1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct f2fs_sb_info * sbi,int nr)26 static void *page_array_alloc(struct f2fs_sb_info *sbi, int nr)
27 {
28 unsigned int size = sizeof(struct page *) * nr;
29
30 if (likely(size <= sbi->page_array_slab_size))
31 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
32 GFP_F2FS_ZERO, false, sbi);
33 return f2fs_kzalloc(sbi, size, GFP_NOFS);
34 }
35
page_array_free(struct f2fs_sb_info * sbi,void * pages,int nr)36 static void page_array_free(struct f2fs_sb_info *sbi, void *pages, int nr)
37 {
38 unsigned int size = sizeof(struct page *) * nr;
39
40 if (!pages)
41 return;
42
43 if (likely(size <= sbi->page_array_slab_size))
44 kmem_cache_free(sbi->page_array_slab, pages);
45 else
46 kfree(pages);
47 }
48
49 struct f2fs_compress_ops {
50 int (*init_compress_ctx)(struct compress_ctx *cc);
51 void (*destroy_compress_ctx)(struct compress_ctx *cc);
52 int (*compress_pages)(struct compress_ctx *cc);
53 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
54 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
55 int (*decompress_pages)(struct decompress_io_ctx *dic);
56 bool (*is_level_valid)(int level);
57 };
58
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)59 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
60 {
61 return index & (cc->cluster_size - 1);
62 }
63
cluster_idx(struct compress_ctx * cc,pgoff_t index)64 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
65 {
66 return index >> cc->log_cluster_size;
67 }
68
start_idx_of_cluster(struct compress_ctx * cc)69 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
70 {
71 return cc->cluster_idx << cc->log_cluster_size;
72 }
73
f2fs_is_compressed_page(struct folio * folio)74 bool f2fs_is_compressed_page(struct folio *folio)
75 {
76 if (!folio->private)
77 return false;
78 if (folio_test_f2fs_nonpointer(folio))
79 return false;
80
81 f2fs_bug_on(F2FS_F_SB(folio),
82 *((u32 *)folio->private) != F2FS_COMPRESSED_PAGE_MAGIC);
83 return true;
84 }
85
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)86 static void f2fs_set_compressed_page(struct page *page,
87 struct inode *inode, pgoff_t index, void *data)
88 {
89 struct folio *folio = page_folio(page);
90
91 folio_attach_private(folio, (void *)data);
92
93 /* i_crypto_info and iv index */
94 folio->index = index;
95 folio->mapping = inode->i_mapping;
96 }
97
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)98 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
99 {
100 int i;
101
102 for (i = 0; i < len; i++) {
103 if (!cc->rpages[i])
104 continue;
105 if (unlock)
106 unlock_page(cc->rpages[i]);
107 else
108 put_page(cc->rpages[i]);
109 }
110 }
111
f2fs_put_rpages(struct compress_ctx * cc)112 static void f2fs_put_rpages(struct compress_ctx *cc)
113 {
114 f2fs_drop_rpages(cc, cc->cluster_size, false);
115 }
116
f2fs_unlock_rpages(struct compress_ctx * cc,int len)117 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
118 {
119 f2fs_drop_rpages(cc, len, true);
120 }
121
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)122 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
123 struct writeback_control *wbc, bool redirty, int unlock)
124 {
125 unsigned int i;
126
127 for (i = 0; i < cc->cluster_size; i++) {
128 if (!cc->rpages[i])
129 continue;
130 if (redirty)
131 redirty_page_for_writepage(wbc, cc->rpages[i]);
132 f2fs_put_page(cc->rpages[i], unlock);
133 }
134 }
135
f2fs_compress_control_folio(struct folio * folio)136 struct folio *f2fs_compress_control_folio(struct folio *folio)
137 {
138 struct compress_io_ctx *ctx = folio->private;
139
140 return page_folio(ctx->rpages[0]);
141 }
142
f2fs_init_compress_ctx(struct compress_ctx * cc)143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 if (cc->rpages)
146 return 0;
147
148 cc->rpages = page_array_alloc(F2FS_I_SB(cc->inode), cc->cluster_size);
149 return cc->rpages ? 0 : -ENOMEM;
150 }
151
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 page_array_free(F2FS_I_SB(cc->inode), cc->rpages, cc->cluster_size);
155 cc->rpages = NULL;
156 cc->nr_rpages = 0;
157 cc->nr_cpages = 0;
158 cc->valid_nr_cpages = 0;
159 if (!reuse)
160 cc->cluster_idx = NULL_CLUSTER;
161 }
162
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct folio * folio)163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio)
164 {
165 unsigned int cluster_ofs;
166
167 if (!f2fs_cluster_can_merge_page(cc, folio->index))
168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170 cluster_ofs = offset_in_cluster(cc, folio->index);
171 cc->rpages[cluster_ofs] = folio_page(folio, 0);
172 cc->nr_rpages++;
173 cc->cluster_idx = cluster_idx(cc, folio->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 cc->private = f2fs_vmalloc(F2FS_I_SB(cc->inode),
180 LZO1X_MEM_COMPRESS);
181 if (!cc->private)
182 return -ENOMEM;
183
184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 return 0;
186 }
187
lzo_destroy_compress_ctx(struct compress_ctx * cc)188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 vfree(cc->private);
191 cc->private = NULL;
192 }
193
lzo_compress_pages(struct compress_ctx * cc)194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 int ret;
197
198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 &cc->clen, cc->private);
200 if (ret != LZO_E_OK) {
201 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
202 "lzo compress failed, ret:%d", ret);
203 return -EIO;
204 }
205 return 0;
206 }
207
lzo_decompress_pages(struct decompress_io_ctx * dic)208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 int ret;
211
212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 dic->rbuf, &dic->rlen);
214 if (ret != LZO_E_OK) {
215 f2fs_err_ratelimited(dic->sbi,
216 "lzo decompress failed, ret:%d", ret);
217 return -EIO;
218 }
219
220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 f2fs_err_ratelimited(dic->sbi,
222 "lzo invalid rlen:%zu, expected:%lu",
223 dic->rlen, PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_level)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_vmalloc(F2FS_I_SB(cc->inode), size);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 vfree(cc->private);
263 cc->private = NULL;
264 }
265
lz4_compress_pages(struct compress_ctx * cc)266 static int lz4_compress_pages(struct compress_ctx *cc)
267 {
268 int len = -EINVAL;
269 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
270
271 if (!level)
272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 cc->clen, cc->private);
274 #ifdef CONFIG_F2FS_FS_LZ4HC
275 else
276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 cc->clen, level, cc->private);
278 #endif
279 if (len < 0)
280 return len;
281 if (!len)
282 return -EAGAIN;
283
284 cc->clen = len;
285 return 0;
286 }
287
lz4_decompress_pages(struct decompress_io_ctx * dic)288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 int ret;
291
292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 dic->clen, dic->rlen);
294 if (ret < 0) {
295 f2fs_err_ratelimited(dic->sbi,
296 "lz4 decompress failed, ret:%d", ret);
297 return -EIO;
298 }
299
300 if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 f2fs_err_ratelimited(dic->sbi,
302 "lz4 invalid ret:%d, expected:%lu",
303 ret, PAGE_SIZE << dic->log_cluster_size);
304 return -EIO;
305 }
306 return 0;
307 }
308
lz4_is_level_valid(int lvl)309 static bool lz4_is_level_valid(int lvl)
310 {
311 #ifdef CONFIG_F2FS_FS_LZ4HC
312 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
313 #else
314 return lvl == 0;
315 #endif
316 }
317
318 static const struct f2fs_compress_ops f2fs_lz4_ops = {
319 .init_compress_ctx = lz4_init_compress_ctx,
320 .destroy_compress_ctx = lz4_destroy_compress_ctx,
321 .compress_pages = lz4_compress_pages,
322 .decompress_pages = lz4_decompress_pages,
