1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 #include "iostat.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/f2fs.h>
40
41 static struct kmem_cache *f2fs_inode_cachep;
42
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44
45 const char *f2fs_fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_KVMALLOC] = "kvmalloc",
48 [FAULT_PAGE_ALLOC] = "page alloc",
49 [FAULT_PAGE_GET] = "page get",
50 [FAULT_ALLOC_NID] = "alloc nid",
51 [FAULT_ORPHAN] = "orphan",
52 [FAULT_BLOCK] = "no more block",
53 [FAULT_DIR_DEPTH] = "too big dir depth",
54 [FAULT_EVICT_INODE] = "evict_inode fail",
55 [FAULT_TRUNCATE] = "truncate fail",
56 [FAULT_READ_IO] = "read IO error",
57 [FAULT_CHECKPOINT] = "checkpoint error",
58 [FAULT_DISCARD] = "discard error",
59 [FAULT_WRITE_IO] = "write IO error",
60 [FAULT_SLAB_ALLOC] = "slab alloc",
61 [FAULT_DQUOT_INIT] = "dquot initialize",
62 [FAULT_LOCK_OP] = "lock_op",
63 [FAULT_BLKADDR_VALIDITY] = "invalid blkaddr",
64 [FAULT_BLKADDR_CONSISTENCE] = "inconsistent blkaddr",
65 [FAULT_NO_SEGMENT] = "no free segment",
66 };
67
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)68 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
69 unsigned long type)
70 {
71 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
72
73 if (rate) {
74 if (rate > INT_MAX)
75 return -EINVAL;
76 atomic_set(&ffi->inject_ops, 0);
77 ffi->inject_rate = (int)rate;
78 }
79
80 if (type) {
81 if (type >= BIT(FAULT_MAX))
82 return -EINVAL;
83 ffi->inject_type = (unsigned int)type;
84 }
85
86 if (!rate && !type)
87 memset(ffi, 0, sizeof(struct f2fs_fault_info));
88 else
89 f2fs_info(sbi,
90 "build fault injection attr: rate: %lu, type: 0x%lx",
91 rate, type);
92 return 0;
93 }
94 #endif
95
96 /* f2fs-wide shrinker description */
97 static struct shrinker *f2fs_shrinker_info;
98
f2fs_init_shrinker(void)99 static int __init f2fs_init_shrinker(void)
100 {
101 f2fs_shrinker_info = shrinker_alloc(0, "f2fs-shrinker");
102 if (!f2fs_shrinker_info)
103 return -ENOMEM;
104
105 f2fs_shrinker_info->count_objects = f2fs_shrink_count;
106 f2fs_shrinker_info->scan_objects = f2fs_shrink_scan;
107
108 shrinker_register(f2fs_shrinker_info);
109
110 return 0;
111 }
112
f2fs_exit_shrinker(void)113 static void f2fs_exit_shrinker(void)
114 {
115 shrinker_free(f2fs_shrinker_info);
116 }
117
118 enum {
119 Opt_gc_background,
120 Opt_disable_roll_forward,
121 Opt_norecovery,
122 Opt_discard,
123 Opt_nodiscard,
124 Opt_noheap,
125 Opt_heap,
126 Opt_user_xattr,
127 Opt_nouser_xattr,
128 Opt_acl,
129 Opt_noacl,
130 Opt_active_logs,
131 Opt_disable_ext_identify,
132 Opt_inline_xattr,
133 Opt_noinline_xattr,
134 Opt_inline_xattr_size,
135 Opt_inline_data,
136 Opt_inline_dentry,
137 Opt_noinline_dentry,
138 Opt_flush_merge,
139 Opt_noflush_merge,
140 Opt_barrier,
141 Opt_nobarrier,
142 Opt_fastboot,
143 Opt_extent_cache,
144 Opt_noextent_cache,
145 Opt_noinline_data,
146 Opt_data_flush,
147 Opt_reserve_root,
148 Opt_resgid,
149 Opt_resuid,
150 Opt_mode,
151 Opt_fault_injection,
152 Opt_fault_type,
153 Opt_lazytime,
154 Opt_nolazytime,
155 Opt_quota,
156 Opt_noquota,
157 Opt_usrquota,
158 Opt_grpquota,
159 Opt_prjquota,
160 Opt_usrjquota,
161 Opt_grpjquota,
162 Opt_prjjquota,
163 Opt_offusrjquota,
164 Opt_offgrpjquota,
165 Opt_offprjjquota,
166 Opt_jqfmt_vfsold,
167 Opt_jqfmt_vfsv0,
168 Opt_jqfmt_vfsv1,
169 Opt_alloc,
170 Opt_fsync,
171 Opt_test_dummy_encryption,
172 Opt_inlinecrypt,
173 Opt_checkpoint_disable,
174 Opt_checkpoint_disable_cap,
175 Opt_checkpoint_disable_cap_perc,
176 Opt_checkpoint_enable,
177 Opt_checkpoint_merge,
178 Opt_nocheckpoint_merge,
179 Opt_compress_algorithm,
180 Opt_compress_log_size,
181 Opt_compress_extension,
182 Opt_nocompress_extension,
183 Opt_compress_chksum,
184 Opt_compress_mode,
185 Opt_compress_cache,
186 Opt_atgc,
187 Opt_gc_merge,
188 Opt_nogc_merge,
189 Opt_discard_unit,
190 Opt_memory_mode,
191 Opt_age_extent_cache,
192 Opt_errors,
193 Opt_err,
194 };
195
196 static match_table_t f2fs_tokens = {
197 {Opt_gc_background, "background_gc=%s"},
198 {Opt_disable_roll_forward, "disable_roll_forward"},
199 {Opt_norecovery, "norecovery"},
200 {Opt_discard, "discard"},
201 {Opt_nodiscard, "nodiscard"},
202 {Opt_noheap, "no_heap"},
203 {Opt_heap, "heap"},
204 {Opt_user_xattr, "user_xattr"},
205 {Opt_nouser_xattr, "nouser_xattr"},
206 {Opt_acl, "acl"},
207 {Opt_noacl, "noacl"},
208 {Opt_active_logs, "active_logs=%u"},
209 {Opt_disable_ext_identify, "disable_ext_identify"},
210 {Opt_inline_xattr, "inline_xattr"},
211 {Opt_noinline_xattr, "noinline_xattr"},
212 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
213 {Opt_inline_data, "inline_data"},
214 {Opt_inline_dentry, "inline_dentry"},
215 {Opt_noinline_dentry, "noinline_dentry"},
216 {Opt_flush_merge, "flush_merge"},
217 {Opt_noflush_merge, "noflush_merge"},
218 {Opt_barrier, "barrier"},
219 {Opt_nobarrier, "nobarrier"},
220 {Opt_fastboot, "fastboot"},
221 {Opt_extent_cache, "extent_cache"},
222 {Opt_noextent_cache, "noextent_cache"},
223 {Opt_noinline_data, "noinline_data"},
224 {Opt_data_flush, "data_flush"},
225 {Opt_reserve_root, "reserve_root=%u"},
226 {Opt_resgid, "resgid=%u"},
227 {Opt_resuid, "resuid=%u"},
228 {Opt_mode, "mode=%s"},
229 {Opt_fault_injection, "fault_injection=%u"},
230 {Opt_fault_type, "fault_type=%u"},
231 {Opt_lazytime, "lazytime"},
232 {Opt_nolazytime, "nolazytime"},
233 {Opt_quota, "quota"},
234 {Opt_noquota, "noquota"},
235 {Opt_usrquota, "usrquota"},
236 {Opt_grpquota, "grpquota"},
237 {Opt_prjquota, "prjquota"},
238 {Opt_usrjquota, "usrjquota=%s"},
239 {Opt_grpjquota, "grpjquota=%s"},
240 {Opt_prjjquota, "prjjquota=%s"},
241 {Opt_offusrjquota, "usrjquota="},
242 {Opt_offgrpjquota, "grpjquota="},
243 {Opt_offprjjquota, "prjjquota="},
244 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
245 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
246 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
247 {Opt_alloc, "alloc_mode=%s"},
248 {Opt_fsync, "fsync_mode=%s"},
249 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
250 {Opt_test_dummy_encryption, "test_dummy_encryption"},
251 {Opt_inlinecrypt, "inlinecrypt"},
252 {Opt_checkpoint_disable, "checkpoint=disable"},
253 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
254 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
255 {Opt_checkpoint_enable, "checkpoint=enable"},
256 {Opt_checkpoint_merge, "checkpoint_merge"},
257 {Opt_nocheckpoint_merge, "nocheckpoint_merge"},
258 {Opt_compress_algorithm, "compress_algorithm=%s"},
259 {Opt_compress_log_size, "compress_log_size=%u"},
260 {Opt_compress_extension, "compress_extension=%s"},
261 {Opt_nocompress_extension, "nocompress_extension=%s"},
262 {Opt_compress_chksum, "compress_chksum"},
263 {Opt_compress_mode, "compress_mode=%s"},
264 {Opt_compress_cache, "compress_cache"},
265 {Opt_atgc, "atgc"},
266 {Opt_gc_merge, "gc_merge"},
267 {Opt_nogc_merge, "nogc_merge"},
268 {Opt_discard_unit, "discard_unit=%s"},
269 {Opt_memory_mode, "memory=%s"},
270 {Opt_age_extent_cache, "age_extent_cache"},
271 {Opt_errors, "errors=%s"},
272 {Opt_err, NULL},
273 };
274
f2fs_printk(struct f2fs_sb_info * sbi,bool limit_rate,const char * fmt,...)275 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate,
276 const char *fmt, ...)
277 {
278 struct va_format vaf;
279 va_list args;
280 int level;
281
282 va_start(args, fmt);
283
284 level = printk_get_level(fmt);
285 vaf.fmt = printk_skip_level(fmt);
286 vaf.va = &args;
287 if (limit_rate)
288 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n",
289 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
290 else
291 printk("%c%cF2FS-fs (%s): %pV\n",
292 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
293
294 va_end(args);
295 }
296
297 #if IS_ENABLED(CONFIG_UNICODE)
298 static const struct f2fs_sb_encodings {
299 __u16 magic;
300 char *name;
301 unsigned int version;
302 } f2fs_sb_encoding_map[] = {
303 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
304 };
305
306 static const struct f2fs_sb_encodings *
f2fs_sb_read_encoding(const struct f2fs_super_block * sb)307 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
308 {
309 __u16 magic = le16_to_cpu(sb->s_encoding);
310 int i;
311
312 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
313 if (magic == f2fs_sb_encoding_map[i].magic)
314 return &f2fs_sb_encoding_map[i];
315
316 return NULL;
317 }
318
319 struct kmem_cache *f2fs_cf_name_slab;
f2fs_create_casefold_cache(void)320 static int __init f2fs_create_casefold_cache(void)
321 {
322 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
323 F2FS_NAME_LEN);
324 return f2fs_cf_name_slab ? 0 : -ENOMEM;
325 }
326
f2fs_destroy_casefold_cache(void)327 static void f2fs_destroy_casefold_cache(void)
328 {
329 kmem_cache_destroy(f2fs_cf_name_slab);
330 }
331 #else
f2fs_create_casefold_cache(void)332 static int __init f2fs_create_casefold_cache(void) { return 0; }
f2fs_destroy_casefold_cache(void)333 static void f2fs_destroy_casefold_cache(void) { }
334 #endif
335
limit_reserve_root(struct f2fs_sb_info * sbi)336 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
337 {
338 block_t limit = min((sbi->user_block_count >> 3),
339 sbi->user_block_count - sbi->reserved_blocks);
340
341 /* limit is 12.5% */
342 if (test_opt(sbi, RESERVE_ROOT) &&
343 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
344 F2FS_OPTION(sbi).root_reserved_blocks = limit;
345 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
346 F2FS_OPTION(sbi).root_reserved_blocks);
347 }
348 if (!test_opt(sbi, RESERVE_ROOT) &&
349 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
350 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
351 !gid_eq(F2FS_OPTION(sbi).s_resgid,
352 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
353 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
354 from_kuid_munged(&init_user_ns,
355 F2FS_OPTION(sbi).s_resuid),
356 from_kgid_munged(&init_user_ns,
357 F2FS_OPTION(sbi).s_resgid));
358 }
359
adjust_unusable_cap_perc(struct f2fs_sb_info * sbi)360 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
361 {
362 if (!F2FS_OPTION(sbi).unusable_cap_perc)
363 return;
364
365 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
366 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
367 else
368 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
369 F2FS_OPTION(sbi).unusable_cap_perc;
370
371 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
372 F2FS_OPTION(sbi).unusable_cap,
373 F2FS_OPTION(sbi).unusable_cap_perc);
374 }
375
init_once(void * foo)376 static void init_once(void *foo)
377 {
378 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
379
380 inode_init_once(&fi->vfs_inode);
381 }
382
383 #ifdef CONFIG_QUOTA
384 static const char * const quotatypes[] = INITQFNAMES;
385 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)386 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
387 substring_t *args)
388 {
389 struct f2fs_sb_info *sbi = F2FS_SB(sb);
390 char *qname;
391 int ret = -EINVAL;
392
393 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
394 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
395 return -EINVAL;
396 }
397 if (f2fs_sb_has_quota_ino(sbi)) {
398 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
399 return 0;
400 }
401
402 qname = match_strdup(args);
403 if (!qname) {
404 f2fs_err(sbi, "Not enough memory for storing quotafile name");
405 return -ENOMEM;
406 }
407 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
408 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
409 ret = 0;
410 else
411 f2fs_err(sbi, "%s quota file already specified",
412 QTYPE2NAME(qtype));
413 goto errout;
414 }
415 if (strchr(qname, '/')) {
416 f2fs_err(sbi, "quotafile must be on filesystem root");
417 goto errout;
418 }
419 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
420 set_opt(sbi, QUOTA);
421 return 0;
422 errout:
423 kfree(qname);
424 return ret;
425 }
426
f2fs_clear_qf_name(struct super_block * sb,int qtype)427 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
428 {
429 struct f2fs_sb_info *sbi = F2FS_SB(sb);
430
431 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
432 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
433 return -EINVAL;
434 }
435 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
436 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
437 return 0;
438 }
439
f2fs_check_quota_options(struct f2fs_sb_info * sbi)440 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
441 {
442 /*
443 * We do the test below only for project quotas. 'usrquota' and
444 * 'grpquota' mount options are allowed even without quota feature
445 * to support legacy quotas in quota files.
446 */
447 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
448 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
449 return -1;
450 }
451 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
452 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
453 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
454 if (test_opt(sbi, USRQUOTA) &&
455 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
456 clear_opt(sbi, USRQUOTA);
457
458 if (test_opt(sbi, GRPQUOTA) &&
459 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
460 clear_opt(sbi, GRPQUOTA);
461
462 if (test_opt(sbi, PRJQUOTA) &&
463 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
464 clear_opt(sbi, PRJQUOTA);
465
466 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
467 test_opt(sbi, PRJQUOTA)) {
468 f2fs_err(sbi, "old and new quota format mixing");
469 return -1;
470 }
471
472 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
473 f2fs_err(sbi, "journaled quota format not specified");
474 return -1;
475 }
476 }
477
478 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
479 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
480 F2FS_OPTION(sbi).s_jquota_fmt = 0;
481 }
482 return 0;
483 }
484 #endif
485
f2fs_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)486 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
487 const char *opt,
488 const substring_t *arg,
489 bool is_remount)
490 {
491 struct f2fs_sb_info *sbi = F2FS_SB(sb);
492 struct fs_parameter param = {
493 .type = fs_value_is_string,
494 .string = arg->from ? arg->from : "",
495 };
496 struct fscrypt_dummy_policy *policy =
497 &F2FS_OPTION(sbi).dummy_enc_policy;
498 int err;
499
500 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
501 f2fs_warn(sbi, "test_dummy_encryption option not supported");
502 return -EINVAL;
503 }
504
505 if (!f2fs_sb_has_encrypt(sbi)) {
506 f2fs_err(sbi, "Encrypt feature is off");
507 return -EINVAL;
508 }
509
510 /*
511 * This mount option is just for testing, and it's not worthwhile to
512 * implement the extra complexity (e.g. RCU protection) that would be
513 * needed to allow it to be set or changed during remount. We do allow
514 * it to be specified during remount, but only if there is no change.
515 */
516 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
517 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
518 return -EINVAL;
519 }
520
521 err = fscrypt_parse_test_dummy_encryption(¶m, policy);
522 if (err) {
523 if (err == -EEXIST)
524 f2fs_warn(sbi,
525 "Can't change test_dummy_encryption on remount");
526 else if (err == -EINVAL)
527 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
528 opt);
529 else
530 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
531 opt, err);
532 return -EINVAL;
533 }
534 f2fs_warn(sbi, "Test dummy encryption mode enabled");
535 return 0;
536 }
537
538 #ifdef CONFIG_F2FS_FS_COMPRESSION
is_compress_extension_exist(struct f2fs_sb_info * sbi,const char * new_ext,bool is_ext)539 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi,
540 const char *new_ext, bool is_ext)
541 {
542 unsigned char (*ext)[F2FS_EXTENSION_LEN];
543 int ext_cnt;
544 int i;
545
546 if (is_ext) {
547 ext = F2FS_OPTION(sbi).extensions;
548 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
549 } else {
550 ext = F2FS_OPTION(sbi).noextensions;
551 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
552 }
553
554 for (i = 0; i < ext_cnt; i++) {
555 if (!strcasecmp(new_ext, ext[i]))
556 return true;
557 }
558
559 return false;
560 }
561
562 /*
563 * 1. The same extension name cannot not appear in both compress and non-compress extension
564 * at the same time.
565 * 2. If the compress extension specifies all files, the types specified by the non-compress
566 * extension will be treated as special cases and will not be compressed.
567 * 3. Don't allow the non-compress extension specifies all files.
568 */
f2fs_test_compress_extension(struct f2fs_sb_info * sbi)569 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
570 {
571 unsigned char (*ext)[F2FS_EXTENSION_LEN];
572 unsigned char (*noext)[F2FS_EXTENSION_LEN];
573 int ext_cnt, noext_cnt, index = 0, no_index = 0;
574
575 ext = F2FS_OPTION(sbi).extensions;
576 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
577 noext = F2FS_OPTION(sbi).noextensions;
578 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
579
580 if (!noext_cnt)
581 return 0;
582
583 for (no_index = 0; no_index < noext_cnt; no_index++) {
584 if (!strcasecmp("*", noext[no_index])) {
585 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
586 return -EINVAL;
587 }
588 for (index = 0; index < ext_cnt; index++) {
589 if (!strcasecmp(ext[index], noext[no_index])) {
590 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
591 ext[index]);
592 return -EINVAL;
593 }
594 }
595 }
596 return 0;
597 }
598
599 #ifdef CONFIG_F2FS_FS_LZ4
f2fs_set_lz4hc_level(struct f2fs_sb_info * sbi,const char * str)600 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
601 {
602 #ifdef CONFIG_F2FS_FS_LZ4HC
603 unsigned int level;
604
605 if (strlen(str) == 3) {
606 F2FS_OPTION(sbi).compress_level = 0;
607 return 0;
608 }
609
610 str += 3;
611
612 if (str[0] != ':') {
613 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
614 return -EINVAL;
615 }
616 if (kstrtouint(str + 1, 10, &level))
617 return -EINVAL;
618
619 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) {
620 f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
621 return -EINVAL;
622 }
623
624 F2FS_OPTION(sbi).compress_level = level;
625 return 0;
626 #else
627 if (strlen(str) == 3) {
628 F2FS_OPTION(sbi).compress_level = 0;
629 return 0;
630 }
631 f2fs_info(sbi, "kernel doesn't support lz4hc compression");
632 return -EINVAL;
633 #endif
634 }
635 #endif
636
637 #ifdef CONFIG_F2FS_FS_ZSTD
f2fs_set_zstd_level(struct f2fs_sb_info * sbi,const char * str)638 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
639 {
640 int level;
641 int len = 4;
642
643 if (strlen(str) == len) {
644 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
645 return 0;
646 }
647
648 str += len;
649
650 if (str[0] != ':') {
651 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
652 return -EINVAL;
653 }
654 if (kstrtoint(str + 1, 10, &level))
655 return -EINVAL;
656
657 /* f2fs does not support negative compress level now */
658 if (level < 0) {
659 f2fs_info(sbi, "do not support negative compress level: %d", level);
660 return -ERANGE;
661 }
662
663 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) {
664 f2fs_info(sbi, "invalid zstd compress level: %d", level);
665 return -EINVAL;
666 }
667
668 F2FS_OPTION(sbi).compress_level = level;
669 return 0;
670 }
671 #endif
672 #endif
673
parse_options(struct super_block * sb,char * options,bool is_remount)674 static int parse_options(struct super_block *sb, char *options, bool is_remount)
675 {
676 struct f2fs_sb_info *sbi = F2FS_SB(sb);
677 substring_t args[MAX_OPT_ARGS];
678 #ifdef CONFIG_F2FS_FS_COMPRESSION
679 unsigned char (*ext)[F2FS_EXTENSION_LEN];
680 unsigned char (*noext)[F2FS_EXTENSION_LEN];
681 int ext_cnt, noext_cnt;
682 #endif
683 char *p, *name;
684 int arg = 0;
685 kuid_t uid;
686 kgid_t gid;
687 int ret;
688
689 if (!options)
690 goto default_check;
691
692 while ((p = strsep(&options, ",")) != NULL) {
693 int token;
694
695 if (!*p)
696 continue;
697 /*
698 * Initialize args struct so we know whether arg was
699 * found; some options take optional arguments.
