struct address_space *mapping)
345 {
346 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags);
347 }
348
mapping_gfp_mask(struct address_space * mapping)349 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
350 {
351 return mapping->gfp_mask;
352 }
353
354 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)355 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
356 gfp_t gfp_mask)
357 {
358 return mapping_gfp_mask(mapping) & gfp_mask;
359 }
360
361 /*
362 * This is non-atomic. Only to be used before the mapping is activated.
363 * Probably needs a barrier...
364 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)365 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
366 {
367 m->gfp_mask = mask;
368 }
369
370 /*
371 * There are some parts of the kernel which assume that PMD entries
372 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
373 * limit the maximum allocation order to PMD size. I'm not aware of any
374 * assumptions about maximum order if THP are disabled, but 8 seems like
375 * a good order (that's 1MB if you're using 4kB pages)
376 */
377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
378 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
379 #else
380 #define PREFERRED_MAX_PAGECACHE_ORDER 8
381 #endif
382
383 /*
384 * xas_split_alloc() does not support arbitrary orders. This implies no
385 * 512MB THP on ARM64 with 64KB base page size.
386 */
387 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
388 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
389
390 /*
391 * mapping_max_folio_size_supported() - Check the max folio size supported
392 *
393 * The filesystem should call this function at mount time if there is a
394 * requirement on the folio mapping size in the page cache.
395 */
mapping_max_folio_size_supported(void)396 static inline size_t mapping_max_folio_size_supported(void)
397 {
398 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
399 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
400 return PAGE_SIZE;
401 }
402
403 /*
404 * mapping_set_folio_order_range() - Set the orders supported by a file.
405 * @mapping: The address space of the file.
406 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
407 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
408 *
409 * The filesystem should call this function in its inode constructor to
410 * indicate which base size (min) and maximum size (max) of folio the VFS
411 * can use to cache the contents of the file. This should only be used
412 * if the filesystem needs special handling of folio sizes (ie there is
413 * something the core cannot know).
414 * Do not tune it based on, eg, i_size.
415 *
416 * Context: This should not be called while the inode is active as it
417 * is non-atomic.
418 */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)419 static inline void mapping_set_folio_order_range(struct address_space *mapping,
420 unsigned int min,
421 unsigned int max)
422 {
423 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
424 return;
425
426 if (min > MAX_PAGECACHE_ORDER)
427 min = MAX_PAGECACHE_ORDER;
428
429 if (max > MAX_PAGECACHE_ORDER)
430 max = MAX_PAGECACHE_ORDER;
431
432 if (max < min)
433 max = min;
434
435 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
436 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
437 }
438
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)439 static inline void mapping_set_folio_min_order(struct address_space *mapping,
440 unsigned int min)
441 {
442 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
443 }
444
445 /**
446 * mapping_set_large_folios() - Indicate the file supports large folios.
447 * @mapping: The address space of the file.
448 *
449 * The filesystem should call this function in its inode constructor to
450 * indicate that the VFS can use large folios to cache the contents of
451 * the file.
452 *
453 * Context: This should not be called while the inode is active as it
454 * is non-atomic.
455 */
mapping_set_large_folios(struct address_space * mapping)456 static inline void mapping_set_large_folios(struct address_space *mapping)
457 {
458 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
459 }
460
461 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)462 mapping_max_folio_order(const struct address_space *mapping)
463 {
464 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
465 return 0;
466 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
467 }
468
469 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)470 mapping_min_folio_order(const struct address_space *mapping)
471 {
472 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
473 return 0;
474 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
475 }
476
477 static inline unsigned long
mapping_min_folio_nrpages(struct address_space * mapping)478 mapping_min_folio_nrpages(struct address_space *mapping)
479 {
480 return 1UL << mapping_min_folio_order(mapping);
481 }
482
483 /**
484 * mapping_align_index() - Align index for this mapping.
485 * @mapping: The address_space.
486 * @index: The page index.
487 *
488 * The index of a folio must be naturally aligned. If you are adding a
489 * new folio to the page cache and need to know what index to give it,
490 * call this function.
491 */
mapping_align_index(struct address_space * mapping,pgoff_t index)492 static inline pgoff_t mapping_align_index(struct address_space *mapping,
493 pgoff_t index)
494 {
495 return round_down(index, mapping_min_folio_nrpages(mapping));
496 }
497
498 /*
499 * Large folio support currently depends on THP. These dependencies are
500 * being worked on but are not yet fixed.