323 .is_level_valid = lz4_is_level_valid,
324 };
325 #endif
326
327 #ifdef CONFIG_F2FS_FS_ZSTD
zstd_init_compress_ctx(struct compress_ctx * cc)328 static int zstd_init_compress_ctx(struct compress_ctx *cc)
329 {
330 zstd_parameters params;
331 zstd_cstream *stream;
332 void *workspace;
333 unsigned int workspace_size;
334 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
335
336 /* Need to remain this for backward compatibility */
337 if (!level)
338 level = F2FS_ZSTD_DEFAULT_CLEVEL;
339
340 params = zstd_get_params(level, cc->rlen);
341 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
342
343 workspace = f2fs_vmalloc(F2FS_I_SB(cc->inode), workspace_size);
344 if (!workspace)
345 return -ENOMEM;
346
347 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
348 if (!stream) {
349 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
350 "%s zstd_init_cstream failed", __func__);
351 vfree(workspace);
352 return -EIO;
353 }
354
355 cc->private = workspace;
356 cc->private2 = stream;
357
358 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
359 return 0;
360 }
361
zstd_destroy_compress_ctx(struct compress_ctx * cc)362 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
363 {
364 vfree(cc->private);
365 cc->private = NULL;
366 cc->private2 = NULL;
367 }
368
zstd_compress_pages(struct compress_ctx * cc)369 static int zstd_compress_pages(struct compress_ctx *cc)
370 {
371 zstd_cstream *stream = cc->private2;
372 zstd_in_buffer inbuf;
373 zstd_out_buffer outbuf;
374 int src_size = cc->rlen;
375 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
376 int ret;
377
378 inbuf.pos = 0;
379 inbuf.src = cc->rbuf;
380 inbuf.size = src_size;
381
382 outbuf.pos = 0;
383 outbuf.dst = cc->cbuf->cdata;
384 outbuf.size = dst_size;
385
386 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
387 if (zstd_is_error(ret)) {
388 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
389 "%s zstd_compress_stream failed, ret: %d",
390 __func__, zstd_get_error_code(ret));
391 return -EIO;
392 }
393
394 ret = zstd_end_stream(stream, &outbuf);
395 if (zstd_is_error(ret)) {
396 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
397 "%s zstd_end_stream returned %d",
398 __func__, zstd_get_error_code(ret));
399 return -EIO;
400 }
401
402 /*
403 * there is compressed data remained in intermediate buffer due to
404 * no more space in cbuf.cdata
405 */
406 if (ret)
407 return -EAGAIN;
408
409 cc->clen = outbuf.pos;
410 return 0;
411 }
412
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)413 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
414 {
415 zstd_dstream *stream;
416 void *workspace;
417 unsigned int workspace_size;
418 unsigned int max_window_size =
419 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
420
421 workspace_size = zstd_dstream_workspace_bound(max_window_size);
422
423 workspace = f2fs_vmalloc(dic->sbi, workspace_size);
424 if (!workspace)
425 return -ENOMEM;
426
427 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
428 if (!stream) {
429 f2fs_err_ratelimited(dic->sbi,
430 "%s zstd_init_dstream failed", __func__);
431 vfree(workspace);
432 return -EIO;
433 }
434
435 dic->private = workspace;
436 dic->private2 = stream;
437
438 return 0;
439 }
440
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)441 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
442 {
443 vfree(dic->private);
444 dic->private = NULL;
445 dic->private2 = NULL;
446 }
447
zstd_decompress_pages(struct decompress_io_ctx * dic)448 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
449 {
450 zstd_dstream *stream = dic->private2;
451 zstd_in_buffer inbuf;
452 zstd_out_buffer outbuf;
453 int ret;
454
455 inbuf.pos = 0;
456 inbuf.src = dic->cbuf->cdata;
457 inbuf.size = dic->clen;
458
459 outbuf.pos = 0;
460 outbuf.dst = dic->rbuf;
461 outbuf.size = dic->rlen;
462
463 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
464 if (zstd_is_error(ret)) {
465 f2fs_err_ratelimited(dic->sbi,
466 "%s zstd_decompress_stream failed, ret: %d",
467 __func__, zstd_get_error_code(ret));
468 return -EIO;
469 }
470
471 if (dic->rlen != outbuf.pos) {
472 f2fs_err_ratelimited(dic->sbi,
473 "%s ZSTD invalid rlen:%zu, expected:%lu",
474 __func__, dic->rlen,
475 PAGE_SIZE << dic->log_cluster_size);
476 return -EIO;
477 }
478
479 return 0;
480 }
481
zstd_is_level_valid(int lvl)482 static bool zstd_is_level_valid(int lvl)
483 {
484 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
485 }
486
487 static const struct f2fs_compress_ops f2fs_zstd_ops = {
488 .init_compress_ctx = zstd_init_compress_ctx,
489 .destroy_compress_ctx = zstd_destroy_compress_ctx,
490 .compress_pages = zstd_compress_pages,
491 .init_decompress_ctx = zstd_init_decompress_ctx,
492 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
493 .decompress_pages = zstd_decompress_pages,
494 .is_level_valid = zstd_is_level_valid,
495 };
496 #endif
497
498 #ifdef CONFIG_F2FS_FS_LZO
499 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)500 static int lzorle_compress_pages(struct compress_ctx *cc)
501 {
502 int ret;
503
504 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
505 &cc->clen, cc->private);
506 if (ret != LZO_E_OK) {
507 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
508 "lzo-rle compress failed, ret:%d", ret);
509 return -EIO;
510 }
511 return 0;
512 }
513
514 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
515 .init_compress_ctx = lzo_init_compress_ctx,
516 .destroy_compress_ctx = lzo_destroy_compress_ctx,
517 .compress_pages = lzorle_compress_pages,
518 .decompress_pages = lzo_decompress_pages,
519 };
520 #endif
521 #endif
522
523 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
524 #ifdef CONFIG_F2FS_FS_LZO
525 &f2fs_lzo_ops,
526 #else
527 NULL,
528 #endif
529 #ifdef CONFIG_F2FS_FS_LZ4
530 &f2fs_lz4_ops,
531 #else
532 NULL,
533 #endif
534 #ifdef CONFIG_F2FS_FS_ZSTD
535 &f2fs_zstd_ops,
536 #else
537 NULL,
538 #endif
539 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
540 &f2fs_lzorle_ops,
541 #else
542 NULL,
543 #endif
544 };
545
f2fs_is_compress_backend_ready(struct inode * inode)546 bool f2fs_is_compress_backend_ready(struct inode *inode)
547 {
548 if (!f2fs_compressed_file(inode))
549 return true;
550 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
551 }
552
f2fs_is_compress_level_valid(int alg,int lvl)553 bool f2fs_is_compress_level_valid(int alg, int lvl)
554 {
555 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
556
557 if (cops->is_level_valid)
558 return cops->is_level_valid(lvl);
559
560 return lvl == 0;
561 }
562
563 static mempool_t *compress_page_pool;
564 static int num_compress_pages = 512;
565 module_param(num_compress_pages, uint, 0444);
566 MODULE_PARM_DESC(num_compress_pages,
567 "Number of intermediate compress pages to preallocate");
568
f2fs_init_compress_mempool(void)569 int __init f2fs_init_compress_mempool(void)
570 {
571 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
572 return compress_page_pool ? 0 : -ENOMEM;
573 }
574
f2fs_destroy_compress_mempool(void)575 void f2fs_destroy_compress_mempool(void)
576 {
577 mempool_destroy(compress_page_pool);
578 }
579
f2fs_compress_alloc_page(void)580 static struct page *f2fs_compress_alloc_page(void)
581 {
582 struct page *page;
583
584 page = mempool_alloc(compress_page_pool, GFP_NOFS);
585 lock_page(page);
586
587 return page;
588 }
589
f2fs_compress_free_page(struct page * page)590 static void f2fs_compress_free_page(struct page *page)
591 {
592 struct folio *folio;
593
594 if (!page)
595 return;
596 folio = page_folio(page);
597 folio_detach_private(folio);
598 folio->mapping = NULL;
599 folio_unlock(folio);
600 mempool_free(page, compress_page_pool);
601 }
602
