1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21 * ice tracepoint functions. This must be done exactly once across the
22 * ice driver.
23 */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30
31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
38
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBETH");
41 MODULE_IMPORT_NS("LIBETH_XDP");
42 MODULE_IMPORT_NS("LIBIE");
43 MODULE_IMPORT_NS("LIBIE_ADMINQ");
44 MODULE_IMPORT_NS("LIBIE_FWLOG");
45 MODULE_LICENSE("GPL v2");
46 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
47
48 static int debug = -1;
49 module_param(debug, int, 0644);
50 #ifndef CONFIG_DYNAMIC_DEBUG
51 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
52 #else
53 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
54 #endif /* !CONFIG_DYNAMIC_DEBUG */
55
56 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
57 EXPORT_SYMBOL(ice_xdp_locking_key);
58
59 /**
60 * ice_hw_to_dev - Get device pointer from the hardware structure
61 * @hw: pointer to the device HW structure
62 *
63 * Used to access the device pointer from compilation units which can't easily
64 * include the definition of struct ice_pf without leading to circular header
65 * dependencies.
66 */
ice_hw_to_dev(struct ice_hw * hw)67 struct device *ice_hw_to_dev(struct ice_hw *hw)
68 {
69 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
70
71 return &pf->pdev->dev;
72 }
73
74 static struct workqueue_struct *ice_wq;
75 struct workqueue_struct *ice_lag_wq;
76 static const struct net_device_ops ice_netdev_safe_mode_ops;
77 static const struct net_device_ops ice_netdev_ops;
78
79 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
80
81 static void ice_vsi_release_all(struct ice_pf *pf);
82
83 static int ice_rebuild_channels(struct ice_pf *pf);
84 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
85
86 static int
87 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
88 void *cb_priv, enum tc_setup_type type, void *type_data,
89 void *data,
90 void (*cleanup)(struct flow_block_cb *block_cb));
91
netif_is_ice(const struct net_device * dev)92 bool netif_is_ice(const struct net_device *dev)
93 {
94 return dev && (dev->netdev_ops == &ice_netdev_ops ||
95 dev->netdev_ops == &ice_netdev_safe_mode_ops);
96 }
97
98 /**
99 * ice_get_tx_pending - returns number of Tx descriptors not processed
100 * @ring: the ring of descriptors
101 */
ice_get_tx_pending(struct ice_tx_ring * ring)102 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
103 {
104 u16 head, tail;
105
106 head = ring->next_to_clean;
107 tail = ring->next_to_use;
108
109 if (head != tail)
110 return (head < tail) ?
111 tail - head : (tail + ring->count - head);
112 return 0;
113 }
114
115 /**
116 * ice_check_for_hang_subtask - check for and recover hung queues
117 * @pf: pointer to PF struct
118 */
ice_check_for_hang_subtask(struct ice_pf * pf)119 static void ice_check_for_hang_subtask(struct ice_pf *pf)
120 {
121 struct ice_vsi *vsi = NULL;
122 struct ice_hw *hw;
123 unsigned int i;
124 int packets;
125 u32 v;
126
127 ice_for_each_vsi(pf, v)
128 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
129 vsi = pf->vsi[v];
130 break;
131 }
132
133 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
134 return;
135
136 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
137 return;
138
139 hw = &vsi->back->hw;
140
141 ice_for_each_txq(vsi, i) {
142 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
143 struct ice_ring_stats *ring_stats;
144
145 if (!tx_ring)
146 continue;
147 if (ice_ring_ch_enabled(tx_ring))
148 continue;
149
150 ring_stats = tx_ring->ring_stats;
151 if (!ring_stats)
152 continue;
153
154 if (tx_ring->desc) {
155 /* If packet counter has not changed the queue is
156 * likely stalled, so force an interrupt for this
157 * queue.
158 *
159 * prev_pkt would be negative if there was no
160 * pending work.
161 */
162 packets = ring_stats->stats.pkts & INT_MAX;
163 if (ring_stats->tx_stats.prev_pkt == packets) {
164 /* Trigger sw interrupt to revive the queue */
165 ice_trigger_sw_intr(hw, tx_ring->q_vector);
166 continue;
167 }
168
169 /* Memory barrier between read of packet count and call
170 * to ice_get_tx_pending()
171 */
172 smp_rmb();
173 ring_stats->tx_stats.prev_pkt =
174 ice_get_tx_pending(tx_ring) ? packets : -1;
175 }
176 }
177 }
178
179 /**
180 * ice_init_mac_fltr - Set initial MAC filters
181 * @pf: board private structure
182 *
183 * Set initial set of MAC filters for PF VSI; configure filters for permanent
184 * address and broadcast address. If an error is encountered, netdevice will be
185 * unregistered.
186 */
ice_init_mac_fltr(struct ice_pf * pf)187 static int ice_init_mac_fltr(struct ice_pf *pf)
188 {
189 struct ice_vsi *vsi;
190 u8 *perm_addr;
191
192 vsi = ice_get_main_vsi(pf);
193 if (!vsi)
194 return -EINVAL;
195
196 perm_addr = vsi->port_info->mac.perm_addr;
197 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
198 }
199
200 /**
201 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
202 * @netdev: the net device on which the sync is happening
203 * @addr: MAC address to sync
204 *
205 * This is a callback function which is called by the in kernel device sync
206 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
207 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
208 * MAC filters from the hardware.
209 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)210 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
211 {
212 struct ice_netdev_priv *np = netdev_priv(netdev);
213 struct ice_vsi *vsi = np->vsi;
214
215 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
216 ICE_FWD_TO_VSI))
217 return -EINVAL;
218
219 return 0;
220 }
221
222 /**
223 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
224 * @netdev: the net device on which the unsync is happening
225 * @addr: MAC address to unsync
226 *
227 * This is a callback function which is called by the in kernel device unsync
228 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
229 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
230 * delete the MAC filters from the hardware.
231 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)232 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
233 {
234 struct ice_netdev_priv *np = netdev_priv(netdev);
235 struct ice_vsi *vsi = np->vsi;
236
237 /* Under some circumstances, we might receive a request to delete our
238 * own device address from our uc list. Because we store the device
239 * address in the VSI's MAC filter list, we need to ignore such
240 * requests and not delete our device address from this list.
241 */
242 if (ether_addr_equal(addr, netdev->dev_addr))
243 return 0;
244
245 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
246 ICE_FWD_TO_VSI))
247 return -EINVAL;
248
249 return 0;
250 }
251
252 /**
253 * ice_vsi_fltr_changed - check if filter state changed
254 * @vsi: VSI to be checked
255 *
256 * returns true if filter state has changed, false otherwise.
257 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)258 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
259 {
260 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
261 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
262 }
263
264 /**
265 * ice_set_promisc - Enable promiscuous mode for a given PF
266 * @vsi: the VSI being configured
267 * @promisc_m: mask of promiscuous config bits
268 *
269 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)270 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
271 {
272 int status;
273
274 if (vsi->type != ICE_VSI_PF)
275 return 0;
276
277 if (ice_vsi_has_non_zero_vlans(vsi)) {
278 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
279 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
280 promisc_m);
281 } else {
282 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
283 promisc_m, 0);
284 }
285 if (status && status != -EEXIST)
286 return status;
287
288 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
289 vsi->vsi_num, promisc_m);
290 return 0;
291 }
292
293 /**
294 * ice_clear_promisc - Disable promiscuous mode for a given PF
295 * @vsi: the VSI being configured
296 * @promisc_m: mask of promiscuous config bits
297 *
298 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)299 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
300 {
301 int status;
302
303 if (vsi->type != ICE_VSI_PF)
304 return 0;
305
306 if (ice_vsi_has_non_zero_vlans(vsi)) {
307 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
308 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
309 promisc_m);
310 } else {
311 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
312 promisc_m, 0);
313 }
314
315 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
316 vsi->vsi_num, promisc_m);
317 return status;
318 }
319
320 /**
321 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
322 * @vsi: ptr to the VSI
323 *
324 * Push any outstanding VSI filter changes through the AdminQ.
325 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)326 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
327 {
328 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
329 struct device *dev = ice_pf_to_dev(vsi->back);
330 struct net_device *netdev = vsi->netdev;
331 bool promisc_forced_on = false;
332 struct ice_pf *pf = vsi->back;
333 struct ice_hw *hw = &pf->hw;
334 u32 changed_flags = 0;
335 int err;
336
337 if (!vsi->netdev)
338 return -EINVAL;
339
340 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
341 usleep_range(1000, 2000);
342
343 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
344 vsi->current_netdev_flags = vsi->netdev->flags;
345
346 INIT_LIST_HEAD(&vsi->tmp_sync_list);
347 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
348
349 if (ice_vsi_fltr_changed(vsi)) {
350 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
351 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
352
353 /* grab the netdev's addr_list_lock */
354 netif_addr_lock_bh(netdev);
355 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
356 ice_add_mac_to_unsync_list);
357 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
358 ice_add_mac_to_unsync_list);
359 /* our temp lists are populated. release lock */
360 netif_addr_unlock_bh(netdev);
361 }
362
363 /* Remove MAC addresses in the unsync list */
364 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
365 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
366 if (err) {
367 netdev_err(netdev, "Failed to delete MAC filters\n");
368 /* if we failed because of alloc failures, just bail */
369 if (err == -ENOMEM)
370 goto out;
371 }
372
373 /* Add MAC addresses in the sync list */
374 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
375 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
376 /* If filter is added successfully or already exists, do not go into
377 * 'if' condition and report it as error. Instead continue processing
378 * rest of the function.
379 */
380 if (err && err != -EEXIST) {
381 netdev_err(netdev, "Failed to add MAC filters\n");
382 /* If there is no more space for new umac filters, VSI
383 * should go into promiscuous mode. There should be some
384 * space reserved for promiscuous filters.
385 */
386 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC &&
387 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
388 vsi->state)) {
389 promisc_forced_on = true;
390 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
391 vsi->vsi_num);
392 } else {
393 goto out;
394 }
395 }
396 err = 0;
397 /* check for changes in promiscuous modes */
398 if (changed_flags & IFF_ALLMULTI) {
399 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
400 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 if (err) {
402 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
403 goto out_promisc;
404 }
405 } else {
406 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
407 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
408 if (err) {
409 vsi->current_netdev_flags |= IFF_ALLMULTI;
410 goto out_promisc;
411 }
412 }
413 }
414
415 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
416 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
417 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
418 if (vsi->current_netdev_flags & IFF_PROMISC) {
419 /* Apply Rx filter rule to get traffic from wire */
420 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
421 err = ice_set_dflt_vsi(vsi);
422 if (err && err != -EEXIST) {
423 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
424 err, vsi->vsi_num);
425 vsi->current_netdev_flags &=
426 ~IFF_PROMISC;
427 goto out_promisc;
428 }
429 err = 0;
430 vlan_ops->dis_rx_filtering(vsi);
431
432 /* promiscuous mode implies allmulticast so
433 * that VSIs that are in promiscuous mode are
434 * subscribed to multicast packets coming to
435 * the port
436 */
437 err = ice_set_promisc(vsi,
438 ICE_MCAST_PROMISC_BITS);
439 if (err)
440 goto out_promisc;
441 }
442 } else {
443 /* Clear Rx filter to remove traffic from wire */
444 if (ice_is_vsi_dflt_vsi(vsi)) {
445 err = ice_clear_dflt_vsi(vsi);
446 if (err) {
447 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
448 err, vsi->vsi_num);
449 vsi->current_netdev_flags |=
450 IFF_PROMISC;
451 goto out_promisc;
452 }
453 if (vsi->netdev->features &
454 NETIF_F_HW_VLAN_CTAG_FILTER)
455 vlan_ops->ena_rx_filtering(vsi);
456 }
457
458 /* disable allmulti here, but only if allmulti is not
459 * still enabled for the netdev
460 */
461 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
462 err = ice_clear_promisc(vsi,
463 ICE_MCAST_PROMISC_BITS);
464 if (err) {
465 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
466 err, vsi->vsi_num);
467 }
468 }
469 }
470 }
471 goto exit;
472
473 out_promisc:
474 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
475 goto exit;
476 out:
477 /* if something went wrong then set the changed flag so we try again */
478 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
479 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
480 exit:
481 clear_bit(ICE_CFG_BUSY, vsi->state);
482 return err;
483 }
484
485 /**
486 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
487 * @pf: board private structure
488 */
ice_sync_fltr_subtask(struct ice_pf * pf)489 static void ice_sync_fltr_subtask(struct ice_pf *pf)
490 {
491 int v;
492
493 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
494 return;
495
496 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
497
498 ice_for_each_vsi(pf, v)
499 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
500 ice_vsi_sync_fltr(pf->vsi[v])) {
501 /* come back and try again later */
502 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
503 break;
504 }
505 }
506
507 /**
508 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
509 * @pf: the PF
510 * @locked: is the rtnl_lock already held
511 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)512 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
513 {
514 int node;
515 int v;
516
517 ice_for_each_vsi(pf, v)
518 if (pf->vsi[v])
519 ice_dis_vsi(pf->vsi[v], locked);
520
521 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
522 pf->pf_agg_node[node].num_vsis = 0;
523
524 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
525 pf->vf_agg_node[node].num_vsis = 0;
526 }
527
528 /**
529 * ice_prepare_for_reset - prep for reset
530 * @pf: board private structure
531 * @reset_type: reset type requested
532 *
533 * Inform or close all dependent features in prep for reset.
534 */
535 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)536 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
537 {
538 struct ice_hw *hw = &pf->hw;
539 struct ice_vsi *vsi;
540 struct ice_vf *vf;
541 unsigned int bkt;
542
543 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
544
545 /* already prepared for reset */
546 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
547 return;
548
549 synchronize_irq(pf->oicr_irq.virq);
550
551 ice_unplug_aux_dev(pf);
552
553 /* Notify VFs of impending reset */
554 if (ice_check_sq_alive(hw, &hw->mailboxq))
555 ice_vc_notify_reset(pf);
556
557 /* Disable VFs until reset is completed */
558 mutex_lock(&pf->vfs.table_lock);
559 ice_for_each_vf(pf, bkt, vf)
560 ice_set_vf_state_dis(vf);
561 mutex_unlock(&pf->vfs.table_lock);
562
563 if (ice_is_eswitch_mode_switchdev(pf)) {
564 rtnl_lock();
565 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
566 rtnl_unlock();
567 }
568
569 /* release ADQ specific HW and SW resources */
570 vsi = ice_get_main_vsi(pf);
571 if (!vsi)
572 goto skip;
573
574 /* to be on safe side, reset orig_rss_size so that normal flow
575 * of deciding rss_size can take precedence
576 */
577 vsi->orig_rss_size = 0;
578
579 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
580 if (reset_type == ICE_RESET_PFR) {
581 vsi->old_ena_tc = vsi->all_enatc;
582 vsi->old_numtc = vsi->all_numtc;
583 } else {
584 ice_remove_q_channels(vsi, true);
585
586 /* for other reset type, do not support channel rebuild
587 * hence reset needed info
588 */
589 vsi->old_ena_tc = 0;
590 vsi->all_enatc = 0;
591 vsi->old_numtc = 0;
592 vsi->all_numtc = 0;
593 vsi->req_txq = 0;
594 vsi->req_rxq = 0;
595 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
596 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
597 }
598 }
599
600 if (vsi->netdev)
601 netif_device_detach(vsi->netdev);
602 skip:
603
604 /* clear SW filtering DB */
605 ice_clear_hw_tbls(hw);
606 /* disable the VSIs and their queues that are not already DOWN */
607 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
608 ice_pf_dis_all_vsi(pf, false);
609
610 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
611 ice_ptp_prepare_for_reset(pf, reset_type);
612
613 if (ice_is_feature_supported(pf, ICE_F_GNSS))
614 ice_gnss_exit(pf);
615
616 if (hw->port_info)
617 ice_sched_clear_port(hw->port_info);
618
619 ice_shutdown_all_ctrlq(hw, false);
620
621 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
622 }
623
624 /**
625 * ice_do_reset - Initiate one of many types of resets
626 * @pf: board private structure
627 * @reset_type: reset type requested before this function was called.
628 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)629 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
630 {
631 struct device *dev = ice_pf_to_dev(pf);
632 struct ice_hw *hw = &pf->hw;
633
634 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
635
636 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
637 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
638 reset_type = ICE_RESET_CORER;
639 }
640
641 ice_prepare_for_reset(pf, reset_type);
642
643 /* trigger the reset */
644 if (ice_reset(hw, reset_type)) {
645 dev_err(dev, "reset %d failed\n", reset_type);
646 set_bit(ICE_RESET_FAILED, pf->state);
647 clear_bit(ICE_RESET_OICR_RECV, pf->state);
648 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
649 clear_bit(ICE_PFR_REQ, pf->state);
650 clear_bit(ICE_CORER_REQ, pf->state);
651 clear_bit(ICE_GLOBR_REQ, pf->state);
652 wake_up(&pf->reset_wait_queue);
653 return;
654 }
655
656 /* PFR is a bit of a special case because it doesn't result in an OICR
657 * interrupt. So for PFR, rebuild after the reset and clear the reset-
658 * associated state bits.
659 */
660 if (reset_type == ICE_RESET_PFR) {
661 pf->pfr_count++;
662 ice_rebuild(pf, reset_type);
663 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
664 clear_bit(ICE_PFR_REQ, pf->state);
665 wake_up(&pf->reset_wait_queue);
666 ice_reset_all_vfs(pf);
667 }
668 }
669
670 /**
671 * ice_reset_subtask - Set up for resetting the device and driver
672 * @pf: board private structure
673 */
ice_reset_subtask(struct ice_pf * pf)674 static void ice_reset_subtask(struct ice_pf *pf)
675 {
676 enum ice_reset_req reset_type = ICE_RESET_INVAL;
677
678 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
679 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
680 * of reset is pending and sets bits in pf->state indicating the reset
681 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
682 * prepare for pending reset if not already (for PF software-initiated
683 * global resets the software should already be prepared for it as
684 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
685 * by firmware or software on other PFs, that bit is not set so prepare
686 * for the reset now), poll for reset done, rebuild and return.
687 */
688 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
689 /* Perform the largest reset requested */
690 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
691 reset_type = ICE_RESET_CORER;
692 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
693 reset_type = ICE_RESET_GLOBR;
694 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
695 reset_type = ICE_RESET_EMPR;
696 /* return if no valid reset type requested */
697 if (reset_type == ICE_RESET_INVAL)
698 return;
699 ice_prepare_for_reset(pf, reset_type);
700
701 /* make sure we are ready to rebuild */
702 if (ice_check_reset(&pf->hw)) {
703 set_bit(ICE_RESET_FAILED, pf->state);
704 } else {
705 /* done with reset. start rebuild */
706 pf->hw.reset_ongoing = false;
707 ice_rebuild(pf, reset_type);
708 /* clear bit to resume normal operations, but
709 * ICE_NEEDS_RESTART bit is set in case rebuild failed
710 */
711 clear_bit(ICE_RESET_OICR_RECV, pf->state);
712 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
713 clear_bit(ICE_PFR_REQ, pf->state);
714 clear_bit(ICE_CORER_REQ, pf->state);
715 clear_bit(ICE_GLOBR_REQ, pf->state);
716 wake_up(&pf->reset_wait_queue);
717 ice_reset_all_vfs(pf);
718 }
719
720 return;
721 }
722
723 /* No pending resets to finish processing. Check for new resets */
724 if (test_bit(ICE_PFR_REQ, pf->state)) {
725 reset_type = ICE_RESET_PFR;
726 if (pf->lag && pf->lag->bonded) {
727 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
728 reset_type = ICE_RESET_CORER;
729 }
730 }
731 if (test_bit(ICE_CORER_REQ, pf->state))
732 reset_type = ICE_RESET_CORER;
733 if (test_bit(ICE_GLOBR_REQ, pf->state))
734 reset_type = ICE_RESET_GLOBR;
735 /* If no valid reset type requested just return */
736 if (reset_type == ICE_RESET_INVAL)
737 return;
738
739 /* reset if not already down or busy */
740 if (!test_bit(ICE_DOWN, pf->state) &&
741 !test_bit(ICE_CFG_BUSY, pf->state)) {
742 ice_do_reset(pf, reset_type);
743 }
744 }
745
746 /**
747 * ice_print_topo_conflict - print topology conflict message
748 * @vsi: the VSI whose topology status is being checked
749 */
ice_print_topo_conflict(struct ice_vsi * vsi)750 static void ice_print_topo_conflict(struct ice_vsi *vsi)
751 {
752 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
753 case ICE_AQ_LINK_TOPO_CONFLICT:
754 case ICE_AQ_LINK_MEDIA_CONFLICT:
755 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
756 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
757 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
758 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
759 break;
760 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
761 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
762 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
763 else
764 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
765 break;
766 default:
767 break;
768 }
769 }
770
771 /**
772 * ice_print_link_msg - print link up or down message
773 * @vsi: the VSI whose link status is being queried
774 * @isup: boolean for if the link is now up or down
775 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)776 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
777 {
778 struct ice_aqc_get_phy_caps_data *caps;
779 const char *an_advertised;
780 const char *fec_req;
781 const char *speed;
782 const char *fec;
783 const char *fc;
784 const char *an;
785 int status;
786
787 if (!vsi)
788 return;
789
790 if (vsi->current_isup == isup)
791 return;
792
793 vsi->current_isup = isup;
794
795 if (!isup) {
796 netdev_info(vsi->netdev, "NIC Link is Down\n");
797 return;
798 }
799
800 switch (vsi->port_info->phy.link_info.link_speed) {
801 case ICE_AQ_LINK_SPEED_200GB:
802 speed = "200 G";
803 break;
804 case ICE_AQ_LINK_SPEED_100GB:
805 speed = "100 G";
806 break;
807 case ICE_AQ_LINK_SPEED_50GB:
808 speed = "50 G";
809 break;
810 case ICE_AQ_LINK_SPEED_40GB:
811 speed = "40 G";
812 break;
813 case ICE_AQ_LINK_SPEED_25GB:
814 speed = "25 G";
815 break;
816 case ICE_AQ_LINK_SPEED_20GB:
817 speed = "20 G";
818 break;
819 case ICE_AQ_LINK_SPEED_10GB:
820 speed = "10 G";
821 break;
822 case ICE_AQ_LINK_SPEED_5GB:
823 speed = "5 G";
824 break;
825 case ICE_AQ_LINK_SPEED_2500MB:
826 speed = "2.5 G";
827 break;
828 case ICE_AQ_LINK_SPEED_1000MB:
829 speed = "1 G";
830 break;
831 case ICE_AQ_LINK_SPEED_100MB:
832 speed = "100 M";
833 break;
834 default:
835 speed = "Unknown ";
836 break;
837 }
838
839 switch (vsi->port_info->fc.current_mode) {
840 case ICE_FC_FULL:
841 fc = "Rx/Tx";
842 break;
843 case ICE_FC_TX_PAUSE:
844 fc = "Tx";
845 break;
846 case ICE_FC_RX_PAUSE:
847 fc = "Rx";
848 break;
849 case ICE_FC_NONE:
850 fc = "None";
851 break;
852 default:
853 fc = "Unknown";
854 break;
855 }
856
857 /* Get FEC mode based on negotiated link info */
858 switch (vsi->port_info->phy.link_info.fec_info) {
859 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
860 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
861 fec = "RS-FEC";
862 break;
863 case ICE_AQ_LINK_25G_KR_FEC_EN:
864 fec = "FC-FEC/BASE-R";
865 break;
866 default:
867 fec = "NONE";
868 break;
869 }
870
871 /* check if autoneg completed, might be false due to not supported */
872 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
873 an = "True";
874 else
875 an = "False";
876
877 /* Get FEC mode requested based on PHY caps last SW configuration */
878 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
879 if (!caps) {
880 fec_req = "Unknown";
881 an_advertised = "Unknown";
882 goto done;
883 }
884
885 status = ice_aq_get_phy_caps(vsi->port_info, false,
886 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
887 if (status)
888 netdev_info(vsi->netdev, "Get phy capability failed.\n");
889
890 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
891
892 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
894 fec_req = "RS-FEC";
895 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
897 fec_req = "FC-FEC/BASE-R";
898 else
899 fec_req = "NONE";
900
901 kfree(caps);
902
903 done:
904 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
905 speed, fec_req, fec, an_advertised, an, fc);
906 ice_print_topo_conflict(vsi);
907 }
908
909 /**
910 * ice_vsi_link_event - update the VSI's netdev
911 * @vsi: the VSI on which the link event occurred
912 * @link_up: whether or not the VSI needs to be set up or down
913 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)914 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
915 {
916 if (!vsi)
917 return;
918
919 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
920 return;
921
922 if (vsi->type == ICE_VSI_PF) {
923 if (link_up == netif_carrier_ok(vsi->netdev))
924 return;
925
926 if (link_up) {
927 netif_carrier_on(vsi->netdev);
928 netif_tx_wake_all_queues(vsi->netdev);
929 } else {
930 netif_carrier_off(vsi->netdev);
931 netif_tx_stop_all_queues(vsi->netdev);
932 }
933 }
934 }
935
936 /**
937 * ice_set_dflt_mib - send a default config MIB to the FW
938 * @pf: private PF struct
939 *
940 * This function sends a default configuration MIB to the FW.
941 *
942 * If this function errors out at any point, the driver is still able to
943 * function. The main impact is that LFC may not operate as expected.
944 * Therefore an error state in this function should be treated with a DBG
945 * message and continue on with driver rebuild/reenable.
946 */
ice_set_dflt_mib(struct ice_pf * pf)947 static void ice_set_dflt_mib(struct ice_pf *pf)
948 {
949 struct device *dev = ice_pf_to_dev(pf);
950 u8 mib_type, *buf, *lldpmib = NULL;
951 u16 len, typelen, offset = 0;
952 struct ice_lldp_org_tlv *tlv;
953 struct ice_hw *hw = &pf->hw;
954 u32 ouisubtype;
955
956 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
957 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
958 if (!lldpmib) {
959 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
960 __func__);
961 return;
962 }
963
964 /* Add ETS CFG TLV */
965 tlv = (struct ice_lldp_org_tlv *)lldpmib;
966 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
967 ICE_IEEE_ETS_TLV_LEN);
968 tlv->typelen = htons(typelen);
969 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
970 ICE_IEEE_SUBTYPE_ETS_CFG);
971 tlv->ouisubtype = htonl(ouisubtype);
972
973 buf = tlv->tlvinfo;
974 buf[0] = 0;
975
976 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
977 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
978 * Octets 13 - 20 are TSA values - leave as zeros
979 */
980 buf[5] = 0x64;
981 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
982 offset += len + 2;
983 tlv = (struct ice_lldp_org_tlv *)
984 ((char *)tlv + sizeof(tlv->typelen) + len);
985
986 /* Add ETS REC TLV */
987 buf = tlv->tlvinfo;
988 tlv->typelen = htons(typelen);
989
990 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
991 ICE_IEEE_SUBTYPE_ETS_REC);
992 tlv->ouisubtype = htonl(ouisubtype);
993
994 /* First octet of buf is reserved
995 * Octets 1 - 4 map UP to TC - all UPs map to zero
996 * Octets 5 - 12 are BW values - set TC 0 to 100%.
997 * Octets 13 - 20 are TSA value - leave as zeros
998 */
999 buf[5] = 0x64;
1000 offset += len + 2;
1001 tlv = (struct ice_lldp_org_tlv *)
1002 ((char *)tlv + sizeof(tlv->typelen) + len);
1003
1004 /* Add PFC CFG TLV */
1005 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1006 ICE_IEEE_PFC_TLV_LEN);
1007 tlv->typelen = htons(typelen);
1008
1009 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1010 ICE_IEEE_SUBTYPE_PFC_CFG);
1011 tlv->ouisubtype = htonl(ouisubtype);
1012
1013 /* Octet 1 left as all zeros - PFC disabled */
1014 buf[0] = 0x08;
1015 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1016 offset += len + 2;
1017
1018 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1019 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1020
1021 kfree(lldpmib);
1022 }
1023
1024 /**
1025 * ice_check_phy_fw_load - check if PHY FW load failed
1026 * @pf: pointer to PF struct
1027 * @link_cfg_err: bitmap from the link info structure
1028 *
1029 * check if external PHY FW load failed and print an error message if it did
1030 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1031 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1032 {
1033 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1034 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1035 return;
1036 }
1037
1038 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1039 return;
1040
1041 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1042 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1043 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1044 }
1045 }
1046
1047 /**
1048 * ice_check_module_power
1049 * @pf: pointer to PF struct
1050 * @link_cfg_err: bitmap from the link info structure
1051 *
1052 * check module power level returned by a previous call to aq_get_link_info
1053 * and print error messages if module power level is not supported
1054 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1055 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1056 {
1057 /* if module power level is supported, clear the flag */
1058 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1059 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1060 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1061 return;
1062 }
1063
1064 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1065 * above block didn't clear this bit, there's nothing to do
1066 */
1067 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1068 return;
1069
1070 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1071 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1073 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1074 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1076 }
1077 }
1078
1079 /**
1080 * ice_check_link_cfg_err - check if link configuration failed
1081 * @pf: pointer to the PF struct
1082 * @link_cfg_err: bitmap from the link info structure
1083 *
1084 * print if any link configuration failure happens due to the value in the
1085 * link_cfg_err parameter in the link info structure
1086 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1087 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1088 {
1089 ice_check_module_power(pf, link_cfg_err);
1090 ice_check_phy_fw_load(pf, link_cfg_err);
1091 }
1092
1093 /**
1094 * ice_link_event - process the link event
1095 * @pf: PF that the link event is associated with
1096 * @pi: port_info for the port that the link event is associated with
1097 * @link_up: true if the physical link is up and false if it is down
1098 * @link_speed: current link speed received from the link event
1099 *
1100 * Returns 0 on success and negative on failure
1101 */
1102 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1103 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1104 u16 link_speed)
1105 {
1106 struct device *dev = ice_pf_to_dev(pf);
1107 struct ice_phy_info *phy_info;
1108 struct ice_vsi *vsi;
1109 u16 old_link_speed;
1110 bool old_link;
1111 int status;
1112
1113 phy_info = &pi->phy;
1114 phy_info->link_info_old = phy_info->link_info;
1115
1116 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1117 old_link_speed = phy_info->link_info_old.link_speed;
1118
1119 /* update the link info structures and re-enable link events,
1120 * don't bail on failure due to other book keeping needed
1121 */
1122 status = ice_update_link_info(pi);
1123 if (status)
1124 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1125 pi->lport, status,
1126 libie_aq_str(pi->hw->adminq.sq_last_status));
1127
1128 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1129
1130 /* Check if the link state is up after updating link info, and treat
1131 * this event as an UP event since the link is actually UP now.
1132 */
1133 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1134 link_up = true;
1135
1136 vsi = ice_get_main_vsi(pf);
1137 if (!vsi || !vsi->port_info)
1138 return -EINVAL;
1139
1140 /* turn off PHY if media was removed */
1141 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1142 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1143 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1144 ice_set_link(vsi, false);
1145 }
1146
1147 /* if the old link up/down and speed is the same as the new */
1148 if (link_up == old_link && link_speed == old_link_speed)
1149 return 0;
1150
1151 if (!link_up && old_link)
1152 pf->link_down_events++;
1153
1154 ice_ptp_link_change(pf, link_up);
1155
1156 if (ice_is_dcb_active(pf)) {
1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1158 ice_dcb_rebuild(pf);
1159 } else {
1160 if (link_up)
1161 ice_set_dflt_mib(pf);
1162 }
1163 ice_vsi_link_event(vsi, link_up);
1164 ice_print_link_msg(vsi, link_up);
1165
1166 ice_vc_notify_link_state(pf);
1167
1168 return 0;
1169 }
1170
1171 /**
1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1173 * @pf: board private structure
1174 */
ice_watchdog_subtask(struct ice_pf * pf)1175 static void ice_watchdog_subtask(struct ice_pf *pf)
1176 {
1177 int i;
1178
1179 /* if interface is down do nothing */
1180 if (test_bit(ICE_DOWN, pf->state) ||
1181 test_bit(ICE_CFG_BUSY, pf->state))
1182 return;
1183
1184 /* make sure we don't do these things too often */
1185 if (time_before(jiffies,
1186 pf->serv_tmr_prev + pf->serv_tmr_period))
1187 return;
1188
1189 pf->serv_tmr_prev = jiffies;
1190
1191 /* Update the stats for active netdevs so the network stack
1192 * can look at updated numbers whenever it cares to
1193 */
1194 ice_update_pf_stats(pf);
1195 ice_for_each_vsi(pf, i)
1196 if (pf->vsi[i] && pf->vsi[i]->netdev)
1197 ice_update_vsi_stats(pf->vsi[i]);
1198 }
1199
1200 /**
1201 * ice_init_link_events - enable/initialize link events
1202 * @pi: pointer to the port_info instance
1203 *
1204 * Returns -EIO on failure, 0 on success
1205 */
ice_init_link_events(struct ice_port_info * pi)1206 static int ice_init_link_events(struct ice_port_info *pi)
1207 {
1208 u16 mask;
1209
1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1213
1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1216 pi->lport);
1217 return -EIO;
1218 }
1219
1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1222 pi->lport);
1223 return -EIO;
1224 }
1225
1226 return 0;
1227 }
1228
1229 /**
1230 * ice_handle_link_event - handle link event via ARQ
1231 * @pf: PF that the link event is associated with
1232 * @event: event structure containing link status info
1233 */
1234 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1236 {
1237 struct ice_aqc_get_link_status_data *link_data;
1238 struct ice_port_info *port_info;
1239 int status;
1240
1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1242 port_info = pf->hw.port_info;
1243 if (!port_info)
1244 return -EINVAL;
1245
1246 status = ice_link_event(pf, port_info,
1247 !!(link_data->link_info & ICE_AQ_LINK_UP),
1248 le16_to_cpu(link_data->link_speed));
1249 if (status)
1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1251 status);
1252
1253 return status;
1254 }
1255
1256 /**
1257 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @task: intermediate helper storage and identifier for waiting
1260 * @opcode: the opcode to wait for
1261 *
1262 * Prepares to wait for a specific AdminQ completion event on the ARQ for
1263 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1264 *
1265 * Calls are separated to allow caller registering for event before sending
1266 * the command, which mitigates a race between registering and FW responding.
1267 *
1268 * To obtain only the descriptor contents, pass an task->event with null
1269 * msg_buf. If the complete data buffer is desired, allocate the
1270 * task->event.msg_buf with enough space ahead of time.
1271 */
ice_aq_prep_for_event(struct ice_pf * pf,struct ice_aq_task * task,u16 opcode)1272 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1273 u16 opcode)
1274 {
1275 INIT_HLIST_NODE(&task->entry);
1276 task->opcode = opcode;
1277 task->state = ICE_AQ_TASK_WAITING;
1278
1279 spin_lock_bh(&pf->aq_wait_lock);
1280 hlist_add_head(&task->entry, &pf->aq_wait_list);
1281 spin_unlock_bh(&pf->aq_wait_lock);
1282 }
1283
1284 /**
1285 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1286 * @pf: pointer to the PF private structure
1287 * @task: ptr prepared by ice_aq_prep_for_event()
1288 * @timeout: how long to wait, in jiffies
1289 *
1290 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1291 * current thread will be put to sleep until the specified event occurs or
1292 * until the given timeout is reached.
1293 *
1294 * Returns: zero on success, or a negative error code on failure.
