xref: /linux/arch/x86/kvm/emulate.c (revision 256e3417065b2721f77bcd37331796b59483ef3b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  * emulate.c
4  *
5  * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6  *
7  * Copyright (c) 2005 Keir Fraser
8  *
9  * Linux coding style, mod r/m decoder, segment base fixes, real-mode
10  * privileged instructions:
11  *
12  * Copyright (C) 2006 Qumranet
13  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14  *
15  *   Avi Kivity <avi@qumranet.com>
16  *   Yaniv Kamay <yaniv@qumranet.com>
17  *
18  * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kvm_host.h>
23 #include "kvm_cache_regs.h"
24 #include "kvm_emulate.h"
25 #include <linux/stringify.h>
26 #include <asm/debugreg.h>
27 #include <asm/nospec-branch.h>
28 #include <asm/ibt.h>
29 
30 #include "x86.h"
31 #include "tss.h"
32 #include "mmu.h"
33 #include "pmu.h"
34 
35 /*
36  * Operand types
37  */
38 #define OpNone             0ull
39 #define OpImplicit         1ull  /* No generic decode */
40 #define OpReg              2ull  /* Register */
41 #define OpMem              3ull  /* Memory */
42 #define OpAcc              4ull  /* Accumulator: AL/AX/EAX/RAX */
43 #define OpDI               5ull  /* ES:DI/EDI/RDI */
44 #define OpMem64            6ull  /* Memory, 64-bit */
45 #define OpImmUByte         7ull  /* Zero-extended 8-bit immediate */
46 #define OpDX               8ull  /* DX register */
47 #define OpCL               9ull  /* CL register (for shifts) */
48 #define OpImmByte         10ull  /* 8-bit sign extended immediate */
49 #define OpOne             11ull  /* Implied 1 */
50 #define OpImm             12ull  /* Sign extended up to 32-bit immediate */
51 #define OpMem16           13ull  /* Memory operand (16-bit). */
52 #define OpMem32           14ull  /* Memory operand (32-bit). */
53 #define OpImmU            15ull  /* Immediate operand, zero extended */
54 #define OpSI              16ull  /* SI/ESI/RSI */
55 #define OpImmFAddr        17ull  /* Immediate far address */
56 #define OpMemFAddr        18ull  /* Far address in memory */
57 #define OpImmU16          19ull  /* Immediate operand, 16 bits, zero extended */
58 #define OpES              20ull  /* ES */
59 #define OpCS              21ull  /* CS */
60 #define OpSS              22ull  /* SS */
61 #define OpDS              23ull  /* DS */
62 #define OpFS              24ull  /* FS */
63 #define OpGS              25ull  /* GS */
64 #define OpMem8            26ull  /* 8-bit zero extended memory operand */
65 #define OpImm64           27ull  /* Sign extended 16/32/64-bit immediate */
66 #define OpXLat            28ull  /* memory at BX/EBX/RBX + zero-extended AL */
67 #define OpAccLo           29ull  /* Low part of extended acc (AX/AX/EAX/RAX) */
68 #define OpAccHi           30ull  /* High part of extended acc (-/DX/EDX/RDX) */
69 
70 #define OpBits             5  /* Width of operand field */
71 #define OpMask             ((1ull << OpBits) - 1)
72 
73 /*
74  * Opcode effective-address decode tables.
75  * Note that we only emulate instructions that have at least one memory
76  * operand (excluding implicit stack references). We assume that stack
77  * references and instruction fetches will never occur in special memory
78  * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79  * not be handled.
80  */
81 
82 /* Operand sizes: 8-bit operands or specified/overridden size. */
83 #define ByteOp      (1<<0)	/* 8-bit operands. */
84 /* Destination operand type. */
85 #define DstShift    1
86 #define ImplicitOps (OpImplicit << DstShift)
87 #define DstReg      (OpReg << DstShift)
88 #define DstMem      (OpMem << DstShift)
89 #define DstAcc      (OpAcc << DstShift)
90 #define DstDI       (OpDI << DstShift)
91 #define DstMem64    (OpMem64 << DstShift)
92 #define DstMem16    (OpMem16 << DstShift)
93 #define DstImmUByte (OpImmUByte << DstShift)
94 #define DstDX       (OpDX << DstShift)
95 #define DstAccLo    (OpAccLo << DstShift)
96 #define DstMask     (OpMask << DstShift)
97 /* Source operand type. */
98 #define SrcShift    6
99 #define SrcNone     (OpNone << SrcShift)
100 #define SrcReg      (OpReg << SrcShift)
101 #define SrcMem      (OpMem << SrcShift)
102 #define SrcMem16    (OpMem16 << SrcShift)
103 #define SrcMem32    (OpMem32 << SrcShift)
104 #define SrcImm      (OpImm << SrcShift)
105 #define SrcImmByte  (OpImmByte << SrcShift)
106 #define SrcOne      (OpOne << SrcShift)
107 #define SrcImmUByte (OpImmUByte << SrcShift)
108 #define SrcImmU     (OpImmU << SrcShift)
109 #define SrcSI       (OpSI << SrcShift)
110 #define SrcXLat     (OpXLat << SrcShift)
111 #define SrcImmFAddr (OpImmFAddr << SrcShift)
112 #define SrcMemFAddr (OpMemFAddr << SrcShift)
113 #define SrcAcc      (OpAcc << SrcShift)
114 #define SrcImmU16   (OpImmU16 << SrcShift)
115 #define SrcImm64    (OpImm64 << SrcShift)
116 #define SrcDX       (OpDX << SrcShift)
117 #define SrcMem8     (OpMem8 << SrcShift)
118 #define SrcAccHi    (OpAccHi << SrcShift)
119 #define SrcMask     (OpMask << SrcShift)
120 #define BitOp       (1<<11)
121 #define MemAbs      (1<<12)      /* Memory operand is absolute displacement */
122 #define String      (1<<13)     /* String instruction (rep capable) */
123 #define Stack       (1<<14)     /* Stack instruction (push/pop) */
124 #define GroupMask   (7<<15)     /* Opcode uses one of the group mechanisms */
125 #define Group       (1<<15)     /* Bits 3:5 of modrm byte extend opcode */
126 #define GroupDual   (2<<15)     /* Alternate decoding of mod == 3 */
127 #define Prefix      (3<<15)     /* Instruction varies with 66/f2/f3 prefix */
128 #define RMExt       (4<<15)     /* Opcode extension in ModRM r/m if mod == 3 */
129 #define Escape      (5<<15)     /* Escape to coprocessor instruction */
130 #define InstrDual   (6<<15)     /* Alternate instruction decoding of mod == 3 */
131 #define ModeDual    (7<<15)     /* Different instruction for 32/64 bit */
132 #define Sse         (1<<18)     /* SSE Vector instruction */
133 /* Generic ModRM decode. */
134 #define ModRM       (1<<19)
135 /* Destination is only written; never read. */
136 #define Mov         (1<<20)
137 /* Misc flags */
138 #define Prot        (1<<21) /* instruction generates #UD if not in prot-mode */
139 #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
140 #define NoAccess    (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
141 #define Op3264      (1<<24) /* Operand is 64b in long mode, 32b otherwise */
142 #define Undefined   (1<<25) /* No Such Instruction */
143 #define Lock        (1<<26) /* lock prefix is allowed for the instruction */
144 #define Priv        (1<<27) /* instruction generates #GP if current CPL != 0 */
145 #define No64	    (1<<28)
146 #define PageTable   (1 << 29)   /* instruction used to write page table */
147 #define NotImpl     (1 << 30)   /* instruction is not implemented */
148 /* Source 2 operand type */
149 #define Src2Shift   (31)
150 #define Src2None    (OpNone << Src2Shift)
151 #define Src2Mem     (OpMem << Src2Shift)
152 #define Src2CL      (OpCL << Src2Shift)
153 #define Src2ImmByte (OpImmByte << Src2Shift)
154 #define Src2One     (OpOne << Src2Shift)
155 #define Src2Imm     (OpImm << Src2Shift)
156 #define Src2ES      (OpES << Src2Shift)
157 #define Src2CS      (OpCS << Src2Shift)
158 #define Src2SS      (OpSS << Src2Shift)
159 #define Src2DS      (OpDS << Src2Shift)
160 #define Src2FS      (OpFS << Src2Shift)
161 #define Src2GS      (OpGS << Src2Shift)
162 #define Src2Mask    (OpMask << Src2Shift)
163 #define Mmx         ((u64)1 << 40)  /* MMX Vector instruction */
164 #define AlignMask   ((u64)7 << 41)
165 #define Aligned     ((u64)1 << 41)  /* Explicitly aligned (e.g. MOVDQA) */
166 #define Unaligned   ((u64)2 << 41)  /* Explicitly unaligned (e.g. MOVDQU) */
167 #define Avx         ((u64)3 << 41)  /* Advanced Vector Extensions */
168 #define Aligned16   ((u64)4 << 41)  /* Aligned to 16 byte boundary (e.g. FXSAVE) */
169 #define Fastop      ((u64)1 << 44)  /* Use opcode::u.fastop */
170 #define NoWrite     ((u64)1 << 45)  /* No writeback */
171 #define SrcWrite    ((u64)1 << 46)  /* Write back src operand */
172 #define NoMod	    ((u64)1 << 47)  /* Mod field is ignored */
173 #define Intercept   ((u64)1 << 48)  /* Has valid intercept field */
174 #define CheckPerm   ((u64)1 << 49)  /* Has valid check_perm field */
175 #define PrivUD      ((u64)1 << 51)  /* #UD instead of #GP on CPL > 0 */
176 #define NearBranch  ((u64)1 << 52)  /* Near branches */
177 #define No16	    ((u64)1 << 53)  /* No 16 bit operand */
178 #define IncSP       ((u64)1 << 54)  /* SP is incremented before ModRM calc */
179 #define TwoMemOp    ((u64)1 << 55)  /* Instruction has two memory operand */
180 #define IsBranch    ((u64)1 << 56)  /* Instruction is considered a branch. */
181 #define ShadowStack ((u64)1 << 57)  /* Instruction affects Shadow Stacks. */
182 
183 #define DstXacc     (DstAccLo | SrcAccHi | SrcWrite)
184 
185 #define X2(x...) x, x
186 #define X3(x...) X2(x), x
187 #define X4(x...) X2(x), X2(x)
188 #define X5(x...) X4(x), x
189 #define X6(x...) X4(x), X2(x)
190 #define X7(x...) X4(x), X3(x)
191 #define X8(x...) X4(x), X4(x)
192 #define X16(x...) X8(x), X8(x)
193 
194 struct opcode {
195 	u64 flags;
196 	u8 intercept;
197 	u8 pad[7];
198 	union {
199 		int (*execute)(struct x86_emulate_ctxt *ctxt);
200 		const struct opcode *group;
201 		const struct group_dual *gdual;
202 		const struct gprefix *gprefix;
203 		const struct escape *esc;
204 		const struct instr_dual *idual;
205 		const struct mode_dual *mdual;
206 		void (*fastop)(struct fastop *fake);
207 	} u;
208 	int (*check_perm)(struct x86_emulate_ctxt *ctxt);
209 };
210 
211 struct group_dual {
212 	struct opcode mod012[8];
213 	struct opcode mod3[8];
214 };
215 
216 struct gprefix {
217 	struct opcode pfx_no;
218 	struct opcode pfx_66;
219 	struct opcode pfx_f2;
220 	struct opcode pfx_f3;
221 };
222 
223 struct escape {
224 	struct opcode op[8];
225 	struct opcode high[64];
226 };
227 
228 struct instr_dual {
229 	struct opcode mod012;
230 	struct opcode mod3;
231 };
232 
233 struct mode_dual {
234 	struct opcode mode32;
235 	struct opcode mode64;
236 };
237 
238 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
239 
240 enum x86_transfer_type {
241 	X86_TRANSFER_NONE,
242 	X86_TRANSFER_CALL_JMP,
243 	X86_TRANSFER_RET,
244 	X86_TRANSFER_TASK_SWITCH,
245 };
246 
writeback_registers(struct x86_emulate_ctxt * ctxt)247 static void writeback_registers(struct x86_emulate_ctxt *ctxt)
248 {
249 	unsigned long dirty = ctxt->regs_dirty;
250 	unsigned reg;
251 
252 	for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS)
253 		ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
254 }
255 
invalidate_registers(struct x86_emulate_ctxt * ctxt)256 static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
257 {
258 	ctxt->regs_dirty = 0;
259 	ctxt->regs_valid = 0;
260 }
261 
262 /*
263  * These EFLAGS bits are restored from saved value during emulation, and
264  * any changes are written back to the saved value after emulation.
265  */
266 #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
267 		     X86_EFLAGS_PF|X86_EFLAGS_CF)
268 
269 #ifdef CONFIG_X86_64
270 #define ON64(x) x
271 #else
272 #define ON64(x)
273 #endif
274 
275 /*
276  * fastop functions have a special calling convention:
277  *
278  * dst:    rax        (in/out)
279  * src:    rdx        (in/out)
280  * src2:   rcx        (in)
281  * flags:  rflags     (in/out)
282  * ex:     rsi        (in:fastop pointer, out:zero if exception)
283  *
284  * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
285  * different operand sizes can be reached by calculation, rather than a jump
286  * table (which would be bigger than the code).
287  *
288  * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR
289  * and 1 for the straight line speculation INT3, leaves 7 bytes for the
290  * body of the function.  Currently none is larger than 4.
291  */
292 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop);
293 
294 #define FASTOP_SIZE	16
295 
296 #define __FOP_FUNC(name) \
297 	".align " __stringify(FASTOP_SIZE) " \n\t" \
298 	".type " name ", @function \n\t" \
299 	name ":\n\t" \
300 	ASM_ENDBR \
301 	IBT_NOSEAL(name)
302 
303 #define FOP_FUNC(name) \
304 	__FOP_FUNC(#name)
305 
306 #define __FOP_RET(name) \
307 	"11: " ASM_RET \
308 	".size " name ", .-" name "\n\t"
309 
310 #define FOP_RET(name) \
311 	__FOP_RET(#name)
312 
313 #define __FOP_START(op, align) \
314 	extern void em_##op(struct fastop *fake); \
315 	asm(".pushsection .text, \"ax\" \n\t" \
316 	    ".global em_" #op " \n\t" \
317 	    ".align " __stringify(align) " \n\t" \
318 	    "em_" #op ":\n\t"
319 
320 #define FOP_START(op) __FOP_START(op, FASTOP_SIZE)
321 
322 #define FOP_END \
323 	    ".popsection")
324 
325 #define __FOPNOP(name) \
326 	__FOP_FUNC(name) \
327 	__FOP_RET(name)
328 
329 #define FOPNOP() \
330 	__FOPNOP(__stringify(__UNIQUE_ID(nop)))
331 
332 #define FOP1E(op,  dst) \
333 	__FOP_FUNC(#op "_" #dst) \
334 	"10: " #op " %" #dst " \n\t" \
335 	__FOP_RET(#op "_" #dst)
336 
337 #define FOP1EEX(op,  dst) \
338 	FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi)
339 
340 #define FASTOP1(op) \
341 	FOP_START(op) \
342 	FOP1E(op##b, al) \
343 	FOP1E(op##w, ax) \
344 	FOP1E(op##l, eax) \
345 	ON64(FOP1E(op##q, rax))	\
346 	FOP_END
347 
348 /* 1-operand, using src2 (for MUL/DIV r/m) */
349 #define FASTOP1SRC2(op, name) \
350 	FOP_START(name) \
351 	FOP1E(op, cl) \
352 	FOP1E(op, cx) \
353 	FOP1E(op, ecx) \
354 	ON64(FOP1E(op, rcx)) \
355 	FOP_END
356 
357 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
358 #define FASTOP1SRC2EX(op, name) \
359 	FOP_START(name) \
360 	FOP1EEX(op, cl) \
361 	FOP1EEX(op, cx) \
362 	FOP1EEX(op, ecx) \
363 	ON64(FOP1EEX(op, rcx)) \
364 	FOP_END
365 
366 #define FOP2E(op,  dst, src)	   \
367 	__FOP_FUNC(#op "_" #dst "_" #src) \
368 	#op " %" #src ", %" #dst " \n\t" \
369 	__FOP_RET(#op "_" #dst "_" #src)
370 
371 #define FASTOP2(op) \
372 	FOP_START(op) \
373 	FOP2E(op##b, al, dl) \
374 	FOP2E(op##w, ax, dx) \
375 	FOP2E(op##l, eax, edx) \
376 	ON64(FOP2E(op##q, rax, rdx)) \
377 	FOP_END
378 
379 /* 2 operand, word only */
380 #define FASTOP2W(op) \
381 	FOP_START(op) \
382 	FOPNOP() \
383 	FOP2E(op##w, ax, dx) \
384 	FOP2E(op##l, eax, edx) \
385 	ON64(FOP2E(op##q, rax, rdx)) \
386 	FOP_END
387 
388 /* 2 operand, src is CL */
389 #define FASTOP2CL(op) \
390 	FOP_START(op) \
391 	FOP2E(op##b, al, cl) \
392 	FOP2E(op##w, ax, cl) \
393 	FOP2E(op##l, eax, cl) \
394 	ON64(FOP2E(op##q, rax, cl)) \
395 	FOP_END
396 
397 /* 2 operand, src and dest are reversed */
398 #define FASTOP2R(op, name) \
399 	FOP_START(name) \
400 	FOP2E(op##b, dl, al) \
401 	FOP2E(op##w, dx, ax) \
402 	FOP2E(op##l, edx, eax) \
403 	ON64(FOP2E(op##q, rdx, rax)) \
404 	FOP_END
405 
406 #define FOP3E(op,  dst, src, src2) \
407 	__FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \
408 	#op " %" #src2 ", %" #src ", %" #dst " \n\t"\
409 	__FOP_RET(#op "_" #dst "_" #src "_" #src2)
410 
411 /* 3-operand, word-only, src2=cl */
412 #define FASTOP3WCL(op) \
413 	FOP_START(op) \
414 	FOPNOP() \
415 	FOP3E(op##w, ax, dx, cl) \
416 	FOP3E(op##l, eax, edx, cl) \
417 	ON64(FOP3E(op##q, rax, rdx, cl)) \
418 	FOP_END
419 
420 /* Special case for SETcc - 1 instruction per cc */
421 #define FOP_SETCC(op) \
422 	FOP_FUNC(op) \
423 	#op " %al \n\t" \
424 	FOP_RET(op)
425 
426 FOP_START(setcc)
427 FOP_SETCC(seto)
428 FOP_SETCC(setno)
429 FOP_SETCC(setc)
430 FOP_SETCC(setnc)
431 FOP_SETCC(setz)
432 FOP_SETCC(setnz)
433 FOP_SETCC(setbe)
434 FOP_SETCC(setnbe)
435 FOP_SETCC(sets)
436 FOP_SETCC(setns)
437 FOP_SETCC(setp)
438 FOP_SETCC(setnp)
439 FOP_SETCC(setl)
440 FOP_SETCC(setnl)
441 FOP_SETCC(setle)
442 FOP_SETCC(setnle)
443 FOP_END;
444 
445 FOP_START(salc)
446 FOP_FUNC(salc)
447 "pushf; sbb %al, %al; popf \n\t"
448 FOP_RET(salc)
449 FOP_END;
450 
451 /*
452  * XXX: inoutclob user must know where the argument is being expanded.
453  *      Using asm goto would allow us to remove _fault.
454  */
455 #define asm_safe(insn, inoutclob...) \
456 ({ \
457 	int _fault = 0; \
458  \
459 	asm volatile("1:" insn "\n" \
460 	             "2:\n" \
461 		     _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \
462 	             : [_fault] "+r"(_fault) inoutclob ); \
463  \
464 	_fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \
465 })
466 
emulator_check_intercept(struct x86_emulate_ctxt * ctxt,enum x86_intercept intercept,enum x86_intercept_stage stage)467 static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
468 				    enum x86_intercept intercept,
469 				    enum x86_intercept_stage stage)
470 {
471 	struct x86_instruction_info info = {
472 		.intercept  = intercept,
473 		.rep_prefix = ctxt->rep_prefix,
474 		.modrm_mod  = ctxt->modrm_mod,
475 		.modrm_reg  = ctxt->modrm_reg,
476 		.modrm_rm   = ctxt->modrm_rm,
477 		.src_val    = ctxt->src.val64,
478 		.dst_val    = ctxt->dst.val64,
479 		.src_bytes  = ctxt->src.bytes,
480 		.dst_bytes  = ctxt->dst.bytes,
481 		.src_type   = ctxt->src.type,
482 		.dst_type   = ctxt->dst.type,
483 		.ad_bytes   = ctxt->ad_bytes,
484 		.rip	    = ctxt->eip,
485 		.next_rip   = ctxt->_eip,
486 	};
487 
488 	return ctxt->ops->intercept(ctxt, &info, stage);
489 }
490 
assign_masked(ulong * dest,ulong src,ulong mask)491 static void assign_masked(ulong *dest, ulong src, ulong mask)
492 {
493 	*dest = (*dest & ~mask) | (src & mask);
494 }
495 
assign_register(unsigned long * reg,u64 val,int bytes)496 static void assign_register(unsigned long *reg, u64 val, int bytes)
497 {
498 	/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
499 	switch (bytes) {
500 	case 1:
501 		*(u8 *)reg = (u8)val;
502 		break;
503 	case 2:
504 		*(u16 *)reg = (u16)val;
505 		break;
506 	case 4:
507 		*reg = (u32)val;
508 		break;	/* 64b: zero-extend */
509 	case 8:
510 		*reg = val;
511 		break;
512 	}
513 }
514 
ad_mask(struct x86_emulate_ctxt * ctxt)515 static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
516 {
517 	return (1UL << (ctxt->ad_bytes << 3)) - 1;
518 }
519 
stack_mask(struct x86_emulate_ctxt * ctxt)520 static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
521 {
522 	u16 sel;
523 	struct desc_struct ss;
524 
525 	if (ctxt->mode == X86EMUL_MODE_PROT64)
526 		return ~0UL;
527 	ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
528 	return ~0U >> ((ss.d ^ 1) * 16);  /* d=0: 0xffff; d=1: 0xffffffff */
529 }
530 
stack_size(struct x86_emulate_ctxt * ctxt)531 static int stack_size(struct x86_emulate_ctxt *ctxt)
532 {
533 	return (__fls(stack_mask(ctxt)) + 1) >> 3;
534 }
535 
536 /* Access/update address held in a register, based on addressing mode. */
537 static inline unsigned long
address_mask(struct x86_emulate_ctxt * ctxt,unsigned long reg)538 address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
539 {
540 	if (ctxt->ad_bytes == sizeof(unsigned long))
541 		return reg;
542 	else
543 		return reg & ad_mask(ctxt);
544 }
545 
546 static inline unsigned long
register_address(struct x86_emulate_ctxt * ctxt,int reg)547 register_address(struct x86_emulate_ctxt *ctxt, int reg)
548 {
549 	return address_mask(ctxt, reg_read(ctxt, reg));
550 }
551 
masked_increment(ulong * reg,ulong mask,int inc)552 static void masked_increment(ulong *reg, ulong mask, int inc)
553 {
554 	assign_masked(reg, *reg + inc, mask);
555 }
556 
557 static inline void
register_address_increment(struct x86_emulate_ctxt * ctxt,int reg,int inc)558 register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
559 {
560 	ulong *preg = reg_rmw(ctxt, reg);
561 
562 	assign_register(preg, *preg + inc, ctxt->ad_bytes);
563 }
564 
rsp_increment(struct x86_emulate_ctxt * ctxt,int inc)565 static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
566 {
567 	masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
568 }
569 
desc_limit_scaled(struct desc_struct * desc)570 static u32 desc_limit_scaled(struct desc_struct *desc)
571 {
572 	u32 limit = get_desc_limit(desc);
573 
574 	return desc->g ? (limit << 12) | 0xfff : limit;
575 }
576 
seg_base(struct x86_emulate_ctxt * ctxt,int seg)577 static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
578 {
579 	if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
580 		return 0;
581 
582 	return ctxt->ops->get_cached_segment_base(ctxt, seg);
583 }
584 
emulate_exception(struct x86_emulate_ctxt * ctxt,int vec,u32 error,bool valid)585 static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
586 			     u32 error, bool valid)
587 {
588 	if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt))
589 		return X86EMUL_UNHANDLEABLE;
590 
591 	ctxt->exception.vector = vec;
592 	ctxt->exception.error_code = error;
593 	ctxt->exception.error_code_valid = valid;
594 	return X86EMUL_PROPAGATE_FAULT;
595 }
596 
emulate_db(struct x86_emulate_ctxt * ctxt)597 static int emulate_db(struct x86_emulate_ctxt *ctxt)
598 {
599 	return emulate_exception(ctxt, DB_VECTOR, 0, false);
600 }
601 
emulate_gp(struct x86_emulate_ctxt * ctxt,int err)602 static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
603 {
604 	return emulate_exception(ctxt, GP_VECTOR, err, true);
605 }
606 
emulate_ss(struct x86_emulate_ctxt * ctxt,int err)607 static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
608 {
609 	return emulate_exception(ctxt, SS_VECTOR, err, true);
610 }
611 
emulate_ud(struct x86_emulate_ctxt * ctxt)612 static int emulate_ud(struct x86_emulate_ctxt *ctxt)
613 {
614 	return emulate_exception(ctxt, UD_VECTOR, 0, false);
615 }
616 
emulate_ts(struct x86_emulate_ctxt * ctxt,int err)617 static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
618 {
619 	return emulate_exception(ctxt, TS_VECTOR, err, true);
620 }
621 
emulate_de(struct x86_emulate_ctxt * ctxt)622 static int emulate_de(struct x86_emulate_ctxt *ctxt)
623 {
624 	return emulate_exception(ctxt, DE_VECTOR, 0, false);
625 }
626 
emulate_nm(struct x86_emulate_ctxt * ctxt)627 static int emulate_nm(struct x86_emulate_ctxt *ctxt)
628 {
629 	return emulate_exception(ctxt, NM_VECTOR, 0, false);
630 }
631 
get_segment_selector(struct x86_emulate_ctxt * ctxt,unsigned seg)632 static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
633 {
634 	u16 selector;
635 	struct desc_struct desc;
636 
637 	ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
638 	return selector;
639 }
640 
set_segment_selector(struct x86_emulate_ctxt * ctxt,u16 selector,unsigned seg)641 static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
642 				 unsigned seg)
643 {
644 	u16 dummy;
645 	u32 base3;
646 	struct desc_struct desc;
647 
648 	ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
649 	ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
650 }
651 
ctxt_virt_addr_bits(struct x86_emulate_ctxt * ctxt)652 static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt)
653 {
654 	return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48;
655 }
656 
emul_is_noncanonical_address(u64 la,struct x86_emulate_ctxt * ctxt,unsigned int flags)657 static inline bool emul_is_noncanonical_address(u64 la,
658 						struct x86_emulate_ctxt *ctxt,
659 						unsigned int flags)
660 {
661 	return !ctxt->ops->is_canonical_addr(ctxt, la, flags);
662 }
663 
664 /*
665  * x86 defines three classes of vector instructions: explicitly
666  * aligned, explicitly unaligned, and the rest, which change behaviour
667  * depending on whether they're AVX encoded or not.