603 #define MAX_VMAP_RETRIES 3
604
f2fs_vmap(struct page ** pages,unsigned int count)605 static void *f2fs_vmap(struct page **pages, unsigned int count)
606 {
607 int i;
608 void *buf = NULL;
609
610 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
611 buf = vm_map_ram(pages, count, -1);
612 if (buf)
613 break;
614 vm_unmap_aliases();
615 }
616 return buf;
617 }
618
f2fs_compress_pages(struct compress_ctx * cc)619 static int f2fs_compress_pages(struct compress_ctx *cc)
620 {
621 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
622 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
623 const struct f2fs_compress_ops *cops =
624 f2fs_cops[fi->i_compress_algorithm];
625 unsigned int max_len, new_nr_cpages;
626 u32 chksum = 0;
627 int i, ret;
628
629 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
630 cc->cluster_size, fi->i_compress_algorithm);
631
632 if (cops->init_compress_ctx) {
633 ret = cops->init_compress_ctx(cc);
634 if (ret)
635 goto out;
636 }
637
638 max_len = COMPRESS_HEADER_SIZE + cc->clen;
639 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
640 cc->valid_nr_cpages = cc->nr_cpages;
641
642 cc->cpages = page_array_alloc(sbi, cc->nr_cpages);
643 if (!cc->cpages) {
644 ret = -ENOMEM;
645 goto destroy_compress_ctx;
646 }
647
648 for (i = 0; i < cc->nr_cpages; i++)
649 cc->cpages[i] = f2fs_compress_alloc_page();
650
651 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
652 if (!cc->rbuf) {
653 ret = -ENOMEM;
654 goto out_free_cpages;
655 }
656
657 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
658 if (!cc->cbuf) {
659 ret = -ENOMEM;
660 goto out_vunmap_rbuf;
661 }
662
663 ret = cops->compress_pages(cc);
664 if (ret)
665 goto out_vunmap_cbuf;
666
667 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
668
669 if (cc->clen > max_len) {
670 ret = -EAGAIN;
671 goto out_vunmap_cbuf;
672 }
673
674 cc->cbuf->clen = cpu_to_le32(cc->clen);
675
676 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
677 chksum = f2fs_crc32(cc->cbuf->cdata, cc->clen);
678 cc->cbuf->chksum = cpu_to_le32(chksum);
679
680 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
681 cc->cbuf->reserved[i] = cpu_to_le32(0);
682
683 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
684
685 /* zero out any unused part of the last page */
686 memset(&cc->cbuf->cdata[cc->clen], 0,
687 (new_nr_cpages * PAGE_SIZE) -
688 (cc->clen + COMPRESS_HEADER_SIZE));
689
690 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
691 vm_unmap_ram(cc->rbuf, cc->cluster_size);
692
693 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
694 f2fs_compress_free_page(cc->cpages[i]);
695 cc->cpages[i] = NULL;
696 }
697
698 if (cops->destroy_compress_ctx)
699 cops->destroy_compress_ctx(cc);
700
701 cc->valid_nr_cpages = new_nr_cpages;
702
703 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
704 cc->clen, ret);
705 return 0;
706
707 out_vunmap_cbuf:
708 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
709 out_vunmap_rbuf:
710 vm_unmap_ram(cc->rbuf, cc->cluster_size);
711 out_free_cpages:
712 for (i = 0; i < cc->nr_cpages; i++) {
713 if (cc->cpages[i])
714 f2fs_compress_free_page(cc->cpages[i]);
715 }
716 page_array_free(sbi, cc->cpages, cc->nr_cpages);
717 cc->cpages = NULL;
718 destroy_compress_ctx:
719 if (cops->destroy_compress_ctx)
720 cops->destroy_compress_ctx(cc);
721 out:
722 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
723 cc->clen, ret);
724 return ret;
725 }
726
727 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
728 bool pre_alloc);
729 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
730 bool bypass_destroy_callback, bool pre_alloc);
731
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)732 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
733 {
734 struct f2fs_sb_info *sbi = dic->sbi;
735 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
736 const struct f2fs_compress_ops *cops =
737 f2fs_cops[fi->i_compress_algorithm];
738 bool bypass_callback = false;
739 int ret;
740
741 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
742 dic->cluster_size, fi->i_compress_algorithm);
743
744 if (dic->failed) {
745 ret = -EIO;
746 goto out_end_io;
747 }
748
749 ret = f2fs_prepare_decomp_mem(dic, false);
750 if (ret) {
751 bypass_callback = true;
752 goto out_release;
753 }
754
755 dic->clen = le32_to_cpu(dic->cbuf->clen);
756 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
757
758 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
759 ret = -EFSCORRUPTED;
760
761 /* Avoid f2fs_commit_super in irq context */
762 if (!in_task)
763 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
764 else
765 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
766 goto out_release;
767 }
768
769 ret = cops->decompress_pages(dic);
770
771 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
772 u32 provided = le32_to_cpu(dic->cbuf->chksum);
773 u32 calculated = f2fs_crc32(dic->cbuf->cdata, dic->clen);
774
775 if (provided != calculated) {
776 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
777 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
778 f2fs_info_ratelimited(sbi,
779 "checksum invalid, nid = %lu, %x vs %x",
780 dic->inode->i_ino,
781 provided, calculated);
782 }
783 set_sbi_flag(sbi, SBI_NEED_FSCK);
784 }
785 }
786
787 out_release:
788 f2fs_release_decomp_mem(dic, bypass_callback, false);
789
790 out_end_io:
791 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
792 dic->clen, ret);
793 f2fs_decompress_end_io(dic, ret, in_task);
794 }
795
796 static void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
797 struct folio *folio, nid_t ino, block_t blkaddr);
798
799 /*
800 * This is called when a page of a compressed cluster has been read from disk
801 * (or failed to be read from disk). It checks whether this page was the last
802 * page being waited on in the cluster, and if so, it decompresses the cluster
803 * (or in the case of a failure, cleans up without actually decompressing).
804 */
f2fs_end_read_compressed_page(struct folio * folio,bool failed,block_t blkaddr,bool in_task)805 void f2fs_end_read_compressed_page(struct folio *folio, bool failed,
806 block_t blkaddr, bool in_task)
807 {
808 struct decompress_io_ctx *dic = folio->private;
809 struct f2fs_sb_info *sbi = dic->sbi;
810
811 dec_page_count(sbi, F2FS_RD_DATA);
812
813 if (failed)
814 WRITE_ONCE(dic->failed, true);
815 else if (blkaddr && in_task)
816 f2fs_cache_compressed_page(sbi, folio,
817 dic->inode->i_ino, blkaddr);
818
819 if (atomic_dec_and_test(&dic->remaining_pages))
820 f2fs_decompress_cluster(dic, in_task);
821 }
822
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)823 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
824 {
825 if (cc->cluster_idx == NULL_CLUSTER)
826 return true;
827 return cc->cluster_idx == cluster_idx(cc, index);
828 }
829
f2fs_cluster_is_empty(struct compress_ctx * cc)830 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
831 {
832 return cc->nr_rpages == 0;
833 }
834
f2fs_cluster_is_full(struct compress_ctx * cc)835 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
836 {
837 return cc->cluster_size == cc->nr_rpages;
838 }
839
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)840 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
841 {
842 if (f2fs_cluster_is_empty(cc))
843 return true;
844 return is_page_in_cluster(cc, index);
845 }
846
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)847 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
848 int index, int nr_pages, bool uptodate)
849 {
850 unsigned long pgidx = page_folio(pages[index])->index;
851 int i = uptodate ? 0 : 1;
852
853 /*
854 * when uptodate set to true, try to check all pages in cluster is
855 * uptodate or not.