1295 */
ice_aq_wait_for_event(struct ice_pf * pf,struct ice_aq_task * task,unsigned long timeout)1296 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1297 unsigned long timeout)
1298 {
1299 enum ice_aq_task_state *state = &task->state;
1300 struct device *dev = ice_pf_to_dev(pf);
1301 unsigned long start = jiffies;
1302 long ret;
1303 int err;
1304
1305 ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1306 *state != ICE_AQ_TASK_WAITING,
1307 timeout);
1308 switch (*state) {
1309 case ICE_AQ_TASK_NOT_PREPARED:
1310 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1311 err = -EINVAL;
1312 break;
1313 case ICE_AQ_TASK_WAITING:
1314 err = ret < 0 ? ret : -ETIMEDOUT;
1315 break;
1316 case ICE_AQ_TASK_CANCELED:
1317 err = ret < 0 ? ret : -ECANCELED;
1318 break;
1319 case ICE_AQ_TASK_COMPLETE:
1320 err = ret < 0 ? ret : 0;
1321 break;
1322 default:
1323 WARN(1, "Unexpected AdminQ wait task state %u", *state);
1324 err = -EINVAL;
1325 break;
1326 }
1327
1328 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1329 jiffies_to_msecs(jiffies - start),
1330 jiffies_to_msecs(timeout),
1331 task->opcode);
1332
1333 spin_lock_bh(&pf->aq_wait_lock);
1334 hlist_del(&task->entry);
1335 spin_unlock_bh(&pf->aq_wait_lock);
1336
1337 return err;
1338 }
1339
1340 /**
1341 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1342 * @pf: pointer to the PF private structure
1343 * @opcode: the opcode of the event
1344 * @event: the event to check
1345 *
1346 * Loops over the current list of pending threads waiting for an AdminQ event.
1347 * For each matching task, copy the contents of the event into the task
1348 * structure and wake up the thread.
1349 *
1350 * If multiple threads wait for the same opcode, they will all be woken up.
1351 *
1352 * Note that event->msg_buf will only be duplicated if the event has a buffer
1353 * with enough space already allocated. Otherwise, only the descriptor and
1354 * message length will be copied.
1355 *
1356 * Returns: true if an event was found, false otherwise
1357 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1358 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1359 struct ice_rq_event_info *event)
1360 {
1361 struct ice_rq_event_info *task_ev;
1362 struct ice_aq_task *task;
1363 bool found = false;
1364
1365 spin_lock_bh(&pf->aq_wait_lock);
1366 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1367 if (task->state != ICE_AQ_TASK_WAITING)
1368 continue;
1369 if (task->opcode != opcode)
1370 continue;
1371
1372 task_ev = &task->event;
1373 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1374 task_ev->msg_len = event->msg_len;
1375
1376 /* Only copy the data buffer if a destination was set */
1377 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1378 memcpy(task_ev->msg_buf, event->msg_buf,
1379 event->buf_len);
1380 task_ev->buf_len = event->buf_len;
1381 }
1382
1383 task->state = ICE_AQ_TASK_COMPLETE;
1384 found = true;
1385 }
1386 spin_unlock_bh(&pf->aq_wait_lock);
1387
1388 if (found)
1389 wake_up(&pf->aq_wait_queue);
1390 }
1391
1392 /**
1393 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1394 * @pf: the PF private structure
1395 *
1396 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1397 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1398 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1399 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1400 {
1401 struct ice_aq_task *task;
1402
1403 spin_lock_bh(&pf->aq_wait_lock);
1404 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1405 task->state = ICE_AQ_TASK_CANCELED;
1406 spin_unlock_bh(&pf->aq_wait_lock);
1407
1408 wake_up(&pf->aq_wait_queue);
1409 }
1410
1411 #define ICE_MBX_OVERFLOW_WATERMARK 64
1412
1413 /**
1414 * __ice_clean_ctrlq - helper function to clean controlq rings
1415 * @pf: ptr to struct ice_pf
1416 * @q_type: specific Control queue type
1417 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1418 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1419 {
1420 struct device *dev = ice_pf_to_dev(pf);
1421 struct ice_rq_event_info event;
1422 struct ice_hw *hw = &pf->hw;
1423 struct ice_ctl_q_info *cq;
1424 u16 pending, i = 0;
1425 const char *qtype;
1426 u32 oldval, val;
1427
1428 /* Do not clean control queue if/when PF reset fails */
1429 if (test_bit(ICE_RESET_FAILED, pf->state))
1430 return 0;
1431
1432 switch (q_type) {
1433 case ICE_CTL_Q_ADMIN:
1434 cq = &hw->adminq;
1435 qtype = "Admin";
1436 break;
1437 case ICE_CTL_Q_SB:
1438 cq = &hw->sbq;
1439 qtype = "Sideband";
1440 break;
1441 case ICE_CTL_Q_MAILBOX:
1442 cq = &hw->mailboxq;
1443 qtype = "Mailbox";
1444 /* we are going to try to detect a malicious VF, so set the
1445 * state to begin detection
1446 */
1447 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1448 break;
1449 default:
1450 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1451 return 0;
1452 }
1453
1454 /* check for error indications - PF_xx_AxQLEN register layout for
1455 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1456 */
1457 val = rd32(hw, cq->rq.len);
1458 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1459 PF_FW_ARQLEN_ARQCRIT_M)) {
1460 oldval = val;
1461 if (val & PF_FW_ARQLEN_ARQVFE_M)
1462 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1463 qtype);
1464 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1465 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1466 qtype);
1467 }
1468 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1469 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1470 qtype);
1471 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1472 PF_FW_ARQLEN_ARQCRIT_M);
1473 if (oldval != val)
1474 wr32(hw, cq->rq.len, val);
1475 }
1476
1477 val = rd32(hw, cq->sq.len);
1478 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1479 PF_FW_ATQLEN_ATQCRIT_M)) {
1480 oldval = val;
1481 if (val & PF_FW_ATQLEN_ATQVFE_M)
1482 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1483 qtype);
1484 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1485 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1486 qtype);
1487 }
1488 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1489 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1490 qtype);
1491 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1492 PF_FW_ATQLEN_ATQCRIT_M);
1493 if (oldval != val)
1494 wr32(hw, cq->sq.len, val);
1495 }
1496
1497 event.buf_len = cq->rq_buf_size;
1498 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1499 if (!event.msg_buf)
1500 return 0;
1501
1502 do {
1503 struct ice_mbx_data data = {};
1504 u16 opcode;
1505 int ret;
1506
1507 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1508 if (ret == -EALREADY)
1509 break;
1510 if (ret) {
1511 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1512 ret);
1513 break;
1514 }
1515
1516 opcode = le16_to_cpu(event.desc.opcode);
1517
1518 /* Notify any thread that might be waiting for this event */
1519 ice_aq_check_events(pf, opcode, &event);
1520
1521 switch (opcode) {
1522 case ice_aqc_opc_get_link_status:
1523 if (ice_handle_link_event(pf, &event))
1524 dev_err(dev, "Could not handle link event\n");
1525 break;
1526 case ice_aqc_opc_event_lan_overflow:
1527 ice_vf_lan_overflow_event(pf, &event);
1528 break;
1529 case ice_mbx_opc_send_msg_to_pf:
1530 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1531 ice_vc_process_vf_msg(pf, &event, NULL);
1532 ice_mbx_vf_dec_trig_e830(hw, &event);
1533 } else {
1534 u16 val = hw->mailboxq.num_rq_entries;
1535
1536 data.max_num_msgs_mbx = val;
1537 val = ICE_MBX_OVERFLOW_WATERMARK;
1538 data.async_watermark_val = val;
1539 data.num_msg_proc = i;
1540 data.num_pending_arq = pending;
1541
1542 ice_vc_process_vf_msg(pf, &event, &data);
1543 }
1544 break;
1545 case ice_aqc_opc_fw_logs_event:
1546 libie_get_fwlog_data(&hw->fwlog, event.msg_buf,
1547 le16_to_cpu(event.desc.datalen));
1548 break;
1549 case ice_aqc_opc_lldp_set_mib_change:
1550 ice_dcb_process_lldp_set_mib_change(pf, &event);
1551 break;
1552 case ice_aqc_opc_get_health_status:
1553 ice_process_health_status_event(pf, &event);
1554 break;
1555 default:
1556 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1557 qtype, opcode);
1558 break;
1559 }
1560 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1561
1562 kfree(event.msg_buf);
1563
1564 return pending && (i == ICE_DFLT_IRQ_WORK);
1565 }
1566
1567 /**
1568 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1569 * @hw: pointer to hardware info
1570 * @cq: control queue information
1571 *
1572 * returns true if there are pending messages in a queue, false if there aren't
1573 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1574 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1575 {
1576 u16 ntu;
1577
1578 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1579 return cq->rq.next_to_clean != ntu;
1580 }
1581
1582 /**
1583 * ice_clean_adminq_subtask - clean the AdminQ rings
1584 * @pf: board private structure
1585 */
ice_clean_adminq_subtask(struct ice_pf * pf)1586 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1587 {
1588 struct ice_hw *hw = &pf->hw;
1589
1590 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1591 return;
1592
1593 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1594 return;
1595
1596 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1597
1598 /* There might be a situation where new messages arrive to a control
1599 * queue between processing the last message and clearing the
1600 * EVENT_PENDING bit. So before exiting, check queue head again (using
1601 * ice_ctrlq_pending) and process new messages if any.
1602 */
1603 if (ice_ctrlq_pending(hw, &hw->adminq))
1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1605
1606 ice_flush(hw);
1607 }
1608
1609 /**
1610 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1611 * @pf: board private structure
1612 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1613 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1614 {
1615 struct ice_hw *hw = &pf->hw;
1616
1617 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1618 return;
1619
1620 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1621 return;
1622
1623 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1624
1625 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1627
1628 ice_flush(hw);
1629 }
1630
1631 /**
1632 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1633 * @pf: board private structure
1634 */
ice_clean_sbq_subtask(struct ice_pf * pf)1635 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1636 {
1637 struct ice_hw *hw = &pf->hw;
1638
1639 /* if mac_type is not generic, sideband is not supported
1640 * and there's nothing to do here
1641 */
1642 if (!ice_is_generic_mac(hw)) {
1643 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1644 return;
1645 }
1646
1647 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1648 return;
1649
1650 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1651 return;
1652
1653 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1654
1655 if (ice_ctrlq_pending(hw, &hw->sbq))
1656 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1657
1658 ice_flush(hw);
1659 }
1660
1661 /**
1662 * ice_service_task_schedule - schedule the service task to wake up
1663 * @pf: board private structure
1664 *
1665 * If not already scheduled, this puts the task into the work queue.
1666 */
ice_service_task_schedule(struct ice_pf * pf)1667 void ice_service_task_schedule(struct ice_pf *pf)
1668 {
1669 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1670 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1671 !test_bit(ICE_NEEDS_RESTART, pf->state))
1672 queue_work(ice_wq, &pf->serv_task);
1673 }
1674
1675 /**
1676 * ice_service_task_complete - finish up the service task
1677 * @pf: board private structure
1678 */
ice_service_task_complete(struct ice_pf * pf)1679 static void ice_service_task_complete(struct ice_pf *pf)
1680 {
1681 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1682
1683 /* force memory (pf->state) to sync before next service task */
1684 smp_mb__before_atomic();
1685 clear_bit(ICE_SERVICE_SCHED, pf->state);
1686 }
1687
1688 /**
1689 * ice_service_task_stop - stop service task and cancel works
1690 * @pf: board private structure
1691 *
1692 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1693 * 1 otherwise.
1694 */
ice_service_task_stop(struct ice_pf * pf)1695 static int ice_service_task_stop(struct ice_pf *pf)
1696 {
1697 int ret;
1698
1699 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1700
1701 if (pf->serv_tmr.function)
1702 timer_delete_sync(&pf->serv_tmr);
1703 if (pf->serv_task.func)
1704 cancel_work_sync(&pf->serv_task);
1705
1706 clear_bit(ICE_SERVICE_SCHED, pf->state);
1707 return ret;
1708 }
1709
1710 /**
1711 * ice_service_task_restart - restart service task and schedule works
1712 * @pf: board private structure
1713 *
1714 * This function is needed for suspend and resume works (e.g WoL scenario)
1715 */
ice_service_task_restart(struct ice_pf * pf)1716 static void ice_service_task_restart(struct ice_pf *pf)
1717 {
1718 clear_bit(ICE_SERVICE_DIS, pf->state);
1719 ice_service_task_schedule(pf);
1720 }
1721
1722 /**
1723 * ice_service_timer - timer callback to schedule service task
1724 * @t: pointer to timer_list
1725 */
ice_service_timer(struct timer_list * t)1726 static void ice_service_timer(struct timer_list *t)
1727 {
1728 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr);
1729
1730 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1731 ice_service_task_schedule(pf);
1732 }
1733
1734 /**
1735 * ice_mdd_maybe_reset_vf - reset VF after MDD event
1736 * @pf: pointer to the PF structure
1737 * @vf: pointer to the VF structure
1738 * @reset_vf_tx: whether Tx MDD has occurred
1739 * @reset_vf_rx: whether Rx MDD has occurred
1740 *
1741 * Since the queue can get stuck on VF MDD events, the PF can be configured to
1742 * automatically reset the VF by enabling the private ethtool flag
1743 * mdd-auto-reset-vf.
1744 */
ice_mdd_maybe_reset_vf(struct ice_pf * pf,struct ice_vf * vf,bool reset_vf_tx,bool reset_vf_rx)1745 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1746 bool reset_vf_tx, bool reset_vf_rx)
1747 {
1748 struct device *dev = ice_pf_to_dev(pf);
1749
1750 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1751 return;
1752
1753 /* VF MDD event counters will be cleared by reset, so print the event
1754 * prior to reset.
1755 */
1756 if (reset_vf_tx)
1757 ice_print_vf_tx_mdd_event(vf);
1758
1759 if (reset_vf_rx)
1760 ice_print_vf_rx_mdd_event(vf);
1761
1762 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1763 pf->hw.pf_id, vf->vf_id);
1764 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1765 }
1766
1767 /**
1768 * ice_handle_mdd_event - handle malicious driver detect event
1769 * @pf: pointer to the PF structure
1770 *
1771 * Called from service task. OICR interrupt handler indicates MDD event.
1772 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1773 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1774 * disable the queue, the PF can be configured to reset the VF using ethtool
1775 * private flag mdd-auto-reset-vf.
1776 */
ice_handle_mdd_event(struct ice_pf * pf)1777 static void ice_handle_mdd_event(struct ice_pf *pf)
1778 {
1779 struct device *dev = ice_pf_to_dev(pf);
1780 struct ice_hw *hw = &pf->hw;
1781 struct ice_vf *vf;
1782 unsigned int bkt;
1783 u32 reg;
1784
1785 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1786 /* Since the VF MDD event logging is rate limited, check if
1787 * there are pending MDD events.
1788 */
1789 ice_print_vfs_mdd_events(pf);
1790 return;
1791 }
1792
1793 /* find what triggered an MDD event */
1794 reg = rd32(hw, GL_MDET_TX_PQM);
1795 if (reg & GL_MDET_TX_PQM_VALID_M) {
1796 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1797 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1798 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1799 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1800
1801 if (netif_msg_tx_err(pf))
1802 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1803 event, queue, pf_num, vf_num);
1804 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1805 event, queue);
1806 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1807 }
1808
1809 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1810 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1811 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1812 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1813 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1814 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1815
1816 if (netif_msg_tx_err(pf))
1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1818 event, queue, pf_num, vf_num);
1819 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1820 event, queue);
1821 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1822 }
1823
1824 reg = rd32(hw, GL_MDET_RX);
1825 if (reg & GL_MDET_RX_VALID_M) {
1826 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1827 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1828 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1829 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1830
1831 if (netif_msg_rx_err(pf))
1832 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1833 event, queue, pf_num, vf_num);
1834 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1835 queue);
1836 wr32(hw, GL_MDET_RX, 0xffffffff);
1837 }
1838
1839 /* check to see if this PF caused an MDD event */
1840 reg = rd32(hw, PF_MDET_TX_PQM);
1841 if (reg & PF_MDET_TX_PQM_VALID_M) {
1842 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1843 if (netif_msg_tx_err(pf))
1844 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1845 }
1846
1847 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1848 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1849 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1850 if (netif_msg_tx_err(pf))
1851 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1852 }
1853
1854 reg = rd32(hw, PF_MDET_RX);
1855 if (reg & PF_MDET_RX_VALID_M) {
1856 wr32(hw, PF_MDET_RX, 0xFFFF);
1857 if (netif_msg_rx_err(pf))
1858 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1859 }
1860
1861 /* Check to see if one of the VFs caused an MDD event, and then
1862 * increment counters and set print pending
1863 */
1864 mutex_lock(&pf->vfs.table_lock);
1865 ice_for_each_vf(pf, bkt, vf) {
1866 bool reset_vf_tx = false, reset_vf_rx = false;
1867
1868 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1869 if (reg & VP_MDET_TX_PQM_VALID_M) {
1870 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1871 vf->mdd_tx_events.count++;
1872 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1873 if (netif_msg_tx_err(pf))
1874 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1875 vf->vf_id);
1876
1877 reset_vf_tx = true;
1878 }
1879
1880 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1881 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1882 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1883 vf->mdd_tx_events.count++;
1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1885 if (netif_msg_tx_err(pf))
1886 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1887 vf->vf_id);
1888
1889 reset_vf_tx = true;
1890 }
1891
1892 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1893 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1894 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1895 vf->mdd_tx_events.count++;
1896 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1897 if (netif_msg_tx_err(pf))
1898 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1899 vf->vf_id);
1900
1901 reset_vf_tx = true;
1902 }
1903
1904 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1905 if (reg & VP_MDET_RX_VALID_M) {
1906 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1907 vf->mdd_rx_events.count++;
1908 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1909 if (netif_msg_rx_err(pf))
1910 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1911 vf->vf_id);
1912
1913 reset_vf_rx = true;
1914 }
1915
1916 if (reset_vf_tx || reset_vf_rx)
1917 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1918 reset_vf_rx);
1919 }
1920 mutex_unlock(&pf->vfs.table_lock);
1921
1922 ice_print_vfs_mdd_events(pf);
1923 }
1924
1925 /**
1926 * ice_force_phys_link_state - Force the physical link state
1927 * @vsi: VSI to force the physical link state to up/down
1928 * @link_up: true/false indicates to set the physical link to up/down
1929 *
1930 * Force the physical link state by getting the current PHY capabilities from
1931 * hardware and setting the PHY config based on the determined capabilities. If
1932 * link changes a link event will be triggered because both the Enable Automatic
1933 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1934 *
1935 * Returns 0 on success, negative on failure
1936 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1937 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1938 {
1939 struct ice_aqc_get_phy_caps_data *pcaps;
1940 struct ice_aqc_set_phy_cfg_data *cfg;
1941 struct ice_port_info *pi;
1942 struct device *dev;
1943 int retcode;
1944
1945 if (!vsi || !vsi->port_info || !vsi->back)
1946 return -EINVAL;
1947 if (vsi->type != ICE_VSI_PF)
1948 return 0;
1949
1950 dev = ice_pf_to_dev(vsi->back);
1951
1952 pi = vsi->port_info;
1953
1954 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1955 if (!pcaps)
1956 return -ENOMEM;
1957
1958 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1959 NULL);
1960 if (retcode) {
1961 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1962 vsi->vsi_num, retcode);
1963 retcode = -EIO;
1964 goto out;
1965 }
1966
1967 /* No change in link */
1968 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1969 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1970 goto out;
1971
1972 /* Use the current user PHY configuration. The current user PHY
1973 * configuration is initialized during probe from PHY capabilities
1974 * software mode, and updated on set PHY configuration.
1975 */
1976 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1977 if (!cfg) {
1978 retcode = -ENOMEM;
1979 goto out;
1980 }
1981
1982 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1983 if (link_up)
1984 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1985 else
1986 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1987
1988 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1989 if (retcode) {
1990 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1991 vsi->vsi_num, retcode);
1992 retcode = -EIO;
1993 }
1994
1995 kfree(cfg);
1996 out:
1997 kfree(pcaps);
1998 return retcode;
1999 }
2000
2001 /**
2002 * ice_init_nvm_phy_type - Initialize the NVM PHY type
2003 * @pi: port info structure
2004 *
2005 * Initialize nvm_phy_type_[low|high] for link lenient mode support
2006 */
ice_init_nvm_phy_type(struct ice_port_info * pi)2007 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2008 {
2009 struct ice_aqc_get_phy_caps_data *pcaps;
2010 struct ice_pf *pf = pi->hw->back;
2011 int err;
2012
2013 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2014 if (!pcaps)
2015 return -ENOMEM;
2016
2017 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2018 pcaps, NULL);
2019
2020 if (err) {
2021 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2022 goto out;
2023 }
2024
2025 pf->nvm_phy_type_hi = pcaps->phy_type_high;
2026 pf->nvm_phy_type_lo = pcaps->phy_type_low;
2027
2028 out:
2029 kfree(pcaps);
2030 return err;
2031 }
2032
2033 /**
2034 * ice_init_link_dflt_override - Initialize link default override
2035 * @pi: port info structure
2036 *
2037 * Initialize link default override and PHY total port shutdown during probe
2038 */
ice_init_link_dflt_override(struct ice_port_info * pi)2039 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2040 {
2041 struct ice_link_default_override_tlv *ldo;
2042 struct ice_pf *pf = pi->hw->back;
2043
2044 ldo = &pf->link_dflt_override;
2045 if (ice_get_link_default_override(ldo, pi))
2046 return;
2047
2048 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2049 return;
2050
2051 /* Enable Total Port Shutdown (override/replace link-down-on-close
2052 * ethtool private flag) for ports with Port Disable bit set.
2053 */
2054 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2055 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2056 }
2057
2058 /**
2059 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2060 * @pi: port info structure
2061 *
2062 * If default override is enabled, initialize the user PHY cfg speed and FEC
2063 * settings using the default override mask from the NVM.
2064 *
2065 * The PHY should only be configured with the default override settings the
2066 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2067 * is used to indicate that the user PHY cfg default override is initialized
2068 * and the PHY has not been configured with the default override settings. The
2069 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2070 * configured.
2071 *
2072 * This function should be called only if the FW doesn't support default
2073 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2074 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)2075 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2076 {
2077 struct ice_link_default_override_tlv *ldo;
2078 struct ice_aqc_set_phy_cfg_data *cfg;
2079 struct ice_phy_info *phy = &pi->phy;
2080 struct ice_pf *pf = pi->hw->back;
2081
2082 ldo = &pf->link_dflt_override;
2083
2084 /* If link default override is enabled, use to mask NVM PHY capabilities
2085 * for speed and FEC default configuration.
2086 */
2087 cfg = &phy->curr_user_phy_cfg;
2088
2089 if (ldo->phy_type_low || ldo->phy_type_high) {
2090 cfg->phy_type_low = pf->nvm_phy_type_lo &
2091 cpu_to_le64(ldo->phy_type_low);
2092 cfg->phy_type_high = pf->nvm_phy_type_hi &
2093 cpu_to_le64(ldo->phy_type_high);
2094 }
2095 cfg->link_fec_opt = ldo->fec_options;
2096 phy->curr_user_fec_req = ICE_FEC_AUTO;
2097
2098 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2099 }
2100
2101 /**
2102 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2103 * @pi: port info structure
2104 *
2105 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2106 * mode to default. The PHY defaults are from get PHY capabilities topology
2107 * with media so call when media is first available. An error is returned if
2108 * called when media is not available. The PHY initialization completed state is
2109 * set here.
2110 *
2111 * These configurations are used when setting PHY
2112 * configuration. The user PHY configuration is updated on set PHY
2113 * configuration. Returns 0 on success, negative on failure
2114 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2115 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2116 {
2117 struct ice_aqc_get_phy_caps_data *pcaps;
2118 struct ice_phy_info *phy = &pi->phy;
2119 struct ice_pf *pf = pi->hw->back;
2120 int err;
2121
2122 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2123 return -EIO;
2124
2125 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2126 if (!pcaps)
2127 return -ENOMEM;
2128
2129 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2130 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2131 pcaps, NULL);
2132 else
2133 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2134 pcaps, NULL);
2135 if (err) {
2136 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2137 goto err_out;
2138 }
2139
2140 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2141
2142 /* check if lenient mode is supported and enabled */
2143 if (ice_fw_supports_link_override(pi->hw) &&
2144 !(pcaps->module_compliance_enforcement &
2145 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2146 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2147
2148 /* if the FW supports default PHY configuration mode, then the driver
2149 * does not have to apply link override settings. If not,
2150 * initialize user PHY configuration with link override values
2151 */
2152 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2153 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2154 ice_init_phy_cfg_dflt_override(pi);
2155 goto out;
2156 }
2157 }
2158
2159 /* if link default override is not enabled, set user flow control and
2160 * FEC settings based on what get_phy_caps returned
2161 */
2162 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2163 pcaps->link_fec_options);
2164 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2165
2166 out:
2167 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2168 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2169 err_out:
2170 kfree(pcaps);
2171 return err;
2172 }
2173
2174 /**
2175 * ice_configure_phy - configure PHY
2176 * @vsi: VSI of PHY
2177 *
2178 * Set the PHY configuration. If the current PHY configuration is the same as
2179 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2180 * configure the based get PHY capabilities for topology with media.
2181 */
ice_configure_phy(struct ice_vsi * vsi)2182 static int ice_configure_phy(struct ice_vsi *vsi)
2183 {
2184 struct device *dev = ice_pf_to_dev(vsi->back);
2185 struct ice_port_info *pi = vsi->port_info;
2186 struct ice_aqc_get_phy_caps_data *pcaps;
2187 struct ice_aqc_set_phy_cfg_data *cfg;
2188 struct ice_phy_info *phy = &pi->phy;
2189 struct ice_pf *pf = vsi->back;
2190 int err;
2191
2192 /* Ensure we have media as we cannot configure a medialess port */
2193 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2194 return -ENOMEDIUM;
2195
2196 ice_print_topo_conflict(vsi);
2197
2198 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2199 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2200 return -EPERM;
2201
2202 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2203 return ice_force_phys_link_state(vsi, true);
2204
2205 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2206 if (!pcaps)
2207 return -ENOMEM;
2208
2209 /* Get current PHY config */
2210 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2211 NULL);
2212 if (err) {
2213 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2214 vsi->vsi_num, err);
2215 goto done;
2216 }
2217
2218 /* If PHY enable link is configured and configuration has not changed,
2219 * there's nothing to do
2220 */
2221 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2222 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2223 goto done;
2224
2225 /* Use PHY topology as baseline for configuration */
2226 memset(pcaps, 0, sizeof(*pcaps));
2227 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2229 pcaps, NULL);
2230 else
2231 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2232 pcaps, NULL);
2233 if (err) {
2234 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2235 vsi->vsi_num, err);
2236 goto done;
2237 }
2238
2239 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2240 if (!cfg) {
2241 err = -ENOMEM;
2242 goto done;
2243 }
2244
2245 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2246
2247 /* Speed - If default override pending, use curr_user_phy_cfg set in
2248 * ice_init_phy_user_cfg_ldo.
2249 */
2250 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2251 vsi->back->state)) {
2252 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2253 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2254 } else {
2255 u64 phy_low = 0, phy_high = 0;
2256
2257 ice_update_phy_type(&phy_low, &phy_high,
2258 pi->phy.curr_user_speed_req);
2259 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2260 cfg->phy_type_high = pcaps->phy_type_high &
2261 cpu_to_le64(phy_high);
2262 }
2263
2264 /* Can't provide what was requested; use PHY capabilities */
2265 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2266 cfg->phy_type_low = pcaps->phy_type_low;
2267 cfg->phy_type_high = pcaps->phy_type_high;
2268 }
2269
2270 /* FEC */
2271 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2272
2273 /* Can't provide what was requested; use PHY capabilities */
2274 if (cfg->link_fec_opt !=
2275 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2276 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2277 cfg->link_fec_opt = pcaps->link_fec_options;
2278 }
2279
2280 /* Flow Control - always supported; no need to check against
2281 * capabilities
2282 */
2283 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2284
2285 /* Enable link and link update */
2286 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2287
2288 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2289 if (err)
2290 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2291 vsi->vsi_num, err);
2292
2293 kfree(cfg);
2294 done:
2295 kfree(pcaps);
2296 return err;
2297 }
2298
2299 /**
2300 * ice_check_media_subtask - Check for media
2301 * @pf: pointer to PF struct
2302 *
2303 * If media is available, then initialize PHY user configuration if it is not
2304 * been, and configure the PHY if the interface is up.
2305 */
ice_check_media_subtask(struct ice_pf * pf)2306 static void ice_check_media_subtask(struct ice_pf *pf)
2307 {
2308 struct ice_port_info *pi;
2309 struct ice_vsi *vsi;
2310 int err;
2311
2312 /* No need to check for media if it's already present */
2313 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2314 return;
2315
2316 vsi = ice_get_main_vsi(pf);
2317 if (!vsi)
2318 return;
2319
2320 /* Refresh link info and check if media is present */
2321 pi = vsi->port_info;
2322 err = ice_update_link_info(pi);
2323 if (err)
2324 return;
2325
2326 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2327
2328 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2329 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2330 ice_init_phy_user_cfg(pi);
2331
2332 /* PHY settings are reset on media insertion, reconfigure
2333 * PHY to preserve settings.
2334 */
2335 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2336 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2337 return;
2338
2339 err = ice_configure_phy(vsi);
2340 if (!err)
2341 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2342
2343 /* A Link Status Event will be generated; the event handler
2344 * will complete bringing the interface up
2345 */
2346 }
2347 }
2348
ice_service_task_recovery_mode(struct work_struct * work)2349 static void ice_service_task_recovery_mode(struct work_struct *work)
2350 {
2351 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2352
2353 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2354 ice_clean_adminq_subtask(pf);
2355
2356 ice_service_task_complete(pf);
2357
2358 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2359 }
2360
2361 /**
2362 * ice_service_task - manage and run subtasks
2363 * @work: pointer to work_struct contained by the PF struct
2364 */
ice_service_task(struct work_struct * work)2365 static void ice_service_task(struct work_struct *work)
2366 {
2367 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2368 unsigned long start_time = jiffies;
2369
2370 if (pf->health_reporters.tx_hang_buf.tx_ring) {
2371 ice_report_tx_hang(pf);
2372 pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2373 }
2374
2375 ice_reset_subtask(pf);
2376
2377 /* bail if a reset/recovery cycle is pending or rebuild failed */
2378 if (ice_is_reset_in_progress(pf->state) ||
2379 test_bit(ICE_SUSPENDED, pf->state) ||
2380 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2381 ice_service_task_complete(pf);
2382 return;
2383 }
2384
2385 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2386 struct iidc_rdma_event *event;
2387
2388 event = kzalloc(sizeof(*event), GFP_KERNEL);
2389 if (event) {
2390 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type);
2391 /* report the entire OICR value to AUX driver */
2392 swap(event->reg, pf->oicr_err_reg);
2393 ice_send_event_to_aux(pf, event);
2394 kfree(event);
2395 }
2396 }
2397
2398 /* unplug aux dev per request, if an unplug request came in
2399 * while processing a plug request, this will handle it
2400 */
2401 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2402 ice_unplug_aux_dev(pf);
2403
2404 /* Plug aux device per request */
2405 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2406 ice_plug_aux_dev(pf);
2407
2408 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2409 struct iidc_rdma_event *event;
2410
2411 event = kzalloc(sizeof(*event), GFP_KERNEL);
2412 if (event) {
2413 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type);
2414 ice_send_event_to_aux(pf, event);
2415 kfree(event);
2416 }
2417 }
2418
2419 ice_clean_adminq_subtask(pf);
2420 ice_check_media_subtask(pf);
2421 ice_check_for_hang_subtask(pf);
2422 ice_sync_fltr_subtask(pf);
2423 ice_handle_mdd_event(pf);
2424 ice_watchdog_subtask(pf);
2425
2426 if (ice_is_safe_mode(pf)) {
2427 ice_service_task_complete(pf);
2428 return;
2429 }
2430
2431 ice_process_vflr_event(pf);
2432 ice_clean_mailboxq_subtask(pf);
2433 ice_clean_sbq_subtask(pf);
2434 ice_sync_arfs_fltrs(pf);
2435 ice_flush_fdir_ctx(pf);
2436
2437 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2438 ice_service_task_complete(pf);
2439
2440 /* If the tasks have taken longer than one service timer period
2441 * or there is more work to be done, reset the service timer to
2442 * schedule the service task now.
2443 */
2444 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2445 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2446 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2447 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2448 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2449 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2450 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2451 mod_timer(&pf->serv_tmr, jiffies);
2452 }
2453
2454 /**
2455 * ice_set_ctrlq_len - helper function to set controlq length
2456 * @hw: pointer to the HW instance
2457 */
ice_set_ctrlq_len(struct ice_hw * hw)2458 static void ice_set_ctrlq_len(struct ice_hw *hw)
2459 {
2460 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2461 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2462 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2463 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2464 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2465 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2466 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2467 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2468 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2469 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2470 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2471 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2472 }
2473
2474 /**
2475 * ice_schedule_reset - schedule a reset
2476 * @pf: board private structure
2477 * @reset: reset being requested
2478 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2479 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2480 {
2481 struct device *dev = ice_pf_to_dev(pf);
2482
2483 /* bail out if earlier reset has failed */
2484 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2485 dev_dbg(dev, "earlier reset has failed\n");
2486 return -EIO;
2487 }
2488 /* bail if reset/recovery already in progress */
2489 if (ice_is_reset_in_progress(pf->state)) {
2490 dev_dbg(dev, "Reset already in progress\n");
2491 return -EBUSY;
2492 }
2493
2494 switch (reset) {
2495 case ICE_RESET_PFR:
2496 set_bit(ICE_PFR_REQ, pf->state);
2497 break;
2498 case ICE_RESET_CORER:
2499 set_bit(ICE_CORER_REQ, pf->state);
2500 break;
2501 case ICE_RESET_GLOBR:
2502 set_bit(ICE_GLOBR_REQ, pf->state);
2503 break;
2504 default:
2505 return -EINVAL;
2506 }
2507
2508 ice_service_task_schedule(pf);
2509 return 0;
2510 }
2511
2512 /**
2513 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2514 * @vsi: the VSI being configured
2515 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2516 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2517 {
2518 struct ice_hw *hw = &vsi->back->hw;
2519 int i;
2520
2521 ice_for_each_q_vector(vsi, i)
2522 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2523
2524 ice_flush(hw);
2525 return 0;
2526 }
2527
2528 /**
2529 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2530 * @vsi: the VSI being configured
2531 * @basename: name for the vector
2532 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2533 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2534 {
2535 int q_vectors = vsi->num_q_vectors;
2536 struct ice_pf *pf = vsi->back;
2537 struct device *dev;
2538 int rx_int_idx = 0;
2539 int tx_int_idx = 0;
2540 int vector, err;
2541 int irq_num;
2542
2543 dev = ice_pf_to_dev(pf);
2544 for (vector = 0; vector < q_vectors; vector++) {
2545 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2546
2547 irq_num = q_vector->irq.virq;
2548
2549 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2550 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2551 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2552 tx_int_idx++;
2553 } else if (q_vector->rx.rx_ring) {
2554 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2555 "%s-%s-%d", basename, "rx", rx_int_idx++);
2556 } else if (q_vector->tx.tx_ring) {
2557 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2558 "%s-%s-%d", basename, "tx", tx_int_idx++);
2559 } else {
2560 /* skip this unused q_vector */
2561 continue;
2562 }
2563 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2564 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2565 IRQF_SHARED, q_vector->name,
2566 q_vector);
2567 else
2568 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2569 0, q_vector->name, q_vector);
2570 if (err) {
2571 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2572 err);
2573 goto free_q_irqs;
2574 }
2575 }
2576
2577 err = ice_set_cpu_rx_rmap(vsi);
2578 if (err) {
2579 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2580 vsi->vsi_num, ERR_PTR(err));
2581 goto free_q_irqs;
2582 }
2583
2584 vsi->irqs_ready = true;
2585 return 0;
2586
2587 free_q_irqs:
2588 while (vector--) {
2589 irq_num = vsi->q_vectors[vector]->irq.virq;
2590 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2591 }
2592 return err;
2593 }
2594
2595 /**
2596 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2597 * @vsi: VSI to setup Tx rings used by XDP
2598 *
2599 * Return 0 on success and negative value on error
2600 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2601 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2602 {
2603 struct device *dev = ice_pf_to_dev(vsi->back);
2604 struct ice_tx_desc *tx_desc;
2605 int i, j;
2606
2607 ice_for_each_xdp_txq(vsi, i) {
2608 u16 xdp_q_idx = vsi->alloc_txq + i;
2609 struct ice_ring_stats *ring_stats;
2610 struct ice_tx_ring *xdp_ring;
2611
2612 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2613 if (!xdp_ring)
2614 goto free_xdp_rings;
2615
2616 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2617 if (!ring_stats) {
2618 ice_free_tx_ring(xdp_ring);
2619 goto free_xdp_rings;
2620 }
2621
2622 xdp_ring->ring_stats = ring_stats;
2623 xdp_ring->q_index = xdp_q_idx;
2624 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2625 xdp_ring->vsi = vsi;
2626 xdp_ring->netdev = NULL;
2627 xdp_ring->dev = dev;
2628 xdp_ring->count = vsi->num_tx_desc;
2629 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2630 if (ice_setup_tx_ring(xdp_ring))
2631 goto free_xdp_rings;
2632 ice_set_ring_xdp(xdp_ring);
2633 spin_lock_init(&xdp_ring->tx_lock);
2634 for (j = 0; j < xdp_ring->count; j++) {
2635 tx_desc = ICE_TX_DESC(xdp_ring, j);
2636 tx_desc->cmd_type_offset_bsz = 0;
2637 }
2638 }
2639
2640 return 0;
2641
2642 free_xdp_rings:
2643 for (; i >= 0; i--) {
2644 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2645 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2646 vsi->xdp_rings[i]->ring_stats = NULL;
2647 ice_free_tx_ring(vsi->xdp_rings[i]);
2648 }
2649 }
2650 return -ENOMEM;
2651 }
2652
2653 /**
2654 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2655 * @vsi: VSI to set the bpf prog on
2656 * @prog: the bpf prog pointer
2657 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2658 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2659 {
2660 struct bpf_prog *old_prog;
2661 int i;
2662
2663 old_prog = xchg(&vsi->xdp_prog, prog);
2664 ice_for_each_rxq(vsi, i)
2665 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2666
2667 if (old_prog)
2668 bpf_prog_put(old_prog);
2669 }
2670
ice_xdp_ring_from_qid(struct ice_vsi * vsi,int qid)2671 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2672 {
2673 struct ice_q_vector *q_vector;
2674 struct ice_tx_ring *ring;
2675
2676 if (static_key_enabled(&ice_xdp_locking_key))
2677 return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2678
2679 q_vector = vsi->rx_rings[qid]->q_vector;
2680 ice_for_each_tx_ring(ring, q_vector->tx)
2681 if (ice_ring_is_xdp(ring))
2682 return ring;
2683
2684 return NULL;
2685 }
2686
2687 /**
2688 * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2689 * @vsi: the VSI with XDP rings being configured
2690 *
2691 * Map XDP rings to interrupt vectors and perform the configuration steps
2692 * dependent on the mapping.
