xref: /linux/kernel/trace/ring_buffer.c (revision 5572ad8fddecd4a0db19801262072ff5916b7589)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35 
36 #include "trace.h"
37 
38 /*
39  * The "absolute" timestamp in the buffer is only 59 bits.
40  * If a clock has the 5 MSBs set, it needs to be saved and
41  * reinserted.
42  */
43 #define TS_MSB		(0xf8ULL << 56)
44 #define ABS_TS_MASK	(~TS_MSB)
45 
46 static void update_pages_handler(struct work_struct *work);
47 
48 #define RING_BUFFER_META_MAGIC	0xBADFEED
49 
50 struct ring_buffer_meta {
51 	int		magic;
52 	int		struct_sizes;
53 	unsigned long	total_size;
54 	unsigned long	buffers_offset;
55 };
56 
57 struct ring_buffer_cpu_meta {
58 	unsigned long	first_buffer;
59 	unsigned long	head_buffer;
60 	unsigned long	commit_buffer;
61 	__u32		subbuf_size;
62 	__u32		nr_subbufs;
63 	int		buffers[];
64 };
65 
66 /*
67  * The ring buffer header is special. We must manually up keep it.
68  */
ring_buffer_print_entry_header(struct trace_seq * s)69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 	trace_seq_puts(s, "# compressed entry header\n");
72 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
73 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
74 	trace_seq_puts(s, "\tarray       :   32 bits\n");
75 	trace_seq_putc(s, '\n');
76 	trace_seq_printf(s, "\tpadding     : type == %d\n",
77 			 RINGBUF_TYPE_PADDING);
78 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 			 RINGBUF_TYPE_TIME_EXTEND);
80 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 			 RINGBUF_TYPE_TIME_STAMP);
82 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
83 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84 
85 	return !trace_seq_has_overflowed(s);
86 }
87 
88 /*
89  * The ring buffer is made up of a list of pages. A separate list of pages is
90  * allocated for each CPU. A writer may only write to a buffer that is
91  * associated with the CPU it is currently executing on.  A reader may read
92  * from any per cpu buffer.
93  *
94  * The reader is special. For each per cpu buffer, the reader has its own
95  * reader page. When a reader has read the entire reader page, this reader
96  * page is swapped with another page in the ring buffer.
97  *
98  * Now, as long as the writer is off the reader page, the reader can do what
99  * ever it wants with that page. The writer will never write to that page
100  * again (as long as it is out of the ring buffer).
101  *
102  * Here's some silly ASCII art.
103  *
104  *   +------+
105  *   |reader|          RING BUFFER
106  *   |page  |
107  *   +------+        +---+   +---+   +---+
108  *                   |   |-->|   |-->|   |
109  *                   +---+   +---+   +---+
110  *                     ^               |
111  *                     |               |
112  *                     +---------------+
113  *
114  *
115  *   +------+
116  *   |reader|          RING BUFFER
117  *   |page  |------------------v
118  *   +------+        +---+   +---+   +---+
119  *                   |   |-->|   |-->|   |
120  *                   +---+   +---+   +---+
121  *                     ^               |
122  *                     |               |
123  *                     +---------------+
124  *
125  *
126  *   +------+
127  *   |reader|          RING BUFFER
128  *   |page  |------------------v
129  *   +------+        +---+   +---+   +---+
130  *      ^            |   |-->|   |-->|   |
131  *      |            +---+   +---+   +---+
132  *      |                              |
133  *      |                              |
134  *      +------------------------------+
135  *
136  *
137  *   +------+
138  *   |buffer|          RING BUFFER
139  *   |page  |------------------v
140  *   +------+        +---+   +---+   +---+
141  *      ^            |   |   |   |-->|   |
142  *      |   New      +---+   +---+   +---+
143  *      |  Reader------^               |
144  *      |   page                       |
145  *      +------------------------------+
146  *
147  *
148  * After we make this swap, the reader can hand this page off to the splice
149  * code and be done with it. It can even allocate a new page if it needs to
150  * and swap that into the ring buffer.
151  *
152  * We will be using cmpxchg soon to make all this lockless.
153  *
154  */
155 
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF		(1 << 20)
158 
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT		4U
163 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
165 
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT	0
168 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT	1
171 # define RB_ARCH_ALIGNMENT		8U
172 #endif
173 
174 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
175 
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178 
179 enum {
180 	RB_LEN_TIME_EXTEND = 8,
181 	RB_LEN_TIME_STAMP =  8,
182 };
183 
184 #define skip_time_extend(event) \
185 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186 
187 #define extended_time(event) \
188 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189 
rb_null_event(struct ring_buffer_event * event)190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194 
rb_event_set_padding(struct ring_buffer_event * event)195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 	/* padding has a NULL time_delta */
198 	event->type_len = RINGBUF_TYPE_PADDING;
199 	event->time_delta = 0;
200 }
201 
202 static unsigned
rb_event_data_length(struct ring_buffer_event * event)203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 	unsigned length;
206 
207 	if (event->type_len)
208 		length = event->type_len * RB_ALIGNMENT;
209 	else
210 		length = event->array[0];
211 	return length + RB_EVNT_HDR_SIZE;
212 }
213 
214 /*
215  * Return the length of the given event. Will return
216  * the length of the time extend if the event is a
217  * time extend.
218  */
219 static inline unsigned
rb_event_length(struct ring_buffer_event * event)220 rb_event_length(struct ring_buffer_event *event)
221 {
222 	switch (event->type_len) {
223 	case RINGBUF_TYPE_PADDING:
224 		if (rb_null_event(event))
225 			/* undefined */
226 			return -1;
227 		return  event->array[0] + RB_EVNT_HDR_SIZE;
228 
229 	case RINGBUF_TYPE_TIME_EXTEND:
230 		return RB_LEN_TIME_EXTEND;
231 
232 	case RINGBUF_TYPE_TIME_STAMP:
233 		return RB_LEN_TIME_STAMP;
234 
235 	case RINGBUF_TYPE_DATA:
236 		return rb_event_data_length(event);
237 	default:
238 		WARN_ON_ONCE(1);
239 	}
240 	/* not hit */
241 	return 0;
242 }
243 
244 /*
245  * Return total length of time extend and data,
246  *   or just the event length for all other events.
247  */
248 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 	unsigned len = 0;
252 
253 	if (extended_time(event)) {
254 		/* time extends include the data event after it */
255 		len = RB_LEN_TIME_EXTEND;
256 		event = skip_time_extend(event);
257 	}
258 	return len + rb_event_length(event);
259 }
260 
261 /**
262  * ring_buffer_event_length - return the length of the event
263  * @event: the event to get the length of
264  *
265  * Returns the size of the data load of a data event.
266  * If the event is something other than a data event, it
267  * returns the size of the event itself. With the exception
268  * of a TIME EXTEND, where it still returns the size of the
269  * data load of the data event after it.
270  */
ring_buffer_event_length(struct ring_buffer_event * event)271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length;
274 
275 	if (extended_time(event))
276 		event = skip_time_extend(event);
277 
278 	length = rb_event_length(event);
279 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 		return length;
281 	length -= RB_EVNT_HDR_SIZE;
282 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284 	return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287 
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)290 rb_event_data(struct ring_buffer_event *event)
291 {
292 	if (extended_time(event))
293 		event = skip_time_extend(event);
294 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
ring_buffer_event_data(struct ring_buffer_event * event)306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define for_each_online_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
rb_event_time_stamp(struct ring_buffer_event * event)322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 	u64 ts;
325 
326 	ts = event->array[0];
327 	ts <<= TS_SHIFT;
328 	ts += event->time_delta;
329 
330 	return ts;
331 }
332 
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS	(1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED	(1 << 30)
337 
338 #define RB_MISSED_MASK		(3 << 30)
339 
340 struct buffer_data_page {
341 	u64		 time_stamp;	/* page time stamp */
342 	local_t		 commit;	/* write committed index */
343 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
344 };
345 
346 struct buffer_data_read_page {
347 	unsigned		order;	/* order of the page */
348 	struct buffer_data_page	*data;	/* actual data, stored in this page */
349 };
350 
351 /*
352  * Note, the buffer_page list must be first. The buffer pages
353  * are allocated in cache lines, which means that each buffer
354  * page will be at the beginning of a cache line, and thus
355  * the least significant bits will be zero. We use this to
356  * add flags in the list struct pointers, to make the ring buffer
357  * lockless.
358  */
359 struct buffer_page {
360 	struct list_head list;		/* list of buffer pages */
361 	local_t		 write;		/* index for next write */
362 	unsigned	 read;		/* index for next read */
363 	local_t		 entries;	/* entries on this page */
364 	unsigned long	 real_end;	/* real end of data */
365 	unsigned	 order;		/* order of the page */
366 	u32		 id:30;		/* ID for external mapping */
367 	u32		 range:1;	/* Mapped via a range */
368 	struct buffer_data_page *page;	/* Actual data page */
369 };
370 
371 /*
372  * The buffer page counters, write and entries, must be reset
373  * atomically when crossing page boundaries. To synchronize this
374  * update, two counters are inserted into the number. One is
375  * the actual counter for the write position or count on the page.
376  *
377  * The other is a counter of updaters. Before an update happens
378  * the update partition of the counter is incremented. This will
379  * allow the updater to update the counter atomically.
380  *
381  * The counter is 20 bits, and the state data is 12.
382  */
383 #define RB_WRITE_MASK		0xfffff
384 #define RB_WRITE_INTCNT		(1 << 20)
385 
rb_init_page(struct buffer_data_page * bpage)386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 	local_set(&bpage->commit, 0);
389 }
390 
rb_page_commit(struct buffer_page * bpage)391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 	return local_read(&bpage->page->commit);
394 }
395 
free_buffer_page(struct buffer_page * bpage)396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 	/* Range pages are not to be freed */
399 	if (!bpage->range)
400 		free_pages((unsigned long)bpage->page, bpage->order);
401 	kfree(bpage);
402 }
403 
404 /*
405  * For best performance, allocate cpu buffer data cache line sized
406  * and per CPU.
407  */
408 #define alloc_cpu_buffer(cpu) (struct ring_buffer_per_cpu *)		\
409 	kzalloc_node(ALIGN(sizeof(struct ring_buffer_per_cpu),		\
410 			   cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
411 
412 #define alloc_cpu_page(cpu) (struct buffer_page *)			\
413 	kzalloc_node(ALIGN(sizeof(struct buffer_page),			\
414 			   cache_line_size()), GFP_KERNEL, cpu_to_node(cpu));
415 
alloc_cpu_data(int cpu,int order)416 static struct buffer_data_page *alloc_cpu_data(int cpu, int order)
417 {
418 	struct buffer_data_page *dpage;
419 	struct page *page;
420 	gfp_t mflags;
421 
422 	/*
423 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
424 	 * gracefully without invoking oom-killer and the system is not
425 	 * destabilized.
426 	 */
427 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_COMP | __GFP_ZERO;
428 
429 	page = alloc_pages_node(cpu_to_node(cpu), mflags, order);
430 	if (!page)
431 		return NULL;
432 
433 	dpage = page_address(page);
434 	rb_init_page(dpage);
435 
436 	return dpage;
437 }
438 
439 /*
440  * We need to fit the time_stamp delta into 27 bits.
441  */
test_time_stamp(u64 delta)442 static inline bool test_time_stamp(u64 delta)
443 {
444 	return !!(delta & TS_DELTA_TEST);
445 }
446 
447 struct rb_irq_work {
448 	struct irq_work			work;
449 	wait_queue_head_t		waiters;
450 	wait_queue_head_t		full_waiters;
451 	atomic_t			seq;
452 	bool				waiters_pending;
453 	bool				full_waiters_pending;
454 	bool				wakeup_full;
455 };
456 
457 /*
458  * Structure to hold event state and handle nested events.
459  */
460 struct rb_event_info {
461 	u64			ts;
462 	u64			delta;
463 	u64			before;
464 	u64			after;
465 	unsigned long		length;
466 	struct buffer_page	*tail_page;
467 	int			add_timestamp;
468 };
469 
470 /*
471  * Used for the add_timestamp
472  *  NONE
473  *  EXTEND - wants a time extend
474  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
475  *  FORCE - force a full time stamp.
476  */
477 enum {
478 	RB_ADD_STAMP_NONE		= 0,
479 	RB_ADD_STAMP_EXTEND		= BIT(1),
480 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
481 	RB_ADD_STAMP_FORCE		= BIT(3)
482 };
483 /*
484  * Used for which event context the event is in.
485  *  TRANSITION = 0
486  *  NMI     = 1
487  *  IRQ     = 2
488  *  SOFTIRQ = 3
489  *  NORMAL  = 4
490  *
491  * See trace_recursive_lock() comment below for more details.
492  */
493 enum {
494 	RB_CTX_TRANSITION,
495 	RB_CTX_NMI,
496 	RB_CTX_IRQ,
497 	RB_CTX_SOFTIRQ,
498 	RB_CTX_NORMAL,
499 	RB_CTX_MAX
500 };
501 
502 struct rb_time_struct {
503 	local64_t	time;
504 };
505 typedef struct rb_time_struct rb_time_t;
506 
507 #define MAX_NEST	5
508 
509 /*
510  * head_page == tail_page && head == tail then buffer is empty.
511  */
512 struct ring_buffer_per_cpu {
513 	int				cpu;
514 	atomic_t			record_disabled;
515 	atomic_t			resize_disabled;
516 	struct trace_buffer	*buffer;
517 	raw_spinlock_t			reader_lock;	/* serialize readers */
518 	arch_spinlock_t			lock;
519 	struct lock_class_key		lock_key;
520 	struct buffer_data_page		*free_page;
521 	unsigned long			nr_pages;
522 	unsigned int			current_context;
523 	struct list_head		*pages;
524 	/* pages generation counter, incremented when the list changes */
525 	unsigned long			cnt;
526 	struct buffer_page		*head_page;	/* read from head */
527 	struct buffer_page		*tail_page;	/* write to tail */
528 	struct buffer_page		*commit_page;	/* committed pages */
529 	struct buffer_page		*reader_page;
530 	unsigned long			lost_events;
531 	unsigned long			last_overrun;
532 	unsigned long			nest;
533 	local_t				entries_bytes;
534 	local_t				entries;
535 	local_t				overrun;
536 	local_t				commit_overrun;
537 	local_t				dropped_events;
538 	local_t				committing;
539 	local_t				commits;
540 	local_t				pages_touched;
541 	local_t				pages_lost;
542 	local_t				pages_read;
543 	long				last_pages_touch;
544 	size_t				shortest_full;
545 	unsigned long			read;
546 	unsigned long			read_bytes;
547 	rb_time_t			write_stamp;
548 	rb_time_t			before_stamp;
549 	u64				event_stamp[MAX_NEST];
550 	u64				read_stamp;
551 	/* pages removed since last reset */
552 	unsigned long			pages_removed;
553 
554 	unsigned int			mapped;
555 	unsigned int			user_mapped;	/* user space mapping */
556 	struct mutex			mapping_lock;
557 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
558 	struct trace_buffer_meta	*meta_page;
559 	struct ring_buffer_cpu_meta	*ring_meta;
560 
561 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
562 	long				nr_pages_to_update;
563 	struct list_head		new_pages; /* new pages to add */
564 	struct work_struct		update_pages_work;
565 	struct completion		update_done;
566 
567 	struct rb_irq_work		irq_work;
568 };
569 
570 struct trace_buffer {
571 	unsigned			flags;
572 	int				cpus;
573 	atomic_t			record_disabled;
574 	atomic_t			resizing;
575 	cpumask_var_t			cpumask;
576 
577 	struct lock_class_key		*reader_lock_key;
578 
579 	struct mutex			mutex;
580 
581 	struct ring_buffer_per_cpu	**buffers;
582 
583 	struct hlist_node		node;
584 	u64				(*clock)(void);
585 
586 	struct rb_irq_work		irq_work;
587 	bool				time_stamp_abs;
588 
589 	unsigned long			range_addr_start;
590 	unsigned long			range_addr_end;
591 
592 	struct ring_buffer_meta		*meta;
593 
594 	unsigned int			subbuf_size;
595 	unsigned int			subbuf_order;
596 	unsigned int			max_data_size;
597 };
598 
599 struct ring_buffer_iter {
600 	struct ring_buffer_per_cpu	*cpu_buffer;
601 	unsigned long			head;
602 	unsigned long			next_event;
603 	struct buffer_page		*head_page;
604 	struct buffer_page		*cache_reader_page;
605 	unsigned long			cache_read;
606 	unsigned long			cache_pages_removed;
607 	u64				read_stamp;
608 	u64				page_stamp;
609 	struct ring_buffer_event	*event;
610 	size_t				event_size;
611 	int				missed_events;
612 };
613 
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)614 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
615 {
616 	struct buffer_data_page field;
617 
618 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
619 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
620 			 (unsigned int)sizeof(field.time_stamp),
621 			 (unsigned int)is_signed_type(u64));
622 
623 	trace_seq_printf(s, "\tfield: local_t commit;\t"
624 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
625 			 (unsigned int)offsetof(typeof(field), commit),
626 			 (unsigned int)sizeof(field.commit),
627 			 (unsigned int)is_signed_type(long));
628 
629 	trace_seq_printf(s, "\tfield: int overwrite;\t"
630 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
631 			 (unsigned int)offsetof(typeof(field), commit),
632 			 1,
633 			 (unsigned int)is_signed_type(long));
634 
635 	trace_seq_printf(s, "\tfield: char data;\t"
636 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
637 			 (unsigned int)offsetof(typeof(field), data),
638 			 (unsigned int)buffer->subbuf_size,
639 			 (unsigned int)is_signed_type(char));
640 
641 	return !trace_seq_has_overflowed(s);
642 }
643 
rb_time_read(rb_time_t * t,u64 * ret)644 static inline void rb_time_read(rb_time_t *t, u64 *ret)
645 {
646 	*ret = local64_read(&t->time);
647 }
rb_time_set(rb_time_t * t,u64 val)648 static void rb_time_set(rb_time_t *t, u64 val)
649 {
650 	local64_set(&t->time, val);
651 }
652 
653 /*
654  * Enable this to make sure that the event passed to
655  * ring_buffer_event_time_stamp() is not committed and also
656  * is on the buffer that it passed in.
657  */
658 //#define RB_VERIFY_EVENT
659 #ifdef RB_VERIFY_EVENT
660 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)661 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
662 			 void *event)
663 {
664 	struct buffer_page *page = cpu_buffer->commit_page;
665 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
666 	struct list_head *next;
667 	long commit, write;
668 	unsigned long addr = (unsigned long)event;
669 	bool done = false;
670 	int stop = 0;
671 
672 	/* Make sure the event exists and is not committed yet */
673 	do {
674 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
675 			done = true;
676 		commit = local_read(&page->page->commit);
677 		write = local_read(&page->write);
678 		if (addr >= (unsigned long)&page->page->data[commit] &&
679 		    addr < (unsigned long)&page->page->data[write])
680 			return;
681 
682 		next = rb_list_head(page->list.next);
683 		page = list_entry(next, struct buffer_page, list);
684 	} while (!done);
685 	WARN_ON_ONCE(1);
686 }
687 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)688 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
689 			 void *event)
690 {
691 }
692 #endif
693 
694 /*
695  * The absolute time stamp drops the 5 MSBs and some clocks may
696  * require them. The rb_fix_abs_ts() will take a previous full
697  * time stamp, and add the 5 MSB of that time stamp on to the
698  * saved absolute time stamp. Then they are compared in case of
699  * the unlikely event that the latest time stamp incremented
700  * the 5 MSB.