700 */
701 args[0].to = args[0].from = NULL;
702 token = match_token(p, f2fs_tokens, args);
703
704 switch (token) {
705 case Opt_gc_background:
706 name = match_strdup(&args[0]);
707
708 if (!name)
709 return -ENOMEM;
710 if (!strcmp(name, "on")) {
711 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
712 } else if (!strcmp(name, "off")) {
713 if (f2fs_sb_has_blkzoned(sbi)) {
714 f2fs_warn(sbi, "zoned devices need bggc");
715 kfree(name);
716 return -EINVAL;
717 }
718 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
719 } else if (!strcmp(name, "sync")) {
720 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
721 } else {
722 kfree(name);
723 return -EINVAL;
724 }
725 kfree(name);
726 break;
727 case Opt_disable_roll_forward:
728 set_opt(sbi, DISABLE_ROLL_FORWARD);
729 break;
730 case Opt_norecovery:
731 /* this option mounts f2fs with ro */
732 set_opt(sbi, NORECOVERY);
733 if (!f2fs_readonly(sb))
734 return -EINVAL;
735 break;
736 case Opt_discard:
737 if (!f2fs_hw_support_discard(sbi)) {
738 f2fs_warn(sbi, "device does not support discard");
739 break;
740 }
741 set_opt(sbi, DISCARD);
742 break;
743 case Opt_nodiscard:
744 if (f2fs_hw_should_discard(sbi)) {
745 f2fs_warn(sbi, "discard is required for zoned block devices");
746 return -EINVAL;
747 }
748 clear_opt(sbi, DISCARD);
749 break;
750 case Opt_noheap:
751 case Opt_heap:
752 f2fs_warn(sbi, "heap/no_heap options were deprecated");
753 break;
754 #ifdef CONFIG_F2FS_FS_XATTR
755 case Opt_user_xattr:
756 set_opt(sbi, XATTR_USER);
757 break;
758 case Opt_nouser_xattr:
759 clear_opt(sbi, XATTR_USER);
760 break;
761 case Opt_inline_xattr:
762 set_opt(sbi, INLINE_XATTR);
763 break;
764 case Opt_noinline_xattr:
765 clear_opt(sbi, INLINE_XATTR);
766 break;
767 case Opt_inline_xattr_size:
768 if (args->from && match_int(args, &arg))
769 return -EINVAL;
770 set_opt(sbi, INLINE_XATTR_SIZE);
771 F2FS_OPTION(sbi).inline_xattr_size = arg;
772 break;
773 #else
774 case Opt_user_xattr:
775 f2fs_info(sbi, "user_xattr options not supported");
776 break;
777 case Opt_nouser_xattr:
778 f2fs_info(sbi, "nouser_xattr options not supported");
779 break;
780 case Opt_inline_xattr:
781 f2fs_info(sbi, "inline_xattr options not supported");
782 break;
783 case Opt_noinline_xattr:
784 f2fs_info(sbi, "noinline_xattr options not supported");
785 break;
786 #endif
787 #ifdef CONFIG_F2FS_FS_POSIX_ACL
788 case Opt_acl:
789 set_opt(sbi, POSIX_ACL);
790 break;
791 case Opt_noacl:
792 clear_opt(sbi, POSIX_ACL);
793 break;
794 #else
795 case Opt_acl:
796 f2fs_info(sbi, "acl options not supported");
797 break;
798 case Opt_noacl:
799 f2fs_info(sbi, "noacl options not supported");
800 break;
801 #endif
802 case Opt_active_logs:
803 if (args->from && match_int(args, &arg))
804 return -EINVAL;
805 if (arg != 2 && arg != 4 &&
806 arg != NR_CURSEG_PERSIST_TYPE)
807 return -EINVAL;
808 F2FS_OPTION(sbi).active_logs = arg;
809 break;
810 case Opt_disable_ext_identify:
811 set_opt(sbi, DISABLE_EXT_IDENTIFY);
812 break;
813 case Opt_inline_data:
814 set_opt(sbi, INLINE_DATA);
815 break;
816 case Opt_inline_dentry:
817 set_opt(sbi, INLINE_DENTRY);
818 break;
819 case Opt_noinline_dentry:
820 clear_opt(sbi, INLINE_DENTRY);
821 break;
822 case Opt_flush_merge:
823 set_opt(sbi, FLUSH_MERGE);
824 break;
825 case Opt_noflush_merge:
826 clear_opt(sbi, FLUSH_MERGE);
827 break;
828 case Opt_nobarrier:
829 set_opt(sbi, NOBARRIER);
830 break;
831 case Opt_barrier:
832 clear_opt(sbi, NOBARRIER);
833 break;
834 case Opt_fastboot:
835 set_opt(sbi, FASTBOOT);
836 break;
837 case Opt_extent_cache:
838 set_opt(sbi, READ_EXTENT_CACHE);
839 break;
840 case Opt_noextent_cache:
841 if (F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_DEVICE_ALIAS)) {
842 f2fs_err(sbi, "device aliasing requires extent cache");
843 return -EINVAL;
844 }
845 clear_opt(sbi, READ_EXTENT_CACHE);
846 break;
847 case Opt_noinline_data:
848 clear_opt(sbi, INLINE_DATA);
849 break;
850 case Opt_data_flush:
851 set_opt(sbi, DATA_FLUSH);
852 break;
853 case Opt_reserve_root:
854 if (args->from && match_int(args, &arg))
855 return -EINVAL;
856 if (test_opt(sbi, RESERVE_ROOT)) {
857 f2fs_info(sbi, "Preserve previous reserve_root=%u",
858 F2FS_OPTION(sbi).root_reserved_blocks);
859 } else {
860 F2FS_OPTION(sbi).root_reserved_blocks = arg;
861 set_opt(sbi, RESERVE_ROOT);
862 }
863 break;
864 case Opt_resuid:
865 if (args->from && match_int(args, &arg))
866 return -EINVAL;
867 uid = make_kuid(current_user_ns(), arg);
868 if (!uid_valid(uid)) {
869 f2fs_err(sbi, "Invalid uid value %d", arg);
870 return -EINVAL;
871 }
872 F2FS_OPTION(sbi).s_resuid = uid;
873 break;
874 case Opt_resgid:
875 if (args->from && match_int(args, &arg))
876 return -EINVAL;
877 gid = make_kgid(current_user_ns(), arg);
878 if (!gid_valid(gid)) {
879 f2fs_err(sbi, "Invalid gid value %d", arg);
880 return -EINVAL;
881 }
882 F2FS_OPTION(sbi).s_resgid = gid;
883 break;
884 case Opt_mode:
885 name = match_strdup(&args[0]);
886
887 if (!name)
888 return -ENOMEM;
889 if (!strcmp(name, "adaptive")) {
890 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
891 } else if (!strcmp(name, "lfs")) {
892 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
893 } else if (!strcmp(name, "fragment:segment")) {
894 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
895 } else if (!strcmp(name, "fragment:block")) {
896 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
897 } else {
898 kfree(name);
899 return -EINVAL;
900 }
901 kfree(name);
902 break;
903 #ifdef CONFIG_F2FS_FAULT_INJECTION
904 case Opt_fault_injection:
905 if (args->from && match_int(args, &arg))
906 return -EINVAL;
907 if (f2fs_build_fault_attr(sbi, arg,
908 F2FS_ALL_FAULT_TYPE))
909 return -EINVAL;
910 set_opt(sbi, FAULT_INJECTION);
911 break;
912
913 case Opt_fault_type:
914 if (args->from && match_int(args, &arg))
915 return -EINVAL;
916 if (f2fs_build_fault_attr(sbi, 0, arg))
917 return -EINVAL;
918 set_opt(sbi, FAULT_INJECTION);
919 break;
920 #else
921 case Opt_fault_injection:
922 f2fs_info(sbi, "fault_injection options not supported");
923 break;
924
925 case Opt_fault_type:
926 f2fs_info(sbi, "fault_type options not supported");
927 break;
928 #endif
929 case Opt_lazytime:
930 sb->s_flags |= SB_LAZYTIME;
931 break;
932 case Opt_nolazytime:
933 sb->s_flags &= ~SB_LAZYTIME;
934 break;
935 #ifdef CONFIG_QUOTA
936 case Opt_quota:
937 case Opt_usrquota:
938 set_opt(sbi, USRQUOTA);
939 break;
940 case Opt_grpquota:
941 set_opt(sbi, GRPQUOTA);
942 break;
943 case Opt_prjquota:
944 set_opt(sbi, PRJQUOTA);
945 break;
946 case Opt_usrjquota:
947 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
948 if (ret)
949 return ret;
950 break;
951 case Opt_grpjquota:
952 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
953 if (ret)
954 return ret;
955 break;
956 case Opt_prjjquota:
957 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
958 if (ret)
959 return ret;
960 break;
961 case Opt_offusrjquota:
962 ret = f2fs_clear_qf_name(sb, USRQUOTA);
963 if (ret)
964 return ret;
965 break;
966 case Opt_offgrpjquota:
967 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
968 if (ret)
969 return ret;
970 break;
971 case Opt_offprjjquota:
972 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
973 if (ret)
974 return ret;
975 break;
976 case Opt_jqfmt_vfsold:
977 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
978 break;
979 case Opt_jqfmt_vfsv0:
980 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
981 break;
982 case Opt_jqfmt_vfsv1:
983 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
984 break;
985 case Opt_noquota:
986 clear_opt(sbi, QUOTA);
987 clear_opt(sbi, USRQUOTA);
988 clear_opt(sbi, GRPQUOTA);
989 clear_opt(sbi, PRJQUOTA);
990 break;
991 #else
992 case Opt_quota:
993 case Opt_usrquota:
994 case Opt_grpquota:
995 case Opt_prjquota:
996 case Opt_usrjquota:
997 case Opt_grpjquota:
998 case Opt_prjjquota:
999 case Opt_offusrjquota:
1000 case Opt_offgrpjquota:
1001 case Opt_offprjjquota:
1002 case Opt_jqfmt_vfsold:
1003 case Opt_jqfmt_vfsv0:
1004 case Opt_jqfmt_vfsv1:
1005 case Opt_noquota:
1006 f2fs_info(sbi, "quota operations not supported");
1007 break;
1008 #endif
1009 case Opt_alloc:
1010 name = match_strdup(&args[0]);
1011 if (!name)
1012 return -ENOMEM;
1013
1014 if (!strcmp(name, "default")) {
1015 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1016 } else if (!strcmp(name, "reuse")) {
1017 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1018 } else {
1019 kfree(name);
1020 return -EINVAL;
1021 }
1022 kfree(name);
1023 break;
1024 case Opt_fsync:
1025 name = match_strdup(&args[0]);
1026 if (!name)
1027 return -ENOMEM;
1028 if (!strcmp(name, "posix")) {
1029 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1030 } else if (!strcmp(name, "strict")) {
1031 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1032 } else if (!strcmp(name, "nobarrier")) {
1033 F2FS_OPTION(sbi).fsync_mode =
1034 FSYNC_MODE_NOBARRIER;
1035 } else {
1036 kfree(name);
1037 return -EINVAL;
1038 }
1039 kfree(name);
1040 break;
1041 case Opt_test_dummy_encryption:
1042 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1043 is_remount);
1044 if (ret)
1045 return ret;
1046 break;
1047 case Opt_inlinecrypt:
1048 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1049 sb->s_flags |= SB_INLINECRYPT;
1050 #else
1051 f2fs_info(sbi, "inline encryption not supported");
1052 #endif
1053 break;
1054 case Opt_checkpoint_disable_cap_perc:
1055 if (args->from && match_int(args, &arg))
1056 return -EINVAL;
1057 if (arg < 0 || arg > 100)
1058 return -EINVAL;
1059 F2FS_OPTION(sbi).unusable_cap_perc = arg;
1060 set_opt(sbi, DISABLE_CHECKPOINT);
1061 break;
1062 case Opt_checkpoint_disable_cap:
1063 if (args->from && match_int(args, &arg))
1064 return -EINVAL;
1065 F2FS_OPTION(sbi).unusable_cap = arg;
1066 set_opt(sbi, DISABLE_CHECKPOINT);
1067 break;
1068 case Opt_checkpoint_disable:
1069 set_opt(sbi, DISABLE_CHECKPOINT);
1070 break;
1071 case Opt_checkpoint_enable:
1072 clear_opt(sbi, DISABLE_CHECKPOINT);
1073 break;
1074 case Opt_checkpoint_merge:
1075 set_opt(sbi, MERGE_CHECKPOINT);
1076 break;
1077 case Opt_nocheckpoint_merge:
1078 clear_opt(sbi, MERGE_CHECKPOINT);
1079 break;
1080 #ifdef CONFIG_F2FS_FS_COMPRESSION
1081 case Opt_compress_algorithm:
1082 if (!f2fs_sb_has_compression(sbi)) {
1083 f2fs_info(sbi, "Image doesn't support compression");
1084 break;
1085 }
1086 name = match_strdup(&args[0]);
1087 if (!name)
1088 return -ENOMEM;
1089 if (!strcmp(name, "lzo")) {
1090 #ifdef CONFIG_F2FS_FS_LZO
1091 F2FS_OPTION(sbi).compress_level = 0;
1092 F2FS_OPTION(sbi).compress_algorithm =
1093 COMPRESS_LZO;
1094 #else
1095 f2fs_info(sbi, "kernel doesn't support lzo compression");
1096 #endif
1097 } else if (!strncmp(name, "lz4", 3)) {
1098 #ifdef CONFIG_F2FS_FS_LZ4
1099 ret = f2fs_set_lz4hc_level(sbi, name);
1100 if (ret) {
1101 kfree(name);
1102 return -EINVAL;
1103 }
1104 F2FS_OPTION(sbi).compress_algorithm =
1105 COMPRESS_LZ4;
1106 #else
1107 f2fs_info(sbi, "kernel doesn't support lz4 compression");
1108 #endif
1109 } else if (!strncmp(name, "zstd", 4)) {
1110 #ifdef CONFIG_F2FS_FS_ZSTD
1111 ret = f2fs_set_zstd_level(sbi, name);
1112 if (ret) {
1113 kfree(name);
1114 return -EINVAL;
1115 }
1116 F2FS_OPTION(sbi).compress_algorithm =
1117 COMPRESS_ZSTD;
1118 #else
1119 f2fs_info(sbi, "kernel doesn't support zstd compression");
1120 #endif
1121 } else if (!strcmp(name, "lzo-rle")) {
1122 #ifdef CONFIG_F2FS_FS_LZORLE
1123 F2FS_OPTION(sbi).compress_level = 0;
1124 F2FS_OPTION(sbi).compress_algorithm =
1125 COMPRESS_LZORLE;
1126 #else
1127 f2fs_info(sbi, "kernel doesn't support lzorle compression");
1128 #endif
1129 } else {
1130 kfree(name);
1131 return -EINVAL;
1132 }
1133 kfree(name);
1134 break;
1135 case Opt_compress_log_size:
1136 if (!f2fs_sb_has_compression(sbi)) {
1137 f2fs_info(sbi, "Image doesn't support compression");
1138 break;
1139 }
1140 if (args->from && match_int(args, &arg))
1141 return -EINVAL;
1142 if (arg < MIN_COMPRESS_LOG_SIZE ||
1143 arg > MAX_COMPRESS_LOG_SIZE) {
1144 f2fs_err(sbi,
1145 "Compress cluster log size is out of range");
1146 return -EINVAL;
1147 }
1148 F2FS_OPTION(sbi).compress_log_size = arg;
1149 break;
1150 case Opt_compress_extension:
1151 if (!f2fs_sb_has_compression(sbi)) {
1152 f2fs_info(sbi, "Image doesn't support compression");
1153 break;
1154 }
1155 name = match_strdup(&args[0]);
1156 if (!name)
1157 return -ENOMEM;
1158
1159 ext = F2FS_OPTION(sbi).extensions;
1160 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1161
1162 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1163 ext_cnt >= COMPRESS_EXT_NUM) {
1164 f2fs_err(sbi,
1165 "invalid extension length/number");
1166 kfree(name);
1167 return -EINVAL;
1168 }
1169
1170 if (is_compress_extension_exist(sbi, name, true)) {
1171 kfree(name);
1172 break;
1173 }
1174
1175 ret = strscpy(ext[ext_cnt], name);
1176 if (ret < 0) {
1177 kfree(name);
1178 return ret;
1179 }
1180 F2FS_OPTION(sbi).compress_ext_cnt++;
1181 kfree(name);
1182 break;
1183 case Opt_nocompress_extension:
1184 if (!f2fs_sb_has_compression(sbi)) {
1185 f2fs_info(sbi, "Image doesn't support compression");
1186 break;
1187 }
1188 name = match_strdup(&args[0]);
1189 if (!name)
1190 return -ENOMEM;
1191
1192 noext = F2FS_OPTION(sbi).noextensions;
1193 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1194
1195 if (strlen(name) >= F2FS_EXTENSION_LEN ||
1196 noext_cnt >= COMPRESS_EXT_NUM) {
1197 f2fs_err(sbi,
1198 "invalid extension length/number");
1199 kfree(name);
1200 return -EINVAL;
1201 }
1202
1203 if (is_compress_extension_exist(sbi, name, false)) {
1204 kfree(name);
1205 break;
1206 }
1207
1208 ret = strscpy(noext[noext_cnt], name);
1209 if (ret < 0) {
1210 kfree(name);
1211 return ret;
1212 }
1213 F2FS_OPTION(sbi).nocompress_ext_cnt++;
1214 kfree(name);
1215 break;
1216 case Opt_compress_chksum:
1217 if (!f2fs_sb_has_compression(sbi)) {
1218 f2fs_info(sbi, "Image doesn't support compression");
1219 break;
1220 }
1221 F2FS_OPTION(sbi).compress_chksum = true;
1222 break;
1223 case Opt_compress_mode:
1224 if (!f2fs_sb_has_compression(sbi)) {
1225 f2fs_info(sbi, "Image doesn't support compression");
1226 break;
1227 }
1228 name = match_strdup(&args[0]);
1229 if (!name)
1230 return -ENOMEM;
1231 if (!strcmp(name, "fs")) {
1232 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1233 } else if (!strcmp(name, "user")) {
1234 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1235 } else {
1236 kfree(name);
1237 return -EINVAL;
1238 }
1239 kfree(name);
1240 break;
1241 case Opt_compress_cache:
1242 if (!f2fs_sb_has_compression(sbi)) {
1243 f2fs_info(sbi, "Image doesn't support compression");
1244 break;
1245 }
1246 set_opt(sbi, COMPRESS_CACHE);
1247 break;
1248 #else
1249 case Opt_compress_algorithm:
1250 case Opt_compress_log_size:
1251 case Opt_compress_extension:
1252 case Opt_nocompress_extension:
1253 case Opt_compress_chksum:
1254 case Opt_compress_mode:
1255 case Opt_compress_cache:
1256 f2fs_info(sbi, "compression options not supported");
1257 break;
1258 #endif
1259 case Opt_atgc:
1260 set_opt(sbi, ATGC);
1261 break;
1262 case Opt_gc_merge:
1263 set_opt(sbi, GC_MERGE);
1264 break;
1265 case Opt_nogc_merge:
1266 clear_opt(sbi, GC_MERGE);
1267 break;
1268 case Opt_discard_unit:
1269 name = match_strdup(&args[0]);
1270 if (!name)
1271 return -ENOMEM;
1272 if (!strcmp(name, "block")) {
1273 F2FS_OPTION(sbi).discard_unit =
1274 DISCARD_UNIT_BLOCK;
1275 } else if (!strcmp(name, "segment")) {
1276 F2FS_OPTION(sbi).discard_unit =
1277 DISCARD_UNIT_SEGMENT;
1278 } else if (!strcmp(name, "section")) {
1279 F2FS_OPTION(sbi).discard_unit =
1280 DISCARD_UNIT_SECTION;
1281 } else {
1282 kfree(name);
1283 return -EINVAL;
1284 }
1285 kfree(name);
1286 break;
1287 case Opt_memory_mode:
1288 name = match_strdup(&args[0]);
1289 if (!name)
1290 return -ENOMEM;
1291 if (!strcmp(name, "normal")) {
1292 F2FS_OPTION(sbi).memory_mode =
1293 MEMORY_MODE_NORMAL;
1294 } else if (!strcmp(name, "low")) {
1295 F2FS_OPTION(sbi).memory_mode =
1296 MEMORY_MODE_LOW;
1297 } else {
1298 kfree(name);
1299 return -EINVAL;
1300 }
1301 kfree(name);
1302 break;
1303 case Opt_age_extent_cache:
1304 set_opt(sbi, AGE_EXTENT_CACHE);
1305 break;
1306 case Opt_errors:
1307 name = match_strdup(&args[0]);
1308 if (!name)
1309 return -ENOMEM;
1310 if (!strcmp(name, "remount-ro")) {
1311 F2FS_OPTION(sbi).errors =
1312 MOUNT_ERRORS_READONLY;
1313 } else if (!strcmp(name, "continue")) {
1314 F2FS_OPTION(sbi).errors =
1315 MOUNT_ERRORS_CONTINUE;
1316 } else if (!strcmp(name, "panic")) {
1317 F2FS_OPTION(sbi).errors =
1318 MOUNT_ERRORS_PANIC;
1319 } else {
1320 kfree(name);
1321 return -EINVAL;
1322 }
1323 kfree(name);
1324 break;
1325 default:
1326 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1327 p);
1328 return -EINVAL;
1329 }
1330 }
1331 default_check:
1332 #ifdef CONFIG_QUOTA
1333 if (f2fs_check_quota_options(sbi))
1334 return -EINVAL;
1335 #else
1336 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1337 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1338 return -EINVAL;
1339 }
1340 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1341 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1342 return -EINVAL;
1343 }
1344 #endif
1345
1346 if (!IS_ENABLED(CONFIG_UNICODE) && f2fs_sb_has_casefold(sbi)) {
1347 f2fs_err(sbi,
1348 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1349 return -EINVAL;
1350 }
1351
1352 /*
1353 * The BLKZONED feature indicates that the drive was formatted with
1354 * zone alignment optimization. This is optional for host-aware
1355 * devices, but mandatory for host-managed zoned block devices.
