1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35
36 #include "trace.h"
37
38 /*
39 * The "absolute" timestamp in the buffer is only 59 bits.
40 * If a clock has the 5 MSBs set, it needs to be saved and
41 * reinserted.
42 */
43 #define TS_MSB (0xf8ULL << 56)
44 #define ABS_TS_MASK (~TS_MSB)
45
46 static void update_pages_handler(struct work_struct *work);
47
48 #define RING_BUFFER_META_MAGIC 0xBADFEED
49
50 struct ring_buffer_meta {
51 int magic;
52 int struct_sizes;
53 unsigned long total_size;
54 unsigned long buffers_offset;
55 };
56
57 struct ring_buffer_cpu_meta {
58 unsigned long first_buffer;
59 unsigned long head_buffer;
60 unsigned long commit_buffer;
61 __u32 subbuf_size;
62 __u32 nr_subbufs;
63 int buffers[];
64 };
65
66 /*
67 * The ring buffer header is special. We must manually up keep it.
68 */
ring_buffer_print_entry_header(struct trace_seq * s)69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 trace_seq_puts(s, "# compressed entry header\n");
72 trace_seq_puts(s, "\ttype_len : 5 bits\n");
73 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
74 trace_seq_puts(s, "\tarray : 32 bits\n");
75 trace_seq_putc(s, '\n');
76 trace_seq_printf(s, "\tpadding : type == %d\n",
77 RINGBUF_TYPE_PADDING);
78 trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 RINGBUF_TYPE_TIME_EXTEND);
80 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 RINGBUF_TYPE_TIME_STAMP);
82 trace_seq_printf(s, "\tdata max type_len == %d\n",
83 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84
85 return !trace_seq_has_overflowed(s);
86 }
87
88 /*
89 * The ring buffer is made up of a list of pages. A separate list of pages is
90 * allocated for each CPU. A writer may only write to a buffer that is
91 * associated with the CPU it is currently executing on. A reader may read
92 * from any per cpu buffer.
93 *
94 * The reader is special. For each per cpu buffer, the reader has its own
95 * reader page. When a reader has read the entire reader page, this reader
96 * page is swapped with another page in the ring buffer.
97 *
98 * Now, as long as the writer is off the reader page, the reader can do what
99 * ever it wants with that page. The writer will never write to that page
100 * again (as long as it is out of the ring buffer).
101 *
102 * Here's some silly ASCII art.
103 *
104 * +------+
105 * |reader| RING BUFFER
106 * |page |
107 * +------+ +---+ +---+ +---+
108 * | |-->| |-->| |
109 * +---+ +---+ +---+
110 * ^ |
111 * | |
112 * +---------------+
113 *
114 *
115 * +------+
116 * |reader| RING BUFFER
117 * |page |------------------v
118 * +------+ +---+ +---+ +---+
119 * | |-->| |-->| |
120 * +---+ +---+ +---+
121 * ^ |
122 * | |
123 * +---------------+
124 *
125 *
126 * +------+
127 * |reader| RING BUFFER
128 * |page |------------------v
129 * +------+ +---+ +---+ +---+
130 * ^ | |-->| |-->| |
131 * | +---+ +---+ +---+
132 * | |
133 * | |
134 * +------------------------------+
135 *
136 *
137 * +------+
138 * |buffer| RING BUFFER
139 * |page |------------------v
140 * +------+ +---+ +---+ +---+
141 * ^ | | | |-->| |
142 * | New +---+ +---+ +---+
143 * | Reader------^ |
144 * | page |
145 * +------------------------------+
146 *
147 *
148 * After we make this swap, the reader can hand this page off to the splice
149 * code and be done with it. It can even allocate a new page if it needs to
150 * and swap that into the ring buffer.
151 *
152 * We will be using cmpxchg soon to make all this lockless.
153 *
154 */
155
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF (1 << 20)
158
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT 4U
163 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
165
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT 0
168 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT 1
171 # define RB_ARCH_ALIGNMENT 8U
172 #endif
173
174 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
175
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178
179 enum {
180 RB_LEN_TIME_EXTEND = 8,
181 RB_LEN_TIME_STAMP = 8,
182 };
183
184 #define skip_time_extend(event) \
185 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186
187 #define extended_time(event) \
188 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189
rb_null_event(struct ring_buffer_event * event)190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194
rb_event_set_padding(struct ring_buffer_event * event)195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 /* padding has a NULL time_delta */
198 event->type_len = RINGBUF_TYPE_PADDING;
199 event->time_delta = 0;
200 }
201
202 static unsigned
rb_event_data_length(struct ring_buffer_event * event)203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 unsigned length;
206
207 if (event->type_len)
208 length = event->type_len * RB_ALIGNMENT;
209 else
210 length = event->array[0];
211 return length + RB_EVNT_HDR_SIZE;
212 }
213
214 /*
215 * Return the length of the given event. Will return
216 * the length of the time extend if the event is a
217 * time extend.
218 */
219 static inline unsigned
rb_event_length(struct ring_buffer_event * event)220 rb_event_length(struct ring_buffer_event *event)
221 {
222 switch (event->type_len) {
223 case RINGBUF_TYPE_PADDING:
224 if (rb_null_event(event))
225 /* undefined */
226 return -1;
227 return event->array[0] + RB_EVNT_HDR_SIZE;
228
229 case RINGBUF_TYPE_TIME_EXTEND:
230 return RB_LEN_TIME_EXTEND;
231
232 case RINGBUF_TYPE_TIME_STAMP:
233 return RB_LEN_TIME_STAMP;
234
235 case RINGBUF_TYPE_DATA:
236 return rb_event_data_length(event);
237 default:
238 WARN_ON_ONCE(1);
239 }
240 /* not hit */
241 return 0;
242 }
243
244 /*
245 * Return total length of time extend and data,
246 * or just the event length for all other events.
247 */
248 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 unsigned len = 0;
252
253 if (extended_time(event)) {
254 /* time extends include the data event after it */
255 len = RB_LEN_TIME_EXTEND;
256 event = skip_time_extend(event);
257 }
258 return len + rb_event_length(event);
259 }
260
261 /**
262 * ring_buffer_event_length - return the length of the event
263 * @event: the event to get the length of
264 *
265 * Returns the size of the data load of a data event.
266 * If the event is something other than a data event, it
267 * returns the size of the event itself. With the exception
268 * of a TIME EXTEND, where it still returns the size of the
269 * data load of the data event after it.
270 */
ring_buffer_event_length(struct ring_buffer_event * event)271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 unsigned length;
274
275 if (extended_time(event))
276 event = skip_time_extend(event);
277
278 length = rb_event_length(event);
279 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 return length;
281 length -= RB_EVNT_HDR_SIZE;
282 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283 length -= sizeof(event->array[0]);
284 return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)290 rb_event_data(struct ring_buffer_event *event)
291 {
292 if (extended_time(event))
293 event = skip_time_extend(event);
294 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 /* If length is in len field, then array[0] has the data */
296 if (event->type_len)
297 return (void *)&event->array[0];
298 /* Otherwise length is in array[0] and array[1] has the data */
299 return (void *)&event->array[1];
300 }
301
302 /**
303 * ring_buffer_event_data - return the data of the event
304 * @event: the event to get the data from
305 */
ring_buffer_event_data(struct ring_buffer_event * event)306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311
312 #define for_each_buffer_cpu(buffer, cpu) \
313 for_each_cpu(cpu, buffer->cpumask)
314
315 #define for_each_online_buffer_cpu(buffer, cpu) \
316 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
321
rb_event_time_stamp(struct ring_buffer_event * event)322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 u64 ts;
325
326 ts = event->array[0];
327 ts <<= TS_SHIFT;
328 ts += event->time_delta;
329
330 return ts;
331 }
332
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS (1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED (1 << 30)
337
338 #define RB_MISSED_MASK (3 << 30)
339
340 struct buffer_data_page {
341 u64 time_stamp; /* page time stamp */
342 local_t commit; /* write committed index */
343 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
344 };
345
346 struct buffer_data_read_page {
347 unsigned order; /* order of the page */
348 struct buffer_data_page *data; /* actual data, stored in this page */
349 };
350
351 /*
352 * Note, the buffer_page list must be first. The buffer pages
353 * are allocated in cache lines, which means that each buffer
354 * page will be at the beginning of a cache line, and thus
355 * the least significant bits will be zero. We use this to
356 * add flags in the list struct pointers, to make the ring buffer
357 * lockless.
358 */
359 struct buffer_page {
360 struct list_head list; /* list of buffer pages */
361 local_t write; /* index for next write */
362 unsigned read; /* index for next read */
363 local_t entries; /* entries on this page */
364 unsigned long real_end; /* real end of data */
365 unsigned order; /* order of the page */
366 u32 id:30; /* ID for external mapping */
367 u32 range:1; /* Mapped via a range */
368 struct buffer_data_page *page; /* Actual data page */
369 };
370
371 /*
372 * The buffer page counters, write and entries, must be reset
373 * atomically when crossing page boundaries. To synchronize this
374 * update, two counters are inserted into the number. One is
375 * the actual counter for the write position or count on the page.
376 *
377 * The other is a counter of updaters. Before an update happens
378 * the update partition of the counter is incremented. This will
379 * allow the updater to update the counter atomically.
380 *
381 * The counter is 20 bits, and the state data is 12.
382 */
383 #define RB_WRITE_MASK 0xfffff
384 #define RB_WRITE_INTCNT (1 << 20)
385
rb_init_page(struct buffer_data_page * bpage)386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 local_set(&bpage->commit, 0);
389 }
390
rb_page_commit(struct buffer_page * bpage)391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 return local_read(&bpage->page->commit);
394 }
395
free_buffer_page(struct buffer_page * bpage)396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 /* Range pages are not to be freed */
399 if (!bpage->range)
400 free_pages((unsigned long)bpage->page, bpage->order);
401 kfree(bpage);
402 }
403
404 /*
405 * For best performance, allocate cpu buffer data cache line sized
406 * and per CPU.
407 */
408 #define alloc_cpu_buffer(cpu) (struct ring_buffer_per_cpu *) \
409 kzalloc_node(ALIGN(sizeof(struct ring_buffer_per_cpu), \
410 cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
411
412 #define alloc_cpu_page(cpu) (struct buffer_page *) \
413 kzalloc_node(ALIGN(sizeof(struct buffer_page), \
414 cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
415
alloc_cpu_data(int cpu,int order)416 static struct buffer_data_page *alloc_cpu_data(int cpu, int order)
417 {
418 struct buffer_data_page *dpage;
419 struct page *page;
420 gfp_t mflags;
421
422 /*
423 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
424 * gracefully without invoking oom-killer and the system is not
425 * destabilized.
426 */
427 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_COMP | __GFP_ZERO;
428
429 page = alloc_pages_node(cpu_to_node(cpu), mflags, order);
430 if (!page)
431 return NULL;
432
433 dpage = page_address(page);
434 rb_init_page(dpage);
435
436 return dpage;
437 }
438
439 /*
440 * We need to fit the time_stamp delta into 27 bits.
441 */
test_time_stamp(u64 delta)442 static inline bool test_time_stamp(u64 delta)
443 {
444 return !!(delta & TS_DELTA_TEST);
445 }
446
447 struct rb_irq_work {
448 struct irq_work work;
449 wait_queue_head_t waiters;
450 wait_queue_head_t full_waiters;
451 atomic_t seq;
452 bool waiters_pending;
453 bool full_waiters_pending;
454 bool wakeup_full;
455 };
456
457 /*
458 * Structure to hold event state and handle nested events.
459 */
460 struct rb_event_info {
461 u64 ts;
462 u64 delta;
463 u64 before;
464 u64 after;
465 unsigned long length;
466 struct buffer_page *tail_page;
467 int add_timestamp;
468 };
469
470 /*
471 * Used for the add_timestamp
472 * NONE
473 * EXTEND - wants a time extend
474 * ABSOLUTE - the buffer requests all events to have absolute time stamps
475 * FORCE - force a full time stamp.
476 */
477 enum {
478 RB_ADD_STAMP_NONE = 0,
479 RB_ADD_STAMP_EXTEND = BIT(1),
480 RB_ADD_STAMP_ABSOLUTE = BIT(2),
481 RB_ADD_STAMP_FORCE = BIT(3)
482 };
483 /*
484 * Used for which event context the event is in.
485 * TRANSITION = 0
486 * NMI = 1
487 * IRQ = 2
488 * SOFTIRQ = 3
489 * NORMAL = 4
490 *
491 * See trace_recursive_lock() comment below for more details.
492 */
493 enum {
494 RB_CTX_TRANSITION,
495 RB_CTX_NMI,
496 RB_CTX_IRQ,
497 RB_CTX_SOFTIRQ,
498 RB_CTX_NORMAL,
499 RB_CTX_MAX
500 };
501
502 struct rb_time_struct {
503 local64_t time;
504 };
505 typedef struct rb_time_struct rb_time_t;
506
507 #define MAX_NEST 5
508
509 /*
510 * head_page == tail_page && head == tail then buffer is empty.
511 */
512 struct ring_buffer_per_cpu {
513 int cpu;
514 atomic_t record_disabled;
515 atomic_t resize_disabled;
516 struct trace_buffer *buffer;
517 raw_spinlock_t reader_lock; /* serialize readers */
518 arch_spinlock_t lock;
519 struct lock_class_key lock_key;
520 struct buffer_data_page *free_page;
521 unsigned long nr_pages;
522 unsigned int current_context;
523 struct list_head *pages;
524 /* pages generation counter, incremented when the list changes */
525 unsigned long cnt;
526 struct buffer_page *head_page; /* read from head */
527 struct buffer_page *tail_page; /* write to tail */
528 struct buffer_page *commit_page; /* committed pages */
529 struct buffer_page *reader_page;
530 unsigned long lost_events;
531 unsigned long last_overrun;
532 unsigned long nest;
533 local_t entries_bytes;
534 local_t entries;
535 local_t overrun;
536 local_t commit_overrun;
537 local_t dropped_events;
538 local_t committing;
539 local_t commits;
540 local_t pages_touched;
541 local_t pages_lost;
542 local_t pages_read;
543 long last_pages_touch;
544 size_t shortest_full;
545 unsigned long read;
546 unsigned long read_bytes;
547 rb_time_t write_stamp;
548 rb_time_t before_stamp;
549 u64 event_stamp[MAX_NEST];
550 u64 read_stamp;
551 /* pages removed since last reset */
552 unsigned long pages_removed;
553
554 unsigned int mapped;
555 unsigned int user_mapped; /* user space mapping */
556 struct mutex mapping_lock;
557 unsigned long *subbuf_ids; /* ID to subbuf VA */
558 struct trace_buffer_meta *meta_page;
559 struct ring_buffer_cpu_meta *ring_meta;
560
561 /* ring buffer pages to update, > 0 to add, < 0 to remove */
562 long nr_pages_to_update;
563 struct list_head new_pages; /* new pages to add */
564 struct work_struct update_pages_work;
565 struct completion update_done;
566
567 struct rb_irq_work irq_work;
568 };
569
570 struct trace_buffer {
571 unsigned flags;
572 int cpus;
573 atomic_t record_disabled;
574 atomic_t resizing;
575 cpumask_var_t cpumask;
576
577 struct lock_class_key *reader_lock_key;
578
579 struct mutex mutex;
580
581 struct ring_buffer_per_cpu **buffers;
582
583 struct hlist_node node;
584 u64 (*clock)(void);
585
586 struct rb_irq_work irq_work;
587 bool time_stamp_abs;
588
589 unsigned long range_addr_start;
590 unsigned long range_addr_end;
591
592 struct ring_buffer_meta *meta;
593
594 unsigned int subbuf_size;
595 unsigned int subbuf_order;
596 unsigned int max_data_size;
597 };
598
599 struct ring_buffer_iter {
600 struct ring_buffer_per_cpu *cpu_buffer;
601 unsigned long head;
602 unsigned long next_event;
603 struct buffer_page *head_page;
604 struct buffer_page *cache_reader_page;
605 unsigned long cache_read;
606 unsigned long cache_pages_removed;
607 u64 read_stamp;
608 u64 page_stamp;
609 struct ring_buffer_event *event;
610 size_t event_size;
611 int missed_events;
612 };
613
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)614 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
615 {
616 struct buffer_data_page field;
617
618 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
619 "offset:0;\tsize:%u;\tsigned:%u;\n",
620 (unsigned int)sizeof(field.time_stamp),
621 (unsigned int)is_signed_type(u64));
622
623 trace_seq_printf(s, "\tfield: local_t commit;\t"
624 "offset:%u;\tsize:%u;\tsigned:%u;\n",
625 (unsigned int)offsetof(typeof(field), commit),
626 (unsigned int)sizeof(field.commit),
627 (unsigned int)is_signed_type(long));
628
629 trace_seq_printf(s, "\tfield: int overwrite;\t"
630 "offset:%u;\tsize:%u;\tsigned:%u;\n",
631 (unsigned int)offsetof(typeof(field), commit),
632 1,
633 (unsigned int)is_signed_type(long));
634
635 trace_seq_printf(s, "\tfield: char data;\t"
636 "offset:%u;\tsize:%u;\tsigned:%u;\n",
637 (unsigned int)offsetof(typeof(field), data),
638 (unsigned int)buffer->subbuf_size,
639 (unsigned int)is_signed_type(char));
640
641 return !trace_seq_has_overflowed(s);
642 }
643
rb_time_read(rb_time_t * t,u64 * ret)644 static inline void rb_time_read(rb_time_t *t, u64 *ret)
645 {
646 *ret = local64_read(&t->time);
647 }
rb_time_set(rb_time_t * t,u64 val)648 static void rb_time_set(rb_time_t *t, u64 val)
649 {
650 local64_set(&t->time, val);
651 }
652
653 /*
654 * Enable this to make sure that the event passed to
655 * ring_buffer_event_time_stamp() is not committed and also
656 * is on the buffer that it passed in.
657 */
658 //#define RB_VERIFY_EVENT
659 #ifdef RB_VERIFY_EVENT
660 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)661 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
662 void *event)
663 {
664 struct buffer_page *page = cpu_buffer->commit_page;
665 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
666 struct list_head *next;
667 long commit, write;
668 unsigned long addr = (unsigned long)event;
669 bool done = false;
670 int stop = 0;
671
672 /* Make sure the event exists and is not committed yet */
673 do {
674 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
675 done = true;
676 commit = local_read(&page->page->commit);
677 write = local_read(&page->write);
678 if (addr >= (unsigned long)&page->page->data[commit] &&
679 addr < (unsigned long)&page->page->data[write])
680 return;
681
682 next = rb_list_head(page->list.next);
683 page = list_entry(next, struct buffer_page, list);
684 } while (!done);
685 WARN_ON_ONCE(1);
686 }
687 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)688 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
689 void *event)
690 {
691 }
692 #endif
693
694 /*
695 * The absolute time stamp drops the 5 MSBs and some clocks may
696 * require them. The rb_fix_abs_ts() will take a previous full
697 * time stamp, and add the 5 MSB of that time stamp on to the
698 * saved absolute time stamp. Then they are compared in case of
699 * the unlikely event that the latest time stamp incremented
700 * the 5 MSB.
701 */
rb_fix_abs_ts(u64 abs,u64 save_ts)702 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
703 {
704 if (save_ts & TS_MSB) {
705 abs |= save_ts & TS_MSB;
706 /* Check for overflow */
707 if (unlikely(abs < save_ts))
708 abs += 1ULL << 59;
709 }
710 return abs;
711 }
712
713 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
714
715 /**
716 * ring_buffer_event_time_stamp - return the event's current time stamp
717 * @buffer: The buffer that the event is on
718 * @event: the event to get the time stamp of
719 *
720 * Note, this must be called after @event is reserved, and before it is
721 * committed to the ring buffer. And must be called from the same
722 * context where the event was reserved (normal, softirq, irq, etc).
723 *
724 * Returns the time stamp associated with the current event.
725 * If the event has an extended time stamp, then that is used as
726 * the time stamp to return.
727 * In the highly unlikely case that the event was nested more than
728 * the max nesting, then the write_stamp of the buffer is returned,
729 * otherwise current time is returned, but that really neither of
730 * the last two cases should ever happen.
731 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)732 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
733 struct ring_buffer_event *event)
734 {
735 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
736 unsigned int nest;
737 u64 ts;
738
739 /* If the event includes an absolute time, then just use that */
740 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
741 ts = rb_event_time_stamp(event);
742 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
743 }
744
745 nest = local_read(&cpu_buffer->committing);
746 verify_event(cpu_buffer, event);
747 if (WARN_ON_ONCE(!nest))
748 goto fail;
749
750 /* Read the current saved nesting level time stamp */
751 if (likely(--nest < MAX_NEST))
752 return cpu_buffer->event_stamp[nest];
753
754 /* Shouldn't happen, warn if it does */
755 WARN_ONCE(1, "nest (%d) greater than max", nest);
756
757 fail:
758 rb_time_read(&cpu_buffer->write_stamp, &ts);
759
760 return ts;
761 }
762
763 /**
764 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
765 * @buffer: The ring_buffer to get the number of pages from
766 * @cpu: The cpu of the ring_buffer to get the number of pages from
767 *
768 * Returns the number of pages that have content in the ring buffer.
769 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)770 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
771 {
772 size_t read;
773 size_t lost;
774 size_t cnt;
775
776 read = local_read(&buffer->buffers[cpu]->pages_read);
777 lost = local_read(&buffer->buffers[cpu]->pages_lost);
778 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
779
780 if (WARN_ON_ONCE(cnt < lost))
781 return 0;
782
783 cnt -= lost;
784
785 /* The reader can read an empty page, but not more than that */
786 if (cnt < read) {
787 WARN_ON_ONCE(read > cnt + 1);
788 return 0;
789 }
790
791 return cnt - read;
792 }
793
full_hit(struct trace_buffer * buffer,int cpu,int full)794 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
795 {
796 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
797 size_t nr_pages;
798 size_t dirty;
799
800 nr_pages = cpu_buffer->nr_pages;
801 if (!nr_pages || !full)
802 return true;
803
804 /*
805 * Add one as dirty will never equal nr_pages, as the sub-buffer
806 * that the writer is on is not counted as dirty.
807 * This is needed if "buffer_percent" is set to 100.
808 */
809 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
810
811 return (dirty * 100) >= (full * nr_pages);
812 }
813
814 /*
815 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
816 *
817 * Schedules a delayed work to wake up any task that is blocked on the
818 * ring buffer waiters queue.
819 */
rb_wake_up_waiters(struct irq_work * work)820 static void rb_wake_up_waiters(struct irq_work *work)
821 {
822 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
823
824 /* For waiters waiting for the first wake up */
825 (void)atomic_fetch_inc_release(&rbwork->seq);
826
827 wake_up_all(&rbwork->waiters);
828 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
829 /* Only cpu_buffer sets the above flags */
830 struct ring_buffer_per_cpu *cpu_buffer =
831 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
832
833 /* Called from interrupt context */
834 raw_spin_lock(&cpu_buffer->reader_lock);
835 rbwork->wakeup_full = false;
836 rbwork->full_waiters_pending = false;
837
838 /* Waking up all waiters, they will reset the shortest full */
839 cpu_buffer->shortest_full = 0;
840 raw_spin_unlock(&cpu_buffer->reader_lock);
841
842 wake_up_all(&rbwork->full_waiters);
843 }
844 }
845
846 /**
847 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
848 * @buffer: The ring buffer to wake waiters on
849 * @cpu: The CPU buffer to wake waiters on
850 *
851 * In the case of a file that represents a ring buffer is closing,
852 * it is prudent to wake up any waiters that are on this.
853 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)854 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
855 {
856 struct ring_buffer_per_cpu *cpu_buffer;
857 struct rb_irq_work *rbwork;
858
859 if (!buffer)
860 return;
861
862 if (cpu == RING_BUFFER_ALL_CPUS) {
863
864 /* Wake up individual ones too. One level recursion */
865 for_each_buffer_cpu(buffer, cpu)
866 ring_buffer_wake_waiters(buffer, cpu);
867
868 rbwork = &buffer->irq_work;
869 } else {
870 if (WARN_ON_ONCE(!buffer->buffers))
871 return;
872 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
873 return;
874
875 cpu_buffer = buffer->buffers[cpu];
876 /* The CPU buffer may not have been initialized yet */
877 if (!cpu_buffer)
878 return;
879 rbwork = &cpu_buffer->irq_work;
880 }
881
882 /* This can be called in any context */
883 irq_work_queue(&rbwork->work);
884 }
885
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)886 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
887 {
888 struct ring_buffer_per_cpu *cpu_buffer;
889 bool ret = false;
890
891 /* Reads of all CPUs always waits for any data */
892 if (cpu == RING_BUFFER_ALL_CPUS)
893 return !ring_buffer_empty(buffer);
894
895 cpu_buffer = buffer->buffers[cpu];
896
897 if (!ring_buffer_empty_cpu(buffer, cpu)) {
898 unsigned long flags;
899 bool pagebusy;
900
901 if (!full)
902 return true;
903
904 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
905 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
906 ret = !pagebusy && full_hit(buffer, cpu, full);
907
908 if (!ret && (!cpu_buffer->shortest_full ||
909 cpu_buffer->shortest_full > full)) {
910 cpu_buffer->shortest_full = full;
911 }
912 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
913 }
914 return ret;
915 }
916
917 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)918 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
919 int cpu, int full, ring_buffer_cond_fn cond, void *data)
920 {
921 if (rb_watermark_hit(buffer, cpu, full))
922 return true;
923
924 if (cond(data))
925 return true;
926
927 /*
928 * The events can happen in critical sections where
929 * checking a work queue can cause deadlocks.
930 * After adding a task to the queue, this flag is set
931 * only to notify events to try to wake up the queue
932 * using irq_work.
933 *
934 * We don't clear it even if the buffer is no longer
935 * empty. The flag only causes the next event to run
936 * irq_work to do the work queue wake up. The worse
937 * that can happen if we race with !trace_empty() is that
938 * an event will cause an irq_work to try to wake up
939 * an empty queue.
940 *
941 * There's no reason to protect this flag either, as
942 * the work queue and irq_work logic will do the necessary
943 * synchronization for the wake ups. The only thing
944 * that is necessary is that the wake up happens after
945 * a task has been queued. It's OK for spurious wake ups.
946 */
947 if (full)
948 rbwork->full_waiters_pending = true;
949 else
950 rbwork->waiters_pending = true;
951
952 return false;
953 }
954
955 struct rb_wait_data {
956 struct rb_irq_work *irq_work;
957 int seq;
958 };
959
960 /*
961 * The default wait condition for ring_buffer_wait() is to just to exit the
962 * wait loop the first time it is woken up.
963 */
rb_wait_once(void * data)964 static bool rb_wait_once(void *data)
965 {
966 struct rb_wait_data *rdata = data;
967 struct rb_irq_work *rbwork = rdata->irq_work;
968
969 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
970 }
971
972 /**
973 * ring_buffer_wait - wait for input to the ring buffer
974 * @buffer: buffer to wait on
975 * @cpu: the cpu buffer to wait on
976 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
977 * @cond: condition function to break out of wait (NULL to run once)
978 * @data: the data to pass to @cond.
979 *
980 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981 * as data is added to any of the @buffer's cpu buffers. Otherwise
982 * it will wait for data to be added to a specific cpu buffer.
983 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)984 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
985 ring_buffer_cond_fn cond, void *data)
986 {
987 struct ring_buffer_per_cpu *cpu_buffer;
988 struct wait_queue_head *waitq;
989 struct rb_irq_work *rbwork;
990 struct rb_wait_data rdata;
991 int ret = 0;
992
993 /*
994 * Depending on what the caller is waiting for, either any
995 * data in any cpu buffer, or a specific buffer, put the
996 * caller on the appropriate wait queue.
997 */
998 if (cpu == RING_BUFFER_ALL_CPUS) {
999 rbwork = &buffer->irq_work;
1000 /* Full only makes sense on per cpu reads */
1001 full = 0;
1002 } else {
1003 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1004 return -ENODEV;
1005 cpu_buffer = buffer->buffers[cpu];
1006 rbwork = &cpu_buffer->irq_work;
1007 }
1008
1009 if (full)
1010 waitq = &rbwork->full_waiters;
1011 else
1012 waitq = &rbwork->waiters;
1013
1014 /* Set up to exit loop as soon as it is woken */
1015 if (!cond) {
1016 cond = rb_wait_once;
1017 rdata.irq_work = rbwork;
1018 rdata.seq = atomic_read_acquire(&rbwork->seq);
1019 data = &rdata;
1020 }
1021
1022 ret = wait_event_interruptible((*waitq),
1023 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
1024
1025 return ret;
1026 }
1027
1028 /**
1029 * ring_buffer_poll_wait - poll on buffer input
1030 * @buffer: buffer to wait on
1031 * @cpu: the cpu buffer to wait on
1032 * @filp: the file descriptor
1033 * @poll_table: The poll descriptor
1034 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1035 *
1036 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1037 * as data is added to any of the @buffer's cpu buffers. Otherwise
1038 * it will wait for data to be added to a specific cpu buffer.