501 */
mapping_large_folio_support(struct address_space * mapping)502 static inline bool mapping_large_folio_support(struct address_space *mapping)
503 {
504 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
505 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
506 "Anonymous mapping always supports large folio");
507
508 return mapping_max_folio_order(mapping) > 0;
509 }
510
511 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)512 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
513 {
514 return PAGE_SIZE << mapping_max_folio_order(mapping);
515 }
516
filemap_nr_thps(struct address_space * mapping)517 static inline int filemap_nr_thps(struct address_space *mapping)
518 {
519 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
520 return atomic_read(&mapping->nr_thps);
521 #else
522 return 0;
523 #endif
524 }
525
filemap_nr_thps_inc(struct address_space * mapping)526 static inline void filemap_nr_thps_inc(struct address_space *mapping)
527 {
528 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
529 if (!mapping_large_folio_support(mapping))
530 atomic_inc(&mapping->nr_thps);
531 #else
532 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
533 #endif
534 }
535
filemap_nr_thps_dec(struct address_space * mapping)536 static inline void filemap_nr_thps_dec(struct address_space *mapping)
537 {
538 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
539 if (!mapping_large_folio_support(mapping))
540 atomic_dec(&mapping->nr_thps);
541 #else
542 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
543 #endif
544 }
545
546 struct address_space *folio_mapping(struct folio *);
547
548 /**
549 * folio_flush_mapping - Find the file mapping this folio belongs to.
550 * @folio: The folio.
551 *
552 * For folios which are in the page cache, return the mapping that this
553 * page belongs to. Anonymous folios return NULL, even if they're in
554 * the swap cache. Other kinds of folio also return NULL.
555 *
556 * This is ONLY used by architecture cache flushing code. If you aren't
557 * writing cache flushing code, you want either folio_mapping() or
558 * folio_file_mapping().
559 */
folio_flush_mapping(struct folio * folio)560 static inline struct address_space *folio_flush_mapping(struct folio *folio)
561 {
562 if (unlikely(folio_test_swapcache(folio)))
563 return NULL;
564
565 return folio_mapping(folio);
566 }
567
568 /**
569 * folio_inode - Get the host inode for this folio.
570 * @folio: The folio.
571 *
572 * For folios which are in the page cache, return the inode that this folio
573 * belongs to.
574 *
575 * Do not call this for folios which aren't in the page cache.
576 */
folio_inode(struct folio * folio)577 static inline struct inode *folio_inode(struct folio *folio)
578 {
579 return folio->mapping->host;
580 }
581
582 /**
583 * folio_attach_private - Attach private data to a folio.
584 * @folio: Folio to attach data to.
585 * @data: Data to attach to folio.
586 *
587 * Attaching private data to a folio increments the page's reference count.
588 * The data must be detached before the folio will be freed.
589 */
folio_attach_private(struct folio * folio,void * data)590 static inline void folio_attach_private(struct folio *folio, void *data)
591 {
592 folio_get(folio);
593 folio->private = data;
594 folio_set_private(folio);
595 }
596
597 /**
598 * folio_change_private - Change private data on a folio.
599 * @folio: Folio to change the data on.
600 * @data: Data to set on the folio.
601 *
602 * Change the private data attached to a folio and return the old
603 * data. The page must previously have had data attached and the data
604 * must be detached before the folio will be freed.
605 *
606 * Return: Data that was previously attached to the folio.
607 */
folio_change_private(struct folio * folio,void * data)608 static inline void *folio_change_private(struct folio *folio, void *data)
609 {
610 void *old = folio_get_private(folio);
611
612 folio->private = data;
613 return old;
614 }
615
616 /**
617 * folio_detach_private - Detach private data from a folio.
618 * @folio: Folio to detach data from.
619 *
620 * Removes the data that was previously attached to the folio and decrements
621 * the refcount on the page.
622 *
623 * Return: Data that was attached to the folio.
624 */
folio_detach_private(struct folio * folio)625 static inline void *folio_detach_private(struct folio *folio)
626 {
627 void *data = folio_get_private(folio);
628
629 if (!folio_test_private(folio))
630 return NULL;
631 folio_clear_private(folio);
632 folio->private = NULL;
633 folio_put(folio);
634
635 return data;
636 }
637
attach_page_private(struct page * page,void * data)638 static inline void attach_page_private(struct page *page, void *data)
639 {
640 folio_attach_private(page_folio(page), data);
641 }
642
detach_page_private(struct page * page)643 static inline void *detach_page_private(struct page *page)
644 {
645 return folio_detach_private(page_folio(page));
646 }
647
648 #ifdef CONFIG_NUMA
649 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
650 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)651 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
652 {
653 return folio_alloc_noprof(gfp, order);
654 }
655 #endif
656
657 #define filemap_alloc_folio(...) \
658 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
659
__page_cache_alloc(gfp_t gfp)660 static inline struct page *__page_cache_alloc(gfp_t gfp)
661 {
662 return &filemap_alloc_folio(gfp, 0)->page;
663 }
664
readahead_gfp_mask(struct address_space * x)665 static inline gfp_t readahead_gfp_mask(struct address_space *x)
666 {
667 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
668 }
669
670 typedef int filler_t(struct file *, struct folio *);
671
672 pgoff_t page_cache_next_miss(struct address_space *mapping,
673 pgoff_t index, unsigned long max_scan);
674 pgoff_t page_cache_prev_miss(struct address_space *mapping,
675 pgoff_t index, unsigned long max_scan);
676
677 /**
678 * typedef fgf_t - Flags for getting folios from the page cache.