2693 */
ice_map_xdp_rings(struct ice_vsi * vsi)2694 void ice_map_xdp_rings(struct ice_vsi *vsi)
2695 {
2696 int xdp_rings_rem = vsi->num_xdp_txq;
2697 int v_idx, q_idx;
2698
2699 /* follow the logic from ice_vsi_map_rings_to_vectors */
2700 ice_for_each_q_vector(vsi, v_idx) {
2701 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2702 int xdp_rings_per_v, q_id, q_base;
2703
2704 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2705 vsi->num_q_vectors - v_idx);
2706 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2707
2708 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2709 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2710
2711 xdp_ring->q_vector = q_vector;
2712 xdp_ring->next = q_vector->tx.tx_ring;
2713 q_vector->tx.tx_ring = xdp_ring;
2714 }
2715 xdp_rings_rem -= xdp_rings_per_v;
2716 }
2717
2718 ice_for_each_rxq(vsi, q_idx) {
2719 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2720 q_idx);
2721 ice_tx_xsk_pool(vsi, q_idx);
2722 }
2723 }
2724
2725 /**
2726 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors
2727 * @vsi: the VSI with XDP rings being unmapped
2728 */
ice_unmap_xdp_rings(struct ice_vsi * vsi)2729 static void ice_unmap_xdp_rings(struct ice_vsi *vsi)
2730 {
2731 int v_idx;
2732
2733 ice_for_each_q_vector(vsi, v_idx) {
2734 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2735 struct ice_tx_ring *ring;
2736
2737 ice_for_each_tx_ring(ring, q_vector->tx)
2738 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2739 break;
2740
2741 /* restore the value of last node prior to XDP setup */
2742 q_vector->tx.tx_ring = ring;
2743 }
2744 }
2745
2746 /**
2747 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2748 * @vsi: VSI to bring up Tx rings used by XDP
2749 * @prog: bpf program that will be assigned to VSI
2750 * @cfg_type: create from scratch or restore the existing configuration
2751 *
2752 * Return 0 on success and negative value on error
2753 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog,enum ice_xdp_cfg cfg_type)2754 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2755 enum ice_xdp_cfg cfg_type)
2756 {
2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2758 struct ice_pf *pf = vsi->back;
2759 struct ice_qs_cfg xdp_qs_cfg = {
2760 .qs_mutex = &pf->avail_q_mutex,
2761 .pf_map = pf->avail_txqs,
2762 .pf_map_size = pf->max_pf_txqs,
2763 .q_count = vsi->num_xdp_txq,
2764 .scatter_count = ICE_MAX_SCATTER_TXQS,
2765 .vsi_map = vsi->txq_map,
2766 .vsi_map_offset = vsi->alloc_txq,
2767 .mapping_mode = ICE_VSI_MAP_CONTIG
2768 };
2769 struct device *dev;
2770 int status, i;
2771
2772 dev = ice_pf_to_dev(pf);
2773 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2774 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2775 if (!vsi->xdp_rings)
2776 return -ENOMEM;
2777
2778 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2779 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2780 goto err_map_xdp;
2781
2782 if (static_key_enabled(&ice_xdp_locking_key))
2783 netdev_warn(vsi->netdev,
2784 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2785
2786 if (ice_xdp_alloc_setup_rings(vsi))
2787 goto clear_xdp_rings;
2788
2789 /* omit the scheduler update if in reset path; XDP queues will be
2790 * taken into account at the end of ice_vsi_rebuild, where
2791 * ice_cfg_vsi_lan is being called
2792 */
2793 if (cfg_type == ICE_XDP_CFG_PART)
2794 return 0;
2795
2796 ice_map_xdp_rings(vsi);
2797
2798 /* tell the Tx scheduler that right now we have
2799 * additional queues
2800 */
2801 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2802 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2803
2804 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2805 max_txqs);
2806 if (status) {
2807 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2808 status);
2809 goto unmap_xdp_rings;
2810 }
2811
2812 /* assign the prog only when it's not already present on VSI;
2813 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2814 * VSI rebuild that happens under ethtool -L can expose us to
2815 * the bpf_prog refcount issues as we would be swapping same
2816 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2817 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2818 * this is not harmful as dev_xdp_install bumps the refcount
2819 * before calling the op exposed by the driver;
2820 */
2821 if (!ice_is_xdp_ena_vsi(vsi))
2822 ice_vsi_assign_bpf_prog(vsi, prog);
2823
2824 return 0;
2825 unmap_xdp_rings:
2826 ice_unmap_xdp_rings(vsi);
2827 clear_xdp_rings:
2828 ice_for_each_xdp_txq(vsi, i)
2829 if (vsi->xdp_rings[i]) {
2830 kfree_rcu(vsi->xdp_rings[i], rcu);
2831 vsi->xdp_rings[i] = NULL;
2832 }
2833
2834 err_map_xdp:
2835 mutex_lock(&pf->avail_q_mutex);
2836 ice_for_each_xdp_txq(vsi, i) {
2837 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2838 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2839 }
2840 mutex_unlock(&pf->avail_q_mutex);
2841
2842 devm_kfree(dev, vsi->xdp_rings);
2843 vsi->xdp_rings = NULL;
2844
2845 return -ENOMEM;
2846 }
2847
2848 /**
2849 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2850 * @vsi: VSI to remove XDP rings
2851 * @cfg_type: disable XDP permanently or allow it to be restored later
2852 *
2853 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2854 * resources
2855 */
ice_destroy_xdp_rings(struct ice_vsi * vsi,enum ice_xdp_cfg cfg_type)2856 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2857 {
2858 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2859 struct ice_pf *pf = vsi->back;
2860 int i;
2861
2862 /* q_vectors are freed in reset path so there's no point in detaching
2863 * rings
2864 */
2865 if (cfg_type == ICE_XDP_CFG_PART)
2866 goto free_qmap;
2867
2868 ice_unmap_xdp_rings(vsi);
2869
2870 free_qmap:
2871 mutex_lock(&pf->avail_q_mutex);
2872 ice_for_each_xdp_txq(vsi, i) {
2873 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2874 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2875 }
2876 mutex_unlock(&pf->avail_q_mutex);
2877
2878 ice_for_each_xdp_txq(vsi, i)
2879 if (vsi->xdp_rings[i]) {
2880 if (vsi->xdp_rings[i]->desc) {
2881 synchronize_rcu();
2882 ice_free_tx_ring(vsi->xdp_rings[i]);
2883 }
2884 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2885 vsi->xdp_rings[i]->ring_stats = NULL;
2886 kfree_rcu(vsi->xdp_rings[i], rcu);
2887 vsi->xdp_rings[i] = NULL;
2888 }
2889
2890 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2891 vsi->xdp_rings = NULL;
2892
2893 if (static_key_enabled(&ice_xdp_locking_key))
2894 static_branch_dec(&ice_xdp_locking_key);
2895
2896 if (cfg_type == ICE_XDP_CFG_PART)
2897 return 0;
2898
2899 ice_vsi_assign_bpf_prog(vsi, NULL);
2900
2901 /* notify Tx scheduler that we destroyed XDP queues and bring
2902 * back the old number of child nodes
2903 */
2904 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2905 max_txqs[i] = vsi->num_txq;
2906
2907 /* change number of XDP Tx queues to 0 */
2908 vsi->num_xdp_txq = 0;
2909
2910 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2911 max_txqs);
2912 }
2913
2914 /**
2915 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2916 * @vsi: VSI to schedule napi on
2917 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2918 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2919 {
2920 int i;
2921
2922 ice_for_each_rxq(vsi, i) {
2923 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2924
2925 if (READ_ONCE(rx_ring->xsk_pool))
2926 napi_schedule(&rx_ring->q_vector->napi);
2927 }
2928 }
2929
2930 /**
2931 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2932 * @vsi: VSI to determine the count of XDP Tx qs
2933 *
2934 * returns 0 if Tx qs count is higher than at least half of CPU count,
2935 * -ENOMEM otherwise
2936 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2937 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2938 {
2939 u16 avail = ice_get_avail_txq_count(vsi->back);
2940 u16 cpus = num_possible_cpus();
2941
2942 if (avail < cpus / 2)
2943 return -ENOMEM;
2944
2945 if (vsi->type == ICE_VSI_SF)
2946 avail = vsi->alloc_txq;
2947
2948 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2949
2950 if (vsi->num_xdp_txq < cpus)
2951 static_branch_inc(&ice_xdp_locking_key);
2952
2953 return 0;
2954 }
2955
2956 /**
2957 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2958 * @vsi: Pointer to VSI structure
2959 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)2960 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2961 {
2962 return ICE_RXBUF_3072;
2963 }
2964
2965 /**
2966 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2967 * @vsi: VSI to setup XDP for
2968 * @prog: XDP program
2969 * @extack: netlink extended ack
2970 */
2971 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2972 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2973 struct netlink_ext_ack *extack)
2974 {
2975 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2976 int ret = 0, xdp_ring_err = 0;
2977 bool if_running;
2978
2979 if (prog && !prog->aux->xdp_has_frags) {
2980 if (frame_size > ice_max_xdp_frame_size(vsi)) {
2981 NL_SET_ERR_MSG_MOD(extack,
2982 "MTU is too large for linear frames and XDP prog does not support frags");
2983 return -EOPNOTSUPP;
2984 }
2985 }
2986
2987 /* hot swap progs and avoid toggling link */
2988 if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
2989 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
2990 ice_vsi_assign_bpf_prog(vsi, prog);
2991 return 0;
2992 }
2993
2994 if_running = netif_running(vsi->netdev) &&
2995 !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
2996
2997 /* need to stop netdev while setting up the program for Rx rings */
2998 if (if_running) {
2999 ret = ice_down(vsi);
3000 if (ret) {
3001 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3002 return ret;
3003 }
3004 }
3005
3006 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3007 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3008 if (xdp_ring_err) {
3009 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3010 goto resume_if;
3011 } else {
3012 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3013 ICE_XDP_CFG_FULL);
3014 if (xdp_ring_err) {
3015 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3016 goto resume_if;
3017 }
3018 }
3019 xdp_features_set_redirect_target(vsi->netdev, true);
3020 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3021 xdp_features_clear_redirect_target(vsi->netdev);
3022 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3023 if (xdp_ring_err)
3024 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3025 }
3026
3027 resume_if:
3028 if (if_running)
3029 ret = ice_up(vsi);
3030
3031 if (!ret && prog)
3032 ice_vsi_rx_napi_schedule(vsi);
3033
3034 return (ret || xdp_ring_err) ? -ENOMEM : 0;
3035 }
3036
3037 /**
3038 * ice_xdp_safe_mode - XDP handler for safe mode
3039 * @dev: netdevice
3040 * @xdp: XDP command
3041 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)3042 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3043 struct netdev_bpf *xdp)
3044 {
3045 NL_SET_ERR_MSG_MOD(xdp->extack,
3046 "Please provide working DDP firmware package in order to use XDP\n"
3047 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3048 return -EOPNOTSUPP;
3049 }
3050
3051 /**
3052 * ice_xdp - implements XDP handler
3053 * @dev: netdevice
3054 * @xdp: XDP command
3055 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)3056 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3057 {
3058 struct ice_netdev_priv *np = netdev_priv(dev);
3059 struct ice_vsi *vsi = np->vsi;
3060 int ret;
3061
3062 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3063 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3064 return -EINVAL;
3065 }
3066
3067 mutex_lock(&vsi->xdp_state_lock);
3068
3069 switch (xdp->command) {
3070 case XDP_SETUP_PROG:
3071 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3072 break;
3073 case XDP_SETUP_XSK_POOL:
3074 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3075 break;
3076 default:
3077 ret = -EINVAL;
3078 }
3079
3080 mutex_unlock(&vsi->xdp_state_lock);
3081 return ret;
3082 }
3083
3084 /**
3085 * ice_ena_misc_vector - enable the non-queue interrupts
3086 * @pf: board private structure
3087 */
ice_ena_misc_vector(struct ice_pf * pf)3088 static void ice_ena_misc_vector(struct ice_pf *pf)
3089 {
3090 struct ice_hw *hw = &pf->hw;
3091 u32 pf_intr_start_offset;
3092 u32 val;
3093
3094 /* Disable anti-spoof detection interrupt to prevent spurious event
3095 * interrupts during a function reset. Anti-spoof functionally is
3096 * still supported.
3097 */
3098 val = rd32(hw, GL_MDCK_TX_TDPU);
3099 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3100 wr32(hw, GL_MDCK_TX_TDPU, val);
3101
3102 /* clear things first */
3103 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3104 rd32(hw, PFINT_OICR); /* read to clear */
3105
3106 val = (PFINT_OICR_ECC_ERR_M |
3107 PFINT_OICR_MAL_DETECT_M |
3108 PFINT_OICR_GRST_M |
3109 PFINT_OICR_PCI_EXCEPTION_M |
3110 PFINT_OICR_VFLR_M |
3111 PFINT_OICR_HMC_ERR_M |
3112 PFINT_OICR_PE_PUSH_M |
3113 PFINT_OICR_PE_CRITERR_M);
3114
3115 wr32(hw, PFINT_OICR_ENA, val);
3116
3117 /* SW_ITR_IDX = 0, but don't change INTENA */
3118 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3119 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3120
3121 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3122 return;
3123 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3124 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3125 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3126 }
3127
3128 /**
3129 * ice_ll_ts_intr - ll_ts interrupt handler
3130 * @irq: interrupt number
3131 * @data: pointer to a q_vector
3132 */
ice_ll_ts_intr(int __always_unused irq,void * data)3133 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3134 {
3135 struct ice_pf *pf = data;
3136 u32 pf_intr_start_offset;
3137 struct ice_ptp_tx *tx;
3138 unsigned long flags;
3139 struct ice_hw *hw;
3140 u32 val;
3141 u8 idx;
3142
3143 hw = &pf->hw;
3144 tx = &pf->ptp.port.tx;
3145 spin_lock_irqsave(&tx->lock, flags);
3146 if (tx->init) {
3147 ice_ptp_complete_tx_single_tstamp(tx);
3148
3149 idx = find_next_bit_wrap(tx->in_use, tx->len,
3150 tx->last_ll_ts_idx_read + 1);
3151 if (idx != tx->len)
3152 ice_ptp_req_tx_single_tstamp(tx, idx);
3153 }
3154 spin_unlock_irqrestore(&tx->lock, flags);
3155
3156 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3157 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3158 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3159 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3160 val);
3161
3162 return IRQ_HANDLED;
3163 }
3164
3165 /**
3166 * ice_misc_intr - misc interrupt handler
3167 * @irq: interrupt number
3168 * @data: pointer to a q_vector
3169 */
ice_misc_intr(int __always_unused irq,void * data)3170 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3171 {
3172 struct ice_pf *pf = (struct ice_pf *)data;
3173 irqreturn_t ret = IRQ_HANDLED;
3174 struct ice_hw *hw = &pf->hw;
3175 struct device *dev;
3176 u32 oicr, ena_mask;
3177
3178 dev = ice_pf_to_dev(pf);
3179 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3180 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3181 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3182
3183 oicr = rd32(hw, PFINT_OICR);
3184 ena_mask = rd32(hw, PFINT_OICR_ENA);
3185
3186 if (oicr & PFINT_OICR_SWINT_M) {
3187 ena_mask &= ~PFINT_OICR_SWINT_M;
3188 pf->sw_int_count++;
3189 }
3190
3191 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3192 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3193 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3194 }
3195 if (oicr & PFINT_OICR_VFLR_M) {
3196 /* disable any further VFLR event notifications */
3197 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3198 u32 reg = rd32(hw, PFINT_OICR_ENA);
3199
3200 reg &= ~PFINT_OICR_VFLR_M;
3201 wr32(hw, PFINT_OICR_ENA, reg);
3202 } else {
3203 ena_mask &= ~PFINT_OICR_VFLR_M;
3204 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3205 }
3206 }
3207
3208 if (oicr & PFINT_OICR_GRST_M) {
3209 u32 reset;
3210
3211 /* we have a reset warning */
3212 ena_mask &= ~PFINT_OICR_GRST_M;
3213 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3214 rd32(hw, GLGEN_RSTAT));
3215
3216 if (reset == ICE_RESET_CORER)
3217 pf->corer_count++;
3218 else if (reset == ICE_RESET_GLOBR)
3219 pf->globr_count++;
3220 else if (reset == ICE_RESET_EMPR)
3221 pf->empr_count++;
3222 else
3223 dev_dbg(dev, "Invalid reset type %d\n", reset);
3224
3225 /* If a reset cycle isn't already in progress, we set a bit in
3226 * pf->state so that the service task can start a reset/rebuild.
3227 */
3228 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3229 if (reset == ICE_RESET_CORER)
3230 set_bit(ICE_CORER_RECV, pf->state);
3231 else if (reset == ICE_RESET_GLOBR)
3232 set_bit(ICE_GLOBR_RECV, pf->state);
3233 else
3234 set_bit(ICE_EMPR_RECV, pf->state);
3235
3236 /* There are couple of different bits at play here.
3237 * hw->reset_ongoing indicates whether the hardware is
3238 * in reset. This is set to true when a reset interrupt
3239 * is received and set back to false after the driver
3240 * has determined that the hardware is out of reset.
3241 *
3242 * ICE_RESET_OICR_RECV in pf->state indicates
3243 * that a post reset rebuild is required before the
3244 * driver is operational again. This is set above.
3245 *
3246 * As this is the start of the reset/rebuild cycle, set
3247 * both to indicate that.
3248 */
3249 hw->reset_ongoing = true;
3250 }
3251 }
3252
3253 if (oicr & PFINT_OICR_TSYN_TX_M) {
3254 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3255
3256 ret = ice_ptp_ts_irq(pf);
3257 }
3258
3259 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3260 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3261 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3262
3263 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3264
3265 if (ice_pf_src_tmr_owned(pf)) {
3266 /* Save EVENTs from GLTSYN register */
3267 pf->ptp.ext_ts_irq |= gltsyn_stat &
3268 (GLTSYN_STAT_EVENT0_M |
3269 GLTSYN_STAT_EVENT1_M |
3270 GLTSYN_STAT_EVENT2_M);
3271
3272 ice_ptp_extts_event(pf);
3273 }
3274 }
3275
3276 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3277 if (oicr & ICE_AUX_CRIT_ERR) {
3278 pf->oicr_err_reg |= oicr;
3279 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3280 ena_mask &= ~ICE_AUX_CRIT_ERR;
3281 }
3282
3283 /* Report any remaining unexpected interrupts */
3284 oicr &= ena_mask;
3285 if (oicr) {
3286 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3287 /* If a critical error is pending there is no choice but to
3288 * reset the device.
3289 */
3290 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3291 PFINT_OICR_ECC_ERR_M)) {
3292 set_bit(ICE_PFR_REQ, pf->state);
3293 }
3294 }
3295 ice_service_task_schedule(pf);
3296 if (ret == IRQ_HANDLED)
3297 ice_irq_dynamic_ena(hw, NULL, NULL);
3298
3299 return ret;
3300 }
3301
3302 /**
3303 * ice_misc_intr_thread_fn - misc interrupt thread function
3304 * @irq: interrupt number
3305 * @data: pointer to a q_vector
3306 */
ice_misc_intr_thread_fn(int __always_unused irq,void * data)3307 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3308 {
3309 struct ice_pf *pf = data;
3310 struct ice_hw *hw;
3311
3312 hw = &pf->hw;
3313
3314 if (ice_is_reset_in_progress(pf->state))
3315 goto skip_irq;
3316
3317 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3318 /* Process outstanding Tx timestamps. If there is more work,
3319 * re-arm the interrupt to trigger again.
3320 */
3321 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3322 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3323 ice_flush(hw);
3324 }
3325 }
3326
3327 skip_irq:
3328 ice_irq_dynamic_ena(hw, NULL, NULL);
3329
3330 return IRQ_HANDLED;
3331 }
3332
3333 /**
3334 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3335 * @hw: pointer to HW structure
3336 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3337 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3338 {
3339 /* disable Admin queue Interrupt causes */
3340 wr32(hw, PFINT_FW_CTL,
3341 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3342
3343 /* disable Mailbox queue Interrupt causes */
3344 wr32(hw, PFINT_MBX_CTL,
3345 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3346
3347 wr32(hw, PFINT_SB_CTL,
3348 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3349
3350 /* disable Control queue Interrupt causes */
3351 wr32(hw, PFINT_OICR_CTL,
3352 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3353
3354 ice_flush(hw);
3355 }
3356
3357 /**
3358 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3359 * @pf: board private structure
3360 */
ice_free_irq_msix_ll_ts(struct ice_pf * pf)3361 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3362 {
3363 int irq_num = pf->ll_ts_irq.virq;
3364
3365 synchronize_irq(irq_num);
3366 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3367
3368 ice_free_irq(pf, pf->ll_ts_irq);
3369 }
3370
3371 /**
3372 * ice_free_irq_msix_misc - Unroll misc vector setup
3373 * @pf: board private structure
3374 */
ice_free_irq_msix_misc(struct ice_pf * pf)3375 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3376 {
3377 int misc_irq_num = pf->oicr_irq.virq;
3378 struct ice_hw *hw = &pf->hw;
3379
3380 ice_dis_ctrlq_interrupts(hw);
3381
3382 /* disable OICR interrupt */
3383 wr32(hw, PFINT_OICR_ENA, 0);
3384 ice_flush(hw);
3385
3386 synchronize_irq(misc_irq_num);
3387 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3388
3389 ice_free_irq(pf, pf->oicr_irq);
3390 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3391 ice_free_irq_msix_ll_ts(pf);
3392 }
3393
3394 /**
3395 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3396 * @hw: pointer to HW structure
3397 * @reg_idx: HW vector index to associate the control queue interrupts with
3398 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3399 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3400 {
3401 u32 val;
3402
3403 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3404 PFINT_OICR_CTL_CAUSE_ENA_M);
3405 wr32(hw, PFINT_OICR_CTL, val);
3406
3407 /* enable Admin queue Interrupt causes */
3408 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3409 PFINT_FW_CTL_CAUSE_ENA_M);
3410 wr32(hw, PFINT_FW_CTL, val);
3411
3412 /* enable Mailbox queue Interrupt causes */
3413 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3414 PFINT_MBX_CTL_CAUSE_ENA_M);
3415 wr32(hw, PFINT_MBX_CTL, val);
3416
3417 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3418 /* enable Sideband queue Interrupt causes */
3419 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3420 PFINT_SB_CTL_CAUSE_ENA_M);
3421 wr32(hw, PFINT_SB_CTL, val);
3422 }
3423
3424 ice_flush(hw);
3425 }
3426
3427 /**
3428 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3429 * @pf: board private structure
3430 *
3431 * This sets up the handler for MSIX 0, which is used to manage the
3432 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3433 * when in MSI or Legacy interrupt mode.
3434 */
ice_req_irq_msix_misc(struct ice_pf * pf)3435 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3436 {
3437 struct device *dev = ice_pf_to_dev(pf);
3438 struct ice_hw *hw = &pf->hw;
3439 u32 pf_intr_start_offset;
3440 struct msi_map irq;
3441 int err = 0;
3442
3443 if (!pf->int_name[0])
3444 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3445 dev_driver_string(dev), dev_name(dev));
3446
3447 if (!pf->int_name_ll_ts[0])
3448 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3449 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3450 /* Do not request IRQ but do enable OICR interrupt since settings are
3451 * lost during reset. Note that this function is called only during
3452 * rebuild path and not while reset is in progress.
3453 */
3454 if (ice_is_reset_in_progress(pf->state))
3455 goto skip_req_irq;
3456
3457 /* reserve one vector in irq_tracker for misc interrupts */
3458 irq = ice_alloc_irq(pf, false);
3459 if (irq.index < 0)
3460 return irq.index;
3461
3462 pf->oicr_irq = irq;
3463 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3464 ice_misc_intr_thread_fn, 0,
3465 pf->int_name, pf);
3466 if (err) {
3467 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3468 pf->int_name, err);
3469 ice_free_irq(pf, pf->oicr_irq);
3470 return err;
3471 }
3472
3473 /* reserve one vector in irq_tracker for ll_ts interrupt */
3474 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3475 goto skip_req_irq;
3476
3477 irq = ice_alloc_irq(pf, false);
3478 if (irq.index < 0)
3479 return irq.index;
3480
3481 pf->ll_ts_irq = irq;
3482 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3483 pf->int_name_ll_ts, pf);
3484 if (err) {
3485 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3486 pf->int_name_ll_ts, err);
3487 ice_free_irq(pf, pf->ll_ts_irq);
3488 return err;
3489 }
3490
3491 skip_req_irq:
3492 ice_ena_misc_vector(pf);
3493
3494 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3495 /* This enables LL TS interrupt */
3496 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3497 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3498 wr32(hw, PFINT_SB_CTL,
3499 ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3500 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3501 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3502 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3503
3504 ice_flush(hw);
3505 ice_irq_dynamic_ena(hw, NULL, NULL);
3506
3507 return 0;
3508 }
3509
3510 /**
3511 * ice_set_ops - set netdev and ethtools ops for the given netdev
3512 * @vsi: the VSI associated with the new netdev
3513 */
ice_set_ops(struct ice_vsi * vsi)3514 static void ice_set_ops(struct ice_vsi *vsi)
3515 {
3516 struct net_device *netdev = vsi->netdev;
3517 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3518
3519 if (ice_is_safe_mode(pf)) {
3520 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3521 ice_set_ethtool_safe_mode_ops(netdev);
3522 return;
3523 }
3524
3525 netdev->netdev_ops = &ice_netdev_ops;
3526 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3527 netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3528 ice_set_ethtool_ops(netdev);
3529
3530 if (vsi->type != ICE_VSI_PF)
3531 return;
3532
3533 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3534 NETDEV_XDP_ACT_XSK_ZEROCOPY |
3535 NETDEV_XDP_ACT_RX_SG;
3536 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3537 }
3538
3539 /**
3540 * ice_set_netdev_features - set features for the given netdev
3541 * @netdev: netdev instance
3542 */
ice_set_netdev_features(struct net_device * netdev)3543 void ice_set_netdev_features(struct net_device *netdev)
3544 {
3545 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3546 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3547 netdev_features_t csumo_features;
3548 netdev_features_t vlano_features;
3549 netdev_features_t dflt_features;
3550 netdev_features_t tso_features;
3551
3552 if (ice_is_safe_mode(pf)) {
3553 /* safe mode */
3554 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3555 netdev->hw_features = netdev->features;
3556 return;
3557 }
3558
3559 dflt_features = NETIF_F_SG |
3560 NETIF_F_HIGHDMA |
3561 NETIF_F_NTUPLE |
3562 NETIF_F_RXHASH;
3563
3564 csumo_features = NETIF_F_RXCSUM |
3565 NETIF_F_IP_CSUM |
3566 NETIF_F_SCTP_CRC |
3567 NETIF_F_IPV6_CSUM;
3568
3569 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3570 NETIF_F_HW_VLAN_CTAG_TX |
3571 NETIF_F_HW_VLAN_CTAG_RX;
3572
3573 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3574 if (is_dvm_ena)
3575 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3576
3577 tso_features = NETIF_F_TSO |
3578 NETIF_F_TSO_ECN |
3579 NETIF_F_TSO6 |
3580 NETIF_F_GSO_GRE |
3581 NETIF_F_GSO_UDP_TUNNEL |
3582 NETIF_F_GSO_GRE_CSUM |
3583 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3584 NETIF_F_GSO_PARTIAL |
3585 NETIF_F_GSO_IPXIP4 |
3586 NETIF_F_GSO_IPXIP6 |
3587 NETIF_F_GSO_UDP_L4;
3588
3589 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3590 NETIF_F_GSO_GRE_CSUM;
3591 /* set features that user can change */
3592 netdev->hw_features = dflt_features | csumo_features |
3593 vlano_features | tso_features;
3594
3595 /* add support for HW_CSUM on packets with MPLS header */
3596 netdev->mpls_features = NETIF_F_HW_CSUM |
3597 NETIF_F_TSO |
3598 NETIF_F_TSO6;
3599
3600 /* enable features */
3601 netdev->features |= netdev->hw_features;
3602
3603 netdev->hw_features |= NETIF_F_HW_TC;
3604 netdev->hw_features |= NETIF_F_LOOPBACK;
3605
3606 /* encap and VLAN devices inherit default, csumo and tso features */
3607 netdev->hw_enc_features |= dflt_features | csumo_features |
3608 tso_features;
3609 netdev->vlan_features |= dflt_features | csumo_features |
3610 tso_features;
3611
3612 /* advertise support but don't enable by default since only one type of
3613 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3614 * type turns on the other has to be turned off. This is enforced by the
3615 * ice_fix_features() ndo callback.
3616 */
3617 if (is_dvm_ena)
3618 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3619 NETIF_F_HW_VLAN_STAG_TX;
3620
3621 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3622 * be changed at runtime
3623 */
3624 netdev->hw_features |= NETIF_F_RXFCS;
3625
3626 /* Allow core to manage IRQs affinity */
3627 netif_set_affinity_auto(netdev);
3628
3629 /* Mutual exclusivity for TSO and GCS is enforced by the set features
3630 * ndo callback.
3631 */
3632 if (ice_is_feature_supported(pf, ICE_F_GCS))
3633 netdev->hw_features |= NETIF_F_HW_CSUM;
3634
3635 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3636 }
3637
3638 /**
3639 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3640 * @lut: Lookup table
3641 * @rss_table_size: Lookup table size
3642 * @rss_size: Range of queue number for hashing
3643 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3644 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3645 {
3646 u16 i;
3647
3648 for (i = 0; i < rss_table_size; i++)
3649 lut[i] = i % rss_size;
3650 }
3651
3652 /**
3653 * ice_pf_vsi_setup - Set up a PF VSI
3654 * @pf: board private structure
3655 * @pi: pointer to the port_info instance
3656 *
3657 * Returns pointer to the successfully allocated VSI software struct
3658 * on success, otherwise returns NULL on failure.
3659 */
3660 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3661 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3662 {
3663 struct ice_vsi_cfg_params params = {};
3664
3665 params.type = ICE_VSI_PF;
3666 params.port_info = pi;
3667 params.flags = ICE_VSI_FLAG_INIT;
3668
3669 return ice_vsi_setup(pf, ¶ms);
3670 }
3671
3672 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3673 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3674 struct ice_channel *ch)
3675 {
3676 struct ice_vsi_cfg_params params = {};
3677
3678 params.type = ICE_VSI_CHNL;
3679 params.port_info = pi;
3680 params.ch = ch;
3681 params.flags = ICE_VSI_FLAG_INIT;
3682
3683 return ice_vsi_setup(pf, ¶ms);
3684 }
3685
3686 /**
3687 * ice_ctrl_vsi_setup - Set up a control VSI
3688 * @pf: board private structure
3689 * @pi: pointer to the port_info instance
3690 *
3691 * Returns pointer to the successfully allocated VSI software struct
3692 * on success, otherwise returns NULL on failure.
3693 */
3694 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3695 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3696 {
3697 struct ice_vsi_cfg_params params = {};
3698
3699 params.type = ICE_VSI_CTRL;
3700 params.port_info = pi;
3701 params.flags = ICE_VSI_FLAG_INIT;
3702
3703 return ice_vsi_setup(pf, ¶ms);
3704 }
3705
3706 /**
3707 * ice_lb_vsi_setup - Set up a loopback VSI
3708 * @pf: board private structure
3709 * @pi: pointer to the port_info instance
3710 *
3711 * Returns pointer to the successfully allocated VSI software struct
3712 * on success, otherwise returns NULL on failure.
3713 */
3714 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3715 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3716 {
3717 struct ice_vsi_cfg_params params = {};
3718
3719 params.type = ICE_VSI_LB;
3720 params.port_info = pi;
3721 params.flags = ICE_VSI_FLAG_INIT;
3722
3723 return ice_vsi_setup(pf, ¶ms);
3724 }
3725
3726 /**
3727 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3728 * @netdev: network interface to be adjusted
3729 * @proto: VLAN TPID
3730 * @vid: VLAN ID to be added
3731 *
3732 * net_device_ops implementation for adding VLAN IDs
3733 */
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3734 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3735 {
3736 struct ice_netdev_priv *np = netdev_priv(netdev);
3737 struct ice_vsi_vlan_ops *vlan_ops;
3738 struct ice_vsi *vsi = np->vsi;
3739 struct ice_vlan vlan;
3740 int ret;
3741
3742 /* VLAN 0 is added by default during load/reset */
3743 if (!vid)
3744 return 0;
3745
3746 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3747 usleep_range(1000, 2000);
3748
3749 /* Add multicast promisc rule for the VLAN ID to be added if
3750 * all-multicast is currently enabled.