701  */
rb_fix_abs_ts(u64 abs,u64 save_ts)702 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
703 {
704 	if (save_ts & TS_MSB) {
705 		abs |= save_ts & TS_MSB;
706 		/* Check for overflow */
707 		if (unlikely(abs < save_ts))
708 			abs += 1ULL << 59;
709 	}
710 	return abs;
711 }
712 
713 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
714 
715 /**
716  * ring_buffer_event_time_stamp - return the event's current time stamp
717  * @buffer: The buffer that the event is on
718  * @event: the event to get the time stamp of
719  *
720  * Note, this must be called after @event is reserved, and before it is
721  * committed to the ring buffer. And must be called from the same
722  * context where the event was reserved (normal, softirq, irq, etc).
723  *
724  * Returns the time stamp associated with the current event.
725  * If the event has an extended time stamp, then that is used as
726  * the time stamp to return.
727  * In the highly unlikely case that the event was nested more than
728  * the max nesting, then the write_stamp of the buffer is returned,
729  * otherwise  current time is returned, but that really neither of
730  * the last two cases should ever happen.
731  */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)732 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
733 				 struct ring_buffer_event *event)
734 {
735 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
736 	unsigned int nest;
737 	u64 ts;
738 
739 	/* If the event includes an absolute time, then just use that */
740 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
741 		ts = rb_event_time_stamp(event);
742 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
743 	}
744 
745 	nest = local_read(&cpu_buffer->committing);
746 	verify_event(cpu_buffer, event);
747 	if (WARN_ON_ONCE(!nest))
748 		goto fail;
749 
750 	/* Read the current saved nesting level time stamp */
751 	if (likely(--nest < MAX_NEST))
752 		return cpu_buffer->event_stamp[nest];
753 
754 	/* Shouldn't happen, warn if it does */
755 	WARN_ONCE(1, "nest (%d) greater than max", nest);
756 
757  fail:
758 	rb_time_read(&cpu_buffer->write_stamp, &ts);
759 
760 	return ts;
761 }
762 
763 /**
764  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
765  * @buffer: The ring_buffer to get the number of pages from
766  * @cpu: The cpu of the ring_buffer to get the number of pages from
767  *
768  * Returns the number of pages that have content in the ring buffer.
769  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)770 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
771 {
772 	size_t read;
773 	size_t lost;
774 	size_t cnt;
775 
776 	read = local_read(&buffer->buffers[cpu]->pages_read);
777 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
778 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
779 
780 	if (WARN_ON_ONCE(cnt < lost))
781 		return 0;
782 
783 	cnt -= lost;
784 
785 	/* The reader can read an empty page, but not more than that */
786 	if (cnt < read) {
787 		WARN_ON_ONCE(read > cnt + 1);
788 		return 0;
789 	}
790 
791 	return cnt - read;
792 }
793 
full_hit(struct trace_buffer * buffer,int cpu,int full)794 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
795 {
796 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
797 	size_t nr_pages;
798 	size_t dirty;
799 
800 	nr_pages = cpu_buffer->nr_pages;
801 	if (!nr_pages || !full)
802 		return true;
803 
804 	/*
805 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
806 	 * that the writer is on is not counted as dirty.
807 	 * This is needed if "buffer_percent" is set to 100.
808 	 */
809 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
810 
811 	return (dirty * 100) >= (full * nr_pages);
812 }
813 
814 /*
815  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
816  *
817  * Schedules a delayed work to wake up any task that is blocked on the
818  * ring buffer waiters queue.
819  */
rb_wake_up_waiters(struct irq_work * work)820 static void rb_wake_up_waiters(struct irq_work *work)
821 {
822 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
823 
824 	/* For waiters waiting for the first wake up */
825 	(void)atomic_fetch_inc_release(&rbwork->seq);
826 
827 	wake_up_all(&rbwork->waiters);
828 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
829 		/* Only cpu_buffer sets the above flags */
830 		struct ring_buffer_per_cpu *cpu_buffer =
831 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
832 
833 		/* Called from interrupt context */
834 		raw_spin_lock(&cpu_buffer->reader_lock);
835 		rbwork->wakeup_full = false;
836 		rbwork->full_waiters_pending = false;
837 
838 		/* Waking up all waiters, they will reset the shortest full */
839 		cpu_buffer->shortest_full = 0;
840 		raw_spin_unlock(&cpu_buffer->reader_lock);
841 
842 		wake_up_all(&rbwork->full_waiters);
843 	}
844 }
845 
846 /**
847  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
848  * @buffer: The ring buffer to wake waiters on
849  * @cpu: The CPU buffer to wake waiters on
850  *
851  * In the case of a file that represents a ring buffer is closing,
852  * it is prudent to wake up any waiters that are on this.
853  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)854 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
855 {
856 	struct ring_buffer_per_cpu *cpu_buffer;
857 	struct rb_irq_work *rbwork;
858 
859 	if (!buffer)
860 		return;
861 
862 	if (cpu == RING_BUFFER_ALL_CPUS) {
863 
864 		/* Wake up individual ones too. One level recursion */
865 		for_each_buffer_cpu(buffer, cpu)
866 			ring_buffer_wake_waiters(buffer, cpu);
867 
868 		rbwork = &buffer->irq_work;
869 	} else {
870 		if (WARN_ON_ONCE(!buffer->buffers))
871 			return;
872 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
873 			return;
874 
875 		cpu_buffer = buffer->buffers[cpu];
876 		/* The CPU buffer may not have been initialized yet */
877 		if (!cpu_buffer)
878 			return;
879 		rbwork = &cpu_buffer->irq_work;
880 	}
881 
882 	/* This can be called in any context */
883 	irq_work_queue(&rbwork->work);
884 }
885 
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)886 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
887 {
888 	struct ring_buffer_per_cpu *cpu_buffer;
889 	bool ret = false;
890 
891 	/* Reads of all CPUs always waits for any data */
892 	if (cpu == RING_BUFFER_ALL_CPUS)
893 		return !ring_buffer_empty(buffer);
894 
895 	cpu_buffer = buffer->buffers[cpu];
896 
897 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
898 		unsigned long flags;
899 		bool pagebusy;
900 
901 		if (!full)
902 			return true;
903 
904 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
905 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
906 		ret = !pagebusy && full_hit(buffer, cpu, full);
907 
908 		if (!ret && (!cpu_buffer->shortest_full ||
909 			     cpu_buffer->shortest_full > full)) {
910 		    cpu_buffer->shortest_full = full;
911 		}
912 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
913 	}
914 	return ret;
915 }
916 
917 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)918 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
919 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
920 {
921 	if (rb_watermark_hit(buffer, cpu, full))
922 		return true;
923 
924 	if (cond(data))
925 		return true;
926 
927 	/*
928 	 * The events can happen in critical sections where
929 	 * checking a work queue can cause deadlocks.
930 	 * After adding a task to the queue, this flag is set
931 	 * only to notify events to try to wake up the queue
932 	 * using irq_work.
933 	 *
934 	 * We don't clear it even if the buffer is no longer
935 	 * empty. The flag only causes the next event to run
936 	 * irq_work to do the work queue wake up. The worse
937 	 * that can happen if we race with !trace_empty() is that
938 	 * an event will cause an irq_work to try to wake up
939 	 * an empty queue.
940 	 *
941 	 * There's no reason to protect this flag either, as
942 	 * the work queue and irq_work logic will do the necessary
943 	 * synchronization for the wake ups. The only thing
944 	 * that is necessary is that the wake up happens after
945 	 * a task has been queued. It's OK for spurious wake ups.
946 	 */
947 	if (full)
948 		rbwork->full_waiters_pending = true;
949 	else
950 		rbwork->waiters_pending = true;
951 
952 	return false;
953 }
954 
955 struct rb_wait_data {
956 	struct rb_irq_work		*irq_work;
957 	int				seq;
958 };
959 
960 /*
961  * The default wait condition for ring_buffer_wait() is to just to exit the
962  * wait loop the first time it is woken up.
963  */
rb_wait_once(void * data)964 static bool rb_wait_once(void *data)
965 {
966 	struct rb_wait_data *rdata = data;
967 	struct rb_irq_work *rbwork = rdata->irq_work;
968 
969 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
970 }
971 
972 /**
973  * ring_buffer_wait - wait for input to the ring buffer
974  * @buffer: buffer to wait on
975  * @cpu: the cpu buffer to wait on
976  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
977  * @cond: condition function to break out of wait (NULL to run once)
978  * @data: the data to pass to @cond.
979  *
980  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
981  * as data is added to any of the @buffer's cpu buffers. Otherwise
982  * it will wait for data to be added to a specific cpu buffer.
983  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)984 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
985 		     ring_buffer_cond_fn cond, void *data)
986 {
987 	struct ring_buffer_per_cpu *cpu_buffer;
988 	struct wait_queue_head *waitq;
989 	struct rb_irq_work *rbwork;
990 	struct rb_wait_data rdata;
991 	int ret = 0;
992 
993 	/*
994 	 * Depending on what the caller is waiting for, either any
995 	 * data in any cpu buffer, or a specific buffer, put the
996 	 * caller on the appropriate wait queue.
997 	 */
998 	if (cpu == RING_BUFFER_ALL_CPUS) {
999 		rbwork = &buffer->irq_work;
1000 		/* Full only makes sense on per cpu reads */
1001 		full = 0;
1002 	} else {
1003 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1004 			return -ENODEV;
1005 		cpu_buffer = buffer->buffers[cpu];
1006 		rbwork = &cpu_buffer->irq_work;
1007 	}
1008 
1009 	if (full)
1010 		waitq = &rbwork->full_waiters;
1011 	else
1012 		waitq = &rbwork->waiters;
1013 
1014 	/* Set up to exit loop as soon as it is woken */
1015 	if (!cond) {
1016 		cond = rb_wait_once;
1017 		rdata.irq_work = rbwork;
1018 		rdata.seq = atomic_read_acquire(&rbwork->seq);
1019 		data = &rdata;
1020 	}
1021 
1022 	ret = wait_event_interruptible((*waitq),
1023 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
1024 
1025 	return ret;
1026 }
1027 
1028 /**
1029  * ring_buffer_poll_wait - poll on buffer input
1030  * @buffer: buffer to wait on
1031  * @cpu: the cpu buffer to wait on
1032  * @filp: the file descriptor
1033  * @poll_table: The poll descriptor
1034  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1035  *
1036  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1037  * as data is added to any of the @buffer's cpu buffers. Otherwise
1038  * it will wait for data to be added to a specific cpu buffer.
1039  *
1040  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1041  * zero otherwise.
1042  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1043 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1044 			  struct file *filp, poll_table *poll_table, int full)
1045 {
1046 	struct ring_buffer_per_cpu *cpu_buffer;
1047 	struct rb_irq_work *rbwork;
1048 
1049 	if (cpu == RING_BUFFER_ALL_CPUS) {
1050 		rbwork = &buffer->irq_work;
1051 		full = 0;
1052 	} else {
1053 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1054 			return EPOLLERR;
1055 
1056 		cpu_buffer = buffer->buffers[cpu];
1057 		rbwork = &cpu_buffer->irq_work;
1058 	}
1059 
1060 	if (full) {
1061 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1062 
1063 		if (rb_watermark_hit(buffer, cpu, full))
1064 			return EPOLLIN | EPOLLRDNORM;
1065 		/*
1066 		 * Only allow full_waiters_pending update to be seen after
1067 		 * the shortest_full is set (in rb_watermark_hit). If the
1068 		 * writer sees the full_waiters_pending flag set, it will
1069 		 * compare the amount in the ring buffer to shortest_full.
1070 		 * If the amount in the ring buffer is greater than the
1071 		 * shortest_full percent, it will call the irq_work handler
1072 		 * to wake up this list. The irq_handler will reset shortest_full
1073 		 * back to zero. That's done under the reader_lock, but
1074 		 * the below smp_mb() makes sure that the update to
1075 		 * full_waiters_pending doesn't leak up into the above.
1076 		 */
1077 		smp_mb();
1078 		rbwork->full_waiters_pending = true;
1079 		return 0;
1080 	}
1081 
1082 	poll_wait(filp, &rbwork->waiters, poll_table);
1083 	rbwork->waiters_pending = true;
1084 
1085 	/*
1086 	 * There's a tight race between setting the waiters_pending and
1087 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1088 	 * is set, the next event will wake the task up, but we can get stuck
1089 	 * if there's only a single event in.
1090 	 *
1091 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1092 	 * but adding a memory barrier to all events will cause too much of a
1093 	 * performance hit in the fast path.  We only need a memory barrier when
1094 	 * the buffer goes from empty to having content.  But as this race is
1095 	 * extremely small, and it's not a problem if another event comes in, we
1096 	 * will fix it later.
1097 	 */
1098 	smp_mb();
1099 
1100 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1101 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1102 		return EPOLLIN | EPOLLRDNORM;
1103 	return 0;
1104 }
1105 
1106 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1107 #define RB_WARN_ON(b, cond)						\
1108 	({								\
1109 		int _____ret = unlikely(cond);				\
1110 		if (_____ret) {						\
1111 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1112 				struct ring_buffer_per_cpu *__b =	\
1113 					(void *)b;			\
1114 				atomic_inc(&__b->buffer->record_disabled); \
1115 			} else						\
1116 				atomic_inc(&b->record_disabled);	\
1117 			WARN_ON(1);					\
1118 		}							\
1119 		_____ret;						\
1120 	})
1121 
1122 /* Up this if you want to test the TIME_EXTENTS and normalization */
1123 #define DEBUG_SHIFT 0
1124 
rb_time_stamp(struct trace_buffer * buffer)1125 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1126 {
1127 	u64 ts;
1128 
1129 	/* Skip retpolines :-( */
1130 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1131 		ts = trace_clock_local();
1132 	else
1133 		ts = buffer->clock();
1134 
1135 	/* shift to debug/test normalization and TIME_EXTENTS */
1136 	return ts << DEBUG_SHIFT;
1137 }
1138 
ring_buffer_time_stamp(struct trace_buffer * buffer)1139 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1140 {
1141 	u64 time;
1142 
1143 	preempt_disable_notrace();
1144 	time = rb_time_stamp(buffer);
1145 	preempt_enable_notrace();
1146 
1147 	return time;
1148 }
1149 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1150 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1151 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1152 				      int cpu, u64 *ts)
1153 {
1154 	/* Just stupid testing the normalize function and deltas */
1155 	*ts >>= DEBUG_SHIFT;
1156 }
1157 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1158 
1159 /*
1160  * Making the ring buffer lockless makes things tricky.
1161  * Although writes only happen on the CPU that they are on,
1162  * and they only need to worry about interrupts. Reads can
1163  * happen on any CPU.
1164  *
1165  * The reader page is always off the ring buffer, but when the
1166  * reader finishes with a page, it needs to swap its page with
1167  * a new one from the buffer. The reader needs to take from
1168  * the head (writes go to the tail). But if a writer is in overwrite
1169  * mode and wraps, it must push the head page forward.
1170  *
1171  * Here lies the problem.
1172  *
1173  * The reader must be careful to replace only the head page, and
1174  * not another one. As described at the top of the file in the
1175  * ASCII art, the reader sets its old page to point to the next
1176  * page after head. It then sets the page after head to point to
1177  * the old reader page. But if the writer moves the head page
1178  * during this operation, the reader could end up with the tail.
1179  *
1180  * We use cmpxchg to help prevent this race. We also do something
1181  * special with the page before head. We set the LSB to 1.
1182  *
1183  * When the writer must push the page forward, it will clear the
1184  * bit that points to the head page, move the head, and then set
1185  * the bit that points to the new head page.
1186  *
1187  * We also don't want an interrupt coming in and moving the head
1188  * page on another writer. Thus we use the second LSB to catch
1189  * that too. Thus:
1190  *
1191  * head->list->prev->next        bit 1          bit 0
1192  *                              -------        -------
1193  * Normal page                     0              0
1194  * Points to head page             0              1
1195  * New head page                   1              0
1196  *
1197  * Note we can not trust the prev pointer of the head page, because:
1198  *
1199  * +----+       +-----+        +-----+
1200  * |    |------>|  T  |---X--->|  N  |
1201  * |    |<------|     |        |     |
1202  * +----+       +-----+        +-----+
1203  *   ^                           ^ |
1204  *   |          +-----+          | |
1205  *   +----------|  R  |----------+ |
1206  *              |     |<-----------+
1207  *              +-----+
1208  *
1209  * Key:  ---X-->  HEAD flag set in pointer
1210  *         T      Tail page
1211  *         R      Reader page
1212  *         N      Next page
1213  *
1214  * (see __rb_reserve_next() to see where this happens)
1215  *
1216  *  What the above shows is that the reader just swapped out
1217  *  the reader page with a page in the buffer, but before it
1218  *  could make the new header point back to the new page added
1219  *  it was preempted by a writer. The writer moved forward onto
1220  *  the new page added by the reader and is about to move forward
1221  *  again.
1222  *
1223  *  You can see, it is legitimate for the previous pointer of
1224  *  the head (or any page) not to point back to itself. But only
1225  *  temporarily.
1226  */
1227 
1228 #define RB_PAGE_NORMAL		0UL
1229 #define RB_PAGE_HEAD		1UL
1230 #define RB_PAGE_UPDATE		2UL
1231 
1232 
1233 #define RB_FLAG_MASK		3UL
1234 
1235 /* PAGE_MOVED is not part of the mask */
1236 #define RB_PAGE_MOVED		4UL
1237 
1238 /*
1239  * rb_list_head - remove any bit
1240  */
rb_list_head(struct list_head * list)1241 static struct list_head *rb_list_head(struct list_head *list)
1242 {
1243 	unsigned long val = (unsigned long)list;
1244 
1245 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1246 }
1247 
1248 /*
1249  * rb_is_head_page - test if the given page is the head page
1250  *
1251  * Because the reader may move the head_page pointer, we can
1252  * not trust what the head page is (it may be pointing to
1253  * the reader page). But if the next page is a header page,
1254  * its flags will be non zero.
1255  */
1256 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1257 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1258 {
1259 	unsigned long val;
1260 
1261 	val = (unsigned long)list->next;
1262 
1263 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1264 		return RB_PAGE_MOVED;
1265 
1266 	return val & RB_FLAG_MASK;
1267 }
1268 
1269 /*
1270  * rb_is_reader_page
1271  *
1272  * The unique thing about the reader page, is that, if the
1273  * writer is ever on it, the previous pointer never points
1274  * back to the reader page.
1275  */
rb_is_reader_page(struct buffer_page * page)1276 static bool rb_is_reader_page(struct buffer_page *page)
1277 {
1278 	struct list_head *list = page->list.prev;
1279 
1280 	return rb_list_head(list->next) != &page->list;
1281 }
1282 
1283 /*
1284  * rb_set_list_to_head - set a list_head to be pointing to head.