668  *
669  * Also included is CMPXCHG16B which is not a vector instruction, yet it is
670  * subject to the same check.  FXSAVE and FXRSTOR are checked here too as their
671  * 512 bytes of data must be aligned to a 16 byte boundary.
672  */
insn_alignment(struct x86_emulate_ctxt * ctxt,unsigned size)673 static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size)
674 {
675 	u64 alignment = ctxt->d & AlignMask;
676 
677 	if (likely(size < 16))
678 		return 1;
679 
680 	switch (alignment) {
681 	case Unaligned:
682 	case Avx:
683 		return 1;
684 	case Aligned16:
685 		return 16;
686 	case Aligned:
687 	default:
688 		return size;
689 	}
690 }
691 
__linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned * max_size,unsigned size,enum x86emul_mode mode,ulong * linear,unsigned int flags)692 static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
693 				       struct segmented_address addr,
694 				       unsigned *max_size, unsigned size,
695 				       enum x86emul_mode mode, ulong *linear,
696 				       unsigned int flags)
697 {
698 	struct desc_struct desc;
699 	bool usable;
700 	ulong la;
701 	u32 lim;
702 	u16 sel;
703 	u8  va_bits;
704 
705 	la = seg_base(ctxt, addr.seg) + addr.ea;
706 	*max_size = 0;
707 	switch (mode) {
708 	case X86EMUL_MODE_PROT64:
709 		*linear = la = ctxt->ops->get_untagged_addr(ctxt, la, flags);
710 		va_bits = ctxt_virt_addr_bits(ctxt);
711 		if (!__is_canonical_address(la, va_bits))
712 			goto bad;
713 
714 		*max_size = min_t(u64, ~0u, (1ull << va_bits) - la);
715 		if (size > *max_size)
716 			goto bad;
717 		break;
718 	default:
719 		*linear = la = (u32)la;
720 		usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
721 						addr.seg);
722 		if (!usable)
723 			goto bad;
724 		/* code segment in protected mode or read-only data segment */
725 		if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) &&
726 		    (flags & X86EMUL_F_WRITE))
727 			goto bad;
728 		/* unreadable code segment */
729 		if (!(flags & X86EMUL_F_FETCH) && (desc.type & 8) && !(desc.type & 2))
730 			goto bad;
731 		lim = desc_limit_scaled(&desc);
732 		if (!(desc.type & 8) && (desc.type & 4)) {
733 			/* expand-down segment */
734 			if (addr.ea <= lim)
735 				goto bad;
736 			lim = desc.d ? 0xffffffff : 0xffff;
737 		}
738 		if (addr.ea > lim)
739 			goto bad;
740 		if (lim == 0xffffffff)
741 			*max_size = ~0u;
742 		else {
743 			*max_size = (u64)lim + 1 - addr.ea;
744 			if (size > *max_size)
745 				goto bad;
746 		}
747 		break;
748 	}
749 	if (la & (insn_alignment(ctxt, size) - 1))
750 		return emulate_gp(ctxt, 0);
751 	return X86EMUL_CONTINUE;
752 bad:
753 	if (addr.seg == VCPU_SREG_SS)
754 		return emulate_ss(ctxt, 0);
755 	else
756 		return emulate_gp(ctxt, 0);
757 }
758 
linearize(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,unsigned size,bool write,ulong * linear)759 static int linearize(struct x86_emulate_ctxt *ctxt,
760 		     struct segmented_address addr,
761 		     unsigned size, bool write,
762 		     ulong *linear)
763 {
764 	unsigned max_size;
765 	return __linearize(ctxt, addr, &max_size, size, ctxt->mode, linear,
766 			   write ? X86EMUL_F_WRITE : 0);
767 }
768 
assign_eip(struct x86_emulate_ctxt * ctxt,ulong dst)769 static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst)
770 {
771 	ulong linear;
772 	int rc;
773 	unsigned max_size;
774 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
775 					   .ea = dst };
776 
777 	if (ctxt->op_bytes != sizeof(unsigned long))
778 		addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
779 	rc = __linearize(ctxt, addr, &max_size, 1, ctxt->mode, &linear,
780 			 X86EMUL_F_FETCH);
781 	if (rc == X86EMUL_CONTINUE)
782 		ctxt->_eip = addr.ea;
783 	return rc;
784 }
785 
emulator_recalc_and_set_mode(struct x86_emulate_ctxt * ctxt)786 static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt)
787 {
788 	u64 efer;
789 	struct desc_struct cs;
790 	u16 selector;
791 	u32 base3;
792 
793 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
794 
795 	if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) {
796 		/* Real mode. cpu must not have long mode active */
797 		if (efer & EFER_LMA)
798 			return X86EMUL_UNHANDLEABLE;
799 		ctxt->mode = X86EMUL_MODE_REAL;
800 		return X86EMUL_CONTINUE;
801 	}
802 
803 	if (ctxt->eflags & X86_EFLAGS_VM) {
804 		/* Protected/VM86 mode. cpu must not have long mode active */
805 		if (efer & EFER_LMA)
806 			return X86EMUL_UNHANDLEABLE;
807 		ctxt->mode = X86EMUL_MODE_VM86;
808 		return X86EMUL_CONTINUE;
809 	}
810 
811 	if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS))
812 		return X86EMUL_UNHANDLEABLE;
813 
814 	if (efer & EFER_LMA) {
815 		if (cs.l) {
816 			/* Proper long mode */
817 			ctxt->mode = X86EMUL_MODE_PROT64;
818 		} else if (cs.d) {
819 			/* 32 bit compatibility mode*/
820 			ctxt->mode = X86EMUL_MODE_PROT32;
821 		} else {
822 			ctxt->mode = X86EMUL_MODE_PROT16;
823 		}
824 	} else {
825 		/* Legacy 32 bit / 16 bit mode */
826 		ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
827 	}
828 
829 	return X86EMUL_CONTINUE;
830 }
831 
assign_eip_near(struct x86_emulate_ctxt * ctxt,ulong dst)832 static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
833 {
834 	return assign_eip(ctxt, dst);
835 }
836 
assign_eip_far(struct x86_emulate_ctxt * ctxt,ulong dst)837 static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst)
838 {
839 	int rc = emulator_recalc_and_set_mode(ctxt);
840 
841 	if (rc != X86EMUL_CONTINUE)
842 		return rc;
843 
844 	return assign_eip(ctxt, dst);
845 }
846 
jmp_rel(struct x86_emulate_ctxt * ctxt,int rel)847 static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
848 {
849 	return assign_eip_near(ctxt, ctxt->_eip + rel);
850 }
851 
linear_read_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned size)852 static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear,
853 			      void *data, unsigned size)
854 {
855 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true);
856 }
857 
linear_write_system(struct x86_emulate_ctxt * ctxt,ulong linear,void * data,unsigned int size)858 static int linear_write_system(struct x86_emulate_ctxt *ctxt,
859 			       ulong linear, void *data,
860 			       unsigned int size)
861 {
862 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true);
863 }
864 
segmented_read_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)865 static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
866 			      struct segmented_address addr,
867 			      void *data,
868 			      unsigned size)
869 {
870 	int rc;
871 	ulong linear;
872 
873 	rc = linearize(ctxt, addr, size, false, &linear);
874 	if (rc != X86EMUL_CONTINUE)
875 		return rc;
876 	return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false);
877 }
878 
segmented_write_std(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned int size)879 static int segmented_write_std(struct x86_emulate_ctxt *ctxt,
880 			       struct segmented_address addr,
881 			       void *data,
882 			       unsigned int size)
883 {
884 	int rc;
885 	ulong linear;
886 
887 	rc = linearize(ctxt, addr, size, true, &linear);
888 	if (rc != X86EMUL_CONTINUE)
889 		return rc;
890 	return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false);
891 }
892 
893 /*
894  * Prefetch the remaining bytes of the instruction without crossing page
895  * boundary if they are not in fetch_cache yet.
896  */
__do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,int op_size)897 static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
898 {
899 	int rc;
900 	unsigned size, max_size;
901 	unsigned long linear;
902 	int cur_size = ctxt->fetch.end - ctxt->fetch.data;
903 	struct segmented_address addr = { .seg = VCPU_SREG_CS,
904 					   .ea = ctxt->eip + cur_size };
905 
906 	/*
907 	 * We do not know exactly how many bytes will be needed, and
908 	 * __linearize is expensive, so fetch as much as possible.  We
909 	 * just have to avoid going beyond the 15 byte limit, the end
910 	 * of the segment, or the end of the page.
911 	 *
912 	 * __linearize is called with size 0 so that it does not do any
913 	 * boundary check itself.  Instead, we use max_size to check
914 	 * against op_size.
915 	 */
916 	rc = __linearize(ctxt, addr, &max_size, 0, ctxt->mode, &linear,
917 			 X86EMUL_F_FETCH);
918 	if (unlikely(rc != X86EMUL_CONTINUE))
919 		return rc;
920 
921 	size = min_t(unsigned, 15UL ^ cur_size, max_size);
922 	size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
923 
924 	/*
925 	 * One instruction can only straddle two pages,
926 	 * and one has been loaded at the beginning of
927 	 * x86_decode_insn.  So, if not enough bytes
928 	 * still, we must have hit the 15-byte boundary.
929 	 */
930 	if (unlikely(size < op_size))
931 		return emulate_gp(ctxt, 0);
932 
933 	rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
934 			      size, &ctxt->exception);
935 	if (unlikely(rc != X86EMUL_CONTINUE))
936 		return rc;
937 	ctxt->fetch.end += size;
938 	return X86EMUL_CONTINUE;
939 }
940 
do_insn_fetch_bytes(struct x86_emulate_ctxt * ctxt,unsigned size)941 static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
942 					       unsigned size)
943 {
944 	unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
945 
946 	if (unlikely(done_size < size))
947 		return __do_insn_fetch_bytes(ctxt, size - done_size);
948 	else
949 		return X86EMUL_CONTINUE;
950 }
951 
952 /* Fetch next part of the instruction being emulated. */
953 #define insn_fetch(_type, _ctxt)					\
954 ({	_type _x;							\
955 									\
956 	rc = do_insn_fetch_bytes(_ctxt, sizeof(_type));			\
957 	if (rc != X86EMUL_CONTINUE)					\
958 		goto done;						\
959 	ctxt->_eip += sizeof(_type);					\
960 	memcpy(&_x, ctxt->fetch.ptr, sizeof(_type));			\
961 	ctxt->fetch.ptr += sizeof(_type);				\
962 	_x;								\
963 })
964 
965 #define insn_fetch_arr(_arr, _size, _ctxt)				\
966 ({									\
967 	rc = do_insn_fetch_bytes(_ctxt, _size);				\
968 	if (rc != X86EMUL_CONTINUE)					\
969 		goto done;						\
970 	ctxt->_eip += (_size);						\
971 	memcpy(_arr, ctxt->fetch.ptr, _size);				\
972 	ctxt->fetch.ptr += (_size);					\
973 })
974 
975 /*
976  * Given the 'reg' portion of a ModRM byte, and a register block, return a
977  * pointer into the block that addresses the relevant register.
978  * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
979  */
decode_register(struct x86_emulate_ctxt * ctxt,u8 modrm_reg,int byteop)980 static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
981 			     int byteop)
982 {
983 	void *p;
984 	int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
985 
986 	if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
987 		p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
988 	else
989 		p = reg_rmw(ctxt, modrm_reg);
990 	return p;
991 }
992 
read_descriptor(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,u16 * size,unsigned long * address,int op_bytes)993 static int read_descriptor(struct x86_emulate_ctxt *ctxt,
994 			   struct segmented_address addr,
995 			   u16 *size, unsigned long *address, int op_bytes)
996 {
997 	int rc;
998 
999 	if (op_bytes == 2)
1000 		op_bytes = 3;
1001 	*address = 0;
1002 	rc = segmented_read_std(ctxt, addr, size, 2);
1003 	if (rc != X86EMUL_CONTINUE)
1004 		return rc;
1005 	addr.ea += 2;
1006 	rc = segmented_read_std(ctxt, addr, address, op_bytes);
1007 	return rc;
1008 }
1009 
1010 FASTOP2(add);
1011 FASTOP2(or);
1012 FASTOP2(adc);
1013 FASTOP2(sbb);
1014 FASTOP2(and);
1015 FASTOP2(sub);
1016 FASTOP2(xor);
1017 FASTOP2(cmp);
1018 FASTOP2(test);
1019 
1020 FASTOP1SRC2(mul, mul_ex);
1021 FASTOP1SRC2(imul, imul_ex);
1022 FASTOP1SRC2EX(div, div_ex);
1023 FASTOP1SRC2EX(idiv, idiv_ex);
1024 
1025 FASTOP3WCL(shld);
1026 FASTOP3WCL(shrd);
1027 
1028 FASTOP2W(imul);
1029 
1030 FASTOP1(not);
1031 FASTOP1(neg);
1032 FASTOP1(inc);
1033 FASTOP1(dec);
1034 
1035 FASTOP2CL(rol);
1036 FASTOP2CL(ror);
1037 FASTOP2CL(rcl);
1038 FASTOP2CL(rcr);
1039 FASTOP2CL(shl);
1040 FASTOP2CL(shr);
1041 FASTOP2CL(sar);
1042 
1043 FASTOP2W(bsf);
1044 FASTOP2W(bsr);
1045 FASTOP2W(bt);
1046 FASTOP2W(bts);
1047 FASTOP2W(btr);
1048 FASTOP2W(btc);
1049 
1050 FASTOP2(xadd);
1051 
1052 FASTOP2R(cmp, cmp_r);
1053 
em_bsf_c(struct x86_emulate_ctxt * ctxt)1054 static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
1055 {
1056 	/* If src is zero, do not writeback, but update flags */
1057 	if (ctxt->src.val == 0)
1058 		ctxt->dst.type = OP_NONE;
1059 	return fastop(ctxt, em_bsf);
1060 }
1061 
em_bsr_c(struct x86_emulate_ctxt * ctxt)1062 static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
1063 {
1064 	/* If src is zero, do not writeback, but update flags */
1065 	if (ctxt->src.val == 0)
1066 		ctxt->dst.type = OP_NONE;
1067 	return fastop(ctxt, em_bsr);
1068 }
1069 
test_cc(unsigned int condition,unsigned long flags)1070 static __always_inline u8 test_cc(unsigned int condition, unsigned long flags)
1071 {
1072 	u8 rc;
1073 	void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf);
1074 
1075 	flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
1076 	asm("push %[flags]; popf; " CALL_NOSPEC
1077 	    : "=a"(rc), ASM_CALL_CONSTRAINT : [thunk_target]"r"(fop), [flags]"r"(flags));
1078 	return rc;
1079 }
1080 
fetch_register_operand(struct operand * op)1081 static void fetch_register_operand(struct operand *op)
1082 {
1083 	switch (op->bytes) {
1084 	case 1:
1085 		op->val = *(u8 *)op->addr.reg;
1086 		break;
1087 	case 2:
1088 		op->val = *(u16 *)op->addr.reg;
1089 		break;
1090 	case 4:
1091 		op->val = *(u32 *)op->addr.reg;
1092 		break;
1093 	case 8:
1094 		op->val = *(u64 *)op->addr.reg;
1095 		break;
1096 	}
1097 }
1098 
em_fninit(struct x86_emulate_ctxt * ctxt)1099 static int em_fninit(struct x86_emulate_ctxt *ctxt)
1100 {
1101 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1102 		return emulate_nm(ctxt);
1103 
1104 	kvm_fpu_get();
1105 	asm volatile("fninit");
1106 	kvm_fpu_put();
1107 	return X86EMUL_CONTINUE;
1108 }
1109 
em_fnstcw(struct x86_emulate_ctxt * ctxt)1110 static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
1111 {
1112 	u16 fcw;
1113 
1114 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1115 		return emulate_nm(ctxt);
1116 
1117 	kvm_fpu_get();
1118 	asm volatile("fnstcw %0": "+m"(fcw));
1119 	kvm_fpu_put();
1120 
1121 	ctxt->dst.val = fcw;
1122 
1123 	return X86EMUL_CONTINUE;
1124 }
1125 
em_fnstsw(struct x86_emulate_ctxt * ctxt)1126 static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
1127 {
1128 	u16 fsw;
1129 
1130 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
1131 		return emulate_nm(ctxt);
1132 
1133 	kvm_fpu_get();
1134 	asm volatile("fnstsw %0": "+m"(fsw));
1135 	kvm_fpu_put();
1136 
1137 	ctxt->dst.val = fsw;
1138 
1139 	return X86EMUL_CONTINUE;
1140 }
1141 
decode_register_operand(struct x86_emulate_ctxt * ctxt,struct operand * op)1142 static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
1143 				    struct operand *op)
1144 {
1145 	unsigned int reg;
1146 
1147 	if (ctxt->d & ModRM)
1148 		reg = ctxt->modrm_reg;
1149 	else
1150 		reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
1151 
1152 	if (ctxt->d & Sse) {
1153 		op->type = OP_XMM;
1154 		op->bytes = 16;
1155 		op->addr.xmm = reg;
1156 		kvm_read_sse_reg(reg, &op->vec_val);
1157 		return;
1158 	}
1159 	if (ctxt->d & Mmx) {
1160 		reg &= 7;
1161 		op->type = OP_MM;
1162 		op->bytes = 8;
1163 		op->addr.mm = reg;
1164 		return;
1165 	}
1166 
1167 	op->type = OP_REG;
1168 	op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1169 	op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
1170 
1171 	fetch_register_operand(op);
1172 	op->orig_val = op->val;
1173 }
1174 
adjust_modrm_seg(struct x86_emulate_ctxt * ctxt,int base_reg)1175 static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
1176 {
1177 	if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
1178 		ctxt->modrm_seg = VCPU_SREG_SS;
1179 }
1180 
decode_modrm(struct x86_emulate_ctxt * ctxt,struct operand * op)1181 static int decode_modrm(struct x86_emulate_ctxt *ctxt,
1182 			struct operand *op)
1183 {
1184 	u8 sib;
1185 	int index_reg, base_reg, scale;
1186 	int rc = X86EMUL_CONTINUE;
1187 	ulong modrm_ea = 0;
1188 
1189 	ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
1190 	index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
1191 	base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
1192 
1193 	ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
1194 	ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
1195 	ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
1196 	ctxt->modrm_seg = VCPU_SREG_DS;
1197 
1198 	if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
1199 		op->type = OP_REG;
1200 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
1201 		op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
1202 				ctxt->d & ByteOp);
1203 		if (ctxt->d & Sse) {
1204 			op->type = OP_XMM;
1205 			op->bytes = 16;
1206 			op->addr.xmm = ctxt->modrm_rm;
1207 			kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val);
1208 			return rc;
1209 		}
1210 		if (ctxt->d & Mmx) {
1211 			op->type = OP_MM;
1212 			op->bytes = 8;
1213 			op->addr.mm = ctxt->modrm_rm & 7;
1214 			return rc;
1215 		}
1216 		fetch_register_operand(op);
1217 		return rc;
1218 	}
1219 
1220 	op->type = OP_MEM;
1221 
1222 	if (ctxt->ad_bytes == 2) {
1223 		unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
1224 		unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
1225 		unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
1226 		unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
1227 
1228 		/* 16-bit ModR/M decode. */
1229 		switch (ctxt->modrm_mod) {
1230 		case 0:
1231 			if (ctxt->modrm_rm == 6)
1232 				modrm_ea += insn_fetch(u16, ctxt);
1233 			break;
1234 		case 1:
1235 			modrm_ea += insn_fetch(s8, ctxt);
1236 			break;
1237 		case 2:
1238 			modrm_ea += insn_fetch(u16, ctxt);
1239 			break;
1240 		}
1241 		switch (ctxt->modrm_rm) {
1242 		case 0:
1243 			modrm_ea += bx + si;
1244 			break;
1245 		case 1:
1246 			modrm_ea += bx + di;
1247 			break;
1248 		case 2:
1249 			modrm_ea += bp + si;
1250 			break;
1251 		case 3:
1252 			modrm_ea += bp + di;
1253 			break;
1254 		case 4:
1255 			modrm_ea += si;
1256 			break;
1257 		case 5:
1258 			modrm_ea += di;
1259 			break;
1260 		case 6:
1261 			if (ctxt->modrm_mod != 0)
1262 				modrm_ea += bp;
1263 			break;
1264 		case 7:
1265 			modrm_ea += bx;
1266 			break;
1267 		}
1268 		if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
1269 		    (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
1270 			ctxt->modrm_seg = VCPU_SREG_SS;
1271 		modrm_ea = (u16)modrm_ea;
1272 	} else {
1273 		/* 32/64-bit ModR/M decode. */
1274 		if ((ctxt->modrm_rm & 7) == 4) {
1275 			sib = insn_fetch(u8, ctxt);
1276 			index_reg |= (sib >> 3) & 7;
1277 			base_reg |= sib & 7;
1278 			scale = sib >> 6;
1279 
1280 			if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
1281 				modrm_ea += insn_fetch(s32, ctxt);
1282 			else {
1283 				modrm_ea += reg_read(ctxt, base_reg);
1284 				adjust_modrm_seg(ctxt, base_reg);
1285 				/* Increment ESP on POP [ESP] */
1286 				if ((ctxt->d & IncSP) &&
1287 				    base_reg == VCPU_REGS_RSP)
1288 					modrm_ea += ctxt->op_bytes;
1289 			}
1290 			if (index_reg != 4)
1291 				modrm_ea += reg_read(ctxt, index_reg) << scale;
1292 		} else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
1293 			modrm_ea += insn_fetch(s32, ctxt);
1294 			if (ctxt->mode == X86EMUL_MODE_PROT64)
1295 				ctxt->rip_relative = 1;
1296 		} else {
1297 			base_reg = ctxt->modrm_rm;
1298 			modrm_ea += reg_read(ctxt, base_reg);
1299 			adjust_modrm_seg(ctxt, base_reg);
1300 		}
1301 		switch (ctxt->modrm_mod) {
1302 		case 1:
1303 			modrm_ea += insn_fetch(s8, ctxt);
1304 			break;
1305 		case 2:
1306 			modrm_ea += insn_fetch(s32, ctxt);
1307 			break;
1308 		}
1309 	}
1310 	op->addr.mem.ea = modrm_ea;
1311 	if (ctxt->ad_bytes != 8)
1312 		ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
1313 
1314 done:
1315 	return rc;
1316 }
1317 
decode_abs(struct x86_emulate_ctxt * ctxt,struct operand * op)1318 static int decode_abs(struct x86_emulate_ctxt *ctxt,
1319 		      struct operand *op)
1320 {
1321 	int rc = X86EMUL_CONTINUE;
1322 
1323 	op->type = OP_MEM;
1324 	switch (ctxt->ad_bytes) {
1325 	case 2:
1326 		op->addr.mem.ea = insn_fetch(u16, ctxt);
1327 		break;
1328 	case 4:
1329 		op->addr.mem.ea = insn_fetch(u32, ctxt);
1330 		break;
1331 	case 8:
1332 		op->addr.mem.ea = insn_fetch(u64, ctxt);
1333 		break;
1334 	}
1335 done:
1336 	return rc;
1337 }
1338 
fetch_bit_operand(struct x86_emulate_ctxt * ctxt)1339 static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
1340 {
1341 	long sv = 0, mask;
1342 
1343 	if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
1344 		mask = ~((long)ctxt->dst.bytes * 8 - 1);
1345 
1346 		if (ctxt->src.bytes == 2)
1347 			sv = (s16)ctxt->src.val & (s16)mask;
1348 		else if (ctxt->src.bytes == 4)
1349 			sv = (s32)ctxt->src.val & (s32)mask;
1350 		else
1351 			sv = (s64)ctxt->src.val & (s64)mask;
1352 
1353 		ctxt->dst.addr.mem.ea = address_mask(ctxt,
1354 					   ctxt->dst.addr.mem.ea + (sv >> 3));
1355 	}
1356 
1357 	/* only subword offset */
1358 	ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
1359 }
1360 
read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * dest,unsigned size)1361 static int read_emulated(struct x86_emulate_ctxt *ctxt,
1362 			 unsigned long addr, void *dest, unsigned size)
1363 {
1364 	int rc;
1365 	struct read_cache *mc = &ctxt->mem_read;
1366 
1367 	if (mc->pos < mc->end)
1368 		goto read_cached;
1369 
1370 	if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt))
1371 		return X86EMUL_UNHANDLEABLE;
1372 
1373 	rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
1374 				      &ctxt->exception);
1375 	if (rc != X86EMUL_CONTINUE)
1376 		return rc;
1377 
1378 	mc->end += size;
1379 
1380 read_cached:
1381 	memcpy(dest, mc->data + mc->pos, size);
1382 	mc->pos += size;
1383 	return X86EMUL_CONTINUE;
1384 }
1385 
segmented_read(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,void * data,unsigned size)1386 static int segmented_read(struct x86_emulate_ctxt *ctxt,
1387 			  struct segmented_address addr,
1388 			  void *data,
1389 			  unsigned size)
1390 {
1391 	int rc;
1392 	ulong linear;
1393 
1394 	rc = linearize(ctxt, addr, size, false, &linear);
1395 	if (rc != X86EMUL_CONTINUE)
1396 		return rc;
1397 	return read_emulated(ctxt, linear, data, size);
1398 }
1399 
segmented_write(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * data,unsigned size)1400 static int segmented_write(struct x86_emulate_ctxt *ctxt,
1401 			   struct segmented_address addr,
1402 			   const void *data,
1403 			   unsigned size)
1404 {
1405 	int rc;
1406 	ulong linear;
1407 
1408 	rc = linearize(ctxt, addr, size, true, &linear);
1409 	if (rc != X86EMUL_CONTINUE)
1410 		return rc;
1411 	return ctxt->ops->write_emulated(ctxt, linear, data, size,
1412 					 &ctxt->exception);
1413 }
1414 
segmented_cmpxchg(struct x86_emulate_ctxt * ctxt,struct segmented_address addr,const void * orig_data,const void * data,unsigned size)1415 static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
1416 			     struct segmented_address addr,
1417 			     const void *orig_data, const void *data,
1418 			     unsigned size)
1419 {
1420 	int rc;
1421 	ulong linear;
1422 
1423 	rc = linearize(ctxt, addr, size, true, &linear);
1424 	if (rc != X86EMUL_CONTINUE)
1425 		return rc;
1426 	return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
1427 					   size, &ctxt->exception);
1428 }
1429 
pio_in_emulated(struct x86_emulate_ctxt * ctxt,unsigned int size,unsigned short port,void * dest)1430 static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
1431 			   unsigned int size, unsigned short port,
1432 			   void *dest)
1433 {
1434 	struct read_cache *rc = &ctxt->io_read;
1435 
1436 	if (rc->pos == rc->end) { /* refill pio read ahead */
1437 		unsigned int in_page, n;
1438 		unsigned int count = ctxt->rep_prefix ?