1039 *
1040 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1041 * zero otherwise.
1042 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1043 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1044 struct file *filp, poll_table *poll_table, int full)
1045 {
1046 struct ring_buffer_per_cpu *cpu_buffer;
1047 struct rb_irq_work *rbwork;
1048
1049 if (cpu == RING_BUFFER_ALL_CPUS) {
1050 rbwork = &buffer->irq_work;
1051 full = 0;
1052 } else {
1053 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1054 return EPOLLERR;
1055
1056 cpu_buffer = buffer->buffers[cpu];
1057 rbwork = &cpu_buffer->irq_work;
1058 }
1059
1060 if (full) {
1061 poll_wait(filp, &rbwork->full_waiters, poll_table);
1062
1063 if (rb_watermark_hit(buffer, cpu, full))
1064 return EPOLLIN | EPOLLRDNORM;
1065 /*
1066 * Only allow full_waiters_pending update to be seen after
1067 * the shortest_full is set (in rb_watermark_hit). If the
1068 * writer sees the full_waiters_pending flag set, it will
1069 * compare the amount in the ring buffer to shortest_full.
1070 * If the amount in the ring buffer is greater than the
1071 * shortest_full percent, it will call the irq_work handler
1072 * to wake up this list. The irq_handler will reset shortest_full
1073 * back to zero. That's done under the reader_lock, but
1074 * the below smp_mb() makes sure that the update to
1075 * full_waiters_pending doesn't leak up into the above.
1076 */
1077 smp_mb();
1078 rbwork->full_waiters_pending = true;
1079 return 0;
1080 }
1081
1082 poll_wait(filp, &rbwork->waiters, poll_table);
1083 rbwork->waiters_pending = true;
1084
1085 /*
1086 * There's a tight race between setting the waiters_pending and
1087 * checking if the ring buffer is empty. Once the waiters_pending bit
1088 * is set, the next event will wake the task up, but we can get stuck
1089 * if there's only a single event in.
1090 *
1091 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1092 * but adding a memory barrier to all events will cause too much of a
1093 * performance hit in the fast path. We only need a memory barrier when
1094 * the buffer goes from empty to having content. But as this race is
1095 * extremely small, and it's not a problem if another event comes in, we
1096 * will fix it later.
1097 */
1098 smp_mb();
1099
1100 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1101 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1102 return EPOLLIN | EPOLLRDNORM;
1103 return 0;
1104 }
1105
1106 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1107 #define RB_WARN_ON(b, cond) \
1108 ({ \
1109 int _____ret = unlikely(cond); \
1110 if (_____ret) { \
1111 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1112 struct ring_buffer_per_cpu *__b = \
1113 (void *)b; \
1114 atomic_inc(&__b->buffer->record_disabled); \
1115 } else \
1116 atomic_inc(&b->record_disabled); \
1117 WARN_ON(1); \
1118 } \
1119 _____ret; \
1120 })
1121
1122 /* Up this if you want to test the TIME_EXTENTS and normalization */
1123 #define DEBUG_SHIFT 0
1124
rb_time_stamp(struct trace_buffer * buffer)1125 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1126 {
1127 u64 ts;
1128
1129 /* Skip retpolines :-( */
1130 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1131 ts = trace_clock_local();
1132 else
1133 ts = buffer->clock();
1134
1135 /* shift to debug/test normalization and TIME_EXTENTS */
1136 return ts << DEBUG_SHIFT;
1137 }
1138
ring_buffer_time_stamp(struct trace_buffer * buffer)1139 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1140 {
1141 u64 time;
1142
1143 preempt_disable_notrace();
1144 time = rb_time_stamp(buffer);
1145 preempt_enable_notrace();
1146
1147 return time;
1148 }
1149 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1150
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1151 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1152 int cpu, u64 *ts)
1153 {
1154 /* Just stupid testing the normalize function and deltas */
1155 *ts >>= DEBUG_SHIFT;
1156 }
1157 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1158
1159 /*
1160 * Making the ring buffer lockless makes things tricky.
1161 * Although writes only happen on the CPU that they are on,
1162 * and they only need to worry about interrupts. Reads can
1163 * happen on any CPU.
1164 *
1165 * The reader page is always off the ring buffer, but when the
1166 * reader finishes with a page, it needs to swap its page with
1167 * a new one from the buffer. The reader needs to take from
1168 * the head (writes go to the tail). But if a writer is in overwrite
1169 * mode and wraps, it must push the head page forward.
1170 *
1171 * Here lies the problem.
1172 *
1173 * The reader must be careful to replace only the head page, and
1174 * not another one. As described at the top of the file in the
1175 * ASCII art, the reader sets its old page to point to the next
1176 * page after head. It then sets the page after head to point to
1177 * the old reader page. But if the writer moves the head page
1178 * during this operation, the reader could end up with the tail.
1179 *
1180 * We use cmpxchg to help prevent this race. We also do something
1181 * special with the page before head. We set the LSB to 1.
1182 *
1183 * When the writer must push the page forward, it will clear the
1184 * bit that points to the head page, move the head, and then set
1185 * the bit that points to the new head page.
1186 *
1187 * We also don't want an interrupt coming in and moving the head
1188 * page on another writer. Thus we use the second LSB to catch
1189 * that too. Thus:
1190 *
1191 * head->list->prev->next bit 1 bit 0
1192 * ------- -------
1193 * Normal page 0 0
1194 * Points to head page 0 1
1195 * New head page 1 0
1196 *
1197 * Note we can not trust the prev pointer of the head page, because:
1198 *
1199 * +----+ +-----+ +-----+
1200 * | |------>| T |---X--->| N |
1201 * | |<------| | | |
1202 * +----+ +-----+ +-----+
1203 * ^ ^ |
1204 * | +-----+ | |
1205 * +----------| R |----------+ |
1206 * | |<-----------+
1207 * +-----+
1208 *
1209 * Key: ---X--> HEAD flag set in pointer
1210 * T Tail page
1211 * R Reader page
1212 * N Next page
1213 *
1214 * (see __rb_reserve_next() to see where this happens)
1215 *
1216 * What the above shows is that the reader just swapped out
1217 * the reader page with a page in the buffer, but before it
1218 * could make the new header point back to the new page added
1219 * it was preempted by a writer. The writer moved forward onto
1220 * the new page added by the reader and is about to move forward
1221 * again.
1222 *
1223 * You can see, it is legitimate for the previous pointer of
1224 * the head (or any page) not to point back to itself. But only
1225 * temporarily.
1226 */
1227
1228 #define RB_PAGE_NORMAL 0UL
1229 #define RB_PAGE_HEAD 1UL
1230 #define RB_PAGE_UPDATE 2UL
1231
1232
1233 #define RB_FLAG_MASK 3UL
1234
1235 /* PAGE_MOVED is not part of the mask */
1236 #define RB_PAGE_MOVED 4UL
1237
1238 /*
1239 * rb_list_head - remove any bit
1240 */
rb_list_head(struct list_head * list)1241 static struct list_head *rb_list_head(struct list_head *list)
1242 {
1243 unsigned long val = (unsigned long)list;
1244
1245 return (struct list_head *)(val & ~RB_FLAG_MASK);
1246 }
1247
1248 /*
1249 * rb_is_head_page - test if the given page is the head page
1250 *
1251 * Because the reader may move the head_page pointer, we can
1252 * not trust what the head page is (it may be pointing to
1253 * the reader page). But if the next page is a header page,
1254 * its flags will be non zero.
1255 */
1256 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1257 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1258 {
1259 unsigned long val;
1260
1261 val = (unsigned long)list->next;
1262
1263 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1264 return RB_PAGE_MOVED;
1265
1266 return val & RB_FLAG_MASK;
1267 }
1268
1269 /*
1270 * rb_is_reader_page
1271 *
1272 * The unique thing about the reader page, is that, if the
1273 * writer is ever on it, the previous pointer never points
1274 * back to the reader page.
1275 */
rb_is_reader_page(struct buffer_page * page)1276 static bool rb_is_reader_page(struct buffer_page *page)
1277 {
1278 struct list_head *list = page->list.prev;
1279
1280 return rb_list_head(list->next) != &page->list;
1281 }
1282
1283 /*
1284 * rb_set_list_to_head - set a list_head to be pointing to head.
1285 */
rb_set_list_to_head(struct list_head * list)1286 static void rb_set_list_to_head(struct list_head *list)
1287 {
1288 unsigned long *ptr;
1289
1290 ptr = (unsigned long *)&list->next;
1291 *ptr |= RB_PAGE_HEAD;
1292 *ptr &= ~RB_PAGE_UPDATE;
1293 }
1294
1295 /*
1296 * rb_head_page_activate - sets up head page
1297 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1298 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1299 {
1300 struct buffer_page *head;
1301
1302 head = cpu_buffer->head_page;
1303 if (!head)
1304 return;
1305
1306 /*
1307 * Set the previous list pointer to have the HEAD flag.
1308 */
1309 rb_set_list_to_head(head->list.prev);
1310
1311 if (cpu_buffer->ring_meta) {
1312 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1313 meta->head_buffer = (unsigned long)head->page;
1314 }
1315 }
1316
rb_list_head_clear(struct list_head * list)1317 static void rb_list_head_clear(struct list_head *list)
1318 {
1319 unsigned long *ptr = (unsigned long *)&list->next;
1320
1321 *ptr &= ~RB_FLAG_MASK;
1322 }
1323
1324 /*
1325 * rb_head_page_deactivate - clears head page ptr (for free list)
1326 */
1327 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1328 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1329 {
1330 struct list_head *hd;
1331
1332 /* Go through the whole list and clear any pointers found. */
1333 rb_list_head_clear(cpu_buffer->pages);
1334
1335 list_for_each(hd, cpu_buffer->pages)
1336 rb_list_head_clear(hd);
1337 }
1338
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1339 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1340 struct buffer_page *head,
1341 struct buffer_page *prev,
1342 int old_flag, int new_flag)
1343 {
1344 struct list_head *list;
1345 unsigned long val = (unsigned long)&head->list;
1346 unsigned long ret;
1347
1348 list = &prev->list;
1349
1350 val &= ~RB_FLAG_MASK;
1351
1352 ret = cmpxchg((unsigned long *)&list->next,
1353 val | old_flag, val | new_flag);
1354
1355 /* check if the reader took the page */
1356 if ((ret & ~RB_FLAG_MASK) != val)
1357 return RB_PAGE_MOVED;
1358
1359 return ret & RB_FLAG_MASK;
1360 }
1361
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1362 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1363 struct buffer_page *head,
1364 struct buffer_page *prev,
1365 int old_flag)
1366 {
1367 return rb_head_page_set(cpu_buffer, head, prev,
1368 old_flag, RB_PAGE_UPDATE);
1369 }
1370
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1371 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1372 struct buffer_page *head,
1373 struct buffer_page *prev,
1374 int old_flag)
1375 {
1376 return rb_head_page_set(cpu_buffer, head, prev,
1377 old_flag, RB_PAGE_HEAD);
1378 }
1379
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1380 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1381 struct buffer_page *head,
1382 struct buffer_page *prev,
1383 int old_flag)
1384 {
1385 return rb_head_page_set(cpu_buffer, head, prev,
1386 old_flag, RB_PAGE_NORMAL);
1387 }
1388
rb_inc_page(struct buffer_page ** bpage)1389 static inline void rb_inc_page(struct buffer_page **bpage)
1390 {
1391 struct list_head *p = rb_list_head((*bpage)->list.next);
1392
1393 *bpage = list_entry(p, struct buffer_page, list);
1394 }
1395
rb_dec_page(struct buffer_page ** bpage)1396 static inline void rb_dec_page(struct buffer_page **bpage)
1397 {
1398 struct list_head *p = rb_list_head((*bpage)->list.prev);
1399
1400 *bpage = list_entry(p, struct buffer_page, list);
1401 }
1402
1403 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1404 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1405 {
1406 struct buffer_page *head;
1407 struct buffer_page *page;
1408 struct list_head *list;
1409 int i;
1410
1411 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1412 return NULL;
1413
1414 /* sanity check */
1415 list = cpu_buffer->pages;
1416 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1417 return NULL;
1418
1419 page = head = cpu_buffer->head_page;
1420 /*
1421 * It is possible that the writer moves the header behind
1422 * where we started, and we miss in one loop.
1423 * A second loop should grab the header, but we'll do
1424 * three loops just because I'm paranoid.
1425 */
1426 for (i = 0; i < 3; i++) {
1427 do {
1428 if (rb_is_head_page(page, page->list.prev)) {
1429 cpu_buffer->head_page = page;
1430 return page;
1431 }
1432 rb_inc_page(&page);
1433 } while (page != head);
1434 }
1435
1436 RB_WARN_ON(cpu_buffer, 1);
1437
1438 return NULL;
1439 }
1440
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1441 static bool rb_head_page_replace(struct buffer_page *old,
1442 struct buffer_page *new)
1443 {
1444 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1445 unsigned long val;
1446
1447 val = *ptr & ~RB_FLAG_MASK;
1448 val |= RB_PAGE_HEAD;
1449
1450 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1451 }
1452
1453 /*
1454 * rb_tail_page_update - move the tail page forward
1455 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1456 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1457 struct buffer_page *tail_page,
1458 struct buffer_page *next_page)
1459 {
1460 unsigned long old_entries;
1461 unsigned long old_write;
1462
1463 /*
1464 * The tail page now needs to be moved forward.
1465 *
1466 * We need to reset the tail page, but without messing
1467 * with possible erasing of data brought in by interrupts
1468 * that have moved the tail page and are currently on it.
1469 *
1470 * We add a counter to the write field to denote this.
1471 */
1472 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1473 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1474
1475 /*
1476 * Just make sure we have seen our old_write and synchronize
1477 * with any interrupts that come in.
1478 */
1479 barrier();
1480
1481 /*
1482 * If the tail page is still the same as what we think
1483 * it is, then it is up to us to update the tail
1484 * pointer.
1485 */
1486 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1487 /* Zero the write counter */
1488 unsigned long val = old_write & ~RB_WRITE_MASK;
1489 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1490
1491 /*
1492 * This will only succeed if an interrupt did
1493 * not come in and change it. In which case, we
1494 * do not want to modify it.
1495 *
1496 * We add (void) to let the compiler know that we do not care
1497 * about the return value of these functions. We use the
1498 * cmpxchg to only update if an interrupt did not already
1499 * do it for us. If the cmpxchg fails, we don't care.
1500 */
1501 (void)local_cmpxchg(&next_page->write, old_write, val);
1502 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1503
1504 /*
1505 * No need to worry about races with clearing out the commit.
1506 * it only can increment when a commit takes place. But that
1507 * only happens in the outer most nested commit.
1508 */
1509 local_set(&next_page->page->commit, 0);
1510
1511 /* Either we update tail_page or an interrupt does */
1512 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1513 local_inc(&cpu_buffer->pages_touched);
1514 }
1515 }
1516
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1517 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1518 struct buffer_page *bpage)
1519 {
1520 unsigned long val = (unsigned long)bpage;
1521
1522 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1523 }
1524
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1525 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1526 struct list_head *list)
1527 {
1528 if (RB_WARN_ON(cpu_buffer,
1529 rb_list_head(rb_list_head(list->next)->prev) != list))
1530 return false;
1531
1532 if (RB_WARN_ON(cpu_buffer,
1533 rb_list_head(rb_list_head(list->prev)->next) != list))
1534 return false;
1535
1536 return true;
1537 }
1538
1539 /**
1540 * rb_check_pages - integrity check of buffer pages
1541 * @cpu_buffer: CPU buffer with pages to test
1542 *
1543 * As a safety measure we check to make sure the data pages have not
1544 * been corrupted.
1545 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1546 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1547 {
1548 struct list_head *head, *tmp;
1549 unsigned long buffer_cnt;
1550 unsigned long flags;
1551 int nr_loops = 0;
1552
1553 /*
1554 * Walk the linked list underpinning the ring buffer and validate all
1555 * its next and prev links.
1556 *
1557 * The check acquires the reader_lock to avoid concurrent processing
1558 * with code that could be modifying the list. However, the lock cannot
1559 * be held for the entire duration of the walk, as this would make the
1560 * time when interrupts are disabled non-deterministic, dependent on the
1561 * ring buffer size. Therefore, the code releases and re-acquires the
1562 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1563 * is then used to detect if the list was modified while the lock was
1564 * not held, in which case the check needs to be restarted.
1565 *
1566 * The code attempts to perform the check at most three times before
1567 * giving up. This is acceptable because this is only a self-validation
1568 * to detect problems early on. In practice, the list modification
1569 * operations are fairly spaced, and so this check typically succeeds at
1570 * most on the second try.
1571 */
1572 again:
1573 if (++nr_loops > 3)
1574 return;
1575
1576 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1577 head = rb_list_head(cpu_buffer->pages);
1578 if (!rb_check_links(cpu_buffer, head))
1579 goto out_locked;
1580 buffer_cnt = cpu_buffer->cnt;
1581 tmp = head;
1582 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1583
1584 while (true) {
1585 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1586
1587 if (buffer_cnt != cpu_buffer->cnt) {
1588 /* The list was updated, try again. */
1589 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1590 goto again;
1591 }
1592
1593 tmp = rb_list_head(tmp->next);
1594 if (tmp == head)
1595 /* The iteration circled back, all is done. */
1596 goto out_locked;
1597
1598 if (!rb_check_links(cpu_buffer, tmp))
1599 goto out_locked;
1600
1601 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1602 }
1603
1604 out_locked:
1605 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1606 }
1607
1608 /*
1609 * Take an address, add the meta data size as well as the array of
1610 * array subbuffer indexes, then align it to a subbuffer size.
1611 *
1612 * This is used to help find the next per cpu subbuffer within a mapped range.
1613 */
1614 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1615 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1616 {
1617 addr += sizeof(struct ring_buffer_cpu_meta) +
1618 sizeof(int) * nr_subbufs;
1619 return ALIGN(addr, subbuf_size);
1620 }
1621
1622 /*
1623 * Return the ring_buffer_meta for a given @cpu.
1624 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1625 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1626 {
1627 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1628 struct ring_buffer_cpu_meta *meta;
1629 struct ring_buffer_meta *bmeta;
1630 unsigned long ptr;
1631 int nr_subbufs;
1632
1633 bmeta = buffer->meta;
1634 if (!bmeta)
1635 return NULL;
1636
1637 ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1638 meta = (struct ring_buffer_cpu_meta *)ptr;
1639
1640 /* When nr_pages passed in is zero, the first meta has already been initialized */
1641 if (!nr_pages) {
1642 nr_subbufs = meta->nr_subbufs;
1643 } else {
1644 /* Include the reader page */
1645 nr_subbufs = nr_pages + 1;
1646 }
1647
1648 /*
1649 * The first chunk may not be subbuffer aligned, where as
1650 * the rest of the chunks are.
1651 */
1652 if (cpu) {
1653 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1654 ptr += subbuf_size * nr_subbufs;
1655
1656 /* We can use multiplication to find chunks greater than 1 */
1657 if (cpu > 1) {
1658 unsigned long size;
1659 unsigned long p;
1660
1661 /* Save the beginning of this CPU chunk */
1662 p = ptr;
1663 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1664 ptr += subbuf_size * nr_subbufs;
1665
1666 /* Now all chunks after this are the same size */
1667 size = ptr - p;
1668 ptr += size * (cpu - 2);
1669 }
1670 }
1671 return (void *)ptr;
1672 }
1673
1674 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1675 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1676 {
1677 int subbuf_size = meta->subbuf_size;
1678 unsigned long ptr;
1679
1680 ptr = (unsigned long)meta;
1681 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1682
1683 return (void *)ptr;
1684 }
1685
1686 /*
1687 * Return a specific sub-buffer for a given @cpu defined by @idx.
1688 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1689 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1690 {
1691 struct ring_buffer_cpu_meta *meta;
1692 unsigned long ptr;
1693 int subbuf_size;
1694
1695 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1696 if (!meta)
1697 return NULL;
1698
1699 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1700 return NULL;
1701
1702 subbuf_size = meta->subbuf_size;
1703
1704 /* Map this buffer to the order that's in meta->buffers[] */
1705 idx = meta->buffers[idx];
1706
1707 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1708
1709 ptr += subbuf_size * idx;
1710 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1711 return NULL;
1712
1713 return (void *)ptr;
1714 }
1715
1716 /*
1717 * See if the existing memory contains a valid meta section.
1718 * if so, use that, otherwise initialize it.
1719 */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1720 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1721 {
1722 unsigned long ptr = buffer->range_addr_start;
1723 struct ring_buffer_meta *bmeta;
1724 unsigned long total_size;
1725 int struct_sizes;
1726
1727 bmeta = (struct ring_buffer_meta *)ptr;
1728 buffer->meta = bmeta;
1729
1730 total_size = buffer->range_addr_end - buffer->range_addr_start;
1731
1732 struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1733 struct_sizes |= sizeof(*bmeta) << 16;
1734
1735 /* The first buffer will start word size after the meta page */
1736 ptr += sizeof(*bmeta);
1737 ptr = ALIGN(ptr, sizeof(long));
1738 ptr += scratch_size;
1739
1740 if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1741 pr_info("Ring buffer boot meta mismatch of magic\n");
1742 goto init;
1743 }
1744
1745 if (bmeta->struct_sizes != struct_sizes) {
1746 pr_info("Ring buffer boot meta mismatch of struct size\n");
1747 goto init;
1748 }
1749
1750 if (bmeta->total_size != total_size) {
1751 pr_info("Ring buffer boot meta mismatch of total size\n");
1752 goto init;
1753 }
1754
1755 if (bmeta->buffers_offset > bmeta->total_size) {
1756 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1757 goto init;
1758 }
1759
1760 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1761 pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1762 goto init;
1763 }
1764
1765 return true;
1766
1767 init:
1768 bmeta->magic = RING_BUFFER_META_MAGIC;
1769 bmeta->struct_sizes = struct_sizes;
1770 bmeta->total_size = total_size;
1771 bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1772
1773 /* Zero out the scratch pad */
1774 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1775
1776 return false;
1777 }
1778
1779 /*
1780 * See if the existing memory contains valid ring buffer data.
1781 * As the previous kernel must be the same as this kernel, all
1782 * the calculations (size of buffers and number of buffers)
1783 * must be the same.
1784 */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1785 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1786 struct trace_buffer *buffer, int nr_pages,
1787 unsigned long *subbuf_mask)
1788 {
1789 int subbuf_size = PAGE_SIZE;
1790 struct buffer_data_page *subbuf;
1791 unsigned long buffers_start;
1792 unsigned long buffers_end;
1793 int i;
1794
1795 if (!subbuf_mask)
1796 return false;
1797
1798 buffers_start = meta->first_buffer;
1799 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1800
1801 /* Is the head and commit buffers within the range of buffers? */
1802 if (meta->head_buffer < buffers_start ||
1803 meta->head_buffer >= buffers_end) {
1804 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1805 return false;
1806 }
1807
1808 if (meta->commit_buffer < buffers_start ||
1809 meta->commit_buffer >= buffers_end) {
1810 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1811 return false;
1812 }
1813
1814 subbuf = rb_subbufs_from_meta(meta);
1815
1816 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1817
1818 /* Is the meta buffers and the subbufs themselves have correct data? */
1819 for (i = 0; i < meta->nr_subbufs; i++) {
1820 if (meta->buffers[i] < 0 ||
1821 meta->buffers[i] >= meta->nr_subbufs) {
1822 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1823 return false;
1824 }
1825
1826 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1827 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1828 return false;
1829 }
1830
1831 if (test_bit(meta->buffers[i], subbuf_mask)) {
1832 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1833 return false;
1834 }
1835
1836 set_bit(meta->buffers[i], subbuf_mask);
1837 subbuf = (void *)subbuf + subbuf_size;
1838 }
1839
1840 return true;
1841 }
1842
1843 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1844
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1845 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1846 unsigned long long *timestamp, u64 *delta_ptr)
1847 {
1848 struct ring_buffer_event *event;
1849 u64 ts, delta;
1850 int events = 0;
1851 int e;
1852
1853 *delta_ptr = 0;
1854 *timestamp = 0;
1855
1856 ts = dpage->time_stamp;
1857
1858 for (e = 0; e < tail; e += rb_event_length(event)) {
1859
1860 event = (struct ring_buffer_event *)(dpage->data + e);
1861
1862 switch (event->type_len) {
1863
1864 case RINGBUF_TYPE_TIME_EXTEND:
1865 delta = rb_event_time_stamp(event);
1866 ts += delta;
1867 break;
1868
1869 case RINGBUF_TYPE_TIME_STAMP:
1870 delta = rb_event_time_stamp(event);
1871 delta = rb_fix_abs_ts(delta, ts);
1872 if (delta < ts) {
1873 *delta_ptr = delta;
1874 *timestamp = ts;
1875 return -1;
1876 }
1877 ts = delta;
1878 break;
1879
1880 case RINGBUF_TYPE_PADDING:
1881 if (event->time_delta == 1)
1882 break;
1883 fallthrough;
1884 case RINGBUF_TYPE_DATA:
1885 events++;
1886 ts += event->time_delta;
1887 break;
1888
1889 default:
1890 return -1;
1891 }
1892 }
1893 *timestamp = ts;
1894 return events;
1895 }
1896
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1897 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1898 {
1899 unsigned long long ts;
1900 u64 delta;
1901 int tail;
1902
1903 tail = local_read(&dpage->commit);
1904 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1905 }
1906
1907 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1908 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1909 {
1910 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1911 struct buffer_page *head_page, *orig_head;
1912 unsigned long entry_bytes = 0;
1913 unsigned long entries = 0;
1914 int ret;
1915 u64 ts;
1916 int i;
1917
1918 if (!meta || !meta->head_buffer)
1919 return;
1920
1921 /* Do the reader page first */
1922 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1923 if (ret < 0) {
1924 pr_info("Ring buffer reader page is invalid\n");
1925 goto invalid;
1926 }
1927 entries += ret;
1928 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1929 local_set(&cpu_buffer->reader_page->entries, ret);
1930
1931 orig_head = head_page = cpu_buffer->head_page;
1932 ts = head_page->page->time_stamp;
1933
1934 /*
1935 * Try to rewind the head so that we can read the pages which already
1936 * read in the previous boot.
1937 */
1938 if (head_page == cpu_buffer->tail_page)
1939 goto skip_rewind;
1940
1941 rb_dec_page(&head_page);
1942 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_dec_page(&head_page)) {
1943
1944 /* Rewind until tail (writer) page. */
1945 if (head_page == cpu_buffer->tail_page)
1946 break;
1947
1948 /* Ensure the page has older data than head. */
1949 if (ts < head_page->page->time_stamp)
1950 break;
1951
1952 ts = head_page->page->time_stamp;
1953 /* Ensure the page has correct timestamp and some data. */
1954 if (!ts || rb_page_commit(head_page) == 0)
1955 break;
1956
1957 /* Stop rewind if the page is invalid. */
1958 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1959 if (ret < 0)
1960 break;
1961
1962 /* Recover the number of entries and update stats. */
1963 local_set(&head_page->entries, ret);
1964 if (ret)
1965 local_inc(&cpu_buffer->pages_touched);
1966 entries += ret;
1967 entry_bytes += rb_page_commit(head_page);
1968 }
1969 if (i)
1970 pr_info("Ring buffer [%d] rewound %d pages\n", cpu_buffer->cpu, i);
1971
1972 /* The last rewound page must be skipped. */
1973 if (head_page != orig_head)
1974 rb_inc_page(&head_page);
1975
1976 /*
1977 * If the ring buffer was rewound, then inject the reader page
1978 * into the location just before the original head page.
1979 */
1980 if (head_page != orig_head) {
1981 struct buffer_page *bpage = orig_head;
1982
1983 rb_dec_page(&bpage);
1984 /*
1985 * Insert the reader_page before the original head page.
1986 * Since the list encode RB_PAGE flags, general list
1987 * operations should be avoided.