1285  */
rb_set_list_to_head(struct list_head * list)1286 static void rb_set_list_to_head(struct list_head *list)
1287 {
1288 	unsigned long *ptr;
1289 
1290 	ptr = (unsigned long *)&list->next;
1291 	*ptr |= RB_PAGE_HEAD;
1292 	*ptr &= ~RB_PAGE_UPDATE;
1293 }
1294 
1295 /*
1296  * rb_head_page_activate - sets up head page
1297  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1298 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1299 {
1300 	struct buffer_page *head;
1301 
1302 	head = cpu_buffer->head_page;
1303 	if (!head)
1304 		return;
1305 
1306 	/*
1307 	 * Set the previous list pointer to have the HEAD flag.
1308 	 */
1309 	rb_set_list_to_head(head->list.prev);
1310 
1311 	if (cpu_buffer->ring_meta) {
1312 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1313 		meta->head_buffer = (unsigned long)head->page;
1314 	}
1315 }
1316 
rb_list_head_clear(struct list_head * list)1317 static void rb_list_head_clear(struct list_head *list)
1318 {
1319 	unsigned long *ptr = (unsigned long *)&list->next;
1320 
1321 	*ptr &= ~RB_FLAG_MASK;
1322 }
1323 
1324 /*
1325  * rb_head_page_deactivate - clears head page ptr (for free list)
1326  */
1327 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1328 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1329 {
1330 	struct list_head *hd;
1331 
1332 	/* Go through the whole list and clear any pointers found. */
1333 	rb_list_head_clear(cpu_buffer->pages);
1334 
1335 	list_for_each(hd, cpu_buffer->pages)
1336 		rb_list_head_clear(hd);
1337 }
1338 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1339 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1340 			    struct buffer_page *head,
1341 			    struct buffer_page *prev,
1342 			    int old_flag, int new_flag)
1343 {
1344 	struct list_head *list;
1345 	unsigned long val = (unsigned long)&head->list;
1346 	unsigned long ret;
1347 
1348 	list = &prev->list;
1349 
1350 	val &= ~RB_FLAG_MASK;
1351 
1352 	ret = cmpxchg((unsigned long *)&list->next,
1353 		      val | old_flag, val | new_flag);
1354 
1355 	/* check if the reader took the page */
1356 	if ((ret & ~RB_FLAG_MASK) != val)
1357 		return RB_PAGE_MOVED;
1358 
1359 	return ret & RB_FLAG_MASK;
1360 }
1361 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1362 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1363 				   struct buffer_page *head,
1364 				   struct buffer_page *prev,
1365 				   int old_flag)
1366 {
1367 	return rb_head_page_set(cpu_buffer, head, prev,
1368 				old_flag, RB_PAGE_UPDATE);
1369 }
1370 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1371 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1372 				 struct buffer_page *head,
1373 				 struct buffer_page *prev,
1374 				 int old_flag)
1375 {
1376 	return rb_head_page_set(cpu_buffer, head, prev,
1377 				old_flag, RB_PAGE_HEAD);
1378 }
1379 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1380 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1381 				   struct buffer_page *head,
1382 				   struct buffer_page *prev,
1383 				   int old_flag)
1384 {
1385 	return rb_head_page_set(cpu_buffer, head, prev,
1386 				old_flag, RB_PAGE_NORMAL);
1387 }
1388 
rb_inc_page(struct buffer_page ** bpage)1389 static inline void rb_inc_page(struct buffer_page **bpage)
1390 {
1391 	struct list_head *p = rb_list_head((*bpage)->list.next);
1392 
1393 	*bpage = list_entry(p, struct buffer_page, list);
1394 }
1395 
rb_dec_page(struct buffer_page ** bpage)1396 static inline void rb_dec_page(struct buffer_page **bpage)
1397 {
1398 	struct list_head *p = rb_list_head((*bpage)->list.prev);
1399 
1400 	*bpage = list_entry(p, struct buffer_page, list);
1401 }
1402 
1403 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1404 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1405 {
1406 	struct buffer_page *head;
1407 	struct buffer_page *page;
1408 	struct list_head *list;
1409 	int i;
1410 
1411 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1412 		return NULL;
1413 
1414 	/* sanity check */
1415 	list = cpu_buffer->pages;
1416 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1417 		return NULL;
1418 
1419 	page = head = cpu_buffer->head_page;
1420 	/*
1421 	 * It is possible that the writer moves the header behind
1422 	 * where we started, and we miss in one loop.
1423 	 * A second loop should grab the header, but we'll do
1424 	 * three loops just because I'm paranoid.
1425 	 */
1426 	for (i = 0; i < 3; i++) {
1427 		do {
1428 			if (rb_is_head_page(page, page->list.prev)) {
1429 				cpu_buffer->head_page = page;
1430 				return page;
1431 			}
1432 			rb_inc_page(&page);
1433 		} while (page != head);
1434 	}
1435 
1436 	RB_WARN_ON(cpu_buffer, 1);
1437 
1438 	return NULL;
1439 }
1440 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1441 static bool rb_head_page_replace(struct buffer_page *old,
1442 				struct buffer_page *new)
1443 {
1444 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1445 	unsigned long val;
1446 
1447 	val = *ptr & ~RB_FLAG_MASK;
1448 	val |= RB_PAGE_HEAD;
1449 
1450 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1451 }
1452 
1453 /*
1454  * rb_tail_page_update - move the tail page forward
1455  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1456 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1457 			       struct buffer_page *tail_page,
1458 			       struct buffer_page *next_page)
1459 {
1460 	unsigned long old_entries;
1461 	unsigned long old_write;
1462 
1463 	/*
1464 	 * The tail page now needs to be moved forward.
1465 	 *
1466 	 * We need to reset the tail page, but without messing
1467 	 * with possible erasing of data brought in by interrupts
1468 	 * that have moved the tail page and are currently on it.
1469 	 *
1470 	 * We add a counter to the write field to denote this.
1471 	 */
1472 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1473 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1474 
1475 	/*
1476 	 * Just make sure we have seen our old_write and synchronize
1477 	 * with any interrupts that come in.
1478 	 */
1479 	barrier();
1480 
1481 	/*
1482 	 * If the tail page is still the same as what we think
1483 	 * it is, then it is up to us to update the tail
1484 	 * pointer.
1485 	 */
1486 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1487 		/* Zero the write counter */
1488 		unsigned long val = old_write & ~RB_WRITE_MASK;
1489 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1490 
1491 		/*
1492 		 * This will only succeed if an interrupt did
1493 		 * not come in and change it. In which case, we
1494 		 * do not want to modify it.
1495 		 *
1496 		 * We add (void) to let the compiler know that we do not care
1497 		 * about the return value of these functions. We use the
1498 		 * cmpxchg to only update if an interrupt did not already
1499 		 * do it for us. If the cmpxchg fails, we don't care.
1500 		 */
1501 		(void)local_cmpxchg(&next_page->write, old_write, val);
1502 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1503 
1504 		/*
1505 		 * No need to worry about races with clearing out the commit.
1506 		 * it only can increment when a commit takes place. But that
1507 		 * only happens in the outer most nested commit.
1508 		 */
1509 		local_set(&next_page->page->commit, 0);
1510 
1511 		/* Either we update tail_page or an interrupt does */
1512 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1513 			local_inc(&cpu_buffer->pages_touched);
1514 	}
1515 }
1516 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1517 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1518 			  struct buffer_page *bpage)
1519 {
1520 	unsigned long val = (unsigned long)bpage;
1521 
1522 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1523 }
1524 
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1525 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1526 			   struct list_head *list)
1527 {
1528 	if (RB_WARN_ON(cpu_buffer,
1529 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1530 		return false;
1531 
1532 	if (RB_WARN_ON(cpu_buffer,
1533 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 /**
1540  * rb_check_pages - integrity check of buffer pages
1541  * @cpu_buffer: CPU buffer with pages to test
1542  *
1543  * As a safety measure we check to make sure the data pages have not
1544  * been corrupted.
1545  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1546 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1547 {
1548 	struct list_head *head, *tmp;
1549 	unsigned long buffer_cnt;
1550 	unsigned long flags;
1551 	int nr_loops = 0;
1552 
1553 	/*
1554 	 * Walk the linked list underpinning the ring buffer and validate all
1555 	 * its next and prev links.
1556 	 *
1557 	 * The check acquires the reader_lock to avoid concurrent processing
1558 	 * with code that could be modifying the list. However, the lock cannot
1559 	 * be held for the entire duration of the walk, as this would make the
1560 	 * time when interrupts are disabled non-deterministic, dependent on the
1561 	 * ring buffer size. Therefore, the code releases and re-acquires the
1562 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1563 	 * is then used to detect if the list was modified while the lock was
1564 	 * not held, in which case the check needs to be restarted.
1565 	 *
1566 	 * The code attempts to perform the check at most three times before
1567 	 * giving up. This is acceptable because this is only a self-validation
1568 	 * to detect problems early on. In practice, the list modification
1569 	 * operations are fairly spaced, and so this check typically succeeds at
1570 	 * most on the second try.
1571 	 */
1572 again:
1573 	if (++nr_loops > 3)
1574 		return;
1575 
1576 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1577 	head = rb_list_head(cpu_buffer->pages);
1578 	if (!rb_check_links(cpu_buffer, head))
1579 		goto out_locked;
1580 	buffer_cnt = cpu_buffer->cnt;
1581 	tmp = head;
1582 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1583 
1584 	while (true) {
1585 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1586 
1587 		if (buffer_cnt != cpu_buffer->cnt) {
1588 			/* The list was updated, try again. */
1589 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1590 			goto again;
1591 		}
1592 
1593 		tmp = rb_list_head(tmp->next);
1594 		if (tmp == head)
1595 			/* The iteration circled back, all is done. */
1596 			goto out_locked;
1597 
1598 		if (!rb_check_links(cpu_buffer, tmp))
1599 			goto out_locked;
1600 
1601 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1602 	}
1603 
1604 out_locked:
1605 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1606 }
1607 
1608 /*
1609  * Take an address, add the meta data size as well as the array of
1610  * array subbuffer indexes, then align it to a subbuffer size.
1611  *
1612  * This is used to help find the next per cpu subbuffer within a mapped range.
1613  */
1614 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1615 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1616 {
1617 	addr += sizeof(struct ring_buffer_cpu_meta) +
1618 		sizeof(int) * nr_subbufs;
1619 	return ALIGN(addr, subbuf_size);
1620 }
1621 
1622 /*
1623  * Return the ring_buffer_meta for a given @cpu.
1624  */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1625 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1626 {
1627 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1628 	struct ring_buffer_cpu_meta *meta;
1629 	struct ring_buffer_meta *bmeta;
1630 	unsigned long ptr;
1631 	int nr_subbufs;
1632 
1633 	bmeta = buffer->meta;
1634 	if (!bmeta)
1635 		return NULL;
1636 
1637 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1638 	meta = (struct ring_buffer_cpu_meta *)ptr;
1639 
1640 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1641 	if (!nr_pages) {
1642 		nr_subbufs = meta->nr_subbufs;
1643 	} else {
1644 		/* Include the reader page */
1645 		nr_subbufs = nr_pages + 1;
1646 	}
1647 
1648 	/*
1649 	 * The first chunk may not be subbuffer aligned, where as
1650 	 * the rest of the chunks are.
1651 	 */
1652 	if (cpu) {
1653 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1654 		ptr += subbuf_size * nr_subbufs;
1655 
1656 		/* We can use multiplication to find chunks greater than 1 */
1657 		if (cpu > 1) {
1658 			unsigned long size;
1659 			unsigned long p;
1660 
1661 			/* Save the beginning of this CPU chunk */
1662 			p = ptr;
1663 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1664 			ptr += subbuf_size * nr_subbufs;
1665 
1666 			/* Now all chunks after this are the same size */
1667 			size = ptr - p;
1668 			ptr += size * (cpu - 2);
1669 		}
1670 	}
1671 	return (void *)ptr;
1672 }
1673 
1674 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_cpu_meta * meta)1675 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1676 {
1677 	int subbuf_size = meta->subbuf_size;
1678 	unsigned long ptr;
1679 
1680 	ptr = (unsigned long)meta;
1681 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1682 
1683 	return (void *)ptr;
1684 }
1685 
1686 /*
1687  * Return a specific sub-buffer for a given @cpu defined by @idx.
1688  */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1689 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1690 {
1691 	struct ring_buffer_cpu_meta *meta;
1692 	unsigned long ptr;
1693 	int subbuf_size;
1694 
1695 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1696 	if (!meta)
1697 		return NULL;
1698 
1699 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1700 		return NULL;
1701 
1702 	subbuf_size = meta->subbuf_size;
1703 
1704 	/* Map this buffer to the order that's in meta->buffers[] */
1705 	idx = meta->buffers[idx];
1706 
1707 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1708 
1709 	ptr += subbuf_size * idx;
1710 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1711 		return NULL;
1712 
1713 	return (void *)ptr;
1714 }
1715 
1716 /*
1717  * See if the existing memory contains a valid meta section.
1718  * if so, use that, otherwise initialize it.
1719  */
rb_meta_init(struct trace_buffer * buffer,int scratch_size)1720 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1721 {
1722 	unsigned long ptr = buffer->range_addr_start;
1723 	struct ring_buffer_meta *bmeta;
1724 	unsigned long total_size;
1725 	int struct_sizes;
1726 
1727 	bmeta = (struct ring_buffer_meta *)ptr;
1728 	buffer->meta = bmeta;
1729 
1730 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1731 
1732 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1733 	struct_sizes |= sizeof(*bmeta) << 16;
1734 
1735 	/* The first buffer will start word size after the meta page */
1736 	ptr += sizeof(*bmeta);
1737 	ptr = ALIGN(ptr, sizeof(long));
1738 	ptr += scratch_size;
1739 
1740 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1741 		pr_info("Ring buffer boot meta mismatch of magic\n");
1742 		goto init;
1743 	}
1744 
1745 	if (bmeta->struct_sizes != struct_sizes) {
1746 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1747 		goto init;
1748 	}
1749 
1750 	if (bmeta->total_size != total_size) {
1751 		pr_info("Ring buffer boot meta mismatch of total size\n");
1752 		goto init;
1753 	}
1754 
1755 	if (bmeta->buffers_offset > bmeta->total_size) {
1756 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1757 		goto init;
1758 	}
1759 
1760 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1761 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1762 		goto init;
1763 	}
1764 
1765 	return true;
1766 
1767  init:
1768 	bmeta->magic = RING_BUFFER_META_MAGIC;
1769 	bmeta->struct_sizes = struct_sizes;
1770 	bmeta->total_size = total_size;
1771 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1772 
1773 	/* Zero out the scratch pad */
1774 	memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1775 
1776 	return false;
1777 }
1778 
1779 /*
1780  * See if the existing memory contains valid ring buffer data.
1781  * As the previous kernel must be the same as this kernel, all
1782  * the calculations (size of buffers and number of buffers)
1783  * must be the same.
1784  */
rb_cpu_meta_valid(struct ring_buffer_cpu_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1785 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1786 			      struct trace_buffer *buffer, int nr_pages,
1787 			      unsigned long *subbuf_mask)
1788 {
1789 	int subbuf_size = PAGE_SIZE;
1790 	struct buffer_data_page *subbuf;
1791 	unsigned long buffers_start;
1792 	unsigned long buffers_end;
1793 	int i;
1794 
1795 	if (!subbuf_mask)
1796 		return false;
1797 
1798 	buffers_start = meta->first_buffer;
1799 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1800 
1801 	/* Is the head and commit buffers within the range of buffers? */
1802 	if (meta->head_buffer < buffers_start ||
1803 	    meta->head_buffer >= buffers_end) {
1804 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1805 		return false;
1806 	}
1807 
1808 	if (meta->commit_buffer < buffers_start ||
1809 	    meta->commit_buffer >= buffers_end) {
1810 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1811 		return false;
1812 	}
1813 
1814 	subbuf = rb_subbufs_from_meta(meta);
1815 
1816 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1817 
1818 	/* Is the meta buffers and the subbufs themselves have correct data? */
1819 	for (i = 0; i < meta->nr_subbufs; i++) {
1820 		if (meta->buffers[i] < 0 ||
1821 		    meta->buffers[i] >= meta->nr_subbufs) {
1822 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1823 			return false;
1824 		}
1825 
1826 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1827 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1828 			return false;
1829 		}
1830 
1831 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1832 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1833 			return false;
1834 		}
1835 
1836 		set_bit(meta->buffers[i], subbuf_mask);
1837 		subbuf = (void *)subbuf + subbuf_size;
1838 	}
1839 
1840 	return true;
1841 }
1842 
1843 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1844 
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1845 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1846 			       unsigned long long *timestamp, u64 *delta_ptr)
1847 {
1848 	struct ring_buffer_event *event;
1849 	u64 ts, delta;
1850 	int events = 0;
1851 	int e;
1852 
1853 	*delta_ptr = 0;
1854 	*timestamp = 0;
1855 
1856 	ts = dpage->time_stamp;
1857 
1858 	for (e = 0; e < tail; e += rb_event_length(event)) {
1859 
1860 		event = (struct ring_buffer_event *)(dpage->data + e);
1861 
1862 		switch (event->type_len) {
1863 
1864 		case RINGBUF_TYPE_TIME_EXTEND:
1865 			delta = rb_event_time_stamp(event);
1866 			ts += delta;
1867 			break;
1868 
1869 		case RINGBUF_TYPE_TIME_STAMP:
1870 			delta = rb_event_time_stamp(event);
1871 			delta = rb_fix_abs_ts(delta, ts);
1872 			if (delta < ts) {
1873 				*delta_ptr = delta;
1874 				*timestamp = ts;
1875 				return -1;
1876 			}
1877 			ts = delta;
1878 			break;
1879 
1880 		case RINGBUF_TYPE_PADDING:
1881 			if (event->time_delta == 1)
1882 				break;
1883 			fallthrough;
1884 		case RINGBUF_TYPE_DATA:
1885 			events++;
1886 			ts += event->time_delta;
1887 			break;
1888 
1889 		default:
1890 			return -1;
1891 		}
1892 	}
1893 	*timestamp = ts;
1894 	return events;
1895 }
1896 
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1897 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1898 {
1899 	unsigned long long ts;
1900 	u64 delta;
1901 	int tail;
1902 
1903 	tail = local_read(&dpage->commit);
1904 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1905 }
1906 
1907 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1908 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1909 {
1910 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1911 	struct buffer_page *head_page, *orig_head;
1912 	unsigned long entry_bytes = 0;
1913 	unsigned long entries = 0;
1914 	int ret;
1915 	u64 ts;
1916 	int i;
1917 
1918 	if (!meta || !meta->head_buffer)
1919 		return;
1920 
1921 	/* Do the reader page first */
1922 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1923 	if (ret < 0) {
1924 		pr_info("Ring buffer reader page is invalid\n");
1925 		goto invalid;
1926 	}
1927 	entries += ret;
1928 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1929 	local_set(&cpu_buffer->reader_page->entries, ret);
1930 
1931 	orig_head = head_page = cpu_buffer->head_page;
1932 	ts = head_page->page->time_stamp;
1933 
1934 	/*
1935 	 * Try to rewind the head so that we can read the pages which already
1936 	 * read in the previous boot.