3751 */
3752 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3753 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3754 ICE_MCAST_VLAN_PROMISC_BITS,
3755 vid);
3756 if (ret)
3757 goto finish;
3758 }
3759
3760 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3761
3762 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3763 * packets aren't pruned by the device's internal switch on Rx
3764 */
3765 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3766 ret = vlan_ops->add_vlan(vsi, &vlan);
3767 if (ret)
3768 goto finish;
3769
3770 /* If all-multicast is currently enabled and this VLAN ID is only one
3771 * besides VLAN-0 we have to update look-up type of multicast promisc
3772 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3773 */
3774 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3775 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3776 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3777 ICE_MCAST_PROMISC_BITS, 0);
3778 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3779 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3780 }
3781
3782 finish:
3783 clear_bit(ICE_CFG_BUSY, vsi->state);
3784
3785 return ret;
3786 }
3787
3788 /**
3789 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3790 * @netdev: network interface to be adjusted
3791 * @proto: VLAN TPID
3792 * @vid: VLAN ID to be removed
3793 *
3794 * net_device_ops implementation for removing VLAN IDs
3795 */
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3796 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3797 {
3798 struct ice_netdev_priv *np = netdev_priv(netdev);
3799 struct ice_vsi_vlan_ops *vlan_ops;
3800 struct ice_vsi *vsi = np->vsi;
3801 struct ice_vlan vlan;
3802 int ret;
3803
3804 /* don't allow removal of VLAN 0 */
3805 if (!vid)
3806 return 0;
3807
3808 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3809 usleep_range(1000, 2000);
3810
3811 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3812 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3813 if (ret) {
3814 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3815 vsi->vsi_num);
3816 vsi->current_netdev_flags |= IFF_ALLMULTI;
3817 }
3818
3819 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3820
3821 /* Make sure VLAN delete is successful before updating VLAN
3822 * information
3823 */
3824 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3825 ret = vlan_ops->del_vlan(vsi, &vlan);
3826 if (ret)
3827 goto finish;
3828
3829 /* Remove multicast promisc rule for the removed VLAN ID if
3830 * all-multicast is enabled.
3831 */
3832 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3833 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3834 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3835
3836 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3837 /* Update look-up type of multicast promisc rule for VLAN 0
3838 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3839 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3840 */
3841 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3842 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3843 ICE_MCAST_VLAN_PROMISC_BITS,
3844 0);
3845 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3846 ICE_MCAST_PROMISC_BITS, 0);
3847 }
3848 }
3849
3850 finish:
3851 clear_bit(ICE_CFG_BUSY, vsi->state);
3852
3853 return ret;
3854 }
3855
3856 /**
3857 * ice_rep_indr_tc_block_unbind
3858 * @cb_priv: indirection block private data
3859 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3860 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3861 {
3862 struct ice_indr_block_priv *indr_priv = cb_priv;
3863
3864 list_del(&indr_priv->list);
3865 kfree(indr_priv);
3866 }
3867
3868 /**
3869 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3870 * @vsi: VSI struct which has the netdev
3871 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3872 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3873 {
3874 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3875
3876 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3877 ice_rep_indr_tc_block_unbind);
3878 }
3879
3880 /**
3881 * ice_tc_indir_block_register - Register TC indirect block notifications
3882 * @vsi: VSI struct which has the netdev
3883 *
3884 * Returns 0 on success, negative value on failure
3885 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3886 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3887 {
3888 struct ice_netdev_priv *np;
3889
3890 if (!vsi || !vsi->netdev)
3891 return -EINVAL;
3892
3893 np = netdev_priv(vsi->netdev);
3894
3895 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3896 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3897 }
3898
3899 /**
3900 * ice_get_avail_q_count - Get count of queues in use
3901 * @pf_qmap: bitmap to get queue use count from
3902 * @lock: pointer to a mutex that protects access to pf_qmap
3903 * @size: size of the bitmap
3904 */
3905 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3906 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3907 {
3908 unsigned long bit;
3909 u16 count = 0;
3910
3911 mutex_lock(lock);
3912 for_each_clear_bit(bit, pf_qmap, size)
3913 count++;
3914 mutex_unlock(lock);
3915
3916 return count;
3917 }
3918
3919 /**
3920 * ice_get_avail_txq_count - Get count of Tx queues in use
3921 * @pf: pointer to an ice_pf instance
3922 */
ice_get_avail_txq_count(struct ice_pf * pf)3923 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3924 {
3925 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3926 pf->max_pf_txqs);
3927 }
3928
3929 /**
3930 * ice_get_avail_rxq_count - Get count of Rx queues in use
3931 * @pf: pointer to an ice_pf instance
3932 */
ice_get_avail_rxq_count(struct ice_pf * pf)3933 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3934 {
3935 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3936 pf->max_pf_rxqs);
3937 }
3938
3939 /**
3940 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3941 * @pf: board private structure to initialize
3942 */
ice_deinit_pf(struct ice_pf * pf)3943 void ice_deinit_pf(struct ice_pf *pf)
3944 {
3945 /* note that we unroll also on ice_init_pf() failure here */
3946
3947 mutex_destroy(&pf->lag_mutex);
3948 mutex_destroy(&pf->adev_mutex);
3949 mutex_destroy(&pf->sw_mutex);
3950 mutex_destroy(&pf->tc_mutex);
3951 mutex_destroy(&pf->avail_q_mutex);
3952 mutex_destroy(&pf->vfs.table_lock);
3953
3954 if (pf->avail_txqs) {
3955 bitmap_free(pf->avail_txqs);
3956 pf->avail_txqs = NULL;
3957 }
3958
3959 if (pf->avail_rxqs) {
3960 bitmap_free(pf->avail_rxqs);
3961 pf->avail_rxqs = NULL;
3962 }
3963
3964 if (pf->txtime_txqs) {
3965 bitmap_free(pf->txtime_txqs);
3966 pf->txtime_txqs = NULL;
3967 }
3968
3969 if (pf->ptp.clock)
3970 ptp_clock_unregister(pf->ptp.clock);
3971
3972 if (!xa_empty(&pf->irq_tracker.entries))
3973 ice_free_irq_msix_misc(pf);
3974
3975 xa_destroy(&pf->dyn_ports);
3976 xa_destroy(&pf->sf_nums);
3977 }
3978
3979 /**
3980 * ice_set_pf_caps - set PFs capability flags
3981 * @pf: pointer to the PF instance
3982 */
ice_set_pf_caps(struct ice_pf * pf)3983 static void ice_set_pf_caps(struct ice_pf *pf)
3984 {
3985 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3986
3987 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3988 if (func_caps->common_cap.rdma)
3989 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3990 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3991 if (func_caps->common_cap.dcb)
3992 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3993 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3994 if (func_caps->common_cap.sr_iov_1_1) {
3995 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3996 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3997 ICE_MAX_SRIOV_VFS);
3998 }
3999 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4000 if (func_caps->common_cap.rss_table_size)
4001 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4002
4003 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4004 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4005 u16 unused;
4006
4007 /* ctrl_vsi_idx will be set to a valid value when flow director
4008 * is setup by ice_init_fdir
4009 */
4010 pf->ctrl_vsi_idx = ICE_NO_VSI;
4011 set_bit(ICE_FLAG_FD_ENA, pf->flags);
4012 /* force guaranteed filter pool for PF */
4013 ice_alloc_fd_guar_item(&pf->hw, &unused,
4014 func_caps->fd_fltr_guar);
4015 /* force shared filter pool for PF */
4016 ice_alloc_fd_shrd_item(&pf->hw, &unused,
4017 func_caps->fd_fltr_best_effort);
4018 }
4019
4020 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4021 if (func_caps->common_cap.ieee_1588)
4022 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4023
4024 pf->max_pf_txqs = func_caps->common_cap.num_txq;
4025 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4026 }
4027
ice_start_service_task(struct ice_pf * pf)4028 void ice_start_service_task(struct ice_pf *pf)
4029 {
4030 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4031 pf->serv_tmr_period = HZ;
4032 INIT_WORK(&pf->serv_task, ice_service_task);
4033 clear_bit(ICE_SERVICE_SCHED, pf->state);
4034 }
4035
4036 /**
4037 * ice_init_pf - Initialize general software structures (struct ice_pf)
4038 * @pf: board private structure to initialize
4039 * Return: 0 on success, negative errno otherwise.
4040 */
ice_init_pf(struct ice_pf * pf)4041 int ice_init_pf(struct ice_pf *pf)
4042 {
4043 struct udp_tunnel_nic_info *udp_tunnel_nic = &pf->hw.udp_tunnel_nic;
4044 struct device *dev = ice_pf_to_dev(pf);
4045 struct ice_hw *hw = &pf->hw;
4046 int err = -ENOMEM;
4047
4048 mutex_init(&pf->sw_mutex);
4049 mutex_init(&pf->tc_mutex);
4050 mutex_init(&pf->adev_mutex);
4051 mutex_init(&pf->lag_mutex);
4052
4053 INIT_HLIST_HEAD(&pf->aq_wait_list);
4054 spin_lock_init(&pf->aq_wait_lock);
4055 init_waitqueue_head(&pf->aq_wait_queue);
4056
4057 init_waitqueue_head(&pf->reset_wait_queue);
4058
4059 mutex_init(&pf->avail_q_mutex);
4060
4061 mutex_init(&pf->vfs.table_lock);
4062 hash_init(pf->vfs.table);
4063 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4064 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4065 ICE_MBX_OVERFLOW_WATERMARK);
4066 else
4067 ice_mbx_init_snapshot(&pf->hw);
4068
4069 xa_init(&pf->dyn_ports);
4070 xa_init(&pf->sf_nums);
4071
4072 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4073 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4074 pf->txtime_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4075 if (!pf->avail_txqs || !pf->avail_rxqs || !pf->txtime_txqs)
4076 goto undo_init;
4077
4078 udp_tunnel_nic->set_port = ice_udp_tunnel_set_port;
4079 udp_tunnel_nic->unset_port = ice_udp_tunnel_unset_port;
4080 udp_tunnel_nic->shared = &hw->udp_tunnel_shared;
4081 udp_tunnel_nic->tables[0].n_entries = hw->tnl.valid_count[TNL_VXLAN];
4082 udp_tunnel_nic->tables[0].tunnel_types = UDP_TUNNEL_TYPE_VXLAN;
4083 udp_tunnel_nic->tables[1].n_entries = hw->tnl.valid_count[TNL_GENEVE];
4084 udp_tunnel_nic->tables[1].tunnel_types = UDP_TUNNEL_TYPE_GENEVE;
4085
4086 /* In case of MSIX we are going to setup the misc vector right here
4087 * to handle admin queue events etc. In case of legacy and MSI
4088 * the misc functionality and queue processing is combined in
4089 * the same vector and that gets setup at open.
4090 */
4091 err = ice_req_irq_msix_misc(pf);
4092 if (err) {
4093 dev_err(dev, "setup of misc vector failed: %d\n", err);
4094 goto undo_init;
4095 }
4096
4097 return 0;
4098 undo_init:
4099 /* deinit handles half-initialized pf just fine */
4100 ice_deinit_pf(pf);
4101 return err;
4102 }
4103
4104 /**
4105 * ice_is_wol_supported - check if WoL is supported
4106 * @hw: pointer to hardware info
4107 *
4108 * Check if WoL is supported based on the HW configuration.
4109 * Returns true if NVM supports and enables WoL for this port, false otherwise
4110 */
ice_is_wol_supported(struct ice_hw * hw)4111 bool ice_is_wol_supported(struct ice_hw *hw)
4112 {
4113 u16 wol_ctrl;
4114
4115 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4116 * word) indicates WoL is not supported on the corresponding PF ID.
4117 */
4118 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4119 return false;
4120
4121 return !(BIT(hw->port_info->lport) & wol_ctrl);
4122 }
4123
4124 /**
4125 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4126 * @vsi: VSI being changed
4127 * @new_rx: new number of Rx queues
4128 * @new_tx: new number of Tx queues
4129 * @locked: is adev device_lock held
4130 *
4131 * Only change the number of queues if new_tx, or new_rx is non-0.
4132 *
4133 * Returns 0 on success.
4134 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx,bool locked)4135 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4136 {
4137 struct ice_pf *pf = vsi->back;
4138 int i, err = 0, timeout = 50;
4139
4140 if (!new_rx && !new_tx)
4141 return -EINVAL;
4142
4143 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4144 timeout--;
4145 if (!timeout)
4146 return -EBUSY;
4147 usleep_range(1000, 2000);
4148 }
4149
4150 if (new_tx)
4151 vsi->req_txq = (u16)new_tx;
4152 if (new_rx)
4153 vsi->req_rxq = (u16)new_rx;
4154
4155 /* set for the next time the netdev is started */
4156 if (!netif_running(vsi->netdev)) {
4157 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4158 if (err)
4159 goto rebuild_err;
4160 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4161 goto done;
4162 }
4163
4164 ice_vsi_close(vsi);
4165 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4166 if (err)
4167 goto rebuild_err;
4168
4169 ice_for_each_traffic_class(i) {
4170 if (vsi->tc_cfg.ena_tc & BIT(i))
4171 netdev_set_tc_queue(vsi->netdev,
4172 vsi->tc_cfg.tc_info[i].netdev_tc,
4173 vsi->tc_cfg.tc_info[i].qcount_tx,
4174 vsi->tc_cfg.tc_info[i].qoffset);
4175 }
4176 ice_pf_dcb_recfg(pf, locked);
4177 ice_vsi_open(vsi);
4178 goto done;
4179
4180 rebuild_err:
4181 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4182 err);
4183 done:
4184 clear_bit(ICE_CFG_BUSY, pf->state);
4185 return err;
4186 }
4187
4188 /**
4189 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4190 * @pf: PF to configure
4191 *
4192 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4193 * VSI can still Tx/Rx VLAN tagged packets.
4194 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4195 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4196 {
4197 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4198 struct ice_vsi_ctx *ctxt;
4199 struct ice_hw *hw;
4200 int status;
4201
4202 if (!vsi)
4203 return;
4204
4205 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4206 if (!ctxt)
4207 return;
4208
4209 hw = &pf->hw;
4210 ctxt->info = vsi->info;
4211
4212 ctxt->info.valid_sections =
4213 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4214 ICE_AQ_VSI_PROP_SECURITY_VALID |
4215 ICE_AQ_VSI_PROP_SW_VALID);
4216
4217 /* disable VLAN anti-spoof */
4218 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4219 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4220
4221 /* disable VLAN pruning and keep all other settings */
4222 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4223
4224 /* allow all VLANs on Tx and don't strip on Rx */
4225 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4226 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4227
4228 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4229 if (status) {
4230 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4231 status, libie_aq_str(hw->adminq.sq_last_status));
4232 } else {
4233 vsi->info.sec_flags = ctxt->info.sec_flags;
4234 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4235 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4236 }
4237
4238 kfree(ctxt);
4239 }
4240
4241 /**
4242 * ice_log_pkg_init - log result of DDP package load
4243 * @hw: pointer to hardware info
4244 * @state: state of package load
4245 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4246 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4247 {
4248 struct ice_pf *pf = hw->back;
4249 struct device *dev;
4250
4251 dev = ice_pf_to_dev(pf);
4252
4253 switch (state) {
4254 case ICE_DDP_PKG_SUCCESS:
4255 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4256 hw->active_pkg_name,
4257 hw->active_pkg_ver.major,
4258 hw->active_pkg_ver.minor,
4259 hw->active_pkg_ver.update,
4260 hw->active_pkg_ver.draft);
4261 break;
4262 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4263 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4264 hw->active_pkg_name,
4265 hw->active_pkg_ver.major,
4266 hw->active_pkg_ver.minor,
4267 hw->active_pkg_ver.update,
4268 hw->active_pkg_ver.draft);
4269 break;
4270 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4271 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4272 hw->active_pkg_name,
4273 hw->active_pkg_ver.major,
4274 hw->active_pkg_ver.minor,
4275 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4276 break;
4277 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4278 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4279 hw->active_pkg_name,
4280 hw->active_pkg_ver.major,
4281 hw->active_pkg_ver.minor,
4282 hw->active_pkg_ver.update,
4283 hw->active_pkg_ver.draft,
4284 hw->pkg_name,
4285 hw->pkg_ver.major,
4286 hw->pkg_ver.minor,
4287 hw->pkg_ver.update,
4288 hw->pkg_ver.draft);
4289 break;
4290 case ICE_DDP_PKG_FW_MISMATCH:
4291 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4292 break;
4293 case ICE_DDP_PKG_INVALID_FILE:
4294 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4295 break;
4296 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4297 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4298 break;
4299 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4300 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4301 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4302 break;
4303 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4304 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4305 break;
4306 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4307 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4308 break;
4309 case ICE_DDP_PKG_LOAD_ERROR:
4310 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4311 /* poll for reset to complete */
4312 if (ice_check_reset(hw))
4313 dev_err(dev, "Error resetting device. Please reload the driver\n");
4314 break;
4315 case ICE_DDP_PKG_ERR:
4316 default:
4317 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4318 break;
4319 }
4320 }
4321
4322 /**
4323 * ice_load_pkg - load/reload the DDP Package file
4324 * @firmware: firmware structure when firmware requested or NULL for reload
4325 * @pf: pointer to the PF instance
4326 *
4327 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4328 * initialize HW tables.
4329 */
4330 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4331 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4332 {
4333 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4334 struct device *dev = ice_pf_to_dev(pf);
4335 struct ice_hw *hw = &pf->hw;
4336
4337 /* Load DDP Package */
4338 if (firmware && !hw->pkg_copy) {
4339 state = ice_copy_and_init_pkg(hw, firmware->data,
4340 firmware->size);
4341 ice_log_pkg_init(hw, state);
4342 } else if (!firmware && hw->pkg_copy) {
4343 /* Reload package during rebuild after CORER/GLOBR reset */
4344 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4345 ice_log_pkg_init(hw, state);
4346 } else {
4347 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4348 }
4349
4350 if (!ice_is_init_pkg_successful(state)) {
4351 /* Safe Mode */
4352 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4353 return;
4354 }
4355
4356 /* Successful download package is the precondition for advanced
4357 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4358 */
4359 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4360 }
4361
4362 /**
4363 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4364 * @pf: pointer to the PF structure
4365 *
4366 * There is no error returned here because the driver should be able to handle
4367 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4368 * specifically with Tx.
4369 */
ice_verify_cacheline_size(struct ice_pf * pf)4370 static void ice_verify_cacheline_size(struct ice_pf *pf)
4371 {
4372 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4373 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4374 ICE_CACHE_LINE_BYTES);
4375 }
4376
4377 /**
4378 * ice_send_version - update firmware with driver version
4379 * @pf: PF struct
4380 *
4381 * Returns 0 on success, else error code
4382 */
ice_send_version(struct ice_pf * pf)4383 static int ice_send_version(struct ice_pf *pf)
4384 {
4385 struct ice_driver_ver dv;
4386
4387 dv.major_ver = 0xff;
4388 dv.minor_ver = 0xff;
4389 dv.build_ver = 0xff;
4390 dv.subbuild_ver = 0;
4391 strscpy((char *)dv.driver_string, UTS_RELEASE,
4392 sizeof(dv.driver_string));
4393 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4394 }
4395
4396 /**
4397 * ice_init_fdir - Initialize flow director VSI and configuration
4398 * @pf: pointer to the PF instance
4399 *
4400 * returns 0 on success, negative on error
4401 */
ice_init_fdir(struct ice_pf * pf)4402 static int ice_init_fdir(struct ice_pf *pf)
4403 {
4404 struct device *dev = ice_pf_to_dev(pf);
4405 struct ice_vsi *ctrl_vsi;
4406 int err;
4407
4408 /* Side Band Flow Director needs to have a control VSI.
4409 * Allocate it and store it in the PF.
4410 */
4411 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4412 if (!ctrl_vsi) {
4413 dev_dbg(dev, "could not create control VSI\n");
4414 return -ENOMEM;
4415 }
4416
4417 err = ice_vsi_open_ctrl(ctrl_vsi);
4418 if (err) {
4419 dev_dbg(dev, "could not open control VSI\n");
4420 goto err_vsi_open;
4421 }
4422
4423 mutex_init(&pf->hw.fdir_fltr_lock);
4424
4425 err = ice_fdir_create_dflt_rules(pf);
4426 if (err)
4427 goto err_fdir_rule;
4428
4429 return 0;
4430
4431 err_fdir_rule:
4432 ice_fdir_release_flows(&pf->hw);
4433 ice_vsi_close(ctrl_vsi);
4434 err_vsi_open:
4435 ice_vsi_release(ctrl_vsi);
4436 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4437 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4438 pf->ctrl_vsi_idx = ICE_NO_VSI;
4439 }
4440 return err;
4441 }
4442
ice_deinit_fdir(struct ice_pf * pf)4443 static void ice_deinit_fdir(struct ice_pf *pf)
4444 {
4445 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4446
4447 if (!vsi)
4448 return;
4449
4450 ice_vsi_manage_fdir(vsi, false);
4451 ice_vsi_release(vsi);
4452 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4453 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4454 pf->ctrl_vsi_idx = ICE_NO_VSI;
4455 }
4456
4457 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4458 }
4459
4460 /**
4461 * ice_get_opt_fw_name - return optional firmware file name or NULL
4462 * @pf: pointer to the PF instance
4463 */
ice_get_opt_fw_name(struct ice_pf * pf)4464 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4465 {
4466 /* Optional firmware name same as default with additional dash
4467 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4468 */
4469 struct pci_dev *pdev = pf->pdev;
4470 char *opt_fw_filename;
4471 u64 dsn;
4472
4473 /* Determine the name of the optional file using the DSN (two
4474 * dwords following the start of the DSN Capability).
4475 */
4476 dsn = pci_get_dsn(pdev);
4477 if (!dsn)
4478 return NULL;
4479
4480 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4481 if (!opt_fw_filename)
4482 return NULL;
4483
4484 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4485 ICE_DDP_PKG_PATH, dsn);
4486
4487 return opt_fw_filename;
4488 }
4489
4490 /**
4491 * ice_request_fw - Device initialization routine
4492 * @pf: pointer to the PF instance
4493 * @firmware: double pointer to firmware struct
4494 *
4495 * Return: zero when successful, negative values otherwise.
4496 */
ice_request_fw(struct ice_pf * pf,const struct firmware ** firmware)4497 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4498 {
4499 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4500 struct device *dev = ice_pf_to_dev(pf);
4501 int err = 0;
4502
4503 /* optional device-specific DDP (if present) overrides the default DDP
4504 * package file. kernel logs a debug message if the file doesn't exist,
4505 * and warning messages for other errors.
4506 */
4507 if (opt_fw_filename) {
4508 err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4509 kfree(opt_fw_filename);
4510 if (!err)
4511 return err;
4512 }
4513 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4514 if (err)
4515 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4516
4517 return err;
4518 }
4519
4520 /**
4521 * ice_init_tx_topology - performs Tx topology initialization
4522 * @hw: pointer to the hardware structure
4523 * @firmware: pointer to firmware structure
4524 *
4525 * Return: zero when init was successful, negative values otherwise.
4526 */
4527 static int
ice_init_tx_topology(struct ice_hw * hw,const struct firmware * firmware)4528 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4529 {
4530 u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4531 struct ice_pf *pf = hw->back;
4532 struct device *dev;
4533 int err;
4534
4535 dev = ice_pf_to_dev(pf);
4536 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4537 if (!err) {
4538 if (hw->num_tx_sched_layers > num_tx_sched_layers)
4539 dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4540 else
4541 dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4542 return 0;
4543 } else if (err == -ENODEV) {
4544 /* If we failed to re-initialize the device, we can no longer
4545 * continue loading.
4546 */
4547 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n");
4548 return err;
4549 } else if (err == -EIO) {
4550 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4551 return 0;
4552 } else if (err == -EEXIST) {
4553 return 0;
4554 }
4555
4556 /* Do not treat this as a fatal error. */
4557 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n",
4558 ERR_PTR(err));
4559 return 0;
4560 }
4561
4562 /**
4563 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4564 * @hw: pointer to the hardware structure
4565 * @pf: pointer to pf structure
4566 *
4567 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4568 * formats the PF hardware supports. The exact list of supported RXDIDs
4569 * depends on the loaded DDP package. The IDs can be determined by reading the
4570 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4571 *
4572 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4573 * in the DDP package. The 16-byte legacy descriptor is never supported by
4574 * VFs.
4575 */
ice_init_supported_rxdids(struct ice_hw * hw,struct ice_pf * pf)4576 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4577 {
4578 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4579
4580 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4581 u32 regval;
4582
4583 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4584 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4585 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4586 pf->supported_rxdids |= BIT(i);
4587 }
4588 }
4589
4590 /**
4591 * ice_init_ddp_config - DDP related configuration
4592 * @hw: pointer to the hardware structure
4593 * @pf: pointer to pf structure
4594 *
4595 * This function loads DDP file from the disk, then initializes Tx
4596 * topology. At the end DDP package is loaded on the card.
4597 *
4598 * Return: zero when init was successful, negative values otherwise.
4599 */
ice_init_ddp_config(struct ice_hw * hw,struct ice_pf * pf)4600 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4601 {
4602 struct device *dev = ice_pf_to_dev(pf);
4603 const struct firmware *firmware = NULL;
4604 int err;
4605
4606 err = ice_request_fw(pf, &firmware);
4607 if (err) {
4608 dev_err(dev, "Fail during requesting FW: %d\n", err);
4609 return err;
4610 }
4611
4612 err = ice_init_tx_topology(hw, firmware);
4613 if (err) {
4614 dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4615 err);
4616 release_firmware(firmware);
4617 return err;
4618 }
4619
4620 /* Download firmware to device */
4621 ice_load_pkg(firmware, pf);
4622 release_firmware(firmware);
4623
4624 /* Initialize the supported Rx descriptor IDs after loading DDP */
4625 ice_init_supported_rxdids(hw, pf);
4626
4627 return 0;
4628 }
4629
4630 /**
4631 * ice_print_wake_reason - show the wake up cause in the log
4632 * @pf: pointer to the PF struct
4633 */
ice_print_wake_reason(struct ice_pf * pf)4634 static void ice_print_wake_reason(struct ice_pf *pf)
4635 {
4636 u32 wus = pf->wakeup_reason;
4637 const char *wake_str;
4638
4639 /* if no wake event, nothing to print */
4640 if (!wus)
4641 return;
4642
4643 if (wus & PFPM_WUS_LNKC_M)
4644 wake_str = "Link\n";
4645 else if (wus & PFPM_WUS_MAG_M)
4646 wake_str = "Magic Packet\n";
4647 else if (wus & PFPM_WUS_MNG_M)
4648 wake_str = "Management\n";
4649 else if (wus & PFPM_WUS_FW_RST_WK_M)
4650 wake_str = "Firmware Reset\n";
4651 else
4652 wake_str = "Unknown\n";
4653
4654 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4655 }
4656
4657 /**
4658 * ice_register_netdev - register netdev
4659 * @vsi: pointer to the VSI struct
4660 */
ice_register_netdev(struct ice_vsi * vsi)4661 static int ice_register_netdev(struct ice_vsi *vsi)
4662 {
4663 int err;
4664
4665 if (!vsi || !vsi->netdev)
4666 return -EIO;
4667
4668 err = register_netdev(vsi->netdev);
4669 if (err)
4670 return err;
4671
4672 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4673 netif_carrier_off(vsi->netdev);
4674 netif_tx_stop_all_queues(vsi->netdev);
4675
4676 return 0;
4677 }
4678
ice_unregister_netdev(struct ice_vsi * vsi)4679 static void ice_unregister_netdev(struct ice_vsi *vsi)
4680 {
4681 if (!vsi || !vsi->netdev)
4682 return;
4683
4684 unregister_netdev(vsi->netdev);
4685 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4686 }
4687
4688 /**
4689 * ice_cfg_netdev - Allocate, configure and register a netdev
4690 * @vsi: the VSI associated with the new netdev
4691 *
4692 * Returns 0 on success, negative value on failure
4693 */
ice_cfg_netdev(struct ice_vsi * vsi)4694 static int ice_cfg_netdev(struct ice_vsi *vsi)
4695 {
4696 struct ice_netdev_priv *np;
4697 struct net_device *netdev;
4698 u8 mac_addr[ETH_ALEN];
4699
4700 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4701 vsi->alloc_rxq);
4702 if (!netdev)
4703 return -ENOMEM;
4704
4705 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4706 vsi->netdev = netdev;
4707 np = netdev_priv(netdev);
4708 np->vsi = vsi;
4709
4710 ice_set_netdev_features(netdev);
4711 ice_set_ops(vsi);
4712
4713 if (vsi->type == ICE_VSI_PF) {
4714 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4715 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4716 eth_hw_addr_set(netdev, mac_addr);
4717 }
4718
4719 netdev->priv_flags |= IFF_UNICAST_FLT;
4720
4721 /* Setup netdev TC information */
4722 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4723
4724 netdev->max_mtu = ICE_MAX_MTU;
4725
4726 return 0;
4727 }
4728
ice_decfg_netdev(struct ice_vsi * vsi)4729 static void ice_decfg_netdev(struct ice_vsi *vsi)
4730 {
4731 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4732 free_netdev(vsi->netdev);
4733 vsi->netdev = NULL;
4734 }
4735
ice_init_dev_hw(struct ice_pf * pf)4736 void ice_init_dev_hw(struct ice_pf *pf)
4737 {
4738 struct ice_hw *hw = &pf->hw;
4739 int err;
4740
4741 ice_init_feature_support(pf);
4742
4743 err = ice_init_ddp_config(hw, pf);
4744
4745 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4746 * set in pf->state, which will cause ice_is_safe_mode to return
4747 * true
4748 */
4749 if (err || ice_is_safe_mode(pf)) {
4750 /* we already got function/device capabilities but these don't
4751 * reflect what the driver needs to do in safe mode. Instead of
4752 * adding conditional logic everywhere to ignore these
4753 * device/function capabilities, override them.
4754 */
4755 ice_set_safe_mode_caps(hw);
4756 }
4757 }
4758
ice_init_dev(struct ice_pf * pf)4759 int ice_init_dev(struct ice_pf *pf)
4760 {
4761 struct device *dev = ice_pf_to_dev(pf);
4762 int err;
4763
4764 ice_set_pf_caps(pf);
4765 err = ice_init_interrupt_scheme(pf);
4766 if (err) {
4767 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4768 return -EIO;
4769 }
4770
4771 ice_start_service_task(pf);
4772
4773 return 0;
4774 }
4775
ice_deinit_dev(struct ice_pf * pf)4776 void ice_deinit_dev(struct ice_pf *pf)
4777 {
4778 ice_service_task_stop(pf);
4779
4780 /* Service task is already stopped, so call reset directly. */
4781 ice_reset(&pf->hw, ICE_RESET_PFR);
4782 pci_wait_for_pending_transaction(pf->pdev);
4783 ice_clear_interrupt_scheme(pf);
4784 }
4785
ice_init_features(struct ice_pf * pf)4786 static void ice_init_features(struct ice_pf *pf)
4787 {
4788 struct device *dev = ice_pf_to_dev(pf);
4789
4790 if (ice_is_safe_mode(pf))
4791 return;
4792
4793 /* initialize DDP driven features */
4794 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4795 ice_ptp_init(pf);
4796
4797 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4798 ice_gnss_init(pf);
4799
4800 if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4801 ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4802 ice_dpll_init(pf);
4803
4804 /* Note: Flow director init failure is non-fatal to load */
4805 if (ice_init_fdir(pf))
4806 dev_err(dev, "could not initialize flow director\n");
4807
4808 /* Note: DCB init failure is non-fatal to load */
4809 if (ice_init_pf_dcb(pf, false)) {
4810 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4811 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4812 } else {
4813 ice_cfg_lldp_mib_change(&pf->hw, true);
4814 }
4815
4816 if (ice_init_lag(pf))
4817 dev_warn(dev, "Failed to init link aggregation support\n");
4818
4819 ice_hwmon_init(pf);
4820 }
4821
ice_deinit_features(struct ice_pf * pf)4822 static void ice_deinit_features(struct ice_pf *pf)
4823 {
4824 if (ice_is_safe_mode(pf))
4825 return;
4826
4827 ice_deinit_lag(pf);
4828 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4829 ice_cfg_lldp_mib_change(&pf->hw, false);
4830 ice_deinit_fdir(pf);
4831 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4832 ice_gnss_exit(pf);
4833 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4834 ice_ptp_release(pf);
4835 if (test_bit(ICE_FLAG_DPLL, pf->flags))
4836 ice_dpll_deinit(pf);
4837 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4838 xa_destroy(&pf->eswitch.reprs);
4839 ice_hwmon_exit(pf);
4840 }
4841
ice_init_wakeup(struct ice_pf * pf)4842 static void ice_init_wakeup(struct ice_pf *pf)
4843 {
4844 /* Save wakeup reason register for later use */
4845 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4846
4847 /* check for a power management event */
4848 ice_print_wake_reason(pf);
4849
4850 /* clear wake status, all bits */
4851 wr32(&pf->hw, PFPM_WUS, U32_MAX);
4852
4853 /* Disable WoL at init, wait for user to enable */
4854 device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4855 }
4856
ice_init_link(struct ice_pf * pf)4857 static int ice_init_link(struct ice_pf *pf)
4858 {
4859 struct device *dev = ice_pf_to_dev(pf);
4860 int err;
4861
4862 err = ice_init_link_events(pf->hw.port_info);
4863 if (err) {
4864 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4865 return err;
4866 }
4867
4868 /* not a fatal error if this fails */
4869 err = ice_init_nvm_phy_type(pf->hw.port_info);
4870 if (err)
4871 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4872
4873 /* not a fatal error if this fails */
4874 err = ice_update_link_info(pf->hw.port_info);
4875 if (err)
4876 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4877
4878 ice_init_link_dflt_override(pf->hw.port_info);
4879
4880 ice_check_link_cfg_err(pf,
4881 pf->hw.port_info->phy.link_info.link_cfg_err);
4882
4883 /* if media available, initialize PHY settings */
4884 if (pf->hw.port_info->phy.link_info.link_info &
4885 ICE_AQ_MEDIA_AVAILABLE) {
4886 /* not a fatal error if this fails */
4887 err = ice_init_phy_user_cfg(pf->hw.port_info);
4888 if (err)
4889 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4890
4891 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4892 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4893
4894 if (vsi)
4895 ice_configure_phy(vsi);
4896 }
4897 } else {
4898 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4899 }
4900
4901 return err;
4902 }
4903
ice_init_pf_sw(struct ice_pf * pf)4904 static int ice_init_pf_sw(struct ice_pf *pf)
4905 {
4906 bool dvm = ice_is_dvm_ena(&pf->hw);
4907 struct ice_vsi *vsi;
4908 int err;
4909
4910 /* create switch struct for the switch element created by FW on boot */
4911 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4912 if (!pf->first_sw)
4913 return -ENOMEM;
4914
4915 if (pf->hw.evb_veb)
4916 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4917 else
4918 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4919
4920 pf->first_sw->pf = pf;
4921
4922 /* record the sw_id available for later use */
4923 pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4924
4925 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4926 if (err)
4927 goto err_aq_set_port_params;
4928
4929 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4930 if (!vsi) {
4931 err = -ENOMEM;
4932 goto err_pf_vsi_setup;
4933 }
4934
4935 return 0;
4936
4937 err_pf_vsi_setup:
4938 err_aq_set_port_params:
4939 kfree(pf->first_sw);
4940 return err;
4941 }
4942
ice_deinit_pf_sw(struct ice_pf * pf)4943 static void ice_deinit_pf_sw(struct ice_pf *pf)
4944 {
4945 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4946
4947 if (!vsi)
4948 return;
4949
4950 ice_vsi_release(vsi);
4951 kfree(pf->first_sw);
4952 }
4953
ice_alloc_vsis(struct ice_pf * pf)4954 static int ice_alloc_vsis(struct ice_pf *pf)
4955 {
4956 struct device *dev = ice_pf_to_dev(pf);
4957
4958 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4959 if (!pf->num_alloc_vsi)
4960 return -EIO;
4961
4962 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4963 dev_warn(dev,
4964 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4965 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4966 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4967 }
4968
4969 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4970 GFP_KERNEL);
4971 if (!pf->vsi)
4972 return -ENOMEM;
4973
4974 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4975 sizeof(*pf->vsi_stats), GFP_KERNEL);
4976 if (!pf->vsi_stats) {
4977 devm_kfree(dev, pf->vsi);
4978 return -ENOMEM;
4979 }
4980
4981 return 0;
4982 }
4983
ice_dealloc_vsis(struct ice_pf * pf)4984 static void ice_dealloc_vsis(struct ice_pf *pf)
4985 {
4986 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4987 pf->vsi_stats = NULL;
4988
4989 pf->num_alloc_vsi = 0;
4990 devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4991 pf->vsi = NULL;
4992 }
4993
ice_init_devlink(struct ice_pf * pf)4994 static int ice_init_devlink(struct ice_pf *pf)
4995 {
4996 int err;
4997
4998 err = ice_devlink_register_params(pf);
4999 if (err)
5000 return err;
5001
5002 ice_devlink_init_regions(pf);
5003 ice_devlink_register(pf);
5004 ice_health_init(pf);
5005
5006 return 0;
5007 }
5008
ice_deinit_devlink(struct ice_pf * pf)5009 static void ice_deinit_devlink(struct ice_pf *pf)
5010 {
5011 ice_health_deinit(pf);
5012 ice_devlink_unregister(pf);
5013 ice_devlink_destroy_regions(pf);
5014 ice_devlink_unregister_params(pf);
5015 }
5016
ice_init(struct ice_pf * pf)5017 static int ice_init(struct ice_pf *pf)
5018 {
5019 struct device *dev = ice_pf_to_dev(pf);
5020 int err;
5021
5022 err = ice_init_pf(pf);
5023 if (err) {
5024 dev_err(dev, "ice_init_pf failed: %d\n", err);
5025 return err;
5026 }
5027
5028 if (pf->hw.mac_type == ICE_MAC_E830) {
5029 err = pci_enable_ptm(pf->pdev, NULL);
5030 if (err)
5031 dev_dbg(dev, "PCIe PTM not supported by PCIe bus/controller\n");
5032 }
5033
5034 err = ice_alloc_vsis(pf);
5035 if (err)
5036 goto unroll_pf_init;
5037
5038 err = ice_init_pf_sw(pf);
5039 if (err)
5040 goto err_init_pf_sw;
5041
5042 ice_init_wakeup(pf);
5043
5044 err = ice_init_link(pf);
5045 if (err)
5046 goto err_init_link;
5047
5048 err = ice_send_version(pf);
5049 if (err)
5050 goto err_init_link;
5051
5052 ice_verify_cacheline_size(pf);
5053
5054 if (ice_is_safe_mode(pf))
5055 ice_set_safe_mode_vlan_cfg(pf);
5056 else
5057 /* print PCI link speed and width */
5058 pcie_print_link_status(pf->pdev);
5059
5060 /* ready to go, so clear down state bit */
5061 clear_bit(ICE_DOWN, pf->state);
5062 clear_bit(ICE_SERVICE_DIS, pf->state);
5063
5064 /* since everything is good, start the service timer */
5065 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5066
5067 return 0;
5068
5069 err_init_link:
5070 ice_deinit_pf_sw(pf);
5071 err_init_pf_sw:
5072 ice_dealloc_vsis(pf);
5073 unroll_pf_init:
5074 ice_deinit_pf(pf);
5075 return err;
5076 }
5077
ice_deinit(struct ice_pf * pf)5078 static void ice_deinit(struct ice_pf *pf)
5079 {
5080 set_bit(ICE_SERVICE_DIS, pf->state);
5081 set_bit(ICE_DOWN, pf->state);
5082
5083 ice_deinit_pf_sw(pf);
5084 ice_dealloc_vsis(pf);
5085 ice_deinit_pf(pf);
5086 }
5087
5088 /**
5089 * ice_load - load pf by init hw and starting VSI
5090 * @pf: pointer to the pf instance
5091 *
5092 * This function has to be called under devl_lock.