1988 */
1989 cpu_buffer->reader_page->list.next = &orig_head->list;
1990 cpu_buffer->reader_page->list.prev = orig_head->list.prev;
1991 orig_head->list.prev = &cpu_buffer->reader_page->list;
1992 bpage->list.next = &cpu_buffer->reader_page->list;
1993
1994 /* Make the head_page the reader page */
1995 cpu_buffer->reader_page = head_page;
1996 bpage = head_page;
1997 rb_inc_page(&head_page);
1998 head_page->list.prev = bpage->list.prev;
1999 rb_dec_page(&bpage);
2000 bpage->list.next = &head_page->list;
2001 rb_set_list_to_head(&bpage->list);
2002 cpu_buffer->pages = &head_page->list;
2003
2004 cpu_buffer->head_page = head_page;
2005 meta->head_buffer = (unsigned long)head_page->page;
2006
2007 /* Reset all the indexes */
2008 bpage = cpu_buffer->reader_page;
2009 meta->buffers[0] = rb_meta_subbuf_idx(meta, bpage->page);
2010 bpage->id = 0;
2011
2012 for (i = 1, bpage = head_page; i < meta->nr_subbufs;
2013 i++, rb_inc_page(&bpage)) {
2014 meta->buffers[i] = rb_meta_subbuf_idx(meta, bpage->page);
2015 bpage->id = i;
2016 }
2017
2018 /* We'll restart verifying from orig_head */
2019 head_page = orig_head;
2020 }
2021
2022 skip_rewind:
2023 /* If the commit_buffer is the reader page, update the commit page */
2024 if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
2025 cpu_buffer->commit_page = cpu_buffer->reader_page;
2026 /* Nothing more to do, the only page is the reader page */
2027 goto done;
2028 }
2029
2030 /* Iterate until finding the commit page */
2031 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
2032
2033 /* Reader page has already been done */
2034 if (head_page == cpu_buffer->reader_page)
2035 continue;
2036
2037 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
2038 if (ret < 0) {
2039 pr_info("Ring buffer meta [%d] invalid buffer page\n",
2040 cpu_buffer->cpu);
2041 goto invalid;
2042 }
2043
2044 /* If the buffer has content, update pages_touched */
2045 if (ret)
2046 local_inc(&cpu_buffer->pages_touched);
2047
2048 entries += ret;
2049 entry_bytes += local_read(&head_page->page->commit);
2050 local_set(&cpu_buffer->head_page->entries, ret);
2051
2052 if (head_page == cpu_buffer->commit_page)
2053 break;
2054 }
2055
2056 if (head_page != cpu_buffer->commit_page) {
2057 pr_info("Ring buffer meta [%d] commit page not found\n",
2058 cpu_buffer->cpu);
2059 goto invalid;
2060 }
2061 done:
2062 local_set(&cpu_buffer->entries, entries);
2063 local_set(&cpu_buffer->entries_bytes, entry_bytes);
2064
2065 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
2066 return;
2067
2068 invalid:
2069 /* The content of the buffers are invalid, reset the meta data */
2070 meta->head_buffer = 0;
2071 meta->commit_buffer = 0;
2072
2073 /* Reset the reader page */
2074 local_set(&cpu_buffer->reader_page->entries, 0);
2075 local_set(&cpu_buffer->reader_page->page->commit, 0);
2076
2077 /* Reset all the subbuffers */
2078 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
2079 local_set(&head_page->entries, 0);
2080 local_set(&head_page->page->commit, 0);
2081 }
2082 }
2083
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)2084 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
2085 {
2086 struct ring_buffer_cpu_meta *meta;
2087 unsigned long *subbuf_mask;
2088 unsigned long delta;
2089 void *subbuf;
2090 bool valid = false;
2091 int cpu;
2092 int i;
2093
2094 /* Create a mask to test the subbuf array */
2095 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
2096 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
2097
2098 if (rb_meta_init(buffer, scratch_size))
2099 valid = true;
2100
2101 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2102 void *next_meta;
2103
2104 meta = rb_range_meta(buffer, nr_pages, cpu);
2105
2106 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
2107 /* Make the mappings match the current address */
2108 subbuf = rb_subbufs_from_meta(meta);
2109 delta = (unsigned long)subbuf - meta->first_buffer;
2110 meta->first_buffer += delta;
2111 meta->head_buffer += delta;
2112 meta->commit_buffer += delta;
2113 continue;
2114 }
2115
2116 if (cpu < nr_cpu_ids - 1)
2117 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
2118 else
2119 next_meta = (void *)buffer->range_addr_end;
2120
2121 memset(meta, 0, next_meta - (void *)meta);
2122
2123 meta->nr_subbufs = nr_pages + 1;
2124 meta->subbuf_size = PAGE_SIZE;
2125
2126 subbuf = rb_subbufs_from_meta(meta);
2127
2128 meta->first_buffer = (unsigned long)subbuf;
2129
2130 /*
2131 * The buffers[] array holds the order of the sub-buffers
2132 * that are after the meta data. The sub-buffers may
2133 * be swapped out when read and inserted into a different
2134 * location of the ring buffer. Although their addresses
2135 * remain the same, the buffers[] array contains the
2136 * index into the sub-buffers holding their actual order.
2137 */
2138 for (i = 0; i < meta->nr_subbufs; i++) {
2139 meta->buffers[i] = i;
2140 rb_init_page(subbuf);
2141 subbuf += meta->subbuf_size;
2142 }
2143 }
2144 bitmap_free(subbuf_mask);
2145 }
2146
rbm_start(struct seq_file * m,loff_t * pos)2147 static void *rbm_start(struct seq_file *m, loff_t *pos)
2148 {
2149 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2150 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2151 unsigned long val;
2152
2153 if (!meta)
2154 return NULL;
2155
2156 if (*pos > meta->nr_subbufs)
2157 return NULL;
2158
2159 val = *pos;
2160 val++;
2161
2162 return (void *)val;
2163 }
2164
rbm_next(struct seq_file * m,void * v,loff_t * pos)2165 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2166 {
2167 (*pos)++;
2168
2169 return rbm_start(m, pos);
2170 }
2171
rbm_show(struct seq_file * m,void * v)2172 static int rbm_show(struct seq_file *m, void *v)
2173 {
2174 struct ring_buffer_per_cpu *cpu_buffer = m->private;
2175 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2176 unsigned long val = (unsigned long)v;
2177
2178 if (val == 1) {
2179 seq_printf(m, "head_buffer: %d\n",
2180 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2181 seq_printf(m, "commit_buffer: %d\n",
2182 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2183 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
2184 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
2185 return 0;
2186 }
2187
2188 val -= 2;
2189 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
2190
2191 return 0;
2192 }
2193
rbm_stop(struct seq_file * m,void * p)2194 static void rbm_stop(struct seq_file *m, void *p)
2195 {
2196 }
2197
2198 static const struct seq_operations rb_meta_seq_ops = {
2199 .start = rbm_start,
2200 .next = rbm_next,
2201 .show = rbm_show,
2202 .stop = rbm_stop,
2203 };
2204
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2205 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2206 {
2207 struct seq_file *m;
2208 int ret;
2209
2210 ret = seq_open(file, &rb_meta_seq_ops);
2211 if (ret)
2212 return ret;
2213
2214 m = file->private_data;
2215 m->private = buffer->buffers[cpu];
2216
2217 return 0;
2218 }
2219
2220 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2221 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2222 struct buffer_page *bpage)
2223 {
2224 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2225
2226 if (meta->head_buffer == (unsigned long)bpage->page)
2227 cpu_buffer->head_page = bpage;
2228
2229 if (meta->commit_buffer == (unsigned long)bpage->page) {
2230 cpu_buffer->commit_page = bpage;
2231 cpu_buffer->tail_page = bpage;
2232 }
2233 }
2234
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2235 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2236 long nr_pages, struct list_head *pages)
2237 {
2238 struct trace_buffer *buffer = cpu_buffer->buffer;
2239 struct ring_buffer_cpu_meta *meta = NULL;
2240 struct buffer_page *bpage, *tmp;
2241 bool user_thread = current->mm != NULL;
2242 long i;
2243
2244 /*
2245 * Check if the available memory is there first.
2246 * Note, si_mem_available() only gives us a rough estimate of available
2247 * memory. It may not be accurate. But we don't care, we just want
2248 * to prevent doing any allocation when it is obvious that it is
2249 * not going to succeed.
2250 */
2251 i = si_mem_available();
2252 if (i < nr_pages)
2253 return -ENOMEM;
2254
2255 /*
2256 * If a user thread allocates too much, and si_mem_available()
2257 * reports there's enough memory, even though there is not.
2258 * Make sure the OOM killer kills this thread. This can happen
2259 * even with RETRY_MAYFAIL because another task may be doing
2260 * an allocation after this task has taken all memory.
2261 * This is the task the OOM killer needs to take out during this
2262 * loop, even if it was triggered by an allocation somewhere else.
2263 */
2264 if (user_thread)
2265 set_current_oom_origin();
2266
2267 if (buffer->range_addr_start)
2268 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2269
2270 for (i = 0; i < nr_pages; i++) {
2271
2272 bpage = alloc_cpu_page(cpu_buffer->cpu);
2273 if (!bpage)
2274 goto free_pages;
2275
2276 rb_check_bpage(cpu_buffer, bpage);
2277
2278 /*
2279 * Append the pages as for mapped buffers we want to keep
2280 * the order
2281 */
2282 list_add_tail(&bpage->list, pages);
2283
2284 if (meta) {
2285 /* A range was given. Use that for the buffer page */
2286 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2287 if (!bpage->page)
2288 goto free_pages;
2289 /* If this is valid from a previous boot */
2290 if (meta->head_buffer)
2291 rb_meta_buffer_update(cpu_buffer, bpage);
2292 bpage->range = 1;
2293 bpage->id = i + 1;
2294 } else {
2295 int order = cpu_buffer->buffer->subbuf_order;
2296 bpage->page = alloc_cpu_data(cpu_buffer->cpu, order);
2297 if (!bpage->page)
2298 goto free_pages;
2299 }
2300 bpage->order = cpu_buffer->buffer->subbuf_order;
2301
2302 if (user_thread && fatal_signal_pending(current))
2303 goto free_pages;
2304 }
2305 if (user_thread)
2306 clear_current_oom_origin();
2307
2308 return 0;
2309
2310 free_pages:
2311 list_for_each_entry_safe(bpage, tmp, pages, list) {
2312 list_del_init(&bpage->list);
2313 free_buffer_page(bpage);
2314 }
2315 if (user_thread)
2316 clear_current_oom_origin();
2317
2318 return -ENOMEM;
2319 }
2320
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2321 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2322 unsigned long nr_pages)
2323 {
2324 LIST_HEAD(pages);
2325
2326 WARN_ON(!nr_pages);
2327
2328 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2329 return -ENOMEM;
2330
2331 /*
2332 * The ring buffer page list is a circular list that does not
2333 * start and end with a list head. All page list items point to
2334 * other pages.
2335 */
2336 cpu_buffer->pages = pages.next;
2337 list_del(&pages);
2338
2339 cpu_buffer->nr_pages = nr_pages;
2340
2341 rb_check_pages(cpu_buffer);
2342
2343 return 0;
2344 }
2345
2346 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2347 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2348 {
2349 struct ring_buffer_per_cpu *cpu_buffer __free(kfree) =
2350 alloc_cpu_buffer(cpu);
2351 struct ring_buffer_cpu_meta *meta;
2352 struct buffer_page *bpage;
2353 int ret;
2354
2355 if (!cpu_buffer)
2356 return NULL;
2357
2358 cpu_buffer->cpu = cpu;
2359 cpu_buffer->buffer = buffer;
2360 raw_spin_lock_init(&cpu_buffer->reader_lock);
2361 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2362 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2363 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2364 init_completion(&cpu_buffer->update_done);
2365 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2366 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2367 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2368 mutex_init(&cpu_buffer->mapping_lock);
2369
2370 bpage = alloc_cpu_page(cpu);
2371 if (!bpage)
2372 return NULL;
2373
2374 rb_check_bpage(cpu_buffer, bpage);
2375
2376 cpu_buffer->reader_page = bpage;
2377
2378 if (buffer->range_addr_start) {
2379 /*
2380 * Range mapped buffers have the same restrictions as memory
2381 * mapped ones do.
2382 */
2383 cpu_buffer->mapped = 1;
2384 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2385 bpage->page = rb_range_buffer(cpu_buffer, 0);
2386 if (!bpage->page)
2387 goto fail_free_reader;
2388 if (cpu_buffer->ring_meta->head_buffer)
2389 rb_meta_buffer_update(cpu_buffer, bpage);
2390 bpage->range = 1;
2391 } else {
2392 int order = cpu_buffer->buffer->subbuf_order;
2393 bpage->page = alloc_cpu_data(cpu, order);
2394 if (!bpage->page)
2395 goto fail_free_reader;
2396 }
2397
2398 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2399 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2400
2401 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2402 if (ret < 0)
2403 goto fail_free_reader;
2404
2405 rb_meta_validate_events(cpu_buffer);
2406
2407 /* If the boot meta was valid then this has already been updated */
2408 meta = cpu_buffer->ring_meta;
2409 if (!meta || !meta->head_buffer ||
2410 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2411 if (meta && meta->head_buffer &&
2412 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2413 pr_warn("Ring buffer meta buffers not all mapped\n");
2414 if (!cpu_buffer->head_page)
2415 pr_warn(" Missing head_page\n");
2416 if (!cpu_buffer->commit_page)
2417 pr_warn(" Missing commit_page\n");
2418 if (!cpu_buffer->tail_page)
2419 pr_warn(" Missing tail_page\n");
2420 }
2421
2422 cpu_buffer->head_page
2423 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2424 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2425
2426 rb_head_page_activate(cpu_buffer);
2427
2428 if (cpu_buffer->ring_meta)
2429 meta->commit_buffer = meta->head_buffer;
2430 } else {
2431 /* The valid meta buffer still needs to activate the head page */
2432 rb_head_page_activate(cpu_buffer);
2433 }
2434
2435 return_ptr(cpu_buffer);
2436
2437 fail_free_reader:
2438 free_buffer_page(cpu_buffer->reader_page);
2439
2440 return NULL;
2441 }
2442
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2443 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2444 {
2445 struct list_head *head = cpu_buffer->pages;
2446 struct buffer_page *bpage, *tmp;
2447
2448 irq_work_sync(&cpu_buffer->irq_work.work);
2449
2450 free_buffer_page(cpu_buffer->reader_page);
2451
2452 if (head) {
2453 rb_head_page_deactivate(cpu_buffer);
2454
2455 list_for_each_entry_safe(bpage, tmp, head, list) {
2456 list_del_init(&bpage->list);
2457 free_buffer_page(bpage);
2458 }
2459 bpage = list_entry(head, struct buffer_page, list);
2460 free_buffer_page(bpage);
2461 }
2462
2463 free_page((unsigned long)cpu_buffer->free_page);
2464
2465 kfree(cpu_buffer);
2466 }
2467
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2468 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2469 int order, unsigned long start,
2470 unsigned long end,
2471 unsigned long scratch_size,
2472 struct lock_class_key *key)
2473 {
2474 struct trace_buffer *buffer __free(kfree) = NULL;
2475 long nr_pages;
2476 int subbuf_size;
2477 int bsize;
2478 int cpu;
2479 int ret;
2480
2481 /* keep it in its own cache line */
2482 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2483 GFP_KERNEL);
2484 if (!buffer)
2485 return NULL;
2486
2487 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2488 return NULL;
2489
2490 buffer->subbuf_order = order;
2491 subbuf_size = (PAGE_SIZE << order);
2492 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2493
2494 /* Max payload is buffer page size - header (8bytes) */
2495 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2496
2497 buffer->flags = flags;
2498 buffer->clock = trace_clock_local;
2499 buffer->reader_lock_key = key;
2500
2501 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2502 init_waitqueue_head(&buffer->irq_work.waiters);
2503
2504 buffer->cpus = nr_cpu_ids;
2505
2506 bsize = sizeof(void *) * nr_cpu_ids;
2507 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2508 GFP_KERNEL);
2509 if (!buffer->buffers)
2510 goto fail_free_cpumask;
2511
2512 /* If start/end are specified, then that overrides size */
2513 if (start && end) {
2514 unsigned long buffers_start;
2515 unsigned long ptr;
2516 int n;
2517
2518 /* Make sure that start is word aligned */
2519 start = ALIGN(start, sizeof(long));
2520
2521 /* scratch_size needs to be aligned too */
2522 scratch_size = ALIGN(scratch_size, sizeof(long));
2523
2524 /* Subtract the buffer meta data and word aligned */
2525 buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2526 buffers_start = ALIGN(buffers_start, sizeof(long));
2527 buffers_start += scratch_size;
2528
2529 /* Calculate the size for the per CPU data */
2530 size = end - buffers_start;
2531 size = size / nr_cpu_ids;
2532
2533 /*
2534 * The number of sub-buffers (nr_pages) is determined by the
2535 * total size allocated minus the meta data size.
2536 * Then that is divided by the number of per CPU buffers
2537 * needed, plus account for the integer array index that
2538 * will be appended to the meta data.
2539 */
2540 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2541 (subbuf_size + sizeof(int));
2542 /* Need at least two pages plus the reader page */
2543 if (nr_pages < 3)
2544 goto fail_free_buffers;
2545
2546 again:
2547 /* Make sure that the size fits aligned */
2548 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2549 ptr += sizeof(struct ring_buffer_cpu_meta) +
2550 sizeof(int) * nr_pages;
2551 ptr = ALIGN(ptr, subbuf_size);
2552 ptr += subbuf_size * nr_pages;
2553 }
2554 if (ptr > end) {
2555 if (nr_pages <= 3)
2556 goto fail_free_buffers;
2557 nr_pages--;
2558 goto again;
2559 }
2560
2561 /* nr_pages should not count the reader page */
2562 nr_pages--;
2563 buffer->range_addr_start = start;
2564 buffer->range_addr_end = end;
2565
2566 rb_range_meta_init(buffer, nr_pages, scratch_size);
2567 } else {
2568
2569 /* need at least two pages */
2570 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2571 if (nr_pages < 2)
2572 nr_pages = 2;
2573 }
2574
2575 cpu = raw_smp_processor_id();
2576 cpumask_set_cpu(cpu, buffer->cpumask);
2577 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2578 if (!buffer->buffers[cpu])
2579 goto fail_free_buffers;
2580
2581 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2582 if (ret < 0)
2583 goto fail_free_buffers;
2584
2585 mutex_init(&buffer->mutex);
2586
2587 return_ptr(buffer);
2588
2589 fail_free_buffers:
2590 for_each_buffer_cpu(buffer, cpu) {
2591 if (buffer->buffers[cpu])
2592 rb_free_cpu_buffer(buffer->buffers[cpu]);
2593 }
2594 kfree(buffer->buffers);
2595
2596 fail_free_cpumask:
2597 free_cpumask_var(buffer->cpumask);
2598
2599 return NULL;
2600 }
2601
2602 /**
2603 * __ring_buffer_alloc - allocate a new ring_buffer
2604 * @size: the size in bytes per cpu that is needed.
2605 * @flags: attributes to set for the ring buffer.
2606 * @key: ring buffer reader_lock_key.
2607 *
2608 * Currently the only flag that is available is the RB_FL_OVERWRITE
2609 * flag. This flag means that the buffer will overwrite old data
2610 * when the buffer wraps. If this flag is not set, the buffer will
2611 * drop data when the tail hits the head.
2612 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2613 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2614 struct lock_class_key *key)
2615 {
2616 /* Default buffer page size - one system page */
2617 return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2618
2619 }
2620 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2621
2622 /**
2623 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2624 * @size: the size in bytes per cpu that is needed.
2625 * @flags: attributes to set for the ring buffer.
2626 * @order: sub-buffer order
2627 * @start: start of allocated range
2628 * @range_size: size of allocated range
2629 * @scratch_size: size of scratch area (for preallocated memory buffers)
2630 * @key: ring buffer reader_lock_key.
2631 *
2632 * Currently the only flag that is available is the RB_FL_OVERWRITE
2633 * flag. This flag means that the buffer will overwrite old data
2634 * when the buffer wraps. If this flag is not set, the buffer will
2635 * drop data when the tail hits the head.
2636 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2637 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2638 int order, unsigned long start,
2639 unsigned long range_size,
2640 unsigned long scratch_size,
2641 struct lock_class_key *key)
2642 {
2643 return alloc_buffer(size, flags, order, start, start + range_size,
2644 scratch_size, key);
2645 }
2646
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2647 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2648 {
2649 struct ring_buffer_meta *meta;
2650 void *ptr;
2651
2652 if (!buffer || !buffer->meta)
2653 return NULL;
2654
2655 meta = buffer->meta;
2656
2657 ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2658
2659 if (size)
2660 *size = (void *)meta + meta->buffers_offset - ptr;
2661
2662 return ptr;
2663 }
2664
2665 /**
2666 * ring_buffer_free - free a ring buffer.
2667 * @buffer: the buffer to free.
2668 */
2669 void
ring_buffer_free(struct trace_buffer * buffer)2670 ring_buffer_free(struct trace_buffer *buffer)
2671 {
2672 int cpu;
2673
2674 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2675
2676 irq_work_sync(&buffer->irq_work.work);
2677
2678 for_each_buffer_cpu(buffer, cpu)
2679 rb_free_cpu_buffer(buffer->buffers[cpu]);
2680
2681 kfree(buffer->buffers);
2682 free_cpumask_var(buffer->cpumask);
2683
2684 kfree(buffer);
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_free);
2687
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2688 void ring_buffer_set_clock(struct trace_buffer *buffer,
2689 u64 (*clock)(void))
2690 {
2691 buffer->clock = clock;
2692 }
2693
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2694 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2695 {
2696 buffer->time_stamp_abs = abs;
2697 }
2698
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2699 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2700 {
2701 return buffer->time_stamp_abs;
2702 }
2703
rb_page_entries(struct buffer_page * bpage)2704 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2705 {
2706 return local_read(&bpage->entries) & RB_WRITE_MASK;
2707 }
2708
rb_page_write(struct buffer_page * bpage)2709 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2710 {
2711 return local_read(&bpage->write) & RB_WRITE_MASK;
2712 }
2713
2714 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2715 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2716 {
2717 struct list_head *tail_page, *to_remove, *next_page;
2718 struct buffer_page *to_remove_page, *tmp_iter_page;
2719 struct buffer_page *last_page, *first_page;
2720 unsigned long nr_removed;
2721 unsigned long head_bit;
2722 int page_entries;
2723
2724 head_bit = 0;
2725
2726 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2727 atomic_inc(&cpu_buffer->record_disabled);
2728 /*
2729 * We don't race with the readers since we have acquired the reader
2730 * lock. We also don't race with writers after disabling recording.
2731 * This makes it easy to figure out the first and the last page to be
2732 * removed from the list. We unlink all the pages in between including
2733 * the first and last pages. This is done in a busy loop so that we
2734 * lose the least number of traces.
2735 * The pages are freed after we restart recording and unlock readers.
2736 */
2737 tail_page = &cpu_buffer->tail_page->list;
2738
2739 /*
2740 * tail page might be on reader page, we remove the next page
2741 * from the ring buffer
2742 */
2743 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2744 tail_page = rb_list_head(tail_page->next);
2745 to_remove = tail_page;
2746
2747 /* start of pages to remove */
2748 first_page = list_entry(rb_list_head(to_remove->next),
2749 struct buffer_page, list);
2750
2751 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2752 to_remove = rb_list_head(to_remove)->next;
2753 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2754 }
2755 /* Read iterators need to reset themselves when some pages removed */
2756 cpu_buffer->pages_removed += nr_removed;
2757
2758 next_page = rb_list_head(to_remove)->next;
2759
2760 /*
2761 * Now we remove all pages between tail_page and next_page.
2762 * Make sure that we have head_bit value preserved for the
2763 * next page
2764 */
2765 tail_page->next = (struct list_head *)((unsigned long)next_page |
2766 head_bit);
2767 next_page = rb_list_head(next_page);
2768 next_page->prev = tail_page;
2769
2770 /* make sure pages points to a valid page in the ring buffer */
2771 cpu_buffer->pages = next_page;
2772 cpu_buffer->cnt++;
2773
2774 /* update head page */
2775 if (head_bit)
2776 cpu_buffer->head_page = list_entry(next_page,
2777 struct buffer_page, list);
2778
2779 /* pages are removed, resume tracing and then free the pages */
2780 atomic_dec(&cpu_buffer->record_disabled);
2781 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2782
2783 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2784
2785 /* last buffer page to remove */
2786 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2787 list);
2788 tmp_iter_page = first_page;
2789
2790 do {
2791 cond_resched();
2792
2793 to_remove_page = tmp_iter_page;
2794 rb_inc_page(&tmp_iter_page);
2795
2796 /* update the counters */
2797 page_entries = rb_page_entries(to_remove_page);
2798 if (page_entries) {
2799 /*
2800 * If something was added to this page, it was full
2801 * since it is not the tail page. So we deduct the
2802 * bytes consumed in ring buffer from here.
2803 * Increment overrun to account for the lost events.
2804 */
2805 local_add(page_entries, &cpu_buffer->overrun);
2806 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2807 local_inc(&cpu_buffer->pages_lost);
2808 }
2809
2810 /*
2811 * We have already removed references to this list item, just
2812 * free up the buffer_page and its page
2813 */
2814 free_buffer_page(to_remove_page);
2815 nr_removed--;
2816
2817 } while (to_remove_page != last_page);
2818
2819 RB_WARN_ON(cpu_buffer, nr_removed);
2820
2821 return nr_removed == 0;
2822 }
2823
2824 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2825 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2826 {
2827 struct list_head *pages = &cpu_buffer->new_pages;
2828 unsigned long flags;
2829 bool success;
2830 int retries;
2831
2832 /* Can be called at early boot up, where interrupts must not been enabled */
2833 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2834 /*
2835 * We are holding the reader lock, so the reader page won't be swapped
2836 * in the ring buffer. Now we are racing with the writer trying to
2837 * move head page and the tail page.
2838 * We are going to adapt the reader page update process where:
2839 * 1. We first splice the start and end of list of new pages between
2840 * the head page and its previous page.
2841 * 2. We cmpxchg the prev_page->next to point from head page to the
2842 * start of new pages list.
2843 * 3. Finally, we update the head->prev to the end of new list.
2844 *
2845 * We will try this process 10 times, to make sure that we don't keep
2846 * spinning.
2847 */
2848 retries = 10;
2849 success = false;
2850 while (retries--) {
2851 struct list_head *head_page, *prev_page;
2852 struct list_head *last_page, *first_page;
2853 struct list_head *head_page_with_bit;
2854 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2855
2856 if (!hpage)
2857 break;
2858 head_page = &hpage->list;
2859 prev_page = head_page->prev;
2860
2861 first_page = pages->next;
2862 last_page = pages->prev;
2863
2864 head_page_with_bit = (struct list_head *)
2865 ((unsigned long)head_page | RB_PAGE_HEAD);
2866
2867 last_page->next = head_page_with_bit;
2868 first_page->prev = prev_page;
2869
2870 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2871 if (try_cmpxchg(&prev_page->next,
2872 &head_page_with_bit, first_page)) {
2873 /*
2874 * yay, we replaced the page pointer to our new list,
2875 * now, we just have to update to head page's prev
2876 * pointer to point to end of list
2877 */
2878 head_page->prev = last_page;
2879 cpu_buffer->cnt++;
2880 success = true;
2881 break;
2882 }
2883 }
2884
2885 if (success)
2886 INIT_LIST_HEAD(pages);
2887 /*
2888 * If we weren't successful in adding in new pages, warn and stop
2889 * tracing
2890 */
2891 RB_WARN_ON(cpu_buffer, !success);
2892 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2893
2894 /* free pages if they weren't inserted */
2895 if (!success) {
2896 struct buffer_page *bpage, *tmp;
2897 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2898 list) {
2899 list_del_init(&bpage->list);
2900 free_buffer_page(bpage);
2901 }
2902 }
2903 return success;
2904 }
2905
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2906 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2907 {
2908 bool success;
2909
2910 if (cpu_buffer->nr_pages_to_update > 0)
2911 success = rb_insert_pages(cpu_buffer);
2912 else
2913 success = rb_remove_pages(cpu_buffer,
2914 -cpu_buffer->nr_pages_to_update);
2915
2916 if (success)
2917 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2918 }
2919
update_pages_handler(struct work_struct * work)2920 static void update_pages_handler(struct work_struct *work)
2921 {
2922 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2923 struct ring_buffer_per_cpu, update_pages_work);
2924 rb_update_pages(cpu_buffer);
2925 complete(&cpu_buffer->update_done);
2926 }
2927
2928 /**
2929 * ring_buffer_resize - resize the ring buffer
2930 * @buffer: the buffer to resize.
2931 * @size: the new size.
2932 * @cpu_id: the cpu buffer to resize
2933 *
2934 * Minimum size is 2 * buffer->subbuf_size.