1937 	 */
1938 	if (head_page == cpu_buffer->tail_page)
1939 		goto skip_rewind;
1940 
1941 	rb_dec_page(&head_page);
1942 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_dec_page(&head_page)) {
1943 
1944 		/* Rewind until tail (writer) page. */
1945 		if (head_page == cpu_buffer->tail_page)
1946 			break;
1947 
1948 		/* Ensure the page has older data than head. */
1949 		if (ts < head_page->page->time_stamp)
1950 			break;
1951 
1952 		ts = head_page->page->time_stamp;
1953 		/* Ensure the page has correct timestamp and some data. */
1954 		if (!ts || rb_page_commit(head_page) == 0)
1955 			break;
1956 
1957 		/* Stop rewind if the page is invalid. */
1958 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1959 		if (ret < 0)
1960 			break;
1961 
1962 		/* Recover the number of entries and update stats. */
1963 		local_set(&head_page->entries, ret);
1964 		if (ret)
1965 			local_inc(&cpu_buffer->pages_touched);
1966 		entries += ret;
1967 		entry_bytes += rb_page_commit(head_page);
1968 	}
1969 	if (i)
1970 		pr_info("Ring buffer [%d] rewound %d pages\n", cpu_buffer->cpu, i);
1971 
1972 	/* The last rewound page must be skipped. */
1973 	if (head_page != orig_head)
1974 		rb_inc_page(&head_page);
1975 
1976 	/*
1977 	 * If the ring buffer was rewound, then inject the reader page
1978 	 * into the location just before the original head page.
1979 	 */
1980 	if (head_page != orig_head) {
1981 		struct buffer_page *bpage = orig_head;
1982 
1983 		rb_dec_page(&bpage);
1984 		/*
1985 		 * Insert the reader_page before the original head page.
1986 		 * Since the list encode RB_PAGE flags, general list
1987 		 * operations should be avoided.
1988 		 */
1989 		cpu_buffer->reader_page->list.next = &orig_head->list;
1990 		cpu_buffer->reader_page->list.prev = orig_head->list.prev;
1991 		orig_head->list.prev = &cpu_buffer->reader_page->list;
1992 		bpage->list.next = &cpu_buffer->reader_page->list;
1993 
1994 		/* Make the head_page the reader page */
1995 		cpu_buffer->reader_page = head_page;
1996 		bpage = head_page;
1997 		rb_inc_page(&head_page);
1998 		head_page->list.prev = bpage->list.prev;
1999 		rb_dec_page(&bpage);
2000 		bpage->list.next = &head_page->list;
2001 		rb_set_list_to_head(&bpage->list);
2002 		cpu_buffer->pages = &head_page->list;
2003 
2004 		cpu_buffer->head_page = head_page;
2005 		meta->head_buffer = (unsigned long)head_page->page;
2006 
2007 		/* Reset all the indexes */
2008 		bpage = cpu_buffer->reader_page;
2009 		meta->buffers[0] = rb_meta_subbuf_idx(meta, bpage->page);
2010 		bpage->id = 0;
2011 
2012 		for (i = 1, bpage = head_page; i < meta->nr_subbufs;
2013 		     i++, rb_inc_page(&bpage)) {
2014 			meta->buffers[i] = rb_meta_subbuf_idx(meta, bpage->page);
2015 			bpage->id = i;
2016 		}
2017 
2018 		/* We'll restart verifying from orig_head */
2019 		head_page = orig_head;
2020 	}
2021 
2022  skip_rewind:
2023 	/* If the commit_buffer is the reader page, update the commit page */
2024 	if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
2025 		cpu_buffer->commit_page = cpu_buffer->reader_page;
2026 		/* Nothing more to do, the only page is the reader page */
2027 		goto done;
2028 	}
2029 
2030 	/* Iterate until finding the commit page */
2031 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
2032 
2033 		/* Reader page has already been done */
2034 		if (head_page == cpu_buffer->reader_page)
2035 			continue;
2036 
2037 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
2038 		if (ret < 0) {
2039 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
2040 				cpu_buffer->cpu);
2041 			goto invalid;
2042 		}
2043 
2044 		/* If the buffer has content, update pages_touched */
2045 		if (ret)
2046 			local_inc(&cpu_buffer->pages_touched);
2047 
2048 		entries += ret;
2049 		entry_bytes += local_read(&head_page->page->commit);
2050 		local_set(&cpu_buffer->head_page->entries, ret);
2051 
2052 		if (head_page == cpu_buffer->commit_page)
2053 			break;
2054 	}
2055 
2056 	if (head_page != cpu_buffer->commit_page) {
2057 		pr_info("Ring buffer meta [%d] commit page not found\n",
2058 			cpu_buffer->cpu);
2059 		goto invalid;
2060 	}
2061  done:
2062 	local_set(&cpu_buffer->entries, entries);
2063 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
2064 
2065 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
2066 	return;
2067 
2068  invalid:
2069 	/* The content of the buffers are invalid, reset the meta data */
2070 	meta->head_buffer = 0;
2071 	meta->commit_buffer = 0;
2072 
2073 	/* Reset the reader page */
2074 	local_set(&cpu_buffer->reader_page->entries, 0);
2075 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2076 
2077 	/* Reset all the subbuffers */
2078 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
2079 		local_set(&head_page->entries, 0);
2080 		local_set(&head_page->page->commit, 0);
2081 	}
2082 }
2083 
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages,int scratch_size)2084 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
2085 {
2086 	struct ring_buffer_cpu_meta *meta;
2087 	unsigned long *subbuf_mask;
2088 	unsigned long delta;
2089 	void *subbuf;
2090 	bool valid = false;
2091 	int cpu;
2092 	int i;
2093 
2094 	/* Create a mask to test the subbuf array */
2095 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
2096 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
2097 
2098 	if (rb_meta_init(buffer, scratch_size))
2099 		valid = true;
2100 
2101 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2102 		void *next_meta;
2103 
2104 		meta = rb_range_meta(buffer, nr_pages, cpu);
2105 
2106 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
2107 			/* Make the mappings match the current address */
2108 			subbuf = rb_subbufs_from_meta(meta);
2109 			delta = (unsigned long)subbuf - meta->first_buffer;
2110 			meta->first_buffer += delta;
2111 			meta->head_buffer += delta;
2112 			meta->commit_buffer += delta;
2113 			continue;
2114 		}
2115 
2116 		if (cpu < nr_cpu_ids - 1)
2117 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
2118 		else
2119 			next_meta = (void *)buffer->range_addr_end;
2120 
2121 		memset(meta, 0, next_meta - (void *)meta);
2122 
2123 		meta->nr_subbufs = nr_pages + 1;
2124 		meta->subbuf_size = PAGE_SIZE;
2125 
2126 		subbuf = rb_subbufs_from_meta(meta);
2127 
2128 		meta->first_buffer = (unsigned long)subbuf;
2129 
2130 		/*
2131 		 * The buffers[] array holds the order of the sub-buffers
2132 		 * that are after the meta data. The sub-buffers may
2133 		 * be swapped out when read and inserted into a different
2134 		 * location of the ring buffer. Although their addresses
2135 		 * remain the same, the buffers[] array contains the
2136 		 * index into the sub-buffers holding their actual order.
2137 		 */
2138 		for (i = 0; i < meta->nr_subbufs; i++) {
2139 			meta->buffers[i] = i;
2140 			rb_init_page(subbuf);
2141 			subbuf += meta->subbuf_size;
2142 		}
2143 	}
2144 	bitmap_free(subbuf_mask);
2145 }
2146 
rbm_start(struct seq_file * m,loff_t * pos)2147 static void *rbm_start(struct seq_file *m, loff_t *pos)
2148 {
2149 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2150 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2151 	unsigned long val;
2152 
2153 	if (!meta)
2154 		return NULL;
2155 
2156 	if (*pos > meta->nr_subbufs)
2157 		return NULL;
2158 
2159 	val = *pos;
2160 	val++;
2161 
2162 	return (void *)val;
2163 }
2164 
rbm_next(struct seq_file * m,void * v,loff_t * pos)2165 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2166 {
2167 	(*pos)++;
2168 
2169 	return rbm_start(m, pos);
2170 }
2171 
rbm_show(struct seq_file * m,void * v)2172 static int rbm_show(struct seq_file *m, void *v)
2173 {
2174 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2175 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2176 	unsigned long val = (unsigned long)v;
2177 
2178 	if (val == 1) {
2179 		seq_printf(m, "head_buffer:   %d\n",
2180 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2181 		seq_printf(m, "commit_buffer: %d\n",
2182 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2183 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2184 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2185 		return 0;
2186 	}
2187 
2188 	val -= 2;
2189 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2190 
2191 	return 0;
2192 }
2193 
rbm_stop(struct seq_file * m,void * p)2194 static void rbm_stop(struct seq_file *m, void *p)
2195 {
2196 }
2197 
2198 static const struct seq_operations rb_meta_seq_ops = {
2199 	.start		= rbm_start,
2200 	.next		= rbm_next,
2201 	.show		= rbm_show,
2202 	.stop		= rbm_stop,
2203 };
2204 
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2205 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2206 {
2207 	struct seq_file *m;
2208 	int ret;
2209 
2210 	ret = seq_open(file, &rb_meta_seq_ops);
2211 	if (ret)
2212 		return ret;
2213 
2214 	m = file->private_data;
2215 	m->private = buffer->buffers[cpu];
2216 
2217 	return 0;
2218 }
2219 
2220 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2221 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2222 				  struct buffer_page *bpage)
2223 {
2224 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2225 
2226 	if (meta->head_buffer == (unsigned long)bpage->page)
2227 		cpu_buffer->head_page = bpage;
2228 
2229 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2230 		cpu_buffer->commit_page = bpage;
2231 		cpu_buffer->tail_page = bpage;
2232 	}
2233 }
2234 
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2235 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2236 		long nr_pages, struct list_head *pages)
2237 {
2238 	struct trace_buffer *buffer = cpu_buffer->buffer;
2239 	struct ring_buffer_cpu_meta *meta = NULL;
2240 	struct buffer_page *bpage, *tmp;
2241 	bool user_thread = current->mm != NULL;
2242 	long i;
2243 
2244 	/*
2245 	 * Check if the available memory is there first.
2246 	 * Note, si_mem_available() only gives us a rough estimate of available
2247 	 * memory. It may not be accurate. But we don't care, we just want
2248 	 * to prevent doing any allocation when it is obvious that it is
2249 	 * not going to succeed.
2250 	 */
2251 	i = si_mem_available();
2252 	if (i < nr_pages)
2253 		return -ENOMEM;
2254 
2255 	/*
2256 	 * If a user thread allocates too much, and si_mem_available()
2257 	 * reports there's enough memory, even though there is not.
2258 	 * Make sure the OOM killer kills this thread. This can happen
2259 	 * even with RETRY_MAYFAIL because another task may be doing
2260 	 * an allocation after this task has taken all memory.
2261 	 * This is the task the OOM killer needs to take out during this
2262 	 * loop, even if it was triggered by an allocation somewhere else.
2263 	 */
2264 	if (user_thread)
2265 		set_current_oom_origin();
2266 
2267 	if (buffer->range_addr_start)
2268 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2269 
2270 	for (i = 0; i < nr_pages; i++) {
2271 
2272 		bpage = alloc_cpu_page(cpu_buffer->cpu);
2273 		if (!bpage)
2274 			goto free_pages;
2275 
2276 		rb_check_bpage(cpu_buffer, bpage);
2277 
2278 		/*
2279 		 * Append the pages as for mapped buffers we want to keep
2280 		 * the order
2281 		 */
2282 		list_add_tail(&bpage->list, pages);
2283 
2284 		if (meta) {
2285 			/* A range was given. Use that for the buffer page */
2286 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2287 			if (!bpage->page)
2288 				goto free_pages;
2289 			/* If this is valid from a previous boot */
2290 			if (meta->head_buffer)
2291 				rb_meta_buffer_update(cpu_buffer, bpage);
2292 			bpage->range = 1;
2293 			bpage->id = i + 1;
2294 		} else {
2295 			int order = cpu_buffer->buffer->subbuf_order;
2296 			bpage->page = alloc_cpu_data(cpu_buffer->cpu, order);
2297 			if (!bpage->page)
2298 				goto free_pages;
2299 		}
2300 		bpage->order = cpu_buffer->buffer->subbuf_order;
2301 
2302 		if (user_thread && fatal_signal_pending(current))
2303 			goto free_pages;
2304 	}
2305 	if (user_thread)
2306 		clear_current_oom_origin();
2307 
2308 	return 0;
2309 
2310 free_pages:
2311 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2312 		list_del_init(&bpage->list);
2313 		free_buffer_page(bpage);
2314 	}
2315 	if (user_thread)
2316 		clear_current_oom_origin();
2317 
2318 	return -ENOMEM;
2319 }
2320 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2321 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2322 			     unsigned long nr_pages)
2323 {
2324 	LIST_HEAD(pages);
2325 
2326 	WARN_ON(!nr_pages);
2327 
2328 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2329 		return -ENOMEM;
2330 
2331 	/*
2332 	 * The ring buffer page list is a circular list that does not
2333 	 * start and end with a list head. All page list items point to
2334 	 * other pages.
2335 	 */
2336 	cpu_buffer->pages = pages.next;
2337 	list_del(&pages);
2338 
2339 	cpu_buffer->nr_pages = nr_pages;
2340 
2341 	rb_check_pages(cpu_buffer);
2342 
2343 	return 0;
2344 }
2345 
2346 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2347 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2348 {
2349 	struct ring_buffer_per_cpu *cpu_buffer __free(kfree) =
2350 		alloc_cpu_buffer(cpu);
2351 	struct ring_buffer_cpu_meta *meta;
2352 	struct buffer_page *bpage;
2353 	int ret;
2354 
2355 	if (!cpu_buffer)
2356 		return NULL;
2357 
2358 	cpu_buffer->cpu = cpu;
2359 	cpu_buffer->buffer = buffer;
2360 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2361 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2362 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2363 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2364 	init_completion(&cpu_buffer->update_done);
2365 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2366 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2367 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2368 	mutex_init(&cpu_buffer->mapping_lock);
2369 
2370 	bpage = alloc_cpu_page(cpu);
2371 	if (!bpage)
2372 		return NULL;
2373 
2374 	rb_check_bpage(cpu_buffer, bpage);
2375 
2376 	cpu_buffer->reader_page = bpage;
2377 
2378 	if (buffer->range_addr_start) {
2379 		/*
2380 		 * Range mapped buffers have the same restrictions as memory
2381 		 * mapped ones do.
2382 		 */
2383 		cpu_buffer->mapped = 1;
2384 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2385 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2386 		if (!bpage->page)
2387 			goto fail_free_reader;
2388 		if (cpu_buffer->ring_meta->head_buffer)
2389 			rb_meta_buffer_update(cpu_buffer, bpage);
2390 		bpage->range = 1;
2391 	} else {
2392 		int order = cpu_buffer->buffer->subbuf_order;
2393 		bpage->page = alloc_cpu_data(cpu, order);
2394 		if (!bpage->page)
2395 			goto fail_free_reader;
2396 	}
2397 
2398 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2399 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2400 
2401 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2402 	if (ret < 0)
2403 		goto fail_free_reader;
2404 
2405 	rb_meta_validate_events(cpu_buffer);
2406 
2407 	/* If the boot meta was valid then this has already been updated */
2408 	meta = cpu_buffer->ring_meta;
2409 	if (!meta || !meta->head_buffer ||
2410 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2411 		if (meta && meta->head_buffer &&
2412 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2413 			pr_warn("Ring buffer meta buffers not all mapped\n");
2414 			if (!cpu_buffer->head_page)
2415 				pr_warn("   Missing head_page\n");
2416 			if (!cpu_buffer->commit_page)
2417 				pr_warn("   Missing commit_page\n");
2418 			if (!cpu_buffer->tail_page)
2419 				pr_warn("   Missing tail_page\n");
2420 		}
2421 
2422 		cpu_buffer->head_page
2423 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2424 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2425 
2426 		rb_head_page_activate(cpu_buffer);
2427 
2428 		if (cpu_buffer->ring_meta)
2429 			meta->commit_buffer = meta->head_buffer;
2430 	} else {
2431 		/* The valid meta buffer still needs to activate the head page */
2432 		rb_head_page_activate(cpu_buffer);
2433 	}
2434 
2435 	return_ptr(cpu_buffer);
2436 
2437  fail_free_reader:
2438 	free_buffer_page(cpu_buffer->reader_page);
2439 
2440 	return NULL;
2441 }
2442 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2443 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2444 {
2445 	struct list_head *head = cpu_buffer->pages;
2446 	struct buffer_page *bpage, *tmp;
2447 
2448 	irq_work_sync(&cpu_buffer->irq_work.work);
2449 
2450 	free_buffer_page(cpu_buffer->reader_page);
2451 
2452 	if (head) {
2453 		rb_head_page_deactivate(cpu_buffer);
2454 
2455 		list_for_each_entry_safe(bpage, tmp, head, list) {
2456 			list_del_init(&bpage->list);
2457 			free_buffer_page(bpage);
2458 		}
2459 		bpage = list_entry(head, struct buffer_page, list);
2460 		free_buffer_page(bpage);
2461 	}
2462 
2463 	free_page((unsigned long)cpu_buffer->free_page);
2464 
2465 	kfree(cpu_buffer);
2466 }
2467 
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,unsigned long scratch_size,struct lock_class_key * key)2468 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2469 					 int order, unsigned long start,
2470 					 unsigned long end,
2471 					 unsigned long scratch_size,
2472 					 struct lock_class_key *key)
2473 {
2474 	struct trace_buffer *buffer __free(kfree) = NULL;
2475 	long nr_pages;
2476 	int subbuf_size;
2477 	int bsize;
2478 	int cpu;
2479 	int ret;
2480 
2481 	/* keep it in its own cache line */
2482 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2483 			 GFP_KERNEL);
2484 	if (!buffer)
2485 		return NULL;
2486 
2487 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2488 		return NULL;
2489 
2490 	buffer->subbuf_order = order;
2491 	subbuf_size = (PAGE_SIZE << order);
2492 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2493 
2494 	/* Max payload is buffer page size - header (8bytes) */
2495 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2496 
2497 	buffer->flags = flags;
2498 	buffer->clock = trace_clock_local;
2499 	buffer->reader_lock_key = key;
2500 
2501 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2502 	init_waitqueue_head(&buffer->irq_work.waiters);
2503 
2504 	buffer->cpus = nr_cpu_ids;
2505 
2506 	bsize = sizeof(void *) * nr_cpu_ids;
2507 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2508 				  GFP_KERNEL);
2509 	if (!buffer->buffers)
2510 		goto fail_free_cpumask;
2511 
2512 	/* If start/end are specified, then that overrides size */
2513 	if (start && end) {
2514 		unsigned long buffers_start;
2515 		unsigned long ptr;
2516 		int n;
2517 
2518 		/* Make sure that start is word aligned */
2519 		start = ALIGN(start, sizeof(long));
2520 
2521 		/* scratch_size needs to be aligned too */
2522 		scratch_size = ALIGN(scratch_size, sizeof(long));
2523 
2524 		/* Subtract the buffer meta data and word aligned */
2525 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2526 		buffers_start = ALIGN(buffers_start, sizeof(long));
2527 		buffers_start += scratch_size;
2528 
2529 		/* Calculate the size for the per CPU data */
2530 		size = end - buffers_start;
2531 		size = size / nr_cpu_ids;
2532 
2533 		/*
2534 		 * The number of sub-buffers (nr_pages) is determined by the
2535 		 * total size allocated minus the meta data size.