1356 */
1357 if (f2fs_sb_has_blkzoned(sbi)) {
1358 #ifdef CONFIG_BLK_DEV_ZONED
1359 if (F2FS_OPTION(sbi).discard_unit !=
1360 DISCARD_UNIT_SECTION) {
1361 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1362 F2FS_OPTION(sbi).discard_unit =
1363 DISCARD_UNIT_SECTION;
1364 }
1365
1366 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) {
1367 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature");
1368 return -EINVAL;
1369 }
1370 #else
1371 f2fs_err(sbi, "Zoned block device support is not enabled");
1372 return -EINVAL;
1373 #endif
1374 }
1375
1376 #ifdef CONFIG_F2FS_FS_COMPRESSION
1377 if (f2fs_test_compress_extension(sbi)) {
1378 f2fs_err(sbi, "invalid compress or nocompress extension");
1379 return -EINVAL;
1380 }
1381 #endif
1382
1383 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1384 int min_size, max_size;
1385
1386 if (!f2fs_sb_has_extra_attr(sbi) ||
1387 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
1388 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1389 return -EINVAL;
1390 }
1391 if (!test_opt(sbi, INLINE_XATTR)) {
1392 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1393 return -EINVAL;
1394 }
1395
1396 min_size = MIN_INLINE_XATTR_SIZE;
1397 max_size = MAX_INLINE_XATTR_SIZE;
1398
1399 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1400 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1401 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1402 min_size, max_size);
1403 return -EINVAL;
1404 }
1405 }
1406
1407 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1408 f2fs_err(sbi, "LFS is not compatible with ATGC");
1409 return -EINVAL;
1410 }
1411
1412 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1413 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1414 return -EINVAL;
1415 }
1416
1417 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1418 f2fs_err(sbi, "Allow to mount readonly mode only");
1419 return -EROFS;
1420 }
1421 return 0;
1422 }
1423
f2fs_alloc_inode(struct super_block * sb)1424 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1425 {
1426 struct f2fs_inode_info *fi;
1427
1428 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC))
1429 return NULL;
1430
1431 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1432 if (!fi)
1433 return NULL;
1434
1435 init_once((void *) fi);
1436
1437 /* Initialize f2fs-specific inode info */
1438 atomic_set(&fi->dirty_pages, 0);
1439 atomic_set(&fi->i_compr_blocks, 0);
1440 init_f2fs_rwsem(&fi->i_sem);
1441 spin_lock_init(&fi->i_size_lock);
1442 INIT_LIST_HEAD(&fi->dirty_list);
1443 INIT_LIST_HEAD(&fi->gdirty_list);
1444 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1445 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1446 init_f2fs_rwsem(&fi->i_xattr_sem);
1447
1448 /* Will be used by directory only */
1449 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1450
1451 return &fi->vfs_inode;
1452 }
1453
f2fs_drop_inode(struct inode * inode)1454 static int f2fs_drop_inode(struct inode *inode)
1455 {
1456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1457 int ret;
1458
1459 /*
1460 * during filesystem shutdown, if checkpoint is disabled,
1461 * drop useless meta/node dirty pages.
1462 */
1463 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1464 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1465 inode->i_ino == F2FS_META_INO(sbi)) {
1466 trace_f2fs_drop_inode(inode, 1);
1467 return 1;
1468 }
1469 }
1470
1471 /*
1472 * This is to avoid a deadlock condition like below.
1473 * writeback_single_inode(inode)
1474 * - f2fs_write_data_page
1475 * - f2fs_gc -> iput -> evict
1476 * - inode_wait_for_writeback(inode)
1477 */
1478 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1479 if (!inode->i_nlink && !is_bad_inode(inode)) {
1480 /* to avoid evict_inode call simultaneously */
1481 atomic_inc(&inode->i_count);
1482 spin_unlock(&inode->i_lock);
1483
1484 /* should remain fi->extent_tree for writepage */
1485 f2fs_destroy_extent_node(inode);
1486
1487 sb_start_intwrite(inode->i_sb);
1488 f2fs_i_size_write(inode, 0);
1489
1490 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1491 inode, NULL, 0, DATA);
1492 truncate_inode_pages_final(inode->i_mapping);
1493
1494 if (F2FS_HAS_BLOCKS(inode))
1495 f2fs_truncate(inode);
1496
1497 sb_end_intwrite(inode->i_sb);
1498
1499 spin_lock(&inode->i_lock);
1500 atomic_dec(&inode->i_count);
1501 }
1502 trace_f2fs_drop_inode(inode, 0);
1503 return 0;
1504 }
1505 ret = generic_drop_inode(inode);
1506 if (!ret)
1507 ret = fscrypt_drop_inode(inode);
1508 trace_f2fs_drop_inode(inode, ret);
1509 return ret;
1510 }
1511
f2fs_inode_dirtied(struct inode * inode,bool sync)1512 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1513 {
1514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1515 int ret = 0;
1516
1517 spin_lock(&sbi->inode_lock[DIRTY_META]);
1518 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1519 ret = 1;
1520 } else {
1521 set_inode_flag(inode, FI_DIRTY_INODE);
1522 stat_inc_dirty_inode(sbi, DIRTY_META);
1523 }
1524 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1525 list_add_tail(&F2FS_I(inode)->gdirty_list,
1526 &sbi->inode_list[DIRTY_META]);
1527 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1528 }
1529 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1530 return ret;
1531 }
1532
f2fs_inode_synced(struct inode * inode)1533 void f2fs_inode_synced(struct inode *inode)
1534 {
1535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1536
1537 spin_lock(&sbi->inode_lock[DIRTY_META]);
1538 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1539 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1540 return;
1541 }
1542 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1543 list_del_init(&F2FS_I(inode)->gdirty_list);
1544 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1545 }
1546 clear_inode_flag(inode, FI_DIRTY_INODE);
1547 clear_inode_flag(inode, FI_AUTO_RECOVER);
1548 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1549 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1550 }
1551
1552 /*
1553 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1554 *
1555 * We should call set_dirty_inode to write the dirty inode through write_inode.
1556 */
f2fs_dirty_inode(struct inode * inode,int flags)1557 static void f2fs_dirty_inode(struct inode *inode, int flags)
1558 {
1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1560
1561 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1562 inode->i_ino == F2FS_META_INO(sbi))
1563 return;
1564
1565 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1566 clear_inode_flag(inode, FI_AUTO_RECOVER);
1567
1568 f2fs_inode_dirtied(inode, false);
1569 }
1570
f2fs_free_inode(struct inode * inode)1571 static void f2fs_free_inode(struct inode *inode)
1572 {
1573 fscrypt_free_inode(inode);
1574 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1575 }
1576
destroy_percpu_info(struct f2fs_sb_info * sbi)1577 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1578 {
1579 percpu_counter_destroy(&sbi->total_valid_inode_count);
1580 percpu_counter_destroy(&sbi->rf_node_block_count);
1581 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1582 }
1583
destroy_device_list(struct f2fs_sb_info * sbi)1584 static void destroy_device_list(struct f2fs_sb_info *sbi)
1585 {
1586 int i;
1587
1588 for (i = 0; i < sbi->s_ndevs; i++) {
1589 if (i > 0)
1590 bdev_fput(FDEV(i).bdev_file);
1591 #ifdef CONFIG_BLK_DEV_ZONED
1592 kvfree(FDEV(i).blkz_seq);
1593 #endif
1594 }
1595 kvfree(sbi->devs);
1596 }
1597
f2fs_put_super(struct super_block * sb)1598 static void f2fs_put_super(struct super_block *sb)
1599 {
1600 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1601 int i;
1602 int err = 0;
1603 bool done;
1604
1605 /* unregister procfs/sysfs entries in advance to avoid race case */
1606 f2fs_unregister_sysfs(sbi);
1607
1608 f2fs_quota_off_umount(sb);
1609
1610 /* prevent remaining shrinker jobs */
1611 mutex_lock(&sbi->umount_mutex);
1612
1613 /*
1614 * flush all issued checkpoints and stop checkpoint issue thread.
1615 * after then, all checkpoints should be done by each process context.
1616 */
1617 f2fs_stop_ckpt_thread(sbi);
1618
1619 /*
1620 * We don't need to do checkpoint when superblock is clean.
1621 * But, the previous checkpoint was not done by umount, it needs to do
1622 * clean checkpoint again.
1623 */
1624 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1625 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1626 struct cp_control cpc = {
1627 .reason = CP_UMOUNT,
1628 };
1629 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1630 err = f2fs_write_checkpoint(sbi, &cpc);
1631 }
1632
1633 /* be sure to wait for any on-going discard commands */
1634 done = f2fs_issue_discard_timeout(sbi);
1635 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) {
1636 struct cp_control cpc = {
1637 .reason = CP_UMOUNT | CP_TRIMMED,
1638 };
1639 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1640 err = f2fs_write_checkpoint(sbi, &cpc);
1641 }
1642
1643 /*
1644 * normally superblock is clean, so we need to release this.
1645 * In addition, EIO will skip do checkpoint, we need this as well.
1646 */
1647 f2fs_release_ino_entry(sbi, true);
1648
1649 f2fs_leave_shrinker(sbi);
1650 mutex_unlock(&sbi->umount_mutex);
1651
1652 /* our cp_error case, we can wait for any writeback page */
1653 f2fs_flush_merged_writes(sbi);
1654
1655 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1656
1657 if (err || f2fs_cp_error(sbi)) {
1658 truncate_inode_pages_final(NODE_MAPPING(sbi));
1659 truncate_inode_pages_final(META_MAPPING(sbi));
1660 }
1661
1662 for (i = 0; i < NR_COUNT_TYPE; i++) {
1663 if (!get_pages(sbi, i))
1664 continue;
1665 f2fs_err(sbi, "detect filesystem reference count leak during "
1666 "umount, type: %d, count: %lld", i, get_pages(sbi, i));
1667 f2fs_bug_on(sbi, 1);
1668 }
1669
1670 f2fs_bug_on(sbi, sbi->fsync_node_num);
1671
1672 f2fs_destroy_compress_inode(sbi);
1673
1674 iput(sbi->node_inode);
1675 sbi->node_inode = NULL;
1676
1677 iput(sbi->meta_inode);
1678 sbi->meta_inode = NULL;
1679
1680 /*
1681 * iput() can update stat information, if f2fs_write_checkpoint()
1682 * above failed with error.
1683 */
1684 f2fs_destroy_stats(sbi);
1685
1686 /* destroy f2fs internal modules */
1687 f2fs_destroy_node_manager(sbi);
1688 f2fs_destroy_segment_manager(sbi);
1689
1690 /* flush s_error_work before sbi destroy */
1691 flush_work(&sbi->s_error_work);
1692
1693 f2fs_destroy_post_read_wq(sbi);
1694
1695 kvfree(sbi->ckpt);
1696
1697 kfree(sbi->raw_super);
1698
1699 f2fs_destroy_page_array_cache(sbi);
1700 f2fs_destroy_xattr_caches(sbi);
1701 #ifdef CONFIG_QUOTA
1702 for (i = 0; i < MAXQUOTAS; i++)
1703 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1704 #endif
1705 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1706 destroy_percpu_info(sbi);
1707 f2fs_destroy_iostat(sbi);
1708 for (i = 0; i < NR_PAGE_TYPE; i++)
1709 kvfree(sbi->write_io[i]);
1710 #if IS_ENABLED(CONFIG_UNICODE)
1711 utf8_unload(sb->s_encoding);
1712 #endif
1713 }
1714
f2fs_sync_fs(struct super_block * sb,int sync)1715 int f2fs_sync_fs(struct super_block *sb, int sync)
1716 {
1717 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1718 int err = 0;
1719
1720 if (unlikely(f2fs_cp_error(sbi)))
1721 return 0;
1722 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1723 return 0;
1724
1725 trace_f2fs_sync_fs(sb, sync);
1726
1727 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1728 return -EAGAIN;
1729
1730 if (sync) {
1731 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1732 err = f2fs_issue_checkpoint(sbi);
1733 }
1734
1735 return err;
1736 }
1737
f2fs_freeze(struct super_block * sb)1738 static int f2fs_freeze(struct super_block *sb)
1739 {
1740 if (f2fs_readonly(sb))
1741 return 0;
1742
1743 /* IO error happened before */
1744 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1745 return -EIO;
1746
1747 /* must be clean, since sync_filesystem() was already called */
1748 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1749 return -EINVAL;
1750
1751 /* Let's flush checkpoints and stop the thread. */
1752 f2fs_flush_ckpt_thread(F2FS_SB(sb));
1753
1754 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1755 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1756 return 0;
1757 }
1758
f2fs_unfreeze(struct super_block * sb)1759 static int f2fs_unfreeze(struct super_block *sb)
1760 {
1761 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1762
1763 /*
1764 * It will update discard_max_bytes of mounted lvm device to zero
1765 * after creating snapshot on this lvm device, let's drop all
1766 * remained discards.
1767 * We don't need to disable real-time discard because discard_max_bytes
1768 * will recover after removal of snapshot.
1769 */
1770 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi))
1771 f2fs_issue_discard_timeout(sbi);
1772
1773 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1774 return 0;
1775 }
1776
1777 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1778 static int f2fs_statfs_project(struct super_block *sb,
1779 kprojid_t projid, struct kstatfs *buf)
1780 {
1781 struct kqid qid;
1782 struct dquot *dquot;
1783 u64 limit;
1784 u64 curblock;
1785
1786 qid = make_kqid_projid(projid);
1787 dquot = dqget(sb, qid);
1788 if (IS_ERR(dquot))
1789 return PTR_ERR(dquot);
1790 spin_lock(&dquot->dq_dqb_lock);
1791
1792 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1793 dquot->dq_dqb.dqb_bhardlimit);
1794 if (limit)
1795 limit >>= sb->s_blocksize_bits;
1796
1797 if (limit && buf->f_blocks > limit) {
1798 curblock = (dquot->dq_dqb.dqb_curspace +
1799 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1800 buf->f_blocks = limit;
1801 buf->f_bfree = buf->f_bavail =
1802 (buf->f_blocks > curblock) ?