856 */
857 if (uptodate && (pgidx % cc->cluster_size))
858 return false;
859
860 if (nr_pages - index < cc->cluster_size)
861 return false;
862
863 for (; i < cc->cluster_size; i++) {
864 struct folio *folio = page_folio(pages[index + i]);
865
866 if (folio->index != pgidx + i)
867 return false;
868 if (uptodate && !folio_test_uptodate(folio))
869 return false;
870 }
871
872 return true;
873 }
874
cluster_has_invalid_data(struct compress_ctx * cc)875 static bool cluster_has_invalid_data(struct compress_ctx *cc)
876 {
877 loff_t i_size = i_size_read(cc->inode);
878 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
879 int i;
880
881 for (i = 0; i < cc->cluster_size; i++) {
882 struct page *page = cc->rpages[i];
883
884 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
885
886 /* beyond EOF */
887 if (page_folio(page)->index >= nr_pages)
888 return true;
889 }
890 return false;
891 }
892
f2fs_sanity_check_cluster(struct dnode_of_data * dn)893 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
894 {
895 #ifdef CONFIG_F2FS_CHECK_FS
896 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
897 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
898 int cluster_end = 0;
899 unsigned int count;
900 int i;
901 char *reason = "";
902
903 if (dn->data_blkaddr != COMPRESS_ADDR)
904 return false;
905
906 /* [..., COMPR_ADDR, ...] */
907 if (dn->ofs_in_node % cluster_size) {
908 reason = "[*|C|*|*]";
909 goto out;
910 }
911
912 for (i = 1, count = 1; i < cluster_size; i++, count++) {
913 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
914 dn->ofs_in_node + i);
915
916 /* [COMPR_ADDR, ..., COMPR_ADDR] */
917 if (blkaddr == COMPRESS_ADDR) {
918 reason = "[C|*|C|*]";
919 goto out;
920 }
921 if (!__is_valid_data_blkaddr(blkaddr)) {
922 if (!cluster_end)
923 cluster_end = i;
924 continue;
925 }
926 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
927 if (cluster_end) {
928 reason = "[C|N|N|V]";
929 goto out;
930 }
931 }
932
933 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
934 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
935
936 return false;
937 out:
938 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
939 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
940 set_sbi_flag(sbi, SBI_NEED_FSCK);
941 return true;
942 #else
943 return false;
944 #endif
945 }
946
__f2fs_get_cluster_blocks(struct inode * inode,struct dnode_of_data * dn)947 static int __f2fs_get_cluster_blocks(struct inode *inode,
948 struct dnode_of_data *dn)
949 {
950 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
951 int count, i;
952
953 for (i = 0, count = 0; i < cluster_size; i++) {
954 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
955 dn->ofs_in_node + i);
956
957 if (__is_valid_data_blkaddr(blkaddr))
958 count++;
959 }
960
961 return count;
962 }
963
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,enum cluster_check_type type)964 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
965 enum cluster_check_type type)
966 {
967 struct dnode_of_data dn;
968 unsigned int start_idx = cluster_idx <<
969 F2FS_I(inode)->i_log_cluster_size;
970 int ret;
971
972 set_new_dnode(&dn, inode, NULL, NULL, 0);
973 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
974 if (ret) {
975 if (ret == -ENOENT)
976 ret = 0;
977 goto fail;
978 }
979
980 if (f2fs_sanity_check_cluster(&dn)) {
981 ret = -EFSCORRUPTED;
982 goto fail;
983 }
984
985 if (dn.data_blkaddr == COMPRESS_ADDR) {
986 if (type == CLUSTER_COMPR_BLKS)
987 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
988 else if (type == CLUSTER_IS_COMPR)
989 ret = 1;
990 } else if (type == CLUSTER_RAW_BLKS) {
991 ret = __f2fs_get_cluster_blocks(inode, &dn);
992 }
993 fail:
994 f2fs_put_dnode(&dn);
995 return ret;
996 }
997
998 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)999 static int f2fs_compressed_blocks(struct compress_ctx *cc)
1000 {
1001 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
1002 CLUSTER_COMPR_BLKS);
1003 }
1004
1005 /* return # of raw blocks in non-compressed cluster */
f2fs_decompressed_blocks(struct inode * inode,unsigned int cluster_idx)1006 static int f2fs_decompressed_blocks(struct inode *inode,
1007 unsigned int cluster_idx)
1008 {
1009 return __f2fs_cluster_blocks(inode, cluster_idx,
1010 CLUSTER_RAW_BLKS);
1011 }
1012
1013 /* return whether cluster is compressed one or not */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1014 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1015 {
1016 return __f2fs_cluster_blocks(inode,
1017 index >> F2FS_I(inode)->i_log_cluster_size,
1018 CLUSTER_IS_COMPR);
1019 }
1020
1021 /* return whether cluster contains non raw blocks or not */
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)1022 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
1023 {
1024 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
1025
1026 return f2fs_decompressed_blocks(inode, cluster_idx) !=
1027 F2FS_I(inode)->i_cluster_size;
1028 }
1029
cluster_may_compress(struct compress_ctx * cc)1030 static bool cluster_may_compress(struct compress_ctx *cc)
1031 {
1032 if (!f2fs_need_compress_data(cc->inode))
1033 return false;
1034 if (f2fs_is_atomic_file(cc->inode))
1035 return false;
1036 if (!f2fs_cluster_is_full(cc))
1037 return false;
1038 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1039 return false;
1040 return !cluster_has_invalid_data(cc);
1041 }
1042
set_cluster_writeback(struct compress_ctx * cc)1043 static void set_cluster_writeback(struct compress_ctx *cc)
1044 {
1045 int i;
1046
1047 for (i = 0; i < cc->cluster_size; i++) {
1048 if (cc->rpages[i])
1049 set_page_writeback(cc->rpages[i]);
1050 }
1051 }
1052
cancel_cluster_writeback(struct compress_ctx * cc,struct compress_io_ctx * cic,int submitted)1053 static void cancel_cluster_writeback(struct compress_ctx *cc,
1054 struct compress_io_ctx *cic, int submitted)
1055 {
1056 int i;
1057
1058 /* Wait for submitted IOs. */
1059 if (submitted > 1) {
1060 f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA);
1061 while (atomic_read(&cic->pending_pages) !=
1062 (cc->valid_nr_cpages - submitted + 1))
1063 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1064 }
1065
1066 /* Cancel writeback and stay locked. */
1067 for (i = 0; i < cc->cluster_size; i++) {
1068 if (i < submitted) {
1069 inode_inc_dirty_pages(cc->inode);
1070 lock_page(cc->rpages[i]);
1071 }
1072 clear_page_private_gcing(cc->rpages[i]);
1073 if (folio_test_writeback(page_folio(cc->rpages[i])))
1074 end_page_writeback(cc->rpages[i]);
1075 }
1076 }
1077
set_cluster_dirty(struct compress_ctx * cc)1078 static void set_cluster_dirty(struct compress_ctx *cc)