5093 */
ice_load(struct ice_pf * pf)5094 int ice_load(struct ice_pf *pf)
5095 {
5096 struct ice_vsi *vsi;
5097 int err;
5098
5099 devl_assert_locked(priv_to_devlink(pf));
5100
5101 vsi = ice_get_main_vsi(pf);
5102
5103 /* init channel list */
5104 INIT_LIST_HEAD(&vsi->ch_list);
5105
5106 err = ice_cfg_netdev(vsi);
5107 if (err)
5108 return err;
5109
5110 /* Setup DCB netlink interface */
5111 ice_dcbnl_setup(vsi);
5112
5113 err = ice_init_mac_fltr(pf);
5114 if (err)
5115 goto err_init_mac_fltr;
5116
5117 err = ice_devlink_create_pf_port(pf);
5118 if (err)
5119 goto err_devlink_create_pf_port;
5120
5121 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5122
5123 err = ice_register_netdev(vsi);
5124 if (err)
5125 goto err_register_netdev;
5126
5127 err = ice_tc_indir_block_register(vsi);
5128 if (err)
5129 goto err_tc_indir_block_register;
5130
5131 ice_napi_add(vsi);
5132
5133 ice_init_features(pf);
5134
5135 err = ice_init_rdma(pf);
5136 if (err)
5137 goto err_init_rdma;
5138
5139 ice_service_task_restart(pf);
5140
5141 clear_bit(ICE_DOWN, pf->state);
5142
5143 return 0;
5144
5145 err_init_rdma:
5146 ice_deinit_features(pf);
5147 ice_tc_indir_block_unregister(vsi);
5148 err_tc_indir_block_register:
5149 ice_unregister_netdev(vsi);
5150 err_register_netdev:
5151 ice_devlink_destroy_pf_port(pf);
5152 err_devlink_create_pf_port:
5153 err_init_mac_fltr:
5154 ice_decfg_netdev(vsi);
5155 return err;
5156 }
5157
5158 /**
5159 * ice_unload - unload pf by stopping VSI and deinit hw
5160 * @pf: pointer to the pf instance
5161 *
5162 * This function has to be called under devl_lock.
5163 */
ice_unload(struct ice_pf * pf)5164 void ice_unload(struct ice_pf *pf)
5165 {
5166 struct ice_vsi *vsi = ice_get_main_vsi(pf);
5167
5168 devl_assert_locked(priv_to_devlink(pf));
5169
5170 ice_deinit_rdma(pf);
5171 ice_deinit_features(pf);
5172 ice_tc_indir_block_unregister(vsi);
5173 ice_unregister_netdev(vsi);
5174 ice_devlink_destroy_pf_port(pf);
5175 ice_decfg_netdev(vsi);
5176 }
5177
ice_probe_recovery_mode(struct ice_pf * pf)5178 static int ice_probe_recovery_mode(struct ice_pf *pf)
5179 {
5180 struct device *dev = ice_pf_to_dev(pf);
5181 int err;
5182
5183 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5184
5185 INIT_HLIST_HEAD(&pf->aq_wait_list);
5186 spin_lock_init(&pf->aq_wait_lock);
5187 init_waitqueue_head(&pf->aq_wait_queue);
5188
5189 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5190 pf->serv_tmr_period = HZ;
5191 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5192 clear_bit(ICE_SERVICE_SCHED, pf->state);
5193 err = ice_create_all_ctrlq(&pf->hw);
5194 if (err)
5195 return err;
5196
5197 scoped_guard(devl, priv_to_devlink(pf)) {
5198 err = ice_init_devlink(pf);
5199 if (err)
5200 return err;
5201 }
5202
5203 ice_service_task_restart(pf);
5204
5205 return 0;
5206 }
5207
5208 /**
5209 * ice_probe - Device initialization routine
5210 * @pdev: PCI device information struct
5211 * @ent: entry in ice_pci_tbl
5212 *
5213 * Returns 0 on success, negative on failure
5214 */
5215 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)5216 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5217 {
5218 struct device *dev = &pdev->dev;
5219 bool need_dev_deinit = false;
5220 struct ice_adapter *adapter;
5221 struct ice_pf *pf;
5222 struct ice_hw *hw;
5223 int err;
5224
5225 if (pdev->is_virtfn) {
5226 dev_err(dev, "can't probe a virtual function\n");
5227 return -EINVAL;
5228 }
5229
5230 /* when under a kdump kernel initiate a reset before enabling the
5231 * device in order to clear out any pending DMA transactions. These
5232 * transactions can cause some systems to machine check when doing
5233 * the pcim_enable_device() below.
5234 */
5235 if (is_kdump_kernel()) {
5236 pci_save_state(pdev);
5237 pci_clear_master(pdev);
5238 err = pcie_flr(pdev);
5239 if (err)
5240 return err;
5241 pci_restore_state(pdev);
5242 }
5243
5244 /* this driver uses devres, see
5245 * Documentation/driver-api/driver-model/devres.rst
5246 */
5247 err = pcim_enable_device(pdev);
5248 if (err)
5249 return err;
5250
5251 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5252 if (err) {
5253 dev_err(dev, "BAR0 I/O map error %d\n", err);
5254 return err;
5255 }
5256
5257 pf = ice_allocate_pf(dev);
5258 if (!pf)
5259 return -ENOMEM;
5260
5261 /* initialize Auxiliary index to invalid value */
5262 pf->aux_idx = -1;
5263
5264 /* set up for high or low DMA */
5265 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5266 if (err) {
5267 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5268 return err;
5269 }
5270
5271 pci_set_master(pdev);
5272 pf->pdev = pdev;
5273 pci_set_drvdata(pdev, pf);
5274 set_bit(ICE_DOWN, pf->state);
5275 /* Disable service task until DOWN bit is cleared */
5276 set_bit(ICE_SERVICE_DIS, pf->state);
5277
5278 hw = &pf->hw;
5279 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5280 pci_save_state(pdev);
5281
5282 hw->back = pf;
5283 hw->port_info = NULL;
5284 hw->vendor_id = pdev->vendor;
5285 hw->device_id = pdev->device;
5286 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5287 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5288 hw->subsystem_device_id = pdev->subsystem_device;
5289 hw->bus.device = PCI_SLOT(pdev->devfn);
5290 hw->bus.func = PCI_FUNC(pdev->devfn);
5291 ice_set_ctrlq_len(hw);
5292
5293 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5294
5295 #ifndef CONFIG_DYNAMIC_DEBUG
5296 if (debug < -1)
5297 hw->debug_mask = debug;
5298 #endif
5299
5300 if (ice_is_recovery_mode(hw))
5301 return ice_probe_recovery_mode(pf);
5302
5303 err = ice_init_hw(hw);
5304 if (err) {
5305 dev_err(dev, "ice_init_hw failed: %d\n", err);
5306 return err;
5307 }
5308
5309 adapter = ice_adapter_get(pdev);
5310 if (IS_ERR(adapter)) {
5311 err = PTR_ERR(adapter);
5312 goto unroll_hw_init;
5313 }
5314 pf->adapter = adapter;
5315
5316 err = ice_init_dev(pf);
5317 if (err)
5318 goto unroll_adapter;
5319
5320 err = ice_init(pf);
5321 if (err)
5322 goto unroll_dev_init;
5323
5324 devl_lock(priv_to_devlink(pf));
5325 err = ice_load(pf);
5326 if (err)
5327 goto unroll_init;
5328
5329 err = ice_init_devlink(pf);
5330 if (err)
5331 goto unroll_load;
5332 devl_unlock(priv_to_devlink(pf));
5333
5334 return 0;
5335
5336 unroll_load:
5337 ice_unload(pf);
5338 unroll_init:
5339 devl_unlock(priv_to_devlink(pf));
5340 ice_deinit(pf);
5341 unroll_dev_init:
5342 need_dev_deinit = true;
5343 unroll_adapter:
5344 ice_adapter_put(pdev);
5345 unroll_hw_init:
5346 ice_deinit_hw(hw);
5347 if (need_dev_deinit)
5348 ice_deinit_dev(pf);
5349 return err;
5350 }
5351
5352 /**
5353 * ice_set_wake - enable or disable Wake on LAN
5354 * @pf: pointer to the PF struct
5355 *
5356 * Simple helper for WoL control
5357 */
ice_set_wake(struct ice_pf * pf)5358 static void ice_set_wake(struct ice_pf *pf)
5359 {
5360 struct ice_hw *hw = &pf->hw;
5361 bool wol = pf->wol_ena;
5362
5363 /* clear wake state, otherwise new wake events won't fire */
5364 wr32(hw, PFPM_WUS, U32_MAX);
5365
5366 /* enable / disable APM wake up, no RMW needed */
5367 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5368
5369 /* set magic packet filter enabled */
5370 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5371 }
5372
5373 /**
5374 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5375 * @pf: pointer to the PF struct
5376 *
5377 * Issue firmware command to enable multicast magic wake, making
5378 * sure that any locally administered address (LAA) is used for
5379 * wake, and that PF reset doesn't undo the LAA.
5380 */
ice_setup_mc_magic_wake(struct ice_pf * pf)5381 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5382 {
5383 struct device *dev = ice_pf_to_dev(pf);
5384 struct ice_hw *hw = &pf->hw;
5385 u8 mac_addr[ETH_ALEN];
5386 struct ice_vsi *vsi;
5387 int status;
5388 u8 flags;
5389
5390 if (!pf->wol_ena)
5391 return;
5392
5393 vsi = ice_get_main_vsi(pf);
5394 if (!vsi)
5395 return;
5396
5397 /* Get current MAC address in case it's an LAA */
5398 if (vsi->netdev)
5399 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5400 else
5401 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5402
5403 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5404 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5405 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5406
5407 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5408 if (status)
5409 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5410 status, libie_aq_str(hw->adminq.sq_last_status));
5411 }
5412
5413 /**
5414 * ice_remove - Device removal routine
5415 * @pdev: PCI device information struct
5416 */
ice_remove(struct pci_dev * pdev)5417 static void ice_remove(struct pci_dev *pdev)
5418 {
5419 struct ice_pf *pf = pci_get_drvdata(pdev);
5420 int i;
5421
5422 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5423 if (!ice_is_reset_in_progress(pf->state))
5424 break;
5425 msleep(100);
5426 }
5427
5428 if (ice_is_recovery_mode(&pf->hw)) {
5429 ice_service_task_stop(pf);
5430 scoped_guard(devl, priv_to_devlink(pf)) {
5431 ice_deinit_devlink(pf);
5432 }
5433 return;
5434 }
5435
5436 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5437 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5438 ice_free_vfs(pf);
5439 }
5440
5441 if (!ice_is_safe_mode(pf))
5442 ice_remove_arfs(pf);
5443
5444 devl_lock(priv_to_devlink(pf));
5445 ice_dealloc_all_dynamic_ports(pf);
5446 ice_deinit_devlink(pf);
5447
5448 ice_unload(pf);
5449 devl_unlock(priv_to_devlink(pf));
5450
5451 ice_deinit(pf);
5452 ice_vsi_release_all(pf);
5453
5454 ice_setup_mc_magic_wake(pf);
5455 ice_set_wake(pf);
5456
5457 ice_adapter_put(pdev);
5458 ice_deinit_hw(&pf->hw);
5459
5460 ice_deinit_dev(pf);
5461 ice_aq_cancel_waiting_tasks(pf);
5462 set_bit(ICE_DOWN, pf->state);
5463 }
5464
5465 /**
5466 * ice_shutdown - PCI callback for shutting down device
5467 * @pdev: PCI device information struct
5468 */
ice_shutdown(struct pci_dev * pdev)5469 static void ice_shutdown(struct pci_dev *pdev)
5470 {
5471 struct ice_pf *pf = pci_get_drvdata(pdev);
5472
5473 ice_remove(pdev);
5474
5475 if (system_state == SYSTEM_POWER_OFF) {
5476 pci_wake_from_d3(pdev, pf->wol_ena);
5477 pci_set_power_state(pdev, PCI_D3hot);
5478 }
5479 }
5480
5481 /**
5482 * ice_prepare_for_shutdown - prep for PCI shutdown
5483 * @pf: board private structure
5484 *
5485 * Inform or close all dependent features in prep for PCI device shutdown
5486 */
ice_prepare_for_shutdown(struct ice_pf * pf)5487 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5488 {
5489 struct ice_hw *hw = &pf->hw;
5490 u32 v;
5491
5492 /* Notify VFs of impending reset */
5493 if (ice_check_sq_alive(hw, &hw->mailboxq))
5494 ice_vc_notify_reset(pf);
5495
5496 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5497
5498 /* disable the VSIs and their queues that are not already DOWN */
5499 ice_pf_dis_all_vsi(pf, false);
5500
5501 ice_for_each_vsi(pf, v)
5502 if (pf->vsi[v])
5503 pf->vsi[v]->vsi_num = 0;
5504
5505 ice_shutdown_all_ctrlq(hw, true);
5506 }
5507
5508 /**
5509 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5510 * @pf: board private structure to reinitialize
5511 *
5512 * This routine reinitialize interrupt scheme that was cleared during
5513 * power management suspend callback.
5514 *
5515 * This should be called during resume routine to re-allocate the q_vectors
5516 * and reacquire interrupts.
5517 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5518 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5519 {
5520 struct device *dev = ice_pf_to_dev(pf);
5521 int ret, v;
5522
5523 /* Since we clear MSIX flag during suspend, we need to
5524 * set it back during resume...
5525 */
5526
5527 ret = ice_init_interrupt_scheme(pf);
5528 if (ret) {
5529 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5530 return ret;
5531 }
5532
5533 /* Remap vectors and rings, after successful re-init interrupts */
5534 ice_for_each_vsi(pf, v) {
5535 if (!pf->vsi[v])
5536 continue;
5537
5538 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5539 if (ret)
5540 goto err_reinit;
5541 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5542 rtnl_lock();
5543 ice_vsi_set_napi_queues(pf->vsi[v]);
5544 rtnl_unlock();
5545 }
5546
5547 ret = ice_req_irq_msix_misc(pf);
5548 if (ret) {
5549 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5550 ret);
5551 goto err_reinit;
5552 }
5553
5554 return 0;
5555
5556 err_reinit:
5557 while (v--)
5558 if (pf->vsi[v]) {
5559 rtnl_lock();
5560 ice_vsi_clear_napi_queues(pf->vsi[v]);
5561 rtnl_unlock();
5562 ice_vsi_free_q_vectors(pf->vsi[v]);
5563 }
5564
5565 return ret;
5566 }
5567
5568 /**
5569 * ice_suspend
5570 * @dev: generic device information structure
5571 *
5572 * Power Management callback to quiesce the device and prepare
5573 * for D3 transition.
5574 */
ice_suspend(struct device * dev)5575 static int ice_suspend(struct device *dev)
5576 {
5577 struct pci_dev *pdev = to_pci_dev(dev);
5578 struct ice_pf *pf;
5579 int disabled, v;
5580
5581 pf = pci_get_drvdata(pdev);
5582
5583 if (!ice_pf_state_is_nominal(pf)) {
5584 dev_err(dev, "Device is not ready, no need to suspend it\n");
5585 return -EBUSY;
5586 }
5587
5588 /* Stop watchdog tasks until resume completion.
5589 * Even though it is most likely that the service task is
5590 * disabled if the device is suspended or down, the service task's
5591 * state is controlled by a different state bit, and we should
5592 * store and honor whatever state that bit is in at this point.
5593 */
5594 disabled = ice_service_task_stop(pf);
5595
5596 ice_deinit_rdma(pf);
5597
5598 /* Already suspended?, then there is nothing to do */
5599 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5600 if (!disabled)
5601 ice_service_task_restart(pf);
5602 return 0;
5603 }
5604
5605 if (test_bit(ICE_DOWN, pf->state) ||
5606 ice_is_reset_in_progress(pf->state)) {
5607 dev_err(dev, "can't suspend device in reset or already down\n");
5608 if (!disabled)
5609 ice_service_task_restart(pf);
5610 return 0;
5611 }
5612
5613 ice_setup_mc_magic_wake(pf);
5614
5615 ice_prepare_for_shutdown(pf);
5616
5617 ice_set_wake(pf);
5618
5619 /* Free vectors, clear the interrupt scheme and release IRQs
5620 * for proper hibernation, especially with large number of CPUs.
5621 * Otherwise hibernation might fail when mapping all the vectors back
5622 * to CPU0.
5623 */
5624 ice_free_irq_msix_misc(pf);
5625 ice_for_each_vsi(pf, v) {
5626 if (!pf->vsi[v])
5627 continue;
5628 rtnl_lock();
5629 ice_vsi_clear_napi_queues(pf->vsi[v]);
5630 rtnl_unlock();
5631 ice_vsi_free_q_vectors(pf->vsi[v]);
5632 }
5633 ice_clear_interrupt_scheme(pf);
5634
5635 pci_save_state(pdev);
5636 pci_wake_from_d3(pdev, pf->wol_ena);
5637 pci_set_power_state(pdev, PCI_D3hot);
5638 return 0;
5639 }
5640
5641 /**
5642 * ice_resume - PM callback for waking up from D3
5643 * @dev: generic device information structure
5644 */
ice_resume(struct device * dev)5645 static int ice_resume(struct device *dev)
5646 {
5647 struct pci_dev *pdev = to_pci_dev(dev);
5648 enum ice_reset_req reset_type;
5649 struct ice_pf *pf;
5650 struct ice_hw *hw;
5651 int ret;
5652
5653 pci_set_power_state(pdev, PCI_D0);
5654 pci_restore_state(pdev);
5655
5656 if (!pci_device_is_present(pdev))
5657 return -ENODEV;
5658
5659 ret = pci_enable_device_mem(pdev);
5660 if (ret) {
5661 dev_err(dev, "Cannot enable device after suspend\n");
5662 return ret;
5663 }
5664
5665 pf = pci_get_drvdata(pdev);
5666 hw = &pf->hw;
5667
5668 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5669 ice_print_wake_reason(pf);
5670
5671 /* We cleared the interrupt scheme when we suspended, so we need to
5672 * restore it now to resume device functionality.
5673 */
5674 ret = ice_reinit_interrupt_scheme(pf);
5675 if (ret)
5676 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5677
5678 ret = ice_init_rdma(pf);
5679 if (ret)
5680 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5681 ret);
5682
5683 clear_bit(ICE_DOWN, pf->state);
5684 /* Now perform PF reset and rebuild */
5685 reset_type = ICE_RESET_PFR;
5686 /* re-enable service task for reset, but allow reset to schedule it */
5687 clear_bit(ICE_SERVICE_DIS, pf->state);
5688
5689 if (ice_schedule_reset(pf, reset_type))
5690 dev_err(dev, "Reset during resume failed.\n");
5691
5692 clear_bit(ICE_SUSPENDED, pf->state);
5693 ice_service_task_restart(pf);
5694
5695 /* Restart the service task */
5696 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5697
5698 return 0;
5699 }
5700
5701 /**
5702 * ice_pci_err_detected - warning that PCI error has been detected
5703 * @pdev: PCI device information struct
5704 * @err: the type of PCI error
5705 *
5706 * Called to warn that something happened on the PCI bus and the error handling
5707 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5708 */
5709 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5710 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5711 {
5712 struct ice_pf *pf = pci_get_drvdata(pdev);
5713
5714 if (!pf) {
5715 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5716 __func__, err);
5717 return PCI_ERS_RESULT_DISCONNECT;
5718 }
5719
5720 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5721 ice_service_task_stop(pf);
5722
5723 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5724 set_bit(ICE_PFR_REQ, pf->state);
5725 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5726 }
5727 }
5728
5729 return PCI_ERS_RESULT_NEED_RESET;
5730 }
5731
5732 /**
5733 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5734 * @pdev: PCI device information struct
5735 *
5736 * Called to determine if the driver can recover from the PCI slot reset by
5737 * using a register read to determine if the device is recoverable.
5738 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5739 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5740 {
5741 struct ice_pf *pf = pci_get_drvdata(pdev);
5742 pci_ers_result_t result;
5743 int err;
5744 u32 reg;
5745
5746 err = pci_enable_device_mem(pdev);
5747 if (err) {
5748 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5749 err);
5750 result = PCI_ERS_RESULT_DISCONNECT;
5751 } else {
5752 pci_set_master(pdev);
5753 pci_restore_state(pdev);
5754 pci_wake_from_d3(pdev, false);
5755
5756 /* Check for life */
5757 reg = rd32(&pf->hw, GLGEN_RTRIG);
5758 if (!reg)
5759 result = PCI_ERS_RESULT_RECOVERED;
5760 else
5761 result = PCI_ERS_RESULT_DISCONNECT;
5762 }
5763
5764 return result;
5765 }
5766
5767 /**
5768 * ice_pci_err_resume - restart operations after PCI error recovery
5769 * @pdev: PCI device information struct
5770 *
5771 * Called to allow the driver to bring things back up after PCI error and/or
5772 * reset recovery have finished
5773 */
ice_pci_err_resume(struct pci_dev * pdev)5774 static void ice_pci_err_resume(struct pci_dev *pdev)
5775 {
5776 struct ice_pf *pf = pci_get_drvdata(pdev);
5777
5778 if (!pf) {
5779 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5780 __func__);
5781 return;
5782 }
5783
5784 if (test_bit(ICE_SUSPENDED, pf->state)) {
5785 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5786 __func__);
5787 return;
5788 }
5789
5790 ice_restore_all_vfs_msi_state(pf);
5791
5792 ice_do_reset(pf, ICE_RESET_PFR);
5793 ice_service_task_restart(pf);
5794 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5795 }
5796
5797 /**
5798 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5799 * @pdev: PCI device information struct
5800 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5801 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5802 {
5803 struct ice_pf *pf = pci_get_drvdata(pdev);
5804
5805 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5806 ice_service_task_stop(pf);
5807
5808 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5809 set_bit(ICE_PFR_REQ, pf->state);
5810 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5811 }
5812 }
5813 }
5814
5815 /**
5816 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5817 * @pdev: PCI device information struct
5818 */
ice_pci_err_reset_done(struct pci_dev * pdev)5819 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5820 {
5821 ice_pci_err_resume(pdev);
5822 }
5823
5824 /* ice_pci_tbl - PCI Device ID Table
5825 *
5826 * Wildcard entries (PCI_ANY_ID) should come last
5827 * Last entry must be all 0s
5828 *
5829 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5830 * Class, Class Mask, private data (not used) }
5831 */
5832 static const struct pci_device_id ice_pci_tbl[] = {
5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), },
5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), },
5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), },
5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), },
5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), },
5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), },
5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), },
5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), },
5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), },
5882 /* required last entry */
5883 {}
5884 };
5885 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5886
5887 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5888
5889 static const struct pci_error_handlers ice_pci_err_handler = {
5890 .error_detected = ice_pci_err_detected,
5891 .slot_reset = ice_pci_err_slot_reset,
5892 .reset_prepare = ice_pci_err_reset_prepare,
5893 .reset_done = ice_pci_err_reset_done,
5894 .resume = ice_pci_err_resume
5895 };
5896
5897 static struct pci_driver ice_driver = {
5898 .name = KBUILD_MODNAME,
5899 .id_table = ice_pci_tbl,
5900 .probe = ice_probe,
5901 .remove = ice_remove,
5902 .driver.pm = pm_sleep_ptr(&ice_pm_ops),
5903 .shutdown = ice_shutdown,
5904 .sriov_configure = ice_sriov_configure,
5905 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5906 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5907 .err_handler = &ice_pci_err_handler
5908 };
5909
5910 /**
5911 * ice_module_init - Driver registration routine
5912 *
5913 * ice_module_init is the first routine called when the driver is
5914 * loaded. All it does is register with the PCI subsystem.
5915 */
ice_module_init(void)5916 static int __init ice_module_init(void)
5917 {
5918 int status = -ENOMEM;
5919
5920 pr_info("%s\n", ice_driver_string);
5921 pr_info("%s\n", ice_copyright);
5922
5923 ice_adv_lnk_speed_maps_init();
5924
5925 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5926 if (!ice_wq) {
5927 pr_err("Failed to create workqueue\n");
5928 return status;
5929 }
5930
5931 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5932 if (!ice_lag_wq) {
5933 pr_err("Failed to create LAG workqueue\n");
5934 goto err_dest_wq;
5935 }
5936
5937 ice_debugfs_init();
5938
5939 status = pci_register_driver(&ice_driver);
5940 if (status) {
5941 pr_err("failed to register PCI driver, err %d\n", status);
5942 goto err_dest_lag_wq;
5943 }
5944
5945 status = ice_sf_driver_register();
5946 if (status) {
5947 pr_err("Failed to register SF driver, err %d\n", status);
5948 goto err_sf_driver;
5949 }
5950
5951 return 0;
5952
5953 err_sf_driver:
5954 pci_unregister_driver(&ice_driver);
5955 err_dest_lag_wq:
5956 destroy_workqueue(ice_lag_wq);
5957 ice_debugfs_exit();
5958 err_dest_wq:
5959 destroy_workqueue(ice_wq);
5960 return status;
5961 }
5962 module_init(ice_module_init);
5963
5964 /**
5965 * ice_module_exit - Driver exit cleanup routine
5966 *
5967 * ice_module_exit is called just before the driver is removed
5968 * from memory.
5969 */
ice_module_exit(void)5970 static void __exit ice_module_exit(void)
5971 {
5972 ice_sf_driver_unregister();
5973 pci_unregister_driver(&ice_driver);
5974 ice_debugfs_exit();
5975 destroy_workqueue(ice_wq);
5976 destroy_workqueue(ice_lag_wq);
5977 pr_info("module unloaded\n");
5978 }
5979 module_exit(ice_module_exit);
5980
5981 /**
5982 * ice_set_mac_address - NDO callback to set MAC address
5983 * @netdev: network interface device structure
5984 * @pi: pointer to an address structure
5985 *
5986 * Returns 0 on success, negative on failure
5987 */
ice_set_mac_address(struct net_device * netdev,void * pi)5988 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5989 {
5990 struct ice_netdev_priv *np = netdev_priv(netdev);
5991 struct ice_vsi *vsi = np->vsi;
5992 struct ice_pf *pf = vsi->back;
5993 struct ice_hw *hw = &pf->hw;
5994 struct sockaddr *addr = pi;
5995 u8 old_mac[ETH_ALEN];
5996 u8 flags = 0;
5997 u8 *mac;
5998 int err;
5999
6000 mac = (u8 *)addr->sa_data;
6001
6002 if (!is_valid_ether_addr(mac))
6003 return -EADDRNOTAVAIL;
6004
6005 if (test_bit(ICE_DOWN, pf->state) ||
6006 ice_is_reset_in_progress(pf->state)) {
6007 netdev_err(netdev, "can't set mac %pM. device not ready\n",
6008 mac);
6009 return -EBUSY;
6010 }
6011
6012 if (ice_chnl_dmac_fltr_cnt(pf)) {
6013 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6014 mac);
6015 return -EAGAIN;
6016 }
6017
6018 netif_addr_lock_bh(netdev);
6019 ether_addr_copy(old_mac, netdev->dev_addr);
6020 /* change the netdev's MAC address */
6021 eth_hw_addr_set(netdev, mac);
6022 netif_addr_unlock_bh(netdev);
6023
6024 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
6025 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6026 if (err && err != -ENOENT) {
6027 err = -EADDRNOTAVAIL;
6028 goto err_update_filters;
6029 }
6030
6031 /* Add filter for new MAC. If filter exists, return success */
6032 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6033 if (err == -EEXIST) {
6034 /* Although this MAC filter is already present in hardware it's
6035 * possible in some cases (e.g. bonding) that dev_addr was
6036 * modified outside of the driver and needs to be restored back
6037 * to this value.
6038 */
6039 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6040
6041 return 0;
6042 } else if (err) {
6043 /* error if the new filter addition failed */
6044 err = -EADDRNOTAVAIL;
6045 }
6046
6047 err_update_filters:
6048 if (err) {
6049 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6050 mac);
6051 netif_addr_lock_bh(netdev);
6052 eth_hw_addr_set(netdev, old_mac);
6053 netif_addr_unlock_bh(netdev);
6054 return err;
6055 }
6056
6057 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6058 netdev->dev_addr);
6059
6060 /* write new MAC address to the firmware */
6061 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6062 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6063 if (err) {
6064 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6065 mac, err);
6066 }
6067 return 0;
6068 }
6069
6070 /**
6071 * ice_set_rx_mode - NDO callback to set the netdev filters
6072 * @netdev: network interface device structure
6073 */
ice_set_rx_mode(struct net_device * netdev)6074 static void ice_set_rx_mode(struct net_device *netdev)
6075 {
6076 struct ice_netdev_priv *np = netdev_priv(netdev);
6077 struct ice_vsi *vsi = np->vsi;
6078
6079 if (!vsi || ice_is_switchdev_running(vsi->back))
6080 return;
6081
6082 /* Set the flags to synchronize filters
6083 * ndo_set_rx_mode may be triggered even without a change in netdev
6084 * flags
6085 */
6086 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6087 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6088 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6089
6090 /* schedule our worker thread which will take care of
6091 * applying the new filter changes
6092 */
6093 ice_service_task_schedule(vsi->back);
6094 }
6095
6096 /**
6097 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6098 * @netdev: network interface device structure
6099 * @queue_index: Queue ID
6100 * @maxrate: maximum bandwidth in Mbps
6101 */
6102 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)6103 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6104 {
6105 struct ice_netdev_priv *np = netdev_priv(netdev);
6106 struct ice_vsi *vsi = np->vsi;
6107 u16 q_handle;
6108 int status;
6109 u8 tc;
6110
6111 /* Validate maxrate requested is within permitted range */
6112 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6113 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6114 maxrate, queue_index);
6115 return -EINVAL;
6116 }
6117
6118 q_handle = vsi->tx_rings[queue_index]->q_handle;
6119 tc = ice_dcb_get_tc(vsi, queue_index);
6120
6121 vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6122 if (!vsi) {
6123 netdev_err(netdev, "Invalid VSI for given queue %d\n",
6124 queue_index);
6125 return -EINVAL;
6126 }
6127
6128 /* Set BW back to default, when user set maxrate to 0 */
6129 if (!maxrate)
6130 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6131 q_handle, ICE_MAX_BW);
6132 else
6133 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6134 q_handle, ICE_MAX_BW, maxrate * 1000);
6135 if (status)
6136 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6137 status);
6138
6139 return status;
6140 }
6141
6142 /**
6143 * ice_fdb_add - add an entry to the hardware database
6144 * @ndm: the input from the stack
6145 * @tb: pointer to array of nladdr (unused)
6146 * @dev: the net device pointer
6147 * @addr: the MAC address entry being added
6148 * @vid: VLAN ID
6149 * @flags: instructions from stack about fdb operation
6150 * @notified: whether notification was emitted
6151 * @extack: netlink extended ack
6152 */
6153 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,bool * notified,struct netlink_ext_ack __always_unused * extack)6154 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6155 struct net_device *dev, const unsigned char *addr, u16 vid,
6156 u16 flags, bool *notified,
6157 struct netlink_ext_ack __always_unused *extack)
6158 {
6159 int err;
6160
6161 if (vid) {
6162 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6163 return -EINVAL;
6164 }
6165 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6166 netdev_err(dev, "FDB only supports static addresses\n");
6167 return -EINVAL;
6168 }
6169
6170 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6171 err = dev_uc_add_excl(dev, addr);
6172 else if (is_multicast_ether_addr(addr))
6173 err = dev_mc_add_excl(dev, addr);
6174 else
6175 err = -EINVAL;
6176
6177 /* Only return duplicate errors if NLM_F_EXCL is set */
6178 if (err == -EEXIST && !(flags & NLM_F_EXCL))
6179 err = 0;
6180
6181 return err;
6182 }
6183
6184 /**
6185 * ice_fdb_del - delete an entry from the hardware database
6186 * @ndm: the input from the stack
6187 * @tb: pointer to array of nladdr (unused)
6188 * @dev: the net device pointer
6189 * @addr: the MAC address entry being added
6190 * @vid: VLAN ID
6191 * @notified: whether notification was emitted
6192 * @extack: netlink extended ack
6193 */
6194 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,bool * notified,struct netlink_ext_ack * extack)6195 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6196 struct net_device *dev, const unsigned char *addr,
6197 __always_unused u16 vid, bool *notified,
6198 struct netlink_ext_ack *extack)
6199 {
6200 int err;
6201
6202 if (ndm->ndm_state & NUD_PERMANENT) {
6203 netdev_err(dev, "FDB only supports static addresses\n");
6204 return -EINVAL;
6205 }
6206
6207 if (is_unicast_ether_addr(addr))
6208 err = dev_uc_del(dev, addr);
6209 else if (is_multicast_ether_addr(addr))
6210 err = dev_mc_del(dev, addr);
6211 else
6212 err = -EINVAL;
6213
6214 return err;
6215 }
6216
6217 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6218 NETIF_F_HW_VLAN_CTAG_TX | \
6219 NETIF_F_HW_VLAN_STAG_RX | \
6220 NETIF_F_HW_VLAN_STAG_TX)
6221
6222 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
6223 NETIF_F_HW_VLAN_STAG_RX)
6224
6225 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
6226 NETIF_F_HW_VLAN_STAG_FILTER)
6227
6228 /**
6229 * ice_fix_features - fix the netdev features flags based on device limitations
6230 * @netdev: ptr to the netdev that flags are being fixed on
6231 * @features: features that need to be checked and possibly fixed
6232 *
6233 * Make sure any fixups are made to features in this callback. This enables the
6234 * driver to not have to check unsupported configurations throughout the driver
6235 * because that's the responsiblity of this callback.