679 *
680 * Most users of the page cache will not need to use these flags;
681 * there are convenience functions such as filemap_get_folio() and
682 * filemap_lock_folio(). For users which need more control over exactly
683 * what is done with the folios, these flags to __filemap_get_folio()
684 * are available.
685 *
686 * * %FGP_ACCESSED - The folio will be marked accessed.
687 * * %FGP_LOCK - The folio is returned locked.
688 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
689 * added to the page cache and the VM's LRU list. The folio is
690 * returned locked.
691 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
692 * folio is already in cache. If the folio was allocated, unlock it
693 * before returning so the caller can do the same dance.
694 * * %FGP_WRITE - The folio will be written to by the caller.
695 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
696 * * %FGP_NOWAIT - Don't block on the folio lock.
697 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
698 * * %FGP_DONTCACHE - Uncached buffered IO
699 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
700 * implementation.
701 */
702 typedef unsigned int __bitwise fgf_t;
703
704 #define FGP_ACCESSED ((__force fgf_t)0x00000001)
705 #define FGP_LOCK ((__force fgf_t)0x00000002)
706 #define FGP_CREAT ((__force fgf_t)0x00000004)
707 #define FGP_WRITE ((__force fgf_t)0x00000008)
708 #define FGP_NOFS ((__force fgf_t)0x00000010)
709 #define FGP_NOWAIT ((__force fgf_t)0x00000020)
710 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
711 #define FGP_STABLE ((__force fgf_t)0x00000080)
712 #define FGP_DONTCACHE ((__force fgf_t)0x00000100)
713 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
714
715 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
716
filemap_get_order(size_t size)717 static inline unsigned int filemap_get_order(size_t size)
718 {
719 unsigned int shift = ilog2(size);
720
721 if (shift <= PAGE_SHIFT)
722 return 0;
723
724 return shift - PAGE_SHIFT;
725 }
726
727 /**
728 * fgf_set_order - Encode a length in the fgf_t flags.
729 * @size: The suggested size of the folio to create.
730 *
731 * The caller of __filemap_get_folio() can use this to suggest a preferred
732 * size for the folio that is created. If there is already a folio at
733 * the index, it will be returned, no matter what its size. If a folio
734 * is freshly created, it may be of a different size than requested
735 * due to alignment constraints, memory pressure, or the presence of
736 * other folios at nearby indices.
737 */
fgf_set_order(size_t size)738 static inline fgf_t fgf_set_order(size_t size)
739 {
740 unsigned int order = filemap_get_order(size);
741
742 if (!order)
743 return 0;
744 return (__force fgf_t)(order << 26);
745 }
746
747 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
748 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
749 fgf_t fgp_flags, gfp_t gfp);
750 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
751 fgf_t fgp_flags, gfp_t gfp);
752
753 /**
754 * write_begin_get_folio - Get folio for write_begin with flags.
755 * @iocb: The kiocb passed from write_begin (may be NULL).
756 * @mapping: The address space to search.
757 * @index: The page cache index.
758 * @len: Length of data being written.
759 *
760 * This is a helper for filesystem write_begin() implementations.
761 * It wraps __filemap_get_folio(), setting appropriate flags in
762 * the write begin context.
763 *
764 * Return: A folio or an ERR_PTR.
765 */
write_begin_get_folio(const struct kiocb * iocb,struct address_space * mapping,pgoff_t index,size_t len)766 static inline struct folio *write_begin_get_folio(const struct kiocb *iocb,
767 struct address_space *mapping, pgoff_t index, size_t len)
768 {
769 fgf_t fgp_flags = FGP_WRITEBEGIN;
770
771 fgp_flags |= fgf_set_order(len);
772
773 if (iocb && iocb->ki_flags & IOCB_DONTCACHE)
774 fgp_flags |= FGP_DONTCACHE;
775
776 return __filemap_get_folio(mapping, index, fgp_flags,
777 mapping_gfp_mask(mapping));
778 }
779
780 /**
781 * filemap_get_folio - Find and get a folio.
782 * @mapping: The address_space to search.
783 * @index: The page index.
784 *
785 * Looks up the page cache entry at @mapping & @index. If a folio is
786 * present, it is returned with an increased refcount.
787 *
788 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
789 * this index. Will not return a shadow, swap or DAX entry.
790 */
filemap_get_folio(struct address_space * mapping,pgoff_t index)791 static inline struct folio *filemap_get_folio(struct address_space *mapping,
792 pgoff_t index)
793 {
794 return __filemap_get_folio(mapping, index, 0, 0);
795 }
796
797 /**
798 * filemap_lock_folio - Find and lock a folio.
799 * @mapping: The address_space to search.
800 * @index: The page index.
801 *
802 * Looks up the page cache entry at @mapping & @index. If a folio is
803 * present, it is returned locked with an increased refcount.
804 *
805 * Context: May sleep.
806 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
807 * this index. Will not return a shadow, swap or DAX entry.