1803 (buf->f_blocks - curblock) : 0;
1804 }
1805
1806 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1807 dquot->dq_dqb.dqb_ihardlimit);
1808
1809 if (limit && buf->f_files > limit) {
1810 buf->f_files = limit;
1811 buf->f_ffree =
1812 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1813 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1814 }
1815
1816 spin_unlock(&dquot->dq_dqb_lock);
1817 dqput(dquot);
1818 return 0;
1819 }
1820 #endif
1821
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1822 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1823 {
1824 struct super_block *sb = dentry->d_sb;
1825 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1826 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1827 block_t total_count, user_block_count, start_count;
1828 u64 avail_node_count;
1829 unsigned int total_valid_node_count;
1830
1831 total_count = le64_to_cpu(sbi->raw_super->block_count);
1832 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1833 buf->f_type = F2FS_SUPER_MAGIC;
1834 buf->f_bsize = sbi->blocksize;
1835
1836 buf->f_blocks = total_count - start_count;
1837
1838 spin_lock(&sbi->stat_lock);
1839
1840 user_block_count = sbi->user_block_count;
1841 total_valid_node_count = valid_node_count(sbi);
1842 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1843 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1844 sbi->current_reserved_blocks;
1845
1846 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1847 buf->f_bfree = 0;
1848 else
1849 buf->f_bfree -= sbi->unusable_block_count;
1850 spin_unlock(&sbi->stat_lock);
1851
1852 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1853 buf->f_bavail = buf->f_bfree -
1854 F2FS_OPTION(sbi).root_reserved_blocks;
1855 else
1856 buf->f_bavail = 0;
1857
1858 if (avail_node_count > user_block_count) {
1859 buf->f_files = user_block_count;
1860 buf->f_ffree = buf->f_bavail;
1861 } else {
1862 buf->f_files = avail_node_count;
1863 buf->f_ffree = min(avail_node_count - total_valid_node_count,
1864 buf->f_bavail);
1865 }
1866
1867 buf->f_namelen = F2FS_NAME_LEN;
1868 buf->f_fsid = u64_to_fsid(id);
1869
1870 #ifdef CONFIG_QUOTA
1871 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1872 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1873 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1874 }
1875 #endif
1876 return 0;
1877 }
1878
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1879 static inline void f2fs_show_quota_options(struct seq_file *seq,
1880 struct super_block *sb)
1881 {
1882 #ifdef CONFIG_QUOTA
1883 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1884
1885 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1886 char *fmtname = "";
1887
1888 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1889 case QFMT_VFS_OLD:
1890 fmtname = "vfsold";
1891 break;
1892 case QFMT_VFS_V0:
1893 fmtname = "vfsv0";
1894 break;
1895 case QFMT_VFS_V1:
1896 fmtname = "vfsv1";
1897 break;
1898 }
1899 seq_printf(seq, ",jqfmt=%s", fmtname);
1900 }
1901
1902 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1903 seq_show_option(seq, "usrjquota",
1904 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1905
1906 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1907 seq_show_option(seq, "grpjquota",
1908 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1909
1910 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1911 seq_show_option(seq, "prjjquota",
1912 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1913 #endif
1914 }
1915
1916 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_show_compress_options(struct seq_file * seq,struct super_block * sb)1917 static inline void f2fs_show_compress_options(struct seq_file *seq,
1918 struct super_block *sb)
1919 {
1920 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1921 char *algtype = "";
1922 int i;
1923
1924 if (!f2fs_sb_has_compression(sbi))
1925 return;
1926
1927 switch (F2FS_OPTION(sbi).compress_algorithm) {
1928 case COMPRESS_LZO:
1929 algtype = "lzo";
1930 break;
1931 case COMPRESS_LZ4:
1932 algtype = "lz4";
1933 break;
1934 case COMPRESS_ZSTD:
1935 algtype = "zstd";
1936 break;
1937 case COMPRESS_LZORLE:
1938 algtype = "lzo-rle";
1939 break;
1940 }
1941 seq_printf(seq, ",compress_algorithm=%s", algtype);
1942
1943 if (F2FS_OPTION(sbi).compress_level)
1944 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1945
1946 seq_printf(seq, ",compress_log_size=%u",
1947 F2FS_OPTION(sbi).compress_log_size);
1948
1949 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1950 seq_printf(seq, ",compress_extension=%s",
1951 F2FS_OPTION(sbi).extensions[i]);
1952 }
1953
1954 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1955 seq_printf(seq, ",nocompress_extension=%s",
1956 F2FS_OPTION(sbi).noextensions[i]);
1957 }
1958
1959 if (F2FS_OPTION(sbi).compress_chksum)
1960 seq_puts(seq, ",compress_chksum");
1961
1962 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1963 seq_printf(seq, ",compress_mode=%s", "fs");
1964 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1965 seq_printf(seq, ",compress_mode=%s", "user");
1966
1967 if (test_opt(sbi, COMPRESS_CACHE))
1968 seq_puts(seq, ",compress_cache");
1969 }
1970 #endif
1971
f2fs_show_options(struct seq_file * seq,struct dentry * root)1972 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1973 {
1974 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1975
1976 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1977 seq_printf(seq, ",background_gc=%s", "sync");
1978 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1979 seq_printf(seq, ",background_gc=%s", "on");
1980 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1981 seq_printf(seq, ",background_gc=%s", "off");
1982
1983 if (test_opt(sbi, GC_MERGE))
1984 seq_puts(seq, ",gc_merge");
1985 else
1986 seq_puts(seq, ",nogc_merge");
1987
1988 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1989 seq_puts(seq, ",disable_roll_forward");
1990 if (test_opt(sbi, NORECOVERY))
1991 seq_puts(seq, ",norecovery");
1992 if (test_opt(sbi, DISCARD)) {
1993 seq_puts(seq, ",discard");
1994 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1995 seq_printf(seq, ",discard_unit=%s", "block");
1996 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1997 seq_printf(seq, ",discard_unit=%s", "segment");
1998 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1999 seq_printf(seq, ",discard_unit=%s", "section");
2000 } else {
2001 seq_puts(seq, ",nodiscard");
2002 }
2003 #ifdef CONFIG_F2FS_FS_XATTR
2004 if (test_opt(sbi, XATTR_USER))
2005 seq_puts(seq, ",user_xattr");
2006 else
2007 seq_puts(seq, ",nouser_xattr");
2008 if (test_opt(sbi, INLINE_XATTR))
2009 seq_puts(seq, ",inline_xattr");
2010 else
2011 seq_puts(seq, ",noinline_xattr");
2012 if (test_opt(sbi, INLINE_XATTR_SIZE))
2013 seq_printf(seq, ",inline_xattr_size=%u",
2014 F2FS_OPTION(sbi).inline_xattr_size);
2015 #endif
2016 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2017 if (test_opt(sbi, POSIX_ACL))
2018 seq_puts(seq, ",acl");
2019 else
2020 seq_puts(seq, ",noacl");
2021 #endif
2022 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
2023 seq_puts(seq, ",disable_ext_identify");
2024 if (test_opt(sbi, INLINE_DATA))
2025 seq_puts(seq, ",inline_data");
2026 else
2027 seq_puts(seq, ",noinline_data");
2028 if (test_opt(sbi, INLINE_DENTRY))
2029 seq_puts(seq, ",inline_dentry");
2030 else
2031 seq_puts(seq, ",noinline_dentry");
2032 if (test_opt(sbi, FLUSH_MERGE))
2033 seq_puts(seq, ",flush_merge");
2034 else
2035 seq_puts(seq, ",noflush_merge");
2036 if (test_opt(sbi, NOBARRIER))
2037 seq_puts(seq, ",nobarrier");
2038 else
2039 seq_puts(seq, ",barrier");
2040 if (test_opt(sbi, FASTBOOT))
2041 seq_puts(seq, ",fastboot");
2042 if (test_opt(sbi, READ_EXTENT_CACHE))
2043 seq_puts(seq, ",extent_cache");
2044 else
2045 seq_puts(seq, ",noextent_cache");
2046 if (test_opt(sbi, AGE_EXTENT_CACHE))
2047 seq_puts(seq, ",age_extent_cache");
2048 if (test_opt(sbi, DATA_FLUSH))
2049 seq_puts(seq, ",data_flush");
2050
2051 seq_puts(seq, ",mode=");
2052 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
2053 seq_puts(seq, "adaptive");
2054 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
2055 seq_puts(seq, "lfs");
2056 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
2057 seq_puts(seq, "fragment:segment");
2058 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2059 seq_puts(seq, "fragment:block");
2060 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
2061 if (test_opt(sbi, RESERVE_ROOT))
2062 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
2063 F2FS_OPTION(sbi).root_reserved_blocks,
2064 from_kuid_munged(&init_user_ns,
2065 F2FS_OPTION(sbi).s_resuid),
2066 from_kgid_munged(&init_user_ns,
2067 F2FS_OPTION(sbi).s_resgid));
2068 #ifdef CONFIG_F2FS_FAULT_INJECTION
2069 if (test_opt(sbi, FAULT_INJECTION)) {
2070 seq_printf(seq, ",fault_injection=%u",
2071 F2FS_OPTION(sbi).fault_info.inject_rate);
2072 seq_printf(seq, ",fault_type=%u",
2073 F2FS_OPTION(sbi).fault_info.inject_type);
2074 }
2075 #endif
2076 #ifdef CONFIG_QUOTA
2077 if (test_opt(sbi, QUOTA))
2078 seq_puts(seq, ",quota");
2079 if (test_opt(sbi, USRQUOTA))
2080 seq_puts(seq, ",usrquota");
2081 if (test_opt(sbi, GRPQUOTA))
2082 seq_puts(seq, ",grpquota");
2083 if (test_opt(sbi, PRJQUOTA))
2084 seq_puts(seq, ",prjquota");
2085 #endif
2086 f2fs_show_quota_options(seq, sbi->sb);
2087
2088 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2089
2090 if (sbi->sb->s_flags & SB_INLINECRYPT)
2091 seq_puts(seq, ",inlinecrypt");
2092
2093 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2094 seq_printf(seq, ",alloc_mode=%s", "default");
2095 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2096 seq_printf(seq, ",alloc_mode=%s", "reuse");
2097
2098 if (test_opt(sbi, DISABLE_CHECKPOINT))
2099 seq_printf(seq, ",checkpoint=disable:%u",
2100 F2FS_OPTION(sbi).unusable_cap);
2101 if (test_opt(sbi, MERGE_CHECKPOINT))
2102 seq_puts(seq, ",checkpoint_merge");
2103 else
2104 seq_puts(seq, ",nocheckpoint_merge");
2105 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2106 seq_printf(seq, ",fsync_mode=%s", "posix");
2107 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2108 seq_printf(seq, ",fsync_mode=%s", "strict");
2109 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2110 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2111
2112 #ifdef CONFIG_F2FS_FS_COMPRESSION
2113 f2fs_show_compress_options(seq, sbi->sb);
2114 #endif
2115
2116 if (test_opt(sbi, ATGC))
2117 seq_puts(seq, ",atgc");
2118
2119 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2120 seq_printf(seq, ",memory=%s", "normal");
2121 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2122 seq_printf(seq, ",memory=%s", "low");
2123
2124 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2125 seq_printf(seq, ",errors=%s", "remount-ro");
2126 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE)
2127 seq_printf(seq, ",errors=%s", "continue");
2128 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC)
2129 seq_printf(seq, ",errors=%s", "panic");
2130
2131 return 0;
2132 }
2133
default_options(struct f2fs_sb_info * sbi,bool remount)2134 static void default_options(struct f2fs_sb_info *sbi, bool remount)
2135 {
2136 /* init some FS parameters */
2137 if (!remount) {
2138 set_opt(sbi, READ_EXTENT_CACHE);
2139 clear_opt(sbi, DISABLE_CHECKPOINT);
2140
2141 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2142 set_opt(sbi, DISCARD);
2143
2144 if (f2fs_sb_has_blkzoned(sbi))
2145 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2146 else
2147 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2148 }
2149
2150 if (f2fs_sb_has_readonly(sbi))
2151 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2152 else
2153 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2154
2155 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2156 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2157 SMALL_VOLUME_SEGMENTS)
2158 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2159 else
2160 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2161 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2162 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2163 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2164 if (f2fs_sb_has_compression(sbi)) {
2165 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2166 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2167 F2FS_OPTION(sbi).compress_ext_cnt = 0;
2168 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2169 }
2170 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2171 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2172 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE;
2173
2174 set_opt(sbi, INLINE_XATTR);
2175 set_opt(sbi, INLINE_DATA);
2176 set_opt(sbi, INLINE_DENTRY);
2177 set_opt(sbi, MERGE_CHECKPOINT);
2178 F2FS_OPTION(sbi).unusable_cap = 0;
2179 sbi->sb->s_flags |= SB_LAZYTIME;
2180 if (!f2fs_is_readonly(sbi))
2181 set_opt(sbi, FLUSH_MERGE);
2182 if (f2fs_sb_has_blkzoned(sbi))
2183 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2184 else
2185 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2186
2187 #ifdef CONFIG_F2FS_FS_XATTR
2188 set_opt(sbi, XATTR_USER);
2189 #endif
2190 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2191 set_opt(sbi, POSIX_ACL);
2192 #endif
2193
2194 f2fs_build_fault_attr(sbi, 0, 0);
2195 }
2196
2197 #ifdef CONFIG_QUOTA
2198 static int f2fs_enable_quotas(struct super_block *sb);
2199 #endif
2200
f2fs_disable_checkpoint(struct f2fs_sb_info * sbi)2201 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2202 {
2203 unsigned int s_flags = sbi->sb->s_flags;
2204 struct cp_control cpc;
2205 unsigned int gc_mode = sbi->gc_mode;
2206 int err = 0;
2207 int ret;
2208 block_t unusable;
2209
2210 if (s_flags & SB_RDONLY) {
2211 f2fs_err(sbi, "checkpoint=disable on readonly fs");
2212 return -EINVAL;
2213 }
2214 sbi->sb->s_flags |= SB_ACTIVE;
2215
2216 /* check if we need more GC first */
2217 unusable = f2fs_get_unusable_blocks(sbi);
2218 if (!f2fs_disable_cp_again(sbi, unusable))
2219 goto skip_gc;
2220
2221 f2fs_update_time(sbi, DISABLE_TIME);
2222
2223 sbi->gc_mode = GC_URGENT_HIGH;
2224
2225 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2226 struct f2fs_gc_control gc_control = {
2227 .victim_segno = NULL_SEGNO,
2228 .init_gc_type = FG_GC,
2229 .should_migrate_blocks = false,
2230 .err_gc_skipped = true,
2231 .no_bg_gc = true,
2232 .nr_free_secs = 1 };
2233
2234 f2fs_down_write(&sbi->gc_lock);
2235 stat_inc_gc_call_count(sbi, FOREGROUND);
2236 err = f2fs_gc(sbi, &gc_control);
2237 if (err == -ENODATA) {
2238 err = 0;
2239 break;
2240 }
2241 if (err && err != -EAGAIN)
2242 break;
2243 }
2244
2245 ret = sync_filesystem(sbi->sb);
2246 if (ret || err) {
2247 err = ret ? ret : err;
2248 goto restore_flag;
2249 }
2250
2251 unusable = f2fs_get_unusable_blocks(sbi);
2252 if (f2fs_disable_cp_again(sbi, unusable)) {
2253 err = -EAGAIN;
2254 goto restore_flag;
2255 }
2256
2257 skip_gc:
2258 f2fs_down_write(&sbi->gc_lock);
2259 cpc.reason = CP_PAUSE;
2260 set_sbi_flag(sbi, SBI_CP_DISABLED);
2261 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2262 err = f2fs_write_checkpoint(sbi, &cpc);
2263 if (err)
2264 goto out_unlock;
2265
2266 spin_lock(&sbi->stat_lock);
2267 sbi->unusable_block_count = unusable;
2268 spin_unlock(&sbi->stat_lock);
2269
2270 out_unlock:
2271 f2fs_up_write(&sbi->gc_lock);
2272 restore_flag:
2273 sbi->gc_mode = gc_mode;
2274 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2275 return err;
2276 }
2277
f2fs_enable_checkpoint(struct f2fs_sb_info * sbi)2278 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2279 {
2280 int retry = DEFAULT_RETRY_IO_COUNT;
2281
2282 /* we should flush all the data to keep data consistency */
2283 do {
2284 sync_inodes_sb(sbi->sb);
2285 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2286 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2287
2288 if (unlikely(retry < 0))
2289 f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2290
2291 f2fs_down_write(&sbi->gc_lock);
2292 f2fs_dirty_to_prefree(sbi);
2293
2294 clear_sbi_flag(sbi, SBI_CP_DISABLED);
2295 set_sbi_flag(sbi, SBI_IS_DIRTY);
2296 f2fs_up_write(&sbi->gc_lock);
2297
2298 f2fs_sync_fs(sbi->sb, 1);
2299
2300 /* Let's ensure there's no pending checkpoint anymore */
2301 f2fs_flush_ckpt_thread(sbi);
2302 }
2303
f2fs_remount(struct super_block * sb,int * flags,char * data)2304 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2305 {
2306 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2307 struct f2fs_mount_info org_mount_opt;
2308 unsigned long old_sb_flags;
2309 int err;
2310 bool need_restart_gc = false, need_stop_gc = false;
2311 bool need_restart_flush = false, need_stop_flush = false;
2312 bool need_restart_discard = false, need_stop_discard = false;
2313 bool need_enable_checkpoint = false, need_disable_checkpoint = false;
2314 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2315 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2316 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2317 bool no_atgc = !test_opt(sbi, ATGC);
2318 bool no_discard = !test_opt(sbi, DISCARD);
2319 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2320 bool block_unit_discard = f2fs_block_unit_discard(sbi);
2321 #ifdef CONFIG_QUOTA
2322 int i, j;
2323 #endif
2324
2325 /*
2326 * Save the old mount options in case we
2327 * need to restore them.
2328 */
2329 org_mount_opt = sbi->mount_opt;
2330 old_sb_flags = sb->s_flags;
2331
2332 #ifdef CONFIG_QUOTA
2333 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2334 for (i = 0; i < MAXQUOTAS; i++) {
2335 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2336 org_mount_opt.s_qf_names[i] =
2337 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2338 GFP_KERNEL);
2339 if (!org_mount_opt.s_qf_names[i]) {
2340 for (j = 0; j < i; j++)
2341 kfree(org_mount_opt.s_qf_names[j]);
2342 return -ENOMEM;
2343 }
2344 } else {
2345 org_mount_opt.s_qf_names[i] = NULL;
2346 }
2347 }
2348 #endif
2349
2350 /* recover superblocks we couldn't write due to previous RO mount */
2351 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2352 err = f2fs_commit_super(sbi, false);
2353 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2354 err);
2355 if (!err)
2356 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2357 }
2358
2359 default_options(sbi, true);
2360
2361 /* parse mount options */
2362 err = parse_options(sb, data, true);
2363 if (err)
2364 goto restore_opts;
2365
2366 #ifdef CONFIG_BLK_DEV_ZONED
2367 if (f2fs_sb_has_blkzoned(sbi) &&
2368 sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
2369 f2fs_err(sbi,
2370 "zoned: max open zones %u is too small, need at least %u open zones",
2371 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
2372 err = -EINVAL;
2373 goto restore_opts;
2374 }
2375 #endif
2376
2377 /* flush outstanding errors before changing fs state */
2378 flush_work(&sbi->s_error_work);
2379
2380 /*
2381 * Previous and new state of filesystem is RO,
2382 * so skip checking GC and FLUSH_MERGE conditions.
2383 */
2384 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2385 goto skip;
2386
2387 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) {
2388 err = -EROFS;
2389 goto restore_opts;
2390 }
2391
2392 #ifdef CONFIG_QUOTA
2393 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2394 err = dquot_suspend(sb, -1);
2395 if (err < 0)
2396 goto restore_opts;
2397 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2398 /* dquot_resume needs RW */
2399 sb->s_flags &= ~SB_RDONLY;
2400 if (sb_any_quota_suspended(sb)) {
2401 dquot_resume(sb, -1);
2402 } else if (f2fs_sb_has_quota_ino(sbi)) {
2403 err = f2fs_enable_quotas(sb);
2404 if (err)
2405 goto restore_opts;
2406 }
2407 }
2408 #endif
2409 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) {
2410 err = -EINVAL;
2411 f2fs_warn(sbi, "LFS is not compatible with IPU");
2412 goto restore_opts;
2413 }
2414
2415 /* disallow enable atgc dynamically */
2416 if (no_atgc == !!test_opt(sbi, ATGC)) {
2417 err = -EINVAL;
2418 f2fs_warn(sbi, "switch atgc option is not allowed");
2419 goto restore_opts;
2420 }
2421
2422 /* disallow enable/disable extent_cache dynamically */
2423 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2424 err = -EINVAL;
2425 f2fs_warn(sbi, "switch extent_cache option is not allowed");
2426 goto restore_opts;
2427 }
2428 /* disallow enable/disable age extent_cache dynamically */
2429 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2430 err = -EINVAL;
2431 f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2432 goto restore_opts;
2433 }
2434
2435 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2436 err = -EINVAL;
2437 f2fs_warn(sbi, "switch compress_cache option is not allowed");
2438 goto restore_opts;
2439 }
2440
2441 if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2442 err = -EINVAL;
2443 f2fs_warn(sbi, "switch discard_unit option is not allowed");
2444 goto restore_opts;
2445 }
2446
2447 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2448 err = -EINVAL;
2449 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2450 goto restore_opts;
2451 }
2452
2453 /*
2454 * We stop the GC thread if FS is mounted as RO
2455 * or if background_gc = off is passed in mount
2456 * option. Also sync the filesystem.
2457 */
2458 if ((*flags & SB_RDONLY) ||
2459 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2460 !test_opt(sbi, GC_MERGE))) {
2461 if (sbi->gc_thread) {
2462 f2fs_stop_gc_thread(sbi);
2463 need_restart_gc = true;
2464 }
2465 } else if (!sbi->gc_thread) {
2466 err = f2fs_start_gc_thread(sbi);
2467 if (err)
2468 goto restore_opts;
2469 need_stop_gc = true;
2470 }
2471
2472 if (*flags & SB_RDONLY) {
2473 sync_inodes_sb(sb);
2474
2475 set_sbi_flag(sbi, SBI_IS_DIRTY);
2476 set_sbi_flag(sbi, SBI_IS_CLOSE);
2477 f2fs_sync_fs(sb, 1);
2478 clear_sbi_flag(sbi, SBI_IS_CLOSE);
2479 }
2480
2481 /*
2482 * We stop issue flush thread if FS is mounted as RO
2483 * or if flush_merge is not passed in mount option.
2484 */
2485 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2486 clear_opt(sbi, FLUSH_MERGE);
2487 f2fs_destroy_flush_cmd_control(sbi, false);
2488 need_restart_flush = true;
2489 } else {
2490 err = f2fs_create_flush_cmd_control(sbi);
2491 if (err)
2492 goto restore_gc;
2493 need_stop_flush = true;
2494 }
2495
2496 if (no_discard == !!test_opt(sbi, DISCARD)) {
2497 if (test_opt(sbi, DISCARD)) {
2498 err = f2fs_start_discard_thread(sbi);
2499 if (err)
2500 goto restore_flush;
2501 need_stop_discard = true;
2502 } else {
2503 f2fs_stop_discard_thread(sbi);
2504 f2fs_issue_discard_timeout(sbi);
2505 need_restart_discard = true;
2506 }
2507 }
2508
2509 adjust_unusable_cap_perc(sbi);
2510 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2511 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2512 err = f2fs_disable_checkpoint(sbi);
2513 if (err)
2514 goto restore_discard;
2515 need_enable_checkpoint = true;
2516 } else {
2517 f2fs_enable_checkpoint(sbi);
2518 need_disable_checkpoint = true;
2519 }
2520 }
2521
2522 /*
2523 * Place this routine at the end, since a new checkpoint would be
2524 * triggered while remount and we need to take care of it before
2525 * returning from remount.