2536 		 * Then that is divided by the number of per CPU buffers
2537 		 * needed, plus account for the integer array index that
2538 		 * will be appended to the meta data.
2539 		 */
2540 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2541 			(subbuf_size + sizeof(int));
2542 		/* Need at least two pages plus the reader page */
2543 		if (nr_pages < 3)
2544 			goto fail_free_buffers;
2545 
2546  again:
2547 		/* Make sure that the size fits aligned */
2548 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2549 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2550 				sizeof(int) * nr_pages;
2551 			ptr = ALIGN(ptr, subbuf_size);
2552 			ptr += subbuf_size * nr_pages;
2553 		}
2554 		if (ptr > end) {
2555 			if (nr_pages <= 3)
2556 				goto fail_free_buffers;
2557 			nr_pages--;
2558 			goto again;
2559 		}
2560 
2561 		/* nr_pages should not count the reader page */
2562 		nr_pages--;
2563 		buffer->range_addr_start = start;
2564 		buffer->range_addr_end = end;
2565 
2566 		rb_range_meta_init(buffer, nr_pages, scratch_size);
2567 	} else {
2568 
2569 		/* need at least two pages */
2570 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2571 		if (nr_pages < 2)
2572 			nr_pages = 2;
2573 	}
2574 
2575 	cpu = raw_smp_processor_id();
2576 	cpumask_set_cpu(cpu, buffer->cpumask);
2577 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2578 	if (!buffer->buffers[cpu])
2579 		goto fail_free_buffers;
2580 
2581 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2582 	if (ret < 0)
2583 		goto fail_free_buffers;
2584 
2585 	mutex_init(&buffer->mutex);
2586 
2587 	return_ptr(buffer);
2588 
2589  fail_free_buffers:
2590 	for_each_buffer_cpu(buffer, cpu) {
2591 		if (buffer->buffers[cpu])
2592 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2593 	}
2594 	kfree(buffer->buffers);
2595 
2596  fail_free_cpumask:
2597 	free_cpumask_var(buffer->cpumask);
2598 
2599 	return NULL;
2600 }
2601 
2602 /**
2603  * __ring_buffer_alloc - allocate a new ring_buffer
2604  * @size: the size in bytes per cpu that is needed.
2605  * @flags: attributes to set for the ring buffer.
2606  * @key: ring buffer reader_lock_key.
2607  *
2608  * Currently the only flag that is available is the RB_FL_OVERWRITE
2609  * flag. This flag means that the buffer will overwrite old data
2610  * when the buffer wraps. If this flag is not set, the buffer will
2611  * drop data when the tail hits the head.
2612  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2613 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2614 					struct lock_class_key *key)
2615 {
2616 	/* Default buffer page size - one system page */
2617 	return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2618 
2619 }
2620 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2621 
2622 /**
2623  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2624  * @size: the size in bytes per cpu that is needed.
2625  * @flags: attributes to set for the ring buffer.
2626  * @order: sub-buffer order
2627  * @start: start of allocated range
2628  * @range_size: size of allocated range
2629  * @scratch_size: size of scratch area (for preallocated memory buffers)
2630  * @key: ring buffer reader_lock_key.
2631  *
2632  * Currently the only flag that is available is the RB_FL_OVERWRITE
2633  * flag. This flag means that the buffer will overwrite old data
2634  * when the buffer wraps. If this flag is not set, the buffer will
2635  * drop data when the tail hits the head.
2636  */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,unsigned long scratch_size,struct lock_class_key * key)2637 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2638 					       int order, unsigned long start,
2639 					       unsigned long range_size,
2640 					       unsigned long scratch_size,
2641 					       struct lock_class_key *key)
2642 {
2643 	return alloc_buffer(size, flags, order, start, start + range_size,
2644 			    scratch_size, key);
2645 }
2646 
ring_buffer_meta_scratch(struct trace_buffer * buffer,unsigned int * size)2647 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2648 {
2649 	struct ring_buffer_meta *meta;
2650 	void *ptr;
2651 
2652 	if (!buffer || !buffer->meta)
2653 		return NULL;
2654 
2655 	meta = buffer->meta;
2656 
2657 	ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2658 
2659 	if (size)
2660 		*size = (void *)meta + meta->buffers_offset - ptr;
2661 
2662 	return ptr;
2663 }
2664 
2665 /**
2666  * ring_buffer_free - free a ring buffer.
2667  * @buffer: the buffer to free.
2668  */
2669 void
ring_buffer_free(struct trace_buffer * buffer)2670 ring_buffer_free(struct trace_buffer *buffer)
2671 {
2672 	int cpu;
2673 
2674 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2675 
2676 	irq_work_sync(&buffer->irq_work.work);
2677 
2678 	for_each_buffer_cpu(buffer, cpu)
2679 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2680 
2681 	kfree(buffer->buffers);
2682 	free_cpumask_var(buffer->cpumask);
2683 
2684 	kfree(buffer);
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_free);
2687 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2688 void ring_buffer_set_clock(struct trace_buffer *buffer,
2689 			   u64 (*clock)(void))
2690 {
2691 	buffer->clock = clock;
2692 }
2693 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2694 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2695 {
2696 	buffer->time_stamp_abs = abs;
2697 }
2698 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2699 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2700 {
2701 	return buffer->time_stamp_abs;
2702 }
2703 
rb_page_entries(struct buffer_page * bpage)2704 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2705 {
2706 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2707 }
2708 
rb_page_write(struct buffer_page * bpage)2709 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2710 {
2711 	return local_read(&bpage->write) & RB_WRITE_MASK;
2712 }
2713 
2714 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2715 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2716 {
2717 	struct list_head *tail_page, *to_remove, *next_page;
2718 	struct buffer_page *to_remove_page, *tmp_iter_page;
2719 	struct buffer_page *last_page, *first_page;
2720 	unsigned long nr_removed;
2721 	unsigned long head_bit;
2722 	int page_entries;
2723 
2724 	head_bit = 0;
2725 
2726 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2727 	atomic_inc(&cpu_buffer->record_disabled);
2728 	/*
2729 	 * We don't race with the readers since we have acquired the reader
2730 	 * lock. We also don't race with writers after disabling recording.
2731 	 * This makes it easy to figure out the first and the last page to be
2732 	 * removed from the list. We unlink all the pages in between including
2733 	 * the first and last pages. This is done in a busy loop so that we
2734 	 * lose the least number of traces.
2735 	 * The pages are freed after we restart recording and unlock readers.
2736 	 */
2737 	tail_page = &cpu_buffer->tail_page->list;
2738 
2739 	/*
2740 	 * tail page might be on reader page, we remove the next page
2741 	 * from the ring buffer
2742 	 */
2743 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2744 		tail_page = rb_list_head(tail_page->next);
2745 	to_remove = tail_page;
2746 
2747 	/* start of pages to remove */
2748 	first_page = list_entry(rb_list_head(to_remove->next),
2749 				struct buffer_page, list);
2750 
2751 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2752 		to_remove = rb_list_head(to_remove)->next;
2753 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2754 	}
2755 	/* Read iterators need to reset themselves when some pages removed */
2756 	cpu_buffer->pages_removed += nr_removed;
2757 
2758 	next_page = rb_list_head(to_remove)->next;
2759 
2760 	/*
2761 	 * Now we remove all pages between tail_page and next_page.
2762 	 * Make sure that we have head_bit value preserved for the
2763 	 * next page
2764 	 */
2765 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2766 						head_bit);
2767 	next_page = rb_list_head(next_page);
2768 	next_page->prev = tail_page;
2769 
2770 	/* make sure pages points to a valid page in the ring buffer */
2771 	cpu_buffer->pages = next_page;
2772 	cpu_buffer->cnt++;
2773 
2774 	/* update head page */
2775 	if (head_bit)
2776 		cpu_buffer->head_page = list_entry(next_page,
2777 						struct buffer_page, list);
2778 
2779 	/* pages are removed, resume tracing and then free the pages */
2780 	atomic_dec(&cpu_buffer->record_disabled);
2781 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2782 
2783 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2784 
2785 	/* last buffer page to remove */
2786 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2787 				list);
2788 	tmp_iter_page = first_page;
2789 
2790 	do {
2791 		cond_resched();
2792 
2793 		to_remove_page = tmp_iter_page;
2794 		rb_inc_page(&tmp_iter_page);
2795 
2796 		/* update the counters */
2797 		page_entries = rb_page_entries(to_remove_page);
2798 		if (page_entries) {
2799 			/*
2800 			 * If something was added to this page, it was full
2801 			 * since it is not the tail page. So we deduct the
2802 			 * bytes consumed in ring buffer from here.
2803 			 * Increment overrun to account for the lost events.
2804 			 */
2805 			local_add(page_entries, &cpu_buffer->overrun);
2806 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2807 			local_inc(&cpu_buffer->pages_lost);
2808 		}
2809 
2810 		/*
2811 		 * We have already removed references to this list item, just
2812 		 * free up the buffer_page and its page
2813 		 */
2814 		free_buffer_page(to_remove_page);
2815 		nr_removed--;
2816 
2817 	} while (to_remove_page != last_page);
2818 
2819 	RB_WARN_ON(cpu_buffer, nr_removed);
2820 
2821 	return nr_removed == 0;
2822 }
2823 
2824 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2825 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2826 {
2827 	struct list_head *pages = &cpu_buffer->new_pages;
2828 	unsigned long flags;
2829 	bool success;
2830 	int retries;
2831 
2832 	/* Can be called at early boot up, where interrupts must not been enabled */
2833 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2834 	/*
2835 	 * We are holding the reader lock, so the reader page won't be swapped
2836 	 * in the ring buffer. Now we are racing with the writer trying to
2837 	 * move head page and the tail page.
2838 	 * We are going to adapt the reader page update process where:
2839 	 * 1. We first splice the start and end of list of new pages between
2840 	 *    the head page and its previous page.
2841 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2842 	 *    start of new pages list.
2843 	 * 3. Finally, we update the head->prev to the end of new list.
2844 	 *
2845 	 * We will try this process 10 times, to make sure that we don't keep
2846 	 * spinning.
2847 	 */
2848 	retries = 10;
2849 	success = false;
2850 	while (retries--) {
2851 		struct list_head *head_page, *prev_page;
2852 		struct list_head *last_page, *first_page;
2853 		struct list_head *head_page_with_bit;
2854 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2855 
2856 		if (!hpage)
2857 			break;
2858 		head_page = &hpage->list;
2859 		prev_page = head_page->prev;
2860 
2861 		first_page = pages->next;
2862 		last_page  = pages->prev;
2863 
2864 		head_page_with_bit = (struct list_head *)
2865 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2866 
2867 		last_page->next = head_page_with_bit;
2868 		first_page->prev = prev_page;
2869 
2870 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2871 		if (try_cmpxchg(&prev_page->next,
2872 				&head_page_with_bit, first_page)) {
2873 			/*
2874 			 * yay, we replaced the page pointer to our new list,
2875 			 * now, we just have to update to head page's prev
2876 			 * pointer to point to end of list
2877 			 */
2878 			head_page->prev = last_page;
2879 			cpu_buffer->cnt++;
2880 			success = true;
2881 			break;
2882 		}
2883 	}
2884 
2885 	if (success)
2886 		INIT_LIST_HEAD(pages);
2887 	/*
2888 	 * If we weren't successful in adding in new pages, warn and stop
2889 	 * tracing
2890 	 */
2891 	RB_WARN_ON(cpu_buffer, !success);
2892 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2893 
2894 	/* free pages if they weren't inserted */
2895 	if (!success) {
2896 		struct buffer_page *bpage, *tmp;
2897 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2898 					 list) {
2899 			list_del_init(&bpage->list);
2900 			free_buffer_page(bpage);
2901 		}
2902 	}
2903 	return success;
2904 }
2905 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2906 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2907 {
2908 	bool success;
2909 
2910 	if (cpu_buffer->nr_pages_to_update > 0)
2911 		success = rb_insert_pages(cpu_buffer);
2912 	else
2913 		success = rb_remove_pages(cpu_buffer,
2914 					-cpu_buffer->nr_pages_to_update);
2915 
2916 	if (success)
2917 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2918 }
2919 
update_pages_handler(struct work_struct * work)2920 static void update_pages_handler(struct work_struct *work)
2921 {
2922 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2923 			struct ring_buffer_per_cpu, update_pages_work);
2924 	rb_update_pages(cpu_buffer);
2925 	complete(&cpu_buffer->update_done);
2926 }
2927 
2928 /**
2929  * ring_buffer_resize - resize the ring buffer
2930  * @buffer: the buffer to resize.
2931  * @size: the new size.
2932  * @cpu_id: the cpu buffer to resize
2933  *
2934  * Minimum size is 2 * buffer->subbuf_size.
2935  *
2936  * Returns 0 on success and < 0 on failure.
2937  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2938 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2939 			int cpu_id)
2940 {
2941 	struct ring_buffer_per_cpu *cpu_buffer;
2942 	unsigned long nr_pages;
2943 	int cpu, err;
2944 
2945 	/*
2946 	 * Always succeed at resizing a non-existent buffer:
2947 	 */
2948 	if (!buffer)
2949 		return 0;
2950 
2951 	/* Make sure the requested buffer exists */
2952 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2953 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2954 		return 0;
2955 
2956 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2957 
2958 	/* we need a minimum of two pages */
2959 	if (nr_pages < 2)
2960 		nr_pages = 2;
2961 
2962 	/*
2963 	 * Keep CPUs from coming online while resizing to synchronize
2964 	 * with new per CPU buffers being created.
2965 	 */
2966 	guard(cpus_read_lock)();
2967 
2968 	/* prevent another thread from changing buffer sizes */
2969 	mutex_lock(&buffer->mutex);
2970 	atomic_inc(&buffer->resizing);
2971 
2972 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2973 		/*
2974 		 * Don't succeed if resizing is disabled, as a reader might be
2975 		 * manipulating the ring buffer and is expecting a sane state while
2976 		 * this is true.
2977 		 */
2978 		for_each_buffer_cpu(buffer, cpu) {
2979 			cpu_buffer = buffer->buffers[cpu];
2980 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2981 				err = -EBUSY;
2982 				goto out_err_unlock;
2983 			}
2984 		}
2985 
2986 		/* calculate the pages to update */
2987 		for_each_buffer_cpu(buffer, cpu) {
2988 			cpu_buffer = buffer->buffers[cpu];
2989 
2990 			cpu_buffer->nr_pages_to_update = nr_pages -
2991 							cpu_buffer->nr_pages;
2992 			/*
2993 			 * nothing more to do for removing pages or no update
2994 			 */
2995 			if (cpu_buffer->nr_pages_to_update <= 0)
2996 				continue;
2997 			/*
2998 			 * to add pages, make sure all new pages can be
2999 			 * allocated without receiving ENOMEM
3000 			 */
3001 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
3002 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3003 						&cpu_buffer->new_pages)) {
3004 				/* not enough memory for new pages */
3005 				err = -ENOMEM;
3006 				goto out_err;
3007 			}
3008 
3009 			cond_resched();
3010 		}
3011 
3012 		/*
3013 		 * Fire off all the required work handlers
3014 		 * We can't schedule on offline CPUs, but it's not necessary
3015 		 * since we can change their buffer sizes without any race.
3016 		 */
3017 		for_each_buffer_cpu(buffer, cpu) {
3018 			cpu_buffer = buffer->buffers[cpu];
3019 			if (!cpu_buffer->nr_pages_to_update)
3020 				continue;
3021 
3022 			/* Can't run something on an offline CPU. */
3023 			if (!cpu_online(cpu)) {
3024 				rb_update_pages(cpu_buffer);
3025 				cpu_buffer->nr_pages_to_update = 0;
3026 			} else {
3027 				/* Run directly if possible. */
3028 				migrate_disable();
3029 				if (cpu != smp_processor_id()) {
3030 					migrate_enable();
3031 					schedule_work_on(cpu,
3032 							 &cpu_buffer->update_pages_work);
3033 				} else {
3034 					update_pages_handler(&cpu_buffer->update_pages_work);
3035 					migrate_enable();
3036 				}
3037 			}
3038 		}
3039 
3040 		/* wait for all the updates to complete */
3041 		for_each_buffer_cpu(buffer, cpu) {
3042 			cpu_buffer = buffer->buffers[cpu];
3043 			if (!cpu_buffer->nr_pages_to_update)
3044 				continue;
3045 
3046 			if (cpu_online(cpu))
3047 				wait_for_completion(&cpu_buffer->update_done);
3048 			cpu_buffer->nr_pages_to_update = 0;
3049 		}
3050 
3051 	} else {
3052 		cpu_buffer = buffer->buffers[cpu_id];
3053 
3054 		if (nr_pages == cpu_buffer->nr_pages)
3055 			goto out;
3056 
3057 		/*
3058 		 * Don't succeed if resizing is disabled, as a reader might be
3059 		 * manipulating the ring buffer and is expecting a sane state while
3060 		 * this is true.
3061 		 */
3062 		if (atomic_read(&cpu_buffer->resize_disabled)) {
3063 			err = -EBUSY;
3064 			goto out_err_unlock;
3065 		}
3066 
3067 		cpu_buffer->nr_pages_to_update = nr_pages -
3068 						cpu_buffer->nr_pages;
3069 
3070 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
3071 		if (cpu_buffer->nr_pages_to_update > 0 &&
3072 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
3073 					    &cpu_buffer->new_pages)) {
3074 			err = -ENOMEM;
3075 			goto out_err;
3076 		}
3077 
3078 		/* Can't run something on an offline CPU. */
3079 		if (!cpu_online(cpu_id))
3080 			rb_update_pages(cpu_buffer);
3081 		else {
3082 			/* Run directly if possible. */
3083 			migrate_disable();
3084 			if (cpu_id == smp_processor_id()) {
3085 				rb_update_pages(cpu_buffer);
3086 				migrate_enable();
3087 			} else {
3088 				migrate_enable();
3089 				schedule_work_on(cpu_id,
3090 						 &cpu_buffer->update_pages_work);
3091 				wait_for_completion(&cpu_buffer->update_done);
3092 			}
3093 		}
3094 
3095 		cpu_buffer->nr_pages_to_update = 0;
3096 	}
3097 
3098  out:
3099 	/*
3100 	 * The ring buffer resize can happen with the ring buffer
3101 	 * enabled, so that the update disturbs the tracing as little
3102 	 * as possible. But if the buffer is disabled, we do not need
3103 	 * to worry about that, and we can take the time to verify
3104 	 * that the buffer is not corrupt.