808 */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)809 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
810 pgoff_t index)
811 {
812 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
813 }
814
815 /**
816 * filemap_grab_folio - grab a folio from the page cache
817 * @mapping: The address space to search
818 * @index: The page index
819 *
820 * Looks up the page cache entry at @mapping & @index. If no folio is found,
821 * a new folio is created. The folio is locked, marked as accessed, and
822 * returned.
823 *
824 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
825 * and failed to create a folio.
826 */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)827 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
828 pgoff_t index)
829 {
830 return __filemap_get_folio(mapping, index,
831 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
832 mapping_gfp_mask(mapping));
833 }
834
835 /**
836 * find_get_page - find and get a page reference
837 * @mapping: the address_space to search
838 * @offset: the page index
839 *
840 * Looks up the page cache slot at @mapping & @offset. If there is a
841 * page cache page, it is returned with an increased refcount.
842 *
843 * Otherwise, %NULL is returned.
844 */
find_get_page(struct address_space * mapping,pgoff_t offset)845 static inline struct page *find_get_page(struct address_space *mapping,
846 pgoff_t offset)
847 {
848 return pagecache_get_page(mapping, offset, 0, 0);
849 }
850
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)851 static inline struct page *find_get_page_flags(struct address_space *mapping,
852 pgoff_t offset, fgf_t fgp_flags)
853 {
854 return pagecache_get_page(mapping, offset, fgp_flags, 0);
855 }
856
857 /**
858 * find_lock_page - locate, pin and lock a pagecache page
859 * @mapping: the address_space to search
860 * @index: the page index
861 *
862 * Looks up the page cache entry at @mapping & @index. If there is a
863 * page cache page, it is returned locked and with an increased
864 * refcount.
865 *
866 * Context: May sleep.
867 * Return: A struct page or %NULL if there is no page in the cache for this
868 * index.
869 */
find_lock_page(struct address_space * mapping,pgoff_t index)870 static inline struct page *find_lock_page(struct address_space *mapping,
871 pgoff_t index)
872 {
873 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
874 }
875
876 /**
877 * find_or_create_page - locate or add a pagecache page
878 * @mapping: the page's address_space
879 * @index: the page's index into the mapping
880 * @gfp_mask: page allocation mode
881 *
882 * Looks up the page cache slot at @mapping & @offset. If there is a
883 * page cache page, it is returned locked and with an increased
884 * refcount.
885 *
886 * If the page is not present, a new page is allocated using @gfp_mask
887 * and added to the page cache and the VM's LRU list. The page is
888 * returned locked and with an increased refcount.
889 *
890 * On memory exhaustion, %NULL is returned.
891 *
892 * find_or_create_page() may sleep, even if @gfp_flags specifies an
893 * atomic allocation!
894 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)895 static inline struct page *find_or_create_page(struct address_space *mapping,
896 pgoff_t index, gfp_t gfp_mask)
897 {
898 return pagecache_get_page(mapping, index,
899 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
900 gfp_mask);
901 }
902
903 /**
904 * grab_cache_page_nowait - returns locked page at given index in given cache
905 * @mapping: target address_space
906 * @index: the page index
907 *
908 * Same as grab_cache_page(), but do not wait if the page is unavailable.
909 * This is intended for speculative data generators, where the data can
910 * be regenerated if the page couldn't be grabbed. This routine should
911 * be safe to call while holding the lock for another page.
912 *
913 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
914 * and deadlock against the caller's locked page.
915 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)916 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
917 pgoff_t index)
918 {
919 return pagecache_get_page(mapping, index,
920 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
921 mapping_gfp_mask(mapping));
922 }
923
924 /**
925 * folio_next_index - Get the index of the next folio.
926 * @folio: The current folio.
927 *
928 * Return: The index of the folio which follows this folio in the file.
929 */
folio_next_index(struct folio * folio)930 static inline pgoff_t folio_next_index(struct folio *folio)
931 {
932 return folio->index + folio_nr_pages(folio);
933 }
934
935 /**
936 * folio_file_page - The page for a particular index.
937 * @folio: The folio which contains this index.
938 * @index: The index we want to look up.
939 *
940 * Sometimes after looking up a folio in the page cache, we need to
941 * obtain the specific page for an index (eg a page fault).
942 *
943 * Return: The page containing the file data for this index.
944 */
folio_file_page(struct folio * folio,pgoff_t index)945 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
946 {
947 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
948 }
949
950 /**
951 * folio_contains - Does this folio contain this index?
952 * @folio: The folio.
953 * @index: The page index within the file.
954 *
955 * Context: The caller should have the folio locked and ensure
956 * e.g., shmem did not move this folio to the swap cache.
957 * Return: true or false.
958 */
folio_contains(struct folio * folio,pgoff_t index)959 static inline bool folio_contains(struct folio *folio, pgoff_t index)
960 {
961 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio);
962 return index - folio->index < folio_nr_pages(folio);
963 }
964
965 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
966 pgoff_t end, struct folio_batch *fbatch);
967 unsigned filemap_get_folios_contig(struct address_space *mapping,
968 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
969 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
970 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
971
972 /*
973 * Returns locked page at given index in given cache, creating it if needed.