1079 {
1080 int i;
1081
1082 for (i = 0; i < cc->cluster_size; i++)
1083 if (cc->rpages[i]) {
1084 set_page_dirty(cc->rpages[i]);
1085 set_page_private_gcing(cc->rpages[i]);
1086 }
1087 }
1088
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1089 static int prepare_compress_overwrite(struct compress_ctx *cc,
1090 struct page **pagep, pgoff_t index, void **fsdata)
1091 {
1092 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1093 struct address_space *mapping = cc->inode->i_mapping;
1094 struct folio *folio;
1095 sector_t last_block_in_bio;
1096 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1097 pgoff_t start_idx = start_idx_of_cluster(cc);
1098 int i, ret;
1099
1100 retry:
1101 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1102 if (ret <= 0)
1103 return ret;
1104
1105 ret = f2fs_init_compress_ctx(cc);
1106 if (ret)
1107 return ret;
1108
1109 /* keep folio reference to avoid page reclaim */
1110 for (i = 0; i < cc->cluster_size; i++) {
1111 folio = f2fs_filemap_get_folio(mapping, start_idx + i,
1112 fgp_flag, GFP_NOFS);
1113 if (IS_ERR(folio)) {
1114 ret = PTR_ERR(folio);
1115 goto unlock_pages;
1116 }
1117
1118 if (folio_test_uptodate(folio))
1119 f2fs_folio_put(folio, true);
1120 else
1121 f2fs_compress_ctx_add_page(cc, folio);
1122 }
1123
1124 if (!f2fs_cluster_is_empty(cc)) {
1125 struct bio *bio = NULL;
1126
1127 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1128 &last_block_in_bio, NULL, true);
1129 f2fs_put_rpages(cc);
1130 f2fs_destroy_compress_ctx(cc, true);
1131 if (ret)
1132 goto out;
1133 if (bio)
1134 f2fs_submit_read_bio(sbi, bio, DATA);
1135
1136 ret = f2fs_init_compress_ctx(cc);
1137 if (ret)
1138 goto out;
1139 }
1140
1141 for (i = 0; i < cc->cluster_size; i++) {
1142 f2fs_bug_on(sbi, cc->rpages[i]);
1143
1144 folio = filemap_lock_folio(mapping, start_idx + i);
1145 if (IS_ERR(folio)) {
1146 /* folio could be truncated */
1147 goto release_and_retry;
1148 }
1149
1150 f2fs_folio_wait_writeback(folio, DATA, true, true);
1151 f2fs_compress_ctx_add_page(cc, folio);
1152
1153 if (!folio_test_uptodate(folio)) {
1154 f2fs_handle_page_eio(sbi, folio, DATA);
1155 release_and_retry:
1156 f2fs_put_rpages(cc);
1157 f2fs_unlock_rpages(cc, i + 1);
1158 f2fs_destroy_compress_ctx(cc, true);
1159 goto retry;
1160 }
1161 }
1162
1163 if (likely(!ret)) {
1164 *fsdata = cc->rpages;
1165 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1166 return cc->cluster_size;
1167 }
1168
1169 unlock_pages:
1170 f2fs_put_rpages(cc);
1171 f2fs_unlock_rpages(cc, i);
1172 f2fs_destroy_compress_ctx(cc, true);
1173 out:
1174 return ret;
1175 }
1176
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1177 int f2fs_prepare_compress_overwrite(struct inode *inode,
1178 struct page **pagep, pgoff_t index, void **fsdata)
1179 {
1180 struct compress_ctx cc = {
1181 .inode = inode,
1182 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1183 .cluster_size = F2FS_I(inode)->i_cluster_size,
1184 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1185 .rpages = NULL,
1186 .nr_rpages = 0,
1187 };
1188
1189 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1190 }
1191
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1192 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1193 pgoff_t index, unsigned copied)
1194
1195 {
1196 struct compress_ctx cc = {
1197 .inode = inode,
1198 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1199 .cluster_size = F2FS_I(inode)->i_cluster_size,
1200 .rpages = fsdata,
1201 };
1202 struct folio *folio = page_folio(cc.rpages[0]);
1203 bool first_index = (index == folio->index);
1204
1205 if (copied)
1206 set_cluster_dirty(&cc);
1207
1208 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1209 f2fs_destroy_compress_ctx(&cc, false);
1210
1211 return first_index;
1212 }
1213
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1214 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1215 {
1216 void *fsdata = NULL;
1217 struct page *pagep;
1218 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1219 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1220 log_cluster_size;
1221 int err;
1222
1223 err = f2fs_is_compressed_cluster(inode, start_idx);
1224 if (err < 0)
1225 return err;
1226
1227 /* truncate normal cluster */
1228 if (!err)
1229 return f2fs_do_truncate_blocks(inode, from, lock);
1230
1231 /* truncate compressed cluster */
1232 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1233 start_idx, &fsdata);
1234
1235 /* should not be a normal cluster */
1236 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1237
1238 if (err <= 0)
1239 return err;
1240
1241 if (err > 0) {
1242 struct page **rpages = fsdata;
1243 int cluster_size = F2FS_I(inode)->i_cluster_size;
1244 int i;
1245
1246 for (i = cluster_size - 1; i >= 0; i--) {
1247 struct folio *folio = page_folio(rpages[i]);
1248 loff_t start = folio->index << PAGE_SHIFT;
1249
1250 if (from <= start) {
1251 folio_zero_segment(folio, 0, folio_size(folio));
1252 } else {
1253 folio_zero_segment(folio, from - start,
1254 folio_size(folio));
1255 break;
1256 }
1257 }
1258
1259 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1260 }
1261 return 0;
1262 }
1263
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1264 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1265 int *submitted,
1266 struct writeback_control *wbc,
1267 enum iostat_type io_type)
1268 {
1269 struct inode *inode = cc->inode;
1270 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1271 struct f2fs_inode_info *fi = F2FS_I(inode);
1272 struct f2fs_io_info fio = {
1273 .sbi = sbi,
1274 .ino = cc->inode->i_ino,
1275 .type = DATA,
1276 .op = REQ_OP_WRITE,
1277 .op_flags = wbc_to_write_flags(wbc),
1278 .old_blkaddr = NEW_ADDR,
1279 .page = NULL,
1280 .encrypted_page = NULL,
1281 .compressed_page = NULL,
1282 .io_type = io_type,
1283 .io_wbc = wbc,
1284 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1285 1 : 0,
1286 };
1287 struct folio *folio;
1288 struct dnode_of_data dn;
1289 struct node_info ni;
1290 struct compress_io_ctx *cic;
1291 pgoff_t start_idx = start_idx_of_cluster(cc);
1292 unsigned int last_index = cc->cluster_size - 1;
1293 loff_t psize;
1294 int i, err;
1295 bool quota_inode = IS_NOQUOTA(inode);
1296
1297 /* we should bypass data pages to proceed the kworker jobs */
1298 if (unlikely(f2fs_cp_error(sbi))) {
1299 mapping_set_error(inode->i_mapping, -EIO);
1300 goto out_free;
1301 }
1302
1303 if (quota_inode) {
1304 /*
1305 * We need to wait for node_write to avoid block allocation during
1306 * checkpoint. This can only happen to quota writes which can cause
1307 * the below discard race condition.