2526 */
2527 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2528 !test_opt(sbi, MERGE_CHECKPOINT)) {
2529 f2fs_stop_ckpt_thread(sbi);
2530 } else {
2531 /* Flush if the prevous checkpoint, if exists. */
2532 f2fs_flush_ckpt_thread(sbi);
2533
2534 err = f2fs_start_ckpt_thread(sbi);
2535 if (err) {
2536 f2fs_err(sbi,
2537 "Failed to start F2FS issue_checkpoint_thread (%d)",
2538 err);
2539 goto restore_checkpoint;
2540 }
2541 }
2542
2543 skip:
2544 #ifdef CONFIG_QUOTA
2545 /* Release old quota file names */
2546 for (i = 0; i < MAXQUOTAS; i++)
2547 kfree(org_mount_opt.s_qf_names[i]);
2548 #endif
2549 /* Update the POSIXACL Flag */
2550 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2551 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2552
2553 limit_reserve_root(sbi);
2554 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2555 return 0;
2556 restore_checkpoint:
2557 if (need_enable_checkpoint) {
2558 f2fs_enable_checkpoint(sbi);
2559 } else if (need_disable_checkpoint) {
2560 if (f2fs_disable_checkpoint(sbi))
2561 f2fs_warn(sbi, "checkpoint has not been disabled");
2562 }
2563 restore_discard:
2564 if (need_restart_discard) {
2565 if (f2fs_start_discard_thread(sbi))
2566 f2fs_warn(sbi, "discard has been stopped");
2567 } else if (need_stop_discard) {
2568 f2fs_stop_discard_thread(sbi);
2569 }
2570 restore_flush:
2571 if (need_restart_flush) {
2572 if (f2fs_create_flush_cmd_control(sbi))
2573 f2fs_warn(sbi, "background flush thread has stopped");
2574 } else if (need_stop_flush) {
2575 clear_opt(sbi, FLUSH_MERGE);
2576 f2fs_destroy_flush_cmd_control(sbi, false);
2577 }
2578 restore_gc:
2579 if (need_restart_gc) {
2580 if (f2fs_start_gc_thread(sbi))
2581 f2fs_warn(sbi, "background gc thread has stopped");
2582 } else if (need_stop_gc) {
2583 f2fs_stop_gc_thread(sbi);
2584 }
2585 restore_opts:
2586 #ifdef CONFIG_QUOTA
2587 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2588 for (i = 0; i < MAXQUOTAS; i++) {
2589 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2590 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2591 }
2592 #endif
2593 sbi->mount_opt = org_mount_opt;
2594 sb->s_flags = old_sb_flags;
2595 return err;
2596 }
2597
f2fs_shutdown(struct super_block * sb)2598 static void f2fs_shutdown(struct super_block *sb)
2599 {
2600 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false);
2601 }
2602
2603 #ifdef CONFIG_QUOTA
f2fs_need_recovery(struct f2fs_sb_info * sbi)2604 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi)
2605 {
2606 /* need to recovery orphan */
2607 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
2608 return true;
2609 /* need to recovery data */
2610 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
2611 return false;
2612 if (test_opt(sbi, NORECOVERY))
2613 return false;
2614 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG);
2615 }
2616
f2fs_recover_quota_begin(struct f2fs_sb_info * sbi)2617 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi)
2618 {
2619 bool readonly = f2fs_readonly(sbi->sb);
2620
2621 if (!f2fs_need_recovery(sbi))
2622 return false;
2623
2624 /* it doesn't need to check f2fs_sb_has_readonly() */
2625 if (f2fs_hw_is_readonly(sbi))
2626 return false;
2627
2628 if (readonly) {
2629 sbi->sb->s_flags &= ~SB_RDONLY;
2630 set_sbi_flag(sbi, SBI_IS_WRITABLE);
2631 }
2632
2633 /*
2634 * Turn on quotas which were not enabled for read-only mounts if
2635 * filesystem has quota feature, so that they are updated correctly.
2636 */
2637 return f2fs_enable_quota_files(sbi, readonly);
2638 }
2639
f2fs_recover_quota_end(struct f2fs_sb_info * sbi,bool quota_enabled)2640 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi,
2641 bool quota_enabled)
2642 {
2643 if (quota_enabled)
2644 f2fs_quota_off_umount(sbi->sb);
2645
2646 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) {
2647 clear_sbi_flag(sbi, SBI_IS_WRITABLE);
2648 sbi->sb->s_flags |= SB_RDONLY;
2649 }
2650 }
2651
2652 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)2653 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2654 size_t len, loff_t off)
2655 {
2656 struct inode *inode = sb_dqopt(sb)->files[type];
2657 struct address_space *mapping = inode->i_mapping;
2658 block_t blkidx = F2FS_BYTES_TO_BLK(off);
2659 int offset = off & (sb->s_blocksize - 1);
2660 int tocopy;
2661 size_t toread;
2662 loff_t i_size = i_size_read(inode);
2663 struct page *page;
2664
2665 if (off > i_size)
2666 return 0;
2667
2668 if (off + len > i_size)
2669 len = i_size - off;
2670 toread = len;
2671 while (toread > 0) {
2672 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2673 repeat:
2674 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2675 if (IS_ERR(page)) {
2676 if (PTR_ERR(page) == -ENOMEM) {
2677 memalloc_retry_wait(GFP_NOFS);
2678 goto repeat;
2679 }
2680 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2681 return PTR_ERR(page);
2682 }
2683
2684 lock_page(page);
2685
2686 if (unlikely(page->mapping != mapping)) {
2687 f2fs_put_page(page, 1);
2688 goto repeat;
2689 }
2690 if (unlikely(!PageUptodate(page))) {
2691 f2fs_put_page(page, 1);
2692 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2693 return -EIO;
2694 }
2695
2696 memcpy_from_page(data, page, offset, tocopy);
2697 f2fs_put_page(page, 1);
2698
2699 offset = 0;
2700 toread -= tocopy;
2701 data += tocopy;
2702 blkidx++;
2703 }
2704 return len;
2705 }
2706
2707 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)2708 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2709 const char *data, size_t len, loff_t off)
2710 {
2711 struct inode *inode = sb_dqopt(sb)->files[type];
2712 struct address_space *mapping = inode->i_mapping;
2713 const struct address_space_operations *a_ops = mapping->a_ops;
2714 int offset = off & (sb->s_blocksize - 1);
2715 size_t towrite = len;
2716 struct folio *folio;
2717 void *fsdata = NULL;
2718 int err = 0;
2719 int tocopy;
2720
2721 while (towrite > 0) {
2722 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2723 towrite);
2724 retry:
2725 err = a_ops->write_begin(NULL, mapping, off, tocopy,
2726 &folio, &fsdata);
2727 if (unlikely(err)) {
2728 if (err == -ENOMEM) {
2729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2730 goto retry;
2731 }
2732 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2733 break;
2734 }
2735
2736 memcpy_to_folio(folio, offset_in_folio(folio, off), data, tocopy);
2737
2738 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2739 folio, fsdata);
2740 offset = 0;
2741 towrite -= tocopy;
2742 off += tocopy;
2743 data += tocopy;
2744 cond_resched();
2745 }
2746
2747 if (len == towrite)
2748 return err;
2749 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2750 f2fs_mark_inode_dirty_sync(inode, false);
2751 return len - towrite;
2752 }
2753
f2fs_dquot_initialize(struct inode * inode)2754 int f2fs_dquot_initialize(struct inode *inode)
2755 {
2756 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT))
2757 return -ESRCH;
2758
2759 return dquot_initialize(inode);
2760 }
2761
f2fs_get_dquots(struct inode * inode)2762 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode)
2763 {
2764 return F2FS_I(inode)->i_dquot;
2765 }
2766
f2fs_get_reserved_space(struct inode * inode)2767 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2768 {
2769 return &F2FS_I(inode)->i_reserved_quota;
2770 }
2771
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)2772 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2773 {
2774 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2775 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2776 return 0;
2777 }
2778
2779 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2780 F2FS_OPTION(sbi).s_jquota_fmt, type);
2781 }
2782
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)2783 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2784 {
2785 int enabled = 0;
2786 int i, err;
2787
2788 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2789 err = f2fs_enable_quotas(sbi->sb);
2790 if (err) {
2791 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2792 return 0;
2793 }
2794 return 1;
2795 }
2796
2797 for (i = 0; i < MAXQUOTAS; i++) {
2798 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2799 err = f2fs_quota_on_mount(sbi, i);
2800 if (!err) {
2801 enabled = 1;
2802 continue;
2803 }
2804 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2805 err, i);
2806 }
2807 }
2808 return enabled;
2809 }
2810
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)2811 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2812 unsigned int flags)
2813 {
2814 struct inode *qf_inode;
2815 unsigned long qf_inum;
2816 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL;
2817 int err;
2818
2819 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2820
2821 qf_inum = f2fs_qf_ino(sb, type);
2822 if (!qf_inum)
2823 return -EPERM;
2824
2825 qf_inode = f2fs_iget(sb, qf_inum);
2826 if (IS_ERR(qf_inode)) {
2827 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2828 return PTR_ERR(qf_inode);
2829 }
2830
2831 /* Don't account quota for quota files to avoid recursion */
2832 inode_lock(qf_inode);
2833 qf_inode->i_flags |= S_NOQUOTA;
2834
2835 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) {
2836 F2FS_I(qf_inode)->i_flags |= qf_flag;
2837 f2fs_set_inode_flags(qf_inode);
2838 }
2839 inode_unlock(qf_inode);
2840
2841 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2842 iput(qf_inode);
2843 return err;
2844 }
2845
f2fs_enable_quotas(struct super_block * sb)2846 static int f2fs_enable_quotas(struct super_block *sb)
2847 {
2848 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2849 int type, err = 0;
2850 unsigned long qf_inum;
2851 bool quota_mopt[MAXQUOTAS] = {
2852 test_opt(sbi, USRQUOTA),
2853 test_opt(sbi, GRPQUOTA),
2854 test_opt(sbi, PRJQUOTA),
2855 };
2856
2857 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2858 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2859 return 0;
2860 }
2861
2862 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2863
2864 for (type = 0; type < MAXQUOTAS; type++) {
2865 qf_inum = f2fs_qf_ino(sb, type);
2866 if (qf_inum) {
2867 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2868 DQUOT_USAGE_ENABLED |
2869 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2870 if (err) {
2871 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2872 type, err);
2873 for (type--; type >= 0; type--)
2874 dquot_quota_off(sb, type);
2875 set_sbi_flag(F2FS_SB(sb),
2876 SBI_QUOTA_NEED_REPAIR);
2877 return err;
2878 }
2879 }
2880 }
2881 return 0;
2882 }
2883
f2fs_quota_sync_file(struct f2fs_sb_info * sbi,int type)2884 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2885 {
2886 struct quota_info *dqopt = sb_dqopt(sbi->sb);
2887 struct address_space *mapping = dqopt->files[type]->i_mapping;
2888 int ret = 0;
2889
2890 ret = dquot_writeback_dquots(sbi->sb, type);
2891 if (ret)
2892 goto out;
2893
2894 ret = filemap_fdatawrite(mapping);
2895 if (ret)
2896 goto out;
2897
2898 /* if we are using journalled quota */
2899 if (is_journalled_quota(sbi))
2900 goto out;
2901
2902 ret = filemap_fdatawait(mapping);
2903
2904 truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2905 out:
2906 if (ret)
2907 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2908 return ret;
2909 }
2910
f2fs_quota_sync(struct super_block * sb,int type)2911 int f2fs_quota_sync(struct super_block *sb, int type)
2912 {
2913 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2914 struct quota_info *dqopt = sb_dqopt(sb);
2915 int cnt;
2916 int ret = 0;
2917
2918 /*
2919 * Now when everything is written we can discard the pagecache so
2920 * that userspace sees the changes.
2921 */
2922 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2923
2924 if (type != -1 && cnt != type)
2925 continue;
2926
2927 if (!sb_has_quota_active(sb, cnt))
2928 continue;
2929
2930 if (!f2fs_sb_has_quota_ino(sbi))
2931 inode_lock(dqopt->files[cnt]);
2932
2933 /*
2934 * do_quotactl
2935 * f2fs_quota_sync
2936 * f2fs_down_read(quota_sem)
2937 * dquot_writeback_dquots()
2938 * f2fs_dquot_commit
2939 * block_operation
2940 * f2fs_down_read(quota_sem)
2941 */
2942 f2fs_lock_op(sbi);
2943 f2fs_down_read(&sbi->quota_sem);
2944
2945 ret = f2fs_quota_sync_file(sbi, cnt);
2946
2947 f2fs_up_read(&sbi->quota_sem);
2948 f2fs_unlock_op(sbi);
2949
2950 if (!f2fs_sb_has_quota_ino(sbi))
2951 inode_unlock(dqopt->files[cnt]);
2952
2953 if (ret)
2954 break;
2955 }
2956 return ret;
2957 }
2958
f2fs_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)2959 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2960 const struct path *path)
2961 {
2962 struct inode *inode;
2963 int err;
2964
2965 /* if quota sysfile exists, deny enabling quota with specific file */
2966 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2967 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2968 return -EBUSY;
2969 }
2970
2971 if (path->dentry->d_sb != sb)
2972 return -EXDEV;
2973
2974 err = f2fs_quota_sync(sb, type);
2975 if (err)
2976 return err;
2977
2978 inode = d_inode(path->dentry);
2979
2980 err = filemap_fdatawrite(inode->i_mapping);
2981 if (err)
2982 return err;
2983
2984 err = filemap_fdatawait(inode->i_mapping);
2985 if (err)
2986 return err;
2987
2988 err = dquot_quota_on(sb, type, format_id, path);
2989 if (err)
2990 return err;
2991
2992 inode_lock(inode);
2993 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL;
2994 f2fs_set_inode_flags(inode);
2995 inode_unlock(inode);
2996 f2fs_mark_inode_dirty_sync(inode, false);
2997
2998 return 0;
2999 }
3000
__f2fs_quota_off(struct super_block * sb,int type)3001 static int __f2fs_quota_off(struct super_block *sb, int type)
3002 {
3003 struct inode *inode = sb_dqopt(sb)->files[type];
3004 int err;
3005
3006 if (!inode || !igrab(inode))
3007 return dquot_quota_off(sb, type);
3008
3009 err = f2fs_quota_sync(sb, type);
3010 if (err)
3011 goto out_put;
3012
3013 err = dquot_quota_off(sb, type);
3014 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
3015 goto out_put;
3016
3017 inode_lock(inode);
3018 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL;
3019 f2fs_set_inode_flags(inode);
3020 inode_unlock(inode);
3021 f2fs_mark_inode_dirty_sync(inode, false);
3022 out_put:
3023 iput(inode);
3024 return err;
3025 }
3026
f2fs_quota_off(struct super_block * sb,int type)3027 static int f2fs_quota_off(struct super_block *sb, int type)
3028 {
3029 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3030 int err;
3031
3032 err = __f2fs_quota_off(sb, type);
3033
3034 /*
3035 * quotactl can shutdown journalled quota, result in inconsistence
3036 * between quota record and fs data by following updates, tag the
3037 * flag to let fsck be aware of it.
3038 */
3039 if (is_journalled_quota(sbi))
3040 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3041 return err;
3042 }
3043
f2fs_quota_off_umount(struct super_block * sb)3044 void f2fs_quota_off_umount(struct super_block *sb)
3045 {
3046 int type;
3047 int err;
3048
3049 for (type = 0; type < MAXQUOTAS; type++) {
3050 err = __f2fs_quota_off(sb, type);
3051 if (err) {
3052 int ret = dquot_quota_off(sb, type);
3053
3054 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
3055 type, err, ret);
3056 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
3057 }
3058 }
3059 /*
3060 * In case of checkpoint=disable, we must flush quota blocks.
3061 * This can cause NULL exception for node_inode in end_io, since
3062 * put_super already dropped it.
3063 */
3064 sync_filesystem(sb);
3065 }
3066
f2fs_truncate_quota_inode_pages(struct super_block * sb)3067 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
3068 {
3069 struct quota_info *dqopt = sb_dqopt(sb);
3070 int type;
3071
3072 for (type = 0; type < MAXQUOTAS; type++) {
3073 if (!dqopt->files[type])
3074 continue;
3075 f2fs_inode_synced(dqopt->files[type]);
3076 }
3077 }
3078
f2fs_dquot_commit(struct dquot * dquot)3079 static int f2fs_dquot_commit(struct dquot *dquot)
3080 {
3081 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3082 int ret;
3083
3084 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
3085 ret = dquot_commit(dquot);
3086 if (ret < 0)
3087 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3088 f2fs_up_read(&sbi->quota_sem);
3089 return ret;
3090 }
3091
f2fs_dquot_acquire(struct dquot * dquot)3092 static int f2fs_dquot_acquire(struct dquot *dquot)
3093 {
3094 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3095 int ret;
3096
3097 f2fs_down_read(&sbi->quota_sem);
3098 ret = dquot_acquire(dquot);
3099 if (ret < 0)
3100 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3101 f2fs_up_read(&sbi->quota_sem);
3102 return ret;
3103 }
3104
f2fs_dquot_release(struct dquot * dquot)3105 static int f2fs_dquot_release(struct dquot *dquot)
3106 {
3107 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
3108 int ret = dquot_release(dquot);
3109
3110 if (ret < 0)
3111 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3112 return ret;
3113 }
3114
f2fs_dquot_mark_dquot_dirty(struct dquot * dquot)3115 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
3116 {
3117 struct super_block *sb = dquot->dq_sb;
3118 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3119 int ret = dquot_mark_dquot_dirty(dquot);
3120
3121 /* if we are using journalled quota */
3122 if (is_journalled_quota(sbi))
3123 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
3124
3125 return ret;
3126 }
3127
f2fs_dquot_commit_info(struct super_block * sb,int type)3128 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
3129 {
3130 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3131 int ret = dquot_commit_info(sb, type);
3132
3133 if (ret < 0)
3134 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3135 return ret;
3136 }
3137
f2fs_get_projid(struct inode * inode,kprojid_t * projid)3138 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
3139 {
3140 *projid = F2FS_I(inode)->i_projid;
3141 return 0;
3142 }
3143
3144 static const struct dquot_operations f2fs_quota_operations = {
3145 .get_reserved_space = f2fs_get_reserved_space,
3146 .write_dquot = f2fs_dquot_commit,
3147 .acquire_dquot = f2fs_dquot_acquire,
3148 .release_dquot = f2fs_dquot_release,
3149 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
3150 .write_info = f2fs_dquot_commit_info,
3151 .alloc_dquot = dquot_alloc,
3152 .destroy_dquot = dquot_destroy,
3153 .get_projid = f2fs_get_projid,
3154 .get_next_id = dquot_get_next_id,
3155 };
3156
3157 static const struct quotactl_ops f2fs_quotactl_ops = {
3158 .quota_on = f2fs_quota_on,
3159 .quota_off = f2fs_quota_off,
3160 .quota_sync = f2fs_quota_sync,
3161 .get_state = dquot_get_state,
3162 .set_info = dquot_set_dqinfo,
3163 .get_dqblk = dquot_get_dqblk,
3164 .set_dqblk = dquot_set_dqblk,
3165 .get_nextdqblk = dquot_get_next_dqblk,
3166 };
3167 #else
f2fs_dquot_initialize(struct inode * inode)3168 int f2fs_dquot_initialize(struct inode *inode)
3169 {
3170 return 0;
3171 }
3172
f2fs_quota_sync(struct super_block * sb,int type)3173 int f2fs_quota_sync(struct super_block *sb, int type)
3174 {
3175 return 0;
3176 }
3177
f2fs_quota_off_umount(struct super_block * sb)3178 void f2fs_quota_off_umount(struct super_block *sb)
3179 {
3180 }
3181 #endif
3182
3183 static const struct super_operations f2fs_sops = {
3184 .alloc_inode = f2fs_alloc_inode,
3185 .free_inode = f2fs_free_inode,
3186 .drop_inode = f2fs_drop_inode,
3187 .write_inode = f2fs_write_inode,
3188 .dirty_inode = f2fs_dirty_inode,
3189 .show_options = f2fs_show_options,
3190 #ifdef CONFIG_QUOTA
3191 .quota_read = f2fs_quota_read,
3192 .quota_write = f2fs_quota_write,
3193 .get_dquots = f2fs_get_dquots,
3194 #endif
3195 .evict_inode = f2fs_evict_inode,
3196 .put_super = f2fs_put_super,
3197 .sync_fs = f2fs_sync_fs,
3198 .freeze_fs = f2fs_freeze,
3199 .unfreeze_fs = f2fs_unfreeze,
3200 .statfs = f2fs_statfs,
3201 .remount_fs = f2fs_remount,
3202 .shutdown = f2fs_shutdown,
3203 };
3204
3205 #ifdef CONFIG_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)3206 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3207 {
3208 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3209 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3210 ctx, len, NULL);
3211 }
3212
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)3213 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3214 void *fs_data)
3215 {
3216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3217
3218 /*
3219 * Encrypting the root directory is not allowed because fsck
3220 * expects lost+found directory to exist and remain unencrypted
3221 * if LOST_FOUND feature is enabled.