974 */
grab_cache_page(struct address_space * mapping,pgoff_t index)975 static inline struct page *grab_cache_page(struct address_space *mapping,
976 pgoff_t index)
977 {
978 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
979 }
980
981 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
982 filler_t *filler, struct file *file);
983 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
984 gfp_t flags);
985 struct page *read_cache_page(struct address_space *, pgoff_t index,
986 filler_t *filler, struct file *file);
987 extern struct page * read_cache_page_gfp(struct address_space *mapping,
988 pgoff_t index, gfp_t gfp_mask);
989
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)990 static inline struct page *read_mapping_page(struct address_space *mapping,
991 pgoff_t index, struct file *file)
992 {
993 return read_cache_page(mapping, index, NULL, file);
994 }
995
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)996 static inline struct folio *read_mapping_folio(struct address_space *mapping,
997 pgoff_t index, struct file *file)
998 {
999 return read_cache_folio(mapping, index, NULL, file);
1000 }
1001
1002 /**
1003 * page_pgoff - Calculate the logical page offset of this page.
1004 * @folio: The folio containing this page.
1005 * @page: The page which we need the offset of.
1006 *
1007 * For file pages, this is the offset from the beginning of the file
1008 * in units of PAGE_SIZE. For anonymous pages, this is the offset from
1009 * the beginning of the anon_vma in units of PAGE_SIZE. This will
1010 * return nonsense for KSM pages.
1011 *
1012 * Context: Caller must have a reference on the folio or otherwise
1013 * prevent it from being split or freed.
1014 *
1015 * Return: The offset in units of PAGE_SIZE.
1016 */
page_pgoff(const struct folio * folio,const struct page * page)1017 static inline pgoff_t page_pgoff(const struct folio *folio,
1018 const struct page *page)
1019 {
1020 return folio->index + folio_page_idx(folio, page);
1021 }
1022
1023 /**
1024 * folio_pos - Returns the byte position of this folio in its file.
1025 * @folio: The folio.
1026 */
folio_pos(const struct folio * folio)1027 static inline loff_t folio_pos(const struct folio *folio)
1028 {
1029 return ((loff_t)folio->index) * PAGE_SIZE;
1030 }
1031
1032 /*
1033 * Return byte-offset into filesystem object for page.
1034 */
page_offset(struct page * page)1035 static inline loff_t page_offset(struct page *page)
1036 {
1037 struct folio *folio = page_folio(page);
1038
1039 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1040 }
1041
1042 /*
1043 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1044 */
folio_pgoff(struct folio * folio)1045 static inline pgoff_t folio_pgoff(struct folio *folio)
1046 {
1047 return folio->index;
1048 }
1049
linear_page_index(struct vm_area_struct * vma,unsigned long address)1050 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1051 unsigned long address)
1052 {
1053 pgoff_t pgoff;
1054 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1055 pgoff += vma->vm_pgoff;
1056 return pgoff;
1057 }
1058
1059 struct wait_page_key {
1060 struct folio *folio;
1061 int bit_nr;
1062 int page_match;
1063 };
1064
1065 struct wait_page_queue {
1066 struct folio *folio;
1067 int bit_nr;
1068 wait_queue_entry_t wait;
1069 };
1070
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1071 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1072 struct wait_page_key *key)
1073 {
1074 if (wait_page->folio != key->folio)
1075 return false;
1076 key->page_match = 1;
1077
1078 if (wait_page->bit_nr != key->bit_nr)
1079 return false;
1080
1081 return true;
1082 }
1083
1084 void __folio_lock(struct folio *folio);
1085 int __folio_lock_killable(struct folio *folio);
1086 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1087 void unlock_page(struct page *page);
1088 void folio_unlock(struct folio *folio);
1089
1090 /**
1091 * folio_trylock() - Attempt to lock a folio.
1092 * @folio: The folio to attempt to lock.
1093 *
1094 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1095 * when the locks are being taken in the wrong order, or if making
1096 * progress through a batch of folios is more important than processing
1097 * them in order). Usually folio_lock() is the correct function to call.
1098 *
1099 * Context: Any context.
1100 * Return: Whether the lock was successfully acquired.
1101 */
folio_trylock(struct folio * folio)1102 static inline bool folio_trylock(struct folio *folio)
1103 {
1104 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1105 }
1106
1107 /*
1108 * Return true if the page was successfully locked
1109 */
trylock_page(struct page * page)1110 static inline bool trylock_page(struct page *page)
1111 {
1112 return folio_trylock(page_folio(page));
1113 }
1114
1115 /**
1116 * folio_lock() - Lock this folio.
1117 * @folio: The folio to lock.
1118 *
1119 * The folio lock protects against many things, probably more than it
1120 * should. It is primarily held while a folio is being brought uptodate,
1121 * either from its backing file or from swap. It is also held while a
1122 * folio is being truncated from its address_space, so holding the lock
1123 * is sufficient to keep folio->mapping stable.