1308 */
1309 f2fs_down_read(&sbi->node_write);
1310 } else if (!f2fs_trylock_op(sbi)) {
1311 goto out_free;
1312 }
1313
1314 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1315
1316 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1317 if (err)
1318 goto out_unlock_op;
1319
1320 for (i = 0; i < cc->cluster_size; i++) {
1321 if (data_blkaddr(dn.inode, dn.node_folio,
1322 dn.ofs_in_node + i) == NULL_ADDR)
1323 goto out_put_dnode;
1324 }
1325
1326 folio = page_folio(cc->rpages[last_index]);
1327 psize = folio_pos(folio) + folio_size(folio);
1328
1329 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1330 if (err)
1331 goto out_put_dnode;
1332
1333 fio.version = ni.version;
1334
1335 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1336 if (!cic)
1337 goto out_put_dnode;
1338
1339 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1340 cic->inode = inode;
1341 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1342 cic->rpages = page_array_alloc(sbi, cc->cluster_size);
1343 if (!cic->rpages)
1344 goto out_put_cic;
1345
1346 cic->nr_rpages = cc->cluster_size;
1347
1348 for (i = 0; i < cc->valid_nr_cpages; i++) {
1349 f2fs_set_compressed_page(cc->cpages[i], inode,
1350 page_folio(cc->rpages[i + 1])->index, cic);
1351 fio.compressed_page = cc->cpages[i];
1352
1353 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_folio,
1354 dn.ofs_in_node + i + 1);
1355
1356 /* wait for GCed page writeback via META_MAPPING */
1357 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1358
1359 if (fio.encrypted) {
1360 fio.page = cc->rpages[i + 1];
1361 err = f2fs_encrypt_one_page(&fio);
1362 if (err)
1363 goto out_destroy_crypt;
1364 cc->cpages[i] = fio.encrypted_page;
1365 }
1366 }
1367
1368 set_cluster_writeback(cc);
1369
1370 for (i = 0; i < cc->cluster_size; i++)
1371 cic->rpages[i] = cc->rpages[i];
1372
1373 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1374 block_t blkaddr;
1375
1376 blkaddr = f2fs_data_blkaddr(&dn);
1377 fio.page = cc->rpages[i];
1378 fio.old_blkaddr = blkaddr;
1379
1380 /* cluster header */
1381 if (i == 0) {
1382 if (blkaddr == COMPRESS_ADDR)
1383 fio.compr_blocks++;
1384 if (__is_valid_data_blkaddr(blkaddr))
1385 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1386 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1387 goto unlock_continue;
1388 }
1389
1390 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1391 fio.compr_blocks++;
1392
1393 if (i > cc->valid_nr_cpages) {
1394 if (__is_valid_data_blkaddr(blkaddr)) {
1395 f2fs_invalidate_blocks(sbi, blkaddr, 1);
1396 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1397 }
1398 goto unlock_continue;
1399 }
1400
1401 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1402
1403 if (fio.encrypted)
1404 fio.encrypted_page = cc->cpages[i - 1];
1405 else
1406 fio.compressed_page = cc->cpages[i - 1];
1407
1408 cc->cpages[i - 1] = NULL;
1409 fio.submitted = 0;
1410 f2fs_outplace_write_data(&dn, &fio);
1411 if (unlikely(!fio.submitted)) {
1412 cancel_cluster_writeback(cc, cic, i);
1413
1414 /* To call fscrypt_finalize_bounce_page */
1415 i = cc->valid_nr_cpages;
1416 *submitted = 0;
1417 goto out_destroy_crypt;
1418 }
1419 (*submitted)++;
1420 unlock_continue:
1421 inode_dec_dirty_pages(cc->inode);
1422 folio_unlock(fio.folio);
1423 }
1424
1425 if (fio.compr_blocks)
1426 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1427 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1428 add_compr_block_stat(inode, cc->valid_nr_cpages);
1429
1430 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1431
1432 f2fs_put_dnode(&dn);
1433 if (quota_inode)
1434 f2fs_up_read(&sbi->node_write);
1435 else
1436 f2fs_unlock_op(sbi);
1437
1438 spin_lock(&fi->i_size_lock);
1439 if (fi->last_disk_size < psize)
1440 fi->last_disk_size = psize;
1441 spin_unlock(&fi->i_size_lock);
1442
1443 f2fs_put_rpages(cc);
1444 page_array_free(sbi, cc->cpages, cc->nr_cpages);
1445 cc->cpages = NULL;
1446 f2fs_destroy_compress_ctx(cc, false);
1447 return 0;
1448
1449 out_destroy_crypt:
1450 page_array_free(sbi, cic->rpages, cc->cluster_size);
1451
1452 for (--i; i >= 0; i--) {
1453 if (!cc->cpages[i])
1454 continue;
1455 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1456 }
1457 out_put_cic:
1458 kmem_cache_free(cic_entry_slab, cic);
1459 out_put_dnode:
1460 f2fs_put_dnode(&dn);
1461 out_unlock_op:
1462 if (quota_inode)
1463 f2fs_up_read(&sbi->node_write);
1464 else
1465 f2fs_unlock_op(sbi);
1466 out_free:
1467 for (i = 0; i < cc->valid_nr_cpages; i++) {
1468 f2fs_compress_free_page(cc->cpages[i]);
1469 cc->cpages[i] = NULL;
1470 }
1471 page_array_free(sbi, cc->cpages, cc->nr_cpages);
1472 cc->cpages = NULL;
1473 return -EAGAIN;
1474 }
1475
f2fs_compress_write_end_io(struct bio * bio,struct folio * folio)1476 void f2fs_compress_write_end_io(struct bio *bio, struct folio *folio)
1477 {
1478 struct page *page = &folio->page;
1479 struct f2fs_sb_info *sbi = bio->bi_private;
1480 struct compress_io_ctx *cic = folio->private;
1481 enum count_type type = WB_DATA_TYPE(folio,
1482 f2fs_is_compressed_page(folio));
1483 int i;
1484
1485 if (unlikely(bio->bi_status != BLK_STS_OK))
1486 mapping_set_error(cic->inode->i_mapping, -EIO);
1487
1488 f2fs_compress_free_page(page);
1489
1490 dec_page_count(sbi, type);
1491
1492 if (atomic_dec_return(&cic->pending_pages))
1493 return;
1494
1495 for (i = 0; i < cic->nr_rpages; i++) {
1496 WARN_ON(!cic->rpages[i]);
1497 clear_page_private_gcing(cic->rpages[i]);
1498 end_page_writeback(cic->rpages[i]);
1499 }
1500
1501 page_array_free(sbi, cic->rpages, cic->nr_rpages);
1502 kmem_cache_free(cic_entry_slab, cic);
1503 }
1504
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted_p,struct writeback_control * wbc,enum iostat_type io_type)1505 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1506 int *submitted_p,
1507 struct writeback_control *wbc,
1508 enum iostat_type io_type)
1509 {
1510 struct address_space *mapping = cc->inode->i_mapping;
1511 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1512 int submitted, compr_blocks, i;
1513 int ret = 0;
1514
1515 compr_blocks = f2fs_compressed_blocks(cc);
1516
1517 for (i = 0; i < cc->cluster_size; i++) {
1518 if (!cc->rpages[i])
1519 continue;
1520
1521 redirty_page_for_writepage(wbc, cc->rpages[i]);
1522 unlock_page(cc->rpages[i]);
1523 }
1524
1525 if (compr_blocks < 0)
1526 return compr_blocks;
1527
1528 /* overwrite compressed cluster w/ normal cluster */
1529 if (compr_blocks > 0)
1530 f2fs_lock_op(sbi);
1531
1532 for (i = 0; i < cc->cluster_size; i++) {
1533 struct folio *folio;
1534
1535 if (!cc->rpages[i])
1536 continue;
1537 folio = page_folio(cc->rpages[i]);
1538 retry_write:
1539 folio_lock(folio);
1540
1541 if (folio->mapping != mapping) {
1542 continue_unlock:
1543 folio_unlock(folio);
1544 continue;
1545 }
1546
1547 if (!folio_test_dirty(folio))
1548 goto continue_unlock;
1549
1550 if (folio_test_writeback(folio)) {
1551 if (wbc->sync_mode == WB_SYNC_NONE)
1552 goto continue_unlock;
1553 f2fs_folio_wait_writeback(folio, DATA, true, true);
1554 }
1555
1556 if (!folio_clear_dirty_for_io(folio))
1557 goto continue_unlock;
1558
1559 submitted = 0;
1560 ret = f2fs_write_single_data_page(folio, &submitted,
1561 NULL, NULL, wbc, io_type,
1562 compr_blocks, false);
1563 if (ret) {
1564 if (ret == 1) {
1565 ret = 0;
1566 } else if (ret == -EAGAIN) {
1567 ret = 0;
1568 /*
1569 * for quota file, just redirty left pages to
1570 * avoid deadlock caused by cluster update race
1571 * from foreground operation.