1439 			address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
1440 		in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
1441 			offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
1442 			PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
1443 		n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
1444 		if (n == 0)
1445 			n = 1;
1446 		rc->pos = rc->end = 0;
1447 		if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
1448 			return 0;
1449 		rc->end = n * size;
1450 	}
1451 
1452 	if (ctxt->rep_prefix && (ctxt->d & String) &&
1453 	    !(ctxt->eflags & X86_EFLAGS_DF)) {
1454 		ctxt->dst.data = rc->data + rc->pos;
1455 		ctxt->dst.type = OP_MEM_STR;
1456 		ctxt->dst.count = (rc->end - rc->pos) / size;
1457 		rc->pos = rc->end;
1458 	} else {
1459 		memcpy(dest, rc->data + rc->pos, size);
1460 		rc->pos += size;
1461 	}
1462 	return 1;
1463 }
1464 
read_interrupt_descriptor(struct x86_emulate_ctxt * ctxt,u16 index,struct desc_struct * desc)1465 static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
1466 				     u16 index, struct desc_struct *desc)
1467 {
1468 	struct desc_ptr dt;
1469 	ulong addr;
1470 
1471 	ctxt->ops->get_idt(ctxt, &dt);
1472 
1473 	if (dt.size < index * 8 + 7)
1474 		return emulate_gp(ctxt, index << 3 | 0x2);
1475 
1476 	addr = dt.address + index * 8;
1477 	return linear_read_system(ctxt, addr, desc, sizeof(*desc));
1478 }
1479 
get_descriptor_table_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_ptr * dt)1480 static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
1481 				     u16 selector, struct desc_ptr *dt)
1482 {
1483 	const struct x86_emulate_ops *ops = ctxt->ops;
1484 	u32 base3 = 0;
1485 
1486 	if (selector & 1 << 2) {
1487 		struct desc_struct desc;
1488 		u16 sel;
1489 
1490 		memset(dt, 0, sizeof(*dt));
1491 		if (!ops->get_segment(ctxt, &sel, &desc, &base3,
1492 				      VCPU_SREG_LDTR))
1493 			return;
1494 
1495 		dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
1496 		dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
1497 	} else
1498 		ops->get_gdt(ctxt, dt);
1499 }
1500 
get_descriptor_ptr(struct x86_emulate_ctxt * ctxt,u16 selector,ulong * desc_addr_p)1501 static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
1502 			      u16 selector, ulong *desc_addr_p)
1503 {
1504 	struct desc_ptr dt;
1505 	u16 index = selector >> 3;
1506 	ulong addr;
1507 
1508 	get_descriptor_table_ptr(ctxt, selector, &dt);
1509 
1510 	if (dt.size < index * 8 + 7)
1511 		return emulate_gp(ctxt, selector & 0xfffc);
1512 
1513 	addr = dt.address + index * 8;
1514 
1515 #ifdef CONFIG_X86_64
1516 	if (addr >> 32 != 0) {
1517 		u64 efer = 0;
1518 
1519 		ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1520 		if (!(efer & EFER_LMA))
1521 			addr &= (u32)-1;
1522 	}
1523 #endif
1524 
1525 	*desc_addr_p = addr;
1526 	return X86EMUL_CONTINUE;
1527 }
1528 
1529 /* allowed just for 8 bytes segments */
read_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,ulong * desc_addr_p)1530 static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1531 				   u16 selector, struct desc_struct *desc,
1532 				   ulong *desc_addr_p)
1533 {
1534 	int rc;
1535 
1536 	rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
1537 	if (rc != X86EMUL_CONTINUE)
1538 		return rc;
1539 
1540 	return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc));
1541 }
1542 
1543 /* allowed just for 8 bytes segments */
write_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc)1544 static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1545 				    u16 selector, struct desc_struct *desc)
1546 {
1547 	int rc;
1548 	ulong addr;
1549 
1550 	rc = get_descriptor_ptr(ctxt, selector, &addr);
1551 	if (rc != X86EMUL_CONTINUE)
1552 		return rc;
1553 
1554 	return linear_write_system(ctxt, addr, desc, sizeof(*desc));
1555 }
1556 
emulator_is_ssp_invalid(struct x86_emulate_ctxt * ctxt,u8 cpl)1557 static bool emulator_is_ssp_invalid(struct x86_emulate_ctxt *ctxt, u8 cpl)
1558 {
1559 	const u32 MSR_IA32_X_CET = cpl == 3 ? MSR_IA32_U_CET : MSR_IA32_S_CET;
1560 	u64 efer = 0, cet = 0, ssp = 0;
1561 
1562 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET))
1563 		return false;
1564 
1565 	if (ctxt->ops->get_msr(ctxt, MSR_EFER, &efer))
1566 		return true;
1567 
1568 	/* SSP is guaranteed to be valid if the vCPU was already in 32-bit mode. */
1569 	if (!(efer & EFER_LMA))
1570 		return false;
1571 
1572 	if (ctxt->ops->get_msr(ctxt, MSR_IA32_X_CET, &cet))
1573 		return true;
1574 
1575 	if (!(cet & CET_SHSTK_EN))
1576 		return false;
1577 
1578 	if (ctxt->ops->get_msr(ctxt, MSR_KVM_INTERNAL_GUEST_SSP, &ssp))
1579 		return true;
1580 
1581 	/*
1582 	 * On transfer from 64-bit mode to compatibility mode, SSP[63:32] must
1583 	 * be 0, i.e. SSP must be a 32-bit value outside of 64-bit mode.
1584 	 */
1585 	return ssp >> 32;
1586 }
1587 
__load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg,u8 cpl,enum x86_transfer_type transfer,struct desc_struct * desc)1588 static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1589 				     u16 selector, int seg, u8 cpl,
1590 				     enum x86_transfer_type transfer,
1591 				     struct desc_struct *desc)
1592 {
1593 	struct desc_struct seg_desc, old_desc;
1594 	u8 dpl, rpl;
1595 	unsigned err_vec = GP_VECTOR;
1596 	u32 err_code = 0;
1597 	bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
1598 	ulong desc_addr;
1599 	int ret;
1600 	u16 dummy;
1601 	u32 base3 = 0;
1602 
1603 	memset(&seg_desc, 0, sizeof(seg_desc));
1604 
1605 	if (ctxt->mode == X86EMUL_MODE_REAL) {
1606 		/* set real mode segment descriptor (keep limit etc. for
1607 		 * unreal mode) */
1608 		ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
1609 		set_desc_base(&seg_desc, selector << 4);
1610 		goto load;
1611 	} else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
1612 		/* VM86 needs a clean new segment descriptor */
1613 		set_desc_base(&seg_desc, selector << 4);
1614 		set_desc_limit(&seg_desc, 0xffff);
1615 		seg_desc.type = 3;
1616 		seg_desc.p = 1;
1617 		seg_desc.s = 1;
1618 		seg_desc.dpl = 3;
1619 		goto load;
1620 	}
1621 
1622 	rpl = selector & 3;
1623 
1624 	/* TR should be in GDT only */
1625 	if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
1626 		goto exception;
1627 
1628 	/* NULL selector is not valid for TR, CS and (except for long mode) SS */
1629 	if (null_selector) {
1630 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR)
1631 			goto exception;
1632 
1633 		if (seg == VCPU_SREG_SS) {
1634 			if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl)
1635 				goto exception;
1636 
1637 			/*
1638 			 * ctxt->ops->set_segment expects the CPL to be in
1639 			 * SS.DPL, so fake an expand-up 32-bit data segment.
1640 			 */
1641 			seg_desc.type = 3;
1642 			seg_desc.p = 1;
1643 			seg_desc.s = 1;
1644 			seg_desc.dpl = cpl;
1645 			seg_desc.d = 1;
1646 			seg_desc.g = 1;
1647 		}
1648 
1649 		/* Skip all following checks */
1650 		goto load;
1651 	}
1652 
1653 	ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
1654 	if (ret != X86EMUL_CONTINUE)
1655 		return ret;
1656 
1657 	err_code = selector & 0xfffc;
1658 	err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
1659 							   GP_VECTOR;
1660 
1661 	/* can't load system descriptor into segment selector */
1662 	if (seg <= VCPU_SREG_GS && !seg_desc.s) {
1663 		if (transfer == X86_TRANSFER_CALL_JMP)
1664 			return X86EMUL_UNHANDLEABLE;
1665 		goto exception;
1666 	}
1667 
1668 	dpl = seg_desc.dpl;
1669 
1670 	switch (seg) {
1671 	case VCPU_SREG_SS:
1672 		/*
1673 		 * segment is not a writable data segment or segment
1674 		 * selector's RPL != CPL or DPL != CPL
1675 		 */
1676 		if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
1677 			goto exception;
1678 		break;
1679 	case VCPU_SREG_CS:
1680 		/*
1681 		 * KVM uses "none" when loading CS as part of emulating Real
1682 		 * Mode exceptions and IRET (handled above).  In all other
1683 		 * cases, loading CS without a control transfer is a KVM bug.
1684 		 */
1685 		if (WARN_ON_ONCE(transfer == X86_TRANSFER_NONE))
1686 			goto exception;
1687 
1688 		if (!(seg_desc.type & 8))
1689 			goto exception;
1690 
1691 		if (transfer == X86_TRANSFER_RET) {
1692 			/* RET can never return to an inner privilege level. */
1693 			if (rpl < cpl)
1694 				goto exception;
1695 			/* Outer-privilege level return is not implemented */
1696 			if (rpl > cpl)
1697 				return X86EMUL_UNHANDLEABLE;
1698 		}
1699 		if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) {
1700 			if (seg_desc.type & 4) {
1701 				/* conforming */
1702 				if (dpl > rpl)
1703 					goto exception;
1704 			} else {
1705 				/* nonconforming */
1706 				if (dpl != rpl)
1707 					goto exception;
1708 			}
1709 		} else { /* X86_TRANSFER_CALL_JMP */
1710 			if (seg_desc.type & 4) {
1711 				/* conforming */
1712 				if (dpl > cpl)
1713 					goto exception;
1714 			} else {
1715 				/* nonconforming */
1716 				if (rpl > cpl || dpl != cpl)
1717 					goto exception;
1718 			}
1719 		}
1720 		/* in long-mode d/b must be clear if l is set */
1721 		if (seg_desc.d && seg_desc.l) {
1722 			u64 efer = 0;
1723 
1724 			ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
1725 			if (efer & EFER_LMA)
1726 				goto exception;
1727 		}
1728 		if (!seg_desc.l && emulator_is_ssp_invalid(ctxt, cpl)) {
1729 			err_code = 0;
1730 			goto exception;
1731 		}
1732 
1733 		/* CS(RPL) <- CPL */
1734 		selector = (selector & 0xfffc) | cpl;
1735 		break;
1736 	case VCPU_SREG_TR:
1737 		if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
1738 			goto exception;
1739 		break;
1740 	case VCPU_SREG_LDTR:
1741 		if (seg_desc.s || seg_desc.type != 2)
1742 			goto exception;
1743 		break;
1744 	default: /*  DS, ES, FS, or GS */
1745 		/*
1746 		 * segment is not a data or readable code segment or
1747 		 * ((segment is a data or nonconforming code segment)
1748 		 * and ((RPL > DPL) or (CPL > DPL)))
1749 		 */
1750 		if ((seg_desc.type & 0xa) == 0x8 ||
1751 		    (((seg_desc.type & 0xc) != 0xc) &&
1752 		     (rpl > dpl || cpl > dpl)))
1753 			goto exception;
1754 		break;
1755 	}
1756 
1757 	if (!seg_desc.p) {
1758 		err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
1759 		goto exception;
1760 	}
1761 
1762 	if (seg_desc.s) {
1763 		/* mark segment as accessed */
1764 		if (!(seg_desc.type & 1)) {
1765 			seg_desc.type |= 1;
1766 			ret = write_segment_descriptor(ctxt, selector,
1767 						       &seg_desc);
1768 			if (ret != X86EMUL_CONTINUE)
1769 				return ret;
1770 		}
1771 	} else if (ctxt->mode == X86EMUL_MODE_PROT64) {
1772 		ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3));
1773 		if (ret != X86EMUL_CONTINUE)
1774 			return ret;
1775 		if (emul_is_noncanonical_address(get_desc_base(&seg_desc) |
1776 						 ((u64)base3 << 32), ctxt,
1777 						 X86EMUL_F_DT_LOAD))
1778 			return emulate_gp(ctxt, err_code);
1779 	}
1780 
1781 	if (seg == VCPU_SREG_TR) {
1782 		old_desc = seg_desc;
1783 		seg_desc.type |= 2; /* busy */
1784 		ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
1785 						  sizeof(seg_desc), &ctxt->exception);
1786 		if (ret != X86EMUL_CONTINUE)
1787 			return ret;
1788 	}
1789 load:
1790 	ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
1791 	if (desc)
1792 		*desc = seg_desc;
1793 	return X86EMUL_CONTINUE;
1794 exception:
1795 	return emulate_exception(ctxt, err_vec, err_code, true);
1796 }
1797 
load_segment_descriptor(struct x86_emulate_ctxt * ctxt,u16 selector,int seg)1798 static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
1799 				   u16 selector, int seg)
1800 {
1801 	u8 cpl = ctxt->ops->cpl(ctxt);
1802 
1803 	/*
1804 	 * None of MOV, POP and LSS can load a NULL selector in CPL=3, but
1805 	 * they can load it at CPL<3 (Intel's manual says only LSS can,
1806 	 * but it's wrong).
1807 	 *
1808 	 * However, the Intel manual says that putting IST=1/DPL=3 in
1809 	 * an interrupt gate will result in SS=3 (the AMD manual instead
1810 	 * says it doesn't), so allow SS=3 in __load_segment_descriptor
1811 	 * and only forbid it here.
1812 	 */
1813 	if (seg == VCPU_SREG_SS && selector == 3 &&
1814 	    ctxt->mode == X86EMUL_MODE_PROT64)
1815 		return emulate_exception(ctxt, GP_VECTOR, 0, true);
1816 
1817 	return __load_segment_descriptor(ctxt, selector, seg, cpl,
1818 					 X86_TRANSFER_NONE, NULL);
1819 }
1820 
write_register_operand(struct operand * op)1821 static void write_register_operand(struct operand *op)
1822 {
1823 	return assign_register(op->addr.reg, op->val, op->bytes);
1824 }
1825 
writeback(struct x86_emulate_ctxt * ctxt,struct operand * op)1826 static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
1827 {
1828 	switch (op->type) {
1829 	case OP_REG:
1830 		write_register_operand(op);
1831 		break;
1832 	case OP_MEM:
1833 		if (ctxt->lock_prefix)
1834 			return segmented_cmpxchg(ctxt,
1835 						 op->addr.mem,
1836 						 &op->orig_val,
1837 						 &op->val,
1838 						 op->bytes);
1839 		else
1840 			return segmented_write(ctxt,
1841 					       op->addr.mem,
1842 					       &op->val,
1843 					       op->bytes);
1844 	case OP_MEM_STR:
1845 		return segmented_write(ctxt,
1846 				       op->addr.mem,
1847 				       op->data,
1848 				       op->bytes * op->count);
1849 	case OP_XMM:
1850 		kvm_write_sse_reg(op->addr.xmm, &op->vec_val);
1851 		break;
1852 	case OP_MM:
1853 		kvm_write_mmx_reg(op->addr.mm, &op->mm_val);
1854 		break;
1855 	case OP_NONE:
1856 		/* no writeback */
1857 		break;
1858 	default:
1859 		break;
1860 	}
1861 	return X86EMUL_CONTINUE;
1862 }
1863 
emulate_push(struct x86_emulate_ctxt * ctxt,const void * data,int len)1864 static int emulate_push(struct x86_emulate_ctxt *ctxt, const void *data, int len)
1865 {
1866 	struct segmented_address addr;
1867 
1868 	rsp_increment(ctxt, -len);
1869 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1870 	addr.seg = VCPU_SREG_SS;
1871 
1872 	return segmented_write(ctxt, addr, data, len);
1873 }
1874 
em_push(struct x86_emulate_ctxt * ctxt)1875 static int em_push(struct x86_emulate_ctxt *ctxt)
1876 {
1877 	/* Disable writeback. */
1878 	ctxt->dst.type = OP_NONE;
1879 	return emulate_push(ctxt, &ctxt->src.val, ctxt->op_bytes);
1880 }
1881 
emulate_pop(struct x86_emulate_ctxt * ctxt,void * dest,int len)1882 static int emulate_pop(struct x86_emulate_ctxt *ctxt,
1883 		       void *dest, int len)
1884 {
1885 	int rc;
1886 	struct segmented_address addr;
1887 
1888 	addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
1889 	addr.seg = VCPU_SREG_SS;
1890 	rc = segmented_read(ctxt, addr, dest, len);
1891 	if (rc != X86EMUL_CONTINUE)
1892 		return rc;
1893 
1894 	rsp_increment(ctxt, len);
1895 	return rc;
1896 }
1897 
em_pop(struct x86_emulate_ctxt * ctxt)1898 static int em_pop(struct x86_emulate_ctxt *ctxt)
1899 {
1900 	return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1901 }
1902 
emulate_popf(struct x86_emulate_ctxt * ctxt,void * dest,int len)1903 static int emulate_popf(struct x86_emulate_ctxt *ctxt,
1904 			void *dest, int len)
1905 {
1906 	int rc;
1907 	unsigned long val = 0;
1908 	unsigned long change_mask;
1909 	int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
1910 	int cpl = ctxt->ops->cpl(ctxt);
1911 
1912 	rc = emulate_pop(ctxt, &val, len);
1913 	if (rc != X86EMUL_CONTINUE)
1914 		return rc;
1915 
1916 	change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
1917 		      X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
1918 		      X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
1919 		      X86_EFLAGS_AC | X86_EFLAGS_ID;
1920 
1921 	switch(ctxt->mode) {
1922 	case X86EMUL_MODE_PROT64:
1923 	case X86EMUL_MODE_PROT32:
1924 	case X86EMUL_MODE_PROT16:
1925 		if (cpl == 0)
1926 			change_mask |= X86_EFLAGS_IOPL;
1927 		if (cpl <= iopl)
1928 			change_mask |= X86_EFLAGS_IF;
1929 		break;
1930 	case X86EMUL_MODE_VM86:
1931 		if (iopl < 3)
1932 			return emulate_gp(ctxt, 0);
1933 		change_mask |= X86_EFLAGS_IF;
1934 		break;
1935 	default: /* real mode */
1936 		change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
1937 		break;
1938 	}
1939 
1940 	*(unsigned long *)dest =
1941 		(ctxt->eflags & ~change_mask) | (val & change_mask);
1942 
1943 	return rc;
1944 }
1945 
em_popf(struct x86_emulate_ctxt * ctxt)1946 static int em_popf(struct x86_emulate_ctxt *ctxt)
1947 {
1948 	ctxt->dst.type = OP_REG;
1949 	ctxt->dst.addr.reg = &ctxt->eflags;
1950 	ctxt->dst.bytes = ctxt->op_bytes;
1951 	return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
1952 }
1953 
em_enter(struct x86_emulate_ctxt * ctxt)1954 static int em_enter(struct x86_emulate_ctxt *ctxt)
1955 {
1956 	int rc;
1957 	unsigned frame_size = ctxt->src.val;
1958 	unsigned nesting_level = ctxt->src2.val & 31;
1959 	ulong rbp;
1960 
1961 	if (nesting_level)
1962 		return X86EMUL_UNHANDLEABLE;
1963 
1964 	rbp = reg_read(ctxt, VCPU_REGS_RBP);
1965 	rc = emulate_push(ctxt, &rbp, stack_size(ctxt));
1966 	if (rc != X86EMUL_CONTINUE)
1967 		return rc;
1968 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
1969 		      stack_mask(ctxt));
1970 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
1971 		      reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
1972 		      stack_mask(ctxt));
1973 	return X86EMUL_CONTINUE;
1974 }
1975 
em_leave(struct x86_emulate_ctxt * ctxt)1976 static int em_leave(struct x86_emulate_ctxt *ctxt)
1977 {
1978 	assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
1979 		      stack_mask(ctxt));
1980 	return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
1981 }
1982 
em_push_sreg(struct x86_emulate_ctxt * ctxt)1983 static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
1984 {
1985 	int seg = ctxt->src2.val;
1986 
1987 	ctxt->src.val = get_segment_selector(ctxt, seg);
1988 	if (ctxt->op_bytes == 4) {
1989 		rsp_increment(ctxt, -2);
1990 		ctxt->op_bytes = 2;
1991 	}
1992 
1993 	return em_push(ctxt);
1994 }
1995 
em_pop_sreg(struct x86_emulate_ctxt * ctxt)1996 static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
1997 {
1998 	int seg = ctxt->src2.val;
1999 	unsigned long selector = 0;
2000 	int rc;
2001 
2002 	rc = emulate_pop(ctxt, &selector, 2);
2003 	if (rc != X86EMUL_CONTINUE)
2004 		return rc;
2005 
2006 	if (seg == VCPU_SREG_SS)
2007 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
2008 	if (ctxt->op_bytes > 2)
2009 		rsp_increment(ctxt, ctxt->op_bytes - 2);
2010 
2011 	rc = load_segment_descriptor(ctxt, (u16)selector, seg);
2012 	return rc;
2013 }
2014 
em_pusha(struct x86_emulate_ctxt * ctxt)2015 static int em_pusha(struct x86_emulate_ctxt *ctxt)
2016 {
2017 	unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
2018 	int rc = X86EMUL_CONTINUE;
2019 	int reg = VCPU_REGS_RAX;
2020 
2021 	while (reg <= VCPU_REGS_RDI) {
2022 		(reg == VCPU_REGS_RSP) ?