1124 *
1125 * The folio lock is also held while write() is modifying the page to
1126 * provide POSIX atomicity guarantees (as long as the write does not
1127 * cross a page boundary). Other modifications to the data in the folio
1128 * do not hold the folio lock and can race with writes, eg DMA and stores
1129 * to mapped pages.
1130 *
1131 * Context: May sleep. If you need to acquire the locks of two or
1132 * more folios, they must be in order of ascending index, if they are
1133 * in the same address_space. If they are in different address_spaces,
1134 * acquire the lock of the folio which belongs to the address_space which
1135 * has the lowest address in memory first.
1136 */
folio_lock(struct folio * folio)1137 static inline void folio_lock(struct folio *folio)
1138 {
1139 might_sleep();
1140 if (!folio_trylock(folio))
1141 __folio_lock(folio);
1142 }
1143
1144 /**
1145 * lock_page() - Lock the folio containing this page.
1146 * @page: The page to lock.
1147 *
1148 * See folio_lock() for a description of what the lock protects.
1149 * This is a legacy function and new code should probably use folio_lock()
1150 * instead.
1151 *
1152 * Context: May sleep. Pages in the same folio share a lock, so do not
1153 * attempt to lock two pages which share a folio.
1154 */
lock_page(struct page * page)1155 static inline void lock_page(struct page *page)
1156 {
1157 struct folio *folio;
1158 might_sleep();
1159
1160 folio = page_folio(page);
1161 if (!folio_trylock(folio))
1162 __folio_lock(folio);
1163 }
1164
1165 /**
1166 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1167 * @folio: The folio to lock.
1168 *
1169 * Attempts to lock the folio, like folio_lock(), except that the sleep
1170 * to acquire the lock is interruptible by a fatal signal.
1171 *
1172 * Context: May sleep; see folio_lock().
1173 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1174 */
folio_lock_killable(struct folio * folio)1175 static inline int folio_lock_killable(struct folio *folio)
1176 {
1177 might_sleep();
1178 if (!folio_trylock(folio))
1179 return __folio_lock_killable(folio);
1180 return 0;
1181 }
1182
1183 /*
1184 * folio_lock_or_retry - Lock the folio, unless this would block and the
1185 * caller indicated that it can handle a retry.
1186 *
1187 * Return value and mmap_lock implications depend on flags; see
1188 * __folio_lock_or_retry().
1189 */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1190 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1191 struct vm_fault *vmf)
1192 {
1193 might_sleep();
1194 if (!folio_trylock(folio))
1195 return __folio_lock_or_retry(folio, vmf);
1196 return 0;
1197 }
1198
1199 /*
1200 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1201 * and should not be used directly.
1202 */
1203 void folio_wait_bit(struct folio *folio, int bit_nr);
1204 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1205
1206 /*
1207 * Wait for a folio to be unlocked.
1208 *
1209 * This must be called with the caller "holding" the folio,
1210 * ie with increased folio reference count so that the folio won't
1211 * go away during the wait.
1212 */
folio_wait_locked(struct folio * folio)1213 static inline void folio_wait_locked(struct folio *folio)
1214 {
1215 if (folio_test_locked(folio))
1216 folio_wait_bit(folio, PG_locked);
1217 }
1218
folio_wait_locked_killable(struct folio * folio)1219 static inline int folio_wait_locked_killable(struct folio *folio)
1220 {
1221 if (!folio_test_locked(folio))
1222 return 0;
1223 return folio_wait_bit_killable(folio, PG_locked);
1224 }
1225
1226 void folio_end_read(struct folio *folio, bool success);
1227 void wait_on_page_writeback(struct page *page);
1228 void folio_wait_writeback(struct folio *folio);
1229 int folio_wait_writeback_killable(struct folio *folio);
1230 void end_page_writeback(struct page *page);
1231 void folio_end_writeback(struct folio *folio);
1232 void folio_wait_stable(struct folio *folio);
1233 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1234 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1235 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1236 static inline void folio_cancel_dirty(struct folio *folio)
1237 {
1238 /* Avoid atomic ops, locking, etc. when not actually needed. */
1239 if (folio_test_dirty(folio))
1240 __folio_cancel_dirty(folio);
1241 }
1242 bool folio_clear_dirty_for_io(struct folio *folio);
1243 bool clear_page_dirty_for_io(struct page *page);
1244 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1245 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1246
1247 #ifdef CONFIG_MIGRATION
1248 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1249 struct folio *src, enum migrate_mode mode);
1250 #else
1251 #define filemap_migrate_folio NULL
1252 #endif
1253 void folio_end_private_2(struct folio *folio);
1254 void folio_wait_private_2(struct folio *folio);
1255 int folio_wait_private_2_killable(struct folio *folio);
1256
1257 /*
1258 * Fault in userspace address range.