1572 */
1573 if (IS_NOQUOTA(cc->inode))
1574 goto out;
1575 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1576 goto retry_write;
1577 }
1578 goto out;
1579 }
1580
1581 *submitted_p += submitted;
1582 }
1583
1584 out:
1585 if (compr_blocks > 0)
1586 f2fs_unlock_op(sbi);
1587
1588 f2fs_balance_fs(sbi, true);
1589 return ret;
1590 }
1591
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1592 int f2fs_write_multi_pages(struct compress_ctx *cc,
1593 int *submitted,
1594 struct writeback_control *wbc,
1595 enum iostat_type io_type)
1596 {
1597 int err;
1598
1599 *submitted = 0;
1600 if (cluster_may_compress(cc)) {
1601 err = f2fs_compress_pages(cc);
1602 if (err == -EAGAIN) {
1603 add_compr_block_stat(cc->inode, cc->cluster_size);
1604 goto write;
1605 } else if (err) {
1606 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1607 goto destroy_out;
1608 }
1609
1610 err = f2fs_write_compressed_pages(cc, submitted,
1611 wbc, io_type);
1612 if (!err)
1613 return 0;
1614 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1615 }
1616 write:
1617 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1618
1619 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1620 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1621 destroy_out:
1622 f2fs_destroy_compress_ctx(cc, false);
1623 return err;
1624 }
1625
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1626 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1627 bool pre_alloc)
1628 {
1629 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1630 }
1631
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1632 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1633 bool pre_alloc)
1634 {
1635 const struct f2fs_compress_ops *cops = f2fs_cops[dic->compress_algorithm];
1636 int i;
1637
1638 if (!allow_memalloc_for_decomp(dic->sbi, pre_alloc))
1639 return 0;
1640
1641 dic->tpages = page_array_alloc(dic->sbi, dic->cluster_size);
1642 if (!dic->tpages)
1643 return -ENOMEM;
1644
1645 for (i = 0; i < dic->cluster_size; i++) {
1646 if (dic->rpages[i]) {
1647 dic->tpages[i] = dic->rpages[i];
1648 continue;
1649 }
1650
1651 dic->tpages[i] = f2fs_compress_alloc_page();
1652 }
1653
1654 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1655 if (!dic->rbuf)
1656 return -ENOMEM;
1657
1658 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1659 if (!dic->cbuf)
1660 return -ENOMEM;
1661
1662 if (cops->init_decompress_ctx)
1663 return cops->init_decompress_ctx(dic);
1664
1665 return 0;
1666 }
1667
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1668 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1669 bool bypass_destroy_callback, bool pre_alloc)
1670 {
1671 const struct f2fs_compress_ops *cops = f2fs_cops[dic->compress_algorithm];
1672
1673 if (!allow_memalloc_for_decomp(dic->sbi, pre_alloc))
1674 return;
1675
1676 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1677 cops->destroy_decompress_ctx(dic);
1678
1679 if (dic->cbuf)
1680 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1681
1682 if (dic->rbuf)
1683 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1684 }
1685
1686 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1687 bool bypass_destroy_callback);
1688
f2fs_alloc_dic(struct compress_ctx * cc)1689 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1690 {
1691 struct decompress_io_ctx *dic;
1692 pgoff_t start_idx = start_idx_of_cluster(cc);
1693 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1694 int i, ret;
1695
1696 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1697 if (!dic)
1698 return ERR_PTR(-ENOMEM);
1699
1700 dic->rpages = page_array_alloc(sbi, cc->cluster_size);
1701 if (!dic->rpages) {
1702 kmem_cache_free(dic_entry_slab, dic);
1703 return ERR_PTR(-ENOMEM);
1704 }
1705
1706 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1707 dic->inode = cc->inode;
1708 dic->sbi = sbi;
1709 dic->compress_algorithm = F2FS_I(cc->inode)->i_compress_algorithm;
1710 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1711 dic->cluster_idx = cc->cluster_idx;
1712 dic->cluster_size = cc->cluster_size;
1713 dic->log_cluster_size = cc->log_cluster_size;
1714 dic->nr_cpages = cc->nr_cpages;
1715 refcount_set(&dic->refcnt, 1);
1716 dic->failed = false;
1717 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1718
1719 for (i = 0; i < dic->cluster_size; i++)
1720 dic->rpages[i] = cc->rpages[i];
1721 dic->nr_rpages = cc->cluster_size;
1722
1723 dic->cpages = page_array_alloc(sbi, dic->nr_cpages);
1724 if (!dic->cpages) {
1725 ret = -ENOMEM;
1726 goto out_free;
1727 }
1728
1729 for (i = 0; i < dic->nr_cpages; i++) {
1730 struct page *page;
1731
1732 page = f2fs_compress_alloc_page();
1733 f2fs_set_compressed_page(page, cc->inode,
1734 start_idx + i + 1, dic);
1735 dic->cpages[i] = page;
1736 }
1737
1738 ret = f2fs_prepare_decomp_mem(dic, true);
1739 if (ret)
1740 goto out_free;
1741
1742 return dic;
1743
1744 out_free:
1745 f2fs_free_dic(dic, true);
1746 return ERR_PTR(ret);
1747 }
1748
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1749 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1750 bool bypass_destroy_callback)
1751 {
1752 int i;
1753 /* use sbi in dic to avoid UFA of dic->inode*/
1754 struct f2fs_sb_info *sbi = dic->sbi;
1755
1756 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1757
1758 if (dic->tpages) {
1759 for (i = 0; i < dic->cluster_size; i++) {
1760 if (dic->rpages[i])
1761 continue;
1762 if (!dic->tpages[i])
1763 continue;
1764 f2fs_compress_free_page(dic->tpages[i]);
1765 }
1766 page_array_free(sbi, dic->tpages, dic->cluster_size);
1767 }
1768
1769 if (dic->cpages) {
1770 for (i = 0; i < dic->nr_cpages; i++) {
1771 if (!dic->cpages[i])
1772 continue;
1773 f2fs_compress_free_page(dic->cpages[i]);
1774 }
1775 page_array_free(sbi, dic->cpages, dic->nr_cpages);
1776 }
1777
1778 page_array_free(sbi, dic->rpages, dic->nr_rpages);
1779 kmem_cache_free(dic_entry_slab, dic);
1780 }
1781
f2fs_late_free_dic(struct work_struct * work)1782 static void f2fs_late_free_dic(struct work_struct *work)
1783 {
1784 struct decompress_io_ctx *dic =
1785 container_of(work, struct decompress_io_ctx, free_work);
1786
1787 f2fs_free_dic(dic, false);
1788 }
1789
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1790 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1791 {
1792 if (refcount_dec_and_test(&dic->refcnt)) {
1793 if (in_task) {
1794 f2fs_free_dic(dic, false);
1795 } else {
1796 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1797 queue_work(dic->sbi->post_read_wq, &dic->free_work);
1798 }
1799 }
1800 }
1801
f2fs_verify_cluster(struct work_struct * work)1802 static void f2fs_verify_cluster(struct work_struct *work)
1803 {
1804 struct decompress_io_ctx *dic =
1805 container_of(work, struct decompress_io_ctx, verity_work);
1806 int i;
1807
1808 /* Verify, update, and unlock the decompressed pages. */
1809 for (i = 0; i < dic->cluster_size; i++) {
1810 struct page *rpage = dic->rpages[i];
1811
1812 if (!rpage)
1813 continue;
1814
1815 if (fsverity_verify_page(rpage))
1816 SetPageUptodate(rpage);
1817 else
1818 ClearPageUptodate(rpage);
1819 unlock_page(rpage);
1820 }
1821
1822 f2fs_put_dic(dic, true);
1823 }
1824
1825 /*
1826 * This is called when a compressed cluster has been decompressed
1827 * (or failed to be read and/or decompressed).
1828 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1829 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1830 bool in_task)
1831 {
1832 int i;
1833
1834 if (!failed && dic->need_verity) {
1835 /*
1836 * Note that to avoid deadlocks, the verity work can't be done
1837 * on the decompression workqueue. This is because verifying
1838 * the data pages can involve reading metadata pages from the
1839 * file, and these metadata pages may be compressed.