2935 *
2936 * Returns 0 on success and < 0 on failure.
2937 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2938 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2939 int cpu_id)
2940 {
2941 struct ring_buffer_per_cpu *cpu_buffer;
2942 unsigned long nr_pages;
2943 int cpu, err;
2944
2945 /*
2946 * Always succeed at resizing a non-existent buffer:
2947 */
2948 if (!buffer)
2949 return 0;
2950
2951 /* Make sure the requested buffer exists */
2952 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2953 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2954 return 0;
2955
2956 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2957
2958 /* we need a minimum of two pages */
2959 if (nr_pages < 2)
2960 nr_pages = 2;
2961
2962 /*
2963 * Keep CPUs from coming online while resizing to synchronize
2964 * with new per CPU buffers being created.
2965 */
2966 guard(cpus_read_lock)();
2967
2968 /* prevent another thread from changing buffer sizes */
2969 mutex_lock(&buffer->mutex);
2970 atomic_inc(&buffer->resizing);
2971
2972 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2973 /*
2974 * Don't succeed if resizing is disabled, as a reader might be
2975 * manipulating the ring buffer and is expecting a sane state while
2976 * this is true.
2977 */
2978 for_each_buffer_cpu(buffer, cpu) {
2979 cpu_buffer = buffer->buffers[cpu];
2980 if (atomic_read(&cpu_buffer->resize_disabled)) {
2981 err = -EBUSY;
2982 goto out_err_unlock;
2983 }
2984 }
2985
2986 /* calculate the pages to update */
2987 for_each_buffer_cpu(buffer, cpu) {
2988 cpu_buffer = buffer->buffers[cpu];
2989
2990 cpu_buffer->nr_pages_to_update = nr_pages -
2991 cpu_buffer->nr_pages;
2992 /*
2993 * nothing more to do for removing pages or no update
2994 */
2995 if (cpu_buffer->nr_pages_to_update <= 0)
2996 continue;
2997 /*
2998 * to add pages, make sure all new pages can be
2999 * allocated without receiving ENOMEM
3000 */
3001 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3002 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3003 &cpu_buffer->new_pages)) {
3004 /* not enough memory for new pages */
3005 err = -ENOMEM;
3006 goto out_err;
3007 }
3008
3009 cond_resched();
3010 }
3011
3012 /*
3013 * Fire off all the required work handlers
3014 * We can't schedule on offline CPUs, but it's not necessary
3015 * since we can change their buffer sizes without any race.
3016 */
3017 for_each_buffer_cpu(buffer, cpu) {
3018 cpu_buffer = buffer->buffers[cpu];
3019 if (!cpu_buffer->nr_pages_to_update)
3020 continue;
3021
3022 /* Can't run something on an offline CPU. */
3023 if (!cpu_online(cpu)) {
3024 rb_update_pages(cpu_buffer);
3025 cpu_buffer->nr_pages_to_update = 0;
3026 } else {
3027 /* Run directly if possible. */
3028 migrate_disable();
3029 if (cpu != smp_processor_id()) {
3030 migrate_enable();
3031 schedule_work_on(cpu,
3032 &cpu_buffer->update_pages_work);
3033 } else {
3034 update_pages_handler(&cpu_buffer->update_pages_work);
3035 migrate_enable();
3036 }
3037 }
3038 }
3039
3040 /* wait for all the updates to complete */
3041 for_each_buffer_cpu(buffer, cpu) {
3042 cpu_buffer = buffer->buffers[cpu];
3043 if (!cpu_buffer->nr_pages_to_update)
3044 continue;
3045
3046 if (cpu_online(cpu))
3047 wait_for_completion(&cpu_buffer->update_done);
3048 cpu_buffer->nr_pages_to_update = 0;
3049 }
3050
3051 } else {
3052 cpu_buffer = buffer->buffers[cpu_id];
3053
3054 if (nr_pages == cpu_buffer->nr_pages)
3055 goto out;
3056
3057 /*
3058 * Don't succeed if resizing is disabled, as a reader might be
3059 * manipulating the ring buffer and is expecting a sane state while
3060 * this is true.
3061 */
3062 if (atomic_read(&cpu_buffer->resize_disabled)) {
3063 err = -EBUSY;
3064 goto out_err_unlock;
3065 }
3066
3067 cpu_buffer->nr_pages_to_update = nr_pages -
3068 cpu_buffer->nr_pages;
3069
3070 INIT_LIST_HEAD(&cpu_buffer->new_pages);
3071 if (cpu_buffer->nr_pages_to_update > 0 &&
3072 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3073 &cpu_buffer->new_pages)) {
3074 err = -ENOMEM;
3075 goto out_err;
3076 }
3077
3078 /* Can't run something on an offline CPU. */
3079 if (!cpu_online(cpu_id))
3080 rb_update_pages(cpu_buffer);
3081 else {
3082 /* Run directly if possible. */
3083 migrate_disable();
3084 if (cpu_id == smp_processor_id()) {
3085 rb_update_pages(cpu_buffer);
3086 migrate_enable();
3087 } else {
3088 migrate_enable();
3089 schedule_work_on(cpu_id,
3090 &cpu_buffer->update_pages_work);
3091 wait_for_completion(&cpu_buffer->update_done);
3092 }
3093 }
3094
3095 cpu_buffer->nr_pages_to_update = 0;
3096 }
3097
3098 out:
3099 /*
3100 * The ring buffer resize can happen with the ring buffer
3101 * enabled, so that the update disturbs the tracing as little
3102 * as possible. But if the buffer is disabled, we do not need
3103 * to worry about that, and we can take the time to verify
3104 * that the buffer is not corrupt.
3105 */
3106 if (atomic_read(&buffer->record_disabled)) {
3107 atomic_inc(&buffer->record_disabled);
3108 /*
3109 * Even though the buffer was disabled, we must make sure
3110 * that it is truly disabled before calling rb_check_pages.
3111 * There could have been a race between checking
3112 * record_disable and incrementing it.
3113 */
3114 synchronize_rcu();
3115 for_each_buffer_cpu(buffer, cpu) {
3116 cpu_buffer = buffer->buffers[cpu];
3117 rb_check_pages(cpu_buffer);
3118 }
3119 atomic_dec(&buffer->record_disabled);
3120 }
3121
3122 atomic_dec(&buffer->resizing);
3123 mutex_unlock(&buffer->mutex);
3124 return 0;
3125
3126 out_err:
3127 for_each_buffer_cpu(buffer, cpu) {
3128 struct buffer_page *bpage, *tmp;
3129
3130 cpu_buffer = buffer->buffers[cpu];
3131 cpu_buffer->nr_pages_to_update = 0;
3132
3133 if (list_empty(&cpu_buffer->new_pages))
3134 continue;
3135
3136 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3137 list) {
3138 list_del_init(&bpage->list);
3139 free_buffer_page(bpage);
3140
3141 cond_resched();
3142 }
3143 }
3144 out_err_unlock:
3145 atomic_dec(&buffer->resizing);
3146 mutex_unlock(&buffer->mutex);
3147 return err;
3148 }
3149 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3150
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3151 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3152 {
3153 mutex_lock(&buffer->mutex);
3154 if (val)
3155 buffer->flags |= RB_FL_OVERWRITE;
3156 else
3157 buffer->flags &= ~RB_FL_OVERWRITE;
3158 mutex_unlock(&buffer->mutex);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3161
__rb_page_index(struct buffer_page * bpage,unsigned index)3162 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3163 {
3164 return bpage->page->data + index;
3165 }
3166
3167 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3168 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3169 {
3170 return __rb_page_index(cpu_buffer->reader_page,
3171 cpu_buffer->reader_page->read);
3172 }
3173
3174 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3175 rb_iter_head_event(struct ring_buffer_iter *iter)
3176 {
3177 struct ring_buffer_event *event;
3178 struct buffer_page *iter_head_page = iter->head_page;
3179 unsigned long commit;
3180 unsigned length;
3181
3182 if (iter->head != iter->next_event)
3183 return iter->event;
3184
3185 /*
3186 * When the writer goes across pages, it issues a cmpxchg which
3187 * is a mb(), which will synchronize with the rmb here.
3188 * (see rb_tail_page_update() and __rb_reserve_next())
3189 */
3190 commit = rb_page_commit(iter_head_page);
3191 smp_rmb();
3192
3193 /* An event needs to be at least 8 bytes in size */
3194 if (iter->head > commit - 8)
3195 goto reset;
3196
3197 event = __rb_page_index(iter_head_page, iter->head);
3198 length = rb_event_length(event);
3199
3200 /*
3201 * READ_ONCE() doesn't work on functions and we don't want the
3202 * compiler doing any crazy optimizations with length.
3203 */
3204 barrier();
3205
3206 if ((iter->head + length) > commit || length > iter->event_size)
3207 /* Writer corrupted the read? */
3208 goto reset;
3209
3210 memcpy(iter->event, event, length);
3211 /*
3212 * If the page stamp is still the same after this rmb() then the
3213 * event was safely copied without the writer entering the page.
3214 */
3215 smp_rmb();
3216
3217 /* Make sure the page didn't change since we read this */
3218 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3219 commit > rb_page_commit(iter_head_page))
3220 goto reset;
3221
3222 iter->next_event = iter->head + length;
3223 return iter->event;
3224 reset:
3225 /* Reset to the beginning */
3226 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3227 iter->head = 0;
3228 iter->next_event = 0;
3229 iter->missed_events = 1;
3230 return NULL;
3231 }
3232
3233 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3234 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3235 {
3236 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3237 }
3238
3239 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3240 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242 return rb_page_commit(cpu_buffer->commit_page);
3243 }
3244
3245 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3246 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3247 {
3248 unsigned long addr = (unsigned long)event;
3249
3250 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3251
3252 return addr - BUF_PAGE_HDR_SIZE;
3253 }
3254
rb_inc_iter(struct ring_buffer_iter * iter)3255 static void rb_inc_iter(struct ring_buffer_iter *iter)
3256 {
3257 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3258
3259 /*
3260 * The iterator could be on the reader page (it starts there).
3261 * But the head could have moved, since the reader was
3262 * found. Check for this case and assign the iterator
3263 * to the head page instead of next.
3264 */
3265 if (iter->head_page == cpu_buffer->reader_page)
3266 iter->head_page = rb_set_head_page(cpu_buffer);
3267 else
3268 rb_inc_page(&iter->head_page);
3269
3270 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3271 iter->head = 0;
3272 iter->next_event = 0;
3273 }
3274
3275 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3276 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3277 {
3278 void *subbuf_array;
3279
3280 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3281 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3282 return (subbuf - subbuf_array) / meta->subbuf_size;
3283 }
3284
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3285 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3286 struct buffer_page *next_page)
3287 {
3288 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3289 unsigned long old_head = (unsigned long)next_page->page;
3290 unsigned long new_head;
3291
3292 rb_inc_page(&next_page);
3293 new_head = (unsigned long)next_page->page;
3294
3295 /*
3296 * Only move it forward once, if something else came in and
3297 * moved it forward, then we don't want to touch it.
3298 */
3299 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3300 }
3301
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3302 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3303 struct buffer_page *reader)
3304 {
3305 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3306 void *old_reader = cpu_buffer->reader_page->page;
3307 void *new_reader = reader->page;
3308 int id;
3309
3310 id = reader->id;
3311 cpu_buffer->reader_page->id = id;
3312 reader->id = 0;
3313
3314 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3315 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3316
3317 /* The head pointer is the one after the reader */
3318 rb_update_meta_head(cpu_buffer, reader);
3319 }
3320
3321 /*
3322 * rb_handle_head_page - writer hit the head page
3323 *
3324 * Returns: +1 to retry page
3325 * 0 to continue
3326 * -1 on error
3327 */
3328 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3329 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3330 struct buffer_page *tail_page,
3331 struct buffer_page *next_page)
3332 {
3333 struct buffer_page *new_head;
3334 int entries;
3335 int type;
3336 int ret;
3337
3338 entries = rb_page_entries(next_page);
3339
3340 /*
3341 * The hard part is here. We need to move the head
3342 * forward, and protect against both readers on
3343 * other CPUs and writers coming in via interrupts.
3344 */
3345 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3346 RB_PAGE_HEAD);
3347
3348 /*
3349 * type can be one of four:
3350 * NORMAL - an interrupt already moved it for us
3351 * HEAD - we are the first to get here.
3352 * UPDATE - we are the interrupt interrupting
3353 * a current move.
3354 * MOVED - a reader on another CPU moved the next
3355 * pointer to its reader page. Give up
3356 * and try again.
3357 */
3358
3359 switch (type) {
3360 case RB_PAGE_HEAD:
3361 /*
3362 * We changed the head to UPDATE, thus
3363 * it is our responsibility to update
3364 * the counters.
3365 */
3366 local_add(entries, &cpu_buffer->overrun);
3367 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3368 local_inc(&cpu_buffer->pages_lost);
3369
3370 if (cpu_buffer->ring_meta)
3371 rb_update_meta_head(cpu_buffer, next_page);
3372 /*
3373 * The entries will be zeroed out when we move the
3374 * tail page.
3375 */
3376
3377 /* still more to do */
3378 break;
3379
3380 case RB_PAGE_UPDATE:
3381 /*
3382 * This is an interrupt that interrupt the
3383 * previous update. Still more to do.
3384 */
3385 break;
3386 case RB_PAGE_NORMAL:
3387 /*
3388 * An interrupt came in before the update
3389 * and processed this for us.
3390 * Nothing left to do.
3391 */
3392 return 1;
3393 case RB_PAGE_MOVED:
3394 /*
3395 * The reader is on another CPU and just did
3396 * a swap with our next_page.
3397 * Try again.
3398 */
3399 return 1;
3400 default:
3401 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3402 return -1;
3403 }
3404
3405 /*
3406 * Now that we are here, the old head pointer is
3407 * set to UPDATE. This will keep the reader from
3408 * swapping the head page with the reader page.
3409 * The reader (on another CPU) will spin till
3410 * we are finished.
3411 *
3412 * We just need to protect against interrupts
3413 * doing the job. We will set the next pointer
3414 * to HEAD. After that, we set the old pointer
3415 * to NORMAL, but only if it was HEAD before.
3416 * otherwise we are an interrupt, and only
3417 * want the outer most commit to reset it.
3418 */
3419 new_head = next_page;
3420 rb_inc_page(&new_head);
3421
3422 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3423 RB_PAGE_NORMAL);
3424
3425 /*
3426 * Valid returns are:
3427 * HEAD - an interrupt came in and already set it.
3428 * NORMAL - One of two things:
3429 * 1) We really set it.
3430 * 2) A bunch of interrupts came in and moved
3431 * the page forward again.
3432 */
3433 switch (ret) {
3434 case RB_PAGE_HEAD:
3435 case RB_PAGE_NORMAL:
3436 /* OK */
3437 break;
3438 default:
3439 RB_WARN_ON(cpu_buffer, 1);
3440 return -1;
3441 }
3442
3443 /*
3444 * It is possible that an interrupt came in,
3445 * set the head up, then more interrupts came in
3446 * and moved it again. When we get back here,
3447 * the page would have been set to NORMAL but we
3448 * just set it back to HEAD.
3449 *
3450 * How do you detect this? Well, if that happened
3451 * the tail page would have moved.
3452 */
3453 if (ret == RB_PAGE_NORMAL) {
3454 struct buffer_page *buffer_tail_page;
3455
3456 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3457 /*
3458 * If the tail had moved passed next, then we need
3459 * to reset the pointer.
3460 */
3461 if (buffer_tail_page != tail_page &&
3462 buffer_tail_page != next_page)
3463 rb_head_page_set_normal(cpu_buffer, new_head,
3464 next_page,
3465 RB_PAGE_HEAD);
3466 }
3467
3468 /*
3469 * If this was the outer most commit (the one that
3470 * changed the original pointer from HEAD to UPDATE),
3471 * then it is up to us to reset it to NORMAL.
3472 */
3473 if (type == RB_PAGE_HEAD) {
3474 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3475 tail_page,
3476 RB_PAGE_UPDATE);
3477 if (RB_WARN_ON(cpu_buffer,
3478 ret != RB_PAGE_UPDATE))
3479 return -1;
3480 }
3481
3482 return 0;
3483 }
3484
3485 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3486 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3487 unsigned long tail, struct rb_event_info *info)
3488 {
3489 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3490 struct buffer_page *tail_page = info->tail_page;
3491 struct ring_buffer_event *event;
3492 unsigned long length = info->length;
3493
3494 /*
3495 * Only the event that crossed the page boundary
3496 * must fill the old tail_page with padding.
3497 */
3498 if (tail >= bsize) {
3499 /*
3500 * If the page was filled, then we still need
3501 * to update the real_end. Reset it to zero
3502 * and the reader will ignore it.
3503 */
3504 if (tail == bsize)
3505 tail_page->real_end = 0;
3506
3507 local_sub(length, &tail_page->write);
3508 return;
3509 }
3510
3511 event = __rb_page_index(tail_page, tail);
3512
3513 /*
3514 * Save the original length to the meta data.
3515 * This will be used by the reader to add lost event
3516 * counter.
3517 */
3518 tail_page->real_end = tail;
3519
3520 /*
3521 * If this event is bigger than the minimum size, then
3522 * we need to be careful that we don't subtract the
3523 * write counter enough to allow another writer to slip
3524 * in on this page.
3525 * We put in a discarded commit instead, to make sure
3526 * that this space is not used again, and this space will
3527 * not be accounted into 'entries_bytes'.
3528 *
3529 * If we are less than the minimum size, we don't need to
3530 * worry about it.
3531 */
3532 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3533 /* No room for any events */
3534
3535 /* Mark the rest of the page with padding */
3536 rb_event_set_padding(event);
3537
3538 /* Make sure the padding is visible before the write update */
3539 smp_wmb();
3540
3541 /* Set the write back to the previous setting */
3542 local_sub(length, &tail_page->write);
3543 return;
3544 }
3545
3546 /* Put in a discarded event */
3547 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3548 event->type_len = RINGBUF_TYPE_PADDING;
3549 /* time delta must be non zero */
3550 event->time_delta = 1;
3551
3552 /* account for padding bytes */
3553 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3554
3555 /* Make sure the padding is visible before the tail_page->write update */
3556 smp_wmb();
3557
3558 /* Set write to end of buffer */
3559 length = (tail + length) - bsize;
3560 local_sub(length, &tail_page->write);
3561 }
3562
3563 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3564
3565 /*
3566 * This is the slow path, force gcc not to inline it.
3567 */
3568 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3569 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3570 unsigned long tail, struct rb_event_info *info)
3571 {
3572 struct buffer_page *tail_page = info->tail_page;
3573 struct buffer_page *commit_page = cpu_buffer->commit_page;
3574 struct trace_buffer *buffer = cpu_buffer->buffer;
3575 struct buffer_page *next_page;
3576 int ret;
3577
3578 next_page = tail_page;
3579
3580 rb_inc_page(&next_page);
3581
3582 /*
3583 * If for some reason, we had an interrupt storm that made
3584 * it all the way around the buffer, bail, and warn
3585 * about it.
3586 */
3587 if (unlikely(next_page == commit_page)) {
3588 local_inc(&cpu_buffer->commit_overrun);
3589 goto out_reset;
3590 }
3591
3592 /*
3593 * This is where the fun begins!
3594 *
3595 * We are fighting against races between a reader that
3596 * could be on another CPU trying to swap its reader
3597 * page with the buffer head.
3598 *
3599 * We are also fighting against interrupts coming in and
3600 * moving the head or tail on us as well.
3601 *
3602 * If the next page is the head page then we have filled
3603 * the buffer, unless the commit page is still on the
3604 * reader page.
3605 */
3606 if (rb_is_head_page(next_page, &tail_page->list)) {
3607
3608 /*
3609 * If the commit is not on the reader page, then
3610 * move the header page.
3611 */
3612 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3613 /*
3614 * If we are not in overwrite mode,
3615 * this is easy, just stop here.
3616 */
3617 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3618 local_inc(&cpu_buffer->dropped_events);
3619 goto out_reset;
3620 }
3621
3622 ret = rb_handle_head_page(cpu_buffer,
3623 tail_page,
3624 next_page);
3625 if (ret < 0)
3626 goto out_reset;
3627 if (ret)
3628 goto out_again;
3629 } else {
3630 /*
3631 * We need to be careful here too. The
3632 * commit page could still be on the reader
3633 * page. We could have a small buffer, and
3634 * have filled up the buffer with events
3635 * from interrupts and such, and wrapped.
3636 *
3637 * Note, if the tail page is also on the
3638 * reader_page, we let it move out.
3639 */
3640 if (unlikely((cpu_buffer->commit_page !=
3641 cpu_buffer->tail_page) &&
3642 (cpu_buffer->commit_page ==
3643 cpu_buffer->reader_page))) {
3644 local_inc(&cpu_buffer->commit_overrun);
3645 goto out_reset;
3646 }
3647 }
3648 }
3649
3650 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3651
3652 out_again:
3653
3654 rb_reset_tail(cpu_buffer, tail, info);
3655
3656 /* Commit what we have for now. */
3657 rb_end_commit(cpu_buffer);
3658 /* rb_end_commit() decs committing */
3659 local_inc(&cpu_buffer->committing);
3660
3661 /* fail and let the caller try again */
3662 return ERR_PTR(-EAGAIN);
3663
3664 out_reset:
3665 /* reset write */
3666 rb_reset_tail(cpu_buffer, tail, info);
3667
3668 return NULL;
3669 }
3670
3671 /* Slow path */
3672 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3673 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3674 struct ring_buffer_event *event, u64 delta, bool abs)
3675 {
3676 if (abs)
3677 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3678 else
3679 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3680
3681 /* Not the first event on the page, or not delta? */
3682 if (abs || rb_event_index(cpu_buffer, event)) {
3683 event->time_delta = delta & TS_MASK;
3684 event->array[0] = delta >> TS_SHIFT;
3685 } else {
3686 /* nope, just zero it */
3687 event->time_delta = 0;
3688 event->array[0] = 0;
3689 }
3690
3691 return skip_time_extend(event);
3692 }
3693
3694 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3695 static inline bool sched_clock_stable(void)
3696 {
3697 return true;
3698 }
3699 #endif
3700
3701 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3702 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3703 struct rb_event_info *info)
3704 {
3705 u64 write_stamp;
3706
3707 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3708 (unsigned long long)info->delta,
3709 (unsigned long long)info->ts,
3710 (unsigned long long)info->before,
3711 (unsigned long long)info->after,
3712 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3713 sched_clock_stable() ? "" :
3714 "If you just came from a suspend/resume,\n"
3715 "please switch to the trace global clock:\n"
3716 " echo global > /sys/kernel/tracing/trace_clock\n"
3717 "or add trace_clock=global to the kernel command line\n");
3718 }
3719
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3720 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3721 struct ring_buffer_event **event,
3722 struct rb_event_info *info,
3723 u64 *delta,
3724 unsigned int *length)
3725 {
3726 bool abs = info->add_timestamp &
3727 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3728
3729 if (unlikely(info->delta > (1ULL << 59))) {
3730 /*
3731 * Some timers can use more than 59 bits, and when a timestamp
3732 * is added to the buffer, it will lose those bits.
3733 */
3734 if (abs && (info->ts & TS_MSB)) {
3735 info->delta &= ABS_TS_MASK;
3736
3737 /* did the clock go backwards */
3738 } else if (info->before == info->after && info->before > info->ts) {
3739 /* not interrupted */
3740 static int once;
3741
3742 /*
3743 * This is possible with a recalibrating of the TSC.
3744 * Do not produce a call stack, but just report it.
3745 */
3746 if (!once) {
3747 once++;
3748 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3749 info->before, info->ts);
3750 }
3751 } else
3752 rb_check_timestamp(cpu_buffer, info);
3753 if (!abs)
3754 info->delta = 0;
3755 }
3756 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3757 *length -= RB_LEN_TIME_EXTEND;
3758 *delta = 0;
3759 }
3760
3761 /**
3762 * rb_update_event - update event type and data
3763 * @cpu_buffer: The per cpu buffer of the @event
3764 * @event: the event to update
3765 * @info: The info to update the @event with (contains length and delta)
3766 *
3767 * Update the type and data fields of the @event. The length
3768 * is the actual size that is written to the ring buffer,
3769 * and with this, we can determine what to place into the
3770 * data field.
3771 */
3772 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3773 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3774 struct ring_buffer_event *event,
3775 struct rb_event_info *info)
3776 {
3777 unsigned length = info->length;
3778 u64 delta = info->delta;
3779 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3780
3781 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3782 cpu_buffer->event_stamp[nest] = info->ts;
3783
3784 /*
3785 * If we need to add a timestamp, then we
3786 * add it to the start of the reserved space.
3787 */
3788 if (unlikely(info->add_timestamp))
3789 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3790
3791 event->time_delta = delta;
3792 length -= RB_EVNT_HDR_SIZE;
3793 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3794 event->type_len = 0;
3795 event->array[0] = length;
3796 } else
3797 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3798 }
3799
rb_calculate_event_length(unsigned length)3800 static unsigned rb_calculate_event_length(unsigned length)
3801 {
3802 struct ring_buffer_event event; /* Used only for sizeof array */
3803
3804 /* zero length can cause confusions */
3805 if (!length)
3806 length++;
3807
3808 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3809 length += sizeof(event.array[0]);
3810
3811 length += RB_EVNT_HDR_SIZE;
3812 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3813
3814 /*
3815 * In case the time delta is larger than the 27 bits for it
3816 * in the header, we need to add a timestamp. If another
3817 * event comes in when trying to discard this one to increase
3818 * the length, then the timestamp will be added in the allocated
3819 * space of this event. If length is bigger than the size needed
3820 * for the TIME_EXTEND, then padding has to be used. The events
3821 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3822 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3823 * As length is a multiple of 4, we only need to worry if it
3824 * is 12 (RB_LEN_TIME_EXTEND + 4).
3825 */
3826 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3827 length += RB_ALIGNMENT;
3828
3829 return length;
3830 }
3831
3832 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3833 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3834 struct ring_buffer_event *event)
3835 {
3836 unsigned long new_index, old_index;
3837 struct buffer_page *bpage;
3838 unsigned long addr;
3839
3840 new_index = rb_event_index(cpu_buffer, event);
3841 old_index = new_index + rb_event_ts_length(event);
3842 addr = (unsigned long)event;
3843 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3844
3845 bpage = READ_ONCE(cpu_buffer->tail_page);
3846
3847 /*
3848 * Make sure the tail_page is still the same and
3849 * the next write location is the end of this event
3850 */
3851 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3852 unsigned long write_mask =
3853 local_read(&bpage->write) & ~RB_WRITE_MASK;
3854 unsigned long event_length = rb_event_length(event);
3855
3856 /*
3857 * For the before_stamp to be different than the write_stamp
3858 * to make sure that the next event adds an absolute
3859 * value and does not rely on the saved write stamp, which
3860 * is now going to be bogus.
3861 *
3862 * By setting the before_stamp to zero, the next event
3863 * is not going to use the write_stamp and will instead
3864 * create an absolute timestamp. This means there's no
3865 * reason to update the wirte_stamp!
3866 */
3867 rb_time_set(&cpu_buffer->before_stamp, 0);
3868
3869 /*
3870 * If an event were to come in now, it would see that the
3871 * write_stamp and the before_stamp are different, and assume
3872 * that this event just added itself before updating
3873 * the write stamp. The interrupting event will fix the
3874 * write stamp for us, and use an absolute timestamp.
3875 */
3876
3877 /*
3878 * This is on the tail page. It is possible that
3879 * a write could come in and move the tail page
3880 * and write to the next page. That is fine
3881 * because we just shorten what is on this page.
3882 */
3883 old_index += write_mask;
3884 new_index += write_mask;
3885
3886 /* caution: old_index gets updated on cmpxchg failure */
3887 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3888 /* update counters */
3889 local_sub(event_length, &cpu_buffer->entries_bytes);
3890 return true;
3891 }
3892 }
3893
3894 /* could not discard */
3895 return false;
3896 }
3897
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3898 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3899 {
3900 local_inc(&cpu_buffer->committing);
3901 local_inc(&cpu_buffer->commits);
3902 }
3903
3904 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3905 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3906 {
3907 unsigned long max_count;
3908
3909 /*
3910 * We only race with interrupts and NMIs on this CPU.
3911 * If we own the commit event, then we can commit
3912 * all others that interrupted us, since the interruptions
3913 * are in stack format (they finish before they come
3914 * back to us). This allows us to do a simple loop to
3915 * assign the commit to the tail.