2023 		(ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
2024 
2025 		rc = em_push(ctxt);
2026 		if (rc != X86EMUL_CONTINUE)
2027 			return rc;
2028 
2029 		++reg;
2030 	}
2031 
2032 	return rc;
2033 }
2034 
em_pushf(struct x86_emulate_ctxt * ctxt)2035 static int em_pushf(struct x86_emulate_ctxt *ctxt)
2036 {
2037 	ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
2038 	return em_push(ctxt);
2039 }
2040 
em_popa(struct x86_emulate_ctxt * ctxt)2041 static int em_popa(struct x86_emulate_ctxt *ctxt)
2042 {
2043 	int rc = X86EMUL_CONTINUE;
2044 	int reg = VCPU_REGS_RDI;
2045 	u32 val = 0;
2046 
2047 	while (reg >= VCPU_REGS_RAX) {
2048 		if (reg == VCPU_REGS_RSP) {
2049 			rsp_increment(ctxt, ctxt->op_bytes);
2050 			--reg;
2051 		}
2052 
2053 		rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
2054 		if (rc != X86EMUL_CONTINUE)
2055 			break;
2056 		assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
2057 		--reg;
2058 	}
2059 	return rc;
2060 }
2061 
__emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2062 static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2063 {
2064 	const struct x86_emulate_ops *ops = ctxt->ops;
2065 	int rc;
2066 	struct desc_ptr dt;
2067 	gva_t cs_addr;
2068 	gva_t eip_addr;
2069 	u16 cs, eip;
2070 
2071 	/* TODO: Add limit checks */
2072 	ctxt->src.val = ctxt->eflags;
2073 	rc = em_push(ctxt);
2074 	if (rc != X86EMUL_CONTINUE)
2075 		return rc;
2076 
2077 	ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
2078 
2079 	ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
2080 	rc = em_push(ctxt);
2081 	if (rc != X86EMUL_CONTINUE)
2082 		return rc;
2083 
2084 	ctxt->src.val = ctxt->_eip;
2085 	rc = em_push(ctxt);
2086 	if (rc != X86EMUL_CONTINUE)
2087 		return rc;
2088 
2089 	ops->get_idt(ctxt, &dt);
2090 
2091 	eip_addr = dt.address + (irq << 2);
2092 	cs_addr = dt.address + (irq << 2) + 2;
2093 
2094 	rc = linear_read_system(ctxt, cs_addr, &cs, 2);
2095 	if (rc != X86EMUL_CONTINUE)
2096 		return rc;
2097 
2098 	rc = linear_read_system(ctxt, eip_addr, &eip, 2);
2099 	if (rc != X86EMUL_CONTINUE)
2100 		return rc;
2101 
2102 	rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
2103 	if (rc != X86EMUL_CONTINUE)
2104 		return rc;
2105 
2106 	ctxt->_eip = eip;
2107 
2108 	return rc;
2109 }
2110 
emulate_int_real(struct x86_emulate_ctxt * ctxt,int irq)2111 int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
2112 {
2113 	int rc;
2114 
2115 	invalidate_registers(ctxt);
2116 	rc = __emulate_int_real(ctxt, irq);
2117 	if (rc == X86EMUL_CONTINUE)
2118 		writeback_registers(ctxt);
2119 	return rc;
2120 }
2121 
emulate_int(struct x86_emulate_ctxt * ctxt,int irq)2122 static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
2123 {
2124 	switch(ctxt->mode) {
2125 	case X86EMUL_MODE_REAL:
2126 		return __emulate_int_real(ctxt, irq);
2127 	case X86EMUL_MODE_VM86:
2128 	case X86EMUL_MODE_PROT16:
2129 	case X86EMUL_MODE_PROT32:
2130 	case X86EMUL_MODE_PROT64:
2131 	default:
2132 		/* Protected mode interrupts unimplemented yet */
2133 		return X86EMUL_UNHANDLEABLE;
2134 	}
2135 }
2136 
emulate_iret_real(struct x86_emulate_ctxt * ctxt)2137 static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
2138 {
2139 	int rc = X86EMUL_CONTINUE;
2140 	unsigned long temp_eip = 0;
2141 	unsigned long temp_eflags = 0;
2142 	unsigned long cs = 0;
2143 	unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
2144 			     X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
2145 			     X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
2146 			     X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
2147 			     X86_EFLAGS_AC | X86_EFLAGS_ID |
2148 			     X86_EFLAGS_FIXED;
2149 	unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
2150 				  X86_EFLAGS_VIP;
2151 
2152 	/* TODO: Add stack limit check */
2153 
2154 	rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
2155 
2156 	if (rc != X86EMUL_CONTINUE)
2157 		return rc;
2158 
2159 	if (temp_eip & ~0xffff)
2160 		return emulate_gp(ctxt, 0);
2161 
2162 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2163 
2164 	if (rc != X86EMUL_CONTINUE)
2165 		return rc;
2166 
2167 	rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
2168 
2169 	if (rc != X86EMUL_CONTINUE)
2170 		return rc;
2171 
2172 	rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
2173 
2174 	if (rc != X86EMUL_CONTINUE)
2175 		return rc;
2176 
2177 	ctxt->_eip = temp_eip;
2178 
2179 	if (ctxt->op_bytes == 4)
2180 		ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
2181 	else if (ctxt->op_bytes == 2) {
2182 		ctxt->eflags &= ~0xffff;
2183 		ctxt->eflags |= temp_eflags;
2184 	}
2185 
2186 	ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
2187 	ctxt->eflags |= X86_EFLAGS_FIXED;
2188 	ctxt->ops->set_nmi_mask(ctxt, false);
2189 
2190 	return rc;
2191 }
2192 
em_iret(struct x86_emulate_ctxt * ctxt)2193 static int em_iret(struct x86_emulate_ctxt *ctxt)
2194 {
2195 	switch(ctxt->mode) {
2196 	case X86EMUL_MODE_REAL:
2197 		return emulate_iret_real(ctxt);
2198 	case X86EMUL_MODE_VM86:
2199 	case X86EMUL_MODE_PROT16:
2200 	case X86EMUL_MODE_PROT32:
2201 	case X86EMUL_MODE_PROT64:
2202 	default:
2203 		/* iret from protected mode unimplemented yet */
2204 		return X86EMUL_UNHANDLEABLE;
2205 	}
2206 }
2207 
em_jmp_far(struct x86_emulate_ctxt * ctxt)2208 static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
2209 {
2210 	int rc;
2211 	unsigned short sel;
2212 	struct desc_struct new_desc;
2213 	u8 cpl = ctxt->ops->cpl(ctxt);
2214 
2215 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2216 
2217 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
2218 				       X86_TRANSFER_CALL_JMP,
2219 				       &new_desc);
2220 	if (rc != X86EMUL_CONTINUE)
2221 		return rc;
2222 
2223 	rc = assign_eip_far(ctxt, ctxt->src.val);
2224 	/* Error handling is not implemented. */
2225 	if (rc != X86EMUL_CONTINUE)
2226 		return X86EMUL_UNHANDLEABLE;
2227 
2228 	return rc;
2229 }
2230 
em_jmp_abs(struct x86_emulate_ctxt * ctxt)2231 static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
2232 {
2233 	return assign_eip_near(ctxt, ctxt->src.val);
2234 }
2235 
em_call_near_abs(struct x86_emulate_ctxt * ctxt)2236 static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
2237 {
2238 	int rc;
2239 	long int old_eip;
2240 
2241 	old_eip = ctxt->_eip;
2242 	rc = assign_eip_near(ctxt, ctxt->src.val);
2243 	if (rc != X86EMUL_CONTINUE)
2244 		return rc;
2245 	ctxt->src.val = old_eip;
2246 	rc = em_push(ctxt);
2247 	return rc;
2248 }
2249 
em_cmpxchg8b(struct x86_emulate_ctxt * ctxt)2250 static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
2251 {
2252 	u64 old = ctxt->dst.orig_val64;
2253 
2254 	if (ctxt->dst.bytes == 16)
2255 		return X86EMUL_UNHANDLEABLE;
2256 
2257 	if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
2258 	    ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
2259 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
2260 		*reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
2261 		ctxt->eflags &= ~X86_EFLAGS_ZF;
2262 	} else {
2263 		ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
2264 			(u32) reg_read(ctxt, VCPU_REGS_RBX);
2265 
2266 		ctxt->eflags |= X86_EFLAGS_ZF;
2267 	}
2268 	return X86EMUL_CONTINUE;
2269 }
2270 
em_ret(struct x86_emulate_ctxt * ctxt)2271 static int em_ret(struct x86_emulate_ctxt *ctxt)
2272 {
2273 	int rc;
2274 	unsigned long eip = 0;
2275 
2276 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2277 	if (rc != X86EMUL_CONTINUE)
2278 		return rc;
2279 
2280 	return assign_eip_near(ctxt, eip);
2281 }
2282 
em_ret_far(struct x86_emulate_ctxt * ctxt)2283 static int em_ret_far(struct x86_emulate_ctxt *ctxt)
2284 {
2285 	int rc;
2286 	unsigned long eip = 0;
2287 	unsigned long cs = 0;
2288 	int cpl = ctxt->ops->cpl(ctxt);
2289 	struct desc_struct new_desc;
2290 
2291 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
2292 	if (rc != X86EMUL_CONTINUE)
2293 		return rc;
2294 	rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
2295 	if (rc != X86EMUL_CONTINUE)
2296 		return rc;
2297 	rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
2298 				       X86_TRANSFER_RET,
2299 				       &new_desc);
2300 	if (rc != X86EMUL_CONTINUE)
2301 		return rc;
2302 	rc = assign_eip_far(ctxt, eip);
2303 	/* Error handling is not implemented. */
2304 	if (rc != X86EMUL_CONTINUE)
2305 		return X86EMUL_UNHANDLEABLE;
2306 
2307 	return rc;
2308 }
2309 
em_ret_far_imm(struct x86_emulate_ctxt * ctxt)2310 static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
2311 {
2312         int rc;
2313 
2314         rc = em_ret_far(ctxt);
2315         if (rc != X86EMUL_CONTINUE)
2316                 return rc;
2317         rsp_increment(ctxt, ctxt->src.val);
2318         return X86EMUL_CONTINUE;
2319 }
2320 
em_cmpxchg(struct x86_emulate_ctxt * ctxt)2321 static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
2322 {
2323 	/* Save real source value, then compare EAX against destination. */
2324 	ctxt->dst.orig_val = ctxt->dst.val;
2325 	ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
2326 	ctxt->src.orig_val = ctxt->src.val;
2327 	ctxt->src.val = ctxt->dst.orig_val;
2328 	fastop(ctxt, em_cmp);
2329 
2330 	if (ctxt->eflags & X86_EFLAGS_ZF) {
2331 		/* Success: write back to memory; no update of EAX */
2332 		ctxt->src.type = OP_NONE;
2333 		ctxt->dst.val = ctxt->src.orig_val;
2334 	} else {
2335 		/* Failure: write the value we saw to EAX. */
2336 		ctxt->src.type = OP_REG;
2337 		ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
2338 		ctxt->src.val = ctxt->dst.orig_val;
2339 		/* Create write-cycle to dest by writing the same value */
2340 		ctxt->dst.val = ctxt->dst.orig_val;
2341 	}
2342 	return X86EMUL_CONTINUE;
2343 }
2344 
em_lseg(struct x86_emulate_ctxt * ctxt)2345 static int em_lseg(struct x86_emulate_ctxt *ctxt)
2346 {
2347 	int seg = ctxt->src2.val;
2348 	unsigned short sel;
2349 	int rc;
2350 
2351 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
2352 
2353 	rc = load_segment_descriptor(ctxt, sel, seg);
2354 	if (rc != X86EMUL_CONTINUE)
2355 		return rc;
2356 
2357 	ctxt->dst.val = ctxt->src.val;
2358 	return rc;
2359 }
2360 
em_rsm(struct x86_emulate_ctxt * ctxt)2361 static int em_rsm(struct x86_emulate_ctxt *ctxt)
2362 {
2363 	if (!ctxt->ops->is_smm(ctxt))
2364 		return emulate_ud(ctxt);
2365 
2366 	if (ctxt->ops->leave_smm(ctxt))
2367 		ctxt->ops->triple_fault(ctxt);
2368 
2369 	return emulator_recalc_and_set_mode(ctxt);
2370 }
2371 
2372 static void
setup_syscalls_segments(struct desc_struct * cs,struct desc_struct * ss)2373 setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss)
2374 {
2375 	cs->l = 0;		/* will be adjusted later */
2376 	set_desc_base(cs, 0);	/* flat segment */
2377 	cs->g = 1;		/* 4kb granularity */
2378 	set_desc_limit(cs, 0xfffff);	/* 4GB limit */
2379 	cs->type = 0x0b;	/* Read, Execute, Accessed */
2380 	cs->s = 1;
2381 	cs->dpl = 0;		/* will be adjusted later */
2382 	cs->p = 1;
2383 	cs->d = 1;
2384 	cs->avl = 0;
2385 
2386 	set_desc_base(ss, 0);	/* flat segment */
2387 	set_desc_limit(ss, 0xfffff);	/* 4GB limit */
2388 	ss->g = 1;		/* 4kb granularity */
2389 	ss->s = 1;
2390 	ss->type = 0x03;	/* Read/Write, Accessed */
2391 	ss->d = 1;		/* 32bit stack segment */
2392 	ss->dpl = 0;
2393 	ss->p = 1;
2394 	ss->l = 0;
2395 	ss->avl = 0;
2396 }
2397 
em_syscall(struct x86_emulate_ctxt * ctxt)2398 static int em_syscall(struct x86_emulate_ctxt *ctxt)
2399 {
2400 	const struct x86_emulate_ops *ops = ctxt->ops;
2401 	struct desc_struct cs, ss;
2402 	u64 msr_data;
2403 	u16 cs_sel, ss_sel;
2404 	u64 efer = 0;
2405 
2406 	/* syscall is not available in real mode */
2407 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2408 	    ctxt->mode == X86EMUL_MODE_VM86)
2409 		return emulate_ud(ctxt);
2410 
2411 	/*
2412 	 * Intel compatible CPUs only support SYSCALL in 64-bit mode, whereas
2413 	 * AMD allows SYSCALL in any flavor of protected mode.  Note, it's
2414 	 * infeasible to emulate Intel behavior when running on AMD hardware,
2415 	 * as SYSCALL won't fault in the "wrong" mode, i.e. there is no #UD
2416 	 * for KVM to trap-and-emulate, unlike emulating AMD on Intel.
2417 	 */
2418 	if (ctxt->mode != X86EMUL_MODE_PROT64 &&
2419 	    ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2420 		return emulate_ud(ctxt);
2421 
2422 	ops->get_msr(ctxt, MSR_EFER, &efer);
2423 	if (!(efer & EFER_SCE))
2424 		return emulate_ud(ctxt);
2425 
2426 	setup_syscalls_segments(&cs, &ss);
2427 	ops->get_msr(ctxt, MSR_STAR, &msr_data);
2428 	msr_data >>= 32;
2429 	cs_sel = (u16)(msr_data & 0xfffc);
2430 	ss_sel = (u16)(msr_data + 8);
2431 
2432 	if (efer & EFER_LMA) {
2433 		cs.d = 0;
2434 		cs.l = 1;
2435 	}
2436 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2437 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2438 
2439 	*reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
2440 	if (efer & EFER_LMA) {
2441 #ifdef CONFIG_X86_64
2442 		*reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
2443 
2444 		ops->get_msr(ctxt,
2445 			     ctxt->mode == X86EMUL_MODE_PROT64 ?
2446 			     MSR_LSTAR : MSR_CSTAR, &msr_data);
2447 		ctxt->_eip = msr_data;
2448 
2449 		ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
2450 		ctxt->eflags &= ~msr_data;
2451 		ctxt->eflags |= X86_EFLAGS_FIXED;
2452 #endif
2453 	} else {
2454 		/* legacy mode */
2455 		ops->get_msr(ctxt, MSR_STAR, &msr_data);
2456 		ctxt->_eip = (u32)msr_data;
2457 
2458 		ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2459 	}
2460 
2461 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
2462 	return X86EMUL_CONTINUE;
2463 }
2464 
em_sysenter(struct x86_emulate_ctxt * ctxt)2465 static int em_sysenter(struct x86_emulate_ctxt *ctxt)
2466 {
2467 	const struct x86_emulate_ops *ops = ctxt->ops;
2468 	struct desc_struct cs, ss;
2469 	u64 msr_data;
2470 	u16 cs_sel, ss_sel;
2471 	u64 efer = 0;
2472 
2473 	ops->get_msr(ctxt, MSR_EFER, &efer);
2474 	/* inject #GP if in real mode */
2475 	if (ctxt->mode == X86EMUL_MODE_REAL)
2476 		return emulate_gp(ctxt, 0);
2477 
2478 	/*
2479 	 * Intel's architecture allows SYSENTER in compatibility mode, but AMD
2480 	 * does not.  Note, AMD does allow SYSENTER in legacy protected mode.
2481 	 */
2482 	if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) &&
2483 	    !ctxt->ops->guest_cpuid_is_intel_compatible(ctxt))
2484 		return emulate_ud(ctxt);
2485 
2486 	/* sysenter/sysexit have not been tested in 64bit mode. */
2487 	if (ctxt->mode == X86EMUL_MODE_PROT64)
2488 		return X86EMUL_UNHANDLEABLE;
2489 
2490 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2491 	if ((msr_data & 0xfffc) == 0x0)
2492 		return emulate_gp(ctxt, 0);
2493 
2494 	setup_syscalls_segments(&cs, &ss);
2495 	ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
2496 	cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
2497 	ss_sel = cs_sel + 8;
2498 	if (efer & EFER_LMA) {
2499 		cs.d = 0;
2500 		cs.l = 1;
2501 	}
2502 
2503 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2504 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2505 
2506 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
2507 	ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
2508 
2509 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
2510 	*reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
2511 							      (u32)msr_data;
2512 	if (efer & EFER_LMA)
2513 		ctxt->mode = X86EMUL_MODE_PROT64;
2514 
2515 	return X86EMUL_CONTINUE;
2516 }
2517 
em_sysexit(struct x86_emulate_ctxt * ctxt)2518 static int em_sysexit(struct x86_emulate_ctxt *ctxt)
2519 {
2520 	const struct x86_emulate_ops *ops = ctxt->ops;
2521 	struct desc_struct cs, ss;
2522 	u64 msr_data, rcx, rdx;
2523 	int usermode;
2524 	u16 cs_sel = 0, ss_sel = 0;
2525 
2526 	/* inject #GP if in real mode or Virtual 8086 mode */
2527 	if (ctxt->mode == X86EMUL_MODE_REAL ||
2528 	    ctxt->mode == X86EMUL_MODE_VM86)
2529 		return emulate_gp(ctxt, 0);
2530 
2531 	setup_syscalls_segments(&cs, &ss);
2532 
2533 	if ((ctxt->rex_prefix & 0x8) != 0x0)
2534 		usermode = X86EMUL_MODE_PROT64;
2535 	else
2536 		usermode = X86EMUL_MODE_PROT32;
2537 
2538 	rcx = reg_read(ctxt, VCPU_REGS_RCX);
2539 	rdx = reg_read(ctxt, VCPU_REGS_RDX);
2540 
2541 	cs.dpl = 3;
2542 	ss.dpl = 3;
2543 	ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
2544 	switch (usermode) {
2545 	case X86EMUL_MODE_PROT32:
2546 		cs_sel = (u16)(msr_data + 16);
2547 		if ((msr_data & 0xfffc) == 0x0)
2548 			return emulate_gp(ctxt, 0);
2549 		ss_sel = (u16)(msr_data + 24);
2550 		rcx = (u32)rcx;
2551 		rdx = (u32)rdx;
2552 		break;
2553 	case X86EMUL_MODE_PROT64:
2554 		cs_sel = (u16)(msr_data + 32);
2555 		if (msr_data == 0x0)
2556 			return emulate_gp(ctxt, 0);
2557 		ss_sel = cs_sel + 8;
2558 		cs.d = 0;
2559 		cs.l = 1;
2560 		if (emul_is_noncanonical_address(rcx, ctxt, 0) ||
2561 		    emul_is_noncanonical_address(rdx, ctxt, 0))
2562 			return emulate_gp(ctxt, 0);
2563 		break;
2564 	}
2565 	cs_sel |= SEGMENT_RPL_MASK;
2566 	ss_sel |= SEGMENT_RPL_MASK;
2567 
2568 	ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
2569 	ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
2570 
2571 	ctxt->_eip = rdx;
2572 	ctxt->mode = usermode;
2573 	*reg_write(ctxt, VCPU_REGS_RSP) = rcx;
2574 
2575 	return X86EMUL_CONTINUE;
2576 }
2577 
emulator_bad_iopl(struct x86_emulate_ctxt * ctxt)2578 static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
2579 {
2580 	int iopl;
2581 	if (ctxt->mode == X86EMUL_MODE_REAL)
2582 		return false;
2583 	if (ctxt->mode == X86EMUL_MODE_VM86)
2584 		return true;
2585 	iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
2586 	return ctxt->ops->cpl(ctxt) > iopl;
2587 }
2588 
2589 #define VMWARE_PORT_VMPORT	(0x5658)
2590 #define VMWARE_PORT_VMRPC	(0x5659)
2591 
emulator_io_port_access_allowed(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2592 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
2593 					    u16 port, u16 len)
2594 {
2595 	const struct x86_emulate_ops *ops = ctxt->ops;
2596 	struct desc_struct tr_seg;
2597 	u32 base3;
2598 	int r;
2599 	u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
2600 	unsigned mask = (1 << len) - 1;
2601 	unsigned long base;
2602 
2603 	/*
2604 	 * VMware allows access to these ports even if denied
2605 	 * by TSS I/O permission bitmap. Mimic behavior.
2606 	 */
2607 	if (enable_vmware_backdoor &&
2608 	    ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC)))
2609 		return true;
2610 
2611 	ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
2612 	if (!tr_seg.p)
2613 		return false;
2614 	if (desc_limit_scaled(&tr_seg) < 103)
2615 		return false;
2616 	base = get_desc_base(&tr_seg);
2617 #ifdef CONFIG_X86_64
2618 	base |= ((u64)base3) << 32;
2619 #endif
2620 	r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true);
2621 	if (r != X86EMUL_CONTINUE)
2622 		return false;
2623 	if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
2624 		return false;
2625 	r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true);
2626 	if (r != X86EMUL_CONTINUE)
2627 		return false;
2628 	if ((perm >> bit_idx) & mask)
2629 		return false;
2630 	return true;
2631 }
2632 
emulator_io_permitted(struct x86_emulate_ctxt * ctxt,u16 port,u16 len)2633 static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt,
2634 				  u16 port, u16 len)
2635 {
2636 	if (ctxt->perm_ok)
2637 		return true;
2638 
2639 	if (emulator_bad_iopl(ctxt))
2640 		if (!emulator_io_port_access_allowed(ctxt, port, len))
2641 			return false;
2642 
2643 	ctxt->perm_ok = true;
2644 
2645 	return true;
2646 }
2647 
string_registers_quirk(struct x86_emulate_ctxt * ctxt)2648 static void string_registers_quirk(struct x86_emulate_ctxt *ctxt)
2649 {
2650 	/*
2651 	 * Intel CPUs mask the counter and pointers in quite strange
2652 	 * manner when ECX is zero due to REP-string optimizations.
2653 	 */
2654 #ifdef CONFIG_X86_64
2655 	u32 eax, ebx, ecx, edx;
2656 
2657 	if (ctxt->ad_bytes != 4)
2658 		return;
2659 
2660 	eax = ecx = 0;
2661 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true);
2662 	if (!is_guest_vendor_intel(ebx, ecx, edx))
2663 		return;
2664 
2665 	*reg_write(ctxt, VCPU_REGS_RCX) = 0;
2666 
2667 	switch (ctxt->b) {
2668 	case 0xa4:	/* movsb */
2669 	case 0xa5:	/* movsd/w */
2670 		*reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1;
2671 		fallthrough;
2672 	case 0xaa:	/* stosb */
2673 	case 0xab:	/* stosd/w */
2674 		*reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1;
2675 	}
2676 #endif
2677 }
2678 
save_state_to_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2679 static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
2680 				struct tss_segment_16 *tss)
2681 {
2682 	tss->ip = ctxt->_eip;
2683 	tss->flag = ctxt->eflags;
2684 	tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
2685 	tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
2686 	tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
2687 	tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
2688 	tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
2689 	tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
2690 	tss->si = reg_read(ctxt, VCPU_REGS_RSI);
2691 	tss->di = reg_read(ctxt, VCPU_REGS_RDI);
2692 
2693 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2694 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2695 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2696 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2697 	tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
2698 }
2699 
load_state_from_tss16(struct x86_emulate_ctxt * ctxt,struct tss_segment_16 * tss)2700 static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
2701 				 struct tss_segment_16 *tss)
2702 {
2703 	int ret;
2704 	u8 cpl;
2705 
2706 	ctxt->_eip = tss->ip;
2707 	ctxt->eflags = tss->flag | 2;
2708 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
2709 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
2710 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
2711 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
2712 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
2713 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
2714 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
2715 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
2716 
2717 	/*
2718 	 * SDM says that segment selectors are loaded before segment
2719 	 * descriptors
2720 	 */
2721 	set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
2722 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2723 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2724 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2725 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2726 
2727 	cpl = tss->cs & 3;
2728 
2729 	/*
2730 	 * Now load segment descriptors. If fault happens at this stage
2731 	 * it is handled in a context of new task
2732 	 */
2733 	ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
2734 					X86_TRANSFER_TASK_SWITCH, NULL);
2735 	if (ret != X86EMUL_CONTINUE)
2736 		return ret;
2737 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2738 					X86_TRANSFER_TASK_SWITCH, NULL);
2739 	if (ret != X86EMUL_CONTINUE)
2740 		return ret;
2741 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2742 					X86_TRANSFER_TASK_SWITCH, NULL);
2743 	if (ret != X86EMUL_CONTINUE)
2744 		return ret;
2745 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2746 					X86_TRANSFER_TASK_SWITCH, NULL);
2747 	if (ret != X86EMUL_CONTINUE)
2748 		return ret;
2749 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2750 					X86_TRANSFER_TASK_SWITCH, NULL);
2751 	if (ret != X86EMUL_CONTINUE)
2752 		return ret;
2753 
2754 	return X86EMUL_CONTINUE;
2755 }
2756 
task_switch_16(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2757 static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2758 			  ulong old_tss_base, struct desc_struct *new_desc)
2759 {
2760 	struct tss_segment_16 tss_seg;
2761 	int ret;
2762 	u32 new_tss_base = get_desc_base(new_desc);
2763 
2764 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2765 	if (ret != X86EMUL_CONTINUE)
2766 		return ret;
2767 
2768 	save_state_to_tss16(ctxt, &tss_seg);
2769 
2770 	ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2771 	if (ret != X86EMUL_CONTINUE)
2772 		return ret;
2773 
2774 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2775 	if (ret != X86EMUL_CONTINUE)
2776 		return ret;
2777 
2778 	if (old_tss_sel != 0xffff) {
2779 		tss_seg.prev_task_link = old_tss_sel;
2780 
2781 		ret = linear_write_system(ctxt, new_tss_base,
2782 					  &tss_seg.prev_task_link,
2783 					  sizeof(tss_seg.prev_task_link));
2784 		if (ret != X86EMUL_CONTINUE)
2785 			return ret;
2786 	}
2787 
2788 	return load_state_from_tss16(ctxt, &tss_seg);
2789 }
2790 
save_state_to_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2791 static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
2792 				struct tss_segment_32 *tss)
2793 {
2794 	/* CR3 and ldt selector are not saved intentionally */
2795 	tss->eip = ctxt->_eip;
2796 	tss->eflags = ctxt->eflags;
2797 	tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
2798 	tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
2799 	tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
2800 	tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
2801 	tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
2802 	tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
2803 	tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
2804 	tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
2805 
2806 	tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
2807 	tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
2808 	tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
2809 	tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
2810 	tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
2811 	tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
2812 }
2813 
load_state_from_tss32(struct x86_emulate_ctxt * ctxt,struct tss_segment_32 * tss)2814 static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
2815 				 struct tss_segment_32 *tss)
2816 {
2817 	int ret;
2818 	u8 cpl;
2819 
2820 	if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
2821 		return emulate_gp(ctxt, 0);
2822 	ctxt->_eip = tss->eip;
2823 	ctxt->eflags = tss->eflags | 2;
2824 
2825 	/* General purpose registers */
2826 	*reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
2827 	*reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
2828 	*reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
2829 	*reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
2830 	*reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
2831 	*reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
2832 	*reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
2833 	*reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
2834 
2835 	/*
2836 	 * SDM says that segment selectors are loaded before segment
2837 	 * descriptors.  This is important because CPL checks will
2838 	 * use CS.RPL.