1840 */
1841 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1842 fsverity_enqueue_verify_work(&dic->verity_work);
1843 return;
1844 }
1845
1846 /* Update and unlock the cluster's pagecache pages. */
1847 for (i = 0; i < dic->cluster_size; i++) {
1848 struct page *rpage = dic->rpages[i];
1849
1850 if (!rpage)
1851 continue;
1852
1853 if (failed)
1854 ClearPageUptodate(rpage);
1855 else
1856 SetPageUptodate(rpage);
1857 unlock_page(rpage);
1858 }
1859
1860 /*
1861 * Release the reference to the decompress_io_ctx that was being held
1862 * for I/O completion.
1863 */
1864 f2fs_put_dic(dic, in_task);
1865 }
1866
1867 /*
1868 * Put a reference to a compressed folio's decompress_io_ctx.
1869 *
1870 * This is called when the folio is no longer needed and can be freed.
1871 */
f2fs_put_folio_dic(struct folio * folio,bool in_task)1872 void f2fs_put_folio_dic(struct folio *folio, bool in_task)
1873 {
1874 struct decompress_io_ctx *dic = folio->private;
1875
1876 f2fs_put_dic(dic, in_task);
1877 }
1878
1879 /*
1880 * check whether cluster blocks are contiguous, and add extent cache entry
1881 * only if cluster blocks are logically and physically contiguous.
1882 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)1883 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1884 unsigned int ofs_in_node)
1885 {
1886 bool compressed = data_blkaddr(dn->inode, dn->node_folio,
1887 ofs_in_node) == COMPRESS_ADDR;
1888 int i = compressed ? 1 : 0;
1889 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
1890 ofs_in_node + i);
1891
1892 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1893 block_t blkaddr = data_blkaddr(dn->inode, dn->node_folio,
1894 ofs_in_node + i);
1895
1896 if (!__is_valid_data_blkaddr(blkaddr))
1897 break;
1898 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1899 return 0;
1900 }
1901
1902 return compressed ? i - 1 : i;
1903 }
1904
1905 const struct address_space_operations f2fs_compress_aops = {
1906 .release_folio = f2fs_release_folio,
1907 .invalidate_folio = f2fs_invalidate_folio,
1908 .migrate_folio = filemap_migrate_folio,
1909 };
1910
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1911 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1912 {
1913 return sbi->compress_inode->i_mapping;
1914 }
1915
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)1916 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
1917 block_t blkaddr, unsigned int len)
1918 {
1919 if (!sbi->compress_inode)
1920 return;
1921 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr + len - 1);
1922 }
1923
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct folio * folio,nid_t ino,block_t blkaddr)1924 static void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
1925 struct folio *folio, nid_t ino, block_t blkaddr)
1926 {
1927 struct folio *cfolio;
1928 int ret;
1929
1930 if (!test_opt(sbi, COMPRESS_CACHE))
1931 return;
1932
1933 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1934 return;
1935
1936 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1937 return;
1938
1939 cfolio = filemap_get_folio(COMPRESS_MAPPING(sbi), blkaddr);
1940 if (!IS_ERR(cfolio)) {
1941 f2fs_folio_put(cfolio, false);
1942 return;
1943 }
1944
1945 cfolio = filemap_alloc_folio(__GFP_NOWARN | __GFP_IO, 0);
1946 if (!cfolio)
1947 return;
1948
1949 ret = filemap_add_folio(COMPRESS_MAPPING(sbi), cfolio,
1950 blkaddr, GFP_NOFS);
1951 if (ret) {
1952 f2fs_folio_put(cfolio, false);
1953 return;
1954 }
1955
1956 folio_set_f2fs_data(cfolio, ino);
1957
1958 memcpy(folio_address(cfolio), folio_address(folio), PAGE_SIZE);
1959 folio_mark_uptodate(cfolio);
1960 f2fs_folio_put(cfolio, true);
1961 }
1962
f2fs_load_compressed_folio(struct f2fs_sb_info * sbi,struct folio * folio,block_t blkaddr)1963 bool f2fs_load_compressed_folio(struct f2fs_sb_info *sbi, struct folio *folio,
1964 block_t blkaddr)
1965 {
1966 struct folio *cfolio;
1967 bool hitted = false;
1968
1969 if (!test_opt(sbi, COMPRESS_CACHE))
1970 return false;
1971
1972 cfolio = f2fs_filemap_get_folio(COMPRESS_MAPPING(sbi),
1973 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1974 if (!IS_ERR(cfolio)) {
1975 if (folio_test_uptodate(cfolio)) {
1976 atomic_inc(&sbi->compress_page_hit);
1977 memcpy(folio_address(folio),
1978 folio_address(cfolio), folio_size(folio));
1979 hitted = true;
1980 }
1981 f2fs_folio_put(cfolio, true);
1982 }
1983
1984 return hitted;
1985 }
1986
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1987 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1988 {
1989 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1990 struct folio_batch fbatch;
1991 pgoff_t index = 0;
1992 pgoff_t end = MAX_BLKADDR(sbi);
1993
1994 if (!mapping->nrpages)
1995 return;
1996
1997 folio_batch_init(&fbatch);
1998
1999 do {
2000 unsigned int nr, i;
2001
2002 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
2003 if (!nr)
2004 break;
2005
2006 for (i = 0; i < nr; i++) {
2007 struct folio *folio = fbatch.folios[i];
2008
2009 folio_lock(folio);
2010 if (folio->mapping != mapping) {
2011 folio_unlock(folio);
2012 continue;
2013 }
2014
2015 if (ino != folio_get_f2fs_data(folio)) {
2016 folio_unlock(folio);
2017 continue;
2018 }
2019
2020 generic_error_remove_folio(mapping, folio);
2021 folio_unlock(folio);
2022 }
2023 folio_batch_release(&fbatch);
2024 cond_resched();
2025 } while (index < end);
2026 }
2027
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)2028 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
2029 {
2030 struct inode *inode;
2031
2032 if (!test_opt(sbi, COMPRESS_CACHE))
2033 return 0;
2034
2035 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
2036 if (IS_ERR(inode))
2037 return PTR_ERR(inode);
2038 sbi->compress_inode = inode;
2039
2040 sbi->compress_percent = COMPRESS_PERCENT;
2041 sbi->compress_watermark = COMPRESS_WATERMARK;
2042
2043 atomic_set(&sbi->compress_page_hit, 0);
2044
2045 return 0;
2046 }
2047
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)2048 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
2049 {
2050 if (!sbi->compress_inode)
2051 return;
2052 iput(sbi->compress_inode);
2053 sbi->compress_inode = NULL;
2054 }
2055
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)2056 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
2057 {
2058 dev_t dev = sbi->sb->s_bdev->bd_dev;
2059 char slab_name[35];
2060
2061 if (!f2fs_sb_has_compression(sbi))
2062 return 0;
2063
2064 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2065
2066 sbi->page_array_slab_size = sizeof(struct page *) <<
2067 F2FS_OPTION(sbi).compress_log_size;
2068
2069 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2070 sbi->page_array_slab_size);
2071 return sbi->page_array_slab ? 0 : -ENOMEM;
2072 }
2073
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)2074 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2075 {
2076 kmem_cache_destroy(sbi->page_array_slab);
2077 }
2078
f2fs_init_compress_cache(void)2079 int __init f2fs_init_compress_cache(void)
2080 {
2081 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2082 sizeof(struct compress_io_ctx));
2083 if (!cic_entry_slab)
2084 return -ENOMEM;
2085 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2086 sizeof(struct decompress_io_ctx));
2087 if (!dic_entry_slab)
2088 goto free_cic;
2089 return 0;
2090 free_cic:
2091 kmem_cache_destroy(cic_entry_slab);
2092 return -ENOMEM;
2093 }
2094
f2fs_destroy_compress_cache(void)2095 void f2fs_destroy_compress_cache(void)
2096 {
2097 kmem_cache_destroy(dic_entry_slab);
2098 kmem_cache_destroy(cic_entry_slab);
2099 }
2100