3916 */
3917 again:
3918 max_count = cpu_buffer->nr_pages * 100;
3919
3920 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3921 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3922 return;
3923 if (RB_WARN_ON(cpu_buffer,
3924 rb_is_reader_page(cpu_buffer->tail_page)))
3925 return;
3926 /*
3927 * No need for a memory barrier here, as the update
3928 * of the tail_page did it for this page.
3929 */
3930 local_set(&cpu_buffer->commit_page->page->commit,
3931 rb_page_write(cpu_buffer->commit_page));
3932 rb_inc_page(&cpu_buffer->commit_page);
3933 if (cpu_buffer->ring_meta) {
3934 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3935 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3936 }
3937 /* add barrier to keep gcc from optimizing too much */
3938 barrier();
3939 }
3940 while (rb_commit_index(cpu_buffer) !=
3941 rb_page_write(cpu_buffer->commit_page)) {
3942
3943 /* Make sure the readers see the content of what is committed. */
3944 smp_wmb();
3945 local_set(&cpu_buffer->commit_page->page->commit,
3946 rb_page_write(cpu_buffer->commit_page));
3947 RB_WARN_ON(cpu_buffer,
3948 local_read(&cpu_buffer->commit_page->page->commit) &
3949 ~RB_WRITE_MASK);
3950 barrier();
3951 }
3952
3953 /* again, keep gcc from optimizing */
3954 barrier();
3955
3956 /*
3957 * If an interrupt came in just after the first while loop
3958 * and pushed the tail page forward, we will be left with
3959 * a dangling commit that will never go forward.
3960 */
3961 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3962 goto again;
3963 }
3964
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3965 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3966 {
3967 unsigned long commits;
3968
3969 if (RB_WARN_ON(cpu_buffer,
3970 !local_read(&cpu_buffer->committing)))
3971 return;
3972
3973 again:
3974 commits = local_read(&cpu_buffer->commits);
3975 /* synchronize with interrupts */
3976 barrier();
3977 if (local_read(&cpu_buffer->committing) == 1)
3978 rb_set_commit_to_write(cpu_buffer);
3979
3980 local_dec(&cpu_buffer->committing);
3981
3982 /* synchronize with interrupts */
3983 barrier();
3984
3985 /*
3986 * Need to account for interrupts coming in between the
3987 * updating of the commit page and the clearing of the
3988 * committing counter.
3989 */
3990 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3991 !local_read(&cpu_buffer->committing)) {
3992 local_inc(&cpu_buffer->committing);
3993 goto again;
3994 }
3995 }
3996
rb_event_discard(struct ring_buffer_event * event)3997 static inline void rb_event_discard(struct ring_buffer_event *event)
3998 {
3999 if (extended_time(event))
4000 event = skip_time_extend(event);
4001
4002 /* array[0] holds the actual length for the discarded event */
4003 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
4004 event->type_len = RINGBUF_TYPE_PADDING;
4005 /* time delta must be non zero */
4006 if (!event->time_delta)
4007 event->time_delta = 1;
4008 }
4009
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)4010 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
4011 {
4012 local_inc(&cpu_buffer->entries);
4013 rb_end_commit(cpu_buffer);
4014 }
4015
4016 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)4017 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
4018 {
4019 if (buffer->irq_work.waiters_pending) {
4020 buffer->irq_work.waiters_pending = false;
4021 /* irq_work_queue() supplies it's own memory barriers */
4022 irq_work_queue(&buffer->irq_work.work);
4023 }
4024
4025 if (cpu_buffer->irq_work.waiters_pending) {
4026 cpu_buffer->irq_work.waiters_pending = false;
4027 /* irq_work_queue() supplies it's own memory barriers */
4028 irq_work_queue(&cpu_buffer->irq_work.work);
4029 }
4030
4031 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
4032 return;
4033
4034 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
4035 return;
4036
4037 if (!cpu_buffer->irq_work.full_waiters_pending)
4038 return;
4039
4040 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
4041
4042 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
4043 return;
4044
4045 cpu_buffer->irq_work.wakeup_full = true;
4046 cpu_buffer->irq_work.full_waiters_pending = false;
4047 /* irq_work_queue() supplies it's own memory barriers */
4048 irq_work_queue(&cpu_buffer->irq_work.work);
4049 }
4050
4051 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
4052 # define do_ring_buffer_record_recursion() \
4053 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
4054 #else
4055 # define do_ring_buffer_record_recursion() do { } while (0)
4056 #endif
4057
4058 /*
4059 * The lock and unlock are done within a preempt disable section.
4060 * The current_context per_cpu variable can only be modified
4061 * by the current task between lock and unlock. But it can
4062 * be modified more than once via an interrupt. To pass this
4063 * information from the lock to the unlock without having to
4064 * access the 'in_interrupt()' functions again (which do show
4065 * a bit of overhead in something as critical as function tracing,
4066 * we use a bitmask trick.
4067 *
4068 * bit 1 = NMI context
4069 * bit 2 = IRQ context
4070 * bit 3 = SoftIRQ context
4071 * bit 4 = normal context.
4072 *
4073 * This works because this is the order of contexts that can
4074 * preempt other contexts. A SoftIRQ never preempts an IRQ
4075 * context.
4076 *
4077 * When the context is determined, the corresponding bit is
4078 * checked and set (if it was set, then a recursion of that context
4079 * happened).
4080 *
4081 * On unlock, we need to clear this bit. To do so, just subtract
4082 * 1 from the current_context and AND it to itself.
4083 *
4084 * (binary)
4085 * 101 - 1 = 100
4086 * 101 & 100 = 100 (clearing bit zero)
4087 *
4088 * 1010 - 1 = 1001
4089 * 1010 & 1001 = 1000 (clearing bit 1)
4090 *
4091 * The least significant bit can be cleared this way, and it
4092 * just so happens that it is the same bit corresponding to
4093 * the current context.
4094 *
4095 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
4096 * is set when a recursion is detected at the current context, and if
4097 * the TRANSITION bit is already set, it will fail the recursion.
4098 * This is needed because there's a lag between the changing of
4099 * interrupt context and updating the preempt count. In this case,
4100 * a false positive will be found. To handle this, one extra recursion
4101 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
4102 * bit is already set, then it is considered a recursion and the function
4103 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
4104 *
4105 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
4106 * to be cleared. Even if it wasn't the context that set it. That is,
4107 * if an interrupt comes in while NORMAL bit is set and the ring buffer
4108 * is called before preempt_count() is updated, since the check will
4109 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4110 * NMI then comes in, it will set the NMI bit, but when the NMI code
4111 * does the trace_recursive_unlock() it will clear the TRANSITION bit
4112 * and leave the NMI bit set. But this is fine, because the interrupt
4113 * code that set the TRANSITION bit will then clear the NMI bit when it
4114 * calls trace_recursive_unlock(). If another NMI comes in, it will
4115 * set the TRANSITION bit and continue.
4116 *
4117 * Note: The TRANSITION bit only handles a single transition between context.
4118 */
4119
4120 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4121 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4122 {
4123 unsigned int val = cpu_buffer->current_context;
4124 int bit = interrupt_context_level();
4125
4126 bit = RB_CTX_NORMAL - bit;
4127
4128 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4129 /*
4130 * It is possible that this was called by transitioning
4131 * between interrupt context, and preempt_count() has not
4132 * been updated yet. In this case, use the TRANSITION bit.
4133 */
4134 bit = RB_CTX_TRANSITION;
4135 if (val & (1 << (bit + cpu_buffer->nest))) {
4136 do_ring_buffer_record_recursion();
4137 return true;
4138 }
4139 }
4140
4141 val |= (1 << (bit + cpu_buffer->nest));
4142 cpu_buffer->current_context = val;
4143
4144 return false;
4145 }
4146
4147 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4148 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4149 {
4150 cpu_buffer->current_context &=
4151 cpu_buffer->current_context - (1 << cpu_buffer->nest);
4152 }
4153
4154 /* The recursive locking above uses 5 bits */
4155 #define NESTED_BITS 5
4156
4157 /**
4158 * ring_buffer_nest_start - Allow to trace while nested
4159 * @buffer: The ring buffer to modify
4160 *
4161 * The ring buffer has a safety mechanism to prevent recursion.
4162 * But there may be a case where a trace needs to be done while
4163 * tracing something else. In this case, calling this function
4164 * will allow this function to nest within a currently active
4165 * ring_buffer_lock_reserve().
4166 *
4167 * Call this function before calling another ring_buffer_lock_reserve() and
4168 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4169 */
ring_buffer_nest_start(struct trace_buffer * buffer)4170 void ring_buffer_nest_start(struct trace_buffer *buffer)
4171 {
4172 struct ring_buffer_per_cpu *cpu_buffer;
4173 int cpu;
4174
4175 /* Enabled by ring_buffer_nest_end() */
4176 preempt_disable_notrace();
4177 cpu = raw_smp_processor_id();
4178 cpu_buffer = buffer->buffers[cpu];
4179 /* This is the shift value for the above recursive locking */
4180 cpu_buffer->nest += NESTED_BITS;
4181 }
4182
4183 /**
4184 * ring_buffer_nest_end - Allow to trace while nested
4185 * @buffer: The ring buffer to modify
4186 *
4187 * Must be called after ring_buffer_nest_start() and after the
4188 * ring_buffer_unlock_commit().
4189 */
ring_buffer_nest_end(struct trace_buffer * buffer)4190 void ring_buffer_nest_end(struct trace_buffer *buffer)
4191 {
4192 struct ring_buffer_per_cpu *cpu_buffer;
4193 int cpu;
4194
4195 /* disabled by ring_buffer_nest_start() */
4196 cpu = raw_smp_processor_id();
4197 cpu_buffer = buffer->buffers[cpu];
4198 /* This is the shift value for the above recursive locking */
4199 cpu_buffer->nest -= NESTED_BITS;
4200 preempt_enable_notrace();
4201 }
4202
4203 /**
4204 * ring_buffer_unlock_commit - commit a reserved
4205 * @buffer: The buffer to commit to
4206 *
4207 * This commits the data to the ring buffer, and releases any locks held.
4208 *
4209 * Must be paired with ring_buffer_lock_reserve.
4210 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4211 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4212 {
4213 struct ring_buffer_per_cpu *cpu_buffer;
4214 int cpu = raw_smp_processor_id();
4215
4216 cpu_buffer = buffer->buffers[cpu];
4217
4218 rb_commit(cpu_buffer);
4219
4220 rb_wakeups(buffer, cpu_buffer);
4221
4222 trace_recursive_unlock(cpu_buffer);
4223
4224 preempt_enable_notrace();
4225
4226 return 0;
4227 }
4228 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4229
4230 /* Special value to validate all deltas on a page. */
4231 #define CHECK_FULL_PAGE 1L
4232
4233 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4234
show_irq_str(int bits)4235 static const char *show_irq_str(int bits)
4236 {
4237 static const char * type[] = {
4238 ".", // 0
4239 "s", // 1
4240 "h", // 2
4241 "Hs", // 3
4242 "n", // 4
4243 "Ns", // 5
4244 "Nh", // 6
4245 "NHs", // 7
4246 };
4247
4248 return type[bits];
4249 }
4250
4251 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4252 static const char *show_flags(struct ring_buffer_event *event)
4253 {
4254 struct trace_entry *entry;
4255 int bits = 0;
4256
4257 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4258 return "X";
4259
4260 entry = ring_buffer_event_data(event);
4261
4262 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4263 bits |= 1;
4264
4265 if (entry->flags & TRACE_FLAG_HARDIRQ)
4266 bits |= 2;
4267
4268 if (entry->flags & TRACE_FLAG_NMI)
4269 bits |= 4;
4270
4271 return show_irq_str(bits);
4272 }
4273
show_irq(struct ring_buffer_event * event)4274 static const char *show_irq(struct ring_buffer_event *event)
4275 {
4276 struct trace_entry *entry;
4277
4278 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4279 return "";
4280
4281 entry = ring_buffer_event_data(event);
4282 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4283 return "d";
4284 return "";
4285 }
4286
show_interrupt_level(void)4287 static const char *show_interrupt_level(void)
4288 {
4289 unsigned long pc = preempt_count();
4290 unsigned char level = 0;
4291
4292 if (pc & SOFTIRQ_OFFSET)
4293 level |= 1;
4294
4295 if (pc & HARDIRQ_MASK)
4296 level |= 2;
4297
4298 if (pc & NMI_MASK)
4299 level |= 4;
4300
4301 return show_irq_str(level);
4302 }
4303
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4304 static void dump_buffer_page(struct buffer_data_page *bpage,
4305 struct rb_event_info *info,
4306 unsigned long tail)
4307 {
4308 struct ring_buffer_event *event;
4309 u64 ts, delta;
4310 int e;
4311
4312 ts = bpage->time_stamp;
4313 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4314
4315 for (e = 0; e < tail; e += rb_event_length(event)) {
4316
4317 event = (struct ring_buffer_event *)(bpage->data + e);
4318
4319 switch (event->type_len) {
4320
4321 case RINGBUF_TYPE_TIME_EXTEND:
4322 delta = rb_event_time_stamp(event);
4323 ts += delta;
4324 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4325 e, ts, delta);
4326 break;
4327
4328 case RINGBUF_TYPE_TIME_STAMP:
4329 delta = rb_event_time_stamp(event);
4330 ts = rb_fix_abs_ts(delta, ts);
4331 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4332 e, ts, delta);
4333 break;
4334
4335 case RINGBUF_TYPE_PADDING:
4336 ts += event->time_delta;
4337 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4338 e, ts, event->time_delta);
4339 break;
4340
4341 case RINGBUF_TYPE_DATA:
4342 ts += event->time_delta;
4343 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4344 e, ts, event->time_delta,
4345 show_flags(event), show_irq(event));
4346 break;
4347
4348 default:
4349 break;
4350 }
4351 }
4352 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4353 }
4354
4355 static DEFINE_PER_CPU(atomic_t, checking);
4356 static atomic_t ts_dump;
4357
4358 #define buffer_warn_return(fmt, ...) \
4359 do { \
4360 /* If another report is happening, ignore this one */ \
4361 if (atomic_inc_return(&ts_dump) != 1) { \
4362 atomic_dec(&ts_dump); \
4363 goto out; \
4364 } \
4365 atomic_inc(&cpu_buffer->record_disabled); \
4366 pr_warn(fmt, ##__VA_ARGS__); \
4367 dump_buffer_page(bpage, info, tail); \
4368 atomic_dec(&ts_dump); \
4369 /* There's some cases in boot up that this can happen */ \
4370 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4371 /* Do not re-enable checking */ \
4372 return; \
4373 } while (0)
4374
4375 /*
4376 * Check if the current event time stamp matches the deltas on
4377 * the buffer page.
4378 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4379 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4380 struct rb_event_info *info,
4381 unsigned long tail)
4382 {
4383 struct buffer_data_page *bpage;
4384 u64 ts, delta;
4385 bool full = false;
4386 int ret;
4387
4388 bpage = info->tail_page->page;
4389
4390 if (tail == CHECK_FULL_PAGE) {
4391 full = true;
4392 tail = local_read(&bpage->commit);
4393 } else if (info->add_timestamp &
4394 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4395 /* Ignore events with absolute time stamps */
4396 return;
4397 }
4398
4399 /*
4400 * Do not check the first event (skip possible extends too).
4401 * Also do not check if previous events have not been committed.
4402 */
4403 if (tail <= 8 || tail > local_read(&bpage->commit))
4404 return;
4405
4406 /*
4407 * If this interrupted another event,
4408 */
4409 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4410 goto out;
4411
4412 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4413 if (ret < 0) {
4414 if (delta < ts) {
4415 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4416 cpu_buffer->cpu, ts, delta);
4417 goto out;
4418 }
4419 }
4420 if ((full && ts > info->ts) ||
4421 (!full && ts + info->delta != info->ts)) {
4422 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4423 cpu_buffer->cpu,
4424 ts + info->delta, info->ts, info->delta,
4425 info->before, info->after,
4426 full ? " (full)" : "", show_interrupt_level());
4427 }
4428 out:
4429 atomic_dec(this_cpu_ptr(&checking));
4430 }
4431 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4432 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4433 struct rb_event_info *info,
4434 unsigned long tail)
4435 {
4436 }
4437 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4438
4439 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4440 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4441 struct rb_event_info *info)
4442 {
4443 struct ring_buffer_event *event;
4444 struct buffer_page *tail_page;
4445 unsigned long tail, write, w;
4446
4447 /* Don't let the compiler play games with cpu_buffer->tail_page */
4448 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4449
4450 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4451 barrier();
4452 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4453 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4454 barrier();
4455 info->ts = rb_time_stamp(cpu_buffer->buffer);
4456
4457 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4458 info->delta = info->ts;
4459 } else {
4460 /*
4461 * If interrupting an event time update, we may need an
4462 * absolute timestamp.
4463 * Don't bother if this is the start of a new page (w == 0).
4464 */
4465 if (!w) {
4466 /* Use the sub-buffer timestamp */
4467 info->delta = 0;
4468 } else if (unlikely(info->before != info->after)) {
4469 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4470 info->length += RB_LEN_TIME_EXTEND;
4471 } else {
4472 info->delta = info->ts - info->after;
4473 if (unlikely(test_time_stamp(info->delta))) {
4474 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4475 info->length += RB_LEN_TIME_EXTEND;
4476 }
4477 }
4478 }
4479
4480 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4481
4482 /*C*/ write = local_add_return(info->length, &tail_page->write);
4483
4484 /* set write to only the index of the write */
4485 write &= RB_WRITE_MASK;
4486
4487 tail = write - info->length;
4488
4489 /* See if we shot pass the end of this buffer page */
4490 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4491 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4492 return rb_move_tail(cpu_buffer, tail, info);
4493 }
4494
4495 if (likely(tail == w)) {
4496 /* Nothing interrupted us between A and C */
4497 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4498 /*
4499 * If something came in between C and D, the write stamp
4500 * may now not be in sync. But that's fine as the before_stamp
4501 * will be different and then next event will just be forced
4502 * to use an absolute timestamp.
4503 */
4504 if (likely(!(info->add_timestamp &
4505 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4506 /* This did not interrupt any time update */
4507 info->delta = info->ts - info->after;
4508 else
4509 /* Just use full timestamp for interrupting event */
4510 info->delta = info->ts;
4511 check_buffer(cpu_buffer, info, tail);
4512 } else {
4513 u64 ts;
4514 /* SLOW PATH - Interrupted between A and C */
4515
4516 /* Save the old before_stamp */
4517 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4518
4519 /*
4520 * Read a new timestamp and update the before_stamp to make
4521 * the next event after this one force using an absolute
4522 * timestamp. This is in case an interrupt were to come in
4523 * between E and F.
4524 */
4525 ts = rb_time_stamp(cpu_buffer->buffer);
4526 rb_time_set(&cpu_buffer->before_stamp, ts);
4527
4528 barrier();
4529 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4530 barrier();
4531 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4532 info->after == info->before && info->after < ts) {
4533 /*
4534 * Nothing came after this event between C and F, it is
4535 * safe to use info->after for the delta as it
4536 * matched info->before and is still valid.
4537 */
4538 info->delta = ts - info->after;
4539 } else {
4540 /*
4541 * Interrupted between C and F:
4542 * Lost the previous events time stamp. Just set the
4543 * delta to zero, and this will be the same time as
4544 * the event this event interrupted. And the events that
4545 * came after this will still be correct (as they would
4546 * have built their delta on the previous event.
4547 */
4548 info->delta = 0;
4549 }
4550 info->ts = ts;
4551 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4552 }
4553
4554 /*
4555 * If this is the first commit on the page, then it has the same
4556 * timestamp as the page itself.
4557 */
4558 if (unlikely(!tail && !(info->add_timestamp &
4559 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4560 info->delta = 0;
4561
4562 /* We reserved something on the buffer */
4563
4564 event = __rb_page_index(tail_page, tail);
4565 rb_update_event(cpu_buffer, event, info);
4566
4567 local_inc(&tail_page->entries);
4568
4569 /*
4570 * If this is the first commit on the page, then update
4571 * its timestamp.
4572 */
4573 if (unlikely(!tail))
4574 tail_page->page->time_stamp = info->ts;
4575
4576 /* account for these added bytes */
4577 local_add(info->length, &cpu_buffer->entries_bytes);
4578
4579 return event;
4580 }
4581
4582 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4583 rb_reserve_next_event(struct trace_buffer *buffer,
4584 struct ring_buffer_per_cpu *cpu_buffer,
4585 unsigned long length)
4586 {
4587 struct ring_buffer_event *event;
4588 struct rb_event_info info;
4589 int nr_loops = 0;
4590 int add_ts_default;
4591
4592 /*
4593 * ring buffer does cmpxchg as well as atomic64 operations
4594 * (which some archs use locking for atomic64), make sure this
4595 * is safe in NMI context
4596 */
4597 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4598 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4599 (unlikely(in_nmi()))) {
4600 return NULL;
4601 }
4602
4603 rb_start_commit(cpu_buffer);
4604 /* The commit page can not change after this */
4605
4606 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4607 /*
4608 * Due to the ability to swap a cpu buffer from a buffer
4609 * it is possible it was swapped before we committed.
4610 * (committing stops a swap). We check for it here and
4611 * if it happened, we have to fail the write.
4612 */
4613 barrier();
4614 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4615 local_dec(&cpu_buffer->committing);
4616 local_dec(&cpu_buffer->commits);
4617 return NULL;
4618 }
4619 #endif
4620
4621 info.length = rb_calculate_event_length(length);
4622
4623 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4624 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4625 info.length += RB_LEN_TIME_EXTEND;
4626 if (info.length > cpu_buffer->buffer->max_data_size)
4627 goto out_fail;
4628 } else {
4629 add_ts_default = RB_ADD_STAMP_NONE;
4630 }
4631
4632 again:
4633 info.add_timestamp = add_ts_default;
4634 info.delta = 0;
4635
4636 /*
4637 * We allow for interrupts to reenter here and do a trace.
4638 * If one does, it will cause this original code to loop
4639 * back here. Even with heavy interrupts happening, this
4640 * should only happen a few times in a row. If this happens
4641 * 1000 times in a row, there must be either an interrupt
4642 * storm or we have something buggy.
4643 * Bail!
4644 */
4645 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4646 goto out_fail;
4647
4648 event = __rb_reserve_next(cpu_buffer, &info);
4649
4650 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4651 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4652 info.length -= RB_LEN_TIME_EXTEND;
4653 goto again;
4654 }
4655
4656 if (likely(event))
4657 return event;
4658 out_fail:
4659 rb_end_commit(cpu_buffer);
4660 return NULL;
4661 }
4662
4663 /**
4664 * ring_buffer_lock_reserve - reserve a part of the buffer
4665 * @buffer: the ring buffer to reserve from
4666 * @length: the length of the data to reserve (excluding event header)
4667 *
4668 * Returns a reserved event on the ring buffer to copy directly to.
4669 * The user of this interface will need to get the body to write into
4670 * and can use the ring_buffer_event_data() interface.
4671 *
4672 * The length is the length of the data needed, not the event length
4673 * which also includes the event header.
4674 *
4675 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4676 * If NULL is returned, then nothing has been allocated or locked.
4677 */
4678 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4679 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4680 {
4681 struct ring_buffer_per_cpu *cpu_buffer;
4682 struct ring_buffer_event *event;
4683 int cpu;
4684
4685 /* If we are tracing schedule, we don't want to recurse */
4686 preempt_disable_notrace();
4687
4688 if (unlikely(atomic_read(&buffer->record_disabled)))
4689 goto out;
4690
4691 cpu = raw_smp_processor_id();
4692
4693 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4694 goto out;
4695
4696 cpu_buffer = buffer->buffers[cpu];
4697
4698 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4699 goto out;
4700
4701 if (unlikely(length > buffer->max_data_size))
4702 goto out;
4703
4704 if (unlikely(trace_recursive_lock(cpu_buffer)))
4705 goto out;
4706
4707 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4708 if (!event)
4709 goto out_unlock;
4710
4711 return event;
4712
4713 out_unlock:
4714 trace_recursive_unlock(cpu_buffer);
4715 out:
4716 preempt_enable_notrace();
4717 return NULL;
4718 }
4719 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4720
4721 /*
4722 * Decrement the entries to the page that an event is on.
4723 * The event does not even need to exist, only the pointer
4724 * to the page it is on. This may only be called before the commit
4725 * takes place.
4726 */
4727 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4728 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4729 struct ring_buffer_event *event)
4730 {
4731 unsigned long addr = (unsigned long)event;
4732 struct buffer_page *bpage = cpu_buffer->commit_page;
4733 struct buffer_page *start;
4734
4735 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4736
4737 /* Do the likely case first */
4738 if (likely(bpage->page == (void *)addr)) {
4739 local_dec(&bpage->entries);
4740 return;
4741 }
4742
4743 /*
4744 * Because the commit page may be on the reader page we
4745 * start with the next page and check the end loop there.
4746 */
4747 rb_inc_page(&bpage);
4748 start = bpage;
4749 do {
4750 if (bpage->page == (void *)addr) {
4751 local_dec(&bpage->entries);
4752 return;
4753 }
4754 rb_inc_page(&bpage);
4755 } while (bpage != start);
4756
4757 /* commit not part of this buffer?? */
4758 RB_WARN_ON(cpu_buffer, 1);
4759 }
4760
4761 /**
4762 * ring_buffer_discard_commit - discard an event that has not been committed
4763 * @buffer: the ring buffer
4764 * @event: non committed event to discard
4765 *
4766 * Sometimes an event that is in the ring buffer needs to be ignored.
4767 * This function lets the user discard an event in the ring buffer
4768 * and then that event will not be read later.
4769 *
4770 * This function only works if it is called before the item has been
4771 * committed. It will try to free the event from the ring buffer
4772 * if another event has not been added behind it.
4773 *
4774 * If another event has been added behind it, it will set the event
4775 * up as discarded, and perform the commit.
4776 *
4777 * If this function is called, do not call ring_buffer_unlock_commit on
4778 * the event.
4779 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4780 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4781 struct ring_buffer_event *event)
4782 {
4783 struct ring_buffer_per_cpu *cpu_buffer;
4784 int cpu;
4785
4786 /* The event is discarded regardless */
4787 rb_event_discard(event);
4788
4789 cpu = smp_processor_id();
4790 cpu_buffer = buffer->buffers[cpu];
4791
4792 /*
4793 * This must only be called if the event has not been
4794 * committed yet. Thus we can assume that preemption
4795 * is still disabled.
4796 */
4797 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4798
4799 rb_decrement_entry(cpu_buffer, event);
4800 rb_try_to_discard(cpu_buffer, event);
4801 rb_end_commit(cpu_buffer);
4802
4803 trace_recursive_unlock(cpu_buffer);
4804
4805 preempt_enable_notrace();
4806
4807 }
4808 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4809
4810 /**
4811 * ring_buffer_write - write data to the buffer without reserving
4812 * @buffer: The ring buffer to write to.
4813 * @length: The length of the data being written (excluding the event header)
4814 * @data: The data to write to the buffer.
4815 *
4816 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4817 * one function. If you already have the data to write to the buffer, it
4818 * may be easier to simply call this function.
4819 *
4820 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4821 * and not the length of the event which would hold the header.
4822 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4823 int ring_buffer_write(struct trace_buffer *buffer,
4824 unsigned long length,
4825 void *data)
4826 {
4827 struct ring_buffer_per_cpu *cpu_buffer;
4828 struct ring_buffer_event *event;
4829 void *body;
4830 int ret = -EBUSY;
4831 int cpu;
4832
4833 guard(preempt_notrace)();
4834
4835 if (atomic_read(&buffer->record_disabled))
4836 return -EBUSY;
4837
4838 cpu = raw_smp_processor_id();
4839
4840 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4841 return -EBUSY;
4842
4843 cpu_buffer = buffer->buffers[cpu];
4844
4845 if (atomic_read(&cpu_buffer->record_disabled))
4846 return -EBUSY;
4847
4848 if (length > buffer->max_data_size)
4849 return -EBUSY;
4850
4851 if (unlikely(trace_recursive_lock(cpu_buffer)))
4852 return -EBUSY;
4853
4854 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4855 if (!event)
4856 goto out_unlock;
4857
4858 body = rb_event_data(event);
4859
4860 memcpy(body, data, length);
4861
4862 rb_commit(cpu_buffer);
4863
4864 rb_wakeups(buffer, cpu_buffer);
4865
4866 ret = 0;
4867
4868 out_unlock:
4869 trace_recursive_unlock(cpu_buffer);
4870 return ret;
4871 }
4872 EXPORT_SYMBOL_GPL(ring_buffer_write);
4873
4874 /*
4875 * The total entries in the ring buffer is the running counter
4876 * of entries entered into the ring buffer, minus the sum of
4877 * the entries read from the ring buffer and the number of
4878 * entries that were overwritten.