3105 	 */
3106 	if (atomic_read(&buffer->record_disabled)) {
3107 		atomic_inc(&buffer->record_disabled);
3108 		/*
3109 		 * Even though the buffer was disabled, we must make sure
3110 		 * that it is truly disabled before calling rb_check_pages.
3111 		 * There could have been a race between checking
3112 		 * record_disable and incrementing it.
3113 		 */
3114 		synchronize_rcu();
3115 		for_each_buffer_cpu(buffer, cpu) {
3116 			cpu_buffer = buffer->buffers[cpu];
3117 			rb_check_pages(cpu_buffer);
3118 		}
3119 		atomic_dec(&buffer->record_disabled);
3120 	}
3121 
3122 	atomic_dec(&buffer->resizing);
3123 	mutex_unlock(&buffer->mutex);
3124 	return 0;
3125 
3126  out_err:
3127 	for_each_buffer_cpu(buffer, cpu) {
3128 		struct buffer_page *bpage, *tmp;
3129 
3130 		cpu_buffer = buffer->buffers[cpu];
3131 		cpu_buffer->nr_pages_to_update = 0;
3132 
3133 		if (list_empty(&cpu_buffer->new_pages))
3134 			continue;
3135 
3136 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3137 					list) {
3138 			list_del_init(&bpage->list);
3139 			free_buffer_page(bpage);
3140 
3141 			cond_resched();
3142 		}
3143 	}
3144  out_err_unlock:
3145 	atomic_dec(&buffer->resizing);
3146 	mutex_unlock(&buffer->mutex);
3147 	return err;
3148 }
3149 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3150 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3151 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3152 {
3153 	mutex_lock(&buffer->mutex);
3154 	if (val)
3155 		buffer->flags |= RB_FL_OVERWRITE;
3156 	else
3157 		buffer->flags &= ~RB_FL_OVERWRITE;
3158 	mutex_unlock(&buffer->mutex);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3161 
__rb_page_index(struct buffer_page * bpage,unsigned index)3162 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3163 {
3164 	return bpage->page->data + index;
3165 }
3166 
3167 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3168 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3169 {
3170 	return __rb_page_index(cpu_buffer->reader_page,
3171 			       cpu_buffer->reader_page->read);
3172 }
3173 
3174 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3175 rb_iter_head_event(struct ring_buffer_iter *iter)
3176 {
3177 	struct ring_buffer_event *event;
3178 	struct buffer_page *iter_head_page = iter->head_page;
3179 	unsigned long commit;
3180 	unsigned length;
3181 
3182 	if (iter->head != iter->next_event)
3183 		return iter->event;
3184 
3185 	/*
3186 	 * When the writer goes across pages, it issues a cmpxchg which
3187 	 * is a mb(), which will synchronize with the rmb here.
3188 	 * (see rb_tail_page_update() and __rb_reserve_next())
3189 	 */
3190 	commit = rb_page_commit(iter_head_page);
3191 	smp_rmb();
3192 
3193 	/* An event needs to be at least 8 bytes in size */
3194 	if (iter->head > commit - 8)
3195 		goto reset;
3196 
3197 	event = __rb_page_index(iter_head_page, iter->head);
3198 	length = rb_event_length(event);
3199 
3200 	/*
3201 	 * READ_ONCE() doesn't work on functions and we don't want the
3202 	 * compiler doing any crazy optimizations with length.
3203 	 */
3204 	barrier();
3205 
3206 	if ((iter->head + length) > commit || length > iter->event_size)
3207 		/* Writer corrupted the read? */
3208 		goto reset;
3209 
3210 	memcpy(iter->event, event, length);
3211 	/*
3212 	 * If the page stamp is still the same after this rmb() then the
3213 	 * event was safely copied without the writer entering the page.
3214 	 */
3215 	smp_rmb();
3216 
3217 	/* Make sure the page didn't change since we read this */
3218 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3219 	    commit > rb_page_commit(iter_head_page))
3220 		goto reset;
3221 
3222 	iter->next_event = iter->head + length;
3223 	return iter->event;
3224  reset:
3225 	/* Reset to the beginning */
3226 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3227 	iter->head = 0;
3228 	iter->next_event = 0;
3229 	iter->missed_events = 1;
3230 	return NULL;
3231 }
3232 
3233 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3234 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3235 {
3236 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3237 }
3238 
3239 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3240 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3241 {
3242 	return rb_page_commit(cpu_buffer->commit_page);
3243 }
3244 
3245 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3246 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3247 {
3248 	unsigned long addr = (unsigned long)event;
3249 
3250 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3251 
3252 	return addr - BUF_PAGE_HDR_SIZE;
3253 }
3254 
rb_inc_iter(struct ring_buffer_iter * iter)3255 static void rb_inc_iter(struct ring_buffer_iter *iter)
3256 {
3257 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3258 
3259 	/*
3260 	 * The iterator could be on the reader page (it starts there).
3261 	 * But the head could have moved, since the reader was
3262 	 * found. Check for this case and assign the iterator
3263 	 * to the head page instead of next.
3264 	 */
3265 	if (iter->head_page == cpu_buffer->reader_page)
3266 		iter->head_page = rb_set_head_page(cpu_buffer);
3267 	else
3268 		rb_inc_page(&iter->head_page);
3269 
3270 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3271 	iter->head = 0;
3272 	iter->next_event = 0;
3273 }
3274 
3275 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_cpu_meta * meta,void * subbuf)3276 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3277 {
3278 	void *subbuf_array;
3279 
3280 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3281 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3282 	return (subbuf - subbuf_array) / meta->subbuf_size;
3283 }
3284 
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3285 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3286 				struct buffer_page *next_page)
3287 {
3288 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3289 	unsigned long old_head = (unsigned long)next_page->page;
3290 	unsigned long new_head;
3291 
3292 	rb_inc_page(&next_page);
3293 	new_head = (unsigned long)next_page->page;
3294 
3295 	/*
3296 	 * Only move it forward once, if something else came in and
3297 	 * moved it forward, then we don't want to touch it.
3298 	 */
3299 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3300 }
3301 
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3302 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3303 				  struct buffer_page *reader)
3304 {
3305 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3306 	void *old_reader = cpu_buffer->reader_page->page;
3307 	void *new_reader = reader->page;
3308 	int id;
3309 
3310 	id = reader->id;
3311 	cpu_buffer->reader_page->id = id;
3312 	reader->id = 0;
3313 
3314 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3315 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3316 
3317 	/* The head pointer is the one after the reader */
3318 	rb_update_meta_head(cpu_buffer, reader);
3319 }
3320 
3321 /*
3322  * rb_handle_head_page - writer hit the head page
3323  *
3324  * Returns: +1 to retry page
3325  *           0 to continue
3326  *          -1 on error
3327  */
3328 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3329 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3330 		    struct buffer_page *tail_page,
3331 		    struct buffer_page *next_page)
3332 {
3333 	struct buffer_page *new_head;
3334 	int entries;
3335 	int type;
3336 	int ret;
3337 
3338 	entries = rb_page_entries(next_page);
3339 
3340 	/*
3341 	 * The hard part is here. We need to move the head
3342 	 * forward, and protect against both readers on
3343 	 * other CPUs and writers coming in via interrupts.
3344 	 */
3345 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3346 				       RB_PAGE_HEAD);
3347 
3348 	/*
3349 	 * type can be one of four:
3350 	 *  NORMAL - an interrupt already moved it for us
3351 	 *  HEAD   - we are the first to get here.
3352 	 *  UPDATE - we are the interrupt interrupting
3353 	 *           a current move.
3354 	 *  MOVED  - a reader on another CPU moved the next
3355 	 *           pointer to its reader page. Give up
3356 	 *           and try again.
3357 	 */
3358 
3359 	switch (type) {
3360 	case RB_PAGE_HEAD:
3361 		/*
3362 		 * We changed the head to UPDATE, thus
3363 		 * it is our responsibility to update
3364 		 * the counters.
3365 		 */
3366 		local_add(entries, &cpu_buffer->overrun);
3367 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3368 		local_inc(&cpu_buffer->pages_lost);
3369 
3370 		if (cpu_buffer->ring_meta)
3371 			rb_update_meta_head(cpu_buffer, next_page);
3372 		/*
3373 		 * The entries will be zeroed out when we move the
3374 		 * tail page.
3375 		 */
3376 
3377 		/* still more to do */
3378 		break;
3379 
3380 	case RB_PAGE_UPDATE:
3381 		/*
3382 		 * This is an interrupt that interrupt the
3383 		 * previous update. Still more to do.
3384 		 */
3385 		break;
3386 	case RB_PAGE_NORMAL:
3387 		/*
3388 		 * An interrupt came in before the update
3389 		 * and processed this for us.
3390 		 * Nothing left to do.
3391 		 */
3392 		return 1;
3393 	case RB_PAGE_MOVED:
3394 		/*
3395 		 * The reader is on another CPU and just did
3396 		 * a swap with our next_page.
3397 		 * Try again.
3398 		 */
3399 		return 1;
3400 	default:
3401 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3402 		return -1;
3403 	}
3404 
3405 	/*
3406 	 * Now that we are here, the old head pointer is
3407 	 * set to UPDATE. This will keep the reader from
3408 	 * swapping the head page with the reader page.
3409 	 * The reader (on another CPU) will spin till
3410 	 * we are finished.
3411 	 *
3412 	 * We just need to protect against interrupts
3413 	 * doing the job. We will set the next pointer
3414 	 * to HEAD. After that, we set the old pointer
3415 	 * to NORMAL, but only if it was HEAD before.
3416 	 * otherwise we are an interrupt, and only
3417 	 * want the outer most commit to reset it.
3418 	 */
3419 	new_head = next_page;
3420 	rb_inc_page(&new_head);
3421 
3422 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3423 				    RB_PAGE_NORMAL);
3424 
3425 	/*
3426 	 * Valid returns are:
3427 	 *  HEAD   - an interrupt came in and already set it.
3428 	 *  NORMAL - One of two things:
3429 	 *            1) We really set it.
3430 	 *            2) A bunch of interrupts came in and moved
3431 	 *               the page forward again.
3432 	 */
3433 	switch (ret) {
3434 	case RB_PAGE_HEAD:
3435 	case RB_PAGE_NORMAL:
3436 		/* OK */
3437 		break;
3438 	default:
3439 		RB_WARN_ON(cpu_buffer, 1);
3440 		return -1;
3441 	}
3442 
3443 	/*
3444 	 * It is possible that an interrupt came in,
3445 	 * set the head up, then more interrupts came in
3446 	 * and moved it again. When we get back here,
3447 	 * the page would have been set to NORMAL but we
3448 	 * just set it back to HEAD.
3449 	 *
3450 	 * How do you detect this? Well, if that happened
3451 	 * the tail page would have moved.
3452 	 */
3453 	if (ret == RB_PAGE_NORMAL) {
3454 		struct buffer_page *buffer_tail_page;
3455 
3456 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3457 		/*
3458 		 * If the tail had moved passed next, then we need
3459 		 * to reset the pointer.
3460 		 */
3461 		if (buffer_tail_page != tail_page &&
3462 		    buffer_tail_page != next_page)
3463 			rb_head_page_set_normal(cpu_buffer, new_head,
3464 						next_page,
3465 						RB_PAGE_HEAD);
3466 	}
3467 
3468 	/*
3469 	 * If this was the outer most commit (the one that
3470 	 * changed the original pointer from HEAD to UPDATE),
3471 	 * then it is up to us to reset it to NORMAL.
3472 	 */
3473 	if (type == RB_PAGE_HEAD) {
3474 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3475 					      tail_page,
3476 					      RB_PAGE_UPDATE);
3477 		if (RB_WARN_ON(cpu_buffer,
3478 			       ret != RB_PAGE_UPDATE))
3479 			return -1;
3480 	}
3481 
3482 	return 0;
3483 }
3484 
3485 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3486 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3487 	      unsigned long tail, struct rb_event_info *info)
3488 {
3489 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3490 	struct buffer_page *tail_page = info->tail_page;
3491 	struct ring_buffer_event *event;
3492 	unsigned long length = info->length;
3493 
3494 	/*
3495 	 * Only the event that crossed the page boundary
3496 	 * must fill the old tail_page with padding.
3497 	 */
3498 	if (tail >= bsize) {
3499 		/*
3500 		 * If the page was filled, then we still need
3501 		 * to update the real_end. Reset it to zero
3502 		 * and the reader will ignore it.
3503 		 */
3504 		if (tail == bsize)
3505 			tail_page->real_end = 0;
3506 
3507 		local_sub(length, &tail_page->write);
3508 		return;
3509 	}
3510 
3511 	event = __rb_page_index(tail_page, tail);
3512 
3513 	/*
3514 	 * Save the original length to the meta data.
3515 	 * This will be used by the reader to add lost event
3516 	 * counter.
3517 	 */
3518 	tail_page->real_end = tail;
3519 
3520 	/*
3521 	 * If this event is bigger than the minimum size, then
3522 	 * we need to be careful that we don't subtract the
3523 	 * write counter enough to allow another writer to slip
3524 	 * in on this page.
3525 	 * We put in a discarded commit instead, to make sure
3526 	 * that this space is not used again, and this space will
3527 	 * not be accounted into 'entries_bytes'.
3528 	 *
3529 	 * If we are less than the minimum size, we don't need to
3530 	 * worry about it.
3531 	 */
3532 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3533 		/* No room for any events */
3534 
3535 		/* Mark the rest of the page with padding */
3536 		rb_event_set_padding(event);
3537 
3538 		/* Make sure the padding is visible before the write update */
3539 		smp_wmb();
3540 
3541 		/* Set the write back to the previous setting */
3542 		local_sub(length, &tail_page->write);
3543 		return;
3544 	}
3545 
3546 	/* Put in a discarded event */
3547 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3548 	event->type_len = RINGBUF_TYPE_PADDING;
3549 	/* time delta must be non zero */
3550 	event->time_delta = 1;
3551 
3552 	/* account for padding bytes */
3553 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3554 
3555 	/* Make sure the padding is visible before the tail_page->write update */
3556 	smp_wmb();
3557 
3558 	/* Set write to end of buffer */
3559 	length = (tail + length) - bsize;
3560 	local_sub(length, &tail_page->write);
3561 }
3562 
3563 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3564 
3565 /*
3566  * This is the slow path, force gcc not to inline it.
3567  */
3568 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3569 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3570 	     unsigned long tail, struct rb_event_info *info)
3571 {
3572 	struct buffer_page *tail_page = info->tail_page;
3573 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3574 	struct trace_buffer *buffer = cpu_buffer->buffer;
3575 	struct buffer_page *next_page;
3576 	int ret;
3577 
3578 	next_page = tail_page;
3579 
3580 	rb_inc_page(&next_page);
3581 
3582 	/*
3583 	 * If for some reason, we had an interrupt storm that made
3584 	 * it all the way around the buffer, bail, and warn
3585 	 * about it.
3586 	 */
3587 	if (unlikely(next_page == commit_page)) {
3588 		local_inc(&cpu_buffer->commit_overrun);
3589 		goto out_reset;
3590 	}
3591 
3592 	/*
3593 	 * This is where the fun begins!
3594 	 *
3595 	 * We are fighting against races between a reader that
3596 	 * could be on another CPU trying to swap its reader
3597 	 * page with the buffer head.
3598 	 *
3599 	 * We are also fighting against interrupts coming in and
3600 	 * moving the head or tail on us as well.
3601 	 *
3602 	 * If the next page is the head page then we have filled
3603 	 * the buffer, unless the commit page is still on the
3604 	 * reader page.
3605 	 */
3606 	if (rb_is_head_page(next_page, &tail_page->list)) {
3607 
3608 		/*
3609 		 * If the commit is not on the reader page, then
3610 		 * move the header page.
3611 		 */
3612 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3613 			/*
3614 			 * If we are not in overwrite mode,
3615 			 * this is easy, just stop here.
3616 			 */
3617 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3618 				local_inc(&cpu_buffer->dropped_events);
3619 				goto out_reset;
3620 			}
3621 
3622 			ret = rb_handle_head_page(cpu_buffer,
3623 						  tail_page,
3624 						  next_page);
3625 			if (ret < 0)
3626 				goto out_reset;
3627 			if (ret)
3628 				goto out_again;
3629 		} else {
3630 			/*
3631 			 * We need to be careful here too. The
3632 			 * commit page could still be on the reader
3633 			 * page. We could have a small buffer, and
3634 			 * have filled up the buffer with events
3635 			 * from interrupts and such, and wrapped.
3636 			 *
3637 			 * Note, if the tail page is also on the
3638 			 * reader_page, we let it move out.
3639 			 */
3640 			if (unlikely((cpu_buffer->commit_page !=
3641 				      cpu_buffer->tail_page) &&
3642 				     (cpu_buffer->commit_page ==
3643 				      cpu_buffer->reader_page))) {
3644 				local_inc(&cpu_buffer->commit_overrun);
3645 				goto out_reset;
3646 			}
3647 		}
3648 	}
3649 
3650 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3651 
3652  out_again:
3653 
3654 	rb_reset_tail(cpu_buffer, tail, info);
3655 
3656 	/* Commit what we have for now. */
3657 	rb_end_commit(cpu_buffer);
3658 	/* rb_end_commit() decs committing */
3659 	local_inc(&cpu_buffer->committing);
3660 
3661 	/* fail and let the caller try again */
3662 	return ERR_PTR(-EAGAIN);
3663 
3664  out_reset:
3665 	/* reset write */
3666 	rb_reset_tail(cpu_buffer, tail, info);
3667 
3668 	return NULL;
3669 }
3670 
3671 /* Slow path */
3672 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3673 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3674 		  struct ring_buffer_event *event, u64 delta, bool abs)
3675 {
3676 	if (abs)
3677 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3678 	else
3679 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3680 
3681 	/* Not the first event on the page, or not delta? */
3682 	if (abs || rb_event_index(cpu_buffer, event)) {
3683 		event->time_delta = delta & TS_MASK;
3684 		event->array[0] = delta >> TS_SHIFT;
3685 	} else {
3686 		/* nope, just zero it */
3687 		event->time_delta = 0;
3688 		event->array[0] = 0;
3689 	}
3690 
3691 	return skip_time_extend(event);
3692 }
3693 
3694 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3695 static inline bool sched_clock_stable(void)
3696 {
3697 	return true;
3698 }
3699 #endif
3700 
3701 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3702 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3703 		   struct rb_event_info *info)
3704 {
3705 	u64 write_stamp;
3706 
3707 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3708 		  (unsigned long long)info->delta,
3709 		  (unsigned long long)info->ts,
3710 		  (unsigned long long)info->before,
3711 		  (unsigned long long)info->after,
3712 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3713 		  sched_clock_stable() ? "" :
3714 		  "If you just came from a suspend/resume,\n"
3715 		  "please switch to the trace global clock:\n"
3716 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3717 		  "or add trace_clock=global to the kernel command line\n");
3718 }
3719 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3720 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3721 				      struct ring_buffer_event **event,
3722 				      struct rb_event_info *info,
3723 				      u64 *delta,
3724 				      unsigned int *length)
3725 {
3726 	bool abs = info->add_timestamp &
3727 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3728 
3729 	if (unlikely(info->delta > (1ULL << 59))) {
3730 		/*
3731 		 * Some timers can use more than 59 bits, and when a timestamp
3732 		 * is added to the buffer, it will lose those bits.