1259 */
1260 size_t fault_in_writeable(char __user *uaddr, size_t size);
1261 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1262 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1263 size_t fault_in_readable(const char __user *uaddr, size_t size);
1264
1265 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1266 pgoff_t index, gfp_t gfp);
1267 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1268 pgoff_t index, gfp_t gfp);
1269 void filemap_remove_folio(struct folio *folio);
1270 void __filemap_remove_folio(struct folio *folio, void *shadow);
1271 void replace_page_cache_folio(struct folio *old, struct folio *new);
1272 void delete_from_page_cache_batch(struct address_space *mapping,
1273 struct folio_batch *fbatch);
1274 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1275 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1276 int whence);
1277
1278 /* Must be non-static for BPF error injection */
1279 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1280 pgoff_t index, gfp_t gfp, void **shadowp);
1281
1282 bool filemap_range_has_writeback(struct address_space *mapping,
1283 loff_t start_byte, loff_t end_byte);
1284
1285 /**
1286 * filemap_range_needs_writeback - check if range potentially needs writeback
1287 * @mapping: address space within which to check
1288 * @start_byte: offset in bytes where the range starts
1289 * @end_byte: offset in bytes where the range ends (inclusive)
1290 *
1291 * Find at least one page in the range supplied, usually used to check if
1292 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1293 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1294 * filemap_write_and_wait_range() before proceeding.
1295 *
1296 * Return: %true if the caller should do filemap_write_and_wait_range() before
1297 * doing O_DIRECT to a page in this range, %false otherwise.
1298 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1299 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1300 loff_t start_byte,
1301 loff_t end_byte)
1302 {
1303 if (!mapping->nrpages)
1304 return false;
1305 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1306 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1307 return false;
1308 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1309 }
1310
1311 /**
1312 * struct readahead_control - Describes a readahead request.
1313 *
1314 * A readahead request is for consecutive pages. Filesystems which
1315 * implement the ->readahead method should call readahead_folio() or
1316 * __readahead_batch() in a loop and attempt to start reads into each
1317 * folio in the request.
1318 *
1319 * Most of the fields in this struct are private and should be accessed
1320 * by the functions below.
1321 *
1322 * @file: The file, used primarily by network filesystems for authentication.
1323 * May be NULL if invoked internally by the filesystem.
1324 * @mapping: Readahead this filesystem object.
1325 * @ra: File readahead state. May be NULL.
1326 */
1327 struct readahead_control {
1328 struct file *file;
1329 struct address_space *mapping;
1330 struct file_ra_state *ra;
1331 /* private: use the readahead_* accessors instead */
1332 pgoff_t _index;
1333 unsigned int _nr_pages;
1334 unsigned int _batch_count;
1335 bool dropbehind;
1336 bool _workingset;
1337 unsigned long _pflags;
1338 };
1339
1340 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
1341 struct readahead_control ractl = { \
1342 .file = f, \
1343 .mapping = m, \
1344 .ra = r, \
1345 ._index = i, \
1346 }
1347
1348 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1349
1350 void page_cache_ra_unbounded(struct readahead_control *,
1351 unsigned long nr_to_read, unsigned long lookahead_count);
1352 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1353 void page_cache_async_ra(struct readahead_control *, struct folio *,
1354 unsigned long req_count);
1355 void readahead_expand(struct readahead_control *ractl,
1356 loff_t new_start, size_t new_len);
1357
1358 /**
1359 * page_cache_sync_readahead - generic file readahead
1360 * @mapping: address_space which holds the pagecache and I/O vectors
1361 * @ra: file_ra_state which holds the readahead state
1362 * @file: Used by the filesystem for authentication.
1363 * @index: Index of first page to be read.
1364 * @req_count: Total number of pages being read by the caller.
1365 *
1366 * page_cache_sync_readahead() should be called when a cache miss happened:
1367 * it will submit the read. The readahead logic may decide to piggyback more
1368 * pages onto the read request if access patterns suggest it will improve
1369 * performance.
1370 */
1371 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1372 void page_cache_sync_readahead(struct address_space *mapping,
1373 struct file_ra_state *ra, struct file *file, pgoff_t index,
1374 unsigned long req_count)
1375 {
1376 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1377 page_cache_sync_ra(&ractl, req_count);
1378 }
1379
1380 /**
1381 * page_cache_async_readahead - file readahead for marked pages
1382 * @mapping: address_space which holds the pagecache and I/O vectors
1383 * @ra: file_ra_state which holds the readahead state
1384 * @file: Used by the filesystem for authentication.
1385 * @folio: The folio which triggered the readahead call.
1386 * @req_count: Total number of pages being read by the caller.
1387 *
1388 * page_cache_async_readahead() should be called when a page is used which
1389 * is marked as PageReadahead; this is a marker to suggest that the application
1390 * has used up enough of the readahead window that we should start pulling in
1391 * more pages.
1392 */
1393 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1394 void page_cache_async_readahead(struct address_space *mapping,
1395 struct file_ra_state *ra, struct file *file,
1396 struct folio *folio, unsigned long req_count)
1397 {
1398 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1399 page_cache_async_ra(&ractl, folio, req_count);
1400 }
1401
__readahead_folio(struct readahead_control * ractl)1402 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1403 {
1404 struct folio *folio;
1405
1406 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1407 ractl->_nr_pages -= ractl->_batch_count;
1408 ractl->_index += ractl->_batch_count;
1409
1410 if (!ractl->_nr_pages) {
1411 ractl->_batch_count = 0;
1412 return NULL;
1413 }
1414
1415 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1416 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1417 ractl->_batch_count = folio_nr_pages(folio);
1418
1419 return folio;
1420 }
1421
1422 /**
1423 * readahead_folio - Get the next folio to read.