4879 */
4880 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4881 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4882 {
4883 return local_read(&cpu_buffer->entries) -
4884 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4885 }
4886
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4887 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4888 {
4889 return !rb_num_of_entries(cpu_buffer);
4890 }
4891
4892 /**
4893 * ring_buffer_record_disable - stop all writes into the buffer
4894 * @buffer: The ring buffer to stop writes to.
4895 *
4896 * This prevents all writes to the buffer. Any attempt to write
4897 * to the buffer after this will fail and return NULL.
4898 *
4899 * The caller should call synchronize_rcu() after this.
4900 */
ring_buffer_record_disable(struct trace_buffer * buffer)4901 void ring_buffer_record_disable(struct trace_buffer *buffer)
4902 {
4903 atomic_inc(&buffer->record_disabled);
4904 }
4905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4906
4907 /**
4908 * ring_buffer_record_enable - enable writes to the buffer
4909 * @buffer: The ring buffer to enable writes
4910 *
4911 * Note, multiple disables will need the same number of enables
4912 * to truly enable the writing (much like preempt_disable).
4913 */
ring_buffer_record_enable(struct trace_buffer * buffer)4914 void ring_buffer_record_enable(struct trace_buffer *buffer)
4915 {
4916 atomic_dec(&buffer->record_disabled);
4917 }
4918 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4919
4920 /**
4921 * ring_buffer_record_off - stop all writes into the buffer
4922 * @buffer: The ring buffer to stop writes to.
4923 *
4924 * This prevents all writes to the buffer. Any attempt to write
4925 * to the buffer after this will fail and return NULL.
4926 *
4927 * This is different than ring_buffer_record_disable() as
4928 * it works like an on/off switch, where as the disable() version
4929 * must be paired with a enable().
4930 */
ring_buffer_record_off(struct trace_buffer * buffer)4931 void ring_buffer_record_off(struct trace_buffer *buffer)
4932 {
4933 unsigned int rd;
4934 unsigned int new_rd;
4935
4936 rd = atomic_read(&buffer->record_disabled);
4937 do {
4938 new_rd = rd | RB_BUFFER_OFF;
4939 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4940 }
4941 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4942
4943 /**
4944 * ring_buffer_record_on - restart writes into the buffer
4945 * @buffer: The ring buffer to start writes to.
4946 *
4947 * This enables all writes to the buffer that was disabled by
4948 * ring_buffer_record_off().
4949 *
4950 * This is different than ring_buffer_record_enable() as
4951 * it works like an on/off switch, where as the enable() version
4952 * must be paired with a disable().
4953 */
ring_buffer_record_on(struct trace_buffer * buffer)4954 void ring_buffer_record_on(struct trace_buffer *buffer)
4955 {
4956 unsigned int rd;
4957 unsigned int new_rd;
4958
4959 rd = atomic_read(&buffer->record_disabled);
4960 do {
4961 new_rd = rd & ~RB_BUFFER_OFF;
4962 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4965
4966 /**
4967 * ring_buffer_record_is_on - return true if the ring buffer can write
4968 * @buffer: The ring buffer to see if write is enabled
4969 *
4970 * Returns true if the ring buffer is in a state that it accepts writes.
4971 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4972 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4973 {
4974 return !atomic_read(&buffer->record_disabled);
4975 }
4976
4977 /**
4978 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4979 * @buffer: The ring buffer to see if write is set enabled
4980 *
4981 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4982 * Note that this does NOT mean it is in a writable state.
4983 *
4984 * It may return true when the ring buffer has been disabled by
4985 * ring_buffer_record_disable(), as that is a temporary disabling of
4986 * the ring buffer.
4987 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4988 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4989 {
4990 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4991 }
4992
4993 /**
4994 * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
4995 * @buffer: The ring buffer to see if write is enabled
4996 * @cpu: The CPU to test if the ring buffer can write too
4997 *
4998 * Returns true if the ring buffer is in a state that it accepts writes
4999 * for a particular CPU.
5000 */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)5001 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
5002 {
5003 struct ring_buffer_per_cpu *cpu_buffer;
5004
5005 cpu_buffer = buffer->buffers[cpu];
5006
5007 return ring_buffer_record_is_set_on(buffer) &&
5008 !atomic_read(&cpu_buffer->record_disabled);
5009 }
5010
5011 /**
5012 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
5013 * @buffer: The ring buffer to stop writes to.
5014 * @cpu: The CPU buffer to stop
5015 *
5016 * This prevents all writes to the buffer. Any attempt to write
5017 * to the buffer after this will fail and return NULL.
5018 *
5019 * The caller should call synchronize_rcu() after this.
5020 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)5021 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
5022 {
5023 struct ring_buffer_per_cpu *cpu_buffer;
5024
5025 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5026 return;
5027
5028 cpu_buffer = buffer->buffers[cpu];
5029 atomic_inc(&cpu_buffer->record_disabled);
5030 }
5031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
5032
5033 /**
5034 * ring_buffer_record_enable_cpu - enable writes to the buffer
5035 * @buffer: The ring buffer to enable writes
5036 * @cpu: The CPU to enable.
5037 *
5038 * Note, multiple disables will need the same number of enables
5039 * to truly enable the writing (much like preempt_disable).
5040 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)5041 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
5042 {
5043 struct ring_buffer_per_cpu *cpu_buffer;
5044
5045 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5046 return;
5047
5048 cpu_buffer = buffer->buffers[cpu];
5049 atomic_dec(&cpu_buffer->record_disabled);
5050 }
5051 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
5052
5053 /**
5054 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
5055 * @buffer: The ring buffer
5056 * @cpu: The per CPU buffer to read from.
5057 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)5058 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
5059 {
5060 unsigned long flags;
5061 struct ring_buffer_per_cpu *cpu_buffer;
5062 struct buffer_page *bpage;
5063 u64 ret = 0;
5064
5065 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5066 return 0;
5067
5068 cpu_buffer = buffer->buffers[cpu];
5069 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5070 /*
5071 * if the tail is on reader_page, oldest time stamp is on the reader
5072 * page
5073 */
5074 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
5075 bpage = cpu_buffer->reader_page;
5076 else
5077 bpage = rb_set_head_page(cpu_buffer);
5078 if (bpage)
5079 ret = bpage->page->time_stamp;
5080 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5081
5082 return ret;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
5085
5086 /**
5087 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
5088 * @buffer: The ring buffer
5089 * @cpu: The per CPU buffer to read from.
5090 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)5091 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
5092 {
5093 struct ring_buffer_per_cpu *cpu_buffer;
5094 unsigned long ret;
5095
5096 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097 return 0;
5098
5099 cpu_buffer = buffer->buffers[cpu];
5100 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
5101
5102 return ret;
5103 }
5104 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
5105
5106 /**
5107 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
5108 * @buffer: The ring buffer
5109 * @cpu: The per CPU buffer to get the entries from.
5110 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)5111 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5112 {
5113 struct ring_buffer_per_cpu *cpu_buffer;
5114
5115 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5116 return 0;
5117
5118 cpu_buffer = buffer->buffers[cpu];
5119
5120 return rb_num_of_entries(cpu_buffer);
5121 }
5122 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5123
5124 /**
5125 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5126 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5127 * @buffer: The ring buffer
5128 * @cpu: The per CPU buffer to get the number of overruns from
5129 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5130 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5131 {
5132 struct ring_buffer_per_cpu *cpu_buffer;
5133 unsigned long ret;
5134
5135 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5136 return 0;
5137
5138 cpu_buffer = buffer->buffers[cpu];
5139 ret = local_read(&cpu_buffer->overrun);
5140
5141 return ret;
5142 }
5143 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5144
5145 /**
5146 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5147 * commits failing due to the buffer wrapping around while there are uncommitted
5148 * events, such as during an interrupt storm.
5149 * @buffer: The ring buffer
5150 * @cpu: The per CPU buffer to get the number of overruns from
5151 */
5152 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5153 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5154 {
5155 struct ring_buffer_per_cpu *cpu_buffer;
5156 unsigned long ret;
5157
5158 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5159 return 0;
5160
5161 cpu_buffer = buffer->buffers[cpu];
5162 ret = local_read(&cpu_buffer->commit_overrun);
5163
5164 return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5167
5168 /**
5169 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5170 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5171 * @buffer: The ring buffer
5172 * @cpu: The per CPU buffer to get the number of overruns from
5173 */
5174 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5175 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5176 {
5177 struct ring_buffer_per_cpu *cpu_buffer;
5178 unsigned long ret;
5179
5180 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5181 return 0;
5182
5183 cpu_buffer = buffer->buffers[cpu];
5184 ret = local_read(&cpu_buffer->dropped_events);
5185
5186 return ret;
5187 }
5188 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5189
5190 /**
5191 * ring_buffer_read_events_cpu - get the number of events successfully read
5192 * @buffer: The ring buffer
5193 * @cpu: The per CPU buffer to get the number of events read
5194 */
5195 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5196 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5197 {
5198 struct ring_buffer_per_cpu *cpu_buffer;
5199
5200 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5201 return 0;
5202
5203 cpu_buffer = buffer->buffers[cpu];
5204 return cpu_buffer->read;
5205 }
5206 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5207
5208 /**
5209 * ring_buffer_entries - get the number of entries in a buffer
5210 * @buffer: The ring buffer
5211 *
5212 * Returns the total number of entries in the ring buffer
5213 * (all CPU entries)
5214 */
ring_buffer_entries(struct trace_buffer * buffer)5215 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5216 {
5217 struct ring_buffer_per_cpu *cpu_buffer;
5218 unsigned long entries = 0;
5219 int cpu;
5220
5221 /* if you care about this being correct, lock the buffer */
5222 for_each_buffer_cpu(buffer, cpu) {
5223 cpu_buffer = buffer->buffers[cpu];
5224 entries += rb_num_of_entries(cpu_buffer);
5225 }
5226
5227 return entries;
5228 }
5229 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5230
5231 /**
5232 * ring_buffer_overruns - get the number of overruns in buffer
5233 * @buffer: The ring buffer
5234 *
5235 * Returns the total number of overruns in the ring buffer
5236 * (all CPU entries)
5237 */
ring_buffer_overruns(struct trace_buffer * buffer)5238 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5239 {
5240 struct ring_buffer_per_cpu *cpu_buffer;
5241 unsigned long overruns = 0;
5242 int cpu;
5243
5244 /* if you care about this being correct, lock the buffer */
5245 for_each_buffer_cpu(buffer, cpu) {
5246 cpu_buffer = buffer->buffers[cpu];
5247 overruns += local_read(&cpu_buffer->overrun);
5248 }
5249
5250 return overruns;
5251 }
5252 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5253
rb_iter_reset(struct ring_buffer_iter * iter)5254 static void rb_iter_reset(struct ring_buffer_iter *iter)
5255 {
5256 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5257
5258 /* Iterator usage is expected to have record disabled */
5259 iter->head_page = cpu_buffer->reader_page;
5260 iter->head = cpu_buffer->reader_page->read;
5261 iter->next_event = iter->head;
5262
5263 iter->cache_reader_page = iter->head_page;
5264 iter->cache_read = cpu_buffer->read;
5265 iter->cache_pages_removed = cpu_buffer->pages_removed;
5266
5267 if (iter->head) {
5268 iter->read_stamp = cpu_buffer->read_stamp;
5269 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5270 } else {
5271 iter->read_stamp = iter->head_page->page->time_stamp;
5272 iter->page_stamp = iter->read_stamp;
5273 }
5274 }
5275
5276 /**
5277 * ring_buffer_iter_reset - reset an iterator
5278 * @iter: The iterator to reset
5279 *
5280 * Resets the iterator, so that it will start from the beginning
5281 * again.
5282 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5283 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5284 {
5285 struct ring_buffer_per_cpu *cpu_buffer;
5286 unsigned long flags;
5287
5288 if (!iter)
5289 return;
5290
5291 cpu_buffer = iter->cpu_buffer;
5292
5293 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5294 rb_iter_reset(iter);
5295 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5296 }
5297 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5298
5299 /**
5300 * ring_buffer_iter_empty - check if an iterator has no more to read
5301 * @iter: The iterator to check
5302 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5303 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5304 {
5305 struct ring_buffer_per_cpu *cpu_buffer;
5306 struct buffer_page *reader;
5307 struct buffer_page *head_page;
5308 struct buffer_page *commit_page;
5309 struct buffer_page *curr_commit_page;
5310 unsigned commit;
5311 u64 curr_commit_ts;
5312 u64 commit_ts;
5313
5314 cpu_buffer = iter->cpu_buffer;
5315 reader = cpu_buffer->reader_page;
5316 head_page = cpu_buffer->head_page;
5317 commit_page = READ_ONCE(cpu_buffer->commit_page);
5318 commit_ts = commit_page->page->time_stamp;
5319
5320 /*
5321 * When the writer goes across pages, it issues a cmpxchg which
5322 * is a mb(), which will synchronize with the rmb here.
5323 * (see rb_tail_page_update())
5324 */
5325 smp_rmb();
5326 commit = rb_page_commit(commit_page);
5327 /* We want to make sure that the commit page doesn't change */
5328 smp_rmb();
5329
5330 /* Make sure commit page didn't change */
5331 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5332 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5333
5334 /* If the commit page changed, then there's more data */
5335 if (curr_commit_page != commit_page ||
5336 curr_commit_ts != commit_ts)
5337 return 0;
5338
5339 /* Still racy, as it may return a false positive, but that's OK */
5340 return ((iter->head_page == commit_page && iter->head >= commit) ||
5341 (iter->head_page == reader && commit_page == head_page &&
5342 head_page->read == commit &&
5343 iter->head == rb_page_size(cpu_buffer->reader_page)));
5344 }
5345 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5346
5347 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5348 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5349 struct ring_buffer_event *event)
5350 {
5351 u64 delta;
5352
5353 switch (event->type_len) {
5354 case RINGBUF_TYPE_PADDING:
5355 return;
5356
5357 case RINGBUF_TYPE_TIME_EXTEND:
5358 delta = rb_event_time_stamp(event);
5359 cpu_buffer->read_stamp += delta;
5360 return;
5361
5362 case RINGBUF_TYPE_TIME_STAMP:
5363 delta = rb_event_time_stamp(event);
5364 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5365 cpu_buffer->read_stamp = delta;
5366 return;
5367
5368 case RINGBUF_TYPE_DATA:
5369 cpu_buffer->read_stamp += event->time_delta;
5370 return;
5371
5372 default:
5373 RB_WARN_ON(cpu_buffer, 1);
5374 }
5375 }
5376
5377 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5378 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5379 struct ring_buffer_event *event)
5380 {
5381 u64 delta;
5382
5383 switch (event->type_len) {
5384 case RINGBUF_TYPE_PADDING:
5385 return;
5386
5387 case RINGBUF_TYPE_TIME_EXTEND:
5388 delta = rb_event_time_stamp(event);
5389 iter->read_stamp += delta;
5390 return;
5391
5392 case RINGBUF_TYPE_TIME_STAMP:
5393 delta = rb_event_time_stamp(event);
5394 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5395 iter->read_stamp = delta;
5396 return;
5397
5398 case RINGBUF_TYPE_DATA:
5399 iter->read_stamp += event->time_delta;
5400 return;
5401
5402 default:
5403 RB_WARN_ON(iter->cpu_buffer, 1);
5404 }
5405 }
5406
5407 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5408 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5409 {
5410 struct buffer_page *reader = NULL;
5411 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5412 unsigned long overwrite;
5413 unsigned long flags;
5414 int nr_loops = 0;
5415 bool ret;
5416
5417 local_irq_save(flags);
5418 arch_spin_lock(&cpu_buffer->lock);
5419
5420 again:
5421 /*
5422 * This should normally only loop twice. But because the
5423 * start of the reader inserts an empty page, it causes
5424 * a case where we will loop three times. There should be no
5425 * reason to loop four times (that I know of).
5426 */
5427 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5428 reader = NULL;
5429 goto out;
5430 }
5431
5432 reader = cpu_buffer->reader_page;
5433
5434 /* If there's more to read, return this page */
5435 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5436 goto out;
5437
5438 /* Never should we have an index greater than the size */
5439 if (RB_WARN_ON(cpu_buffer,
5440 cpu_buffer->reader_page->read > rb_page_size(reader)))
5441 goto out;
5442
5443 /* check if we caught up to the tail */
5444 reader = NULL;
5445 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5446 goto out;
5447
5448 /* Don't bother swapping if the ring buffer is empty */
5449 if (rb_num_of_entries(cpu_buffer) == 0)
5450 goto out;
5451
5452 /*
5453 * Reset the reader page to size zero.
5454 */
5455 local_set(&cpu_buffer->reader_page->write, 0);
5456 local_set(&cpu_buffer->reader_page->entries, 0);
5457 cpu_buffer->reader_page->real_end = 0;
5458
5459 spin:
5460 /*
5461 * Splice the empty reader page into the list around the head.
5462 */
5463 reader = rb_set_head_page(cpu_buffer);
5464 if (!reader)
5465 goto out;
5466 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5467 cpu_buffer->reader_page->list.prev = reader->list.prev;
5468
5469 /*
5470 * cpu_buffer->pages just needs to point to the buffer, it
5471 * has no specific buffer page to point to. Lets move it out
5472 * of our way so we don't accidentally swap it.
5473 */
5474 cpu_buffer->pages = reader->list.prev;
5475
5476 /* The reader page will be pointing to the new head */
5477 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5478
5479 /*
5480 * We want to make sure we read the overruns after we set up our
5481 * pointers to the next object. The writer side does a
5482 * cmpxchg to cross pages which acts as the mb on the writer
5483 * side. Note, the reader will constantly fail the swap
5484 * while the writer is updating the pointers, so this
5485 * guarantees that the overwrite recorded here is the one we
5486 * want to compare with the last_overrun.
5487 */
5488 smp_mb();
5489 overwrite = local_read(&(cpu_buffer->overrun));
5490
5491 /*
5492 * Here's the tricky part.
5493 *
5494 * We need to move the pointer past the header page.
5495 * But we can only do that if a writer is not currently
5496 * moving it. The page before the header page has the
5497 * flag bit '1' set if it is pointing to the page we want.
5498 * but if the writer is in the process of moving it
5499 * then it will be '2' or already moved '0'.
5500 */
5501
5502 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5503
5504 /*
5505 * If we did not convert it, then we must try again.
5506 */
5507 if (!ret)
5508 goto spin;
5509
5510 if (cpu_buffer->ring_meta)
5511 rb_update_meta_reader(cpu_buffer, reader);
5512
5513 /*
5514 * Yay! We succeeded in replacing the page.
5515 *
5516 * Now make the new head point back to the reader page.
5517 */
5518 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5519 rb_inc_page(&cpu_buffer->head_page);
5520
5521 cpu_buffer->cnt++;
5522 local_inc(&cpu_buffer->pages_read);
5523
5524 /* Finally update the reader page to the new head */
5525 cpu_buffer->reader_page = reader;
5526 cpu_buffer->reader_page->read = 0;
5527
5528 if (overwrite != cpu_buffer->last_overrun) {
5529 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5530 cpu_buffer->last_overrun = overwrite;
5531 }
5532
5533 goto again;
5534
5535 out:
5536 /* Update the read_stamp on the first event */
5537 if (reader && reader->read == 0)
5538 cpu_buffer->read_stamp = reader->page->time_stamp;
5539
5540 arch_spin_unlock(&cpu_buffer->lock);
5541 local_irq_restore(flags);
5542
5543 /*
5544 * The writer has preempt disable, wait for it. But not forever
5545 * Although, 1 second is pretty much "forever"
5546 */
5547 #define USECS_WAIT 1000000
5548 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5549 /* If the write is past the end of page, a writer is still updating it */
5550 if (likely(!reader || rb_page_write(reader) <= bsize))
5551 break;
5552
5553 udelay(1);
5554
5555 /* Get the latest version of the reader write value */
5556 smp_rmb();
5557 }
5558
5559 /* The writer is not moving forward? Something is wrong */
5560 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5561 reader = NULL;
5562
5563 /*
5564 * Make sure we see any padding after the write update
5565 * (see rb_reset_tail()).
5566 *
5567 * In addition, a writer may be writing on the reader page
5568 * if the page has not been fully filled, so the read barrier
5569 * is also needed to make sure we see the content of what is
5570 * committed by the writer (see rb_set_commit_to_write()).
5571 */
5572 smp_rmb();
5573
5574
5575 return reader;
5576 }
5577
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5578 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5579 {
5580 struct ring_buffer_event *event;
5581 struct buffer_page *reader;
5582 unsigned length;
5583
5584 reader = rb_get_reader_page(cpu_buffer);
5585
5586 /* This function should not be called when buffer is empty */
5587 if (RB_WARN_ON(cpu_buffer, !reader))
5588 return;
5589
5590 event = rb_reader_event(cpu_buffer);
5591
5592 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5593 cpu_buffer->read++;
5594
5595 rb_update_read_stamp(cpu_buffer, event);
5596
5597 length = rb_event_length(event);
5598 cpu_buffer->reader_page->read += length;
5599 cpu_buffer->read_bytes += length;
5600 }
5601
rb_advance_iter(struct ring_buffer_iter * iter)5602 static void rb_advance_iter(struct ring_buffer_iter *iter)
5603 {
5604 struct ring_buffer_per_cpu *cpu_buffer;
5605
5606 cpu_buffer = iter->cpu_buffer;
5607
5608 /* If head == next_event then we need to jump to the next event */
5609 if (iter->head == iter->next_event) {
5610 /* If the event gets overwritten again, there's nothing to do */
5611 if (rb_iter_head_event(iter) == NULL)
5612 return;
5613 }
5614
5615 iter->head = iter->next_event;
5616
5617 /*
5618 * Check if we are at the end of the buffer.
5619 */
5620 if (iter->next_event >= rb_page_size(iter->head_page)) {
5621 /* discarded commits can make the page empty */
5622 if (iter->head_page == cpu_buffer->commit_page)
5623 return;
5624 rb_inc_iter(iter);
5625 return;
5626 }
5627
5628 rb_update_iter_read_stamp(iter, iter->event);
5629 }
5630
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5631 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5632 {
5633 return cpu_buffer->lost_events;
5634 }
5635
5636 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5637 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5638 unsigned long *lost_events)
5639 {
5640 struct ring_buffer_event *event;
5641 struct buffer_page *reader;
5642 int nr_loops = 0;
5643
5644 if (ts)
5645 *ts = 0;
5646 again:
5647 /*
5648 * We repeat when a time extend is encountered.
5649 * Since the time extend is always attached to a data event,
5650 * we should never loop more than once.
5651 * (We never hit the following condition more than twice).
5652 */
5653 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5654 return NULL;
5655
5656 reader = rb_get_reader_page(cpu_buffer);
5657 if (!reader)
5658 return NULL;
5659
5660 event = rb_reader_event(cpu_buffer);
5661
5662 switch (event->type_len) {
5663 case RINGBUF_TYPE_PADDING:
5664 if (rb_null_event(event))
5665 RB_WARN_ON(cpu_buffer, 1);
5666 /*
5667 * Because the writer could be discarding every
5668 * event it creates (which would probably be bad)
5669 * if we were to go back to "again" then we may never
5670 * catch up, and will trigger the warn on, or lock
5671 * the box. Return the padding, and we will release
5672 * the current locks, and try again.
5673 */
5674 return event;
5675
5676 case RINGBUF_TYPE_TIME_EXTEND:
5677 /* Internal data, OK to advance */
5678 rb_advance_reader(cpu_buffer);
5679 goto again;
5680
5681 case RINGBUF_TYPE_TIME_STAMP:
5682 if (ts) {
5683 *ts = rb_event_time_stamp(event);
5684 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5685 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5686 cpu_buffer->cpu, ts);
5687 }
5688 /* Internal data, OK to advance */
5689 rb_advance_reader(cpu_buffer);
5690 goto again;
5691
5692 case RINGBUF_TYPE_DATA:
5693 if (ts && !(*ts)) {
5694 *ts = cpu_buffer->read_stamp + event->time_delta;
5695 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5696 cpu_buffer->cpu, ts);
5697 }
5698 if (lost_events)
5699 *lost_events = rb_lost_events(cpu_buffer);
5700 return event;
5701
5702 default:
5703 RB_WARN_ON(cpu_buffer, 1);
5704 }
5705
5706 return NULL;
5707 }
5708 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5709
5710 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5711 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5712 {
5713 struct trace_buffer *buffer;
5714 struct ring_buffer_per_cpu *cpu_buffer;
5715 struct ring_buffer_event *event;
5716 int nr_loops = 0;
5717
5718 if (ts)
5719 *ts = 0;
5720
5721 cpu_buffer = iter->cpu_buffer;
5722 buffer = cpu_buffer->buffer;
5723
5724 /*
5725 * Check if someone performed a consuming read to the buffer
5726 * or removed some pages from the buffer. In these cases,
5727 * iterator was invalidated and we need to reset it.
5728 */
5729 if (unlikely(iter->cache_read != cpu_buffer->read ||
5730 iter->cache_reader_page != cpu_buffer->reader_page ||
5731 iter->cache_pages_removed != cpu_buffer->pages_removed))
5732 rb_iter_reset(iter);
5733
5734 again:
5735 if (ring_buffer_iter_empty(iter))
5736 return NULL;
5737
5738 /*
5739 * As the writer can mess with what the iterator is trying
5740 * to read, just give up if we fail to get an event after
5741 * three tries. The iterator is not as reliable when reading
5742 * the ring buffer with an active write as the consumer is.
5743 * Do not warn if the three failures is reached.
5744 */
5745 if (++nr_loops > 3)
5746 return NULL;
5747
5748 if (rb_per_cpu_empty(cpu_buffer))
5749 return NULL;
5750
5751 if (iter->head >= rb_page_size(iter->head_page)) {
5752 rb_inc_iter(iter);
5753 goto again;
5754 }
5755
5756 event = rb_iter_head_event(iter);
5757 if (!event)
5758 goto again;
5759
5760 switch (event->type_len) {
5761 case RINGBUF_TYPE_PADDING:
5762 if (rb_null_event(event)) {
5763 rb_inc_iter(iter);
5764 goto again;
5765 }
5766 rb_advance_iter(iter);
5767 return event;
5768
5769 case RINGBUF_TYPE_TIME_EXTEND:
5770 /* Internal data, OK to advance */
5771 rb_advance_iter(iter);
5772 goto again;
5773
5774 case RINGBUF_TYPE_TIME_STAMP:
5775 if (ts) {
5776 *ts = rb_event_time_stamp(event);
5777 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5778 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5779 cpu_buffer->cpu, ts);
5780 }
5781 /* Internal data, OK to advance */
5782 rb_advance_iter(iter);
5783 goto again;
5784
5785 case RINGBUF_TYPE_DATA:
5786 if (ts && !(*ts)) {
5787 *ts = iter->read_stamp + event->time_delta;
5788 ring_buffer_normalize_time_stamp(buffer,
5789 cpu_buffer->cpu, ts);
5790 }
5791 return event;
5792
5793 default:
5794 RB_WARN_ON(cpu_buffer, 1);
5795 }
5796
5797 return NULL;
5798 }
5799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5800
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5801 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5802 {
5803 if (likely(!in_nmi())) {
5804 raw_spin_lock(&cpu_buffer->reader_lock);
5805 return true;
5806 }
5807
5808 /*
5809 * If an NMI die dumps out the content of the ring buffer
5810 * trylock must be used to prevent a deadlock if the NMI
5811 * preempted a task that holds the ring buffer locks. If
5812 * we get the lock then all is fine, if not, then continue
5813 * to do the read, but this can corrupt the ring buffer,
5814 * so it must be permanently disabled from future writes.
5815 * Reading from NMI is a oneshot deal.
5816 */
5817 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5818 return true;
5819
5820 /* Continue without locking, but disable the ring buffer */
5821 atomic_inc(&cpu_buffer->record_disabled);
5822 return false;
5823 }
5824
5825 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5826 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5827 {
5828 if (likely(locked))
5829 raw_spin_unlock(&cpu_buffer->reader_lock);
5830 }
5831
5832 /**
5833 * ring_buffer_peek - peek at the next event to be read
5834 * @buffer: The ring buffer to read
5835 * @cpu: The cpu to peak at
5836 * @ts: The timestamp counter of this event.
5837 * @lost_events: a variable to store if events were lost (may be NULL)
5838 *
5839 * This will return the event that will be read next, but does
5840 * not consume the data.