2839 	 */
2840 	set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
2841 	set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
2842 	set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
2843 	set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
2844 	set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
2845 	set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
2846 	set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
2847 
2848 	/*
2849 	 * If we're switching between Protected Mode and VM86, we need to make
2850 	 * sure to update the mode before loading the segment descriptors so
2851 	 * that the selectors are interpreted correctly.
2852 	 */
2853 	if (ctxt->eflags & X86_EFLAGS_VM) {
2854 		ctxt->mode = X86EMUL_MODE_VM86;
2855 		cpl = 3;
2856 	} else {
2857 		ctxt->mode = X86EMUL_MODE_PROT32;
2858 		cpl = tss->cs & 3;
2859 	}
2860 
2861 	/*
2862 	 * Now load segment descriptors. If fault happens at this stage
2863 	 * it is handled in a context of new task
2864 	 */
2865 	ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
2866 					cpl, X86_TRANSFER_TASK_SWITCH, NULL);
2867 	if (ret != X86EMUL_CONTINUE)
2868 		return ret;
2869 	ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
2870 					X86_TRANSFER_TASK_SWITCH, NULL);
2871 	if (ret != X86EMUL_CONTINUE)
2872 		return ret;
2873 	ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
2874 					X86_TRANSFER_TASK_SWITCH, NULL);
2875 	if (ret != X86EMUL_CONTINUE)
2876 		return ret;
2877 	ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
2878 					X86_TRANSFER_TASK_SWITCH, NULL);
2879 	if (ret != X86EMUL_CONTINUE)
2880 		return ret;
2881 	ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
2882 					X86_TRANSFER_TASK_SWITCH, NULL);
2883 	if (ret != X86EMUL_CONTINUE)
2884 		return ret;
2885 	ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
2886 					X86_TRANSFER_TASK_SWITCH, NULL);
2887 	if (ret != X86EMUL_CONTINUE)
2888 		return ret;
2889 	ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
2890 					X86_TRANSFER_TASK_SWITCH, NULL);
2891 
2892 	return ret;
2893 }
2894 
task_switch_32(struct x86_emulate_ctxt * ctxt,u16 old_tss_sel,ulong old_tss_base,struct desc_struct * new_desc)2895 static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel,
2896 			  ulong old_tss_base, struct desc_struct *new_desc)
2897 {
2898 	struct tss_segment_32 tss_seg;
2899 	int ret;
2900 	u32 new_tss_base = get_desc_base(new_desc);
2901 	u32 eip_offset = offsetof(struct tss_segment_32, eip);
2902 	u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
2903 
2904 	ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg));
2905 	if (ret != X86EMUL_CONTINUE)
2906 		return ret;
2907 
2908 	save_state_to_tss32(ctxt, &tss_seg);
2909 
2910 	/* Only GP registers and segment selectors are saved */
2911 	ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
2912 				  ldt_sel_offset - eip_offset);
2913 	if (ret != X86EMUL_CONTINUE)
2914 		return ret;
2915 
2916 	ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg));
2917 	if (ret != X86EMUL_CONTINUE)
2918 		return ret;
2919 
2920 	if (old_tss_sel != 0xffff) {
2921 		tss_seg.prev_task_link = old_tss_sel;
2922 
2923 		ret = linear_write_system(ctxt, new_tss_base,
2924 					  &tss_seg.prev_task_link,
2925 					  sizeof(tss_seg.prev_task_link));
2926 		if (ret != X86EMUL_CONTINUE)
2927 			return ret;
2928 	}
2929 
2930 	return load_state_from_tss32(ctxt, &tss_seg);
2931 }
2932 
emulator_do_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)2933 static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
2934 				   u16 tss_selector, int idt_index, int reason,
2935 				   bool has_error_code, u32 error_code)
2936 {
2937 	const struct x86_emulate_ops *ops = ctxt->ops;
2938 	struct desc_struct curr_tss_desc, next_tss_desc;
2939 	int ret;
2940 	u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
2941 	ulong old_tss_base =
2942 		ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
2943 	u32 desc_limit;
2944 	ulong desc_addr, dr7;
2945 
2946 	/* FIXME: old_tss_base == ~0 ? */
2947 
2948 	ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
2949 	if (ret != X86EMUL_CONTINUE)
2950 		return ret;
2951 	ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
2952 	if (ret != X86EMUL_CONTINUE)
2953 		return ret;
2954 
2955 	/* FIXME: check that next_tss_desc is tss */
2956 
2957 	/*
2958 	 * Check privileges. The three cases are task switch caused by...
2959 	 *
2960 	 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2961 	 * 2. Exception/IRQ/iret: No check is performed
2962 	 * 3. jmp/call to TSS/task-gate: No check is performed since the
2963 	 *    hardware checks it before exiting.
2964 	 */
2965 	if (reason == TASK_SWITCH_GATE) {
2966 		if (idt_index != -1) {
2967 			/* Software interrupts */
2968 			struct desc_struct task_gate_desc;
2969 			int dpl;
2970 
2971 			ret = read_interrupt_descriptor(ctxt, idt_index,
2972 							&task_gate_desc);
2973 			if (ret != X86EMUL_CONTINUE)
2974 				return ret;
2975 
2976 			dpl = task_gate_desc.dpl;
2977 			if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
2978 				return emulate_gp(ctxt, (idt_index << 3) | 0x2);
2979 		}
2980 	}
2981 
2982 	desc_limit = desc_limit_scaled(&next_tss_desc);
2983 	if (!next_tss_desc.p ||
2984 	    ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
2985 	     desc_limit < 0x2b)) {
2986 		return emulate_ts(ctxt, tss_selector & 0xfffc);
2987 	}
2988 
2989 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
2990 		curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
2991 		write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
2992 	}
2993 
2994 	if (reason == TASK_SWITCH_IRET)
2995 		ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
2996 
2997 	/* set back link to prev task only if NT bit is set in eflags
2998 	   note that old_tss_sel is not used after this point */
2999 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
3000 		old_tss_sel = 0xffff;
3001 
3002 	if (next_tss_desc.type & 8)
3003 		ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc);
3004 	else
3005 		ret = task_switch_16(ctxt, old_tss_sel,
3006 				     old_tss_base, &next_tss_desc);
3007 	if (ret != X86EMUL_CONTINUE)
3008 		return ret;
3009 
3010 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
3011 		ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
3012 
3013 	if (reason != TASK_SWITCH_IRET) {
3014 		next_tss_desc.type |= (1 << 1); /* set busy flag */
3015 		write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
3016 	}
3017 
3018 	ops->set_cr(ctxt, 0,  ops->get_cr(ctxt, 0) | X86_CR0_TS);
3019 	ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
3020 
3021 	if (has_error_code) {
3022 		ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
3023 		ctxt->lock_prefix = 0;
3024 		ctxt->src.val = (unsigned long) error_code;
3025 		ret = em_push(ctxt);
3026 	}
3027 
3028 	dr7 = ops->get_dr(ctxt, 7);
3029 	ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN));
3030 
3031 	return ret;
3032 }
3033 
emulator_task_switch(struct x86_emulate_ctxt * ctxt,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)3034 int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
3035 			 u16 tss_selector, int idt_index, int reason,
3036 			 bool has_error_code, u32 error_code)
3037 {
3038 	int rc;
3039 
3040 	invalidate_registers(ctxt);
3041 	ctxt->_eip = ctxt->eip;
3042 	ctxt->dst.type = OP_NONE;
3043 
3044 	rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
3045 				     has_error_code, error_code);
3046 
3047 	if (rc == X86EMUL_CONTINUE) {
3048 		ctxt->eip = ctxt->_eip;
3049 		writeback_registers(ctxt);
3050 	}
3051 
3052 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
3053 }
3054 
string_addr_inc(struct x86_emulate_ctxt * ctxt,int reg,struct operand * op)3055 static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
3056 		struct operand *op)
3057 {
3058 	int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
3059 
3060 	register_address_increment(ctxt, reg, df * op->bytes);
3061 	op->addr.mem.ea = register_address(ctxt, reg);
3062 }
3063 
em_das(struct x86_emulate_ctxt * ctxt)3064 static int em_das(struct x86_emulate_ctxt *ctxt)
3065 {
3066 	u8 al, old_al;
3067 	bool af, cf, old_cf;
3068 
3069 	cf = ctxt->eflags & X86_EFLAGS_CF;
3070 	al = ctxt->dst.val;
3071 
3072 	old_al = al;
3073 	old_cf = cf;
3074 	cf = false;
3075 	af = ctxt->eflags & X86_EFLAGS_AF;
3076 	if ((al & 0x0f) > 9 || af) {
3077 		al -= 6;
3078 		cf = old_cf | (al >= 250);
3079 		af = true;
3080 	} else {
3081 		af = false;
3082 	}
3083 	if (old_al > 0x99 || old_cf) {
3084 		al -= 0x60;
3085 		cf = true;
3086 	}
3087 
3088 	ctxt->dst.val = al;
3089 	/* Set PF, ZF, SF */
3090 	ctxt->src.type = OP_IMM;
3091 	ctxt->src.val = 0;
3092 	ctxt->src.bytes = 1;
3093 	fastop(ctxt, em_or);
3094 	ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
3095 	if (cf)
3096 		ctxt->eflags |= X86_EFLAGS_CF;
3097 	if (af)
3098 		ctxt->eflags |= X86_EFLAGS_AF;
3099 	return X86EMUL_CONTINUE;
3100 }
3101 
em_aam(struct x86_emulate_ctxt * ctxt)3102 static int em_aam(struct x86_emulate_ctxt *ctxt)
3103 {
3104 	u8 al, ah;
3105 
3106 	if (ctxt->src.val == 0)
3107 		return emulate_de(ctxt);
3108 
3109 	al = ctxt->dst.val & 0xff;
3110 	ah = al / ctxt->src.val;
3111 	al %= ctxt->src.val;
3112 
3113 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
3114 
3115 	/* Set PF, ZF, SF */
3116 	ctxt->src.type = OP_IMM;
3117 	ctxt->src.val = 0;
3118 	ctxt->src.bytes = 1;
3119 	fastop(ctxt, em_or);
3120 
3121 	return X86EMUL_CONTINUE;
3122 }
3123 
em_aad(struct x86_emulate_ctxt * ctxt)3124 static int em_aad(struct x86_emulate_ctxt *ctxt)
3125 {
3126 	u8 al = ctxt->dst.val & 0xff;
3127 	u8 ah = (ctxt->dst.val >> 8) & 0xff;
3128 
3129 	al = (al + (ah * ctxt->src.val)) & 0xff;
3130 
3131 	ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
3132 
3133 	/* Set PF, ZF, SF */
3134 	ctxt->src.type = OP_IMM;
3135 	ctxt->src.val = 0;
3136 	ctxt->src.bytes = 1;
3137 	fastop(ctxt, em_or);
3138 
3139 	return X86EMUL_CONTINUE;
3140 }
3141 
em_call(struct x86_emulate_ctxt * ctxt)3142 static int em_call(struct x86_emulate_ctxt *ctxt)
3143 {
3144 	int rc;
3145 	long rel = ctxt->src.val;
3146 
3147 	ctxt->src.val = (unsigned long)ctxt->_eip;
3148 	rc = jmp_rel(ctxt, rel);
3149 	if (rc != X86EMUL_CONTINUE)
3150 		return rc;
3151 	return em_push(ctxt);
3152 }
3153 
em_call_far(struct x86_emulate_ctxt * ctxt)3154 static int em_call_far(struct x86_emulate_ctxt *ctxt)
3155 {
3156 	u16 sel, old_cs;
3157 	ulong old_eip;
3158 	int rc;
3159 	struct desc_struct old_desc, new_desc;
3160 	const struct x86_emulate_ops *ops = ctxt->ops;
3161 	int cpl = ctxt->ops->cpl(ctxt);
3162 	enum x86emul_mode prev_mode = ctxt->mode;
3163 
3164 	old_eip = ctxt->_eip;
3165 	ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
3166 
3167 	memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
3168 	rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
3169 				       X86_TRANSFER_CALL_JMP, &new_desc);
3170 	if (rc != X86EMUL_CONTINUE)
3171 		return rc;
3172 
3173 	rc = assign_eip_far(ctxt, ctxt->src.val);
3174 	if (rc != X86EMUL_CONTINUE)
3175 		goto fail;
3176 
3177 	ctxt->src.val = old_cs;
3178 	rc = em_push(ctxt);
3179 	if (rc != X86EMUL_CONTINUE)
3180 		goto fail;
3181 
3182 	ctxt->src.val = old_eip;
3183 	rc = em_push(ctxt);
3184 	/* If we failed, we tainted the memory, but the very least we should
3185 	   restore cs */
3186 	if (rc != X86EMUL_CONTINUE) {
3187 		pr_warn_once("faulting far call emulation tainted memory\n");
3188 		goto fail;
3189 	}
3190 	return rc;
3191 fail:
3192 	ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
3193 	ctxt->mode = prev_mode;
3194 	return rc;
3195 
3196 }
3197 
em_ret_near_imm(struct x86_emulate_ctxt * ctxt)3198 static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
3199 {
3200 	int rc;
3201 	unsigned long eip = 0;
3202 
3203 	rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
3204 	if (rc != X86EMUL_CONTINUE)
3205 		return rc;
3206 	rc = assign_eip_near(ctxt, eip);
3207 	if (rc != X86EMUL_CONTINUE)
3208 		return rc;
3209 	rsp_increment(ctxt, ctxt->src.val);
3210 	return X86EMUL_CONTINUE;
3211 }
3212 
em_xchg(struct x86_emulate_ctxt * ctxt)3213 static int em_xchg(struct x86_emulate_ctxt *ctxt)
3214 {
3215 	/* Write back the register source. */
3216 	ctxt->src.val = ctxt->dst.val;
3217 	write_register_operand(&ctxt->src);
3218 
3219 	/* Write back the memory destination with implicit LOCK prefix. */
3220 	ctxt->dst.val = ctxt->src.orig_val;
3221 	ctxt->lock_prefix = 1;
3222 	return X86EMUL_CONTINUE;
3223 }
3224 
em_imul_3op(struct x86_emulate_ctxt * ctxt)3225 static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
3226 {
3227 	ctxt->dst.val = ctxt->src2.val;
3228 	return fastop(ctxt, em_imul);
3229 }
3230 
em_cwd(struct x86_emulate_ctxt * ctxt)3231 static int em_cwd(struct x86_emulate_ctxt *ctxt)
3232 {
3233 	ctxt->dst.type = OP_REG;
3234 	ctxt->dst.bytes = ctxt->src.bytes;
3235 	ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
3236 	ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
3237 
3238 	return X86EMUL_CONTINUE;
3239 }
3240 
em_rdpid(struct x86_emulate_ctxt * ctxt)3241 static int em_rdpid(struct x86_emulate_ctxt *ctxt)
3242 {
3243 	u64 tsc_aux = 0;
3244 
3245 	if (!ctxt->ops->guest_has_rdpid(ctxt))
3246 		return emulate_ud(ctxt);
3247 
3248 	ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux);
3249 	ctxt->dst.val = tsc_aux;
3250 	return X86EMUL_CONTINUE;
3251 }
3252 
em_rdtsc(struct x86_emulate_ctxt * ctxt)3253 static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
3254 {
3255 	u64 tsc = 0;
3256 
3257 	ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
3258 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
3259 	*reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
3260 	return X86EMUL_CONTINUE;
3261 }
3262 
em_rdpmc(struct x86_emulate_ctxt * ctxt)3263 static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
3264 {
3265 	u64 pmc;
3266 
3267 	if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
3268 		return emulate_gp(ctxt, 0);
3269 	*reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
3270 	*reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
3271 	return X86EMUL_CONTINUE;
3272 }
3273 
em_mov(struct x86_emulate_ctxt * ctxt)3274 static int em_mov(struct x86_emulate_ctxt *ctxt)
3275 {
3276 	memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
3277 	return X86EMUL_CONTINUE;
3278 }
3279 
em_movbe(struct x86_emulate_ctxt * ctxt)3280 static int em_movbe(struct x86_emulate_ctxt *ctxt)
3281 {
3282 	u16 tmp;
3283 
3284 	if (!ctxt->ops->guest_has_movbe(ctxt))
3285 		return emulate_ud(ctxt);
3286 
3287 	switch (ctxt->op_bytes) {
3288 	case 2:
3289 		/*
3290 		 * From MOVBE definition: "...When the operand size is 16 bits,
3291 		 * the upper word of the destination register remains unchanged
3292 		 * ..."
3293 		 *
3294 		 * Both casting ->valptr and ->val to u16 breaks strict aliasing
3295 		 * rules so we have to do the operation almost per hand.
3296 		 */
3297 		tmp = (u16)ctxt->src.val;
3298 		ctxt->dst.val &= ~0xffffUL;
3299 		ctxt->dst.val |= (unsigned long)swab16(tmp);
3300 		break;
3301 	case 4:
3302 		ctxt->dst.val = swab32((u32)ctxt->src.val);
3303 		break;
3304 	case 8:
3305 		ctxt->dst.val = swab64(ctxt->src.val);
3306 		break;
3307 	default:
3308 		BUG();
3309 	}
3310 	return X86EMUL_CONTINUE;
3311 }
3312 
em_cr_write(struct x86_emulate_ctxt * ctxt)3313 static int em_cr_write(struct x86_emulate_ctxt *ctxt)
3314 {
3315 	int cr_num = ctxt->modrm_reg;
3316 	int r;
3317 
3318 	if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val))
3319 		return emulate_gp(ctxt, 0);
3320 
3321 	/* Disable writeback. */
3322 	ctxt->dst.type = OP_NONE;
3323 
3324 	if (cr_num == 0) {
3325 		/*
3326 		 * CR0 write might have updated CR0.PE and/or CR0.PG
3327 		 * which can affect the cpu's execution mode.
3328 		 */
3329 		r = emulator_recalc_and_set_mode(ctxt);
3330 		if (r != X86EMUL_CONTINUE)
3331 			return r;
3332 	}
3333 
3334 	return X86EMUL_CONTINUE;
3335 }
3336 
em_dr_write(struct x86_emulate_ctxt * ctxt)3337 static int em_dr_write(struct x86_emulate_ctxt *ctxt)
3338 {
3339 	unsigned long val;
3340 
3341 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3342 		val = ctxt->src.val & ~0ULL;
3343 	else
3344 		val = ctxt->src.val & ~0U;
3345 
3346 	/* #UD condition is already handled. */
3347 	if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
3348 		return emulate_gp(ctxt, 0);
3349 
3350 	/* Disable writeback. */
3351 	ctxt->dst.type = OP_NONE;
3352 	return X86EMUL_CONTINUE;
3353 }
3354 
em_wrmsr(struct x86_emulate_ctxt * ctxt)3355 static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
3356 {
3357 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3358 	u64 msr_data;
3359 	int r;
3360 
3361 	msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
3362 		| ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
3363 	r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data);
3364 
3365 	if (r == X86EMUL_PROPAGATE_FAULT)
3366 		return emulate_gp(ctxt, 0);
3367 
3368 	return r;
3369 }
3370 
em_rdmsr(struct x86_emulate_ctxt * ctxt)3371 static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
3372 {
3373 	u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX);
3374 	u64 msr_data;
3375 	int r;
3376 
3377 	r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data);
3378 
3379 	if (r == X86EMUL_PROPAGATE_FAULT)
3380 		return emulate_gp(ctxt, 0);
3381 
3382 	if (r == X86EMUL_CONTINUE) {
3383 		*reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
3384 		*reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
3385 	}
3386 	return r;
3387 }
3388 
em_store_sreg(struct x86_emulate_ctxt * ctxt,int segment)3389 static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment)
3390 {
3391 	if (segment > VCPU_SREG_GS &&
3392 	    (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3393 	    ctxt->ops->cpl(ctxt) > 0)
3394 		return emulate_gp(ctxt, 0);
3395 
3396 	ctxt->dst.val = get_segment_selector(ctxt, segment);
3397 	if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
3398 		ctxt->dst.bytes = 2;
3399 	return X86EMUL_CONTINUE;
3400 }
3401 
em_mov_rm_sreg(struct x86_emulate_ctxt * ctxt)3402 static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
3403 {
3404 	if (ctxt->modrm_reg > VCPU_SREG_GS)
3405 		return emulate_ud(ctxt);
3406 
3407 	return em_store_sreg(ctxt, ctxt->modrm_reg);
3408 }
3409 
em_mov_sreg_rm(struct x86_emulate_ctxt * ctxt)3410 static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
3411 {
3412 	u16 sel = ctxt->src.val;
3413 
3414 	if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
3415 		return emulate_ud(ctxt);
3416 
3417 	if (ctxt->modrm_reg == VCPU_SREG_SS)
3418 		ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
3419 
3420 	/* Disable writeback. */
3421 	ctxt->dst.type = OP_NONE;
3422 	return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
3423 }
3424 
em_sldt(struct x86_emulate_ctxt * ctxt)3425 static int em_sldt(struct x86_emulate_ctxt *ctxt)
3426 {
3427 	return em_store_sreg(ctxt, VCPU_SREG_LDTR);
3428 }
3429 
em_lldt(struct x86_emulate_ctxt * ctxt)3430 static int em_lldt(struct x86_emulate_ctxt *ctxt)
3431 {
3432 	u16 sel = ctxt->src.val;
3433 
3434 	/* Disable writeback. */
3435 	ctxt->dst.type = OP_NONE;
3436 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
3437 }
3438 
em_str(struct x86_emulate_ctxt * ctxt)3439 static int em_str(struct x86_emulate_ctxt *ctxt)
3440 {
3441 	return em_store_sreg(ctxt, VCPU_SREG_TR);
3442 }
3443 
em_ltr(struct x86_emulate_ctxt * ctxt)3444 static int em_ltr(struct x86_emulate_ctxt *ctxt)
3445 {
3446 	u16 sel = ctxt->src.val;
3447 
3448 	/* Disable writeback. */
3449 	ctxt->dst.type = OP_NONE;
3450 	return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
3451 }
3452 
em_invlpg(struct x86_emulate_ctxt * ctxt)3453 static int em_invlpg(struct x86_emulate_ctxt *ctxt)
3454 {
3455 	int rc;
3456 	ulong linear;
3457 	unsigned int max_size;
3458 
3459 	rc = __linearize(ctxt, ctxt->src.addr.mem, &max_size, 1, ctxt->mode,
3460 			 &linear, X86EMUL_F_INVLPG);
3461 	if (rc == X86EMUL_CONTINUE)
3462 		ctxt->ops->invlpg(ctxt, linear);
3463 	/* Disable writeback. */
3464 	ctxt->dst.type = OP_NONE;
3465 	return X86EMUL_CONTINUE;
3466 }
3467 
em_clts(struct x86_emulate_ctxt * ctxt)3468 static int em_clts(struct x86_emulate_ctxt *ctxt)
3469 {
3470 	ulong cr0;
3471 
3472 	cr0 = ctxt->ops->get_cr(ctxt, 0);
3473 	cr0 &= ~X86_CR0_TS;
3474 	ctxt->ops->set_cr(ctxt, 0, cr0);
3475 	return X86EMUL_CONTINUE;
3476 }
3477 
em_hypercall(struct x86_emulate_ctxt * ctxt)3478 static int em_hypercall(struct x86_emulate_ctxt *ctxt)
3479 {
3480 	int rc = ctxt->ops->fix_hypercall(ctxt);
3481 
3482 	if (rc != X86EMUL_CONTINUE)
3483 		return rc;
3484 
3485 	/* Let the processor re-execute the fixed hypercall */
3486 	ctxt->_eip = ctxt->eip;
3487 	/* Disable writeback. */
3488 	ctxt->dst.type = OP_NONE;
3489 	return X86EMUL_CONTINUE;
3490 }
3491 
emulate_store_desc_ptr(struct x86_emulate_ctxt * ctxt,void (* get)(struct x86_emulate_ctxt * ctxt,struct desc_ptr * ptr))3492 static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
3493 				  void (*get)(struct x86_emulate_ctxt *ctxt,
3494 					      struct desc_ptr *ptr))
3495 {
3496 	struct desc_ptr desc_ptr;
3497 
3498 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3499 	    ctxt->ops->cpl(ctxt) > 0)
3500 		return emulate_gp(ctxt, 0);
3501 
3502 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3503 		ctxt->op_bytes = 8;
3504 	get(ctxt, &desc_ptr);
3505 	if (ctxt->op_bytes == 2) {
3506 		ctxt->op_bytes = 4;
3507 		desc_ptr.address &= 0x00ffffff;
3508 	}
3509 	/* Disable writeback. */
3510 	ctxt->dst.type = OP_NONE;
3511 	return segmented_write_std(ctxt, ctxt->dst.addr.mem,
3512 				   &desc_ptr, 2 + ctxt->op_bytes);
3513 }
3514 
em_sgdt(struct x86_emulate_ctxt * ctxt)3515 static int em_sgdt(struct x86_emulate_ctxt *ctxt)
3516 {
3517 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
3518 }
3519 
em_sidt(struct x86_emulate_ctxt * ctxt)3520 static int em_sidt(struct x86_emulate_ctxt *ctxt)
3521 {
3522 	return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
3523 }
3524 
em_lgdt_lidt(struct x86_emulate_ctxt * ctxt,bool lgdt)3525 static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
3526 {
3527 	struct desc_ptr desc_ptr;
3528 	int rc;
3529 
3530 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3531 		ctxt->op_bytes = 8;
3532 	rc = read_descriptor(ctxt, ctxt->src.addr.mem,
3533 			     &desc_ptr.size, &desc_ptr.address,
3534 			     ctxt->op_bytes);
3535 	if (rc != X86EMUL_CONTINUE)
3536 		return rc;
3537 	if (ctxt->mode == X86EMUL_MODE_PROT64 &&
3538 	    emul_is_noncanonical_address(desc_ptr.address, ctxt,
3539 					 X86EMUL_F_DT_LOAD))
3540 		return emulate_gp(ctxt, 0);
3541 	if (lgdt)
3542 		ctxt->ops->set_gdt(ctxt, &desc_ptr);
3543 	else
3544 		ctxt->ops->set_idt(ctxt, &desc_ptr);
3545 	/* Disable writeback. */
3546 	ctxt->dst.type = OP_NONE;
3547 	return X86EMUL_CONTINUE;
3548 }
3549 
em_lgdt(struct x86_emulate_ctxt * ctxt)3550 static int em_lgdt(struct x86_emulate_ctxt *ctxt)
3551 {
3552 	return em_lgdt_lidt(ctxt, true);
3553 }
3554 
em_lidt(struct x86_emulate_ctxt * ctxt)3555 static int em_lidt(struct x86_emulate_ctxt *ctxt)
3556 {
3557 	return em_lgdt_lidt(ctxt, false);
3558 }
3559 
em_smsw(struct x86_emulate_ctxt * ctxt)3560 static int em_smsw(struct x86_emulate_ctxt *ctxt)
3561 {
3562 	if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) &&
3563 	    ctxt->ops->cpl(ctxt) > 0)
3564 		return emulate_gp(ctxt, 0);
3565 
3566 	if (ctxt->dst.type == OP_MEM)
3567 		ctxt->dst.bytes = 2;
3568 	ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
3569 	return X86EMUL_CONTINUE;
3570 }
3571 
em_lmsw(struct x86_emulate_ctxt * ctxt)3572 static int em_lmsw(struct x86_emulate_ctxt *ctxt)
3573 {
3574 	ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
3575 			  | (ctxt->src.val & 0x0f));
3576 	ctxt->dst.type = OP_NONE;
3577 	return X86EMUL_CONTINUE;
3578 }
3579 
em_loop(struct x86_emulate_ctxt * ctxt)3580 static int em_loop(struct x86_emulate_ctxt *ctxt)
3581 {
3582 	int rc = X86EMUL_CONTINUE;
3583 
3584 	register_address_increment(ctxt, VCPU_REGS_RCX, -1);
3585 	if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
3586 	    (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
3587 		rc = jmp_rel(ctxt, ctxt->src.val);
3588 
3589 	return rc;
3590 }
3591 
em_jcxz(struct x86_emulate_ctxt * ctxt)3592 static int em_jcxz(struct x86_emulate_ctxt *ctxt)
3593 {
3594 	int rc = X86EMUL_CONTINUE;
3595 
3596 	if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
3597 		rc = jmp_rel(ctxt, ctxt->src.val);
3598 
3599 	return rc;
3600 }
3601 
em_in(struct x86_emulate_ctxt * ctxt)3602 static int em_in(struct x86_emulate_ctxt *ctxt)
3603 {
3604 	if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
3605 			     &ctxt->dst.val))
3606 		return X86EMUL_IO_NEEDED;
3607 
3608 	return X86EMUL_CONTINUE;
3609 }
3610 
em_out(struct x86_emulate_ctxt * ctxt)3611 static int em_out(struct x86_emulate_ctxt *ctxt)
3612 {
3613 	ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
3614 				    &ctxt->src.val, 1);
3615 	/* Disable writeback. */
3616 	ctxt->dst.type = OP_NONE;
3617 	return X86EMUL_CONTINUE;
3618 }
3619 
em_cli(struct x86_emulate_ctxt * ctxt)3620 static int em_cli(struct x86_emulate_ctxt *ctxt)
3621 {
3622 	if (emulator_bad_iopl(ctxt))
3623 		return emulate_gp(ctxt, 0);
3624 
3625 	ctxt->eflags &= ~X86_EFLAGS_IF;
3626 	return X86EMUL_CONTINUE;
3627 }
3628 
em_sti(struct x86_emulate_ctxt * ctxt)3629 static int em_sti(struct x86_emulate_ctxt *ctxt)
3630 {
3631 	if (emulator_bad_iopl(ctxt))
3632 		return emulate_gp(ctxt, 0);
3633 
3634 	ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
3635 	ctxt->eflags |= X86_EFLAGS_IF;
3636 	return X86EMUL_CONTINUE;
3637 }
3638 
em_cpuid(struct x86_emulate_ctxt * ctxt)3639 static int em_cpuid(struct x86_emulate_ctxt *ctxt)
3640 {
3641 	u32 eax, ebx, ecx, edx;
3642 	u64 msr = 0;
3643 
3644 	ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr);
3645 	if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3646 	    ctxt->ops->cpl(ctxt)) {
3647 		return emulate_gp(ctxt, 0);
3648 	}
3649 
3650 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3651 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3652 	ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false);
3653 	*reg_write(ctxt, VCPU_REGS_RAX) = eax;
3654 	*reg_write(ctxt, VCPU_REGS_RBX) = ebx;
3655 	*reg_write(ctxt, VCPU_REGS_RCX) = ecx;
3656 	*reg_write(ctxt, VCPU_REGS_RDX) = edx;
3657 	return X86EMUL_CONTINUE;
3658 }
3659 
em_sahf(struct x86_emulate_ctxt * ctxt)3660 static int em_sahf(struct x86_emulate_ctxt *ctxt)
3661 {
3662 	u32 flags;
3663 
3664 	flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
3665 		X86_EFLAGS_SF;
3666 	flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
3667 
3668 	ctxt->eflags &= ~0xffUL;
3669 	ctxt->eflags |= flags | X86_EFLAGS_FIXED;
3670 	return X86EMUL_CONTINUE;
3671 }
3672 
em_lahf(struct x86_emulate_ctxt * ctxt)3673 static int em_lahf(struct x86_emulate_ctxt *ctxt)
3674 {
3675 	*reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
3676 	*reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
3677 	return X86EMUL_CONTINUE;
3678 }
3679 
em_bswap(struct x86_emulate_ctxt * ctxt)3680 static int em_bswap(struct x86_emulate_ctxt *ctxt)
3681 {
3682 	switch (ctxt->op_bytes) {
3683 #ifdef CONFIG_X86_64
3684 	case 8:
3685 		asm("bswap %0" : "+r"(ctxt->dst.val));
3686 		break;
3687 #endif
3688 	default:
3689 		asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
3690 		break;
3691 	}
3692 	return X86EMUL_CONTINUE;
3693 }
3694 
em_clflush(struct x86_emulate_ctxt * ctxt)3695 static int em_clflush(struct x86_emulate_ctxt *ctxt)
3696 {
3697 	/* emulating clflush regardless of cpuid */
3698 	return X86EMUL_CONTINUE;
3699 }
3700 
em_clflushopt(struct x86_emulate_ctxt * ctxt)3701 static int em_clflushopt(struct x86_emulate_ctxt *ctxt)
3702 {
3703 	/* emulating clflushopt regardless of cpuid */
3704 	return X86EMUL_CONTINUE;
3705 }
3706 
em_movsxd(struct x86_emulate_ctxt * ctxt)3707 static int em_movsxd(struct x86_emulate_ctxt *ctxt)
3708 {
3709 	ctxt->dst.val = (s32) ctxt->src.val;
3710 	return X86EMUL_CONTINUE;
3711 }
3712 
check_fxsr(struct x86_emulate_ctxt * ctxt)3713 static int check_fxsr(struct x86_emulate_ctxt *ctxt)
3714 {
3715 	if (!ctxt->ops->guest_has_fxsr(ctxt))
3716 		return emulate_ud(ctxt);
3717 
3718 	if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
3719 		return emulate_nm(ctxt);
3720 
3721 	/*
3722 	 * Don't emulate a case that should never be hit, instead of working
3723 	 * around a lack of fxsave64/fxrstor64 on old compilers.