6236 *
6237 * Single VLAN Mode (SVM) Supported Features:
6238 * NETIF_F_HW_VLAN_CTAG_FILTER
6239 * NETIF_F_HW_VLAN_CTAG_RX
6240 * NETIF_F_HW_VLAN_CTAG_TX
6241 *
6242 * Double VLAN Mode (DVM) Supported Features:
6243 * NETIF_F_HW_VLAN_CTAG_FILTER
6244 * NETIF_F_HW_VLAN_CTAG_RX
6245 * NETIF_F_HW_VLAN_CTAG_TX
6246 *
6247 * NETIF_F_HW_VLAN_STAG_FILTER
6248 * NETIF_HW_VLAN_STAG_RX
6249 * NETIF_HW_VLAN_STAG_TX
6250 *
6251 * Features that need fixing:
6252 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6253 * These are mutually exlusive as the VSI context cannot support multiple
6254 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
6255 * is not done, then default to clearing the requested STAG offload
6256 * settings.
6257 *
6258 * All supported filtering has to be enabled or disabled together. For
6259 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6260 * together. If this is not done, then default to VLAN filtering disabled.
6261 * These are mutually exclusive as there is currently no way to
6262 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6263 * prune rules.
6264 */
6265 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)6266 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6267 {
6268 struct ice_netdev_priv *np = netdev_priv(netdev);
6269 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6270 bool cur_ctag, cur_stag, req_ctag, req_stag;
6271
6272 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6273 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6274 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6275
6276 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6277 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6278 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6279
6280 if (req_vlan_fltr != cur_vlan_fltr) {
6281 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6282 if (req_ctag && req_stag) {
6283 features |= NETIF_VLAN_FILTERING_FEATURES;
6284 } else if (!req_ctag && !req_stag) {
6285 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6286 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
6287 (!cur_stag && req_stag && !cur_ctag)) {
6288 features |= NETIF_VLAN_FILTERING_FEATURES;
6289 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6290 } else if ((cur_ctag && !req_ctag && cur_stag) ||
6291 (cur_stag && !req_stag && cur_ctag)) {
6292 features &= ~NETIF_VLAN_FILTERING_FEATURES;
6293 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6294 }
6295 } else {
6296 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6297 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6298
6299 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6300 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6301 }
6302 }
6303
6304 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6305 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6306 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6307 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6308 NETIF_F_HW_VLAN_STAG_TX);
6309 }
6310
6311 if (!(netdev->features & NETIF_F_RXFCS) &&
6312 (features & NETIF_F_RXFCS) &&
6313 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6314 !ice_vsi_has_non_zero_vlans(np->vsi)) {
6315 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6316 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6317 }
6318
6319 return features;
6320 }
6321
6322 /**
6323 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6324 * @vsi: PF's VSI
6325 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6326 *
6327 * Store current stripped VLAN proto in ring packet context,
6328 * so it can be accessed more efficiently by packet processing code.
6329 */
6330 static void
ice_set_rx_rings_vlan_proto(struct ice_vsi * vsi,__be16 vlan_ethertype)6331 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6332 {
6333 u16 i;
6334
6335 ice_for_each_alloc_rxq(vsi, i)
6336 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6337 }
6338
6339 /**
6340 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6341 * @vsi: PF's VSI
6342 * @features: features used to determine VLAN offload settings
6343 *
6344 * First, determine the vlan_ethertype based on the VLAN offload bits in
6345 * features. Then determine if stripping and insertion should be enabled or
6346 * disabled. Finally enable or disable VLAN stripping and insertion.
6347 */
6348 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)6349 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6350 {
6351 bool enable_stripping = true, enable_insertion = true;
6352 struct ice_vsi_vlan_ops *vlan_ops;
6353 int strip_err = 0, insert_err = 0;
6354 u16 vlan_ethertype = 0;
6355
6356 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6357
6358 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6359 vlan_ethertype = ETH_P_8021AD;
6360 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6361 vlan_ethertype = ETH_P_8021Q;
6362
6363 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6364 enable_stripping = false;
6365 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6366 enable_insertion = false;
6367
6368 if (enable_stripping)
6369 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6370 else
6371 strip_err = vlan_ops->dis_stripping(vsi);
6372
6373 if (enable_insertion)
6374 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6375 else
6376 insert_err = vlan_ops->dis_insertion(vsi);
6377
6378 if (strip_err || insert_err)
6379 return -EIO;
6380
6381 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6382 htons(vlan_ethertype) : 0);
6383
6384 return 0;
6385 }
6386
6387 /**
6388 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6389 * @vsi: PF's VSI
6390 * @features: features used to determine VLAN filtering settings
6391 *
6392 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6393 * features.
6394 */
6395 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)6396 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6397 {
6398 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6399 int err = 0;
6400
6401 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6402 * if either bit is set. In switchdev mode Rx filtering should never be
6403 * enabled.
6404 */
6405 if ((features &
6406 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6407 !ice_is_eswitch_mode_switchdev(vsi->back))
6408 err = vlan_ops->ena_rx_filtering(vsi);
6409 else
6410 err = vlan_ops->dis_rx_filtering(vsi);
6411
6412 return err;
6413 }
6414
6415 /**
6416 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6417 * @netdev: ptr to the netdev being adjusted
6418 * @features: the feature set that the stack is suggesting
6419 *
6420 * Only update VLAN settings if the requested_vlan_features are different than
6421 * the current_vlan_features.
6422 */
6423 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)6424 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6425 {
6426 netdev_features_t current_vlan_features, requested_vlan_features;
6427 struct ice_netdev_priv *np = netdev_priv(netdev);
6428 struct ice_vsi *vsi = np->vsi;
6429 int err;
6430
6431 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6432 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6433 if (current_vlan_features ^ requested_vlan_features) {
6434 if ((features & NETIF_F_RXFCS) &&
6435 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6436 dev_err(ice_pf_to_dev(vsi->back),
6437 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6438 return -EIO;
6439 }
6440
6441 err = ice_set_vlan_offload_features(vsi, features);
6442 if (err)
6443 return err;
6444 }
6445
6446 current_vlan_features = netdev->features &
6447 NETIF_VLAN_FILTERING_FEATURES;
6448 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6449 if (current_vlan_features ^ requested_vlan_features) {
6450 err = ice_set_vlan_filtering_features(vsi, features);
6451 if (err)
6452 return err;
6453 }
6454
6455 return 0;
6456 }
6457
6458 /**
6459 * ice_set_loopback - turn on/off loopback mode on underlying PF
6460 * @vsi: ptr to VSI
6461 * @ena: flag to indicate the on/off setting
6462 */
ice_set_loopback(struct ice_vsi * vsi,bool ena)6463 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6464 {
6465 bool if_running = netif_running(vsi->netdev);
6466 int ret;
6467
6468 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6469 ret = ice_down(vsi);
6470 if (ret) {
6471 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6472 return ret;
6473 }
6474 }
6475 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6476 if (ret)
6477 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6478 if (if_running)
6479 ret = ice_up(vsi);
6480
6481 return ret;
6482 }
6483
6484 /**
6485 * ice_set_features - set the netdev feature flags
6486 * @netdev: ptr to the netdev being adjusted
6487 * @features: the feature set that the stack is suggesting
6488 */
6489 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)6490 ice_set_features(struct net_device *netdev, netdev_features_t features)
6491 {
6492 netdev_features_t changed = netdev->features ^ features;
6493 struct ice_netdev_priv *np = netdev_priv(netdev);
6494 struct ice_vsi *vsi = np->vsi;
6495 struct ice_pf *pf = vsi->back;
6496 int ret = 0;
6497
6498 /* Don't set any netdev advanced features with device in Safe Mode */
6499 if (ice_is_safe_mode(pf)) {
6500 dev_err(ice_pf_to_dev(pf),
6501 "Device is in Safe Mode - not enabling advanced netdev features\n");
6502 return ret;
6503 }
6504
6505 /* Do not change setting during reset */
6506 if (ice_is_reset_in_progress(pf->state)) {
6507 dev_err(ice_pf_to_dev(pf),
6508 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6509 return -EBUSY;
6510 }
6511
6512 /* Multiple features can be changed in one call so keep features in
6513 * separate if/else statements to guarantee each feature is checked
6514 */
6515 if (changed & NETIF_F_RXHASH)
6516 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6517
6518 ret = ice_set_vlan_features(netdev, features);
6519 if (ret)
6520 return ret;
6521
6522 /* Turn on receive of FCS aka CRC, and after setting this
6523 * flag the packet data will have the 4 byte CRC appended
6524 */
6525 if (changed & NETIF_F_RXFCS) {
6526 if ((features & NETIF_F_RXFCS) &&
6527 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6528 dev_err(ice_pf_to_dev(vsi->back),
6529 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6530 return -EIO;
6531 }
6532
6533 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6534 ret = ice_down_up(vsi);
6535 if (ret)
6536 return ret;
6537 }
6538
6539 if (changed & NETIF_F_NTUPLE) {
6540 bool ena = !!(features & NETIF_F_NTUPLE);
6541
6542 ice_vsi_manage_fdir(vsi, ena);
6543 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6544 }
6545
6546 /* don't turn off hw_tc_offload when ADQ is already enabled */
6547 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6548 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6549 return -EACCES;
6550 }
6551
6552 if (changed & NETIF_F_HW_TC) {
6553 bool ena = !!(features & NETIF_F_HW_TC);
6554
6555 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6556 }
6557
6558 if (changed & NETIF_F_LOOPBACK)
6559 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6560
6561 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS
6562 * (NETIF_F_HW_CSUM) is not supported.
6563 */
6564 if (ice_is_feature_supported(pf, ICE_F_GCS) &&
6565 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) {
6566 if (netdev->features & NETIF_F_HW_CSUM)
6567 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n");
6568 else
6569 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n");
6570 return -EIO;
6571 }
6572
6573 return ret;
6574 }
6575
6576 /**
6577 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6578 * @vsi: VSI to setup VLAN properties for
6579 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6580 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6581 {
6582 int err;
6583
6584 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6585 if (err)
6586 return err;
6587
6588 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6589 if (err)
6590 return err;
6591
6592 return ice_vsi_add_vlan_zero(vsi);
6593 }
6594
6595 /**
6596 * ice_vsi_cfg_lan - Setup the VSI lan related config
6597 * @vsi: the VSI being configured
6598 *
6599 * Return 0 on success and negative value on error
6600 */
ice_vsi_cfg_lan(struct ice_vsi * vsi)6601 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6602 {
6603 int err;
6604
6605 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6606 ice_set_rx_mode(vsi->netdev);
6607
6608 err = ice_vsi_vlan_setup(vsi);
6609 if (err)
6610 return err;
6611 }
6612 ice_vsi_cfg_dcb_rings(vsi);
6613
6614 err = ice_vsi_cfg_lan_txqs(vsi);
6615 if (!err && ice_is_xdp_ena_vsi(vsi))
6616 err = ice_vsi_cfg_xdp_txqs(vsi);
6617 if (!err)
6618 err = ice_vsi_cfg_rxqs(vsi);
6619
6620 return err;
6621 }
6622
6623 /* THEORY OF MODERATION:
6624 * The ice driver hardware works differently than the hardware that DIMLIB was
6625 * originally made for. ice hardware doesn't have packet count limits that
6626 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6627 * which is hard-coded to a limit of 250,000 ints/second.
6628 * If not using dynamic moderation, the INTRL value can be modified
6629 * by ethtool rx-usecs-high.
6630 */
6631 struct ice_dim {
6632 /* the throttle rate for interrupts, basically worst case delay before
6633 * an initial interrupt fires, value is stored in microseconds.
6634 */
6635 u16 itr;
6636 };
6637
6638 /* Make a different profile for Rx that doesn't allow quite so aggressive
6639 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6640 * second.
6641 */
6642 static const struct ice_dim rx_profile[] = {
6643 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6644 {8}, /* 125,000 ints/s */
6645 {16}, /* 62,500 ints/s */
6646 {62}, /* 16,129 ints/s */
6647 {126} /* 7,936 ints/s */
6648 };
6649
6650 /* The transmit profile, which has the same sorts of values
6651 * as the previous struct
6652 */
6653 static const struct ice_dim tx_profile[] = {
6654 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6655 {8}, /* 125,000 ints/s */
6656 {40}, /* 16,125 ints/s */
6657 {128}, /* 7,812 ints/s */
6658 {256} /* 3,906 ints/s */
6659 };
6660
ice_tx_dim_work(struct work_struct * work)6661 static void ice_tx_dim_work(struct work_struct *work)
6662 {
6663 struct ice_ring_container *rc;
6664 struct dim *dim;
6665 u16 itr;
6666
6667 dim = container_of(work, struct dim, work);
6668 rc = dim->priv;
6669
6670 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6671
6672 /* look up the values in our local table */
6673 itr = tx_profile[dim->profile_ix].itr;
6674
6675 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6676 ice_write_itr(rc, itr);
6677
6678 dim->state = DIM_START_MEASURE;
6679 }
6680
ice_rx_dim_work(struct work_struct * work)6681 static void ice_rx_dim_work(struct work_struct *work)
6682 {
6683 struct ice_ring_container *rc;
6684 struct dim *dim;
6685 u16 itr;
6686
6687 dim = container_of(work, struct dim, work);
6688 rc = dim->priv;
6689
6690 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6691
6692 /* look up the values in our local table */
6693 itr = rx_profile[dim->profile_ix].itr;
6694
6695 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6696 ice_write_itr(rc, itr);
6697
6698 dim->state = DIM_START_MEASURE;
6699 }
6700
6701 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6702
6703 /**
6704 * ice_init_moderation - set up interrupt moderation
6705 * @q_vector: the vector containing rings to be configured
6706 *
6707 * Set up interrupt moderation registers, with the intent to do the right thing
6708 * when called from reset or from probe, and whether or not dynamic moderation
6709 * is enabled or not. Take special care to write all the registers in both
6710 * dynamic moderation mode or not in order to make sure hardware is in a known
6711 * state.
6712 */
ice_init_moderation(struct ice_q_vector * q_vector)6713 static void ice_init_moderation(struct ice_q_vector *q_vector)
6714 {
6715 struct ice_ring_container *rc;
6716 bool tx_dynamic, rx_dynamic;
6717
6718 rc = &q_vector->tx;
6719 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6720 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6721 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6722 rc->dim.priv = rc;
6723 tx_dynamic = ITR_IS_DYNAMIC(rc);
6724
6725 /* set the initial TX ITR to match the above */
6726 ice_write_itr(rc, tx_dynamic ?
6727 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6728
6729 rc = &q_vector->rx;
6730 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6731 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6732 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6733 rc->dim.priv = rc;
6734 rx_dynamic = ITR_IS_DYNAMIC(rc);
6735
6736 /* set the initial RX ITR to match the above */
6737 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6738 rc->itr_setting);
6739
6740 ice_set_q_vector_intrl(q_vector);
6741 }
6742
6743 /**
6744 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6745 * @vsi: the VSI being configured
6746 */
ice_napi_enable_all(struct ice_vsi * vsi)6747 static void ice_napi_enable_all(struct ice_vsi *vsi)
6748 {
6749 int q_idx;
6750
6751 if (!vsi->netdev)
6752 return;
6753
6754 ice_for_each_q_vector(vsi, q_idx) {
6755 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6756
6757 ice_init_moderation(q_vector);
6758
6759 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6760 napi_enable(&q_vector->napi);
6761 }
6762 }
6763
6764 /**
6765 * ice_up_complete - Finish the last steps of bringing up a connection
6766 * @vsi: The VSI being configured
6767 *
6768 * Return 0 on success and negative value on error
6769 */
ice_up_complete(struct ice_vsi * vsi)6770 static int ice_up_complete(struct ice_vsi *vsi)
6771 {
6772 struct ice_pf *pf = vsi->back;
6773 int err;
6774
6775 ice_vsi_cfg_msix(vsi);
6776
6777 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6778 * Tx queue group list was configured and the context bits were
6779 * programmed using ice_vsi_cfg_txqs
6780 */
6781 err = ice_vsi_start_all_rx_rings(vsi);
6782 if (err)
6783 return err;
6784
6785 clear_bit(ICE_VSI_DOWN, vsi->state);
6786 ice_napi_enable_all(vsi);
6787 ice_vsi_ena_irq(vsi);
6788
6789 if (vsi->port_info &&
6790 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6791 ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6792 vsi->type == ICE_VSI_SF)))) {
6793 ice_print_link_msg(vsi, true);
6794 netif_tx_start_all_queues(vsi->netdev);
6795 netif_carrier_on(vsi->netdev);
6796 ice_ptp_link_change(pf, true);
6797 }
6798
6799 /* Perform an initial read of the statistics registers now to
6800 * set the baseline so counters are ready when interface is up
6801 */
6802 ice_update_eth_stats(vsi);
6803
6804 if (vsi->type == ICE_VSI_PF)
6805 ice_service_task_schedule(pf);
6806
6807 return 0;
6808 }
6809
6810 /**
6811 * ice_up - Bring the connection back up after being down
6812 * @vsi: VSI being configured
6813 */
ice_up(struct ice_vsi * vsi)6814 int ice_up(struct ice_vsi *vsi)
6815 {
6816 int err;
6817
6818 err = ice_vsi_cfg_lan(vsi);
6819 if (!err)
6820 err = ice_up_complete(vsi);
6821
6822 return err;
6823 }
6824
6825 /**
6826 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6827 * @syncp: pointer to u64_stats_sync
6828 * @stats: stats that pkts and bytes count will be taken from
6829 * @pkts: packets stats counter
6830 * @bytes: bytes stats counter
6831 *
6832 * This function fetches stats from the ring considering the atomic operations
6833 * that needs to be performed to read u64 values in 32 bit machine.
6834 */
6835 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6836 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6837 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6838 {
6839 unsigned int start;
6840
6841 do {
6842 start = u64_stats_fetch_begin(syncp);
6843 *pkts = stats.pkts;
6844 *bytes = stats.bytes;
6845 } while (u64_stats_fetch_retry(syncp, start));
6846 }
6847
6848 /**
6849 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6850 * @vsi: the VSI to be updated
6851 * @vsi_stats: the stats struct to be updated
6852 * @rings: rings to work on
6853 * @count: number of rings
6854 */
6855 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6856 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6857 struct rtnl_link_stats64 *vsi_stats,
6858 struct ice_tx_ring **rings, u16 count)
6859 {
6860 u16 i;
6861
6862 for (i = 0; i < count; i++) {
6863 struct ice_tx_ring *ring;
6864 u64 pkts = 0, bytes = 0;
6865
6866 ring = READ_ONCE(rings[i]);
6867 if (!ring || !ring->ring_stats)
6868 continue;
6869 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6870 ring->ring_stats->stats, &pkts,
6871 &bytes);
6872 vsi_stats->tx_packets += pkts;
6873 vsi_stats->tx_bytes += bytes;
6874 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6875 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6876 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6877 }
6878 }
6879
6880 /**
6881 * ice_update_vsi_ring_stats - Update VSI stats counters
6882 * @vsi: the VSI to be updated
6883 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6884 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6885 {
6886 struct rtnl_link_stats64 *net_stats, *stats_prev;
6887 struct rtnl_link_stats64 *vsi_stats;
6888 struct ice_pf *pf = vsi->back;
6889 u64 pkts, bytes;
6890 int i;
6891
6892 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6893 if (!vsi_stats)
6894 return;
6895
6896 /* reset non-netdev (extended) stats */
6897 vsi->tx_restart = 0;
6898 vsi->tx_busy = 0;
6899 vsi->tx_linearize = 0;
6900 vsi->rx_buf_failed = 0;
6901 vsi->rx_page_failed = 0;
6902
6903 rcu_read_lock();
6904
6905 /* update Tx rings counters */
6906 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6907 vsi->num_txq);
6908
6909 /* update Rx rings counters */
6910 ice_for_each_rxq(vsi, i) {
6911 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6912 struct ice_ring_stats *ring_stats;
6913
6914 ring_stats = ring->ring_stats;
6915 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6916 ring_stats->stats, &pkts,
6917 &bytes);
6918 vsi_stats->rx_packets += pkts;
6919 vsi_stats->rx_bytes += bytes;
6920 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6921 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6922 }
6923
6924 /* update XDP Tx rings counters */
6925 if (ice_is_xdp_ena_vsi(vsi))
6926 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6927 vsi->num_xdp_txq);
6928
6929 rcu_read_unlock();
6930
6931 net_stats = &vsi->net_stats;
6932 stats_prev = &vsi->net_stats_prev;
6933
6934 /* Update netdev counters, but keep in mind that values could start at
6935 * random value after PF reset. And as we increase the reported stat by
6936 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6937 * let's skip this round.
6938 */
6939 if (likely(pf->stat_prev_loaded)) {
6940 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6941 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6942 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6943 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6944 }
6945
6946 stats_prev->tx_packets = vsi_stats->tx_packets;
6947 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6948 stats_prev->rx_packets = vsi_stats->rx_packets;
6949 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6950
6951 kfree(vsi_stats);
6952 }
6953
6954 /**
6955 * ice_update_vsi_stats - Update VSI stats counters
6956 * @vsi: the VSI to be updated
6957 */
ice_update_vsi_stats(struct ice_vsi * vsi)6958 void ice_update_vsi_stats(struct ice_vsi *vsi)
6959 {
6960 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6961 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6962 struct ice_pf *pf = vsi->back;
6963
6964 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6965 test_bit(ICE_CFG_BUSY, pf->state))
6966 return;
6967
6968 /* get stats as recorded by Tx/Rx rings */
6969 ice_update_vsi_ring_stats(vsi);
6970
6971 /* get VSI stats as recorded by the hardware */
6972 ice_update_eth_stats(vsi);
6973
6974 cur_ns->tx_errors = cur_es->tx_errors;
6975 cur_ns->rx_dropped = cur_es->rx_discards;
6976 cur_ns->tx_dropped = cur_es->tx_discards;
6977 cur_ns->multicast = cur_es->rx_multicast;
6978
6979 /* update some more netdev stats if this is main VSI */
6980 if (vsi->type == ICE_VSI_PF) {
6981 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6982 cur_ns->rx_errors = pf->stats.crc_errors +
6983 pf->stats.illegal_bytes +
6984 pf->stats.rx_undersize +
6985 pf->hw_csum_rx_error +
6986 pf->stats.rx_jabber +
6987 pf->stats.rx_fragments +
6988 pf->stats.rx_oversize;
6989 /* record drops from the port level */
6990 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6991 }
6992 }
6993
6994 /**
6995 * ice_update_pf_stats - Update PF port stats counters
6996 * @pf: PF whose stats needs to be updated
6997 */
ice_update_pf_stats(struct ice_pf * pf)6998 void ice_update_pf_stats(struct ice_pf *pf)
6999 {
7000 struct ice_hw_port_stats *prev_ps, *cur_ps;
7001 struct ice_hw *hw = &pf->hw;
7002 u16 fd_ctr_base;
7003 u8 port;
7004
7005 port = hw->port_info->lport;
7006 prev_ps = &pf->stats_prev;
7007 cur_ps = &pf->stats;
7008
7009 if (ice_is_reset_in_progress(pf->state))
7010 pf->stat_prev_loaded = false;
7011
7012 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7013 &prev_ps->eth.rx_bytes,
7014 &cur_ps->eth.rx_bytes);
7015
7016 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7017 &prev_ps->eth.rx_unicast,
7018 &cur_ps->eth.rx_unicast);
7019
7020 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7021 &prev_ps->eth.rx_multicast,
7022 &cur_ps->eth.rx_multicast);
7023
7024 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7025 &prev_ps->eth.rx_broadcast,
7026 &cur_ps->eth.rx_broadcast);
7027
7028 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7029 &prev_ps->eth.rx_discards,
7030 &cur_ps->eth.rx_discards);
7031
7032 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7033 &prev_ps->eth.tx_bytes,
7034 &cur_ps->eth.tx_bytes);
7035
7036 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7037 &prev_ps->eth.tx_unicast,
7038 &cur_ps->eth.tx_unicast);
7039
7040 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7041 &prev_ps->eth.tx_multicast,
7042 &cur_ps->eth.tx_multicast);
7043
7044 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7045 &prev_ps->eth.tx_broadcast,
7046 &cur_ps->eth.tx_broadcast);
7047
7048 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7049 &prev_ps->tx_dropped_link_down,
7050 &cur_ps->tx_dropped_link_down);
7051
7052 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7053 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7054
7055 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7056 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7057
7058 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7059 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7060
7061 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7062 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7063
7064 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7065 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7066
7067 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7068 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7069
7070 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7071 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7072
7073 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7074 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7075
7076 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7077 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7078
7079 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7080 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7081
7082 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7083 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7084
7085 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7086 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7087
7088 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7089 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7090
7091 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7092 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7093
7094 fd_ctr_base = hw->fd_ctr_base;
7095
7096 ice_stat_update40(hw,
7097 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7098 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7099 &cur_ps->fd_sb_match);
7100 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7101 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7102
7103 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7104 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7105
7106 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7107 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7108
7109 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7110 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7111
7112 ice_update_dcb_stats(pf);
7113
7114 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7115 &prev_ps->crc_errors, &cur_ps->crc_errors);
7116
7117 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7118 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7119
7120 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7121 &prev_ps->mac_local_faults,
7122 &cur_ps->mac_local_faults);
7123
7124 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7125 &prev_ps->mac_remote_faults,
7126 &cur_ps->mac_remote_faults);
7127
7128 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
7129 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
7130
7131 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7132 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7133
7134 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7135 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7136
7137 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7138 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7139
7140 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7141 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7142
7143 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7144
7145 pf->stat_prev_loaded = true;
7146 }
7147
7148 /**
7149 * ice_get_stats64 - get statistics for network device structure
7150 * @netdev: network interface device structure
7151 * @stats: main device statistics structure
7152 */
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)7153 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7154 {
7155 struct ice_netdev_priv *np = netdev_priv(netdev);
7156 struct rtnl_link_stats64 *vsi_stats;
7157 struct ice_vsi *vsi = np->vsi;
7158
7159 vsi_stats = &vsi->net_stats;
7160
7161 if (!vsi->num_txq || !vsi->num_rxq)
7162 return;
7163
7164 /* netdev packet/byte stats come from ring counter. These are obtained
7165 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7166 * But, only call the update routine and read the registers if VSI is
7167 * not down.
7168 */
7169 if (!test_bit(ICE_VSI_DOWN, vsi->state))
7170 ice_update_vsi_ring_stats(vsi);
7171 stats->tx_packets = vsi_stats->tx_packets;
7172 stats->tx_bytes = vsi_stats->tx_bytes;
7173 stats->rx_packets = vsi_stats->rx_packets;
7174 stats->rx_bytes = vsi_stats->rx_bytes;
7175
7176 /* The rest of the stats can be read from the hardware but instead we
7177 * just return values that the watchdog task has already obtained from
7178 * the hardware.
7179 */
7180 stats->multicast = vsi_stats->multicast;
7181 stats->tx_errors = vsi_stats->tx_errors;
7182 stats->tx_dropped = vsi_stats->tx_dropped;
7183 stats->rx_errors = vsi_stats->rx_errors;
7184 stats->rx_dropped = vsi_stats->rx_dropped;
7185 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7186 stats->rx_length_errors = vsi_stats->rx_length_errors;
7187 }
7188
7189 /**
7190 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7191 * @vsi: VSI having NAPI disabled
7192 */
ice_napi_disable_all(struct ice_vsi * vsi)7193 static void ice_napi_disable_all(struct ice_vsi *vsi)
7194 {
7195 int q_idx;
7196
7197 if (!vsi->netdev)
7198 return;
7199
7200 ice_for_each_q_vector(vsi, q_idx) {
7201 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7202
7203 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7204 napi_disable(&q_vector->napi);
7205
7206 cancel_work_sync(&q_vector->tx.dim.work);
7207 cancel_work_sync(&q_vector->rx.dim.work);
7208 }
7209 }
7210
7211 /**
7212 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7213 * @vsi: the VSI being un-configured
7214 */
ice_vsi_dis_irq(struct ice_vsi * vsi)7215 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7216 {
7217 struct ice_pf *pf = vsi->back;
7218 struct ice_hw *hw = &pf->hw;
7219 u32 val;
7220 int i;
7221
7222 /* disable interrupt causation from each Rx queue; Tx queues are
7223 * handled in ice_vsi_stop_tx_ring()
7224 */
7225 if (vsi->rx_rings) {
7226 ice_for_each_rxq(vsi, i) {
7227 if (vsi->rx_rings[i]) {
7228 u16 reg;
7229
7230 reg = vsi->rx_rings[i]->reg_idx;
7231 val = rd32(hw, QINT_RQCTL(reg));
7232 val &= ~QINT_RQCTL_CAUSE_ENA_M;
7233 wr32(hw, QINT_RQCTL(reg), val);
7234 }
7235 }
7236 }
7237
7238 /* disable each interrupt */
7239 ice_for_each_q_vector(vsi, i) {
7240 if (!vsi->q_vectors[i])
7241 continue;
7242 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7243 }
7244
7245 ice_flush(hw);
7246
7247 /* don't call synchronize_irq() for VF's from the host */
7248 if (vsi->type == ICE_VSI_VF)
7249 return;
7250
7251 ice_for_each_q_vector(vsi, i)
7252 synchronize_irq(vsi->q_vectors[i]->irq.virq);
7253 }
7254
7255 /**
7256 * ice_down - Shutdown the connection
7257 * @vsi: The VSI being stopped
7258 *
7259 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7260 */
ice_down(struct ice_vsi * vsi)7261 int ice_down(struct ice_vsi *vsi)
7262 {
7263 int i, tx_err, rx_err, vlan_err = 0;
7264
7265 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7266
7267 if (vsi->netdev) {
7268 vlan_err = ice_vsi_del_vlan_zero(vsi);
7269 ice_ptp_link_change(vsi->back, false);
7270 netif_carrier_off(vsi->netdev);
7271 netif_tx_disable(vsi->netdev);
7272 }
7273
7274 ice_vsi_dis_irq(vsi);
7275
7276 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7277 if (tx_err)
7278 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7279 vsi->vsi_num, tx_err);
7280 if (!tx_err && vsi->xdp_rings) {
7281 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7282 if (tx_err)
7283 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7284 vsi->vsi_num, tx_err);
7285 }
7286
7287 rx_err = ice_vsi_stop_all_rx_rings(vsi);
7288 if (rx_err)
7289 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7290 vsi->vsi_num, rx_err);
7291
7292 ice_napi_disable_all(vsi);
7293
7294 ice_for_each_txq(vsi, i)
7295 ice_clean_tx_ring(vsi->tx_rings[i]);
7296
7297 if (vsi->xdp_rings)
7298 ice_for_each_xdp_txq(vsi, i)
7299 ice_clean_tx_ring(vsi->xdp_rings[i]);
7300
7301 ice_for_each_rxq(vsi, i)
7302 ice_clean_rx_ring(vsi->rx_rings[i]);
7303
7304 if (tx_err || rx_err || vlan_err) {
7305 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7306 vsi->vsi_num, vsi->vsw->sw_id);
7307 return -EIO;
7308 }
7309
7310 return 0;
7311 }
7312
7313 /**
7314 * ice_down_up - shutdown the VSI connection and bring it up
7315 * @vsi: the VSI to be reconnected
7316 */
ice_down_up(struct ice_vsi * vsi)7317 int ice_down_up(struct ice_vsi *vsi)
7318 {
7319 int ret;
7320
7321 /* if DOWN already set, nothing to do */
7322 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7323 return 0;
7324
7325 ret = ice_down(vsi);
7326 if (ret)
7327 return ret;
7328
7329 ret = ice_up(vsi);
7330 if (ret) {
7331 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7332 return ret;
7333 }
7334
7335 return 0;
7336 }
7337
7338 /**
7339 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7340 * @vsi: VSI having resources allocated
7341 *
7342 * Return 0 on success, negative on failure
7343 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)7344 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7345 {
7346 int i, err = 0;
7347
7348 if (!vsi->num_txq) {
7349 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7350 vsi->vsi_num);
7351 return -EINVAL;
7352 }
7353
7354 ice_for_each_txq(vsi, i) {
7355 struct ice_tx_ring *ring = vsi->tx_rings[i];
7356
7357 if (!ring)
7358 return -EINVAL;
7359
7360 if (vsi->netdev)
7361 ring->netdev = vsi->netdev;
7362 err = ice_setup_tx_ring(ring);
7363 if (err)
7364 break;
7365 }
7366
7367 return err;
7368 }
7369
7370 /**
7371 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7372 * @vsi: VSI having resources allocated
7373 *
7374 * Return 0 on success, negative on failure
7375 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)7376 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7377 {
7378 int i, err = 0;
7379
7380 if (!vsi->num_rxq) {
7381 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7382 vsi->vsi_num);
7383 return -EINVAL;
7384 }
7385
7386 ice_for_each_rxq(vsi, i) {
7387 struct ice_rx_ring *ring = vsi->rx_rings[i];
7388
7389 if (!ring)
7390 return -EINVAL;
7391
7392 if (vsi->netdev)
7393 ring->netdev = vsi->netdev;
7394 err = ice_setup_rx_ring(ring);
7395 if (err)
7396 break;
7397 }
7398
7399 return err;
7400 }
7401
7402 /**
7403 * ice_vsi_open_ctrl - open control VSI for use
7404 * @vsi: the VSI to open
7405 *
7406 * Initialization of the Control VSI
7407 *
7408 * Returns 0 on success, negative value on error
7409 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)7410 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7411 {
7412 char int_name[ICE_INT_NAME_STR_LEN];
7413 struct ice_pf *pf = vsi->back;
7414 struct device *dev;
7415 int err;
7416
7417 dev = ice_pf_to_dev(pf);
7418 /* allocate descriptors */
7419 err = ice_vsi_setup_tx_rings(vsi);
7420 if (err)
7421 goto err_setup_tx;
7422
7423 err = ice_vsi_setup_rx_rings(vsi);
7424 if (err)
7425 goto err_setup_rx;
7426
7427 err = ice_vsi_cfg_lan(vsi);
7428 if (err)
7429 goto err_setup_rx;
7430
7431 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7432 dev_driver_string(dev), dev_name(dev));
7433 err = ice_vsi_req_irq_msix(vsi, int_name);
7434 if (err)
7435 goto err_setup_rx;
7436
7437 ice_vsi_cfg_msix(vsi);
7438
7439 err = ice_vsi_start_all_rx_rings(vsi);
7440 if (err)
7441 goto err_up_complete;
7442
7443 clear_bit(ICE_VSI_DOWN, vsi->state);
7444 ice_vsi_ena_irq(vsi);
7445
7446 return 0;
7447
7448 err_up_complete:
7449 ice_down(vsi);
7450 err_setup_rx:
7451 ice_vsi_free_rx_rings(vsi);
7452 err_setup_tx:
7453 ice_vsi_free_tx_rings(vsi);
7454
7455 return err;
7456 }
7457
7458 /**
7459 * ice_vsi_open - Called when a network interface is made active
7460 * @vsi: the VSI to open
7461 *
7462 * Initialization of the VSI
7463 *
7464 * Returns 0 on success, negative value on error
7465 */
ice_vsi_open(struct ice_vsi * vsi)7466 int ice_vsi_open(struct ice_vsi *vsi)
7467 {
7468 char int_name[ICE_INT_NAME_STR_LEN];
7469 struct ice_pf *pf = vsi->back;
7470 int err;
7471
7472 /* allocate descriptors */
7473 err = ice_vsi_setup_tx_rings(vsi);
7474 if (err)
7475 goto err_setup_tx;
7476
7477 err = ice_vsi_setup_rx_rings(vsi);
7478 if (err)
7479 goto err_setup_rx;
7480
7481 err = ice_vsi_cfg_lan(vsi);
7482 if (err)
7483 goto err_setup_rx;
7484
7485 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7486 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7487 err = ice_vsi_req_irq_msix(vsi, int_name);
7488 if (err)
7489 goto err_setup_rx;
7490
7491 if (bitmap_empty(pf->txtime_txqs, pf->max_pf_txqs))
7492 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7493
7494 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7495 /* Notify the stack of the actual queue counts. */
7496 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7497 if (err)
7498 goto err_set_qs;
7499
7500 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7501 if (err)
7502 goto err_set_qs;
7503
7504 ice_vsi_set_napi_queues(vsi);
7505 }
7506
7507 err = ice_up_complete(vsi);
7508 if (err)
7509 goto err_up_complete;
7510
7511 return 0;
7512
7513 err_up_complete:
7514 ice_down(vsi);
7515 err_set_qs:
7516 ice_vsi_free_irq(vsi);
7517 err_setup_rx:
7518 ice_vsi_free_rx_rings(vsi);
7519 err_setup_tx:
7520 ice_vsi_free_tx_rings(vsi);
7521
7522 return err;
7523 }
7524
7525 /**
7526 * ice_vsi_release_all - Delete all VSIs
7527 * @pf: PF from which all VSIs are being removed
7528 */
ice_vsi_release_all(struct ice_pf * pf)7529 static void ice_vsi_release_all(struct ice_pf *pf)
7530 {
7531 int err, i;
7532
7533 if (!pf->vsi)
7534 return;
7535
7536 ice_for_each_vsi(pf, i) {
7537 if (!pf->vsi[i])
7538 continue;
7539
7540 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7541 continue;
7542
7543 err = ice_vsi_release(pf->vsi[i]);
7544 if (err)
7545 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7546 i, err, pf->vsi[i]->vsi_num);
7547 }
7548 }
7549
7550 /**
7551 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7552 * @pf: pointer to the PF instance
7553 * @type: VSI type to rebuild
7554 *
7555 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7556 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)7557 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7558 {
7559 struct device *dev = ice_pf_to_dev(pf);
7560 int i, err;
7561
7562 ice_for_each_vsi(pf, i) {
7563 struct ice_vsi *vsi = pf->vsi[i];
7564
7565 if (!vsi || vsi->type != type)
7566 continue;
7567
7568 /* rebuild the VSI */
7569 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7570 if (err) {
7571 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7572 err, vsi->idx, ice_vsi_type_str(type));
7573 return err;
7574 }
7575
7576 /* replay filters for the VSI */
7577 err = ice_replay_vsi(&pf->hw, vsi->idx);
7578 if (err) {
7579 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7580 err, vsi->idx, ice_vsi_type_str(type));
7581 return err;
7582 }
7583
7584 /* Re-map HW VSI number, using VSI handle that has been
7585 * previously validated in ice_replay_vsi() call above
7586 */
7587 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7588
7589 /* enable the VSI */
7590 err = ice_ena_vsi(vsi, false);
7591 if (err) {
7592 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7593 err, vsi->idx, ice_vsi_type_str(type));
7594 return err;
7595 }
7596
7597 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7598 ice_vsi_type_str(type));
7599 }
7600
7601 return 0;
7602 }
7603
7604 /**
7605 * ice_update_pf_netdev_link - Update PF netdev link status
7606 * @pf: pointer to the PF instance
7607 */
ice_update_pf_netdev_link(struct ice_pf * pf)7608 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7609 {
7610 bool link_up;
7611 int i;
7612
7613 ice_for_each_vsi(pf, i) {
7614 struct ice_vsi *vsi = pf->vsi[i];
7615
7616 if (!vsi || vsi->type != ICE_VSI_PF)
7617 return;
7618
7619 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7620 if (link_up) {
7621 netif_carrier_on(pf->vsi[i]->netdev);
7622 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7623 } else {
7624 netif_carrier_off(pf->vsi[i]->netdev);
7625 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7626 }
7627 }
7628 }
7629
7630 /**
7631 * ice_rebuild - rebuild after reset
7632 * @pf: PF to rebuild
7633 * @reset_type: type of reset
7634 *
7635 * Do not rebuild VF VSI in this flow because that is already handled via
7636 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7637 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7638 * to reset/rebuild all the VF VSI twice.