3733 		 */
3734 		if (abs && (info->ts & TS_MSB)) {
3735 			info->delta &= ABS_TS_MASK;
3736 
3737 		/* did the clock go backwards */
3738 		} else if (info->before == info->after && info->before > info->ts) {
3739 			/* not interrupted */
3740 			static int once;
3741 
3742 			/*
3743 			 * This is possible with a recalibrating of the TSC.
3744 			 * Do not produce a call stack, but just report it.
3745 			 */
3746 			if (!once) {
3747 				once++;
3748 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3749 					info->before, info->ts);
3750 			}
3751 		} else
3752 			rb_check_timestamp(cpu_buffer, info);
3753 		if (!abs)
3754 			info->delta = 0;
3755 	}
3756 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3757 	*length -= RB_LEN_TIME_EXTEND;
3758 	*delta = 0;
3759 }
3760 
3761 /**
3762  * rb_update_event - update event type and data
3763  * @cpu_buffer: The per cpu buffer of the @event
3764  * @event: the event to update
3765  * @info: The info to update the @event with (contains length and delta)
3766  *
3767  * Update the type and data fields of the @event. The length
3768  * is the actual size that is written to the ring buffer,
3769  * and with this, we can determine what to place into the
3770  * data field.
3771  */
3772 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3773 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3774 		struct ring_buffer_event *event,
3775 		struct rb_event_info *info)
3776 {
3777 	unsigned length = info->length;
3778 	u64 delta = info->delta;
3779 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3780 
3781 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3782 		cpu_buffer->event_stamp[nest] = info->ts;
3783 
3784 	/*
3785 	 * If we need to add a timestamp, then we
3786 	 * add it to the start of the reserved space.
3787 	 */
3788 	if (unlikely(info->add_timestamp))
3789 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3790 
3791 	event->time_delta = delta;
3792 	length -= RB_EVNT_HDR_SIZE;
3793 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3794 		event->type_len = 0;
3795 		event->array[0] = length;
3796 	} else
3797 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3798 }
3799 
rb_calculate_event_length(unsigned length)3800 static unsigned rb_calculate_event_length(unsigned length)
3801 {
3802 	struct ring_buffer_event event; /* Used only for sizeof array */
3803 
3804 	/* zero length can cause confusions */
3805 	if (!length)
3806 		length++;
3807 
3808 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3809 		length += sizeof(event.array[0]);
3810 
3811 	length += RB_EVNT_HDR_SIZE;
3812 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3813 
3814 	/*
3815 	 * In case the time delta is larger than the 27 bits for it
3816 	 * in the header, we need to add a timestamp. If another
3817 	 * event comes in when trying to discard this one to increase
3818 	 * the length, then the timestamp will be added in the allocated
3819 	 * space of this event. If length is bigger than the size needed
3820 	 * for the TIME_EXTEND, then padding has to be used. The events
3821 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3822 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3823 	 * As length is a multiple of 4, we only need to worry if it
3824 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3825 	 */
3826 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3827 		length += RB_ALIGNMENT;
3828 
3829 	return length;
3830 }
3831 
3832 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3833 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3834 		  struct ring_buffer_event *event)
3835 {
3836 	unsigned long new_index, old_index;
3837 	struct buffer_page *bpage;
3838 	unsigned long addr;
3839 
3840 	new_index = rb_event_index(cpu_buffer, event);
3841 	old_index = new_index + rb_event_ts_length(event);
3842 	addr = (unsigned long)event;
3843 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3844 
3845 	bpage = READ_ONCE(cpu_buffer->tail_page);
3846 
3847 	/*
3848 	 * Make sure the tail_page is still the same and
3849 	 * the next write location is the end of this event
3850 	 */
3851 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3852 		unsigned long write_mask =
3853 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3854 		unsigned long event_length = rb_event_length(event);
3855 
3856 		/*
3857 		 * For the before_stamp to be different than the write_stamp
3858 		 * to make sure that the next event adds an absolute
3859 		 * value and does not rely on the saved write stamp, which
3860 		 * is now going to be bogus.
3861 		 *
3862 		 * By setting the before_stamp to zero, the next event
3863 		 * is not going to use the write_stamp and will instead
3864 		 * create an absolute timestamp. This means there's no
3865 		 * reason to update the wirte_stamp!
3866 		 */
3867 		rb_time_set(&cpu_buffer->before_stamp, 0);
3868 
3869 		/*
3870 		 * If an event were to come in now, it would see that the
3871 		 * write_stamp and the before_stamp are different, and assume
3872 		 * that this event just added itself before updating
3873 		 * the write stamp. The interrupting event will fix the
3874 		 * write stamp for us, and use an absolute timestamp.
3875 		 */
3876 
3877 		/*
3878 		 * This is on the tail page. It is possible that
3879 		 * a write could come in and move the tail page
3880 		 * and write to the next page. That is fine
3881 		 * because we just shorten what is on this page.
3882 		 */
3883 		old_index += write_mask;
3884 		new_index += write_mask;
3885 
3886 		/* caution: old_index gets updated on cmpxchg failure */
3887 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3888 			/* update counters */
3889 			local_sub(event_length, &cpu_buffer->entries_bytes);
3890 			return true;
3891 		}
3892 	}
3893 
3894 	/* could not discard */
3895 	return false;
3896 }
3897 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3898 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3899 {
3900 	local_inc(&cpu_buffer->committing);
3901 	local_inc(&cpu_buffer->commits);
3902 }
3903 
3904 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3905 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3906 {
3907 	unsigned long max_count;
3908 
3909 	/*
3910 	 * We only race with interrupts and NMIs on this CPU.
3911 	 * If we own the commit event, then we can commit
3912 	 * all others that interrupted us, since the interruptions
3913 	 * are in stack format (they finish before they come
3914 	 * back to us). This allows us to do a simple loop to
3915 	 * assign the commit to the tail.
3916 	 */
3917  again:
3918 	max_count = cpu_buffer->nr_pages * 100;
3919 
3920 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3921 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3922 			return;
3923 		if (RB_WARN_ON(cpu_buffer,
3924 			       rb_is_reader_page(cpu_buffer->tail_page)))
3925 			return;
3926 		/*
3927 		 * No need for a memory barrier here, as the update
3928 		 * of the tail_page did it for this page.
3929 		 */
3930 		local_set(&cpu_buffer->commit_page->page->commit,
3931 			  rb_page_write(cpu_buffer->commit_page));
3932 		rb_inc_page(&cpu_buffer->commit_page);
3933 		if (cpu_buffer->ring_meta) {
3934 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3935 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3936 		}
3937 		/* add barrier to keep gcc from optimizing too much */
3938 		barrier();
3939 	}
3940 	while (rb_commit_index(cpu_buffer) !=
3941 	       rb_page_write(cpu_buffer->commit_page)) {
3942 
3943 		/* Make sure the readers see the content of what is committed. */
3944 		smp_wmb();
3945 		local_set(&cpu_buffer->commit_page->page->commit,
3946 			  rb_page_write(cpu_buffer->commit_page));
3947 		RB_WARN_ON(cpu_buffer,
3948 			   local_read(&cpu_buffer->commit_page->page->commit) &
3949 			   ~RB_WRITE_MASK);
3950 		barrier();
3951 	}
3952 
3953 	/* again, keep gcc from optimizing */
3954 	barrier();
3955 
3956 	/*
3957 	 * If an interrupt came in just after the first while loop
3958 	 * and pushed the tail page forward, we will be left with
3959 	 * a dangling commit that will never go forward.
3960 	 */
3961 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3962 		goto again;
3963 }
3964 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3965 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3966 {
3967 	unsigned long commits;
3968 
3969 	if (RB_WARN_ON(cpu_buffer,
3970 		       !local_read(&cpu_buffer->committing)))
3971 		return;
3972 
3973  again:
3974 	commits = local_read(&cpu_buffer->commits);
3975 	/* synchronize with interrupts */
3976 	barrier();
3977 	if (local_read(&cpu_buffer->committing) == 1)
3978 		rb_set_commit_to_write(cpu_buffer);
3979 
3980 	local_dec(&cpu_buffer->committing);
3981 
3982 	/* synchronize with interrupts */
3983 	barrier();
3984 
3985 	/*
3986 	 * Need to account for interrupts coming in between the
3987 	 * updating of the commit page and the clearing of the
3988 	 * committing counter.
3989 	 */
3990 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3991 	    !local_read(&cpu_buffer->committing)) {
3992 		local_inc(&cpu_buffer->committing);
3993 		goto again;
3994 	}
3995 }
3996 
rb_event_discard(struct ring_buffer_event * event)3997 static inline void rb_event_discard(struct ring_buffer_event *event)
3998 {
3999 	if (extended_time(event))
4000 		event = skip_time_extend(event);
4001 
4002 	/* array[0] holds the actual length for the discarded event */
4003 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
4004 	event->type_len = RINGBUF_TYPE_PADDING;
4005 	/* time delta must be non zero */
4006 	if (!event->time_delta)
4007 		event->time_delta = 1;
4008 }
4009 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)4010 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
4011 {
4012 	local_inc(&cpu_buffer->entries);
4013 	rb_end_commit(cpu_buffer);
4014 }
4015 
4016 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)4017 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
4018 {
4019 	if (buffer->irq_work.waiters_pending) {
4020 		buffer->irq_work.waiters_pending = false;
4021 		/* irq_work_queue() supplies it's own memory barriers */
4022 		irq_work_queue(&buffer->irq_work.work);
4023 	}
4024 
4025 	if (cpu_buffer->irq_work.waiters_pending) {
4026 		cpu_buffer->irq_work.waiters_pending = false;
4027 		/* irq_work_queue() supplies it's own memory barriers */
4028 		irq_work_queue(&cpu_buffer->irq_work.work);
4029 	}
4030 
4031 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
4032 		return;
4033 
4034 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
4035 		return;
4036 
4037 	if (!cpu_buffer->irq_work.full_waiters_pending)
4038 		return;
4039 
4040 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
4041 
4042 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
4043 		return;
4044 
4045 	cpu_buffer->irq_work.wakeup_full = true;
4046 	cpu_buffer->irq_work.full_waiters_pending = false;
4047 	/* irq_work_queue() supplies it's own memory barriers */
4048 	irq_work_queue(&cpu_buffer->irq_work.work);
4049 }
4050 
4051 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
4052 # define do_ring_buffer_record_recursion()	\
4053 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
4054 #else
4055 # define do_ring_buffer_record_recursion() do { } while (0)
4056 #endif
4057 
4058 /*
4059  * The lock and unlock are done within a preempt disable section.
4060  * The current_context per_cpu variable can only be modified
4061  * by the current task between lock and unlock. But it can
4062  * be modified more than once via an interrupt. To pass this
4063  * information from the lock to the unlock without having to
4064  * access the 'in_interrupt()' functions again (which do show
4065  * a bit of overhead in something as critical as function tracing,
4066  * we use a bitmask trick.
4067  *
4068  *  bit 1 =  NMI context
4069  *  bit 2 =  IRQ context
4070  *  bit 3 =  SoftIRQ context
4071  *  bit 4 =  normal context.
4072  *
4073  * This works because this is the order of contexts that can
4074  * preempt other contexts. A SoftIRQ never preempts an IRQ
4075  * context.
4076  *
4077  * When the context is determined, the corresponding bit is
4078  * checked and set (if it was set, then a recursion of that context
4079  * happened).
4080  *
4081  * On unlock, we need to clear this bit. To do so, just subtract
4082  * 1 from the current_context and AND it to itself.
4083  *
4084  * (binary)
4085  *  101 - 1 = 100
4086  *  101 & 100 = 100 (clearing bit zero)
4087  *
4088  *  1010 - 1 = 1001
4089  *  1010 & 1001 = 1000 (clearing bit 1)
4090  *
4091  * The least significant bit can be cleared this way, and it
4092  * just so happens that it is the same bit corresponding to
4093  * the current context.
4094  *
4095  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
4096  * is set when a recursion is detected at the current context, and if
4097  * the TRANSITION bit is already set, it will fail the recursion.
4098  * This is needed because there's a lag between the changing of
4099  * interrupt context and updating the preempt count. In this case,
4100  * a false positive will be found. To handle this, one extra recursion
4101  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
4102  * bit is already set, then it is considered a recursion and the function
4103  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
4104  *
4105  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
4106  * to be cleared. Even if it wasn't the context that set it. That is,
4107  * if an interrupt comes in while NORMAL bit is set and the ring buffer
4108  * is called before preempt_count() is updated, since the check will
4109  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4110  * NMI then comes in, it will set the NMI bit, but when the NMI code
4111  * does the trace_recursive_unlock() it will clear the TRANSITION bit
4112  * and leave the NMI bit set. But this is fine, because the interrupt
4113  * code that set the TRANSITION bit will then clear the NMI bit when it
4114  * calls trace_recursive_unlock(). If another NMI comes in, it will
4115  * set the TRANSITION bit and continue.
4116  *
4117  * Note: The TRANSITION bit only handles a single transition between context.
4118  */
4119 
4120 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)4121 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4122 {
4123 	unsigned int val = cpu_buffer->current_context;
4124 	int bit = interrupt_context_level();
4125 
4126 	bit = RB_CTX_NORMAL - bit;
4127 
4128 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4129 		/*
4130 		 * It is possible that this was called by transitioning
4131 		 * between interrupt context, and preempt_count() has not
4132 		 * been updated yet. In this case, use the TRANSITION bit.
4133 		 */
4134 		bit = RB_CTX_TRANSITION;
4135 		if (val & (1 << (bit + cpu_buffer->nest))) {
4136 			do_ring_buffer_record_recursion();
4137 			return true;
4138 		}
4139 	}
4140 
4141 	val |= (1 << (bit + cpu_buffer->nest));
4142 	cpu_buffer->current_context = val;
4143 
4144 	return false;
4145 }
4146 
4147 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4148 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4149 {
4150 	cpu_buffer->current_context &=
4151 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4152 }
4153 
4154 /* The recursive locking above uses 5 bits */
4155 #define NESTED_BITS 5
4156 
4157 /**
4158  * ring_buffer_nest_start - Allow to trace while nested
4159  * @buffer: The ring buffer to modify
4160  *
4161  * The ring buffer has a safety mechanism to prevent recursion.
4162  * But there may be a case where a trace needs to be done while
4163  * tracing something else. In this case, calling this function
4164  * will allow this function to nest within a currently active
4165  * ring_buffer_lock_reserve().
4166  *
4167  * Call this function before calling another ring_buffer_lock_reserve() and
4168  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4169  */
ring_buffer_nest_start(struct trace_buffer * buffer)4170 void ring_buffer_nest_start(struct trace_buffer *buffer)
4171 {
4172 	struct ring_buffer_per_cpu *cpu_buffer;
4173 	int cpu;
4174 
4175 	/* Enabled by ring_buffer_nest_end() */
4176 	preempt_disable_notrace();
4177 	cpu = raw_smp_processor_id();
4178 	cpu_buffer = buffer->buffers[cpu];
4179 	/* This is the shift value for the above recursive locking */
4180 	cpu_buffer->nest += NESTED_BITS;
4181 }
4182 
4183 /**
4184  * ring_buffer_nest_end - Allow to trace while nested
4185  * @buffer: The ring buffer to modify
4186  *
4187  * Must be called after ring_buffer_nest_start() and after the
4188  * ring_buffer_unlock_commit().
4189  */
ring_buffer_nest_end(struct trace_buffer * buffer)4190 void ring_buffer_nest_end(struct trace_buffer *buffer)
4191 {
4192 	struct ring_buffer_per_cpu *cpu_buffer;
4193 	int cpu;
4194 
4195 	/* disabled by ring_buffer_nest_start() */
4196 	cpu = raw_smp_processor_id();
4197 	cpu_buffer = buffer->buffers[cpu];
4198 	/* This is the shift value for the above recursive locking */
4199 	cpu_buffer->nest -= NESTED_BITS;
4200 	preempt_enable_notrace();
4201 }
4202 
4203 /**
4204  * ring_buffer_unlock_commit - commit a reserved
4205  * @buffer: The buffer to commit to
4206  *
4207  * This commits the data to the ring buffer, and releases any locks held.
4208  *
4209  * Must be paired with ring_buffer_lock_reserve.
4210  */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4211 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4212 {
4213 	struct ring_buffer_per_cpu *cpu_buffer;
4214 	int cpu = raw_smp_processor_id();
4215 
4216 	cpu_buffer = buffer->buffers[cpu];
4217 
4218 	rb_commit(cpu_buffer);
4219 
4220 	rb_wakeups(buffer, cpu_buffer);
4221 
4222 	trace_recursive_unlock(cpu_buffer);
4223 
4224 	preempt_enable_notrace();
4225 
4226 	return 0;
4227 }
4228 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4229 
4230 /* Special value to validate all deltas on a page. */
4231 #define CHECK_FULL_PAGE		1L
4232 
4233 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4234 
show_irq_str(int bits)4235 static const char *show_irq_str(int bits)
4236 {
4237 	static const char * type[] = {
4238 		".",	// 0
4239 		"s",	// 1
4240 		"h",	// 2
4241 		"Hs",	// 3
4242 		"n",	// 4
4243 		"Ns",	// 5
4244 		"Nh",	// 6
4245 		"NHs",	// 7
4246 	};
4247 
4248 	return type[bits];
4249 }
4250 
4251 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4252 static const char *show_flags(struct ring_buffer_event *event)
4253 {
4254 	struct trace_entry *entry;
4255 	int bits = 0;
4256 
4257 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4258 		return "X";
4259 
4260 	entry = ring_buffer_event_data(event);
4261 
4262 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4263 		bits |= 1;
4264 
4265 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4266 		bits |= 2;
4267 
4268 	if (entry->flags & TRACE_FLAG_NMI)
4269 		bits |= 4;
4270 
4271 	return show_irq_str(bits);
4272 }
4273 
show_irq(struct ring_buffer_event * event)4274 static const char *show_irq(struct ring_buffer_event *event)
4275 {
4276 	struct trace_entry *entry;
4277 
4278 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4279 		return "";
4280 
4281 	entry = ring_buffer_event_data(event);
4282 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4283 		return "d";
4284 	return "";
4285 }
4286 
show_interrupt_level(void)4287 static const char *show_interrupt_level(void)
4288 {
4289 	unsigned long pc = preempt_count();
4290 	unsigned char level = 0;
4291 
4292 	if (pc & SOFTIRQ_OFFSET)
4293 		level |= 1;
4294 
4295 	if (pc & HARDIRQ_MASK)
4296 		level |= 2;
4297 
4298 	if (pc & NMI_MASK)
4299 		level |= 4;
4300 
4301 	return show_irq_str(level);
4302 }
4303 
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4304 static void dump_buffer_page(struct buffer_data_page *bpage,
4305 			     struct rb_event_info *info,
4306 			     unsigned long tail)
4307 {
4308 	struct ring_buffer_event *event;
4309 	u64 ts, delta;
4310 	int e;
4311 
4312 	ts = bpage->time_stamp;
4313 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4314 
4315 	for (e = 0; e < tail; e += rb_event_length(event)) {
4316 
4317 		event = (struct ring_buffer_event *)(bpage->data + e);
4318 
4319 		switch (event->type_len) {
4320 
4321 		case RINGBUF_TYPE_TIME_EXTEND:
4322 			delta = rb_event_time_stamp(event);
4323 			ts += delta;
4324 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4325 				e, ts, delta);
4326 			break;
4327 
4328 		case RINGBUF_TYPE_TIME_STAMP:
4329 			delta = rb_event_time_stamp(event);
4330 			ts = rb_fix_abs_ts(delta, ts);
4331 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4332 				e, ts, delta);
4333 			break;
4334 
4335 		case RINGBUF_TYPE_PADDING:
4336 			ts += event->time_delta;
4337 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4338 				e, ts, event->time_delta);
4339 			break;
4340 
4341 		case RINGBUF_TYPE_DATA:
4342 			ts += event->time_delta;
4343 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4344 				e, ts, event->time_delta,
4345 				show_flags(event), show_irq(event));
4346 			break;
4347 
4348 		default:
4349 			break;
4350 		}
4351 	}
4352 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4353 }
4354 
4355 static DEFINE_PER_CPU(atomic_t, checking);
4356 static atomic_t ts_dump;
4357 
4358 #define buffer_warn_return(fmt, ...)					\
4359 	do {								\
4360 		/* If another report is happening, ignore this one */	\
4361 		if (atomic_inc_return(&ts_dump) != 1) {			\
4362 			atomic_dec(&ts_dump);				\
4363 			goto out;					\
4364 		}							\
4365 		atomic_inc(&cpu_buffer->record_disabled);		\
4366 		pr_warn(fmt, ##__VA_ARGS__);				\
4367 		dump_buffer_page(bpage, info, tail);			\
4368 		atomic_dec(&ts_dump);					\
4369 		/* There's some cases in boot up that this can happen */ \
4370 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4371 			/* Do not re-enable checking */			\
4372 			return;						\
4373 	} while (0)
4374 
4375 /*
4376  * Check if the current event time stamp matches the deltas on
4377  * the buffer page.