3724 	 */
3725 	if (ctxt->mode >= X86EMUL_MODE_PROT64)
3726 		return X86EMUL_UNHANDLEABLE;
3727 
3728 	return X86EMUL_CONTINUE;
3729 }
3730 
3731 /*
3732  * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save
3733  * and restore MXCSR.
3734  */
__fxstate_size(int nregs)3735 static size_t __fxstate_size(int nregs)
3736 {
3737 	return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16;
3738 }
3739 
fxstate_size(struct x86_emulate_ctxt * ctxt)3740 static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt)
3741 {
3742 	bool cr4_osfxsr;
3743 	if (ctxt->mode == X86EMUL_MODE_PROT64)
3744 		return __fxstate_size(16);
3745 
3746 	cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR;
3747 	return __fxstate_size(cr4_osfxsr ? 8 : 0);
3748 }
3749 
3750 /*
3751  * FXSAVE and FXRSTOR have 4 different formats depending on execution mode,
3752  *  1) 16 bit mode
3753  *  2) 32 bit mode
3754  *     - like (1), but FIP and FDP (foo) are only 16 bit.  At least Intel CPUs
3755  *       preserve whole 32 bit values, though, so (1) and (2) are the same wrt.
3756  *       save and restore
3757  *  3) 64-bit mode with REX.W prefix
3758  *     - like (2), but XMM 8-15 are being saved and restored
3759  *  4) 64-bit mode without REX.W prefix
3760  *     - like (3), but FIP and FDP are 64 bit
3761  *
3762  * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the
3763  * desired result.  (4) is not emulated.
3764  *
3765  * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS
3766  * and FPU DS) should match.
3767  */
em_fxsave(struct x86_emulate_ctxt * ctxt)3768 static int em_fxsave(struct x86_emulate_ctxt *ctxt)
3769 {
3770 	struct fxregs_state fx_state;
3771 	int rc;
3772 
3773 	rc = check_fxsr(ctxt);
3774 	if (rc != X86EMUL_CONTINUE)
3775 		return rc;
3776 
3777 	kvm_fpu_get();
3778 
3779 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state));
3780 
3781 	kvm_fpu_put();
3782 
3783 	if (rc != X86EMUL_CONTINUE)
3784 		return rc;
3785 
3786 	return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state,
3787 		                   fxstate_size(ctxt));
3788 }
3789 
3790 /*
3791  * FXRSTOR might restore XMM registers not provided by the guest. Fill
3792  * in the host registers (via FXSAVE) instead, so they won't be modified.
3793  * (preemption has to stay disabled until FXRSTOR).
3794  *
3795  * Use noinline to keep the stack for other functions called by callers small.
3796  */
fxregs_fixup(struct fxregs_state * fx_state,const size_t used_size)3797 static noinline int fxregs_fixup(struct fxregs_state *fx_state,
3798 				 const size_t used_size)
3799 {
3800 	struct fxregs_state fx_tmp;
3801 	int rc;
3802 
3803 	rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp));
3804 	memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size,
3805 	       __fxstate_size(16) - used_size);
3806 
3807 	return rc;
3808 }
3809 
em_fxrstor(struct x86_emulate_ctxt * ctxt)3810 static int em_fxrstor(struct x86_emulate_ctxt *ctxt)
3811 {
3812 	struct fxregs_state fx_state;
3813 	int rc;
3814 	size_t size;
3815 
3816 	rc = check_fxsr(ctxt);
3817 	if (rc != X86EMUL_CONTINUE)
3818 		return rc;
3819 
3820 	size = fxstate_size(ctxt);
3821 	rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size);
3822 	if (rc != X86EMUL_CONTINUE)
3823 		return rc;
3824 
3825 	kvm_fpu_get();
3826 
3827 	if (size < __fxstate_size(16)) {
3828 		rc = fxregs_fixup(&fx_state, size);
3829 		if (rc != X86EMUL_CONTINUE)
3830 			goto out;
3831 	}
3832 
3833 	if (fx_state.mxcsr >> 16) {
3834 		rc = emulate_gp(ctxt, 0);
3835 		goto out;
3836 	}
3837 
3838 	if (rc == X86EMUL_CONTINUE)
3839 		rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state));
3840 
3841 out:
3842 	kvm_fpu_put();
3843 
3844 	return rc;
3845 }
3846 
em_xsetbv(struct x86_emulate_ctxt * ctxt)3847 static int em_xsetbv(struct x86_emulate_ctxt *ctxt)
3848 {
3849 	u32 eax, ecx, edx;
3850 
3851 	if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE))
3852 		return emulate_ud(ctxt);
3853 
3854 	eax = reg_read(ctxt, VCPU_REGS_RAX);
3855 	edx = reg_read(ctxt, VCPU_REGS_RDX);
3856 	ecx = reg_read(ctxt, VCPU_REGS_RCX);
3857 
3858 	if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax))
3859 		return emulate_gp(ctxt, 0);
3860 
3861 	return X86EMUL_CONTINUE;
3862 }
3863 
valid_cr(int nr)3864 static bool valid_cr(int nr)
3865 {
3866 	switch (nr) {
3867 	case 0:
3868 	case 2 ... 4:
3869 	case 8:
3870 		return true;
3871 	default:
3872 		return false;
3873 	}
3874 }
3875 
check_cr_access(struct x86_emulate_ctxt * ctxt)3876 static int check_cr_access(struct x86_emulate_ctxt *ctxt)
3877 {
3878 	if (!valid_cr(ctxt->modrm_reg))
3879 		return emulate_ud(ctxt);
3880 
3881 	return X86EMUL_CONTINUE;
3882 }
3883 
check_dr_read(struct x86_emulate_ctxt * ctxt)3884 static int check_dr_read(struct x86_emulate_ctxt *ctxt)
3885 {
3886 	int dr = ctxt->modrm_reg;
3887 	u64 cr4;
3888 
3889 	if (dr > 7)
3890 		return emulate_ud(ctxt);
3891 
3892 	cr4 = ctxt->ops->get_cr(ctxt, 4);
3893 	if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
3894 		return emulate_ud(ctxt);
3895 
3896 	if (ctxt->ops->get_dr(ctxt, 7) & DR7_GD) {
3897 		ulong dr6;
3898 
3899 		dr6 = ctxt->ops->get_dr(ctxt, 6);
3900 		dr6 &= ~DR_TRAP_BITS;
3901 		dr6 |= DR6_BD | DR6_ACTIVE_LOW;
3902 		ctxt->ops->set_dr(ctxt, 6, dr6);
3903 		return emulate_db(ctxt);
3904 	}
3905 
3906 	return X86EMUL_CONTINUE;
3907 }
3908 
check_dr_write(struct x86_emulate_ctxt * ctxt)3909 static int check_dr_write(struct x86_emulate_ctxt *ctxt)
3910 {
3911 	u64 new_val = ctxt->src.val64;
3912 	int dr = ctxt->modrm_reg;
3913 
3914 	if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
3915 		return emulate_gp(ctxt, 0);
3916 
3917 	return check_dr_read(ctxt);
3918 }
3919 
check_svme(struct x86_emulate_ctxt * ctxt)3920 static int check_svme(struct x86_emulate_ctxt *ctxt)
3921 {
3922 	u64 efer = 0;
3923 
3924 	ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
3925 
3926 	if (!(efer & EFER_SVME))
3927 		return emulate_ud(ctxt);
3928 
3929 	return X86EMUL_CONTINUE;
3930 }
3931 
check_svme_pa(struct x86_emulate_ctxt * ctxt)3932 static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
3933 {
3934 	u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
3935 
3936 	/* Valid physical address? */
3937 	if (rax & 0xffff000000000000ULL)
3938 		return emulate_gp(ctxt, 0);
3939 
3940 	return check_svme(ctxt);
3941 }
3942 
check_rdtsc(struct x86_emulate_ctxt * ctxt)3943 static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
3944 {
3945 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3946 
3947 	if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
3948 		return emulate_gp(ctxt, 0);
3949 
3950 	return X86EMUL_CONTINUE;
3951 }
3952 
check_rdpmc(struct x86_emulate_ctxt * ctxt)3953 static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
3954 {
3955 	u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
3956 	u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
3957 
3958 	/*
3959 	 * VMware allows access to these Pseduo-PMCs even when read via RDPMC
3960 	 * in Ring3 when CR4.PCE=0.
3961 	 */
3962 	if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx))
3963 		return X86EMUL_CONTINUE;
3964 
3965 	/*
3966 	 * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0.  The CR0.PE
3967 	 * check however is unnecessary because CPL is always 0 outside
3968 	 * protected mode.
3969 	 */
3970 	if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
3971 	    ctxt->ops->check_rdpmc_early(ctxt, rcx))
3972 		return emulate_gp(ctxt, 0);
3973 
3974 	return X86EMUL_CONTINUE;
3975 }
3976 
check_perm_in(struct x86_emulate_ctxt * ctxt)3977 static int check_perm_in(struct x86_emulate_ctxt *ctxt)
3978 {
3979 	ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
3980 	if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes))
3981 		return emulate_gp(ctxt, 0);
3982 
3983 	return X86EMUL_CONTINUE;
3984 }
3985 
check_perm_out(struct x86_emulate_ctxt * ctxt)3986 static int check_perm_out(struct x86_emulate_ctxt *ctxt)
3987 {
3988 	ctxt->src.bytes = min(ctxt->src.bytes, 4u);
3989 	if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes))
3990 		return emulate_gp(ctxt, 0);
3991 
3992 	return X86EMUL_CONTINUE;
3993 }
3994 
3995 #define D(_y) { .flags = (_y) }
3996 #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
3997 #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
3998 		      .intercept = x86_intercept_##_i, .check_perm = (_p) }
3999 #define N    D(NotImpl)
4000 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
4001 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
4002 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
4003 #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
4004 #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
4005 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
4006 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
4007 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
4008 #define II(_f, _e, _i) \
4009 	{ .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
4010 #define IIP(_f, _e, _i, _p) \
4011 	{ .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
4012 	  .intercept = x86_intercept_##_i, .check_perm = (_p) }
4013 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
4014 
4015 #define D2bv(_f)      D((_f) | ByteOp), D(_f)
4016 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
4017 #define I2bv(_f, _e)  I((_f) | ByteOp, _e), I(_f, _e)
4018 #define F2bv(_f, _e)  F((_f) | ByteOp, _e), F(_f, _e)
4019 #define I2bvIP(_f, _e, _i, _p) \
4020 	IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
4021 
4022 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e),		\
4023 		F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e),	\
4024 		F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
4025 
4026 static const struct opcode group7_rm0[] = {
4027 	N,
4028 	I(SrcNone | Priv | EmulateOnUD,	em_hypercall),
4029 	N, N, N, N, N, N,
4030 };
4031 
4032 static const struct opcode group7_rm1[] = {
4033 	DI(SrcNone | Priv, monitor),
4034 	DI(SrcNone | Priv, mwait),
4035 	N, N, N, N, N, N,
4036 };
4037 
4038 static const struct opcode group7_rm2[] = {
4039 	N,
4040 	II(ImplicitOps | Priv,			em_xsetbv,	xsetbv),
4041 	N, N, N, N, N, N,
4042 };
4043 
4044 static const struct opcode group7_rm3[] = {
4045 	DIP(SrcNone | Prot | Priv,		vmrun,		check_svme_pa),
4046 	II(SrcNone  | Prot | EmulateOnUD,	em_hypercall,	vmmcall),
4047 	DIP(SrcNone | Prot | Priv,		vmload,		check_svme_pa),
4048 	DIP(SrcNone | Prot | Priv,		vmsave,		check_svme_pa),
4049 	DIP(SrcNone | Prot | Priv,		stgi,		check_svme),
4050 	DIP(SrcNone | Prot | Priv,		clgi,		check_svme),
4051 	DIP(SrcNone | Prot | Priv,		skinit,		check_svme),
4052 	DIP(SrcNone | Prot | Priv,		invlpga,	check_svme),
4053 };
4054 
4055 static const struct opcode group7_rm7[] = {
4056 	N,
4057 	DIP(SrcNone, rdtscp, check_rdtsc),
4058 	N, N, N, N, N, N,
4059 };
4060 
4061 static const struct opcode group1[] = {
4062 	F(Lock, em_add),
4063 	F(Lock | PageTable, em_or),
4064 	F(Lock, em_adc),
4065 	F(Lock, em_sbb),
4066 	F(Lock | PageTable, em_and),
4067 	F(Lock, em_sub),
4068 	F(Lock, em_xor),
4069 	F(NoWrite, em_cmp),
4070 };
4071 
4072 static const struct opcode group1A[] = {
4073 	I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N,
4074 };
4075 
4076 static const struct opcode group2[] = {
4077 	F(DstMem | ModRM, em_rol),
4078 	F(DstMem | ModRM, em_ror),
4079 	F(DstMem | ModRM, em_rcl),
4080 	F(DstMem | ModRM, em_rcr),
4081 	F(DstMem | ModRM, em_shl),
4082 	F(DstMem | ModRM, em_shr),
4083 	F(DstMem | ModRM, em_shl),
4084 	F(DstMem | ModRM, em_sar),
4085 };
4086 
4087 static const struct opcode group3[] = {
4088 	F(DstMem | SrcImm | NoWrite, em_test),
4089 	F(DstMem | SrcImm | NoWrite, em_test),
4090 	F(DstMem | SrcNone | Lock, em_not),
4091 	F(DstMem | SrcNone | Lock, em_neg),
4092 	F(DstXacc | Src2Mem, em_mul_ex),
4093 	F(DstXacc | Src2Mem, em_imul_ex),
4094 	F(DstXacc | Src2Mem, em_div_ex),
4095 	F(DstXacc | Src2Mem, em_idiv_ex),
4096 };
4097 
4098 static const struct opcode group4[] = {
4099 	F(ByteOp | DstMem | SrcNone | Lock, em_inc),
4100 	F(ByteOp | DstMem | SrcNone | Lock, em_dec),
4101 	N, N, N, N, N, N,
4102 };
4103 
4104 static const struct opcode group5[] = {
4105 	F(DstMem | SrcNone | Lock,		em_inc),
4106 	F(DstMem | SrcNone | Lock,		em_dec),
4107 	I(SrcMem | NearBranch | IsBranch | ShadowStack, em_call_near_abs),
4108 	I(SrcMemFAddr | ImplicitOps | IsBranch | ShadowStack, em_call_far),
4109 	I(SrcMem | NearBranch | IsBranch,       em_jmp_abs),
4110 	I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far),
4111 	I(SrcMem | Stack | TwoMemOp,		em_push), D(Undefined),
4112 };
4113 
4114 static const struct opcode group6[] = {
4115 	II(Prot | DstMem,	   em_sldt, sldt),
4116 	II(Prot | DstMem,	   em_str, str),
4117 	II(Prot | Priv | SrcMem16, em_lldt, lldt),
4118 	II(Prot | Priv | SrcMem16, em_ltr, ltr),
4119 	N, N, N, N,
4120 };
4121 
4122 static const struct group_dual group7 = { {
4123 	II(Mov | DstMem,			em_sgdt, sgdt),
4124 	II(Mov | DstMem,			em_sidt, sidt),
4125 	II(SrcMem | Priv,			em_lgdt, lgdt),
4126 	II(SrcMem | Priv,			em_lidt, lidt),
4127 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4128 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4129 	II(SrcMem | ByteOp | Priv | NoAccess,	em_invlpg, invlpg),
4130 }, {
4131 	EXT(0, group7_rm0),
4132 	EXT(0, group7_rm1),
4133 	EXT(0, group7_rm2),
4134 	EXT(0, group7_rm3),
4135 	II(SrcNone | DstMem | Mov,		em_smsw, smsw), N,
4136 	II(SrcMem16 | Mov | Priv,		em_lmsw, lmsw),
4137 	EXT(0, group7_rm7),
4138 } };
4139 
4140 static const struct opcode group8[] = {
4141 	N, N, N, N,
4142 	F(DstMem | SrcImmByte | NoWrite,		em_bt),
4143 	F(DstMem | SrcImmByte | Lock | PageTable,	em_bts),
4144 	F(DstMem | SrcImmByte | Lock,			em_btr),
4145 	F(DstMem | SrcImmByte | Lock | PageTable,	em_btc),
4146 };
4147 
4148 /*
4149  * The "memory" destination is actually always a register, since we come
4150  * from the register case of group9.