5841 */
5842 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5843 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5844 unsigned long *lost_events)
5845 {
5846 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5847 struct ring_buffer_event *event;
5848 unsigned long flags;
5849 bool dolock;
5850
5851 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5852 return NULL;
5853
5854 again:
5855 local_irq_save(flags);
5856 dolock = rb_reader_lock(cpu_buffer);
5857 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5858 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5859 rb_advance_reader(cpu_buffer);
5860 rb_reader_unlock(cpu_buffer, dolock);
5861 local_irq_restore(flags);
5862
5863 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5864 goto again;
5865
5866 return event;
5867 }
5868
5869 /** ring_buffer_iter_dropped - report if there are dropped events
5870 * @iter: The ring buffer iterator
5871 *
5872 * Returns true if there was dropped events since the last peek.
5873 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5874 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5875 {
5876 bool ret = iter->missed_events != 0;
5877
5878 iter->missed_events = 0;
5879 return ret;
5880 }
5881 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5882
5883 /**
5884 * ring_buffer_iter_peek - peek at the next event to be read
5885 * @iter: The ring buffer iterator
5886 * @ts: The timestamp counter of this event.
5887 *
5888 * This will return the event that will be read next, but does
5889 * not increment the iterator.
5890 */
5891 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5892 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5893 {
5894 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5895 struct ring_buffer_event *event;
5896 unsigned long flags;
5897
5898 again:
5899 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5900 event = rb_iter_peek(iter, ts);
5901 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5902
5903 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5904 goto again;
5905
5906 return event;
5907 }
5908
5909 /**
5910 * ring_buffer_consume - return an event and consume it
5911 * @buffer: The ring buffer to get the next event from
5912 * @cpu: the cpu to read the buffer from
5913 * @ts: a variable to store the timestamp (may be NULL)
5914 * @lost_events: a variable to store if events were lost (may be NULL)
5915 *
5916 * Returns the next event in the ring buffer, and that event is consumed.
5917 * Meaning, that sequential reads will keep returning a different event,
5918 * and eventually empty the ring buffer if the producer is slower.
5919 */
5920 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5921 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5922 unsigned long *lost_events)
5923 {
5924 struct ring_buffer_per_cpu *cpu_buffer;
5925 struct ring_buffer_event *event = NULL;
5926 unsigned long flags;
5927 bool dolock;
5928
5929 again:
5930 /* might be called in atomic */
5931 preempt_disable();
5932
5933 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5934 goto out;
5935
5936 cpu_buffer = buffer->buffers[cpu];
5937 local_irq_save(flags);
5938 dolock = rb_reader_lock(cpu_buffer);
5939
5940 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5941 if (event) {
5942 cpu_buffer->lost_events = 0;
5943 rb_advance_reader(cpu_buffer);
5944 }
5945
5946 rb_reader_unlock(cpu_buffer, dolock);
5947 local_irq_restore(flags);
5948
5949 out:
5950 preempt_enable();
5951
5952 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5953 goto again;
5954
5955 return event;
5956 }
5957 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5958
5959 /**
5960 * ring_buffer_read_start - start a non consuming read of the buffer
5961 * @buffer: The ring buffer to read from
5962 * @cpu: The cpu buffer to iterate over
5963 * @flags: gfp flags to use for memory allocation
5964 *
5965 * This creates an iterator to allow non-consuming iteration through
5966 * the buffer. If the buffer is disabled for writing, it will produce
5967 * the same information each time, but if the buffer is still writing
5968 * then the first hit of a write will cause the iteration to stop.
5969 *
5970 * Must be paired with ring_buffer_read_finish.
5971 */
5972 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5973 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5974 {
5975 struct ring_buffer_per_cpu *cpu_buffer;
5976 struct ring_buffer_iter *iter;
5977
5978 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5979 return NULL;
5980
5981 iter = kzalloc(sizeof(*iter), flags);
5982 if (!iter)
5983 return NULL;
5984
5985 /* Holds the entire event: data and meta data */
5986 iter->event_size = buffer->subbuf_size;
5987 iter->event = kmalloc(iter->event_size, flags);
5988 if (!iter->event) {
5989 kfree(iter);
5990 return NULL;
5991 }
5992
5993 cpu_buffer = buffer->buffers[cpu];
5994
5995 iter->cpu_buffer = cpu_buffer;
5996
5997 atomic_inc(&cpu_buffer->resize_disabled);
5998
5999 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6000 arch_spin_lock(&cpu_buffer->lock);
6001 rb_iter_reset(iter);
6002 arch_spin_unlock(&cpu_buffer->lock);
6003
6004 return iter;
6005 }
6006 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
6007
6008 /**
6009 * ring_buffer_read_finish - finish reading the iterator of the buffer
6010 * @iter: The iterator retrieved by ring_buffer_start
6011 *
6012 * This re-enables resizing of the buffer, and frees the iterator.
6013 */
6014 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)6015 ring_buffer_read_finish(struct ring_buffer_iter *iter)
6016 {
6017 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6018
6019 /* Use this opportunity to check the integrity of the ring buffer. */
6020 rb_check_pages(cpu_buffer);
6021
6022 atomic_dec(&cpu_buffer->resize_disabled);
6023 kfree(iter->event);
6024 kfree(iter);
6025 }
6026 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
6027
6028 /**
6029 * ring_buffer_iter_advance - advance the iterator to the next location
6030 * @iter: The ring buffer iterator
6031 *
6032 * Move the location of the iterator such that the next read will
6033 * be the next location of the iterator.
6034 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)6035 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
6036 {
6037 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6038 unsigned long flags;
6039
6040 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6041
6042 rb_advance_iter(iter);
6043
6044 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6045 }
6046 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
6047
6048 /**
6049 * ring_buffer_size - return the size of the ring buffer (in bytes)
6050 * @buffer: The ring buffer.
6051 * @cpu: The CPU to get ring buffer size from.
6052 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)6053 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
6054 {
6055 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6056 return 0;
6057
6058 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
6059 }
6060 EXPORT_SYMBOL_GPL(ring_buffer_size);
6061
6062 /**
6063 * ring_buffer_max_event_size - return the max data size of an event
6064 * @buffer: The ring buffer.
6065 *
6066 * Returns the maximum size an event can be.
6067 */
ring_buffer_max_event_size(struct trace_buffer * buffer)6068 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6069 {
6070 /* If abs timestamp is requested, events have a timestamp too */
6071 if (ring_buffer_time_stamp_abs(buffer))
6072 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6073 return buffer->max_data_size;
6074 }
6075 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6076
rb_clear_buffer_page(struct buffer_page * page)6077 static void rb_clear_buffer_page(struct buffer_page *page)
6078 {
6079 local_set(&page->write, 0);
6080 local_set(&page->entries, 0);
6081 rb_init_page(page->page);
6082 page->read = 0;
6083 }
6084
6085 /*
6086 * When the buffer is memory mapped to user space, each sub buffer
6087 * has a unique id that is used by the meta data to tell the user
6088 * where the current reader page is.
6089 *
6090 * For a normal allocated ring buffer, the id is saved in the buffer page
6091 * id field, and updated via this function.
6092 *
6093 * But for a fixed memory mapped buffer, the id is already assigned for
6094 * fixed memory ordering in the memory layout and can not be used. Instead
6095 * the index of where the page lies in the memory layout is used.
6096 *
6097 * For the normal pages, set the buffer page id with the passed in @id
6098 * value and return that.
6099 *
6100 * For fixed memory mapped pages, get the page index in the memory layout
6101 * and return that as the id.
6102 */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6103 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6104 struct buffer_page *bpage, int id)
6105 {
6106 /*
6107 * For boot buffers, the id is the index,
6108 * otherwise, set the buffer page with this id
6109 */
6110 if (cpu_buffer->ring_meta)
6111 id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6112 else
6113 bpage->id = id;
6114
6115 return id;
6116 }
6117
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6118 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6119 {
6120 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6121
6122 if (!meta)
6123 return;
6124
6125 meta->reader.read = cpu_buffer->reader_page->read;
6126 meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6127 cpu_buffer->reader_page->id);
6128
6129 meta->reader.lost_events = cpu_buffer->lost_events;
6130
6131 meta->entries = local_read(&cpu_buffer->entries);
6132 meta->overrun = local_read(&cpu_buffer->overrun);
6133 meta->read = cpu_buffer->read;
6134
6135 /* Some archs do not have data cache coherency between kernel and user-space */
6136 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6137 }
6138
6139 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6140 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6141 {
6142 struct buffer_page *page;
6143
6144 rb_head_page_deactivate(cpu_buffer);
6145
6146 cpu_buffer->head_page
6147 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6148 rb_clear_buffer_page(cpu_buffer->head_page);
6149 list_for_each_entry(page, cpu_buffer->pages, list) {
6150 rb_clear_buffer_page(page);
6151 }
6152
6153 cpu_buffer->tail_page = cpu_buffer->head_page;
6154 cpu_buffer->commit_page = cpu_buffer->head_page;
6155
6156 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6157 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6158 rb_clear_buffer_page(cpu_buffer->reader_page);
6159
6160 local_set(&cpu_buffer->entries_bytes, 0);
6161 local_set(&cpu_buffer->overrun, 0);
6162 local_set(&cpu_buffer->commit_overrun, 0);
6163 local_set(&cpu_buffer->dropped_events, 0);
6164 local_set(&cpu_buffer->entries, 0);
6165 local_set(&cpu_buffer->committing, 0);
6166 local_set(&cpu_buffer->commits, 0);
6167 local_set(&cpu_buffer->pages_touched, 0);
6168 local_set(&cpu_buffer->pages_lost, 0);
6169 local_set(&cpu_buffer->pages_read, 0);
6170 cpu_buffer->last_pages_touch = 0;
6171 cpu_buffer->shortest_full = 0;
6172 cpu_buffer->read = 0;
6173 cpu_buffer->read_bytes = 0;
6174
6175 rb_time_set(&cpu_buffer->write_stamp, 0);
6176 rb_time_set(&cpu_buffer->before_stamp, 0);
6177
6178 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6179
6180 cpu_buffer->lost_events = 0;
6181 cpu_buffer->last_overrun = 0;
6182
6183 rb_head_page_activate(cpu_buffer);
6184 cpu_buffer->pages_removed = 0;
6185
6186 if (cpu_buffer->mapped) {
6187 rb_update_meta_page(cpu_buffer);
6188 if (cpu_buffer->ring_meta) {
6189 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6190 meta->commit_buffer = meta->head_buffer;
6191 }
6192 }
6193 }
6194
6195 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6196 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6197 {
6198 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6199
6200 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6201 return;
6202
6203 arch_spin_lock(&cpu_buffer->lock);
6204
6205 rb_reset_cpu(cpu_buffer);
6206
6207 arch_spin_unlock(&cpu_buffer->lock);
6208 }
6209
6210 /**
6211 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6212 * @buffer: The ring buffer to reset a per cpu buffer of
6213 * @cpu: The CPU buffer to be reset
6214 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6215 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6216 {
6217 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6218
6219 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6220 return;
6221
6222 /* prevent another thread from changing buffer sizes */
6223 mutex_lock(&buffer->mutex);
6224
6225 atomic_inc(&cpu_buffer->resize_disabled);
6226 atomic_inc(&cpu_buffer->record_disabled);
6227
6228 /* Make sure all commits have finished */
6229 synchronize_rcu();
6230
6231 reset_disabled_cpu_buffer(cpu_buffer);
6232
6233 atomic_dec(&cpu_buffer->record_disabled);
6234 atomic_dec(&cpu_buffer->resize_disabled);
6235
6236 mutex_unlock(&buffer->mutex);
6237 }
6238 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6239
6240 /* Flag to ensure proper resetting of atomic variables */
6241 #define RESET_BIT (1 << 30)
6242
6243 /**
6244 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6245 * @buffer: The ring buffer to reset a per cpu buffer of
6246 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6247 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6248 {
6249 struct ring_buffer_per_cpu *cpu_buffer;
6250 int cpu;
6251
6252 /* prevent another thread from changing buffer sizes */
6253 mutex_lock(&buffer->mutex);
6254
6255 for_each_online_buffer_cpu(buffer, cpu) {
6256 cpu_buffer = buffer->buffers[cpu];
6257
6258 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6259 atomic_inc(&cpu_buffer->record_disabled);
6260 }
6261
6262 /* Make sure all commits have finished */
6263 synchronize_rcu();
6264
6265 for_each_buffer_cpu(buffer, cpu) {
6266 cpu_buffer = buffer->buffers[cpu];
6267
6268 /*
6269 * If a CPU came online during the synchronize_rcu(), then
6270 * ignore it.
6271 */
6272 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6273 continue;
6274
6275 reset_disabled_cpu_buffer(cpu_buffer);
6276
6277 atomic_dec(&cpu_buffer->record_disabled);
6278 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6279 }
6280
6281 mutex_unlock(&buffer->mutex);
6282 }
6283
6284 /**
6285 * ring_buffer_reset - reset a ring buffer
6286 * @buffer: The ring buffer to reset all cpu buffers
6287 */
ring_buffer_reset(struct trace_buffer * buffer)6288 void ring_buffer_reset(struct trace_buffer *buffer)
6289 {
6290 struct ring_buffer_per_cpu *cpu_buffer;
6291 int cpu;
6292
6293 /* prevent another thread from changing buffer sizes */
6294 mutex_lock(&buffer->mutex);
6295
6296 for_each_buffer_cpu(buffer, cpu) {
6297 cpu_buffer = buffer->buffers[cpu];
6298
6299 atomic_inc(&cpu_buffer->resize_disabled);
6300 atomic_inc(&cpu_buffer->record_disabled);
6301 }
6302
6303 /* Make sure all commits have finished */
6304 synchronize_rcu();
6305
6306 for_each_buffer_cpu(buffer, cpu) {
6307 cpu_buffer = buffer->buffers[cpu];
6308
6309 reset_disabled_cpu_buffer(cpu_buffer);
6310
6311 atomic_dec(&cpu_buffer->record_disabled);
6312 atomic_dec(&cpu_buffer->resize_disabled);
6313 }
6314
6315 mutex_unlock(&buffer->mutex);
6316 }
6317 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6318
6319 /**
6320 * ring_buffer_empty - is the ring buffer empty?
6321 * @buffer: The ring buffer to test
6322 */
ring_buffer_empty(struct trace_buffer * buffer)6323 bool ring_buffer_empty(struct trace_buffer *buffer)
6324 {
6325 struct ring_buffer_per_cpu *cpu_buffer;
6326 unsigned long flags;
6327 bool dolock;
6328 bool ret;
6329 int cpu;
6330
6331 /* yes this is racy, but if you don't like the race, lock the buffer */
6332 for_each_buffer_cpu(buffer, cpu) {
6333 cpu_buffer = buffer->buffers[cpu];
6334 local_irq_save(flags);
6335 dolock = rb_reader_lock(cpu_buffer);
6336 ret = rb_per_cpu_empty(cpu_buffer);
6337 rb_reader_unlock(cpu_buffer, dolock);
6338 local_irq_restore(flags);
6339
6340 if (!ret)
6341 return false;
6342 }
6343
6344 return true;
6345 }
6346 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6347
6348 /**
6349 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6350 * @buffer: The ring buffer
6351 * @cpu: The CPU buffer to test
6352 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6353 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6354 {
6355 struct ring_buffer_per_cpu *cpu_buffer;
6356 unsigned long flags;
6357 bool dolock;
6358 bool ret;
6359
6360 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6361 return true;
6362
6363 cpu_buffer = buffer->buffers[cpu];
6364 local_irq_save(flags);
6365 dolock = rb_reader_lock(cpu_buffer);
6366 ret = rb_per_cpu_empty(cpu_buffer);
6367 rb_reader_unlock(cpu_buffer, dolock);
6368 local_irq_restore(flags);
6369
6370 return ret;
6371 }
6372 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6373
6374 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6375 /**
6376 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6377 * @buffer_a: One buffer to swap with
6378 * @buffer_b: The other buffer to swap with
6379 * @cpu: the CPU of the buffers to swap
6380 *
6381 * This function is useful for tracers that want to take a "snapshot"
6382 * of a CPU buffer and has another back up buffer lying around.
6383 * it is expected that the tracer handles the cpu buffer not being
6384 * used at the moment.
6385 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6386 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6387 struct trace_buffer *buffer_b, int cpu)
6388 {
6389 struct ring_buffer_per_cpu *cpu_buffer_a;
6390 struct ring_buffer_per_cpu *cpu_buffer_b;
6391 int ret = -EINVAL;
6392
6393 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6394 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6395 return -EINVAL;
6396
6397 cpu_buffer_a = buffer_a->buffers[cpu];
6398 cpu_buffer_b = buffer_b->buffers[cpu];
6399
6400 /* It's up to the callers to not try to swap mapped buffers */
6401 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6402 return -EBUSY;
6403
6404 /* At least make sure the two buffers are somewhat the same */
6405 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6406 return -EINVAL;
6407
6408 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6409 return -EINVAL;
6410
6411 if (atomic_read(&buffer_a->record_disabled))
6412 return -EAGAIN;
6413
6414 if (atomic_read(&buffer_b->record_disabled))
6415 return -EAGAIN;
6416
6417 if (atomic_read(&cpu_buffer_a->record_disabled))
6418 return -EAGAIN;
6419
6420 if (atomic_read(&cpu_buffer_b->record_disabled))
6421 return -EAGAIN;
6422
6423 /*
6424 * We can't do a synchronize_rcu here because this
6425 * function can be called in atomic context.
6426 * Normally this will be called from the same CPU as cpu.
6427 * If not it's up to the caller to protect this.
6428 */
6429 atomic_inc(&cpu_buffer_a->record_disabled);
6430 atomic_inc(&cpu_buffer_b->record_disabled);
6431
6432 ret = -EBUSY;
6433 if (local_read(&cpu_buffer_a->committing))
6434 goto out_dec;
6435 if (local_read(&cpu_buffer_b->committing))
6436 goto out_dec;
6437
6438 /*
6439 * When resize is in progress, we cannot swap it because
6440 * it will mess the state of the cpu buffer.
6441 */
6442 if (atomic_read(&buffer_a->resizing))
6443 goto out_dec;
6444 if (atomic_read(&buffer_b->resizing))
6445 goto out_dec;
6446
6447 buffer_a->buffers[cpu] = cpu_buffer_b;
6448 buffer_b->buffers[cpu] = cpu_buffer_a;
6449
6450 cpu_buffer_b->buffer = buffer_a;
6451 cpu_buffer_a->buffer = buffer_b;
6452
6453 ret = 0;
6454
6455 out_dec:
6456 atomic_dec(&cpu_buffer_a->record_disabled);
6457 atomic_dec(&cpu_buffer_b->record_disabled);
6458 return ret;
6459 }
6460 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6461 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6462
6463 /**
6464 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6465 * @buffer: the buffer to allocate for.
6466 * @cpu: the cpu buffer to allocate.
6467 *
6468 * This function is used in conjunction with ring_buffer_read_page.
6469 * When reading a full page from the ring buffer, these functions
6470 * can be used to speed up the process. The calling function should
6471 * allocate a few pages first with this function. Then when it
6472 * needs to get pages from the ring buffer, it passes the result
6473 * of this function into ring_buffer_read_page, which will swap
6474 * the page that was allocated, with the read page of the buffer.
6475 *
6476 * Returns:
6477 * The page allocated, or ERR_PTR
6478 */
6479 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6480 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6481 {
6482 struct ring_buffer_per_cpu *cpu_buffer;
6483 struct buffer_data_read_page *bpage = NULL;
6484 unsigned long flags;
6485
6486 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6487 return ERR_PTR(-ENODEV);
6488
6489 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6490 if (!bpage)
6491 return ERR_PTR(-ENOMEM);
6492
6493 bpage->order = buffer->subbuf_order;
6494 cpu_buffer = buffer->buffers[cpu];
6495 local_irq_save(flags);
6496 arch_spin_lock(&cpu_buffer->lock);
6497
6498 if (cpu_buffer->free_page) {
6499 bpage->data = cpu_buffer->free_page;
6500 cpu_buffer->free_page = NULL;
6501 }
6502
6503 arch_spin_unlock(&cpu_buffer->lock);
6504 local_irq_restore(flags);
6505
6506 if (bpage->data) {
6507 rb_init_page(bpage->data);
6508 } else {
6509 bpage->data = alloc_cpu_data(cpu, cpu_buffer->buffer->subbuf_order);
6510 if (!bpage->data) {
6511 kfree(bpage);
6512 return ERR_PTR(-ENOMEM);
6513 }
6514 }
6515
6516 return bpage;
6517 }
6518 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6519
6520 /**
6521 * ring_buffer_free_read_page - free an allocated read page
6522 * @buffer: the buffer the page was allocate for
6523 * @cpu: the cpu buffer the page came from
6524 * @data_page: the page to free
6525 *
6526 * Free a page allocated from ring_buffer_alloc_read_page.
6527 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6528 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6529 struct buffer_data_read_page *data_page)
6530 {
6531 struct ring_buffer_per_cpu *cpu_buffer;
6532 struct buffer_data_page *bpage = data_page->data;
6533 struct page *page = virt_to_page(bpage);
6534 unsigned long flags;
6535
6536 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6537 return;
6538
6539 cpu_buffer = buffer->buffers[cpu];
6540
6541 /*
6542 * If the page is still in use someplace else, or order of the page
6543 * is different from the subbuffer order of the buffer -
6544 * we can't reuse it
6545 */
6546 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6547 goto out;
6548
6549 local_irq_save(flags);
6550 arch_spin_lock(&cpu_buffer->lock);
6551
6552 if (!cpu_buffer->free_page) {
6553 cpu_buffer->free_page = bpage;
6554 bpage = NULL;
6555 }
6556
6557 arch_spin_unlock(&cpu_buffer->lock);
6558 local_irq_restore(flags);
6559
6560 out:
6561 free_pages((unsigned long)bpage, data_page->order);
6562 kfree(data_page);
6563 }
6564 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6565
6566 /**
6567 * ring_buffer_read_page - extract a page from the ring buffer
6568 * @buffer: buffer to extract from
6569 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6570 * @len: amount to extract
6571 * @cpu: the cpu of the buffer to extract
6572 * @full: should the extraction only happen when the page is full.
6573 *
6574 * This function will pull out a page from the ring buffer and consume it.
6575 * @data_page must be the address of the variable that was returned
6576 * from ring_buffer_alloc_read_page. This is because the page might be used
6577 * to swap with a page in the ring buffer.
6578 *
6579 * for example:
6580 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6581 * if (IS_ERR(rpage))
6582 * return PTR_ERR(rpage);
6583 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6584 * if (ret >= 0)
6585 * process_page(ring_buffer_read_page_data(rpage), ret);
6586 * ring_buffer_free_read_page(buffer, cpu, rpage);
6587 *
6588 * When @full is set, the function will not return true unless
6589 * the writer is off the reader page.
6590 *
6591 * Note: it is up to the calling functions to handle sleeps and wakeups.
6592 * The ring buffer can be used anywhere in the kernel and can not
6593 * blindly call wake_up. The layer that uses the ring buffer must be
6594 * responsible for that.
6595 *
6596 * Returns:
6597 * >=0 if data has been transferred, returns the offset of consumed data.
6598 * <0 if no data has been transferred.
6599 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6600 int ring_buffer_read_page(struct trace_buffer *buffer,
6601 struct buffer_data_read_page *data_page,
6602 size_t len, int cpu, int full)
6603 {
6604 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6605 struct ring_buffer_event *event;
6606 struct buffer_data_page *bpage;
6607 struct buffer_page *reader;
6608 unsigned long missed_events;
6609 unsigned int commit;
6610 unsigned int read;
6611 u64 save_timestamp;
6612
6613 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6614 return -1;
6615
6616 /*
6617 * If len is not big enough to hold the page header, then
6618 * we can not copy anything.
6619 */
6620 if (len <= BUF_PAGE_HDR_SIZE)
6621 return -1;
6622
6623 len -= BUF_PAGE_HDR_SIZE;
6624
6625 if (!data_page || !data_page->data)
6626 return -1;
6627
6628 if (data_page->order != buffer->subbuf_order)
6629 return -1;
6630
6631 bpage = data_page->data;
6632 if (!bpage)
6633 return -1;
6634
6635 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6636
6637 reader = rb_get_reader_page(cpu_buffer);
6638 if (!reader)
6639 return -1;
6640
6641 event = rb_reader_event(cpu_buffer);
6642
6643 read = reader->read;
6644 commit = rb_page_size(reader);
6645
6646 /* Check if any events were dropped */
6647 missed_events = cpu_buffer->lost_events;
6648
6649 /*
6650 * If this page has been partially read or
6651 * if len is not big enough to read the rest of the page or
6652 * a writer is still on the page, then
6653 * we must copy the data from the page to the buffer.
6654 * Otherwise, we can simply swap the page with the one passed in.
6655 */
6656 if (read || (len < (commit - read)) ||
6657 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6658 cpu_buffer->mapped) {
6659 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6660 unsigned int rpos = read;
6661 unsigned int pos = 0;
6662 unsigned int size;
6663
6664 /*
6665 * If a full page is expected, this can still be returned
6666 * if there's been a previous partial read and the
6667 * rest of the page can be read and the commit page is off
6668 * the reader page.
6669 */
6670 if (full &&
6671 (!read || (len < (commit - read)) ||
6672 cpu_buffer->reader_page == cpu_buffer->commit_page))
6673 return -1;
6674
6675 if (len > (commit - read))
6676 len = (commit - read);
6677
6678 /* Always keep the time extend and data together */
6679 size = rb_event_ts_length(event);
6680
6681 if (len < size)
6682 return -1;
6683
6684 /* save the current timestamp, since the user will need it */
6685 save_timestamp = cpu_buffer->read_stamp;
6686
6687 /* Need to copy one event at a time */
6688 do {
6689 /* We need the size of one event, because
6690 * rb_advance_reader only advances by one event,
6691 * whereas rb_event_ts_length may include the size of
6692 * one or two events.
6693 * We have already ensured there's enough space if this
6694 * is a time extend. */
6695 size = rb_event_length(event);
6696 memcpy(bpage->data + pos, rpage->data + rpos, size);
6697
6698 len -= size;
6699
6700 rb_advance_reader(cpu_buffer);
6701 rpos = reader->read;
6702 pos += size;
6703
6704 if (rpos >= commit)
6705 break;
6706
6707 event = rb_reader_event(cpu_buffer);
6708 /* Always keep the time extend and data together */
6709 size = rb_event_ts_length(event);
6710 } while (len >= size);
6711
6712 /* update bpage */
6713 local_set(&bpage->commit, pos);
6714 bpage->time_stamp = save_timestamp;
6715
6716 /* we copied everything to the beginning */
6717 read = 0;
6718 } else {
6719 /* update the entry counter */
6720 cpu_buffer->read += rb_page_entries(reader);
6721 cpu_buffer->read_bytes += rb_page_size(reader);
6722
6723 /* swap the pages */
6724 rb_init_page(bpage);
6725 bpage = reader->page;
6726 reader->page = data_page->data;
6727 local_set(&reader->write, 0);
6728 local_set(&reader->entries, 0);
6729 reader->read = 0;
6730 data_page->data = bpage;
6731
6732 /*
6733 * Use the real_end for the data size,
6734 * This gives us a chance to store the lost events
6735 * on the page.
6736 */
6737 if (reader->real_end)
6738 local_set(&bpage->commit, reader->real_end);
6739 }
6740
6741 cpu_buffer->lost_events = 0;
6742
6743 commit = local_read(&bpage->commit);
6744 /*
6745 * Set a flag in the commit field if we lost events
6746 */
6747 if (missed_events) {
6748 /* If there is room at the end of the page to save the
6749 * missed events, then record it there.
6750 */
6751 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6752 memcpy(&bpage->data[commit], &missed_events,
6753 sizeof(missed_events));
6754 local_add(RB_MISSED_STORED, &bpage->commit);
6755 commit += sizeof(missed_events);
6756 }
6757 local_add(RB_MISSED_EVENTS, &bpage->commit);
6758 }
6759
6760 /*
6761 * This page may be off to user land. Zero it out here.
6762 */
6763 if (commit < buffer->subbuf_size)
6764 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6765
6766 return read;
6767 }
6768 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6769
6770 /**
6771 * ring_buffer_read_page_data - get pointer to the data in the page.
6772 * @page: the page to get the data from
6773 *
6774 * Returns pointer to the actual data in this page.
6775 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6776 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6777 {
6778 return page->data;
6779 }
6780 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6781
6782 /**
6783 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6784 * @buffer: the buffer to get the sub buffer size from
6785 *
6786 * Returns size of the sub buffer, in bytes.
6787 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6788 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6789 {
6790 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6791 }
6792 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6793
6794 /**
6795 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6796 * @buffer: The ring_buffer to get the system sub page order from
6797 *
6798 * By default, one ring buffer sub page equals to one system page. This parameter
6799 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6800 * extended, but must be an order of system page size.