1424 * @ractl: The current readahead request.
1425 *
1426 * Context: The folio is locked. The caller should unlock the folio once
1427 * all I/O to that folio has completed.
1428 * Return: A pointer to the next folio, or %NULL if we are done.
1429 */
readahead_folio(struct readahead_control * ractl)1430 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1431 {
1432 struct folio *folio = __readahead_folio(ractl);
1433
1434 if (folio)
1435 folio_put(folio);
1436 return folio;
1437 }
1438
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1439 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1440 struct page **array, unsigned int array_sz)
1441 {
1442 unsigned int i = 0;
1443 XA_STATE(xas, &rac->mapping->i_pages, 0);
1444 struct folio *folio;
1445
1446 BUG_ON(rac->_batch_count > rac->_nr_pages);
1447 rac->_nr_pages -= rac->_batch_count;
1448 rac->_index += rac->_batch_count;
1449 rac->_batch_count = 0;
1450
1451 xas_set(&xas, rac->_index);
1452 rcu_read_lock();
1453 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) {
1454 if (xas_retry(&xas, folio))
1455 continue;
1456 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1457 array[i++] = folio_page(folio, 0);
1458 rac->_batch_count += folio_nr_pages(folio);
1459 if (i == array_sz)
1460 break;
1461 }
1462 rcu_read_unlock();
1463
1464 return i;
1465 }
1466
1467 /**
1468 * readahead_pos - The byte offset into the file of this readahead request.
1469 * @rac: The readahead request.
1470 */
readahead_pos(struct readahead_control * rac)1471 static inline loff_t readahead_pos(struct readahead_control *rac)
1472 {
1473 return (loff_t)rac->_index * PAGE_SIZE;
1474 }
1475
1476 /**
1477 * readahead_length - The number of bytes in this readahead request.
1478 * @rac: The readahead request.
1479 */
readahead_length(struct readahead_control * rac)1480 static inline size_t readahead_length(struct readahead_control *rac)
1481 {
1482 return rac->_nr_pages * PAGE_SIZE;
1483 }
1484
1485 /**
1486 * readahead_index - The index of the first page in this readahead request.
1487 * @rac: The readahead request.
1488 */
readahead_index(struct readahead_control * rac)1489 static inline pgoff_t readahead_index(struct readahead_control *rac)
1490 {
1491 return rac->_index;
1492 }
1493
1494 /**
1495 * readahead_count - The number of pages in this readahead request.
1496 * @rac: The readahead request.
1497 */
readahead_count(struct readahead_control * rac)1498 static inline unsigned int readahead_count(struct readahead_control *rac)
1499 {
1500 return rac->_nr_pages;
1501 }
1502
1503 /**
1504 * readahead_batch_length - The number of bytes in the current batch.
1505 * @rac: The readahead request.
1506 */
readahead_batch_length(struct readahead_control * rac)1507 static inline size_t readahead_batch_length(struct readahead_control *rac)
1508 {
1509 return rac->_batch_count * PAGE_SIZE;
1510 }
1511
dir_pages(struct inode * inode)1512 static inline unsigned long dir_pages(struct inode *inode)
1513 {
1514 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1515 PAGE_SHIFT;
1516 }
1517
1518 /**
1519 * folio_mkwrite_check_truncate - check if folio was truncated
1520 * @folio: the folio to check
1521 * @inode: the inode to check the folio against
1522 *
1523 * Return: the number of bytes in the folio up to EOF,
1524 * or -EFAULT if the folio was truncated.
1525 */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1526 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1527 struct inode *inode)
1528 {
1529 loff_t size = i_size_read(inode);
1530 pgoff_t index = size >> PAGE_SHIFT;
1531 size_t offset = offset_in_folio(folio, size);
1532
1533 if (!folio->mapping)
1534 return -EFAULT;
1535
1536 /* folio is wholly inside EOF */
1537 if (folio_next_index(folio) - 1 < index)
1538 return folio_size(folio);
1539 /* folio is wholly past EOF */
1540 if (folio->index > index || !offset)
1541 return -EFAULT;
1542 /* folio is partially inside EOF */
1543 return offset;
1544 }
1545
1546 /**
1547 * i_blocks_per_folio - How many blocks fit in this folio.
1548 * @inode: The inode which contains the blocks.
1549 * @folio: The folio.
1550 *
1551 * If the block size is larger than the size of this folio, return zero.
1552 *
1553 * Context: The caller should hold a refcount on the folio to prevent it
1554 * from being split.
1555 * Return: The number of filesystem blocks covered by this folio.
1556 */
1557 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1558 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1559 {
1560 return folio_size(folio) >> inode->i_blkbits;
1561 }
1562 #endif /* _LINUX_PAGEMAP_H */
1563