7639 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)7640 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7641 {
7642 struct ice_vsi *vsi = ice_get_main_vsi(pf);
7643 struct device *dev = ice_pf_to_dev(pf);
7644 struct ice_hw *hw = &pf->hw;
7645 bool dvm;
7646 int err;
7647
7648 if (test_bit(ICE_DOWN, pf->state))
7649 goto clear_recovery;
7650
7651 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7652
7653 #define ICE_EMP_RESET_SLEEP_MS 5000
7654 if (reset_type == ICE_RESET_EMPR) {
7655 /* If an EMP reset has occurred, any previously pending flash
7656 * update will have completed. We no longer know whether or
7657 * not the NVM update EMP reset is restricted.
7658 */
7659 pf->fw_emp_reset_disabled = false;
7660
7661 msleep(ICE_EMP_RESET_SLEEP_MS);
7662 }
7663
7664 err = ice_init_all_ctrlq(hw);
7665 if (err) {
7666 dev_err(dev, "control queues init failed %d\n", err);
7667 goto err_init_ctrlq;
7668 }
7669
7670 /* if DDP was previously loaded successfully */
7671 if (!ice_is_safe_mode(pf)) {
7672 /* reload the SW DB of filter tables */
7673 if (reset_type == ICE_RESET_PFR)
7674 ice_fill_blk_tbls(hw);
7675 else
7676 /* Reload DDP Package after CORER/GLOBR reset */
7677 ice_load_pkg(NULL, pf);
7678 }
7679
7680 err = ice_clear_pf_cfg(hw);
7681 if (err) {
7682 dev_err(dev, "clear PF configuration failed %d\n", err);
7683 goto err_init_ctrlq;
7684 }
7685
7686 ice_clear_pxe_mode(hw);
7687
7688 err = ice_init_nvm(hw);
7689 if (err) {
7690 dev_err(dev, "ice_init_nvm failed %d\n", err);
7691 goto err_init_ctrlq;
7692 }
7693
7694 err = ice_get_caps(hw);
7695 if (err) {
7696 dev_err(dev, "ice_get_caps failed %d\n", err);
7697 goto err_init_ctrlq;
7698 }
7699
7700 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7701 if (err) {
7702 dev_err(dev, "set_mac_cfg failed %d\n", err);
7703 goto err_init_ctrlq;
7704 }
7705
7706 dvm = ice_is_dvm_ena(hw);
7707
7708 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7709 if (err)
7710 goto err_init_ctrlq;
7711
7712 err = ice_sched_init_port(hw->port_info);
7713 if (err)
7714 goto err_sched_init_port;
7715
7716 /* start misc vector */
7717 err = ice_req_irq_msix_misc(pf);
7718 if (err) {
7719 dev_err(dev, "misc vector setup failed: %d\n", err);
7720 goto err_sched_init_port;
7721 }
7722
7723 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7724 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7725 if (!rd32(hw, PFQF_FD_SIZE)) {
7726 u16 unused, guar, b_effort;
7727
7728 guar = hw->func_caps.fd_fltr_guar;
7729 b_effort = hw->func_caps.fd_fltr_best_effort;
7730
7731 /* force guaranteed filter pool for PF */
7732 ice_alloc_fd_guar_item(hw, &unused, guar);
7733 /* force shared filter pool for PF */
7734 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7735 }
7736 }
7737
7738 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7739 ice_dcb_rebuild(pf);
7740
7741 /* If the PF previously had enabled PTP, PTP init needs to happen before
7742 * the VSI rebuild. If not, this causes the PTP link status events to
7743 * fail.
7744 */
7745 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7746 ice_ptp_rebuild(pf, reset_type);
7747
7748 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7749 ice_gnss_init(pf);
7750
7751 /* rebuild PF VSI */
7752 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7753 if (err) {
7754 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7755 goto err_vsi_rebuild;
7756 }
7757
7758 if (reset_type == ICE_RESET_PFR) {
7759 err = ice_rebuild_channels(pf);
7760 if (err) {
7761 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7762 err);
7763 goto err_vsi_rebuild;
7764 }
7765 }
7766
7767 /* If Flow Director is active */
7768 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7769 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7770 if (err) {
7771 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7772 goto err_vsi_rebuild;
7773 }
7774
7775 /* replay HW Flow Director recipes */
7776 if (hw->fdir_prof)
7777 ice_fdir_replay_flows(hw);
7778
7779 /* replay Flow Director filters */
7780 ice_fdir_replay_fltrs(pf);
7781
7782 ice_rebuild_arfs(pf);
7783 }
7784
7785 if (vsi && vsi->netdev)
7786 netif_device_attach(vsi->netdev);
7787
7788 ice_update_pf_netdev_link(pf);
7789
7790 /* tell the firmware we are up */
7791 err = ice_send_version(pf);
7792 if (err) {
7793 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7794 err);
7795 goto err_vsi_rebuild;
7796 }
7797
7798 ice_replay_post(hw);
7799
7800 /* if we get here, reset flow is successful */
7801 clear_bit(ICE_RESET_FAILED, pf->state);
7802
7803 ice_health_clear(pf);
7804
7805 ice_plug_aux_dev(pf);
7806 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7807 ice_lag_rebuild(pf);
7808
7809 /* Restore timestamp mode settings after VSI rebuild */
7810 ice_ptp_restore_timestamp_mode(pf);
7811 return;
7812
7813 err_vsi_rebuild:
7814 err_sched_init_port:
7815 ice_sched_cleanup_all(hw);
7816 err_init_ctrlq:
7817 ice_shutdown_all_ctrlq(hw, false);
7818 set_bit(ICE_RESET_FAILED, pf->state);
7819 clear_recovery:
7820 /* set this bit in PF state to control service task scheduling */
7821 set_bit(ICE_NEEDS_RESTART, pf->state);
7822 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7823 }
7824
7825 /**
7826 * ice_change_mtu - NDO callback to change the MTU
7827 * @netdev: network interface device structure
7828 * @new_mtu: new value for maximum frame size
7829 *
7830 * Returns 0 on success, negative on failure
7831 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7832 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7833 {
7834 struct ice_netdev_priv *np = netdev_priv(netdev);
7835 struct ice_vsi *vsi = np->vsi;
7836 struct ice_pf *pf = vsi->back;
7837 struct bpf_prog *prog;
7838 u8 count = 0;
7839 int err = 0;
7840
7841 if (new_mtu == (int)netdev->mtu) {
7842 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7843 return 0;
7844 }
7845
7846 prog = vsi->xdp_prog;
7847 if (prog && !prog->aux->xdp_has_frags) {
7848 int frame_size = ice_max_xdp_frame_size(vsi);
7849
7850 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7851 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7852 frame_size - ICE_ETH_PKT_HDR_PAD);
7853 return -EINVAL;
7854 }
7855 }
7856
7857 /* if a reset is in progress, wait for some time for it to complete */
7858 do {
7859 if (ice_is_reset_in_progress(pf->state)) {
7860 count++;
7861 usleep_range(1000, 2000);
7862 } else {
7863 break;
7864 }
7865
7866 } while (count < 100);
7867
7868 if (count == 100) {
7869 netdev_err(netdev, "can't change MTU. Device is busy\n");
7870 return -EBUSY;
7871 }
7872
7873 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7874 err = ice_down_up(vsi);
7875 if (err)
7876 return err;
7877
7878 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7879 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7880
7881 return err;
7882 }
7883
7884 /**
7885 * ice_set_rss_lut - Set RSS LUT
7886 * @vsi: Pointer to VSI structure
7887 * @lut: Lookup table
7888 * @lut_size: Lookup table size
7889 *
7890 * Returns 0 on success, negative on failure
7891 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7892 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7893 {
7894 struct ice_aq_get_set_rss_lut_params params = {};
7895 struct ice_hw *hw = &vsi->back->hw;
7896 int status;
7897
7898 if (!lut)
7899 return -EINVAL;
7900
7901 params.vsi_handle = vsi->idx;
7902 params.lut_size = lut_size;
7903 params.lut_type = vsi->rss_lut_type;
7904 params.lut = lut;
7905
7906 status = ice_aq_set_rss_lut(hw, ¶ms);
7907 if (status)
7908 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7909 status, libie_aq_str(hw->adminq.sq_last_status));
7910
7911 return status;
7912 }
7913
7914 /**
7915 * ice_set_rss_key - Set RSS key
7916 * @vsi: Pointer to the VSI structure
7917 * @seed: RSS hash seed
7918 *
7919 * Returns 0 on success, negative on failure
7920 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7921 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7922 {
7923 struct ice_hw *hw = &vsi->back->hw;
7924 int status;
7925
7926 if (!seed)
7927 return -EINVAL;
7928
7929 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7930 if (status)
7931 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7932 status, libie_aq_str(hw->adminq.sq_last_status));
7933
7934 return status;
7935 }
7936
7937 /**
7938 * ice_get_rss_lut - Get RSS LUT
7939 * @vsi: Pointer to VSI structure
7940 * @lut: Buffer to store the lookup table entries
7941 * @lut_size: Size of buffer to store the lookup table entries
7942 *
7943 * Returns 0 on success, negative on failure
7944 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7945 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7946 {
7947 struct ice_aq_get_set_rss_lut_params params = {};
7948 struct ice_hw *hw = &vsi->back->hw;
7949 int status;
7950
7951 if (!lut)
7952 return -EINVAL;
7953
7954 params.vsi_handle = vsi->idx;
7955 params.lut_size = lut_size;
7956 params.lut_type = vsi->rss_lut_type;
7957 params.lut = lut;
7958
7959 status = ice_aq_get_rss_lut(hw, ¶ms);
7960 if (status)
7961 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7962 status, libie_aq_str(hw->adminq.sq_last_status));
7963
7964 return status;
7965 }
7966
7967 /**
7968 * ice_get_rss_key - Get RSS key
7969 * @vsi: Pointer to VSI structure
7970 * @seed: Buffer to store the key in
7971 *
7972 * Returns 0 on success, negative on failure
7973 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7974 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7975 {
7976 struct ice_hw *hw = &vsi->back->hw;
7977 int status;
7978
7979 if (!seed)
7980 return -EINVAL;
7981
7982 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7983 if (status)
7984 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7985 status, libie_aq_str(hw->adminq.sq_last_status));
7986
7987 return status;
7988 }
7989
7990 /**
7991 * ice_get_rss - Get RSS LUT and/or key
7992 * @vsi: Pointer to VSI structure
7993 * @seed: Buffer to store the key in
7994 * @lut: Buffer to store the lookup table entries
7995 * @lut_size: Size of buffer to store the lookup table entries
7996 *
7997 * Return: 0 on success, negative on failure
7998 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)7999 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
8000 {
8001 int err;
8002
8003 if (seed) {
8004 err = ice_get_rss_key(vsi, seed);
8005 if (err)
8006 return err;
8007 }
8008
8009 if (lut) {
8010 err = ice_get_rss_lut(vsi, lut, lut_size);
8011 if (err)
8012 return err;
8013 }
8014
8015 return 0;
8016 }
8017
8018 /**
8019 * ice_set_rss_hfunc - Set RSS HASH function
8020 * @vsi: Pointer to VSI structure
8021 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8022 *
8023 * Returns 0 on success, negative on failure
8024 */
ice_set_rss_hfunc(struct ice_vsi * vsi,u8 hfunc)8025 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8026 {
8027 struct ice_hw *hw = &vsi->back->hw;
8028 struct ice_vsi_ctx *ctx;
8029 bool symm;
8030 int err;
8031
8032 if (hfunc == vsi->rss_hfunc)
8033 return 0;
8034
8035 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8036 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8037 return -EOPNOTSUPP;
8038
8039 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8040 if (!ctx)
8041 return -ENOMEM;
8042
8043 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8044 ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8045 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8046 ctx->info.q_opt_rss |=
8047 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8048 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8049 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8050
8051 err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8052 if (err) {
8053 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8054 vsi->vsi_num, err);
8055 } else {
8056 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8057 vsi->rss_hfunc = hfunc;
8058 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8059 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8060 "Symmetric " : "");
8061 }
8062 kfree(ctx);
8063 if (err)
8064 return err;
8065
8066 /* Fix the symmetry setting for all existing RSS configurations */
8067 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8068 return ice_set_rss_cfg_symm(hw, vsi, symm);
8069 }
8070
8071 /**
8072 * ice_bridge_getlink - Get the hardware bridge mode
8073 * @skb: skb buff
8074 * @pid: process ID
8075 * @seq: RTNL message seq
8076 * @dev: the netdev being configured
8077 * @filter_mask: filter mask passed in
8078 * @nlflags: netlink flags passed in
8079 *
8080 * Return the bridge mode (VEB/VEPA)
8081 */
8082 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)8083 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8084 struct net_device *dev, u32 filter_mask, int nlflags)
8085 {
8086 struct ice_pf *pf = ice_netdev_to_pf(dev);
8087 u16 bmode;
8088
8089 bmode = pf->first_sw->bridge_mode;
8090
8091 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8092 filter_mask, NULL);
8093 }
8094
8095 /**
8096 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8097 * @vsi: Pointer to VSI structure
8098 * @bmode: Hardware bridge mode (VEB/VEPA)
8099 *
8100 * Returns 0 on success, negative on failure
8101 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)8102 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8103 {
8104 struct ice_aqc_vsi_props *vsi_props;
8105 struct ice_hw *hw = &vsi->back->hw;
8106 struct ice_vsi_ctx *ctxt;
8107 int ret;
8108
8109 vsi_props = &vsi->info;
8110
8111 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8112 if (!ctxt)
8113 return -ENOMEM;
8114
8115 ctxt->info = vsi->info;
8116
8117 if (bmode == BRIDGE_MODE_VEB)
8118 /* change from VEPA to VEB mode */
8119 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8120 else
8121 /* change from VEB to VEPA mode */
8122 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8123 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8124
8125 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8126 if (ret) {
8127 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8128 bmode, ret, libie_aq_str(hw->adminq.sq_last_status));
8129 goto out;
8130 }
8131 /* Update sw flags for book keeping */
8132 vsi_props->sw_flags = ctxt->info.sw_flags;
8133
8134 out:
8135 kfree(ctxt);
8136 return ret;
8137 }
8138
8139 /**
8140 * ice_bridge_setlink - Set the hardware bridge mode
8141 * @dev: the netdev being configured
8142 * @nlh: RTNL message
8143 * @flags: bridge setlink flags
8144 * @extack: netlink extended ack
8145 *
8146 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8147 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8148 * not already set for all VSIs connected to this switch. And also update the
8149 * unicast switch filter rules for the corresponding switch of the netdev.
8150 */
8151 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)8152 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8153 u16 __always_unused flags,
8154 struct netlink_ext_ack __always_unused *extack)
8155 {
8156 struct ice_pf *pf = ice_netdev_to_pf(dev);
8157 struct nlattr *attr, *br_spec;
8158 struct ice_hw *hw = &pf->hw;
8159 struct ice_sw *pf_sw;
8160 int rem, v, err = 0;
8161
8162 pf_sw = pf->first_sw;
8163 /* find the attribute in the netlink message */
8164 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8165 if (!br_spec)
8166 return -EINVAL;
8167
8168 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8169 __u16 mode = nla_get_u16(attr);
8170
8171 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8172 return -EINVAL;
8173 /* Continue if bridge mode is not being flipped */
8174 if (mode == pf_sw->bridge_mode)
8175 continue;
8176 /* Iterates through the PF VSI list and update the loopback
8177 * mode of the VSI
8178 */
8179 ice_for_each_vsi(pf, v) {
8180 if (!pf->vsi[v])
8181 continue;
8182 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8183 if (err)
8184 return err;
8185 }
8186
8187 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8188 /* Update the unicast switch filter rules for the corresponding
8189 * switch of the netdev
8190 */
8191 err = ice_update_sw_rule_bridge_mode(hw);
8192 if (err) {
8193 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8194 mode, err,
8195 libie_aq_str(hw->adminq.sq_last_status));
8196 /* revert hw->evb_veb */
8197 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8198 return err;
8199 }
8200
8201 pf_sw->bridge_mode = mode;
8202 }
8203
8204 return 0;
8205 }
8206
8207 /**
8208 * ice_tx_timeout - Respond to a Tx Hang
8209 * @netdev: network interface device structure
8210 * @txqueue: Tx queue
8211 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)8212 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8213 {
8214 struct ice_netdev_priv *np = netdev_priv(netdev);
8215 struct ice_tx_ring *tx_ring = NULL;
8216 struct ice_vsi *vsi = np->vsi;
8217 struct ice_pf *pf = vsi->back;
8218 u32 i;
8219
8220 pf->tx_timeout_count++;
8221
8222 /* Check if PFC is enabled for the TC to which the queue belongs
8223 * to. If yes then Tx timeout is not caused by a hung queue, no
8224 * need to reset and rebuild
8225 */
8226 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8227 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8228 txqueue);
8229 return;
8230 }
8231
8232 /* now that we have an index, find the tx_ring struct */
8233 ice_for_each_txq(vsi, i)
8234 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8235 if (txqueue == vsi->tx_rings[i]->q_index) {
8236 tx_ring = vsi->tx_rings[i];
8237 break;
8238 }
8239
8240 /* Reset recovery level if enough time has elapsed after last timeout.
8241 * Also ensure no new reset action happens before next timeout period.
8242 */
8243 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8244 pf->tx_timeout_recovery_level = 1;
8245 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8246 netdev->watchdog_timeo)))
8247 return;
8248
8249 if (tx_ring) {
8250 struct ice_hw *hw = &pf->hw;
8251 u32 head, intr = 0;
8252
8253 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8254 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8255 /* Read interrupt register */
8256 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8257
8258 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8259 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8260 head, tx_ring->next_to_use, intr);
8261
8262 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8263 }
8264
8265 pf->tx_timeout_last_recovery = jiffies;
8266 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8267 pf->tx_timeout_recovery_level, txqueue);
8268
8269 switch (pf->tx_timeout_recovery_level) {
8270 case 1:
8271 set_bit(ICE_PFR_REQ, pf->state);
8272 break;
8273 case 2:
8274 set_bit(ICE_CORER_REQ, pf->state);
8275 break;
8276 case 3:
8277 set_bit(ICE_GLOBR_REQ, pf->state);
8278 break;
8279 default:
8280 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8281 set_bit(ICE_DOWN, pf->state);
8282 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8283 set_bit(ICE_SERVICE_DIS, pf->state);
8284 break;
8285 }
8286
8287 ice_service_task_schedule(pf);
8288 pf->tx_timeout_recovery_level++;
8289 }
8290
8291 /**
8292 * ice_setup_tc_cls_flower - flower classifier offloads
8293 * @np: net device to configure
8294 * @filter_dev: device on which filter is added
8295 * @cls_flower: offload data
8296 * @ingress: if the rule is added to an ingress block
8297 *
8298 * Return: 0 if the flower was successfully added or deleted,
8299 * negative error code otherwise.
8300 */
8301 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower,bool ingress)8302 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8303 struct net_device *filter_dev,
8304 struct flow_cls_offload *cls_flower,
8305 bool ingress)
8306 {
8307 struct ice_vsi *vsi = np->vsi;
8308
8309 if (cls_flower->common.chain_index)
8310 return -EOPNOTSUPP;
8311
8312 switch (cls_flower->command) {
8313 case FLOW_CLS_REPLACE:
8314 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress);
8315 case FLOW_CLS_DESTROY:
8316 return ice_del_cls_flower(vsi, cls_flower);
8317 default:
8318 return -EINVAL;
8319 }
8320 }
8321
8322 /**
8323 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block
8324 * @type: TC SETUP type
8325 * @type_data: TC flower offload data that contains user input
8326 * @cb_priv: netdev private data
8327 *
8328 * Return: 0 if the setup was successful, negative error code otherwise.
8329 */
8330 static int
ice_setup_tc_block_cb_ingress(enum tc_setup_type type,void * type_data,void * cb_priv)8331 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data,
8332 void *cb_priv)
8333 {
8334 struct ice_netdev_priv *np = cb_priv;
8335
8336 switch (type) {
8337 case TC_SETUP_CLSFLOWER:
8338 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8339 type_data, true);
8340 default:
8341 return -EOPNOTSUPP;
8342 }
8343 }
8344
8345 /**
8346 * ice_setup_tc_block_cb_egress - callback handler for egress TC block
8347 * @type: TC SETUP type
8348 * @type_data: TC flower offload data that contains user input
8349 * @cb_priv: netdev private data
8350 *
8351 * Return: 0 if the setup was successful, negative error code otherwise.
8352 */
8353 static int
ice_setup_tc_block_cb_egress(enum tc_setup_type type,void * type_data,void * cb_priv)8354 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data,
8355 void *cb_priv)
8356 {
8357 struct ice_netdev_priv *np = cb_priv;
8358
8359 switch (type) {
8360 case TC_SETUP_CLSFLOWER:
8361 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8362 type_data, false);
8363 default:
8364 return -EOPNOTSUPP;
8365 }
8366 }
8367
8368 /**
8369 * ice_validate_mqprio_qopt - Validate TCF input parameters
8370 * @vsi: Pointer to VSI
8371 * @mqprio_qopt: input parameters for mqprio queue configuration
8372 *
8373 * This function validates MQPRIO params, such as qcount (power of 2 wherever
8374 * needed), and make sure user doesn't specify qcount and BW rate limit
8375 * for TCs, which are more than "num_tc"
8376 */
8377 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)8378 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8379 struct tc_mqprio_qopt_offload *mqprio_qopt)
8380 {
8381 int non_power_of_2_qcount = 0;
8382 struct ice_pf *pf = vsi->back;
8383 int max_rss_q_cnt = 0;
8384 u64 sum_min_rate = 0;
8385 struct device *dev;
8386 int i, speed;
8387 u8 num_tc;
8388
8389 if (vsi->type != ICE_VSI_PF)
8390 return -EINVAL;
8391
8392 if (mqprio_qopt->qopt.offset[0] != 0 ||
8393 mqprio_qopt->qopt.num_tc < 1 ||
8394 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8395 return -EINVAL;
8396
8397 dev = ice_pf_to_dev(pf);
8398 vsi->ch_rss_size = 0;
8399 num_tc = mqprio_qopt->qopt.num_tc;
8400 speed = ice_get_link_speed_kbps(vsi);
8401
8402 for (i = 0; num_tc; i++) {
8403 int qcount = mqprio_qopt->qopt.count[i];
8404 u64 max_rate, min_rate, rem;
8405
8406 if (!qcount)
8407 return -EINVAL;
8408
8409 if (is_power_of_2(qcount)) {
8410 if (non_power_of_2_qcount &&
8411 qcount > non_power_of_2_qcount) {
8412 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8413 qcount, non_power_of_2_qcount);
8414 return -EINVAL;
8415 }
8416 if (qcount > max_rss_q_cnt)
8417 max_rss_q_cnt = qcount;
8418 } else {
8419 if (non_power_of_2_qcount &&
8420 qcount != non_power_of_2_qcount) {
8421 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8422 qcount, non_power_of_2_qcount);
8423 return -EINVAL;
8424 }
8425 if (qcount < max_rss_q_cnt) {
8426 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8427 qcount, max_rss_q_cnt);
8428 return -EINVAL;
8429 }
8430 max_rss_q_cnt = qcount;
8431 non_power_of_2_qcount = qcount;
8432 }
8433
8434 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8435 * converts the bandwidth rate limit into Bytes/s when
8436 * passing it down to the driver. So convert input bandwidth
8437 * from Bytes/s to Kbps
8438 */
8439 max_rate = mqprio_qopt->max_rate[i];
8440 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8441
8442 /* min_rate is minimum guaranteed rate and it can't be zero */
8443 min_rate = mqprio_qopt->min_rate[i];
8444 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8445 sum_min_rate += min_rate;
8446
8447 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8448 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8449 min_rate, ICE_MIN_BW_LIMIT);
8450 return -EINVAL;
8451 }
8452
8453 if (max_rate && max_rate > speed) {
8454 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8455 i, max_rate, speed);
8456 return -EINVAL;
8457 }
8458
8459 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8460 if (rem) {
8461 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8462 i, ICE_MIN_BW_LIMIT);
8463 return -EINVAL;
8464 }
8465
8466 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8467 if (rem) {
8468 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8469 i, ICE_MIN_BW_LIMIT);
8470 return -EINVAL;
8471 }
8472
8473 /* min_rate can't be more than max_rate, except when max_rate
8474 * is zero (implies max_rate sought is max line rate). In such
8475 * a case min_rate can be more than max.
8476 */
8477 if (max_rate && min_rate > max_rate) {
8478 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8479 min_rate, max_rate);
8480 return -EINVAL;
8481 }
8482
8483 if (i >= mqprio_qopt->qopt.num_tc - 1)
8484 break;
8485 if (mqprio_qopt->qopt.offset[i + 1] !=
8486 (mqprio_qopt->qopt.offset[i] + qcount))
8487 return -EINVAL;
8488 }
8489 if (vsi->num_rxq <
8490 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8491 return -EINVAL;
8492 if (vsi->num_txq <
8493 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8494 return -EINVAL;
8495
8496 if (sum_min_rate && sum_min_rate > (u64)speed) {
8497 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8498 sum_min_rate, speed);
8499 return -EINVAL;
8500 }
8501
8502 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8503 vsi->ch_rss_size = max_rss_q_cnt;
8504
8505 return 0;
8506 }
8507
8508 /**
8509 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8510 * @pf: ptr to PF device
8511 * @vsi: ptr to VSI
8512 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)8513 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8514 {
8515 struct device *dev = ice_pf_to_dev(pf);
8516 bool added = false;
8517 struct ice_hw *hw;
8518 int flow;
8519
8520 if (!(vsi->num_gfltr || vsi->num_bfltr))
8521 return -EINVAL;
8522
8523 hw = &pf->hw;
8524 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8525 struct ice_fd_hw_prof *prof;
8526 int tun, status;
8527 u64 entry_h;
8528
8529 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8530 hw->fdir_prof[flow]->cnt))
8531 continue;
8532
8533 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8534 enum ice_flow_priority prio;
8535
8536 /* add this VSI to FDir profile for this flow */
8537 prio = ICE_FLOW_PRIO_NORMAL;
8538 prof = hw->fdir_prof[flow];
8539 status = ice_flow_add_entry(hw, ICE_BLK_FD,
8540 prof->prof_id[tun],
8541 prof->vsi_h[0], vsi->idx,
8542 prio, prof->fdir_seg[tun],
8543 &entry_h);
8544 if (status) {
8545 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8546 vsi->idx, flow);
8547 continue;
8548 }
8549
8550 prof->entry_h[prof->cnt][tun] = entry_h;
8551 }
8552
8553 /* store VSI for filter replay and delete */
8554 prof->vsi_h[prof->cnt] = vsi->idx;
8555 prof->cnt++;
8556
8557 added = true;
8558 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8559 flow);
8560 }
8561
8562 if (!added)
8563 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8564
8565 return 0;
8566 }
8567
8568 /**
8569 * ice_add_channel - add a channel by adding VSI
8570 * @pf: ptr to PF device
8571 * @sw_id: underlying HW switching element ID
8572 * @ch: ptr to channel structure
8573 *
8574 * Add a channel (VSI) using add_vsi and queue_map
8575 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)8576 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8577 {
8578 struct device *dev = ice_pf_to_dev(pf);
8579 struct ice_vsi *vsi;
8580
8581 if (ch->type != ICE_VSI_CHNL) {
8582 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8583 return -EINVAL;
8584 }
8585
8586 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8587 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8588 dev_err(dev, "create chnl VSI failure\n");
8589 return -EINVAL;
8590 }
8591
8592 ice_add_vsi_to_fdir(pf, vsi);
8593
8594 ch->sw_id = sw_id;
8595 ch->vsi_num = vsi->vsi_num;
8596 ch->info.mapping_flags = vsi->info.mapping_flags;
8597 ch->ch_vsi = vsi;
8598 /* set the back pointer of channel for newly created VSI */
8599 vsi->ch = ch;
8600
8601 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8602 sizeof(vsi->info.q_mapping));
8603 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8604 sizeof(vsi->info.tc_mapping));
8605
8606 return 0;
8607 }
8608
8609 /**
8610 * ice_chnl_cfg_res
8611 * @vsi: the VSI being setup
8612 * @ch: ptr to channel structure
8613 *
8614 * Configure channel specific resources such as rings, vector.