6801 *
6802 * Returns the order of buffer sub page size, in system pages:
6803 * 0 means the sub buffer size is 1 system page and so forth.
6804 * In case of an error < 0 is returned.
6805 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6806 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6807 {
6808 if (!buffer)
6809 return -EINVAL;
6810
6811 return buffer->subbuf_order;
6812 }
6813 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6814
6815 /**
6816 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6817 * @buffer: The ring_buffer to set the new page size.
6818 * @order: Order of the system pages in one sub buffer page
6819 *
6820 * By default, one ring buffer pages equals to one system page. This API can be
6821 * used to set new size of the ring buffer page. The size must be order of
6822 * system page size, that's why the input parameter @order is the order of
6823 * system pages that are allocated for one ring buffer page:
6824 * 0 - 1 system page
6825 * 1 - 2 system pages
6826 * 3 - 4 system pages
6827 * ...
6828 *
6829 * Returns 0 on success or < 0 in case of an error.
6830 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6831 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6832 {
6833 struct ring_buffer_per_cpu *cpu_buffer;
6834 struct buffer_page *bpage, *tmp;
6835 int old_order, old_size;
6836 int nr_pages;
6837 int psize;
6838 int err;
6839 int cpu;
6840
6841 if (!buffer || order < 0)
6842 return -EINVAL;
6843
6844 if (buffer->subbuf_order == order)
6845 return 0;
6846
6847 psize = (1 << order) * PAGE_SIZE;
6848 if (psize <= BUF_PAGE_HDR_SIZE)
6849 return -EINVAL;
6850
6851 /* Size of a subbuf cannot be greater than the write counter */
6852 if (psize > RB_WRITE_MASK + 1)
6853 return -EINVAL;
6854
6855 old_order = buffer->subbuf_order;
6856 old_size = buffer->subbuf_size;
6857
6858 /* prevent another thread from changing buffer sizes */
6859 guard(mutex)(&buffer->mutex);
6860 atomic_inc(&buffer->record_disabled);
6861
6862 /* Make sure all commits have finished */
6863 synchronize_rcu();
6864
6865 buffer->subbuf_order = order;
6866 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6867
6868 /* Make sure all new buffers are allocated, before deleting the old ones */
6869 for_each_buffer_cpu(buffer, cpu) {
6870
6871 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6872 continue;
6873
6874 cpu_buffer = buffer->buffers[cpu];
6875
6876 if (cpu_buffer->mapped) {
6877 err = -EBUSY;
6878 goto error;
6879 }
6880
6881 /* Update the number of pages to match the new size */
6882 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6883 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6884
6885 /* we need a minimum of two pages */
6886 if (nr_pages < 2)
6887 nr_pages = 2;
6888
6889 cpu_buffer->nr_pages_to_update = nr_pages;
6890
6891 /* Include the reader page */
6892 nr_pages++;
6893
6894 /* Allocate the new size buffer */
6895 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6896 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6897 &cpu_buffer->new_pages)) {
6898 /* not enough memory for new pages */
6899 err = -ENOMEM;
6900 goto error;
6901 }
6902 }
6903
6904 for_each_buffer_cpu(buffer, cpu) {
6905 struct buffer_data_page *old_free_data_page;
6906 struct list_head old_pages;
6907 unsigned long flags;
6908
6909 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6910 continue;
6911
6912 cpu_buffer = buffer->buffers[cpu];
6913
6914 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6915
6916 /* Clear the head bit to make the link list normal to read */
6917 rb_head_page_deactivate(cpu_buffer);
6918
6919 /*
6920 * Collect buffers from the cpu_buffer pages list and the
6921 * reader_page on old_pages, so they can be freed later when not
6922 * under a spinlock. The pages list is a linked list with no
6923 * head, adding old_pages turns it into a regular list with
6924 * old_pages being the head.
6925 */
6926 list_add(&old_pages, cpu_buffer->pages);
6927 list_add(&cpu_buffer->reader_page->list, &old_pages);
6928
6929 /* One page was allocated for the reader page */
6930 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6931 struct buffer_page, list);
6932 list_del_init(&cpu_buffer->reader_page->list);
6933
6934 /* Install the new pages, remove the head from the list */
6935 cpu_buffer->pages = cpu_buffer->new_pages.next;
6936 list_del_init(&cpu_buffer->new_pages);
6937 cpu_buffer->cnt++;
6938
6939 cpu_buffer->head_page
6940 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6941 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6942
6943 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6944 cpu_buffer->nr_pages_to_update = 0;
6945
6946 old_free_data_page = cpu_buffer->free_page;
6947 cpu_buffer->free_page = NULL;
6948
6949 rb_head_page_activate(cpu_buffer);
6950
6951 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6952
6953 /* Free old sub buffers */
6954 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6955 list_del_init(&bpage->list);
6956 free_buffer_page(bpage);
6957 }
6958 free_pages((unsigned long)old_free_data_page, old_order);
6959
6960 rb_check_pages(cpu_buffer);
6961 }
6962
6963 atomic_dec(&buffer->record_disabled);
6964
6965 return 0;
6966
6967 error:
6968 buffer->subbuf_order = old_order;
6969 buffer->subbuf_size = old_size;
6970
6971 atomic_dec(&buffer->record_disabled);
6972
6973 for_each_buffer_cpu(buffer, cpu) {
6974 cpu_buffer = buffer->buffers[cpu];
6975
6976 if (!cpu_buffer->nr_pages_to_update)
6977 continue;
6978
6979 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6980 list_del_init(&bpage->list);
6981 free_buffer_page(bpage);
6982 }
6983 }
6984
6985 return err;
6986 }
6987 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6988
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6989 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6990 {
6991 struct page *page;
6992
6993 if (cpu_buffer->meta_page)
6994 return 0;
6995
6996 page = alloc_page(GFP_USER | __GFP_ZERO);
6997 if (!page)
6998 return -ENOMEM;
6999
7000 cpu_buffer->meta_page = page_to_virt(page);
7001
7002 return 0;
7003 }
7004
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7005 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7006 {
7007 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
7008
7009 free_page(addr);
7010 cpu_buffer->meta_page = NULL;
7011 }
7012
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)7013 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
7014 unsigned long *subbuf_ids)
7015 {
7016 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
7017 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
7018 struct buffer_page *first_subbuf, *subbuf;
7019 int cnt = 0;
7020 int id = 0;
7021
7022 id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
7023 subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
7024 cnt++;
7025
7026 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7027 do {
7028 id = rb_page_id(cpu_buffer, subbuf, id);
7029
7030 if (WARN_ON(id >= nr_subbufs))
7031 break;
7032
7033 subbuf_ids[id] = (unsigned long)subbuf->page;
7034
7035 rb_inc_page(&subbuf);
7036 id++;
7037 cnt++;
7038 } while (subbuf != first_subbuf);
7039
7040 WARN_ON(cnt != nr_subbufs);
7041
7042 /* install subbuf ID to kern VA translation */
7043 cpu_buffer->subbuf_ids = subbuf_ids;
7044
7045 meta->meta_struct_len = sizeof(*meta);
7046 meta->nr_subbufs = nr_subbufs;
7047 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7048 meta->meta_page_size = meta->subbuf_size;
7049
7050 rb_update_meta_page(cpu_buffer);
7051 }
7052
7053 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7054 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7055 {
7056 struct ring_buffer_per_cpu *cpu_buffer;
7057
7058 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7059 return ERR_PTR(-EINVAL);
7060
7061 cpu_buffer = buffer->buffers[cpu];
7062
7063 mutex_lock(&cpu_buffer->mapping_lock);
7064
7065 if (!cpu_buffer->user_mapped) {
7066 mutex_unlock(&cpu_buffer->mapping_lock);
7067 return ERR_PTR(-ENODEV);
7068 }
7069
7070 return cpu_buffer;
7071 }
7072
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7073 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7074 {
7075 mutex_unlock(&cpu_buffer->mapping_lock);
7076 }
7077
7078 /*
7079 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7080 * to be set-up or torn-down.
7081 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7082 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7083 bool inc)
7084 {
7085 unsigned long flags;
7086
7087 lockdep_assert_held(&cpu_buffer->mapping_lock);
7088
7089 /* mapped is always greater or equal to user_mapped */
7090 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7091 return -EINVAL;
7092
7093 if (inc && cpu_buffer->mapped == UINT_MAX)
7094 return -EBUSY;
7095
7096 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7097 return -EINVAL;
7098
7099 mutex_lock(&cpu_buffer->buffer->mutex);
7100 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7101
7102 if (inc) {
7103 cpu_buffer->user_mapped++;
7104 cpu_buffer->mapped++;
7105 } else {
7106 cpu_buffer->user_mapped--;
7107 cpu_buffer->mapped--;
7108 }
7109
7110 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7111 mutex_unlock(&cpu_buffer->buffer->mutex);
7112
7113 return 0;
7114 }
7115
7116 /*
7117 * +--------------+ pgoff == 0
7118 * | meta page |
7119 * +--------------+ pgoff == 1
7120 * | subbuffer 0 |
7121 * | |
7122 * +--------------+ pgoff == (1 + (1 << subbuf_order))
7123 * | subbuffer 1 |
7124 * | |
7125 * ...
7126 */
7127 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7128 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7129 struct vm_area_struct *vma)
7130 {
7131 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7132 unsigned int subbuf_pages, subbuf_order;
7133 struct page **pages __free(kfree) = NULL;
7134 int p = 0, s = 0;
7135 int err;
7136
7137 /* Refuse MP_PRIVATE or writable mappings */
7138 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7139 !(vma->vm_flags & VM_MAYSHARE))
7140 return -EPERM;
7141
7142 subbuf_order = cpu_buffer->buffer->subbuf_order;
7143 subbuf_pages = 1 << subbuf_order;
7144
7145 if (subbuf_order && pgoff % subbuf_pages)
7146 return -EINVAL;
7147
7148 /*
7149 * Make sure the mapping cannot become writable later. Also tell the VM
7150 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7151 */
7152 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7153 VM_MAYWRITE);
7154
7155 lockdep_assert_held(&cpu_buffer->mapping_lock);
7156
7157 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7158 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7159 if (nr_pages <= pgoff)
7160 return -EINVAL;
7161
7162 nr_pages -= pgoff;
7163
7164 nr_vma_pages = vma_pages(vma);
7165 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7166 return -EINVAL;
7167
7168 nr_pages = nr_vma_pages;
7169
7170 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7171 if (!pages)
7172 return -ENOMEM;
7173
7174 if (!pgoff) {
7175 unsigned long meta_page_padding;
7176
7177 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7178
7179 /*
7180 * Pad with the zero-page to align the meta-page with the
7181 * sub-buffers.
7182 */
7183 meta_page_padding = subbuf_pages - 1;
7184 while (meta_page_padding-- && p < nr_pages) {
7185 unsigned long __maybe_unused zero_addr =
7186 vma->vm_start + (PAGE_SIZE * p);
7187
7188 pages[p++] = ZERO_PAGE(zero_addr);
7189 }
7190 } else {
7191 /* Skip the meta-page */
7192 pgoff -= subbuf_pages;
7193
7194 s += pgoff / subbuf_pages;
7195 }
7196
7197 while (p < nr_pages) {
7198 struct page *page;
7199 int off = 0;
7200
7201 if (WARN_ON_ONCE(s >= nr_subbufs))
7202 return -EINVAL;
7203
7204 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7205
7206 for (; off < (1 << (subbuf_order)); off++, page++) {
7207 if (p >= nr_pages)
7208 break;
7209
7210 pages[p++] = page;
7211 }
7212 s++;
7213 }
7214
7215 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7216
7217 return err;
7218 }
7219 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7220 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7221 struct vm_area_struct *vma)
7222 {
7223 return -EOPNOTSUPP;
7224 }
7225 #endif
7226
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7227 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7228 struct vm_area_struct *vma)
7229 {
7230 struct ring_buffer_per_cpu *cpu_buffer;
7231 unsigned long flags, *subbuf_ids;
7232 int err;
7233
7234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7235 return -EINVAL;
7236
7237 cpu_buffer = buffer->buffers[cpu];
7238
7239 guard(mutex)(&cpu_buffer->mapping_lock);
7240
7241 if (cpu_buffer->user_mapped) {
7242 err = __rb_map_vma(cpu_buffer, vma);
7243 if (!err)
7244 err = __rb_inc_dec_mapped(cpu_buffer, true);
7245 return err;
7246 }
7247
7248 /* prevent another thread from changing buffer/sub-buffer sizes */
7249 guard(mutex)(&buffer->mutex);
7250
7251 err = rb_alloc_meta_page(cpu_buffer);
7252 if (err)
7253 return err;
7254
7255 /* subbuf_ids include the reader while nr_pages does not */
7256 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7257 if (!subbuf_ids) {
7258 rb_free_meta_page(cpu_buffer);
7259 return -ENOMEM;
7260 }
7261
7262 atomic_inc(&cpu_buffer->resize_disabled);
7263
7264 /*
7265 * Lock all readers to block any subbuf swap until the subbuf IDs are
7266 * assigned.
7267 */
7268 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7269 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7270
7271 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7272
7273 err = __rb_map_vma(cpu_buffer, vma);
7274 if (!err) {
7275 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7276 /* This is the first time it is mapped by user */
7277 cpu_buffer->mapped++;
7278 cpu_buffer->user_mapped = 1;
7279 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7280 } else {
7281 kfree(cpu_buffer->subbuf_ids);
7282 cpu_buffer->subbuf_ids = NULL;
7283 rb_free_meta_page(cpu_buffer);
7284 atomic_dec(&cpu_buffer->resize_disabled);
7285 }
7286
7287 return err;
7288 }
7289
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7290 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7291 {
7292 struct ring_buffer_per_cpu *cpu_buffer;
7293 unsigned long flags;
7294
7295 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7296 return -EINVAL;
7297
7298 cpu_buffer = buffer->buffers[cpu];
7299
7300 guard(mutex)(&cpu_buffer->mapping_lock);
7301
7302 if (!cpu_buffer->user_mapped) {
7303 return -ENODEV;
7304 } else if (cpu_buffer->user_mapped > 1) {
7305 __rb_inc_dec_mapped(cpu_buffer, false);
7306 return 0;
7307 }
7308
7309 guard(mutex)(&buffer->mutex);
7310 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7311
7312 /* This is the last user space mapping */
7313 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7314 cpu_buffer->mapped--;
7315 cpu_buffer->user_mapped = 0;
7316
7317 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7318
7319 kfree(cpu_buffer->subbuf_ids);
7320 cpu_buffer->subbuf_ids = NULL;
7321 rb_free_meta_page(cpu_buffer);
7322 atomic_dec(&cpu_buffer->resize_disabled);
7323
7324 return 0;
7325 }
7326
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7327 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7328 {
7329 struct ring_buffer_per_cpu *cpu_buffer;
7330 struct buffer_page *reader;
7331 unsigned long missed_events;
7332 unsigned long reader_size;
7333 unsigned long flags;
7334
7335 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7336 if (IS_ERR(cpu_buffer))
7337 return (int)PTR_ERR(cpu_buffer);
7338
7339 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7340
7341 consume:
7342 if (rb_per_cpu_empty(cpu_buffer))
7343 goto out;
7344
7345 reader_size = rb_page_size(cpu_buffer->reader_page);
7346
7347 /*
7348 * There are data to be read on the current reader page, we can
7349 * return to the caller. But before that, we assume the latter will read
7350 * everything. Let's update the kernel reader accordingly.
7351 */
7352 if (cpu_buffer->reader_page->read < reader_size) {
7353 while (cpu_buffer->reader_page->read < reader_size)
7354 rb_advance_reader(cpu_buffer);
7355 goto out;
7356 }
7357
7358 /* Did the reader catch up with the writer? */
7359 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
7360 goto out;
7361
7362 reader = rb_get_reader_page(cpu_buffer);
7363 if (WARN_ON(!reader))
7364 goto out;
7365
7366 /* Check if any events were dropped */
7367 missed_events = cpu_buffer->lost_events;
7368
7369 if (missed_events) {
7370 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7371 struct buffer_data_page *bpage = reader->page;
7372 unsigned int commit;
7373 /*
7374 * Use the real_end for the data size,
7375 * This gives us a chance to store the lost events
7376 * on the page.
7377 */
7378 if (reader->real_end)
7379 local_set(&bpage->commit, reader->real_end);
7380 /*
7381 * If there is room at the end of the page to save the
7382 * missed events, then record it there.
7383 */
7384 commit = rb_page_size(reader);
7385 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7386 memcpy(&bpage->data[commit], &missed_events,
7387 sizeof(missed_events));
7388 local_add(RB_MISSED_STORED, &bpage->commit);
7389 }
7390 local_add(RB_MISSED_EVENTS, &bpage->commit);
7391 } else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7392 "Reader on commit with %ld missed events",
7393 missed_events)) {
7394 /*
7395 * There shouldn't be any missed events if the tail_page
7396 * is on the reader page. But if the tail page is not on the
7397 * reader page and the commit_page is, that would mean that
7398 * there's a commit_overrun (an interrupt preempted an
7399 * addition of an event and then filled the buffer
7400 * with new events). In this case it's not an
7401 * error, but it should still be reported.
7402 *
7403 * TODO: Add missed events to the page for user space to know.
7404 */
7405 pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7406 cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7407 }
7408 }
7409
7410 cpu_buffer->lost_events = 0;
7411
7412 goto consume;
7413
7414 out:
7415 /* Some archs do not have data cache coherency between kernel and user-space */
7416 flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7417 buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7418
7419 rb_update_meta_page(cpu_buffer);
7420
7421 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7422 rb_put_mapped_buffer(cpu_buffer);
7423
7424 return 0;
7425 }
7426
7427 /*
7428 * We only allocate new buffers, never free them if the CPU goes down.
7429 * If we were to free the buffer, then the user would lose any trace that was in
7430 * the buffer.
7431 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7432 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7433 {
7434 struct trace_buffer *buffer;
7435 long nr_pages_same;
7436 int cpu_i;
7437 unsigned long nr_pages;
7438
7439 buffer = container_of(node, struct trace_buffer, node);
7440 if (cpumask_test_cpu(cpu, buffer->cpumask))
7441 return 0;
7442
7443 nr_pages = 0;
7444 nr_pages_same = 1;
7445 /* check if all cpu sizes are same */
7446 for_each_buffer_cpu(buffer, cpu_i) {
7447 /* fill in the size from first enabled cpu */
7448 if (nr_pages == 0)
7449 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7450 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7451 nr_pages_same = 0;
7452 break;
7453 }
7454 }
7455 /* allocate minimum pages, user can later expand it */
7456 if (!nr_pages_same)
7457 nr_pages = 2;
7458 buffer->buffers[cpu] =
7459 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7460 if (!buffer->buffers[cpu]) {
7461 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7462 cpu);
7463 return -ENOMEM;
7464 }
7465 smp_wmb();
7466 cpumask_set_cpu(cpu, buffer->cpumask);
7467 return 0;
7468 }
7469
7470 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7471 /*
7472 * This is a basic integrity check of the ring buffer.
7473 * Late in the boot cycle this test will run when configured in.
7474 * It will kick off a thread per CPU that will go into a loop
7475 * writing to the per cpu ring buffer various sizes of data.
7476 * Some of the data will be large items, some small.
7477 *
7478 * Another thread is created that goes into a spin, sending out
7479 * IPIs to the other CPUs to also write into the ring buffer.
7480 * this is to test the nesting ability of the buffer.
7481 *
7482 * Basic stats are recorded and reported. If something in the
7483 * ring buffer should happen that's not expected, a big warning
7484 * is displayed and all ring buffers are disabled.
7485 */
7486 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7487
7488 struct rb_test_data {
7489 struct trace_buffer *buffer;
7490 unsigned long events;
7491 unsigned long bytes_written;
7492 unsigned long bytes_alloc;
7493 unsigned long bytes_dropped;
7494 unsigned long events_nested;
7495 unsigned long bytes_written_nested;
7496 unsigned long bytes_alloc_nested;
7497 unsigned long bytes_dropped_nested;
7498 int min_size_nested;
7499 int max_size_nested;
7500 int max_size;
7501 int min_size;
7502 int cpu;
7503 int cnt;
7504 };
7505
7506 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7507
7508 /* 1 meg per cpu */
7509 #define RB_TEST_BUFFER_SIZE 1048576
7510
7511 static char rb_string[] __initdata =
7512 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7513 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7514 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7515
7516 static bool rb_test_started __initdata;
7517
7518 struct rb_item {
7519 int size;
7520 char str[];
7521 };
7522
rb_write_something(struct rb_test_data * data,bool nested)7523 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7524 {
7525 struct ring_buffer_event *event;
7526 struct rb_item *item;
7527 bool started;
7528 int event_len;
7529 int size;
7530 int len;
7531 int cnt;
7532
7533 /* Have nested writes different that what is written */
7534 cnt = data->cnt + (nested ? 27 : 0);
7535
7536 /* Multiply cnt by ~e, to make some unique increment */
7537 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7538
7539 len = size + sizeof(struct rb_item);
7540
7541 started = rb_test_started;
7542 /* read rb_test_started before checking buffer enabled */
7543 smp_rmb();
7544
7545 event = ring_buffer_lock_reserve(data->buffer, len);
7546 if (!event) {
7547 /* Ignore dropped events before test starts. */
7548 if (started) {
7549 if (nested)
7550 data->bytes_dropped_nested += len;
7551 else
7552 data->bytes_dropped += len;
7553 }
7554 return len;
7555 }
7556
7557 event_len = ring_buffer_event_length(event);
7558
7559 if (RB_WARN_ON(data->buffer, event_len < len))
7560 goto out;
7561
7562 item = ring_buffer_event_data(event);
7563 item->size = size;
7564 memcpy(item->str, rb_string, size);
7565
7566 if (nested) {
7567 data->bytes_alloc_nested += event_len;
7568 data->bytes_written_nested += len;
7569 data->events_nested++;
7570 if (!data->min_size_nested || len < data->min_size_nested)
7571 data->min_size_nested = len;
7572 if (len > data->max_size_nested)
7573 data->max_size_nested = len;
7574 } else {
7575 data->bytes_alloc += event_len;
7576 data->bytes_written += len;
7577 data->events++;
7578 if (!data->min_size || len < data->min_size)
7579 data->max_size = len;
7580 if (len > data->max_size)
7581 data->max_size = len;
7582 }
7583
7584 out:
7585 ring_buffer_unlock_commit(data->buffer);
7586
7587 return 0;
7588 }
7589
rb_test(void * arg)7590 static __init int rb_test(void *arg)
7591 {
7592 struct rb_test_data *data = arg;
7593
7594 while (!kthread_should_stop()) {
7595 rb_write_something(data, false);
7596 data->cnt++;
7597
7598 set_current_state(TASK_INTERRUPTIBLE);
7599 /* Now sleep between a min of 100-300us and a max of 1ms */
7600 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7601 }
7602
7603 return 0;
7604 }
7605
rb_ipi(void * ignore)7606 static __init void rb_ipi(void *ignore)
7607 {
7608 struct rb_test_data *data;
7609 int cpu = smp_processor_id();
7610
7611 data = &rb_data[cpu];
7612 rb_write_something(data, true);
7613 }
7614
rb_hammer_test(void * arg)7615 static __init int rb_hammer_test(void *arg)
7616 {
7617 while (!kthread_should_stop()) {
7618
7619 /* Send an IPI to all cpus to write data! */
7620 smp_call_function(rb_ipi, NULL, 1);
7621 /* No sleep, but for non preempt, let others run */
7622 schedule();
7623 }
7624
7625 return 0;
7626 }
7627
test_ringbuffer(void)7628 static __init int test_ringbuffer(void)
7629 {
7630 struct task_struct *rb_hammer;
7631 struct trace_buffer *buffer;
7632 int cpu;
7633 int ret = 0;
7634
7635 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7636 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7637 return 0;
7638 }
7639
7640 pr_info("Running ring buffer tests...\n");
7641
7642 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7643 if (WARN_ON(!buffer))
7644 return 0;
7645
7646 /* Disable buffer so that threads can't write to it yet */
7647 ring_buffer_record_off(buffer);
7648
7649 for_each_online_cpu(cpu) {
7650 rb_data[cpu].buffer = buffer;
7651 rb_data[cpu].cpu = cpu;
7652 rb_data[cpu].cnt = cpu;
7653 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7654 cpu, "rbtester/%u");
7655 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7656 pr_cont("FAILED\n");
7657 ret = PTR_ERR(rb_threads[cpu]);
7658 goto out_free;
7659 }
7660 }
7661
7662 /* Now create the rb hammer! */
7663 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7664 if (WARN_ON(IS_ERR(rb_hammer))) {
7665 pr_cont("FAILED\n");
7666 ret = PTR_ERR(rb_hammer);
7667 goto out_free;
7668 }
7669
7670 ring_buffer_record_on(buffer);
7671 /*
7672 * Show buffer is enabled before setting rb_test_started.
7673 * Yes there's a small race window where events could be
7674 * dropped and the thread won't catch it. But when a ring
7675 * buffer gets enabled, there will always be some kind of
7676 * delay before other CPUs see it. Thus, we don't care about
7677 * those dropped events. We care about events dropped after
7678 * the threads see that the buffer is active.
7679 */
7680 smp_wmb();
7681 rb_test_started = true;
7682
7683 set_current_state(TASK_INTERRUPTIBLE);
7684 /* Just run for 10 seconds */
7685 schedule_timeout(10 * HZ);
7686
7687 kthread_stop(rb_hammer);
7688
7689 out_free:
7690 for_each_online_cpu(cpu) {
7691 if (!rb_threads[cpu])
7692 break;
7693 kthread_stop(rb_threads[cpu]);
7694 }
7695 if (ret) {
7696 ring_buffer_free(buffer);
7697 return ret;
7698 }
7699
7700 /* Report! */
7701 pr_info("finished\n");
7702 for_each_online_cpu(cpu) {
7703 struct ring_buffer_event *event;
7704 struct rb_test_data *data = &rb_data[cpu];
7705 struct rb_item *item;
7706 unsigned long total_events;
7707 unsigned long total_dropped;
7708 unsigned long total_written;
7709 unsigned long total_alloc;
7710 unsigned long total_read = 0;
7711 unsigned long total_size = 0;
7712 unsigned long total_len = 0;
7713 unsigned long total_lost = 0;
7714 unsigned long lost;
7715 int big_event_size;
7716 int small_event_size;
7717
7718 ret = -1;
7719
7720 total_events = data->events + data->events_nested;
7721 total_written = data->bytes_written + data->bytes_written_nested;
7722 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7723 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7724
7725 big_event_size = data->max_size + data->max_size_nested;
7726 small_event_size = data->min_size + data->min_size_nested;
7727
7728 pr_info("CPU %d:\n", cpu);
7729 pr_info(" events: %ld\n", total_events);
7730 pr_info(" dropped bytes: %ld\n", total_dropped);
7731 pr_info(" alloced bytes: %ld\n", total_alloc);
7732 pr_info(" written bytes: %ld\n", total_written);
7733 pr_info(" biggest event: %d\n", big_event_size);
7734 pr_info(" smallest event: %d\n", small_event_size);
7735
7736 if (RB_WARN_ON(buffer, total_dropped))
7737 break;
7738
7739 ret = 0;
7740
7741 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7742 total_lost += lost;
7743 item = ring_buffer_event_data(event);
7744 total_len += ring_buffer_event_length(event);
7745 total_size += item->size + sizeof(struct rb_item);
7746 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7747 pr_info("FAILED!\n");
7748 pr_info("buffer had: %.*s\n", item->size, item->str);
7749 pr_info("expected: %.*s\n", item->size, rb_string);
7750 RB_WARN_ON(buffer, 1);
7751 ret = -1;
7752 break;
7753 }
7754 total_read++;
7755 }
7756 if (ret)
7757 break;
7758
7759 ret = -1;
7760
7761 pr_info(" read events: %ld\n", total_read);
7762 pr_info(" lost events: %ld\n", total_lost);
7763 pr_info(" total events: %ld\n", total_lost + total_read);
7764 pr_info(" recorded len bytes: %ld\n", total_len);
7765 pr_info(" recorded size bytes: %ld\n", total_size);
7766 if (total_lost) {
7767 pr_info(" With dropped events, record len and size may not match\n"
7768 " alloced and written from above\n");
7769 } else {
7770 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7771 total_size != total_written))
7772 break;
7773 }
7774 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7775 break;
7776
7777 ret = 0;
7778 }
7779 if (!ret)
7780 pr_info("Ring buffer PASSED!\n");
7781
7782 ring_buffer_free(buffer);
7783 return 0;
7784 }
7785
7786 late_initcall(test_ringbuffer);
7787 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7788