4151  */
4152 static const struct gprefix pfx_0f_c7_7 = {
4153 	N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid),
4154 };
4155 
4156 
4157 static const struct group_dual group9 = { {
4158 	N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
4159 }, {
4160 	N, N, N, N, N, N, N,
4161 	GP(0, &pfx_0f_c7_7),
4162 } };
4163 
4164 static const struct opcode group11[] = {
4165 	I(DstMem | SrcImm | Mov | PageTable, em_mov),
4166 	X7(D(Undefined)),
4167 };
4168 
4169 static const struct gprefix pfx_0f_ae_7 = {
4170 	I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N,
4171 };
4172 
4173 static const struct group_dual group15 = { {
4174 	I(ModRM | Aligned16, em_fxsave),
4175 	I(ModRM | Aligned16, em_fxrstor),
4176 	N, N, N, N, N, GP(0, &pfx_0f_ae_7),
4177 }, {
4178 	N, N, N, N, N, N, N, N,
4179 } };
4180 
4181 static const struct gprefix pfx_0f_6f_0f_7f = {
4182 	I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
4183 };
4184 
4185 static const struct instr_dual instr_dual_0f_2b = {
4186 	I(0, em_mov), N
4187 };
4188 
4189 static const struct gprefix pfx_0f_2b = {
4190 	ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
4191 };
4192 
4193 static const struct gprefix pfx_0f_10_0f_11 = {
4194 	I(Unaligned, em_mov), I(Unaligned, em_mov), N, N,
4195 };
4196 
4197 static const struct gprefix pfx_0f_28_0f_29 = {
4198 	I(Aligned, em_mov), I(Aligned, em_mov), N, N,
4199 };
4200 
4201 static const struct gprefix pfx_0f_e7 = {
4202 	N, I(Sse, em_mov), N, N,
4203 };
4204 
4205 static const struct escape escape_d9 = { {
4206 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
4207 }, {
4208 	/* 0xC0 - 0xC7 */
4209 	N, N, N, N, N, N, N, N,
4210 	/* 0xC8 - 0xCF */
4211 	N, N, N, N, N, N, N, N,
4212 	/* 0xD0 - 0xC7 */
4213 	N, N, N, N, N, N, N, N,
4214 	/* 0xD8 - 0xDF */
4215 	N, N, N, N, N, N, N, N,
4216 	/* 0xE0 - 0xE7 */
4217 	N, N, N, N, N, N, N, N,
4218 	/* 0xE8 - 0xEF */
4219 	N, N, N, N, N, N, N, N,
4220 	/* 0xF0 - 0xF7 */
4221 	N, N, N, N, N, N, N, N,
4222 	/* 0xF8 - 0xFF */
4223 	N, N, N, N, N, N, N, N,
4224 } };
4225 
4226 static const struct escape escape_db = { {
4227 	N, N, N, N, N, N, N, N,
4228 }, {
4229 	/* 0xC0 - 0xC7 */
4230 	N, N, N, N, N, N, N, N,
4231 	/* 0xC8 - 0xCF */
4232 	N, N, N, N, N, N, N, N,
4233 	/* 0xD0 - 0xC7 */
4234 	N, N, N, N, N, N, N, N,
4235 	/* 0xD8 - 0xDF */
4236 	N, N, N, N, N, N, N, N,
4237 	/* 0xE0 - 0xE7 */
4238 	N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
4239 	/* 0xE8 - 0xEF */
4240 	N, N, N, N, N, N, N, N,
4241 	/* 0xF0 - 0xF7 */
4242 	N, N, N, N, N, N, N, N,
4243 	/* 0xF8 - 0xFF */
4244 	N, N, N, N, N, N, N, N,
4245 } };
4246 
4247 static const struct escape escape_dd = { {
4248 	N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
4249 }, {
4250 	/* 0xC0 - 0xC7 */
4251 	N, N, N, N, N, N, N, N,
4252 	/* 0xC8 - 0xCF */
4253 	N, N, N, N, N, N, N, N,
4254 	/* 0xD0 - 0xC7 */
4255 	N, N, N, N, N, N, N, N,
4256 	/* 0xD8 - 0xDF */
4257 	N, N, N, N, N, N, N, N,
4258 	/* 0xE0 - 0xE7 */
4259 	N, N, N, N, N, N, N, N,
4260 	/* 0xE8 - 0xEF */
4261 	N, N, N, N, N, N, N, N,
4262 	/* 0xF0 - 0xF7 */
4263 	N, N, N, N, N, N, N, N,
4264 	/* 0xF8 - 0xFF */
4265 	N, N, N, N, N, N, N, N,
4266 } };
4267 
4268 static const struct instr_dual instr_dual_0f_c3 = {
4269 	I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
4270 };
4271 
4272 static const struct mode_dual mode_dual_63 = {
4273 	N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
4274 };
4275 
4276 static const struct instr_dual instr_dual_8d = {
4277 	D(DstReg | SrcMem | ModRM | NoAccess), N
4278 };
4279 
4280 static const struct opcode opcode_table[256] = {
4281 	/* 0x00 - 0x07 */
4282 	F6ALU(Lock, em_add),
4283 	I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
4284 	I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
4285 	/* 0x08 - 0x0F */
4286 	F6ALU(Lock | PageTable, em_or),
4287 	I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
4288 	N,
4289 	/* 0x10 - 0x17 */
4290 	F6ALU(Lock, em_adc),
4291 	I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
4292 	I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
4293 	/* 0x18 - 0x1F */
4294 	F6ALU(Lock, em_sbb),
4295 	I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
4296 	I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
4297 	/* 0x20 - 0x27 */
4298 	F6ALU(Lock | PageTable, em_and), N, N,
4299 	/* 0x28 - 0x2F */
4300 	F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
4301 	/* 0x30 - 0x37 */
4302 	F6ALU(Lock, em_xor), N, N,
4303 	/* 0x38 - 0x3F */
4304 	F6ALU(NoWrite, em_cmp), N, N,
4305 	/* 0x40 - 0x4F */
4306 	X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
4307 	/* 0x50 - 0x57 */
4308 	X8(I(SrcReg | Stack, em_push)),
4309 	/* 0x58 - 0x5F */
4310 	X8(I(DstReg | Stack, em_pop)),
4311 	/* 0x60 - 0x67 */
4312 	I(ImplicitOps | Stack | No64, em_pusha),
4313 	I(ImplicitOps | Stack | No64, em_popa),
4314 	N, MD(ModRM, &mode_dual_63),
4315 	N, N, N, N,
4316 	/* 0x68 - 0x6F */
4317 	I(SrcImm | Mov | Stack, em_push),
4318 	I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
4319 	I(SrcImmByte | Mov | Stack, em_push),
4320 	I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
4321 	I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
4322 	I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
4323 	/* 0x70 - 0x7F */
4324 	X16(D(SrcImmByte | NearBranch | IsBranch)),
4325 	/* 0x80 - 0x87 */
4326 	G(ByteOp | DstMem | SrcImm, group1),
4327 	G(DstMem | SrcImm, group1),
4328 	G(ByteOp | DstMem | SrcImm | No64, group1),
4329 	G(DstMem | SrcImmByte, group1),
4330 	F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
4331 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
4332 	/* 0x88 - 0x8F */
4333 	I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
4334 	I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
4335 	I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
4336 	ID(0, &instr_dual_8d),
4337 	I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
4338 	G(0, group1A),
4339 	/* 0x90 - 0x97 */
4340 	DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
4341 	/* 0x98 - 0x9F */
4342 	D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
4343 	I(SrcImmFAddr | No64 | IsBranch | ShadowStack, em_call_far), N,
4344 	II(ImplicitOps | Stack, em_pushf, pushf),
4345 	II(ImplicitOps | Stack, em_popf, popf),
4346 	I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
4347 	/* 0xA0 - 0xA7 */
4348 	I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
4349 	I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
4350 	I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov),
4351 	F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r),
4352 	/* 0xA8 - 0xAF */
4353 	F2bv(DstAcc | SrcImm | NoWrite, em_test),
4354 	I2bv(SrcAcc | DstDI | Mov | String, em_mov),
4355 	I2bv(SrcSI | DstAcc | Mov | String, em_mov),
4356 	F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
4357 	/* 0xB0 - 0xB7 */
4358 	X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
4359 	/* 0xB8 - 0xBF */
4360 	X8(I(DstReg | SrcImm64 | Mov, em_mov)),
4361 	/* 0xC0 - 0xC7 */
4362 	G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
4363 	I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch | ShadowStack, em_ret_near_imm),
4364 	I(ImplicitOps | NearBranch | IsBranch | ShadowStack, em_ret),
4365 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
4366 	I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
4367 	G(ByteOp, group11), G(0, group11),
4368 	/* 0xC8 - 0xCF */
4369 	I(Stack | SrcImmU16 | Src2ImmByte, em_enter),
4370 	I(Stack, em_leave),
4371 	I(ImplicitOps | SrcImmU16 | IsBranch | ShadowStack, em_ret_far_imm),
4372 	I(ImplicitOps | IsBranch | ShadowStack, em_ret_far),
4373 	D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch | ShadowStack, intn),
4374 	D(ImplicitOps | No64 | IsBranch),
4375 	II(ImplicitOps | IsBranch | ShadowStack, em_iret, iret),
4376 	/* 0xD0 - 0xD7 */
4377 	G(Src2One | ByteOp, group2), G(Src2One, group2),
4378 	G(Src2CL | ByteOp, group2), G(Src2CL, group2),
4379 	I(DstAcc | SrcImmUByte | No64, em_aam),
4380 	I(DstAcc | SrcImmUByte | No64, em_aad),
4381 	F(DstAcc | ByteOp | No64, em_salc),
4382 	I(DstAcc | SrcXLat | ByteOp, em_mov),
4383 	/* 0xD8 - 0xDF */
4384 	N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
4385 	/* 0xE0 - 0xE7 */
4386 	X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)),
4387 	I(SrcImmByte | NearBranch | IsBranch, em_jcxz),
4388 	I2bvIP(SrcImmUByte | DstAcc, em_in,  in,  check_perm_in),
4389 	I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
4390 	/* 0xE8 - 0xEF */
4391 	I(SrcImm | NearBranch | IsBranch | ShadowStack, em_call),
4392 	D(SrcImm | ImplicitOps | NearBranch | IsBranch),
4393 	I(SrcImmFAddr | No64 | IsBranch, em_jmp_far),
4394 	D(SrcImmByte | ImplicitOps | NearBranch | IsBranch),
4395 	I2bvIP(SrcDX | DstAcc, em_in,  in,  check_perm_in),
4396 	I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
4397 	/* 0xF0 - 0xF7 */
4398 	N, DI(ImplicitOps, icebp), N, N,
4399 	DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
4400 	G(ByteOp, group3), G(0, group3),
4401 	/* 0xF8 - 0xFF */
4402 	D(ImplicitOps), D(ImplicitOps),
4403 	I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
4404 	D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
4405 };
4406 
4407 static const struct opcode twobyte_table[256] = {
4408 	/* 0x00 - 0x0F */
4409 	G(0, group6), GD(0, &group7), N, N,
4410 	N, I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_syscall),
4411 	II(ImplicitOps | Priv, em_clts, clts), N,
4412 	DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
4413 	N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4414 	/* 0x10 - 0x1F */
4415 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11),
4416 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11),
4417 	N, N, N, N, N, N,
4418 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */
4419 	D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
4420 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4421 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4422 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */
4423 	D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */
4424 	/* 0x20 - 0x2F */
4425 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access),
4426 	DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
4427 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
4428 						check_cr_access),
4429 	IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
4430 						check_dr_write),
4431 	N, N, N, N,
4432 	GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
4433 	GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
4434 	N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
4435 	N, N, N, N,
4436 	/* 0x30 - 0x3F */
4437 	II(ImplicitOps | Priv, em_wrmsr, wrmsr),
4438 	IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
4439 	II(ImplicitOps | Priv, em_rdmsr, rdmsr),
4440 	IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
4441 	I(ImplicitOps | EmulateOnUD | IsBranch | ShadowStack, em_sysenter),
4442 	I(ImplicitOps | Priv | EmulateOnUD | IsBranch | ShadowStack, em_sysexit),
4443 	N, N,
4444 	N, N, N, N, N, N, N, N,
4445 	/* 0x40 - 0x4F */
4446 	X16(D(DstReg | SrcMem | ModRM)),
4447 	/* 0x50 - 0x5F */
4448 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4449 	/* 0x60 - 0x6F */
4450 	N, N, N, N,
4451 	N, N, N, N,
4452 	N, N, N, N,
4453 	N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
4454 	/* 0x70 - 0x7F */
4455 	N, N, N, N,
4456 	N, N, N, N,
4457 	N, N, N, N,
4458 	N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
4459 	/* 0x80 - 0x8F */
4460 	X16(D(SrcImm | NearBranch | IsBranch)),
4461 	/* 0x90 - 0x9F */
4462 	X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
4463 	/* 0xA0 - 0xA7 */
4464 	I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
4465 	II(ImplicitOps, em_cpuid, cpuid),
4466 	F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
4467 	F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
4468 	F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
4469 	/* 0xA8 - 0xAF */
4470 	I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
4471 	II(EmulateOnUD | ImplicitOps, em_rsm, rsm),
4472 	F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
4473 	F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
4474 	F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
4475 	GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
4476 	/* 0xB0 - 0xB7 */
4477 	I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
4478 	I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
4479 	F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
4480 	I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
4481 	I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
4482 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4483 	/* 0xB8 - 0xBF */
4484 	N, N,
4485 	G(BitOp, group8),
4486 	F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
4487 	I(DstReg | SrcMem | ModRM, em_bsf_c),
4488 	I(DstReg | SrcMem | ModRM, em_bsr_c),
4489 	D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
4490 	/* 0xC0 - 0xC7 */
4491 	F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
4492 	N, ID(0, &instr_dual_0f_c3),
4493 	N, N, N, GD(0, &group9),
4494 	/* 0xC8 - 0xCF */
4495 	X8(I(DstReg, em_bswap)),
4496 	/* 0xD0 - 0xDF */
4497 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
4498 	/* 0xE0 - 0xEF */
4499 	N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
4500 	N, N, N, N, N, N, N, N,
4501 	/* 0xF0 - 0xFF */
4502 	N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
4503 };
4504 
4505 static const struct instr_dual instr_dual_0f_38_f0 = {
4506 	I(DstReg | SrcMem | Mov, em_movbe), N
4507 };
4508 
4509 static const struct instr_dual instr_dual_0f_38_f1 = {
4510 	I(DstMem | SrcReg | Mov, em_movbe), N
4511 };
4512 
4513 static const struct gprefix three_byte_0f_38_f0 = {
4514 	ID(0, &instr_dual_0f_38_f0), ID(0, &instr_dual_0f_38_f0), N, N
4515 };
4516 
4517 static const struct gprefix three_byte_0f_38_f1 = {
4518 	ID(0, &instr_dual_0f_38_f1), ID(0, &instr_dual_0f_38_f1), N, N
4519 };
4520 
4521 /*
4522  * Insns below are selected by the prefix which indexed by the third opcode
4523  * byte.
4524  */
4525 static const struct opcode opcode_map_0f_38[256] = {
4526 	/* 0x00 - 0x7f */
4527 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4528 	/* 0x80 - 0xef */
4529 	X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
4530 	/* 0xf0 - 0xf1 */
4531 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
4532 	GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
4533 	/* 0xf2 - 0xff */
4534 	N, N, X4(N), X8(N)
4535 };
4536 
4537 #undef D
4538 #undef N
4539 #undef G
4540 #undef GD
4541 #undef I
4542 #undef GP
4543 #undef EXT
4544 #undef MD
4545 #undef ID
4546 
4547 #undef D2bv
4548 #undef D2bvIP
4549 #undef I2bv
4550 #undef I2bvIP
4551 #undef I6ALU
4552 
is_shstk_instruction(struct x86_emulate_ctxt * ctxt)4553 static bool is_shstk_instruction(struct x86_emulate_ctxt *ctxt)
4554 {
4555 	return ctxt->d & ShadowStack;
4556 }
4557 
is_ibt_instruction(struct x86_emulate_ctxt * ctxt)4558 static bool is_ibt_instruction(struct x86_emulate_ctxt *ctxt)
4559 {
4560 	u64 flags = ctxt->d;
4561 
4562 	if (!(flags & IsBranch))
4563 		return false;
4564 
4565 	/*
4566 	 * All far JMPs and CALLs (including SYSCALL, SYSENTER, and INTn) are
4567 	 * indirect and thus affect IBT state.  All far RETs (including SYSEXIT
4568 	 * and IRET) are protected via Shadow Stacks and thus don't affect IBT
4569 	 * state.  IRET #GPs when returning to virtual-8086 and IBT or SHSTK is
4570 	 * enabled, but that should be handled by IRET emulation (in the very
4571 	 * unlikely scenario that KVM adds support for fully emulating IRET).
4572 	 */
4573 	if (!(flags & NearBranch))
4574 		return ctxt->execute != em_iret &&
4575 		       ctxt->execute != em_ret_far &&
4576 		       ctxt->execute != em_ret_far_imm &&
4577 		       ctxt->execute != em_sysexit;
4578 
4579 	switch (flags & SrcMask) {
4580 	case SrcReg:
4581 	case SrcMem:
4582 	case SrcMem16:
4583 	case SrcMem32:
4584 		return true;
4585 	case SrcMemFAddr:
4586 	case SrcImmFAddr:
4587 		/* Far branches should be handled above. */
4588 		WARN_ON_ONCE(1);
4589 		return true;
4590 	case SrcNone:
4591 	case SrcImm:
4592 	case SrcImmByte:
4593 	/*
4594 	 * Note, ImmU16 is used only for the stack adjustment operand on ENTER
4595 	 * and RET instructions.  ENTER isn't a branch and RET FAR is handled
4596 	 * by the NearBranch check above.  RET itself isn't an indirect branch.
4597 	 */
4598 	case SrcImmU16:
4599 		return false;
4600 	default:
4601 		WARN_ONCE(1, "Unexpected Src operand '%llx' on branch",
4602 			  flags & SrcMask);
4603 		return false;
4604 	}
4605 }
4606 
imm_size(struct x86_emulate_ctxt * ctxt)4607 static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
4608 {
4609 	unsigned size;
4610 
4611 	size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4612 	if (size == 8)
4613 		size = 4;
4614 	return size;
4615 }
4616 
decode_imm(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned size,bool sign_extension)4617 static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
4618 		      unsigned size, bool sign_extension)
4619 {
4620 	int rc = X86EMUL_CONTINUE;
4621 
4622 	op->type = OP_IMM;
4623 	op->bytes = size;
4624 	op->addr.mem.ea = ctxt->_eip;
4625 	/* NB. Immediates are sign-extended as necessary. */
4626 	switch (op->bytes) {
4627 	case 1:
4628 		op->val = insn_fetch(s8, ctxt);
4629 		break;
4630 	case 2:
4631 		op->val = insn_fetch(s16, ctxt);
4632 		break;
4633 	case 4:
4634 		op->val = insn_fetch(s32, ctxt);
4635 		break;
4636 	case 8:
4637 		op->val = insn_fetch(s64, ctxt);
4638 		break;
4639 	}
4640 	if (!sign_extension) {
4641 		switch (op->bytes) {
4642 		case 1:
4643 			op->val &= 0xff;
4644 			break;
4645 		case 2:
4646 			op->val &= 0xffff;
4647 			break;
4648 		case 4:
4649 			op->val &= 0xffffffff;
4650 			break;
4651 		}
4652 	}
4653 done:
4654 	return rc;
4655 }
4656 
decode_operand(struct x86_emulate_ctxt * ctxt,struct operand * op,unsigned d)4657 static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
4658 			  unsigned d)
4659 {
4660 	int rc = X86EMUL_CONTINUE;
4661 
4662 	switch (d) {
4663 	case OpReg:
4664 		decode_register_operand(ctxt, op);
4665 		break;
4666 	case OpImmUByte:
4667 		rc = decode_imm(ctxt, op, 1, false);
4668 		break;
4669 	case OpMem:
4670 		ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4671 	mem_common:
4672 		*op = ctxt->memop;
4673 		ctxt->memopp = op;
4674 		if (ctxt->d & BitOp)
4675 			fetch_bit_operand(ctxt);
4676 		op->orig_val = op->val;
4677 		break;
4678 	case OpMem64:
4679 		ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
4680 		goto mem_common;
4681 	case OpAcc:
4682 		op->type = OP_REG;
4683 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4684 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4685 		fetch_register_operand(op);
4686 		op->orig_val = op->val;
4687 		break;
4688 	case OpAccLo:
4689 		op->type = OP_REG;
4690 		op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
4691 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
4692 		fetch_register_operand(op);
4693 		op->orig_val = op->val;
4694 		break;
4695 	case OpAccHi:
4696 		if (ctxt->d & ByteOp) {
4697 			op->type = OP_NONE;
4698 			break;
4699 		}
4700 		op->type = OP_REG;
4701 		op->bytes = ctxt->op_bytes;
4702 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4703 		fetch_register_operand(op);
4704 		op->orig_val = op->val;
4705 		break;
4706 	case OpDI:
4707 		op->type = OP_MEM;
4708 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4709 		op->addr.mem.ea =
4710 			register_address(ctxt, VCPU_REGS_RDI);
4711 		op->addr.mem.seg = VCPU_SREG_ES;
4712 		op->val = 0;
4713 		op->count = 1;
4714 		break;
4715 	case OpDX:
4716 		op->type = OP_REG;
4717 		op->bytes = 2;
4718 		op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
4719 		fetch_register_operand(op);
4720 		break;
4721 	case OpCL:
4722 		op->type = OP_IMM;
4723 		op->bytes = 1;
4724 		op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
4725 		break;
4726 	case OpImmByte:
4727 		rc = decode_imm(ctxt, op, 1, true);
4728 		break;
4729 	case OpOne:
4730 		op->type = OP_IMM;
4731 		op->bytes = 1;
4732 		op->val = 1;
4733 		break;
4734 	case OpImm:
4735 		rc = decode_imm(ctxt, op, imm_size(ctxt), true);
4736 		break;
4737 	case OpImm64:
4738 		rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
4739 		break;
4740 	case OpMem8:
4741 		ctxt->memop.bytes = 1;
4742 		if (ctxt->memop.type == OP_REG) {
4743 			ctxt->memop.addr.reg = decode_register(ctxt,
4744 					ctxt->modrm_rm, true);
4745 			fetch_register_operand(&ctxt->memop);
4746 		}
4747 		goto mem_common;
4748 	case OpMem16:
4749 		ctxt->memop.bytes = 2;
4750 		goto mem_common;
4751 	case OpMem32:
4752 		ctxt->memop.bytes = 4;
4753 		goto mem_common;
4754 	case OpImmU16:
4755 		rc = decode_imm(ctxt, op, 2, false);
4756 		break;
4757 	case OpImmU:
4758 		rc = decode_imm(ctxt, op, imm_size(ctxt), false);
4759 		break;
4760 	case OpSI:
4761 		op->type = OP_MEM;
4762 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4763 		op->addr.mem.ea =
4764 			register_address(ctxt, VCPU_REGS_RSI);
4765 		op->addr.mem.seg = ctxt->seg_override;
4766 		op->val = 0;
4767 		op->count = 1;
4768 		break;
4769 	case OpXLat:
4770 		op->type = OP_MEM;
4771 		op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
4772 		op->addr.mem.ea =
4773 			address_mask(ctxt,
4774 				reg_read(ctxt, VCPU_REGS_RBX) +
4775 				(reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
4776 		op->addr.mem.seg = ctxt->seg_override;
4777 		op->val = 0;
4778 		break;
4779 	case OpImmFAddr:
4780 		op->type = OP_IMM;
4781 		op->addr.mem.ea = ctxt->_eip;
4782 		op->bytes = ctxt->op_bytes + 2;
4783 		insn_fetch_arr(op->valptr, op->bytes, ctxt);
4784 		break;
4785 	case OpMemFAddr:
4786 		ctxt->memop.bytes = ctxt->op_bytes + 2;
4787 		goto mem_common;
4788 	case OpES:
4789 		op->type = OP_IMM;
4790 		op->val = VCPU_SREG_ES;
4791 		break;
4792 	case OpCS:
4793 		op->type = OP_IMM;
4794 		op->val = VCPU_SREG_CS;
4795 		break;
4796 	case OpSS:
4797 		op->type = OP_IMM;
4798 		op->val = VCPU_SREG_SS;
4799 		break;
4800 	case OpDS:
4801 		op->type = OP_IMM;
4802 		op->val = VCPU_SREG_DS;
4803 		break;
4804 	case OpFS:
4805 		op->type = OP_IMM;
4806 		op->val = VCPU_SREG_FS;
4807 		break;
4808 	case OpGS:
4809 		op->type = OP_IMM;
4810 		op->val = VCPU_SREG_GS;
4811 		break;
4812 	case OpImplicit:
4813 		/* Special instructions do their own operand decoding. */
4814 	default:
4815 		op->type = OP_NONE; /* Disable writeback. */
4816 		break;
4817 	}
4818 
4819 done:
4820 	return rc;
4821 }
4822 
x86_decode_insn(struct x86_emulate_ctxt * ctxt,void * insn,int insn_len,int emulation_type)4823 int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type)
4824 {
4825 	int rc = X86EMUL_CONTINUE;
4826 	int mode = ctxt->mode;
4827 	int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
4828 	bool op_prefix = false;
4829 	bool has_seg_override = false;
4830 	struct opcode opcode;
4831 	u16 dummy;
4832 	struct desc_struct desc;
4833 
4834 	ctxt->memop.type = OP_NONE;
4835 	ctxt->memopp = NULL;
4836 	ctxt->_eip = ctxt->eip;
4837 	ctxt->fetch.ptr = ctxt->fetch.data;
4838 	ctxt->fetch.end = ctxt->fetch.data + insn_len;
4839 	ctxt->opcode_len = 1;
4840 	ctxt->intercept = x86_intercept_none;
4841 	if (insn_len > 0)
4842 		memcpy(ctxt->fetch.data, insn, insn_len);
4843 	else {
4844 		rc = __do_insn_fetch_bytes(ctxt, 1);
4845 		if (rc != X86EMUL_CONTINUE)
4846 			goto done;
4847 	}
4848 
4849 	switch (mode) {
4850 	case X86EMUL_MODE_REAL:
4851 	case X86EMUL_MODE_VM86:
4852 		def_op_bytes = def_ad_bytes = 2;
4853 		ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS);
4854 		if (desc.d)
4855 			def_op_bytes = def_ad_bytes = 4;
4856 		break;
4857 	case X86EMUL_MODE_PROT16:
4858 		def_op_bytes = def_ad_bytes = 2;
4859 		break;
4860 	case X86EMUL_MODE_PROT32:
4861 		def_op_bytes = def_ad_bytes = 4;
4862 		break;
4863 #ifdef CONFIG_X86_64
4864 	case X86EMUL_MODE_PROT64:
4865 		def_op_bytes = 4;
4866 		def_ad_bytes = 8;
4867 		break;
4868 #endif
4869 	default:
4870 		return EMULATION_FAILED;
4871 	}
4872 
4873 	ctxt->op_bytes = def_op_bytes;
4874 	ctxt->ad_bytes = def_ad_bytes;
4875 
4876 	/* Legacy prefixes. */
4877 	for (;;) {
4878 		switch (ctxt->b = insn_fetch(u8, ctxt)) {
4879 		case 0x66:	/* operand-size override */
4880 			op_prefix = true;
4881 			/* switch between 2/4 bytes */
4882 			ctxt->op_bytes = def_op_bytes ^ 6;
4883 			break;
4884 		case 0x67:	/* address-size override */
4885 			if (mode == X86EMUL_MODE_PROT64)
4886 				/* switch between 4/8 bytes */
4887 				ctxt->ad_bytes = def_ad_bytes ^ 12;
4888 			else
4889 				/* switch between 2/4 bytes */
4890 				ctxt->ad_bytes = def_ad_bytes ^ 6;
4891 			break;
4892 		case 0x26:	/* ES override */
4893 			has_seg_override = true;
4894 			ctxt->seg_override = VCPU_SREG_ES;
4895 			break;
4896 		case 0x2e:	/* CS override */
4897 			has_seg_override = true;
4898 			ctxt->seg_override = VCPU_SREG_CS;
4899 			break;
4900 		case 0x36:	/* SS override */
4901 			has_seg_override = true;
4902 			ctxt->seg_override = VCPU_SREG_SS;
4903 			break;
4904 		case 0x3e:	/* DS override */
4905 			has_seg_override = true;
4906 			ctxt->seg_override = VCPU_SREG_DS;
4907 			break;
4908 		case 0x64:	/* FS override */
4909 			has_seg_override = true;
4910 			ctxt->seg_override = VCPU_SREG_FS;
4911 			break;
4912 		case 0x65:	/* GS override */
4913 			has_seg_override = true;
4914 			ctxt->seg_override = VCPU_SREG_GS;
4915 			break;
4916 		case 0x40 ... 0x4f: /* REX */
4917 			if (mode != X86EMUL_MODE_PROT64)
4918 				goto done_prefixes;
4919 			ctxt->rex_prefix = ctxt->b;
4920 			continue;
4921 		case 0xf0:	/* LOCK */
4922 			ctxt->lock_prefix = 1;
4923 			break;
4924 		case 0xf2:	/* REPNE/REPNZ */
4925 		case 0xf3:	/* REP/REPE/REPZ */
4926 			ctxt->rep_prefix = ctxt->b;
4927 			break;
4928 		default:
4929 			goto done_prefixes;
4930 		}
4931 
4932 		/* Any legacy prefix after a REX prefix nullifies its effect. */
4933 
4934 		ctxt->rex_prefix = 0;
4935 	}
4936 
4937 done_prefixes:
4938 
4939 	/* REX prefix. */
4940 	if (ctxt->rex_prefix & 8)
4941 		ctxt->op_bytes = 8;	/* REX.W */
4942 
4943 	/* Opcode byte(s). */
4944 	opcode = opcode_table[ctxt->b];
4945 	/* Two-byte opcode? */
4946 	if (ctxt->b == 0x0f) {
4947 		ctxt->opcode_len = 2;
4948 		ctxt->b = insn_fetch(u8, ctxt);
4949 		opcode = twobyte_table[ctxt->b];
4950 
4951 		/* 0F_38 opcode map */
4952 		if (ctxt->b == 0x38) {
4953 			ctxt->opcode_len = 3;
4954 			ctxt->b = insn_fetch(u8, ctxt);
4955 			opcode = opcode_map_0f_38[ctxt->b];
4956 		}
4957 	}
4958 	ctxt->d = opcode.flags;
4959 
4960 	if (ctxt->d & ModRM)
4961 		ctxt->modrm = insn_fetch(u8, ctxt);
4962 
4963 	/* vex-prefix instructions are not implemented */
4964 	if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
4965 	    (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
4966 		ctxt->d = NotImpl;
4967 	}
4968 
4969 	while (ctxt->d & GroupMask) {
4970 		switch (ctxt->d & GroupMask) {
4971 		case Group:
4972 			goffset = (ctxt->modrm >> 3) & 7;
4973 			opcode = opcode.u.group[goffset];
4974 			break;
4975 		case GroupDual:
4976 			goffset = (ctxt->modrm >> 3) & 7;
4977 			if ((ctxt->modrm >> 6) == 3)
4978 				opcode = opcode.u.gdual->mod3[goffset];
4979 			else
4980 				opcode = opcode.u.gdual->mod012[goffset];
4981 			break;
4982 		case RMExt:
4983 			goffset = ctxt->modrm & 7;
4984 			opcode = opcode.u.group[goffset];
4985 			break;
4986 		case Prefix:
4987 			if (ctxt->rep_prefix && op_prefix)
4988 				return EMULATION_FAILED;
4989 			simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
4990 			switch (simd_prefix) {
4991 			case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
4992 			case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
4993 			case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
4994 			case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
4995 			}
4996 			break;
4997 		case Escape:
4998 			if (ctxt->modrm > 0xbf) {
4999 				size_t size = ARRAY_SIZE(opcode.u.esc->high);
5000 				u32 index = array_index_nospec(
5001 					ctxt->modrm - 0xc0, size);
5002 
5003 				opcode = opcode.u.esc->high[index];
5004 			} else {
5005 				opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
5006 			}
5007 			break;
5008 		case InstrDual:
5009 			if ((ctxt->modrm >> 6) == 3)
5010 				opcode = opcode.u.idual->mod3;
5011 			else
5012 				opcode = opcode.u.idual->mod012;
5013 			break;
5014 		case ModeDual:
5015 			if (ctxt->mode == X86EMUL_MODE_PROT64)
5016 				opcode = opcode.u.mdual->mode64;
5017 			else
5018 				opcode = opcode.u.mdual->mode32;
5019 			break;
5020 		default:
5021 			return EMULATION_FAILED;
5022 		}
5023 
5024 		ctxt->d &= ~(u64)GroupMask;
5025 		ctxt->d |= opcode.flags;
5026 	}
5027 
5028 	ctxt->is_branch = opcode.flags & IsBranch;
5029 
5030 	/* Unrecognised? */
5031 	if (ctxt->d == 0)
5032 		return EMULATION_FAILED;
5033 
5034 	ctxt->execute = opcode.u.execute;
5035 
5036 	/*
5037 	 * Reject emulation if KVM might need to emulate shadow stack updates
5038 	 * and/or indirect branch tracking enforcement, which the emulator
5039 	 * doesn't support.