3222 *
3223 */
3224 if (f2fs_sb_has_lost_found(sbi) &&
3225 inode->i_ino == F2FS_ROOT_INO(sbi))
3226 return -EPERM;
3227
3228 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3229 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3230 ctx, len, fs_data, XATTR_CREATE);
3231 }
3232
f2fs_get_dummy_policy(struct super_block * sb)3233 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3234 {
3235 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3236 }
3237
f2fs_has_stable_inodes(struct super_block * sb)3238 static bool f2fs_has_stable_inodes(struct super_block *sb)
3239 {
3240 return true;
3241 }
3242
f2fs_get_devices(struct super_block * sb,unsigned int * num_devs)3243 static struct block_device **f2fs_get_devices(struct super_block *sb,
3244 unsigned int *num_devs)
3245 {
3246 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3247 struct block_device **devs;
3248 int i;
3249
3250 if (!f2fs_is_multi_device(sbi))
3251 return NULL;
3252
3253 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3254 if (!devs)
3255 return ERR_PTR(-ENOMEM);
3256
3257 for (i = 0; i < sbi->s_ndevs; i++)
3258 devs[i] = FDEV(i).bdev;
3259 *num_devs = sbi->s_ndevs;
3260 return devs;
3261 }
3262
3263 static const struct fscrypt_operations f2fs_cryptops = {
3264 .needs_bounce_pages = 1,
3265 .has_32bit_inodes = 1,
3266 .supports_subblock_data_units = 1,
3267 .legacy_key_prefix = "f2fs:",
3268 .get_context = f2fs_get_context,
3269 .set_context = f2fs_set_context,
3270 .get_dummy_policy = f2fs_get_dummy_policy,
3271 .empty_dir = f2fs_empty_dir,
3272 .has_stable_inodes = f2fs_has_stable_inodes,
3273 .get_devices = f2fs_get_devices,
3274 };
3275 #endif
3276
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)3277 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3278 u64 ino, u32 generation)
3279 {
3280 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3281 struct inode *inode;
3282
3283 if (f2fs_check_nid_range(sbi, ino))
3284 return ERR_PTR(-ESTALE);
3285
3286 /*
3287 * f2fs_iget isn't quite right if the inode is currently unallocated!
3288 * However f2fs_iget currently does appropriate checks to handle stale
3289 * inodes so everything is OK.
3290 */
3291 inode = f2fs_iget(sb, ino);
3292 if (IS_ERR(inode))
3293 return ERR_CAST(inode);
3294 if (unlikely(generation && inode->i_generation != generation)) {
3295 /* we didn't find the right inode.. */
3296 iput(inode);
3297 return ERR_PTR(-ESTALE);
3298 }
3299 return inode;
3300 }
3301
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3302 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3303 int fh_len, int fh_type)
3304 {
3305 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3306 f2fs_nfs_get_inode);
3307 }
3308
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3309 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3310 int fh_len, int fh_type)
3311 {
3312 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3313 f2fs_nfs_get_inode);
3314 }
3315
3316 static const struct export_operations f2fs_export_ops = {
3317 .encode_fh = generic_encode_ino32_fh,
3318 .fh_to_dentry = f2fs_fh_to_dentry,
3319 .fh_to_parent = f2fs_fh_to_parent,
3320 .get_parent = f2fs_get_parent,
3321 };
3322
max_file_blocks(struct inode * inode)3323 loff_t max_file_blocks(struct inode *inode)
3324 {
3325 loff_t result = 0;
3326 loff_t leaf_count;
3327
3328 /*
3329 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3330 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3331 * space in inode.i_addr, it will be more safe to reassign
3332 * result as zero.
3333 */
3334
3335 if (inode && f2fs_compressed_file(inode))
3336 leaf_count = ADDRS_PER_BLOCK(inode);
3337 else
3338 leaf_count = DEF_ADDRS_PER_BLOCK;
3339
3340 /* two direct node blocks */
3341 result += (leaf_count * 2);
3342
3343 /* two indirect node blocks */
3344 leaf_count *= NIDS_PER_BLOCK;
3345 result += (leaf_count * 2);
3346
3347 /* one double indirect node block */
3348 leaf_count *= NIDS_PER_BLOCK;
3349 result += leaf_count;
3350
3351 /*
3352 * For compatibility with FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{64,32} with
3353 * a 4K crypto data unit, we must restrict the max filesize to what can
3354 * fit within U32_MAX + 1 data units.
3355 */
3356
3357 result = umin(result, F2FS_BYTES_TO_BLK(((loff_t)U32_MAX + 1) * 4096));
3358
3359 return result;
3360 }
3361
__f2fs_commit_super(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index,bool update)3362 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, struct folio *folio,
3363 pgoff_t index, bool update)
3364 {
3365 struct bio *bio;
3366 /* it's rare case, we can do fua all the time */
3367 blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA;
3368 int ret;
3369
3370 folio_lock(folio);
3371 folio_wait_writeback(folio);
3372 if (update)
3373 memcpy(F2FS_SUPER_BLOCK(folio, index), F2FS_RAW_SUPER(sbi),
3374 sizeof(struct f2fs_super_block));
3375 folio_mark_dirty(folio);
3376 folio_clear_dirty_for_io(folio);
3377 folio_start_writeback(folio);
3378 folio_unlock(folio);
3379
3380 bio = bio_alloc(sbi->sb->s_bdev, 1, opf, GFP_NOFS);
3381
3382 /* it doesn't need to set crypto context for superblock update */
3383 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(folio_index(folio));
3384
3385 if (!bio_add_folio(bio, folio, folio_size(folio), 0))
3386 f2fs_bug_on(sbi, 1);
3387
3388 ret = submit_bio_wait(bio);
3389 folio_end_writeback(folio);
3390
3391 return ret;
3392 }
3393
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index)3394 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3395 struct folio *folio, pgoff_t index)
3396 {
3397 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3398 struct super_block *sb = sbi->sb;
3399 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3400 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3401 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3402 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3403 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3404 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3405 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3406 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3407 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3408 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3409 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3410 u32 segment_count = le32_to_cpu(raw_super->segment_count);
3411 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3412 u64 main_end_blkaddr = main_blkaddr +
3413 ((u64)segment_count_main << log_blocks_per_seg);
3414 u64 seg_end_blkaddr = segment0_blkaddr +
3415 ((u64)segment_count << log_blocks_per_seg);
3416
3417 if (segment0_blkaddr != cp_blkaddr) {
3418 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3419 segment0_blkaddr, cp_blkaddr);
3420 return true;
3421 }
3422
3423 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3424 sit_blkaddr) {
3425 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3426 cp_blkaddr, sit_blkaddr,
3427 segment_count_ckpt << log_blocks_per_seg);
3428 return true;
3429 }
3430
3431 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3432 nat_blkaddr) {
3433 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3434 sit_blkaddr, nat_blkaddr,
3435 segment_count_sit << log_blocks_per_seg);
3436 return true;
3437 }
3438
3439 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3440 ssa_blkaddr) {
3441 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3442 nat_blkaddr, ssa_blkaddr,
3443 segment_count_nat << log_blocks_per_seg);
3444 return true;
3445 }
3446
3447 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3448 main_blkaddr) {
3449 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3450 ssa_blkaddr, main_blkaddr,
3451 segment_count_ssa << log_blocks_per_seg);
3452 return true;
3453 }
3454
3455 if (main_end_blkaddr > seg_end_blkaddr) {
3456 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3457 main_blkaddr, seg_end_blkaddr,
3458 segment_count_main << log_blocks_per_seg);
3459 return true;
3460 } else if (main_end_blkaddr < seg_end_blkaddr) {
3461 int err = 0;
3462 char *res;
3463
3464 /* fix in-memory information all the time */
3465 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3466 segment0_blkaddr) >> log_blocks_per_seg);
3467
3468 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) {
3469 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3470 res = "internally";
3471 } else {
3472 err = __f2fs_commit_super(sbi, folio, index, false);
3473 res = err ? "failed" : "done";
3474 }
3475 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3476 res, main_blkaddr, seg_end_blkaddr,
3477 segment_count_main << log_blocks_per_seg);
3478 if (err)
3479 return true;
3480 }
3481 return false;
3482 }
3483
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct folio * folio,pgoff_t index)3484 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3485 struct folio *folio, pgoff_t index)
3486 {
3487 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3488 block_t total_sections, blocks_per_seg;
3489 struct f2fs_super_block *raw_super = F2FS_SUPER_BLOCK(folio, index);
3490 size_t crc_offset = 0;
3491 __u32 crc = 0;
3492
3493 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3494 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3495 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3496 return -EINVAL;
3497 }
3498
3499 /* Check checksum_offset and crc in superblock */
3500 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3501 crc_offset = le32_to_cpu(raw_super->checksum_offset);
3502 if (crc_offset !=
3503 offsetof(struct f2fs_super_block, crc)) {
3504 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3505 crc_offset);
3506 return -EFSCORRUPTED;
3507 }
3508 crc = le32_to_cpu(raw_super->crc);
3509 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3510 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3511 return -EFSCORRUPTED;
3512 }
3513 }
3514
3515 /* only support block_size equals to PAGE_SIZE */
3516 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3517 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3518 le32_to_cpu(raw_super->log_blocksize),
3519 F2FS_BLKSIZE_BITS);
3520 return -EFSCORRUPTED;
3521 }
3522
3523 /* check log blocks per segment */
3524 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3525 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3526 le32_to_cpu(raw_super->log_blocks_per_seg));
3527 return -EFSCORRUPTED;
3528 }
3529
3530 /* Currently, support 512/1024/2048/4096/16K bytes sector size */
3531 if (le32_to_cpu(raw_super->log_sectorsize) >
3532 F2FS_MAX_LOG_SECTOR_SIZE ||
3533 le32_to_cpu(raw_super->log_sectorsize) <
3534 F2FS_MIN_LOG_SECTOR_SIZE) {
3535 f2fs_info(sbi, "Invalid log sectorsize (%u)",
3536 le32_to_cpu(raw_super->log_sectorsize));
3537 return -EFSCORRUPTED;
3538 }
3539 if (le32_to_cpu(raw_super->log_sectors_per_block) +
3540 le32_to_cpu(raw_super->log_sectorsize) !=
3541 F2FS_MAX_LOG_SECTOR_SIZE) {
3542 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3543 le32_to_cpu(raw_super->log_sectors_per_block),
3544 le32_to_cpu(raw_super->log_sectorsize));
3545 return -EFSCORRUPTED;
3546 }
3547
3548 segment_count = le32_to_cpu(raw_super->segment_count);
3549 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3550 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3551 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3552 total_sections = le32_to_cpu(raw_super->section_count);
3553
3554 /* blocks_per_seg should be 512, given the above check */
3555 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg));
3556
3557 if (segment_count > F2FS_MAX_SEGMENT ||
3558 segment_count < F2FS_MIN_SEGMENTS) {
3559 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3560 return -EFSCORRUPTED;
3561 }
3562
3563 if (total_sections > segment_count_main || total_sections < 1 ||
3564 segs_per_sec > segment_count || !segs_per_sec) {
3565 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3566 segment_count, total_sections, segs_per_sec);
3567 return -EFSCORRUPTED;
3568 }
3569
3570 if (segment_count_main != total_sections * segs_per_sec) {
3571 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3572 segment_count_main, total_sections, segs_per_sec);
3573 return -EFSCORRUPTED;
3574 }
3575
3576 if ((segment_count / segs_per_sec) < total_sections) {
3577 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3578 segment_count, segs_per_sec, total_sections);
3579 return -EFSCORRUPTED;
3580 }
3581
3582 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3583 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3584 segment_count, le64_to_cpu(raw_super->block_count));
3585 return -EFSCORRUPTED;
3586 }
3587
3588 if (RDEV(0).path[0]) {
3589 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3590 int i = 1;
3591
3592 while (i < MAX_DEVICES && RDEV(i).path[0]) {
3593 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3594 i++;
3595 }
3596 if (segment_count != dev_seg_count) {
3597 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3598 segment_count, dev_seg_count);
3599 return -EFSCORRUPTED;
3600 }
3601 } else {
3602 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3603 !bdev_is_zoned(sbi->sb->s_bdev)) {
3604 f2fs_info(sbi, "Zoned block device path is missing");
3605 return -EFSCORRUPTED;
3606 }
3607 }
3608
3609 if (secs_per_zone > total_sections || !secs_per_zone) {
3610 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3611 secs_per_zone, total_sections);
3612 return -EFSCORRUPTED;
3613 }
3614 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3615 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3616 (le32_to_cpu(raw_super->extension_count) +
3617 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3618 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3619 le32_to_cpu(raw_super->extension_count),
3620 raw_super->hot_ext_count,
3621 F2FS_MAX_EXTENSION);
3622 return -EFSCORRUPTED;
3623 }
3624
3625 if (le32_to_cpu(raw_super->cp_payload) >=
3626 (blocks_per_seg - F2FS_CP_PACKS -
3627 NR_CURSEG_PERSIST_TYPE)) {
3628 f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3629 le32_to_cpu(raw_super->cp_payload),
3630 blocks_per_seg - F2FS_CP_PACKS -
3631 NR_CURSEG_PERSIST_TYPE);
3632 return -EFSCORRUPTED;
3633 }
3634
3635 /* check reserved ino info */
3636 if (le32_to_cpu(raw_super->node_ino) != 1 ||
3637 le32_to_cpu(raw_super->meta_ino) != 2 ||
3638 le32_to_cpu(raw_super->root_ino) != 3) {
3639 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3640 le32_to_cpu(raw_super->node_ino),
3641 le32_to_cpu(raw_super->meta_ino),
3642 le32_to_cpu(raw_super->root_ino));
3643 return -EFSCORRUPTED;
3644 }
3645
3646 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3647 if (sanity_check_area_boundary(sbi, folio, index))
3648 return -EFSCORRUPTED;
3649
3650 return 0;
3651 }
3652
f2fs_sanity_check_ckpt(struct f2fs_sb_info * sbi)3653 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3654 {
3655 unsigned int total, fsmeta;
3656 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3657 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3658 unsigned int ovp_segments, reserved_segments;
3659 unsigned int main_segs, blocks_per_seg;
3660 unsigned int sit_segs, nat_segs;
3661 unsigned int sit_bitmap_size, nat_bitmap_size;
3662 unsigned int log_blocks_per_seg;
3663 unsigned int segment_count_main;
3664 unsigned int cp_pack_start_sum, cp_payload;
3665 block_t user_block_count, valid_user_blocks;
3666 block_t avail_node_count, valid_node_count;
3667 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3668 int i, j;
3669
3670 total = le32_to_cpu(raw_super->segment_count);
3671 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3672 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3673 fsmeta += sit_segs;
3674 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3675 fsmeta += nat_segs;
3676 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3677 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3678
3679 if (unlikely(fsmeta >= total))
3680 return 1;
3681
3682 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3683 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3684
3685 if (!f2fs_sb_has_readonly(sbi) &&
3686 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3687 ovp_segments == 0 || reserved_segments == 0)) {
3688 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3689 return 1;
3690 }
3691 user_block_count = le64_to_cpu(ckpt->user_block_count);
3692 segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3693 (f2fs_sb_has_readonly(sbi) ? 1 : 0);
3694 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3695 if (!user_block_count || user_block_count >=
3696 segment_count_main << log_blocks_per_seg) {
3697 f2fs_err(sbi, "Wrong user_block_count: %u",
3698 user_block_count);
3699 return 1;
3700 }
3701
3702 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3703 if (valid_user_blocks > user_block_count) {
3704 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3705 valid_user_blocks, user_block_count);
3706 return 1;
3707 }
3708
3709 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3710 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3711 if (valid_node_count > avail_node_count) {
3712 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3713 valid_node_count, avail_node_count);
3714 return 1;
3715 }
3716
3717 main_segs = le32_to_cpu(raw_super->segment_count_main);
3718 blocks_per_seg = BLKS_PER_SEG(sbi);
3719
3720 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3721 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3722 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3723 return 1;
3724
3725 if (f2fs_sb_has_readonly(sbi))
3726 goto check_data;
3727
3728 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3729 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3730 le32_to_cpu(ckpt->cur_node_segno[j])) {
3731 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3732 i, j,
3733 le32_to_cpu(ckpt->cur_node_segno[i]));
3734 return 1;
3735 }
3736 }
3737 }
3738 check_data:
3739 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3740 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3741 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3742 return 1;
3743
3744 if (f2fs_sb_has_readonly(sbi))
3745 goto skip_cross;
3746
3747 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3748 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3749 le32_to_cpu(ckpt->cur_data_segno[j])) {
3750 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3751 i, j,
3752 le32_to_cpu(ckpt->cur_data_segno[i]));
3753 return 1;
3754 }
3755 }
3756 }
3757 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3758 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3759 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3760 le32_to_cpu(ckpt->cur_data_segno[j])) {
3761 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3762 i, j,
3763 le32_to_cpu(ckpt->cur_node_segno[i]));
3764 return 1;
3765 }
3766 }
3767 }
3768 skip_cross:
3769 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3770 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3771
3772 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3773 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3774 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3775 sit_bitmap_size, nat_bitmap_size);
3776 return 1;
3777 }
3778
3779 cp_pack_start_sum = __start_sum_addr(sbi);
3780 cp_payload = __cp_payload(sbi);
3781 if (cp_pack_start_sum < cp_payload + 1 ||
3782 cp_pack_start_sum > blocks_per_seg - 1 -
3783 NR_CURSEG_PERSIST_TYPE) {
3784 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3785 cp_pack_start_sum);
3786 return 1;
3787 }
3788
3789 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3790 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3791 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3792 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3793 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3794 le32_to_cpu(ckpt->checksum_offset));
3795 return 1;
3796 }
3797
3798 nat_blocks = nat_segs << log_blocks_per_seg;
3799 nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3800 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3801 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3802 (cp_payload + F2FS_CP_PACKS +
3803 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3804 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3805 cp_payload, nat_bits_blocks);
3806 return 1;
3807 }
3808
3809 if (unlikely(f2fs_cp_error(sbi))) {
3810 f2fs_err(sbi, "A bug case: need to run fsck");
3811 return 1;
3812 }
3813 return 0;
3814 }
3815
init_sb_info(struct f2fs_sb_info * sbi)3816 static void init_sb_info(struct f2fs_sb_info *sbi)
3817 {
3818 struct f2fs_super_block *raw_super = sbi->raw_super;
3819 int i;
3820
3821 sbi->log_sectors_per_block =
3822 le32_to_cpu(raw_super->log_sectors_per_block);
3823 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3824 sbi->blocksize = BIT(sbi->log_blocksize);
3825 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3826 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg);
3827 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3828 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3829 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3830 sbi->total_node_count = SEGS_TO_BLKS(sbi,
3831 ((le32_to_cpu(raw_super->segment_count_nat) / 2) *
3832 NAT_ENTRY_PER_BLOCK));
3833 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3834 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3835 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3836 sbi->cur_victim_sec = NULL_SECNO;
3837 sbi->gc_mode = GC_NORMAL;
3838 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3839 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3840 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3841 sbi->migration_granularity = SEGS_PER_SEC(sbi);
3842 sbi->migration_window_granularity = f2fs_sb_has_blkzoned(sbi) ?