8615 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)8616 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8617 {
8618 int i;
8619
8620 for (i = 0; i < ch->num_txq; i++) {
8621 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8622 struct ice_ring_container *rc;
8623 struct ice_tx_ring *tx_ring;
8624 struct ice_rx_ring *rx_ring;
8625
8626 tx_ring = vsi->tx_rings[ch->base_q + i];
8627 rx_ring = vsi->rx_rings[ch->base_q + i];
8628 if (!tx_ring || !rx_ring)
8629 continue;
8630
8631 /* setup ring being channel enabled */
8632 tx_ring->ch = ch;
8633 rx_ring->ch = ch;
8634
8635 /* following code block sets up vector specific attributes */
8636 tx_q_vector = tx_ring->q_vector;
8637 rx_q_vector = rx_ring->q_vector;
8638 if (!tx_q_vector && !rx_q_vector)
8639 continue;
8640
8641 if (tx_q_vector) {
8642 tx_q_vector->ch = ch;
8643 /* setup Tx and Rx ITR setting if DIM is off */
8644 rc = &tx_q_vector->tx;
8645 if (!ITR_IS_DYNAMIC(rc))
8646 ice_write_itr(rc, rc->itr_setting);
8647 }
8648 if (rx_q_vector) {
8649 rx_q_vector->ch = ch;
8650 /* setup Tx and Rx ITR setting if DIM is off */
8651 rc = &rx_q_vector->rx;
8652 if (!ITR_IS_DYNAMIC(rc))
8653 ice_write_itr(rc, rc->itr_setting);
8654 }
8655 }
8656
8657 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8658 * GLINT_ITR register would have written to perform in-context
8659 * update, hence perform flush
8660 */
8661 if (ch->num_txq || ch->num_rxq)
8662 ice_flush(&vsi->back->hw);
8663 }
8664
8665 /**
8666 * ice_cfg_chnl_all_res - configure channel resources
8667 * @vsi: pte to main_vsi
8668 * @ch: ptr to channel structure
8669 *
8670 * This function configures channel specific resources such as flow-director
8671 * counter index, and other resources such as queues, vectors, ITR settings
8672 */
8673 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8674 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8675 {
8676 /* configure channel (aka ADQ) resources such as queues, vectors,
8677 * ITR settings for channel specific vectors and anything else
8678 */
8679 ice_chnl_cfg_res(vsi, ch);
8680 }
8681
8682 /**
8683 * ice_setup_hw_channel - setup new channel
8684 * @pf: ptr to PF device
8685 * @vsi: the VSI being setup
8686 * @ch: ptr to channel structure
8687 * @sw_id: underlying HW switching element ID
8688 * @type: type of channel to be created (VMDq2/VF)
8689 *
8690 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8691 * and configures Tx rings accordingly
8692 */
8693 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8694 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8695 struct ice_channel *ch, u16 sw_id, u8 type)
8696 {
8697 struct device *dev = ice_pf_to_dev(pf);
8698 int ret;
8699
8700 ch->base_q = vsi->next_base_q;
8701 ch->type = type;
8702
8703 ret = ice_add_channel(pf, sw_id, ch);
8704 if (ret) {
8705 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8706 return ret;
8707 }
8708
8709 /* configure/setup ADQ specific resources */
8710 ice_cfg_chnl_all_res(vsi, ch);
8711
8712 /* make sure to update the next_base_q so that subsequent channel's
8713 * (aka ADQ) VSI queue map is correct
8714 */
8715 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8716 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8717 ch->num_rxq);
8718
8719 return 0;
8720 }
8721
8722 /**
8723 * ice_setup_channel - setup new channel using uplink element
8724 * @pf: ptr to PF device
8725 * @vsi: the VSI being setup
8726 * @ch: ptr to channel structure
8727 *
8728 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8729 * and uplink switching element
8730 */
8731 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8732 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8733 struct ice_channel *ch)
8734 {
8735 struct device *dev = ice_pf_to_dev(pf);
8736 u16 sw_id;
8737 int ret;
8738
8739 if (vsi->type != ICE_VSI_PF) {
8740 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8741 return false;
8742 }
8743
8744 sw_id = pf->first_sw->sw_id;
8745
8746 /* create channel (VSI) */
8747 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8748 if (ret) {
8749 dev_err(dev, "failed to setup hw_channel\n");
8750 return false;
8751 }
8752 dev_dbg(dev, "successfully created channel()\n");
8753
8754 return ch->ch_vsi ? true : false;
8755 }
8756
8757 /**
8758 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8759 * @vsi: VSI to be configured
8760 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8761 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8762 */
8763 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8764 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8765 {
8766 int err;
8767
8768 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8769 if (err)
8770 return err;
8771
8772 return ice_set_max_bw_limit(vsi, max_tx_rate);
8773 }
8774
8775 /**
8776 * ice_create_q_channel - function to create channel
8777 * @vsi: VSI to be configured
8778 * @ch: ptr to channel (it contains channel specific params)
8779 *
8780 * This function creates channel (VSI) using num_queues specified by user,
8781 * reconfigs RSS if needed.
8782 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8783 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8784 {
8785 struct ice_pf *pf = vsi->back;
8786 struct device *dev;
8787
8788 if (!ch)
8789 return -EINVAL;
8790
8791 dev = ice_pf_to_dev(pf);
8792 if (!ch->num_txq || !ch->num_rxq) {
8793 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8794 return -EINVAL;
8795 }
8796
8797 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8798 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8799 vsi->cnt_q_avail, ch->num_txq);
8800 return -EINVAL;
8801 }
8802
8803 if (!ice_setup_channel(pf, vsi, ch)) {
8804 dev_info(dev, "Failed to setup channel\n");
8805 return -EINVAL;
8806 }
8807 /* configure BW rate limit */
8808 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8809 int ret;
8810
8811 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8812 ch->min_tx_rate);
8813 if (ret)
8814 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8815 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8816 else
8817 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8818 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8819 }
8820
8821 vsi->cnt_q_avail -= ch->num_txq;
8822
8823 return 0;
8824 }
8825
8826 /**
8827 * ice_rem_all_chnl_fltrs - removes all channel filters
8828 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8829 *
8830 * Remove all advanced switch filters only if they are channel specific
8831 * tc-flower based filter
8832 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8833 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8834 {
8835 struct ice_tc_flower_fltr *fltr;
8836 struct hlist_node *node;
8837
8838 /* to remove all channel filters, iterate an ordered list of filters */
8839 hlist_for_each_entry_safe(fltr, node,
8840 &pf->tc_flower_fltr_list,
8841 tc_flower_node) {
8842 struct ice_rule_query_data rule;
8843 int status;
8844
8845 /* for now process only channel specific filters */
8846 if (!ice_is_chnl_fltr(fltr))
8847 continue;
8848
8849 rule.rid = fltr->rid;
8850 rule.rule_id = fltr->rule_id;
8851 rule.vsi_handle = fltr->dest_vsi_handle;
8852 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8853 if (status) {
8854 if (status == -ENOENT)
8855 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8856 rule.rule_id);
8857 else
8858 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8859 status);
8860 } else if (fltr->dest_vsi) {
8861 /* update advanced switch filter count */
8862 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8863 u32 flags = fltr->flags;
8864
8865 fltr->dest_vsi->num_chnl_fltr--;
8866 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8867 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8868 pf->num_dmac_chnl_fltrs--;
8869 }
8870 }
8871
8872 hlist_del(&fltr->tc_flower_node);
8873 kfree(fltr);
8874 }
8875 }
8876
8877 /**
8878 * ice_remove_q_channels - Remove queue channels for the TCs
8879 * @vsi: VSI to be configured
8880 * @rem_fltr: delete advanced switch filter or not
8881 *
8882 * Remove queue channels for the TCs
8883 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8884 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8885 {
8886 struct ice_channel *ch, *ch_tmp;
8887 struct ice_pf *pf = vsi->back;
8888 int i;
8889
8890 /* remove all tc-flower based filter if they are channel filters only */
8891 if (rem_fltr)
8892 ice_rem_all_chnl_fltrs(pf);
8893
8894 /* remove ntuple filters since queue configuration is being changed */
8895 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8896 struct ice_hw *hw = &pf->hw;
8897
8898 mutex_lock(&hw->fdir_fltr_lock);
8899 ice_fdir_del_all_fltrs(vsi);
8900 mutex_unlock(&hw->fdir_fltr_lock);
8901 }
8902
8903 /* perform cleanup for channels if they exist */
8904 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8905 struct ice_vsi *ch_vsi;
8906
8907 list_del(&ch->list);
8908 ch_vsi = ch->ch_vsi;
8909 if (!ch_vsi) {
8910 kfree(ch);
8911 continue;
8912 }
8913
8914 /* Reset queue contexts */
8915 for (i = 0; i < ch->num_rxq; i++) {
8916 struct ice_tx_ring *tx_ring;
8917 struct ice_rx_ring *rx_ring;
8918
8919 tx_ring = vsi->tx_rings[ch->base_q + i];
8920 rx_ring = vsi->rx_rings[ch->base_q + i];
8921 if (tx_ring) {
8922 tx_ring->ch = NULL;
8923 if (tx_ring->q_vector)
8924 tx_ring->q_vector->ch = NULL;
8925 }
8926 if (rx_ring) {
8927 rx_ring->ch = NULL;
8928 if (rx_ring->q_vector)
8929 rx_ring->q_vector->ch = NULL;
8930 }
8931 }
8932
8933 /* Release FD resources for the channel VSI */
8934 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8935
8936 /* clear the VSI from scheduler tree */
8937 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8938
8939 /* Delete VSI from FW, PF and HW VSI arrays */
8940 ice_vsi_delete(ch->ch_vsi);
8941
8942 /* free the channel */
8943 kfree(ch);
8944 }
8945
8946 /* clear the channel VSI map which is stored in main VSI */
8947 ice_for_each_chnl_tc(i)
8948 vsi->tc_map_vsi[i] = NULL;
8949
8950 /* reset main VSI's all TC information */
8951 vsi->all_enatc = 0;
8952 vsi->all_numtc = 0;
8953 }
8954
8955 /**
8956 * ice_rebuild_channels - rebuild channel
8957 * @pf: ptr to PF
8958 *
8959 * Recreate channel VSIs and replay filters
8960 */
ice_rebuild_channels(struct ice_pf * pf)8961 static int ice_rebuild_channels(struct ice_pf *pf)
8962 {
8963 struct device *dev = ice_pf_to_dev(pf);
8964 struct ice_vsi *main_vsi;
8965 bool rem_adv_fltr = true;
8966 struct ice_channel *ch;
8967 struct ice_vsi *vsi;
8968 int tc_idx = 1;
8969 int i, err;
8970
8971 main_vsi = ice_get_main_vsi(pf);
8972 if (!main_vsi)
8973 return 0;
8974
8975 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8976 main_vsi->old_numtc == 1)
8977 return 0; /* nothing to be done */
8978
8979 /* reconfigure main VSI based on old value of TC and cached values
8980 * for MQPRIO opts
8981 */
8982 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8983 if (err) {
8984 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8985 main_vsi->old_ena_tc, main_vsi->vsi_num);
8986 return err;
8987 }
8988
8989 /* rebuild ADQ VSIs */
8990 ice_for_each_vsi(pf, i) {
8991 enum ice_vsi_type type;
8992
8993 vsi = pf->vsi[i];
8994 if (!vsi || vsi->type != ICE_VSI_CHNL)
8995 continue;
8996
8997 type = vsi->type;
8998
8999 /* rebuild ADQ VSI */
9000 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9001 if (err) {
9002 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9003 ice_vsi_type_str(type), vsi->idx, err);
9004 goto cleanup;
9005 }
9006
9007 /* Re-map HW VSI number, using VSI handle that has been
9008 * previously validated in ice_replay_vsi() call above
9009 */
9010 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9011
9012 /* replay filters for the VSI */
9013 err = ice_replay_vsi(&pf->hw, vsi->idx);
9014 if (err) {
9015 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9016 ice_vsi_type_str(type), err, vsi->idx);
9017 rem_adv_fltr = false;
9018 goto cleanup;
9019 }
9020 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9021 ice_vsi_type_str(type), vsi->idx);
9022
9023 /* store ADQ VSI at correct TC index in main VSI's
9024 * map of TC to VSI
9025 */
9026 main_vsi->tc_map_vsi[tc_idx++] = vsi;
9027 }
9028
9029 /* ADQ VSI(s) has been rebuilt successfully, so setup
9030 * channel for main VSI's Tx and Rx rings
9031 */
9032 list_for_each_entry(ch, &main_vsi->ch_list, list) {
9033 struct ice_vsi *ch_vsi;
9034
9035 ch_vsi = ch->ch_vsi;
9036 if (!ch_vsi)
9037 continue;
9038
9039 /* reconfig channel resources */
9040 ice_cfg_chnl_all_res(main_vsi, ch);
9041
9042 /* replay BW rate limit if it is non-zero */
9043 if (!ch->max_tx_rate && !ch->min_tx_rate)
9044 continue;
9045
9046 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9047 ch->min_tx_rate);
9048 if (err)
9049 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9050 err, ch->max_tx_rate, ch->min_tx_rate,
9051 ch_vsi->vsi_num);
9052 else
9053 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9054 ch->max_tx_rate, ch->min_tx_rate,
9055 ch_vsi->vsi_num);
9056 }
9057
9058 /* reconfig RSS for main VSI */
9059 if (main_vsi->ch_rss_size)
9060 ice_vsi_cfg_rss_lut_key(main_vsi);
9061
9062 return 0;
9063
9064 cleanup:
9065 ice_remove_q_channels(main_vsi, rem_adv_fltr);
9066 return err;
9067 }
9068
9069 /**
9070 * ice_create_q_channels - Add queue channel for the given TCs
9071 * @vsi: VSI to be configured
9072 *
9073 * Configures queue channel mapping to the given TCs
9074 */
ice_create_q_channels(struct ice_vsi * vsi)9075 static int ice_create_q_channels(struct ice_vsi *vsi)
9076 {
9077 struct ice_pf *pf = vsi->back;
9078 struct ice_channel *ch;
9079 int ret = 0, i;
9080
9081 ice_for_each_chnl_tc(i) {
9082 if (!(vsi->all_enatc & BIT(i)))
9083 continue;
9084
9085 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9086 if (!ch) {
9087 ret = -ENOMEM;
9088 goto err_free;
9089 }
9090 INIT_LIST_HEAD(&ch->list);
9091 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9092 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9093 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9094 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9095 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9096
9097 /* convert to Kbits/s */
9098 if (ch->max_tx_rate)
9099 ch->max_tx_rate = div_u64(ch->max_tx_rate,
9100 ICE_BW_KBPS_DIVISOR);
9101 if (ch->min_tx_rate)
9102 ch->min_tx_rate = div_u64(ch->min_tx_rate,
9103 ICE_BW_KBPS_DIVISOR);
9104
9105 ret = ice_create_q_channel(vsi, ch);
9106 if (ret) {
9107 dev_err(ice_pf_to_dev(pf),
9108 "failed creating channel TC:%d\n", i);
9109 kfree(ch);
9110 goto err_free;
9111 }
9112 list_add_tail(&ch->list, &vsi->ch_list);
9113 vsi->tc_map_vsi[i] = ch->ch_vsi;
9114 dev_dbg(ice_pf_to_dev(pf),
9115 "successfully created channel: VSI %p\n", ch->ch_vsi);
9116 }
9117 return 0;
9118
9119 err_free:
9120 ice_remove_q_channels(vsi, false);
9121
9122 return ret;
9123 }
9124
9125 /**
9126 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9127 * @netdev: net device to configure
9128 * @type_data: TC offload data
9129 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)9130 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9131 {
9132 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9133 struct ice_netdev_priv *np = netdev_priv(netdev);
9134 struct ice_vsi *vsi = np->vsi;
9135 struct ice_pf *pf = vsi->back;
9136 u16 mode, ena_tc_qdisc = 0;
9137 int cur_txq, cur_rxq;
9138 u8 hw = 0, num_tcf;
9139 struct device *dev;
9140 int ret, i;
9141
9142 dev = ice_pf_to_dev(pf);
9143 num_tcf = mqprio_qopt->qopt.num_tc;
9144 hw = mqprio_qopt->qopt.hw;
9145 mode = mqprio_qopt->mode;
9146 if (!hw) {
9147 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9148 vsi->ch_rss_size = 0;
9149 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9150 goto config_tcf;
9151 }
9152
9153 /* Generate queue region map for number of TCF requested */
9154 for (i = 0; i < num_tcf; i++)
9155 ena_tc_qdisc |= BIT(i);
9156
9157 switch (mode) {
9158 case TC_MQPRIO_MODE_CHANNEL:
9159
9160 if (pf->hw.port_info->is_custom_tx_enabled) {
9161 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9162 return -EBUSY;
9163 }
9164 ice_tear_down_devlink_rate_tree(pf);
9165
9166 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9167 if (ret) {
9168 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9169 ret);
9170 return ret;
9171 }
9172 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9173 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9174 /* don't assume state of hw_tc_offload during driver load
9175 * and set the flag for TC flower filter if hw_tc_offload
9176 * already ON
9177 */
9178 if (vsi->netdev->features & NETIF_F_HW_TC)
9179 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9180 break;
9181 default:
9182 return -EINVAL;
9183 }
9184
9185 config_tcf:
9186
9187 /* Requesting same TCF configuration as already enabled */
9188 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9189 mode != TC_MQPRIO_MODE_CHANNEL)
9190 return 0;
9191
9192 /* Pause VSI queues */
9193 ice_dis_vsi(vsi, true);
9194
9195 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9196 ice_remove_q_channels(vsi, true);
9197
9198 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9199 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9200 num_online_cpus());
9201 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9202 num_online_cpus());
9203 } else {
9204 /* logic to rebuild VSI, same like ethtool -L */
9205 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9206
9207 for (i = 0; i < num_tcf; i++) {
9208 if (!(ena_tc_qdisc & BIT(i)))
9209 continue;
9210
9211 offset = vsi->mqprio_qopt.qopt.offset[i];
9212 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9213 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9214 }
9215 vsi->req_txq = offset + qcount_tx;
9216 vsi->req_rxq = offset + qcount_rx;
9217
9218 /* store away original rss_size info, so that it gets reused
9219 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9220 * determine, what should be the rss_sizefor main VSI
9221 */
9222 vsi->orig_rss_size = vsi->rss_size;
9223 }
9224
9225 /* save current values of Tx and Rx queues before calling VSI rebuild
9226 * for fallback option
9227 */
9228 cur_txq = vsi->num_txq;
9229 cur_rxq = vsi->num_rxq;
9230
9231 /* proceed with rebuild main VSI using correct number of queues */
9232 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9233 if (ret) {
9234 /* fallback to current number of queues */
9235 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9236 vsi->req_txq = cur_txq;
9237 vsi->req_rxq = cur_rxq;
9238 clear_bit(ICE_RESET_FAILED, pf->state);
9239 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9240 dev_err(dev, "Rebuild of main VSI failed again\n");
9241 return ret;
9242 }
9243 }
9244
9245 vsi->all_numtc = num_tcf;
9246 vsi->all_enatc = ena_tc_qdisc;
9247 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9248 if (ret) {
9249 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9250 vsi->vsi_num);
9251 goto exit;
9252 }
9253
9254 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9255 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9256 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9257
9258 /* set TC0 rate limit if specified */
9259 if (max_tx_rate || min_tx_rate) {
9260 /* convert to Kbits/s */
9261 if (max_tx_rate)
9262 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9263 if (min_tx_rate)
9264 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9265
9266 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9267 if (!ret) {
9268 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9269 max_tx_rate, min_tx_rate, vsi->vsi_num);
9270 } else {
9271 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9272 max_tx_rate, min_tx_rate, vsi->vsi_num);
9273 goto exit;
9274 }
9275 }
9276 ret = ice_create_q_channels(vsi);
9277 if (ret) {
9278 netdev_err(netdev, "failed configuring queue channels\n");
9279 goto exit;
9280 } else {
9281 netdev_dbg(netdev, "successfully configured channels\n");
9282 }
9283 }
9284
9285 if (vsi->ch_rss_size)
9286 ice_vsi_cfg_rss_lut_key(vsi);
9287
9288 exit:
9289 /* if error, reset the all_numtc and all_enatc */
9290 if (ret) {
9291 vsi->all_numtc = 0;
9292 vsi->all_enatc = 0;
9293 }
9294 /* resume VSI */
9295 ice_ena_vsi(vsi, true);
9296
9297 return ret;
9298 }
9299
9300 /**
9301 * ice_cfg_txtime - configure Tx Time for the Tx ring
9302 * @tx_ring: pointer to the Tx ring structure
9303 *
9304 * Return: 0 on success, negative value on failure.
9305 */
ice_cfg_txtime(struct ice_tx_ring * tx_ring)9306 static int ice_cfg_txtime(struct ice_tx_ring *tx_ring)
9307 {
9308 int err, timeout = 50;
9309 struct ice_vsi *vsi;
9310 struct device *dev;
9311 struct ice_pf *pf;
9312 u32 queue;
9313
9314 if (!tx_ring)
9315 return -EINVAL;
9316
9317 vsi = tx_ring->vsi;
9318 pf = vsi->back;
9319 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
9320 timeout--;
9321 if (!timeout)
9322 return -EBUSY;
9323 usleep_range(1000, 2000);
9324 }
9325
9326 queue = tx_ring->q_index;
9327 dev = ice_pf_to_dev(pf);
9328
9329 /* Ignore return value, and always attempt to enable queue. */
9330 ice_qp_dis(vsi, queue);
9331
9332 err = ice_qp_ena(vsi, queue);
9333 if (err)
9334 dev_err(dev, "Failed to enable Tx queue %d for TxTime configuration\n",
9335 queue);
9336
9337 clear_bit(ICE_CFG_BUSY, pf->state);
9338 return err;
9339 }
9340
9341 /**
9342 * ice_offload_txtime - set earliest TxTime first
9343 * @netdev: network interface device structure
9344 * @qopt_off: etf queue option offload from the skb to set
9345 *
9346 * Return: 0 on success, negative value on failure.
9347 */
ice_offload_txtime(struct net_device * netdev,void * qopt_off)9348 static int ice_offload_txtime(struct net_device *netdev,
9349 void *qopt_off)
9350 {
9351 struct ice_netdev_priv *np = netdev_priv(netdev);
9352 struct ice_pf *pf = np->vsi->back;
9353 struct tc_etf_qopt_offload *qopt;
9354 struct ice_vsi *vsi = np->vsi;
9355 struct ice_tx_ring *tx_ring;
9356 int ret = 0;
9357
9358 if (!ice_is_feature_supported(pf, ICE_F_TXTIME))
9359 return -EOPNOTSUPP;
9360
9361 qopt = qopt_off;
9362 if (!qopt_off || qopt->queue < 0 || qopt->queue >= vsi->num_txq)
9363 return -EINVAL;
9364
9365 if (qopt->enable)
9366 set_bit(qopt->queue, pf->txtime_txqs);
9367 else
9368 clear_bit(qopt->queue, pf->txtime_txqs);
9369
9370 if (netif_running(vsi->netdev)) {
9371 tx_ring = vsi->tx_rings[qopt->queue];
9372 ret = ice_cfg_txtime(tx_ring);
9373 if (ret)
9374 goto err;
9375 }
9376
9377 netdev_info(netdev, "%s TxTime on queue: %i\n",
9378 str_enable_disable(qopt->enable), qopt->queue);
9379 return 0;
9380
9381 err:
9382 netdev_err(netdev, "Failed to %s TxTime on queue: %i\n",
9383 str_enable_disable(qopt->enable), qopt->queue);
9384
9385 if (qopt->enable)
9386 clear_bit(qopt->queue, pf->txtime_txqs);
9387 return ret;
9388 }
9389
9390 static LIST_HEAD(ice_block_cb_list);
9391
9392 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)9393 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9394 void *type_data)
9395 {
9396 struct ice_netdev_priv *np = netdev_priv(netdev);
9397 enum flow_block_binder_type binder_type;
9398 struct iidc_rdma_core_dev_info *cdev;
9399 struct ice_pf *pf = np->vsi->back;
9400 flow_setup_cb_t *flower_handler;
9401 bool locked = false;
9402 int err;
9403
9404 switch (type) {
9405 case TC_SETUP_BLOCK:
9406 binder_type =
9407 ((struct flow_block_offload *)type_data)->binder_type;
9408
9409 switch (binder_type) {
9410 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS:
9411 flower_handler = ice_setup_tc_block_cb_ingress;
9412 break;
9413 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS:
9414 flower_handler = ice_setup_tc_block_cb_egress;
9415 break;
9416 default:
9417 return -EOPNOTSUPP;
9418 }
9419
9420 return flow_block_cb_setup_simple(type_data,
9421 &ice_block_cb_list,
9422 flower_handler,
9423 np, np, false);
9424 case TC_SETUP_QDISC_MQPRIO:
9425 if (ice_is_eswitch_mode_switchdev(pf)) {
9426 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9427 return -EOPNOTSUPP;
9428 }
9429
9430 cdev = pf->cdev_info;
9431 if (cdev && cdev->adev) {
9432 mutex_lock(&pf->adev_mutex);
9433 device_lock(&cdev->adev->dev);
9434 locked = true;
9435 if (cdev->adev->dev.driver) {
9436 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9437 err = -EBUSY;
9438 goto adev_unlock;
9439 }
9440 }
9441
9442 /* setup traffic classifier for receive side */
9443 mutex_lock(&pf->tc_mutex);
9444 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9445 mutex_unlock(&pf->tc_mutex);
9446
9447 adev_unlock:
9448 if (locked) {
9449 device_unlock(&cdev->adev->dev);
9450 mutex_unlock(&pf->adev_mutex);
9451 }
9452 return err;
9453 case TC_SETUP_QDISC_ETF:
9454 return ice_offload_txtime(netdev, type_data);
9455 default:
9456 return -EOPNOTSUPP;
9457 }
9458 return -EOPNOTSUPP;
9459 }
9460
9461 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)9462 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9463 struct net_device *netdev)
9464 {
9465 struct ice_indr_block_priv *cb_priv;
9466
9467 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9468 if (!cb_priv->netdev)
9469 return NULL;
9470 if (cb_priv->netdev == netdev)
9471 return cb_priv;
9472 }
9473 return NULL;
9474 }
9475
9476 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)9477 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9478 void *indr_priv)
9479 {
9480 struct ice_indr_block_priv *priv = indr_priv;
9481 struct ice_netdev_priv *np = priv->np;
9482
9483 switch (type) {
9484 case TC_SETUP_CLSFLOWER:
9485 return ice_setup_tc_cls_flower(np, priv->netdev,
9486 (struct flow_cls_offload *)
9487 type_data, false);
9488 default:
9489 return -EOPNOTSUPP;
9490 }
9491 }
9492
9493 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9494 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9495 struct ice_netdev_priv *np,
9496 struct flow_block_offload *f, void *data,
9497 void (*cleanup)(struct flow_block_cb *block_cb))
9498 {
9499 struct ice_indr_block_priv *indr_priv;
9500 struct flow_block_cb *block_cb;
9501
9502 if (!ice_is_tunnel_supported(netdev) &&
9503 !(is_vlan_dev(netdev) &&
9504 vlan_dev_real_dev(netdev) == np->vsi->netdev))
9505 return -EOPNOTSUPP;
9506
9507 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9508 return -EOPNOTSUPP;
9509
9510 switch (f->command) {
9511 case FLOW_BLOCK_BIND:
9512 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9513 if (indr_priv)
9514 return -EEXIST;
9515
9516 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9517 if (!indr_priv)
9518 return -ENOMEM;
9519
9520 indr_priv->netdev = netdev;
9521 indr_priv->np = np;
9522 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9523
9524 block_cb =
9525 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9526 indr_priv, indr_priv,
9527 ice_rep_indr_tc_block_unbind,
9528 f, netdev, sch, data, np,
9529 cleanup);
9530
9531 if (IS_ERR(block_cb)) {
9532 list_del(&indr_priv->list);
9533 kfree(indr_priv);
9534 return PTR_ERR(block_cb);
9535 }
9536 flow_block_cb_add(block_cb, f);
9537 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9538 break;
9539 case FLOW_BLOCK_UNBIND:
9540 indr_priv = ice_indr_block_priv_lookup(np, netdev);
9541 if (!indr_priv)
9542 return -ENOENT;
9543
9544 block_cb = flow_block_cb_lookup(f->block,
9545 ice_indr_setup_block_cb,
9546 indr_priv);
9547 if (!block_cb)
9548 return -ENOENT;
9549
9550 flow_indr_block_cb_remove(block_cb, f);
9551
9552 list_del(&block_cb->driver_list);
9553 break;
9554 default:
9555 return -EOPNOTSUPP;
9556 }
9557 return 0;
9558 }
9559
9560 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))9561 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9562 void *cb_priv, enum tc_setup_type type, void *type_data,
9563 void *data,
9564 void (*cleanup)(struct flow_block_cb *block_cb))
9565 {
9566 switch (type) {
9567 case TC_SETUP_BLOCK:
9568 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9569 data, cleanup);
9570
9571 default:
9572 return -EOPNOTSUPP;
9573 }
9574 }
9575
9576 /**
9577 * ice_open - Called when a network interface becomes active
9578 * @netdev: network interface device structure
9579 *
9580 * The open entry point is called when a network interface is made
9581 * active by the system (IFF_UP). At this point all resources needed
9582 * for transmit and receive operations are allocated, the interrupt
9583 * handler is registered with the OS, the netdev watchdog is enabled,
9584 * and the stack is notified that the interface is ready.
9585 *
9586 * Returns 0 on success, negative value on failure
9587 */
ice_open(struct net_device * netdev)9588 int ice_open(struct net_device *netdev)
9589 {
9590 struct ice_pf *pf = ice_netdev_to_pf(netdev);
9591
9592 if (ice_is_reset_in_progress(pf->state)) {
9593 netdev_err(netdev, "can't open net device while reset is in progress");
9594 return -EBUSY;
9595 }
9596
9597 return ice_open_internal(netdev);
9598 }
9599
9600 /**
9601 * ice_open_internal - Called when a network interface becomes active
9602 * @netdev: network interface device structure
9603 *
9604 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9605 * handling routine
9606 *
9607 * Returns 0 on success, negative value on failure
9608 */
ice_open_internal(struct net_device * netdev)9609 int ice_open_internal(struct net_device *netdev)
9610 {
9611 struct ice_netdev_priv *np = netdev_priv(netdev);
9612 struct ice_vsi *vsi = np->vsi;
9613 struct ice_pf *pf = vsi->back;
9614 struct ice_port_info *pi;
9615 int err;
9616
9617 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9618 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9619 return -EIO;
9620 }
9621
9622 netif_carrier_off(netdev);
9623
9624 pi = vsi->port_info;
9625 err = ice_update_link_info(pi);
9626 if (err) {
9627 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9628 return err;
9629 }
9630
9631 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9632
9633 /* Set PHY if there is media, otherwise, turn off PHY */
9634 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9635 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9636 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9637 err = ice_init_phy_user_cfg(pi);
9638 if (err) {
9639 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9640 err);
9641 return err;
9642 }
9643 }
9644
9645 err = ice_configure_phy(vsi);
9646 if (err) {
9647 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9648 err);
9649 return err;
9650 }
9651 } else {
9652 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9653 ice_set_link(vsi, false);
9654 }
9655
9656 err = ice_vsi_open(vsi);
9657 if (err)
9658 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9659 vsi->vsi_num, vsi->vsw->sw_id);
9660
9661 /* Update existing tunnels information */
9662 udp_tunnel_get_rx_info(netdev);
9663
9664 return err;
9665 }
9666
9667 /**
9668 * ice_stop - Disables a network interface
9669 * @netdev: network interface device structure
9670 *
9671 * The stop entry point is called when an interface is de-activated by the OS,
9672 * and the netdevice enters the DOWN state. The hardware is still under the
9673 * driver's control, but the netdev interface is disabled.
9674 *
9675 * Returns success only - not allowed to fail
9676 */
ice_stop(struct net_device * netdev)9677 int ice_stop(struct net_device *netdev)
9678 {
9679 struct ice_netdev_priv *np = netdev_priv(netdev);
9680 struct ice_vsi *vsi = np->vsi;
9681 struct ice_pf *pf = vsi->back;
9682
9683 if (ice_is_reset_in_progress(pf->state)) {
9684 netdev_err(netdev, "can't stop net device while reset is in progress");
9685 return -EBUSY;
9686 }
9687
9688 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9689 int link_err = ice_force_phys_link_state(vsi, false);
9690
9691 if (link_err) {
9692 if (link_err == -ENOMEDIUM)
9693 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9694 vsi->vsi_num);
9695 else
9696 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9697 vsi->vsi_num, link_err);
9698
9699 ice_vsi_close(vsi);
9700 return -EIO;
9701 }
9702 }
9703
9704 ice_vsi_close(vsi);
9705
9706 return 0;
9707 }
9708
9709 /**
9710 * ice_features_check - Validate encapsulated packet conforms to limits
9711 * @skb: skb buffer
9712 * @netdev: This port's netdev
9713 * @features: Offload features that the stack believes apply
9714 */
9715 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)9716 ice_features_check(struct sk_buff *skb,
9717 struct net_device __always_unused *netdev,
9718 netdev_features_t features)
9719 {
9720 bool gso = skb_is_gso(skb);
9721 size_t len;
9722
9723 /* No point in doing any of this if neither checksum nor GSO are
9724 * being requested for this frame. We can rule out both by just
9725 * checking for CHECKSUM_PARTIAL
9726 */
9727 if (skb->ip_summed != CHECKSUM_PARTIAL)
9728 return features;
9729
9730 /* We cannot support GSO if the MSS is going to be less than
9731 * 64 bytes. If it is then we need to drop support for GSO.
9732 */
9733 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9734 features &= ~NETIF_F_GSO_MASK;
9735
9736 len = skb_network_offset(skb);
9737 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9738 goto out_rm_features;
9739
9740 len = skb_network_header_len(skb);
9741 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9742 goto out_rm_features;
9743
9744 if (skb->encapsulation) {
9745 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9746 * the case of IPIP frames, the transport header pointer is
9747 * after the inner header! So check to make sure that this
9748 * is a GRE or UDP_TUNNEL frame before doing that math.
9749 */
9750 if (gso && (skb_shinfo(skb)->gso_type &
9751 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9752 len = skb_inner_network_header(skb) -
9753 skb_transport_header(skb);
9754 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9755 goto out_rm_features;
9756 }
9757
9758 len = skb_inner_network_header_len(skb);
9759 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9760 goto out_rm_features;
9761 }
9762
9763 return features;
9764 out_rm_features:
9765 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9766 }
9767
9768 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9769 .ndo_open = ice_open,
9770 .ndo_stop = ice_stop,
9771 .ndo_start_xmit = ice_start_xmit,
9772 .ndo_set_mac_address = ice_set_mac_address,
9773 .ndo_validate_addr = eth_validate_addr,
9774 .ndo_change_mtu = ice_change_mtu,
9775 .ndo_get_stats64 = ice_get_stats64,
9776 .ndo_tx_timeout = ice_tx_timeout,
9777 .ndo_bpf = ice_xdp_safe_mode,
9778 };
9779
9780 static const struct net_device_ops ice_netdev_ops = {
9781 .ndo_open = ice_open,
9782 .ndo_stop = ice_stop,
9783 .ndo_start_xmit = ice_start_xmit,
9784 .ndo_select_queue = ice_select_queue,
9785 .ndo_features_check = ice_features_check,
9786 .ndo_fix_features = ice_fix_features,
9787 .ndo_set_rx_mode = ice_set_rx_mode,
9788 .ndo_set_mac_address = ice_set_mac_address,
9789 .ndo_validate_addr = eth_validate_addr,
9790 .ndo_change_mtu = ice_change_mtu,
9791 .ndo_get_stats64 = ice_get_stats64,
9792 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9793 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9794 .ndo_set_vf_mac = ice_set_vf_mac,
9795 .ndo_get_vf_config = ice_get_vf_cfg,
9796 .ndo_set_vf_trust = ice_set_vf_trust,
9797 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9798 .ndo_set_vf_link_state = ice_set_vf_link_state,
9799 .ndo_get_vf_stats = ice_get_vf_stats,
9800 .ndo_set_vf_rate = ice_set_vf_bw,
9801 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9802 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9803 .ndo_setup_tc = ice_setup_tc,
9804 .ndo_set_features = ice_set_features,
9805 .ndo_bridge_getlink = ice_bridge_getlink,
9806 .ndo_bridge_setlink = ice_bridge_setlink,
9807 .ndo_fdb_add = ice_fdb_add,
9808 .ndo_fdb_del = ice_fdb_del,
9809 #ifdef CONFIG_RFS_ACCEL
9810 .ndo_rx_flow_steer = ice_rx_flow_steer,
9811 #endif
9812 .ndo_tx_timeout = ice_tx_timeout,
9813 .ndo_bpf = ice_xdp,
9814 .ndo_xdp_xmit = ice_xdp_xmit,
9815 .ndo_xsk_wakeup = ice_xsk_wakeup,
9816 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get,
9817 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set,
9818 };
9819