5040 	 */
5041 	if ((is_ibt_instruction(ctxt) || is_shstk_instruction(ctxt)) &&
5042 	    ctxt->ops->get_cr(ctxt, 4) & X86_CR4_CET) {
5043 		u64 u_cet = 0, s_cet = 0;
5044 
5045 		/*
5046 		 * Check both User and Supervisor on far transfers as inter-
5047 		 * privilege level transfers are impacted by CET at the target
5048 		 * privilege level, and that is not known at this time.  The
5049 		 * expectation is that the guest will not require emulation of
5050 		 * any CET-affected instructions at any privilege level.
5051 		 */
5052 		if (!(ctxt->d & NearBranch))
5053 			u_cet = s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5054 		else if (ctxt->ops->cpl(ctxt) == 3)
5055 			u_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5056 		else
5057 			s_cet = CET_SHSTK_EN | CET_ENDBR_EN;
5058 
5059 		if ((u_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_U_CET, &u_cet)) ||
5060 		    (s_cet && ctxt->ops->get_msr(ctxt, MSR_IA32_S_CET, &s_cet)))
5061 			return EMULATION_FAILED;
5062 
5063 		if ((u_cet | s_cet) & CET_SHSTK_EN && is_shstk_instruction(ctxt))
5064 			return EMULATION_FAILED;
5065 
5066 		if ((u_cet | s_cet) & CET_ENDBR_EN && is_ibt_instruction(ctxt))
5067 			return EMULATION_FAILED;
5068 	}
5069 
5070 	if (unlikely(emulation_type & EMULTYPE_TRAP_UD) &&
5071 	    likely(!(ctxt->d & EmulateOnUD)))
5072 		return EMULATION_FAILED;
5073 
5074 	if (unlikely(ctxt->d &
5075 	    (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
5076 	     No16))) {
5077 		/*
5078 		 * These are copied unconditionally here, and checked unconditionally
5079 		 * in x86_emulate_insn.
5080 		 */
5081 		ctxt->check_perm = opcode.check_perm;
5082 		ctxt->intercept = opcode.intercept;
5083 
5084 		if (ctxt->d & NotImpl)
5085 			return EMULATION_FAILED;
5086 
5087 		if (mode == X86EMUL_MODE_PROT64) {
5088 			if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
5089 				ctxt->op_bytes = 8;
5090 			else if (ctxt->d & NearBranch)
5091 				ctxt->op_bytes = 8;
5092 		}
5093 
5094 		if (ctxt->d & Op3264) {
5095 			if (mode == X86EMUL_MODE_PROT64)
5096 				ctxt->op_bytes = 8;
5097 			else
5098 				ctxt->op_bytes = 4;
5099 		}
5100 
5101 		if ((ctxt->d & No16) && ctxt->op_bytes == 2)
5102 			ctxt->op_bytes = 4;
5103 
5104 		if (ctxt->d & Sse)
5105 			ctxt->op_bytes = 16;
5106 		else if (ctxt->d & Mmx)
5107 			ctxt->op_bytes = 8;
5108 	}
5109 
5110 	/* ModRM and SIB bytes. */
5111 	if (ctxt->d & ModRM) {
5112 		rc = decode_modrm(ctxt, &ctxt->memop);
5113 		if (!has_seg_override) {
5114 			has_seg_override = true;
5115 			ctxt->seg_override = ctxt->modrm_seg;
5116 		}
5117 	} else if (ctxt->d & MemAbs)
5118 		rc = decode_abs(ctxt, &ctxt->memop);
5119 	if (rc != X86EMUL_CONTINUE)
5120 		goto done;
5121 
5122 	if (!has_seg_override)
5123 		ctxt->seg_override = VCPU_SREG_DS;
5124 
5125 	ctxt->memop.addr.mem.seg = ctxt->seg_override;
5126 
5127 	/*
5128 	 * Decode and fetch the source operand: register, memory
5129 	 * or immediate.
5130 	 */
5131 	rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
5132 	if (rc != X86EMUL_CONTINUE)
5133 		goto done;
5134 
5135 	/*
5136 	 * Decode and fetch the second source operand: register, memory
5137 	 * or immediate.
5138 	 */
5139 	rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
5140 	if (rc != X86EMUL_CONTINUE)
5141 		goto done;
5142 
5143 	/* Decode and fetch the destination operand: register or memory. */
5144 	rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
5145 
5146 	if (ctxt->rip_relative && likely(ctxt->memopp))
5147 		ctxt->memopp->addr.mem.ea = address_mask(ctxt,
5148 					ctxt->memopp->addr.mem.ea + ctxt->_eip);
5149 
5150 done:
5151 	if (rc == X86EMUL_PROPAGATE_FAULT)
5152 		ctxt->have_exception = true;
5153 	return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
5154 }
5155 
x86_page_table_writing_insn(struct x86_emulate_ctxt * ctxt)5156 bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
5157 {
5158 	return ctxt->d & PageTable;
5159 }
5160 
string_insn_completed(struct x86_emulate_ctxt * ctxt)5161 static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
5162 {
5163 	/* The second termination condition only applies for REPE
5164 	 * and REPNE. Test if the repeat string operation prefix is
5165 	 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
5166 	 * corresponding termination condition according to:
5167 	 * 	- if REPE/REPZ and ZF = 0 then done
5168 	 * 	- if REPNE/REPNZ and ZF = 1 then done
5169 	 */
5170 	if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
5171 	     (ctxt->b == 0xae) || (ctxt->b == 0xaf))
5172 	    && (((ctxt->rep_prefix == REPE_PREFIX) &&
5173 		 ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
5174 		|| ((ctxt->rep_prefix == REPNE_PREFIX) &&
5175 		    ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
5176 		return true;
5177 
5178 	return false;
5179 }
5180 
flush_pending_x87_faults(struct x86_emulate_ctxt * ctxt)5181 static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
5182 {
5183 	int rc;
5184 
5185 	kvm_fpu_get();
5186 	rc = asm_safe("fwait");
5187 	kvm_fpu_put();
5188 
5189 	if (unlikely(rc != X86EMUL_CONTINUE))
5190 		return emulate_exception(ctxt, MF_VECTOR, 0, false);
5191 
5192 	return X86EMUL_CONTINUE;
5193 }
5194 
fetch_possible_mmx_operand(struct operand * op)5195 static void fetch_possible_mmx_operand(struct operand *op)
5196 {
5197 	if (op->type == OP_MM)
5198 		kvm_read_mmx_reg(op->addr.mm, &op->mm_val);
5199 }
5200 
fastop(struct x86_emulate_ctxt * ctxt,fastop_t fop)5201 static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop)
5202 {
5203 	ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
5204 
5205 	if (!(ctxt->d & ByteOp))
5206 		fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
5207 
5208 	asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
5209 	    : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
5210 	      [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT
5211 	    : "c"(ctxt->src2.val));
5212 
5213 	ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
5214 	if (!fop) /* exception is returned in fop variable */
5215 		return emulate_de(ctxt);
5216 	return X86EMUL_CONTINUE;
5217 }
5218 
init_decode_cache(struct x86_emulate_ctxt * ctxt)5219 void init_decode_cache(struct x86_emulate_ctxt *ctxt)
5220 {
5221 	/* Clear fields that are set conditionally but read without a guard. */
5222 	ctxt->rip_relative = false;
5223 	ctxt->rex_prefix = 0;
5224 	ctxt->lock_prefix = 0;
5225 	ctxt->rep_prefix = 0;
5226 	ctxt->regs_valid = 0;
5227 	ctxt->regs_dirty = 0;
5228 
5229 	ctxt->io_read.pos = 0;
5230 	ctxt->io_read.end = 0;
5231 	ctxt->mem_read.end = 0;
5232 }
5233 
x86_emulate_insn(struct x86_emulate_ctxt * ctxt,bool check_intercepts)5234 int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, bool check_intercepts)
5235 {
5236 	const struct x86_emulate_ops *ops = ctxt->ops;
5237 	int rc = X86EMUL_CONTINUE;
5238 	int saved_dst_type = ctxt->dst.type;
5239 
5240 	ctxt->mem_read.pos = 0;
5241 
5242 	/* LOCK prefix is allowed only with some instructions */
5243 	if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
5244 		rc = emulate_ud(ctxt);
5245 		goto done;
5246 	}
5247 
5248 	if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
5249 		rc = emulate_ud(ctxt);
5250 		goto done;
5251 	}
5252 
5253 	if (unlikely(ctxt->d &
5254 		     (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
5255 		if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
5256 				(ctxt->d & Undefined)) {
5257 			rc = emulate_ud(ctxt);
5258 			goto done;
5259 		}
5260 
5261 		if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
5262 		    || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
5263 			rc = emulate_ud(ctxt);
5264 			goto done;
5265 		}
5266 
5267 		if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
5268 			rc = emulate_nm(ctxt);
5269 			goto done;
5270 		}
5271 
5272 		if (ctxt->d & Mmx) {
5273 			rc = flush_pending_x87_faults(ctxt);
5274 			if (rc != X86EMUL_CONTINUE)
5275 				goto done;
5276 			/*
5277 			 * Now that we know the fpu is exception safe, we can fetch
5278 			 * operands from it.
5279 			 */
5280 			fetch_possible_mmx_operand(&ctxt->src);
5281 			fetch_possible_mmx_operand(&ctxt->src2);
5282 			if (!(ctxt->d & Mov))
5283 				fetch_possible_mmx_operand(&ctxt->dst);
5284 		}
5285 
5286 		if (unlikely(check_intercepts) && ctxt->intercept) {
5287 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5288 						      X86_ICPT_PRE_EXCEPT);
5289 			if (rc != X86EMUL_CONTINUE)
5290 				goto done;
5291 		}
5292 
5293 		/* Instruction can only be executed in protected mode */
5294 		if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
5295 			rc = emulate_ud(ctxt);
5296 			goto done;
5297 		}
5298 
5299 		/* Privileged instruction can be executed only in CPL=0 */
5300 		if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
5301 			if (ctxt->d & PrivUD)
5302 				rc = emulate_ud(ctxt);
5303 			else
5304 				rc = emulate_gp(ctxt, 0);
5305 			goto done;
5306 		}
5307 
5308 		/* Do instruction specific permission checks */
5309 		if (ctxt->d & CheckPerm) {
5310 			rc = ctxt->check_perm(ctxt);
5311 			if (rc != X86EMUL_CONTINUE)
5312 				goto done;
5313 		}
5314 
5315 		if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5316 			rc = emulator_check_intercept(ctxt, ctxt->intercept,
5317 						      X86_ICPT_POST_EXCEPT);
5318 			if (rc != X86EMUL_CONTINUE)
5319 				goto done;
5320 		}
5321 
5322 		if (ctxt->rep_prefix && (ctxt->d & String)) {
5323 			/* All REP prefixes have the same first termination condition */
5324 			if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
5325 				string_registers_quirk(ctxt);
5326 				ctxt->eip = ctxt->_eip;
5327 				ctxt->eflags &= ~X86_EFLAGS_RF;
5328 				goto done;
5329 			}
5330 		}
5331 	}
5332 
5333 	if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
5334 		rc = segmented_read(ctxt, ctxt->src.addr.mem,
5335 				    ctxt->src.valptr, ctxt->src.bytes);
5336 		if (rc != X86EMUL_CONTINUE)
5337 			goto done;
5338 		ctxt->src.orig_val64 = ctxt->src.val64;
5339 	}
5340 
5341 	if (ctxt->src2.type == OP_MEM) {
5342 		rc = segmented_read(ctxt, ctxt->src2.addr.mem,
5343 				    &ctxt->src2.val, ctxt->src2.bytes);
5344 		if (rc != X86EMUL_CONTINUE)
5345 			goto done;
5346 	}
5347 
5348 	if ((ctxt->d & DstMask) == ImplicitOps)
5349 		goto special_insn;
5350 
5351 
5352 	if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
5353 		/* optimisation - avoid slow emulated read if Mov */
5354 		rc = segmented_read(ctxt, ctxt->dst.addr.mem,
5355 				   &ctxt->dst.val, ctxt->dst.bytes);
5356 		if (rc != X86EMUL_CONTINUE) {
5357 			if (!(ctxt->d & NoWrite) &&
5358 			    rc == X86EMUL_PROPAGATE_FAULT &&
5359 			    ctxt->exception.vector == PF_VECTOR)
5360 				ctxt->exception.error_code |= PFERR_WRITE_MASK;
5361 			goto done;
5362 		}
5363 	}
5364 	/* Copy full 64-bit value for CMPXCHG8B.  */
5365 	ctxt->dst.orig_val64 = ctxt->dst.val64;
5366 
5367 special_insn:
5368 
5369 	if (unlikely(check_intercepts) && (ctxt->d & Intercept)) {
5370 		rc = emulator_check_intercept(ctxt, ctxt->intercept,
5371 					      X86_ICPT_POST_MEMACCESS);
5372 		if (rc != X86EMUL_CONTINUE)
5373 			goto done;
5374 	}
5375 
5376 	if (ctxt->rep_prefix && (ctxt->d & String))
5377 		ctxt->eflags |= X86_EFLAGS_RF;
5378 	else
5379 		ctxt->eflags &= ~X86_EFLAGS_RF;
5380 
5381 	if (ctxt->execute) {
5382 		if (ctxt->d & Fastop)
5383 			rc = fastop(ctxt, ctxt->fop);
5384 		else
5385 			rc = ctxt->execute(ctxt);
5386 		if (rc != X86EMUL_CONTINUE)
5387 			goto done;
5388 		goto writeback;
5389 	}
5390 
5391 	if (ctxt->opcode_len == 2)
5392 		goto twobyte_insn;
5393 	else if (ctxt->opcode_len == 3)
5394 		goto threebyte_insn;
5395 
5396 	switch (ctxt->b) {
5397 	case 0x70 ... 0x7f: /* jcc (short) */
5398 		if (test_cc(ctxt->b, ctxt->eflags))
5399 			rc = jmp_rel(ctxt, ctxt->src.val);
5400 		break;
5401 	case 0x8d: /* lea r16/r32, m */
5402 		ctxt->dst.val = ctxt->src.addr.mem.ea;
5403 		break;
5404 	case 0x90 ... 0x97: /* nop / xchg reg, rax */
5405 		if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
5406 			ctxt->dst.type = OP_NONE;
5407 		else
5408 			rc = em_xchg(ctxt);
5409 		break;
5410 	case 0x98: /* cbw/cwde/cdqe */
5411 		switch (ctxt->op_bytes) {
5412 		case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
5413 		case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
5414 		case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
5415 		}
5416 		break;
5417 	case 0xcc:		/* int3 */
5418 		rc = emulate_int(ctxt, 3);
5419 		break;
5420 	case 0xcd:		/* int n */
5421 		rc = emulate_int(ctxt, ctxt->src.val);
5422 		break;
5423 	case 0xce:		/* into */
5424 		if (ctxt->eflags & X86_EFLAGS_OF)
5425 			rc = emulate_int(ctxt, 4);
5426 		break;
5427 	case 0xe9: /* jmp rel */
5428 	case 0xeb: /* jmp rel short */
5429 		rc = jmp_rel(ctxt, ctxt->src.val);
5430 		ctxt->dst.type = OP_NONE; /* Disable writeback. */
5431 		break;
5432 	case 0xf4:              /* hlt */
5433 		ctxt->ops->halt(ctxt);
5434 		break;
5435 	case 0xf5:	/* cmc */
5436 		/* complement carry flag from eflags reg */
5437 		ctxt->eflags ^= X86_EFLAGS_CF;
5438 		break;
5439 	case 0xf8: /* clc */
5440 		ctxt->eflags &= ~X86_EFLAGS_CF;
5441 		break;
5442 	case 0xf9: /* stc */
5443 		ctxt->eflags |= X86_EFLAGS_CF;
5444 		break;
5445 	case 0xfc: /* cld */
5446 		ctxt->eflags &= ~X86_EFLAGS_DF;
5447 		break;
5448 	case 0xfd: /* std */
5449 		ctxt->eflags |= X86_EFLAGS_DF;
5450 		break;
5451 	default:
5452 		goto cannot_emulate;
5453 	}
5454 
5455 	if (rc != X86EMUL_CONTINUE)
5456 		goto done;
5457 
5458 writeback:
5459 	if (ctxt->d & SrcWrite) {
5460 		BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
5461 		rc = writeback(ctxt, &ctxt->src);
5462 		if (rc != X86EMUL_CONTINUE)
5463 			goto done;
5464 	}
5465 	if (!(ctxt->d & NoWrite)) {
5466 		rc = writeback(ctxt, &ctxt->dst);
5467 		if (rc != X86EMUL_CONTINUE)
5468 			goto done;
5469 	}
5470 
5471 	/*
5472 	 * restore dst type in case the decoding will be reused
5473 	 * (happens for string instruction )
5474 	 */
5475 	ctxt->dst.type = saved_dst_type;
5476 
5477 	if ((ctxt->d & SrcMask) == SrcSI)
5478 		string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
5479 
5480 	if ((ctxt->d & DstMask) == DstDI)
5481 		string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
5482 
5483 	if (ctxt->rep_prefix && (ctxt->d & String)) {
5484 		unsigned int count;
5485 		struct read_cache *r = &ctxt->io_read;
5486 		if ((ctxt->d & SrcMask) == SrcSI)
5487 			count = ctxt->src.count;
5488 		else
5489 			count = ctxt->dst.count;
5490 		register_address_increment(ctxt, VCPU_REGS_RCX, -count);
5491 
5492 		if (!string_insn_completed(ctxt)) {
5493 			/*
5494 			 * Re-enter guest when pio read ahead buffer is empty
5495 			 * or, if it is not used, after each 1024 iteration.
5496 			 */
5497 			if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
5498 			    (r->end == 0 || r->end != r->pos)) {
5499 				/*
5500 				 * Reset read cache. Usually happens before
5501 				 * decode, but since instruction is restarted
5502 				 * we have to do it here.
5503 				 */
5504 				ctxt->mem_read.end = 0;
5505 				writeback_registers(ctxt);
5506 				return EMULATION_RESTART;
5507 			}
5508 			goto done; /* skip rip writeback */
5509 		}
5510 		ctxt->eflags &= ~X86_EFLAGS_RF;
5511 	}
5512 
5513 	ctxt->eip = ctxt->_eip;
5514 	if (ctxt->mode != X86EMUL_MODE_PROT64)
5515 		ctxt->eip = (u32)ctxt->_eip;
5516 
5517 done:
5518 	if (rc == X86EMUL_PROPAGATE_FAULT) {
5519 		if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt))
5520 			return EMULATION_FAILED;
5521 		ctxt->have_exception = true;
5522 	}
5523 	if (rc == X86EMUL_INTERCEPTED)
5524 		return EMULATION_INTERCEPTED;
5525 
5526 	if (rc == X86EMUL_CONTINUE)
5527 		writeback_registers(ctxt);
5528 
5529 	return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
5530 
5531 twobyte_insn:
5532 	switch (ctxt->b) {
5533 	case 0x09:		/* wbinvd */
5534 		(ctxt->ops->wbinvd)(ctxt);
5535 		break;
5536 	case 0x08:		/* invd */
5537 	case 0x0d:		/* GrpP (prefetch) */
5538 	case 0x18:		/* Grp16 (prefetch/nop) */
5539 	case 0x1f:		/* nop */
5540 		break;
5541 	case 0x20: /* mov cr, reg */
5542 		ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
5543 		break;
5544 	case 0x21: /* mov from dr to reg */
5545 		ctxt->dst.val = ops->get_dr(ctxt, ctxt->modrm_reg);
5546 		break;
5547 	case 0x40 ... 0x4f:	/* cmov */
5548 		if (test_cc(ctxt->b, ctxt->eflags))
5549 			ctxt->dst.val = ctxt->src.val;
5550 		else if (ctxt->op_bytes != 4)
5551 			ctxt->dst.type = OP_NONE; /* no writeback */
5552 		break;
5553 	case 0x80 ... 0x8f: /* jnz rel, etc*/
5554 		if (test_cc(ctxt->b, ctxt->eflags))
5555 			rc = jmp_rel(ctxt, ctxt->src.val);
5556 		break;
5557 	case 0x90 ... 0x9f:     /* setcc r/m8 */
5558 		ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
5559 		break;
5560 	case 0xb6 ... 0xb7:	/* movzx */
5561 		ctxt->dst.bytes = ctxt->op_bytes;
5562 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
5563 						       : (u16) ctxt->src.val;
5564 		break;
5565 	case 0xbe ... 0xbf:	/* movsx */
5566 		ctxt->dst.bytes = ctxt->op_bytes;
5567 		ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
5568 							(s16) ctxt->src.val;
5569 		break;
5570 	default:
5571 		goto cannot_emulate;
5572 	}
5573 
5574 threebyte_insn:
5575 
5576 	if (rc != X86EMUL_CONTINUE)
5577 		goto done;
5578 
5579 	goto writeback;
5580 
5581 cannot_emulate:
5582 	return EMULATION_FAILED;
5583 }
5584 
emulator_invalidate_register_cache(struct x86_emulate_ctxt * ctxt)5585 void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
5586 {
5587 	invalidate_registers(ctxt);
5588 }
5589 
emulator_writeback_register_cache(struct x86_emulate_ctxt * ctxt)5590 void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
5591 {
5592 	writeback_registers(ctxt);
5593 }
5594 
emulator_can_use_gpa(struct x86_emulate_ctxt * ctxt)5595 bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt)
5596 {
5597 	if (ctxt->rep_prefix && (ctxt->d & String))
5598 		return false;
5599 
5600 	if (ctxt->d & TwoMemOp)
5601 		return false;
5602 
5603 	return true;
5604 }
5605