3843 DEF_MIGRATION_WINDOW_GRANULARITY_ZONED : SEGS_PER_SEC(sbi);
3844 sbi->seq_file_ra_mul = MIN_RA_MUL;
3845 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3846 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3847 spin_lock_init(&sbi->gc_remaining_trials_lock);
3848 atomic64_set(&sbi->current_atomic_write, 0);
3849
3850 sbi->dir_level = DEF_DIR_LEVEL;
3851 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3852 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3853 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3854 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3855 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3856 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3857 DEF_UMOUNT_DISCARD_TIMEOUT;
3858 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3859
3860 for (i = 0; i < NR_COUNT_TYPE; i++)
3861 atomic_set(&sbi->nr_pages[i], 0);
3862
3863 for (i = 0; i < META; i++)
3864 atomic_set(&sbi->wb_sync_req[i], 0);
3865
3866 INIT_LIST_HEAD(&sbi->s_list);
3867 mutex_init(&sbi->umount_mutex);
3868 init_f2fs_rwsem(&sbi->io_order_lock);
3869 spin_lock_init(&sbi->cp_lock);
3870
3871 sbi->dirty_device = 0;
3872 spin_lock_init(&sbi->dev_lock);
3873
3874 init_f2fs_rwsem(&sbi->sb_lock);
3875 init_f2fs_rwsem(&sbi->pin_sem);
3876 }
3877
init_percpu_info(struct f2fs_sb_info * sbi)3878 static int init_percpu_info(struct f2fs_sb_info *sbi)
3879 {
3880 int err;
3881
3882 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3883 if (err)
3884 return err;
3885
3886 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3887 if (err)
3888 goto err_valid_block;
3889
3890 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3891 GFP_KERNEL);
3892 if (err)
3893 goto err_node_block;
3894 return 0;
3895
3896 err_node_block:
3897 percpu_counter_destroy(&sbi->rf_node_block_count);
3898 err_valid_block:
3899 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3900 return err;
3901 }
3902
3903 #ifdef CONFIG_BLK_DEV_ZONED
3904
3905 struct f2fs_report_zones_args {
3906 struct f2fs_sb_info *sbi;
3907 struct f2fs_dev_info *dev;
3908 };
3909
f2fs_report_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)3910 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3911 void *data)
3912 {
3913 struct f2fs_report_zones_args *rz_args = data;
3914 block_t unusable_blocks = (zone->len - zone->capacity) >>
3915 F2FS_LOG_SECTORS_PER_BLOCK;
3916
3917 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3918 return 0;
3919
3920 set_bit(idx, rz_args->dev->blkz_seq);
3921 if (!rz_args->sbi->unusable_blocks_per_sec) {
3922 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3923 return 0;
3924 }
3925 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3926 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3927 return -EINVAL;
3928 }
3929 return 0;
3930 }
3931
init_blkz_info(struct f2fs_sb_info * sbi,int devi)3932 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3933 {
3934 struct block_device *bdev = FDEV(devi).bdev;
3935 sector_t nr_sectors = bdev_nr_sectors(bdev);
3936 struct f2fs_report_zones_args rep_zone_arg;
3937 u64 zone_sectors;
3938 unsigned int max_open_zones;
3939 int ret;
3940
3941 if (!f2fs_sb_has_blkzoned(sbi))
3942 return 0;
3943
3944 if (bdev_is_zoned(FDEV(devi).bdev)) {
3945 max_open_zones = bdev_max_open_zones(bdev);
3946 if (max_open_zones && (max_open_zones < sbi->max_open_zones))
3947 sbi->max_open_zones = max_open_zones;
3948 if (sbi->max_open_zones < F2FS_OPTION(sbi).active_logs) {
3949 f2fs_err(sbi,
3950 "zoned: max open zones %u is too small, need at least %u open zones",
3951 sbi->max_open_zones, F2FS_OPTION(sbi).active_logs);
3952 return -EINVAL;
3953 }
3954 }
3955
3956 zone_sectors = bdev_zone_sectors(bdev);
3957 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3958 SECTOR_TO_BLOCK(zone_sectors))
3959 return -EINVAL;
3960 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3961 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors),
3962 sbi->blocks_per_blkz);
3963 if (nr_sectors & (zone_sectors - 1))
3964 FDEV(devi).nr_blkz++;
3965
3966 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3967 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3968 * sizeof(unsigned long),
3969 GFP_KERNEL);
3970 if (!FDEV(devi).blkz_seq)
3971 return -ENOMEM;
3972
3973 rep_zone_arg.sbi = sbi;
3974 rep_zone_arg.dev = &FDEV(devi);
3975
3976 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3977 &rep_zone_arg);
3978 if (ret < 0)
3979 return ret;
3980 return 0;
3981 }
3982 #endif
3983
3984 /*
3985 * Read f2fs raw super block.
3986 * Because we have two copies of super block, so read both of them
3987 * to get the first valid one. If any one of them is broken, we pass
3988 * them recovery flag back to the caller.
3989 */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)3990 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3991 struct f2fs_super_block **raw_super,
3992 int *valid_super_block, int *recovery)
3993 {
3994 struct super_block *sb = sbi->sb;
3995 int block;
3996 struct folio *folio;
3997 struct f2fs_super_block *super;
3998 int err = 0;
3999
4000 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
4001 if (!super)
4002 return -ENOMEM;
4003
4004 for (block = 0; block < 2; block++) {
4005 folio = read_mapping_folio(sb->s_bdev->bd_mapping, block, NULL);
4006 if (IS_ERR(folio)) {
4007 f2fs_err(sbi, "Unable to read %dth superblock",
4008 block + 1);
4009 err = PTR_ERR(folio);
4010 *recovery = 1;
4011 continue;
4012 }
4013
4014 /* sanity checking of raw super */
4015 err = sanity_check_raw_super(sbi, folio, block);
4016 if (err) {
4017 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
4018 block + 1);
4019 folio_put(folio);
4020 *recovery = 1;
4021 continue;
4022 }
4023
4024 if (!*raw_super) {
4025 memcpy(super, F2FS_SUPER_BLOCK(folio, block),
4026 sizeof(*super));
4027 *valid_super_block = block;
4028 *raw_super = super;
4029 }
4030 folio_put(folio);
4031 }
4032
4033 /* No valid superblock */
4034 if (!*raw_super)
4035 kfree(super);
4036 else
4037 err = 0;
4038
4039 return err;
4040 }
4041
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)4042 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
4043 {
4044 struct folio *folio;
4045 pgoff_t index;
4046 __u32 crc = 0;
4047 int err;
4048
4049 if ((recover && f2fs_readonly(sbi->sb)) ||
4050 f2fs_hw_is_readonly(sbi)) {
4051 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
4052 return -EROFS;
4053 }
4054
4055 /* we should update superblock crc here */
4056 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
4057 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
4058 offsetof(struct f2fs_super_block, crc));
4059 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
4060 }
4061
4062 /* write back-up superblock first */
4063 index = sbi->valid_super_block ? 0 : 1;
4064 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4065 if (IS_ERR(folio))
4066 return PTR_ERR(folio);
4067 err = __f2fs_commit_super(sbi, folio, index, true);
4068 folio_put(folio);
4069
4070 /* if we are in recovery path, skip writing valid superblock */
4071 if (recover || err)
4072 return err;
4073
4074 /* write current valid superblock */
4075 index = sbi->valid_super_block;
4076 folio = read_mapping_folio(sbi->sb->s_bdev->bd_mapping, index, NULL);
4077 if (IS_ERR(folio))
4078 return PTR_ERR(folio);
4079 err = __f2fs_commit_super(sbi, folio, index, true);
4080 folio_put(folio);
4081 return err;
4082 }
4083
save_stop_reason(struct f2fs_sb_info * sbi,unsigned char reason)4084 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason)
4085 {
4086 unsigned long flags;
4087
4088 spin_lock_irqsave(&sbi->error_lock, flags);
4089 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0))
4090 sbi->stop_reason[reason]++;
4091 spin_unlock_irqrestore(&sbi->error_lock, flags);
4092 }
4093
f2fs_record_stop_reason(struct f2fs_sb_info * sbi)4094 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi)
4095 {
4096 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4097 unsigned long flags;
4098 int err;
4099
4100 f2fs_down_write(&sbi->sb_lock);
4101
4102 spin_lock_irqsave(&sbi->error_lock, flags);
4103 if (sbi->error_dirty) {
4104 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4105 MAX_F2FS_ERRORS);
4106 sbi->error_dirty = false;
4107 }
4108 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON);
4109 spin_unlock_irqrestore(&sbi->error_lock, flags);
4110
4111 err = f2fs_commit_super(sbi, false);
4112
4113 f2fs_up_write(&sbi->sb_lock);
4114 if (err)
4115 f2fs_err_ratelimited(sbi,
4116 "f2fs_commit_super fails to record stop_reason, err:%d",
4117 err);
4118 }
4119
f2fs_save_errors(struct f2fs_sb_info * sbi,unsigned char flag)4120 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
4121 {
4122 unsigned long flags;
4123
4124 spin_lock_irqsave(&sbi->error_lock, flags);
4125 if (!test_bit(flag, (unsigned long *)sbi->errors)) {
4126 set_bit(flag, (unsigned long *)sbi->errors);
4127 sbi->error_dirty = true;
4128 }
4129 spin_unlock_irqrestore(&sbi->error_lock, flags);
4130 }
4131
f2fs_update_errors(struct f2fs_sb_info * sbi)4132 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
4133 {
4134 unsigned long flags;
4135 bool need_update = false;
4136
4137 spin_lock_irqsave(&sbi->error_lock, flags);
4138 if (sbi->error_dirty) {
4139 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
4140 MAX_F2FS_ERRORS);
4141 sbi->error_dirty = false;
4142 need_update = true;
4143 }
4144 spin_unlock_irqrestore(&sbi->error_lock, flags);
4145
4146 return need_update;
4147 }
4148
f2fs_record_errors(struct f2fs_sb_info * sbi,unsigned char error)4149 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error)
4150 {
4151 int err;
4152
4153 f2fs_down_write(&sbi->sb_lock);
4154
4155 if (!f2fs_update_errors(sbi))
4156 goto out_unlock;
4157
4158 err = f2fs_commit_super(sbi, false);
4159 if (err)
4160 f2fs_err_ratelimited(sbi,
4161 "f2fs_commit_super fails to record errors:%u, err:%d",
4162 error, err);
4163 out_unlock:
4164 f2fs_up_write(&sbi->sb_lock);
4165 }
4166
f2fs_handle_error(struct f2fs_sb_info * sbi,unsigned char error)4167 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
4168 {
4169 f2fs_save_errors(sbi, error);
4170 f2fs_record_errors(sbi, error);
4171 }
4172
f2fs_handle_error_async(struct f2fs_sb_info * sbi,unsigned char error)4173 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error)
4174 {
4175 f2fs_save_errors(sbi, error);
4176
4177 if (!sbi->error_dirty)
4178 return;
4179 if (!test_bit(error, (unsigned long *)sbi->errors))
4180 return;
4181 schedule_work(&sbi->s_error_work);
4182 }
4183
system_going_down(void)4184 static bool system_going_down(void)
4185 {
4186 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
4187 || system_state == SYSTEM_RESTART;
4188 }
4189
f2fs_handle_critical_error(struct f2fs_sb_info * sbi,unsigned char reason)4190 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason)
4191 {
4192 struct super_block *sb = sbi->sb;
4193 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN;
4194 bool continue_fs = !shutdown &&
4195 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE;
4196
4197 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4198
4199 if (!f2fs_hw_is_readonly(sbi)) {
4200 save_stop_reason(sbi, reason);
4201
4202 /*
4203 * always create an asynchronous task to record stop_reason
4204 * in order to avoid potential deadlock when running into
4205 * f2fs_record_stop_reason() synchronously.
4206 */
4207 schedule_work(&sbi->s_error_work);
4208 }
4209
4210 /*
4211 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
4212 * could panic during 'reboot -f' as the underlying device got already
4213 * disabled.
4214 */
4215 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC &&
4216 !shutdown && !system_going_down() &&
4217 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN))
4218 panic("F2FS-fs (device %s): panic forced after error\n",
4219 sb->s_id);
4220
4221 if (shutdown)
4222 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
4223
4224 /*
4225 * Continue filesystem operators if errors=continue. Should not set
4226 * RO by shutdown, since RO bypasses thaw_super which can hang the
4227 * system.
4228 */
4229 if (continue_fs || f2fs_readonly(sb) || shutdown) {
4230 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason);
4231 return;
4232 }
4233
4234 f2fs_warn(sbi, "Remounting filesystem read-only");
4235
4236 /*
4237 * We have already set CP_ERROR_FLAG flag to stop all updates
4238 * to filesystem, so it doesn't need to set SB_RDONLY flag here
4239 * because the flag should be set covered w/ sb->s_umount semaphore
4240 * via remount procedure, otherwise, it will confuse code like
4241 * freeze_super() which will lead to deadlocks and other problems.
4242 */
4243 }
4244
f2fs_record_error_work(struct work_struct * work)4245 static void f2fs_record_error_work(struct work_struct *work)
4246 {
4247 struct f2fs_sb_info *sbi = container_of(work,
4248 struct f2fs_sb_info, s_error_work);
4249
4250 f2fs_record_stop_reason(sbi);
4251 }
4252
get_first_zoned_segno(struct f2fs_sb_info * sbi)4253 static inline unsigned int get_first_zoned_segno(struct f2fs_sb_info *sbi)
4254 {
4255 int devi;
4256
4257 for (devi = 0; devi < sbi->s_ndevs; devi++)
4258 if (bdev_is_zoned(FDEV(devi).bdev))
4259 return GET_SEGNO(sbi, FDEV(devi).start_blk);
4260 return 0;
4261 }
4262
f2fs_scan_devices(struct f2fs_sb_info * sbi)4263 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
4264 {
4265 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4266 unsigned int max_devices = MAX_DEVICES;
4267 unsigned int logical_blksize;
4268 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags);
4269 int i;
4270
4271 /* Initialize single device information */
4272 if (!RDEV(0).path[0]) {
4273 if (!bdev_is_zoned(sbi->sb->s_bdev))
4274 return 0;
4275 max_devices = 1;
4276 }
4277
4278 /*
4279 * Initialize multiple devices information, or single
4280 * zoned block device information.
4281 */
4282 sbi->devs = f2fs_kzalloc(sbi,
4283 array_size(max_devices,
4284 sizeof(struct f2fs_dev_info)),
4285 GFP_KERNEL);
4286 if (!sbi->devs)
4287 return -ENOMEM;
4288
4289 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
4290 sbi->aligned_blksize = true;
4291 #ifdef CONFIG_BLK_DEV_ZONED
4292 sbi->max_open_zones = UINT_MAX;
4293 sbi->blkzone_alloc_policy = BLKZONE_ALLOC_PRIOR_SEQ;
4294 #endif
4295
4296 for (i = 0; i < max_devices; i++) {
4297 if (i == 0)
4298 FDEV(0).bdev_file = sbi->sb->s_bdev_file;
4299 else if (!RDEV(i).path[0])
4300 break;
4301
4302 if (max_devices > 1) {
4303 /* Multi-device mount */
4304 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
4305 FDEV(i).total_segments =
4306 le32_to_cpu(RDEV(i).total_segments);
4307 if (i == 0) {
4308 FDEV(i).start_blk = 0;
4309 FDEV(i).end_blk = FDEV(i).start_blk +
4310 SEGS_TO_BLKS(sbi,
4311 FDEV(i).total_segments) - 1 +
4312 le32_to_cpu(raw_super->segment0_blkaddr);
4313 } else {
4314 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
4315 FDEV(i).end_blk = FDEV(i).start_blk +
4316 SEGS_TO_BLKS(sbi,
4317 FDEV(i).total_segments) - 1;
4318 FDEV(i).bdev_file = bdev_file_open_by_path(
4319 FDEV(i).path, mode, sbi->sb, NULL);
4320 }
4321 }
4322 if (IS_ERR(FDEV(i).bdev_file))
4323 return PTR_ERR(FDEV(i).bdev_file);
4324
4325 FDEV(i).bdev = file_bdev(FDEV(i).bdev_file);
4326 /* to release errored devices */
4327 sbi->s_ndevs = i + 1;
4328
4329 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4330 sbi->aligned_blksize = false;
4331
4332 #ifdef CONFIG_BLK_DEV_ZONED
4333 if (bdev_is_zoned(FDEV(i).bdev)) {
4334 if (!f2fs_sb_has_blkzoned(sbi)) {
4335 f2fs_err(sbi, "Zoned block device feature not enabled");
4336 return -EINVAL;
4337 }
4338 if (init_blkz_info(sbi, i)) {
4339 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4340 return -EINVAL;
4341 }
4342 if (max_devices == 1)
4343 break;
4344 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: Host-managed)",
4345 i, FDEV(i).path,
4346 FDEV(i).total_segments,
4347 FDEV(i).start_blk, FDEV(i).end_blk);
4348 continue;
4349 }
4350 #endif
4351 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4352 i, FDEV(i).path,
4353 FDEV(i).total_segments,
4354 FDEV(i).start_blk, FDEV(i).end_blk);
4355 }
4356 return 0;
4357 }
4358
f2fs_setup_casefold(struct f2fs_sb_info * sbi)4359 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4360 {
4361 #if IS_ENABLED(CONFIG_UNICODE)
4362 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4363 const struct f2fs_sb_encodings *encoding_info;
4364 struct unicode_map *encoding;
4365 __u16 encoding_flags;
4366
4367 encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4368 if (!encoding_info) {
4369 f2fs_err(sbi,
4370 "Encoding requested by superblock is unknown");
4371 return -EINVAL;
4372 }
4373
4374 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4375 encoding = utf8_load(encoding_info->version);
4376 if (IS_ERR(encoding)) {
4377 f2fs_err(sbi,
4378 "can't mount with superblock charset: %s-%u.%u.%u "
4379 "not supported by the kernel. flags: 0x%x.",
4380 encoding_info->name,
4381 unicode_major(encoding_info->version),
4382 unicode_minor(encoding_info->version),
4383 unicode_rev(encoding_info->version),
4384 encoding_flags);
4385 return PTR_ERR(encoding);
4386 }
4387 f2fs_info(sbi, "Using encoding defined by superblock: "
4388 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4389 unicode_major(encoding_info->version),
4390 unicode_minor(encoding_info->version),
4391 unicode_rev(encoding_info->version),
4392 encoding_flags);
4393
4394 sbi->sb->s_encoding = encoding;
4395 sbi->sb->s_encoding_flags = encoding_flags;
4396 }
4397 #else
4398 if (f2fs_sb_has_casefold(sbi)) {
4399 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4400 return -EINVAL;
4401 }
4402 #endif
4403 return 0;
4404 }
4405
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)4406 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4407 {
4408 /* adjust parameters according to the volume size */
4409 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4410 if (f2fs_block_unit_discard(sbi))
4411 SM_I(sbi)->dcc_info->discard_granularity =
4412 MIN_DISCARD_GRANULARITY;
4413 if (!f2fs_lfs_mode(sbi))
4414 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) |
4415 BIT(F2FS_IPU_HONOR_OPU_WRITE);
4416 }
4417
4418 sbi->readdir_ra = true;
4419 }
4420
f2fs_fill_super(struct super_block * sb,void * data,int silent)4421 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4422 {
4423 struct f2fs_sb_info *sbi;
4424 struct f2fs_super_block *raw_super;
4425 struct inode *root;
4426 int err;
4427 bool skip_recovery = false, need_fsck = false;
4428 char *options = NULL;
4429 int recovery, i, valid_super_block;
4430 struct curseg_info *seg_i;
4431 int retry_cnt = 1;
4432 #ifdef CONFIG_QUOTA
4433 bool quota_enabled = false;
4434 #endif
4435
4436 try_onemore:
4437 err = -EINVAL;
4438 raw_super = NULL;
4439 valid_super_block = -1;
4440 recovery = 0;
4441
4442 /* allocate memory for f2fs-specific super block info */
4443 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4444 if (!sbi)
4445 return -ENOMEM;
4446
4447 sbi->sb = sb;
4448
4449 /* initialize locks within allocated memory */
4450 init_f2fs_rwsem(&sbi->gc_lock);
4451 mutex_init(&sbi->writepages);
4452 init_f2fs_rwsem(&sbi->cp_global_sem);
4453 init_f2fs_rwsem(&sbi->node_write);
4454 init_f2fs_rwsem(&sbi->node_change);
4455 spin_lock_init(&sbi->stat_lock);
4456 init_f2fs_rwsem(&sbi->cp_rwsem);
4457 init_f2fs_rwsem(&sbi->quota_sem);
4458 init_waitqueue_head(&sbi->cp_wait);
4459 spin_lock_init(&sbi->error_lock);
4460
4461 for (i = 0; i < NR_INODE_TYPE; i++) {
4462 INIT_LIST_HEAD(&sbi->inode_list[i]);
4463 spin_lock_init(&sbi->inode_lock[i]);
4464 }
4465 mutex_init(&sbi->flush_lock);
4466
4467 /* set a block size */
4468 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4469 f2fs_err(sbi, "unable to set blocksize");
4470 goto free_sbi;
4471 }
4472
4473 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4474 &recovery);
4475 if (err)
4476 goto free_sbi;
4477
4478 sb->s_fs_info = sbi;
4479 sbi->raw_super = raw_super;
4480
4481 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work);
4482 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4483 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON);
4484
4485 /* precompute checksum seed for metadata */
4486 if (f2fs_sb_has_inode_chksum(sbi))
4487 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4488 sizeof(raw_super->uuid));
4489
4490 default_options(sbi, false);
4491 /* parse mount options */
4492 options = kstrdup((const char *)data, GFP_KERNEL);
4493 if (data && !options) {
4494 err = -ENOMEM;
4495 goto free_sb_buf;
4496 }
4497
4498 err = parse_options(sb, options, false);
4499 if (err)
4500 goto free_options;
4501
4502 sb->s_maxbytes = max_file_blocks(NULL) <<
4503 le32_to_cpu(raw_super->log_blocksize);
4504 sb->s_max_links = F2FS_LINK_MAX;
4505
4506 err = f2fs_setup_casefold(sbi);
4507 if (err)
4508 goto free_options;
4509
4510 #ifdef CONFIG_QUOTA
4511 sb->dq_op = &f2fs_quota_operations;
4512 sb->s_qcop = &f2fs_quotactl_ops;
4513 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4514
4515 if (f2fs_sb_has_quota_ino(sbi)) {
4516 for (i = 0; i < MAXQUOTAS; i++) {
4517 if (f2fs_qf_ino(sbi->sb, i))
4518 sbi->nquota_files++;
4519 }
4520 }
4521 #endif
4522
4523 sb->s_op = &f2fs_sops;
4524 #ifdef CONFIG_FS_ENCRYPTION
4525 sb->s_cop = &f2fs_cryptops;
4526 #endif
4527 #ifdef CONFIG_FS_VERITY
4528 sb->s_vop = &f2fs_verityops;
4529 #endif
4530 sb->s_xattr = f2fs_xattr_handlers;
4531 sb->s_export_op = &f2fs_export_ops;
4532 sb->s_magic = F2FS_SUPER_MAGIC;
4533 sb->s_time_gran = 1;
4534 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4535 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4536 super_set_uuid(sb, (void *) raw_super->uuid, sizeof(raw_super->uuid));
4537 super_set_sysfs_name_bdev(sb);
4538 sb->s_iflags |= SB_I_CGROUPWB;
4539
4540 /* init f2fs-specific super block info */
4541 sbi->valid_super_block = valid_super_block;
4542
4543 /* disallow all the data/node/meta page writes */
4544 set_sbi_flag(sbi, SBI_POR_DOING);
4545
4546 err = f2fs_init_write_merge_io(sbi);
4547 if (err)
4548 goto free_bio_info;
4549
4550 init_sb_info(sbi);
4551
4552 err = f2fs_init_iostat(sbi);
4553 if (err)
4554 goto free_bio_info;
4555
4556 err = init_percpu_info(sbi);
4557 if (err)
4558 goto free_iostat;
4559
4560 /* init per sbi slab cache */
4561 err = f2fs_init_xattr_caches(sbi);
4562 if (err)
4563 goto free_percpu;
4564 err = f2fs_init_page_array_cache(sbi);
4565 if (err)
4566 goto free_xattr_cache;
4567
4568 /* get an inode for meta space */
4569 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4570 if (IS_ERR(sbi->meta_inode)) {
4571 f2fs_err(sbi, "Failed to read F2FS meta data inode");
4572 err = PTR_ERR(sbi->meta_inode);
4573 goto free_page_array_cache;
4574 }
4575
4576 err = f2fs_get_valid_checkpoint(sbi);
4577 if (err) {
4578 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4579 goto free_meta_inode;
4580 }
4581
4582 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4583 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4584 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4585 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4586 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4587 }
4588
4589 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4590 set_sbi_flag(sbi, SBI_NEED_FSCK);
4591
4592 /* Initialize device list */
4593 err = f2fs_scan_devices(sbi);
4594 if (err) {
4595 f2fs_err(sbi, "Failed to find devices");
4596 goto free_devices;
4597 }
4598
4599 err = f2fs_init_post_read_wq(sbi);
4600 if (err) {
4601 f2fs_err(sbi, "Failed to initialize post read workqueue");
4602 goto free_devices;
4603 }
4604
4605 sbi->total_valid_node_count =
4606 le32_to_cpu(sbi->ckpt->valid_node_count);
4607 percpu_counter_set(&sbi->total_valid_inode_count,
4608 le32_to_cpu(sbi->ckpt->valid_inode_count));
4609 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4610 sbi->total_valid_block_count =
4611 le64_to_cpu(sbi->ckpt->valid_block_count);
4612 sbi->last_valid_block_count = sbi->total_valid_block_count;
4613 sbi->reserved_blocks = 0;
4614 sbi->current_reserved_blocks = 0;
4615 limit_reserve_root(sbi);
4616 adjust_unusable_cap_perc(sbi);
4617
4618 f2fs_init_extent_cache_info(sbi);
4619
4620 f2fs_init_ino_entry_info(sbi);
4621
4622 f2fs_init_fsync_node_info(sbi);
4623
4624 /* setup checkpoint request control and start checkpoint issue thread */
4625 f2fs_init_ckpt_req_control(sbi);
4626 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4627 test_opt(sbi, MERGE_CHECKPOINT)) {
4628 err = f2fs_start_ckpt_thread(sbi);
4629 if (err) {
4630 f2fs_err(sbi,
4631 "Failed to start F2FS issue_checkpoint_thread (%d)",
4632 err);
4633 goto stop_ckpt_thread;
4634 }
4635 }
4636
4637 /* setup f2fs internal modules */
4638 err = f2fs_build_segment_manager(sbi);
4639 if (err) {
4640 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4641 err);
4642 goto free_sm;
4643 }
4644 err = f2fs_build_node_manager(sbi);
4645 if (err) {
4646 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4647 err);
4648 goto free_nm;
4649 }
4650
4651 /* For write statistics */
4652 sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4653
4654 /* get segno of first zoned block device */
4655 sbi->first_zoned_segno = get_first_zoned_segno(sbi);
4656
4657 /* Read accumulated write IO statistics if exists */
4658 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4659 if (__exist_node_summaries(sbi))
4660 sbi->kbytes_written =
4661 le64_to_cpu(seg_i->journal->info.kbytes_written);
4662
4663 f2fs_build_gc_manager(sbi);
4664
4665 err = f2fs_build_stats(sbi);
4666 if (err)
4667 goto free_nm;
4668
4669 /* get an inode for node space */
4670 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4671 if (IS_ERR(sbi->node_inode)) {
4672 f2fs_err(sbi, "Failed to read node inode");
4673 err = PTR_ERR(sbi->node_inode);
4674 goto free_stats;
4675 }
4676
4677 /* read root inode and dentry */
4678 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4679 if (IS_ERR(root)) {
4680 f2fs_err(sbi, "Failed to read root inode");
4681 err = PTR_ERR(root);
4682 goto free_node_inode;
4683 }
4684 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4685 !root->i_size || !root->i_nlink) {
4686 iput(root);
4687 err = -EINVAL;
4688 goto free_node_inode;
4689 }
4690
4691 generic_set_sb_d_ops(sb);
4692 sb->s_root = d_make_root(root); /* allocate root dentry */
4693 if (!sb->s_root) {
4694 err = -ENOMEM;
4695 goto free_node_inode;
4696 }
4697
4698 err = f2fs_init_compress_inode(sbi);
4699 if (err)
4700 goto free_root_inode;
4701
4702 err = f2fs_register_sysfs(sbi);
4703 if (err)
4704 goto free_compress_inode;
4705
4706 #ifdef CONFIG_QUOTA
4707 /* Enable quota usage during mount */
4708 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4709 err = f2fs_enable_quotas(sb);
4710 if (err)
4711 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4712 }
4713
4714 quota_enabled = f2fs_recover_quota_begin(sbi);
4715 #endif
4716 /* if there are any orphan inodes, free them */
4717 err = f2fs_recover_orphan_inodes(sbi);
4718 if (err)
4719 goto free_meta;
4720
4721 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4722 goto reset_checkpoint;
4723
4724 /* recover fsynced data */
4725 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4726 !test_opt(sbi, NORECOVERY)) {
4727 /*
4728 * mount should be failed, when device has readonly mode, and
4729 * previous checkpoint was not done by clean system shutdown.
4730 */
4731 if (f2fs_hw_is_readonly(sbi)) {
4732 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4733 err = f2fs_recover_fsync_data(sbi, true);
4734 if (err > 0) {
4735 err = -EROFS;
4736 f2fs_err(sbi, "Need to recover fsync data, but "
4737 "write access unavailable, please try "
4738 "mount w/ disable_roll_forward or norecovery");
4739 }
4740 if (err < 0)
4741 goto free_meta;
4742 }
4743 f2fs_info(sbi, "write access unavailable, skipping recovery");
4744 goto reset_checkpoint;
4745 }
4746
4747 if (need_fsck)
4748 set_sbi_flag(sbi, SBI_NEED_FSCK);
4749
4750 if (skip_recovery)
4751 goto reset_checkpoint;
4752
4753 err = f2fs_recover_fsync_data(sbi, false);
4754 if (err < 0) {
4755 if (err != -ENOMEM)
4756 skip_recovery = true;
4757 need_fsck = true;
4758 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4759 err);
4760 goto free_meta;
4761 }
4762 } else {
4763 err = f2fs_recover_fsync_data(sbi, true);
4764
4765 if (!f2fs_readonly(sb) && err > 0) {
4766 err = -EINVAL;
4767 f2fs_err(sbi, "Need to recover fsync data");
4768 goto free_meta;
4769 }
4770 }
4771
4772 #ifdef CONFIG_QUOTA
4773 f2fs_recover_quota_end(sbi, quota_enabled);
4774 #endif
4775 reset_checkpoint:
4776 /*
4777 * If the f2fs is not readonly and fsync data recovery succeeds,
4778 * write pointer consistency of cursegs and other zones are already
4779 * checked and fixed during recovery. However, if recovery fails,
4780 * write pointers are left untouched, and retry-mount should check
4781 * them here.
4782 */
4783 if (skip_recovery)
4784 err = f2fs_check_and_fix_write_pointer(sbi);
4785 if (err)
4786 goto free_meta;
4787
4788 /* f2fs_recover_fsync_data() cleared this already */
4789 clear_sbi_flag(sbi, SBI_POR_DOING);
4790
4791 err = f2fs_init_inmem_curseg(sbi);
4792 if (err)
4793 goto sync_free_meta;
4794
4795 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4796 err = f2fs_disable_checkpoint(sbi);
4797 if (err)
4798 goto sync_free_meta;
4799 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4800 f2fs_enable_checkpoint(sbi);
4801 }
4802
4803 /*
4804 * If filesystem is not mounted as read-only then
4805 * do start the gc_thread.
4806 */
4807 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4808 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4809 /* After POR, we can run background GC thread.*/
4810 err = f2fs_start_gc_thread(sbi);
4811 if (err)
4812 goto sync_free_meta;
4813 }
4814 kvfree(options);
4815
4816 /* recover broken superblock */
4817 if (recovery) {
4818 err = f2fs_commit_super(sbi, true);
4819 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4820 sbi->valid_super_block ? 1 : 2, err);
4821 }
4822
4823 f2fs_join_shrinker(sbi);
4824
4825 f2fs_tuning_parameters(sbi);
4826
4827 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4828 cur_cp_version(F2FS_CKPT(sbi)));
4829 f2fs_update_time(sbi, CP_TIME);
4830 f2fs_update_time(sbi, REQ_TIME);
4831 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4832 return 0;
4833
4834 sync_free_meta:
4835 /* safe to flush all the data */
4836 sync_filesystem(sbi->sb);
4837 retry_cnt = 0;
4838
4839 free_meta:
4840 #ifdef CONFIG_QUOTA
4841 f2fs_truncate_quota_inode_pages(sb);
4842 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4843 f2fs_quota_off_umount(sbi->sb);
4844 #endif
4845 /*
4846 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4847 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4848 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4849 * falls into an infinite loop in f2fs_sync_meta_pages().
4850 */
4851 truncate_inode_pages_final(META_MAPPING(sbi));
4852 /* evict some inodes being cached by GC */
4853 evict_inodes(sb);
4854 f2fs_unregister_sysfs(sbi);
4855 free_compress_inode:
4856 f2fs_destroy_compress_inode(sbi);
4857 free_root_inode:
4858 dput(sb->s_root);
4859 sb->s_root = NULL;
4860 free_node_inode:
4861 f2fs_release_ino_entry(sbi, true);
4862 truncate_inode_pages_final(NODE_MAPPING(sbi));
4863 iput(sbi->node_inode);
4864 sbi->node_inode = NULL;
4865 free_stats:
4866 f2fs_destroy_stats(sbi);
4867 free_nm:
4868 /* stop discard thread before destroying node manager */
4869 f2fs_stop_discard_thread(sbi);
4870 f2fs_destroy_node_manager(sbi);
4871 free_sm:
4872 f2fs_destroy_segment_manager(sbi);
4873 stop_ckpt_thread:
4874 f2fs_stop_ckpt_thread(sbi);
4875 /* flush s_error_work before sbi destroy */
4876 flush_work(&sbi->s_error_work);
4877 f2fs_destroy_post_read_wq(sbi);
4878 free_devices:
4879 destroy_device_list(sbi);
4880 kvfree(sbi->ckpt);
4881 free_meta_inode:
4882 make_bad_inode(sbi->meta_inode);
4883 iput(sbi->meta_inode);
4884 sbi->meta_inode = NULL;
4885 free_page_array_cache:
4886 f2fs_destroy_page_array_cache(sbi);
4887 free_xattr_cache:
4888 f2fs_destroy_xattr_caches(sbi);
4889 free_percpu:
4890 destroy_percpu_info(sbi);
4891 free_iostat:
4892 f2fs_destroy_iostat(sbi);
4893 free_bio_info:
4894 for (i = 0; i < NR_PAGE_TYPE; i++)
4895 kvfree(sbi->write_io[i]);
4896
4897 #if IS_ENABLED(CONFIG_UNICODE)
4898 utf8_unload(sb->s_encoding);
4899 sb->s_encoding = NULL;
4900 #endif
4901 free_options:
4902 #ifdef CONFIG_QUOTA
4903 for (i = 0; i < MAXQUOTAS; i++)
4904 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4905 #endif
4906 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4907 kvfree(options);
4908 free_sb_buf:
4909 kfree(raw_super);
4910 free_sbi:
4911 kfree(sbi);
4912 sb->s_fs_info = NULL;
4913
4914 /* give only one another chance */
4915 if (retry_cnt > 0 && skip_recovery) {
4916 retry_cnt--;
4917 shrink_dcache_sb(sb);
4918 goto try_onemore;
4919 }
4920 return err;
4921 }
4922
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4923 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4924 const char *dev_name, void *data)
4925 {
4926 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4927 }
4928
kill_f2fs_super(struct super_block * sb)4929 static void kill_f2fs_super(struct super_block *sb)
4930 {
4931 struct f2fs_sb_info *sbi = F2FS_SB(sb);
4932
4933 if (sb->s_root) {
4934 set_sbi_flag(sbi, SBI_IS_CLOSE);
4935 f2fs_stop_gc_thread(sbi);
4936 f2fs_stop_discard_thread(sbi);
4937
4938 #ifdef CONFIG_F2FS_FS_COMPRESSION
4939 /*
4940 * latter evict_inode() can bypass checking and invalidating
4941 * compress inode cache.
4942 */
4943 if (test_opt(sbi, COMPRESS_CACHE))
4944 truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4945 #endif
4946
4947 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4948 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4949 struct cp_control cpc = {
4950 .reason = CP_UMOUNT,
4951 };
4952 stat_inc_cp_call_count(sbi, TOTAL_CALL);
4953 f2fs_write_checkpoint(sbi, &cpc);
4954 }
4955
4956 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4957 sb->s_flags &= ~SB_RDONLY;
4958 }
4959 kill_block_super(sb);
4960 /* Release block devices last, after fscrypt_destroy_keyring(). */
4961 if (sbi) {
4962 destroy_device_list(sbi);
4963 kfree(sbi);
4964 sb->s_fs_info = NULL;
4965 }
4966 }
4967
4968 static struct file_system_type f2fs_fs_type = {
4969 .owner = THIS_MODULE,
4970 .name = "f2fs",
4971 .mount = f2fs_mount,
4972 .kill_sb = kill_f2fs_super,
4973 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4974 };
4975 MODULE_ALIAS_FS("f2fs");
4976
init_inodecache(void)4977 static int __init init_inodecache(void)
4978 {
4979 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4980 sizeof(struct f2fs_inode_info), 0,
4981 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4982 return f2fs_inode_cachep ? 0 : -ENOMEM;
4983 }
4984
destroy_inodecache(void)4985 static void destroy_inodecache(void)
4986 {
4987 /*
4988 * Make sure all delayed rcu free inodes are flushed before we
4989 * destroy cache.
4990 */
4991 rcu_barrier();
4992 kmem_cache_destroy(f2fs_inode_cachep);
4993 }
4994
init_f2fs_fs(void)4995 static int __init init_f2fs_fs(void)
4996 {
4997 int err;
4998
4999 err = init_inodecache();
5000 if (err)
5001 goto fail;
5002 err = f2fs_create_node_manager_caches();
5003 if (err)
5004 goto free_inodecache;
5005 err = f2fs_create_segment_manager_caches();
5006 if (err)
5007 goto free_node_manager_caches;
5008 err = f2fs_create_checkpoint_caches();
5009 if (err)
5010 goto free_segment_manager_caches;
5011 err = f2fs_create_recovery_cache();
5012 if (err)
5013 goto free_checkpoint_caches;
5014 err = f2fs_create_extent_cache();
5015 if (err)
5016 goto free_recovery_cache;
5017 err = f2fs_create_garbage_collection_cache();
5018 if (err)
5019 goto free_extent_cache;
5020 err = f2fs_init_sysfs();
5021 if (err)
5022 goto free_garbage_collection_cache;
5023 err = f2fs_init_shrinker();
5024 if (err)
5025 goto free_sysfs;
5026 f2fs_create_root_stats();
5027 err = f2fs_init_post_read_processing();
5028 if (err)
5029 goto free_root_stats;
5030 err = f2fs_init_iostat_processing();
5031 if (err)
5032 goto free_post_read;
5033 err = f2fs_init_bio_entry_cache();
5034 if (err)
5035 goto free_iostat;
5036 err = f2fs_init_bioset();
5037 if (err)
5038 goto free_bio_entry_cache;
5039 err = f2fs_init_compress_mempool();
5040 if (err)
5041 goto free_bioset;
5042 err = f2fs_init_compress_cache();
5043 if (err)
5044 goto free_compress_mempool;
5045 err = f2fs_create_casefold_cache();
5046 if (err)
5047 goto free_compress_cache;
5048 err = register_filesystem(&f2fs_fs_type);
5049 if (err)
5050 goto free_casefold_cache;
5051 return 0;
5052 free_casefold_cache:
5053 f2fs_destroy_casefold_cache();
5054 free_compress_cache:
5055 f2fs_destroy_compress_cache();
5056 free_compress_mempool:
5057 f2fs_destroy_compress_mempool();
5058 free_bioset:
5059 f2fs_destroy_bioset();
5060 free_bio_entry_cache:
5061 f2fs_destroy_bio_entry_cache();
5062 free_iostat:
5063 f2fs_destroy_iostat_processing();
5064 free_post_read:
5065 f2fs_destroy_post_read_processing();
5066 free_root_stats:
5067 f2fs_destroy_root_stats();
5068 f2fs_exit_shrinker();
5069 free_sysfs:
5070 f2fs_exit_sysfs();
5071 free_garbage_collection_cache:
5072 f2fs_destroy_garbage_collection_cache();
5073 free_extent_cache:
5074 f2fs_destroy_extent_cache();
5075 free_recovery_cache:
5076 f2fs_destroy_recovery_cache();
5077 free_checkpoint_caches:
5078 f2fs_destroy_checkpoint_caches();
5079 free_segment_manager_caches:
5080 f2fs_destroy_segment_manager_caches();
5081 free_node_manager_caches:
5082 f2fs_destroy_node_manager_caches();
5083 free_inodecache:
5084 destroy_inodecache();
5085 fail:
5086 return err;
5087 }
5088
exit_f2fs_fs(void)5089 static void __exit exit_f2fs_fs(void)
5090 {
5091 unregister_filesystem(&f2fs_fs_type);
5092 f2fs_destroy_casefold_cache();
5093 f2fs_destroy_compress_cache();
5094 f2fs_destroy_compress_mempool();
5095 f2fs_destroy_bioset();
5096 f2fs_destroy_bio_entry_cache();
5097 f2fs_destroy_iostat_processing();
5098 f2fs_destroy_post_read_processing();
5099 f2fs_destroy_root_stats();
5100 f2fs_exit_shrinker();
5101 f2fs_exit_sysfs();
5102 f2fs_destroy_garbage_collection_cache();
5103 f2fs_destroy_extent_cache();
5104 f2fs_destroy_recovery_cache();
5105 f2fs_destroy_checkpoint_caches();
5106 f2fs_destroy_segment_manager_caches();
5107 f2fs_destroy_node_manager_caches();
5108 destroy_inodecache();
5109 }
5110
5111 module_init(init_f2fs_fs)
5112 module_exit(exit_f2fs_fs)
5113
5114 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
5115 MODULE_DESCRIPTION("Flash Friendly File System");
5116 MODULE_LICENSE("GPL");
5117