4378  */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4379 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4380 			 struct rb_event_info *info,
4381 			 unsigned long tail)
4382 {
4383 	struct buffer_data_page *bpage;
4384 	u64 ts, delta;
4385 	bool full = false;
4386 	int ret;
4387 
4388 	bpage = info->tail_page->page;
4389 
4390 	if (tail == CHECK_FULL_PAGE) {
4391 		full = true;
4392 		tail = local_read(&bpage->commit);
4393 	} else if (info->add_timestamp &
4394 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4395 		/* Ignore events with absolute time stamps */
4396 		return;
4397 	}
4398 
4399 	/*
4400 	 * Do not check the first event (skip possible extends too).
4401 	 * Also do not check if previous events have not been committed.
4402 	 */
4403 	if (tail <= 8 || tail > local_read(&bpage->commit))
4404 		return;
4405 
4406 	/*
4407 	 * If this interrupted another event,
4408 	 */
4409 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4410 		goto out;
4411 
4412 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4413 	if (ret < 0) {
4414 		if (delta < ts) {
4415 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4416 					   cpu_buffer->cpu, ts, delta);
4417 			goto out;
4418 		}
4419 	}
4420 	if ((full && ts > info->ts) ||
4421 	    (!full && ts + info->delta != info->ts)) {
4422 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4423 				   cpu_buffer->cpu,
4424 				   ts + info->delta, info->ts, info->delta,
4425 				   info->before, info->after,
4426 				   full ? " (full)" : "", show_interrupt_level());
4427 	}
4428 out:
4429 	atomic_dec(this_cpu_ptr(&checking));
4430 }
4431 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4432 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4433 			 struct rb_event_info *info,
4434 			 unsigned long tail)
4435 {
4436 }
4437 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4438 
4439 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4440 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4441 		  struct rb_event_info *info)
4442 {
4443 	struct ring_buffer_event *event;
4444 	struct buffer_page *tail_page;
4445 	unsigned long tail, write, w;
4446 
4447 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4448 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4449 
4450  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4451 	barrier();
4452 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4453 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4454 	barrier();
4455 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4456 
4457 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4458 		info->delta = info->ts;
4459 	} else {
4460 		/*
4461 		 * If interrupting an event time update, we may need an
4462 		 * absolute timestamp.
4463 		 * Don't bother if this is the start of a new page (w == 0).
4464 		 */
4465 		if (!w) {
4466 			/* Use the sub-buffer timestamp */
4467 			info->delta = 0;
4468 		} else if (unlikely(info->before != info->after)) {
4469 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4470 			info->length += RB_LEN_TIME_EXTEND;
4471 		} else {
4472 			info->delta = info->ts - info->after;
4473 			if (unlikely(test_time_stamp(info->delta))) {
4474 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4475 				info->length += RB_LEN_TIME_EXTEND;
4476 			}
4477 		}
4478 	}
4479 
4480  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4481 
4482  /*C*/	write = local_add_return(info->length, &tail_page->write);
4483 
4484 	/* set write to only the index of the write */
4485 	write &= RB_WRITE_MASK;
4486 
4487 	tail = write - info->length;
4488 
4489 	/* See if we shot pass the end of this buffer page */
4490 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4491 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4492 		return rb_move_tail(cpu_buffer, tail, info);
4493 	}
4494 
4495 	if (likely(tail == w)) {
4496 		/* Nothing interrupted us between A and C */
4497  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4498 		/*
4499 		 * If something came in between C and D, the write stamp
4500 		 * may now not be in sync. But that's fine as the before_stamp
4501 		 * will be different and then next event will just be forced
4502 		 * to use an absolute timestamp.
4503 		 */
4504 		if (likely(!(info->add_timestamp &
4505 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4506 			/* This did not interrupt any time update */
4507 			info->delta = info->ts - info->after;
4508 		else
4509 			/* Just use full timestamp for interrupting event */
4510 			info->delta = info->ts;
4511 		check_buffer(cpu_buffer, info, tail);
4512 	} else {
4513 		u64 ts;
4514 		/* SLOW PATH - Interrupted between A and C */
4515 
4516 		/* Save the old before_stamp */
4517 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4518 
4519 		/*
4520 		 * Read a new timestamp and update the before_stamp to make
4521 		 * the next event after this one force using an absolute
4522 		 * timestamp. This is in case an interrupt were to come in
4523 		 * between E and F.
4524 		 */
4525 		ts = rb_time_stamp(cpu_buffer->buffer);
4526 		rb_time_set(&cpu_buffer->before_stamp, ts);
4527 
4528 		barrier();
4529  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4530 		barrier();
4531  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4532 		    info->after == info->before && info->after < ts) {
4533 			/*
4534 			 * Nothing came after this event between C and F, it is
4535 			 * safe to use info->after for the delta as it
4536 			 * matched info->before and is still valid.
4537 			 */
4538 			info->delta = ts - info->after;
4539 		} else {
4540 			/*
4541 			 * Interrupted between C and F:
4542 			 * Lost the previous events time stamp. Just set the
4543 			 * delta to zero, and this will be the same time as
4544 			 * the event this event interrupted. And the events that
4545 			 * came after this will still be correct (as they would
4546 			 * have built their delta on the previous event.
4547 			 */
4548 			info->delta = 0;
4549 		}
4550 		info->ts = ts;
4551 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4552 	}
4553 
4554 	/*
4555 	 * If this is the first commit on the page, then it has the same
4556 	 * timestamp as the page itself.
4557 	 */
4558 	if (unlikely(!tail && !(info->add_timestamp &
4559 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4560 		info->delta = 0;
4561 
4562 	/* We reserved something on the buffer */
4563 
4564 	event = __rb_page_index(tail_page, tail);
4565 	rb_update_event(cpu_buffer, event, info);
4566 
4567 	local_inc(&tail_page->entries);
4568 
4569 	/*
4570 	 * If this is the first commit on the page, then update
4571 	 * its timestamp.
4572 	 */
4573 	if (unlikely(!tail))
4574 		tail_page->page->time_stamp = info->ts;
4575 
4576 	/* account for these added bytes */
4577 	local_add(info->length, &cpu_buffer->entries_bytes);
4578 
4579 	return event;
4580 }
4581 
4582 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4583 rb_reserve_next_event(struct trace_buffer *buffer,
4584 		      struct ring_buffer_per_cpu *cpu_buffer,
4585 		      unsigned long length)
4586 {
4587 	struct ring_buffer_event *event;
4588 	struct rb_event_info info;
4589 	int nr_loops = 0;
4590 	int add_ts_default;
4591 
4592 	/*
4593 	 * ring buffer does cmpxchg as well as atomic64 operations
4594 	 * (which some archs use locking for atomic64), make sure this
4595 	 * is safe in NMI context
4596 	 */
4597 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4598 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4599 	    (unlikely(in_nmi()))) {
4600 		return NULL;
4601 	}
4602 
4603 	rb_start_commit(cpu_buffer);
4604 	/* The commit page can not change after this */
4605 
4606 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4607 	/*
4608 	 * Due to the ability to swap a cpu buffer from a buffer
4609 	 * it is possible it was swapped before we committed.
4610 	 * (committing stops a swap). We check for it here and
4611 	 * if it happened, we have to fail the write.
4612 	 */
4613 	barrier();
4614 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4615 		local_dec(&cpu_buffer->committing);
4616 		local_dec(&cpu_buffer->commits);
4617 		return NULL;
4618 	}
4619 #endif
4620 
4621 	info.length = rb_calculate_event_length(length);
4622 
4623 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4624 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4625 		info.length += RB_LEN_TIME_EXTEND;
4626 		if (info.length > cpu_buffer->buffer->max_data_size)
4627 			goto out_fail;
4628 	} else {
4629 		add_ts_default = RB_ADD_STAMP_NONE;
4630 	}
4631 
4632  again:
4633 	info.add_timestamp = add_ts_default;
4634 	info.delta = 0;
4635 
4636 	/*
4637 	 * We allow for interrupts to reenter here and do a trace.
4638 	 * If one does, it will cause this original code to loop
4639 	 * back here. Even with heavy interrupts happening, this
4640 	 * should only happen a few times in a row. If this happens
4641 	 * 1000 times in a row, there must be either an interrupt
4642 	 * storm or we have something buggy.
4643 	 * Bail!
4644 	 */
4645 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4646 		goto out_fail;
4647 
4648 	event = __rb_reserve_next(cpu_buffer, &info);
4649 
4650 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4651 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4652 			info.length -= RB_LEN_TIME_EXTEND;
4653 		goto again;
4654 	}
4655 
4656 	if (likely(event))
4657 		return event;
4658  out_fail:
4659 	rb_end_commit(cpu_buffer);
4660 	return NULL;
4661 }
4662 
4663 /**
4664  * ring_buffer_lock_reserve - reserve a part of the buffer
4665  * @buffer: the ring buffer to reserve from
4666  * @length: the length of the data to reserve (excluding event header)
4667  *
4668  * Returns a reserved event on the ring buffer to copy directly to.
4669  * The user of this interface will need to get the body to write into
4670  * and can use the ring_buffer_event_data() interface.
4671  *
4672  * The length is the length of the data needed, not the event length
4673  * which also includes the event header.
4674  *
4675  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4676  * If NULL is returned, then nothing has been allocated or locked.
4677  */
4678 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4679 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4680 {
4681 	struct ring_buffer_per_cpu *cpu_buffer;
4682 	struct ring_buffer_event *event;
4683 	int cpu;
4684 
4685 	/* If we are tracing schedule, we don't want to recurse */
4686 	preempt_disable_notrace();
4687 
4688 	if (unlikely(atomic_read(&buffer->record_disabled)))
4689 		goto out;
4690 
4691 	cpu = raw_smp_processor_id();
4692 
4693 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4694 		goto out;
4695 
4696 	cpu_buffer = buffer->buffers[cpu];
4697 
4698 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4699 		goto out;
4700 
4701 	if (unlikely(length > buffer->max_data_size))
4702 		goto out;
4703 
4704 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4705 		goto out;
4706 
4707 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4708 	if (!event)
4709 		goto out_unlock;
4710 
4711 	return event;
4712 
4713  out_unlock:
4714 	trace_recursive_unlock(cpu_buffer);
4715  out:
4716 	preempt_enable_notrace();
4717 	return NULL;
4718 }
4719 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4720 
4721 /*
4722  * Decrement the entries to the page that an event is on.
4723  * The event does not even need to exist, only the pointer
4724  * to the page it is on. This may only be called before the commit
4725  * takes place.
4726  */
4727 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4728 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4729 		   struct ring_buffer_event *event)
4730 {
4731 	unsigned long addr = (unsigned long)event;
4732 	struct buffer_page *bpage = cpu_buffer->commit_page;
4733 	struct buffer_page *start;
4734 
4735 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4736 
4737 	/* Do the likely case first */
4738 	if (likely(bpage->page == (void *)addr)) {
4739 		local_dec(&bpage->entries);
4740 		return;
4741 	}
4742 
4743 	/*
4744 	 * Because the commit page may be on the reader page we
4745 	 * start with the next page and check the end loop there.
4746 	 */
4747 	rb_inc_page(&bpage);
4748 	start = bpage;
4749 	do {
4750 		if (bpage->page == (void *)addr) {
4751 			local_dec(&bpage->entries);
4752 			return;
4753 		}
4754 		rb_inc_page(&bpage);
4755 	} while (bpage != start);
4756 
4757 	/* commit not part of this buffer?? */
4758 	RB_WARN_ON(cpu_buffer, 1);
4759 }
4760 
4761 /**
4762  * ring_buffer_discard_commit - discard an event that has not been committed
4763  * @buffer: the ring buffer
4764  * @event: non committed event to discard
4765  *
4766  * Sometimes an event that is in the ring buffer needs to be ignored.
4767  * This function lets the user discard an event in the ring buffer
4768  * and then that event will not be read later.
4769  *
4770  * This function only works if it is called before the item has been
4771  * committed. It will try to free the event from the ring buffer
4772  * if another event has not been added behind it.
4773  *
4774  * If another event has been added behind it, it will set the event
4775  * up as discarded, and perform the commit.
4776  *
4777  * If this function is called, do not call ring_buffer_unlock_commit on
4778  * the event.
4779  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4780 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4781 				struct ring_buffer_event *event)
4782 {
4783 	struct ring_buffer_per_cpu *cpu_buffer;
4784 	int cpu;
4785 
4786 	/* The event is discarded regardless */
4787 	rb_event_discard(event);
4788 
4789 	cpu = smp_processor_id();
4790 	cpu_buffer = buffer->buffers[cpu];
4791 
4792 	/*
4793 	 * This must only be called if the event has not been
4794 	 * committed yet. Thus we can assume that preemption
4795 	 * is still disabled.
4796 	 */
4797 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4798 
4799 	rb_decrement_entry(cpu_buffer, event);
4800 	rb_try_to_discard(cpu_buffer, event);
4801 	rb_end_commit(cpu_buffer);
4802 
4803 	trace_recursive_unlock(cpu_buffer);
4804 
4805 	preempt_enable_notrace();
4806 
4807 }
4808 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4809 
4810 /**
4811  * ring_buffer_write - write data to the buffer without reserving
4812  * @buffer: The ring buffer to write to.
4813  * @length: The length of the data being written (excluding the event header)
4814  * @data: The data to write to the buffer.
4815  *
4816  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4817  * one function. If you already have the data to write to the buffer, it
4818  * may be easier to simply call this function.
4819  *
4820  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4821  * and not the length of the event which would hold the header.
4822  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4823 int ring_buffer_write(struct trace_buffer *buffer,
4824 		      unsigned long length,
4825 		      void *data)
4826 {
4827 	struct ring_buffer_per_cpu *cpu_buffer;
4828 	struct ring_buffer_event *event;
4829 	void *body;
4830 	int ret = -EBUSY;
4831 	int cpu;
4832 
4833 	guard(preempt_notrace)();
4834 
4835 	if (atomic_read(&buffer->record_disabled))
4836 		return -EBUSY;
4837 
4838 	cpu = raw_smp_processor_id();
4839 
4840 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4841 		return -EBUSY;
4842 
4843 	cpu_buffer = buffer->buffers[cpu];
4844 
4845 	if (atomic_read(&cpu_buffer->record_disabled))
4846 		return -EBUSY;
4847 
4848 	if (length > buffer->max_data_size)
4849 		return -EBUSY;
4850 
4851 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4852 		return -EBUSY;
4853 
4854 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4855 	if (!event)
4856 		goto out_unlock;
4857 
4858 	body = rb_event_data(event);
4859 
4860 	memcpy(body, data, length);
4861 
4862 	rb_commit(cpu_buffer);
4863 
4864 	rb_wakeups(buffer, cpu_buffer);
4865 
4866 	ret = 0;
4867 
4868  out_unlock:
4869 	trace_recursive_unlock(cpu_buffer);
4870 	return ret;
4871 }
4872 EXPORT_SYMBOL_GPL(ring_buffer_write);
4873 
4874 /*
4875  * The total entries in the ring buffer is the running counter
4876  * of entries entered into the ring buffer, minus the sum of
4877  * the entries read from the ring buffer and the number of
4878  * entries that were overwritten.
4879  */
4880 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4881 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4882 {
4883 	return local_read(&cpu_buffer->entries) -
4884 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4885 }
4886 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4887 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4888 {
4889 	return !rb_num_of_entries(cpu_buffer);
4890 }
4891 
4892 /**
4893  * ring_buffer_record_disable - stop all writes into the buffer
4894  * @buffer: The ring buffer to stop writes to.
4895  *
4896  * This prevents all writes to the buffer. Any attempt to write
4897  * to the buffer after this will fail and return NULL.
4898  *
4899  * The caller should call synchronize_rcu() after this.
4900  */
ring_buffer_record_disable(struct trace_buffer * buffer)4901 void ring_buffer_record_disable(struct trace_buffer *buffer)
4902 {
4903 	atomic_inc(&buffer->record_disabled);
4904 }
4905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4906 
4907 /**
4908  * ring_buffer_record_enable - enable writes to the buffer
4909  * @buffer: The ring buffer to enable writes
4910  *
4911  * Note, multiple disables will need the same number of enables
4912  * to truly enable the writing (much like preempt_disable).
4913  */
ring_buffer_record_enable(struct trace_buffer * buffer)4914 void ring_buffer_record_enable(struct trace_buffer *buffer)
4915 {
4916 	atomic_dec(&buffer->record_disabled);
4917 }
4918 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4919 
4920 /**
4921  * ring_buffer_record_off - stop all writes into the buffer
4922  * @buffer: The ring buffer to stop writes to.
4923  *
4924  * This prevents all writes to the buffer. Any attempt to write
4925  * to the buffer after this will fail and return NULL.
4926  *
4927  * This is different than ring_buffer_record_disable() as
4928  * it works like an on/off switch, where as the disable() version
4929  * must be paired with a enable().
4930  */
ring_buffer_record_off(struct trace_buffer * buffer)4931 void ring_buffer_record_off(struct trace_buffer *buffer)
4932 {
4933 	unsigned int rd;
4934 	unsigned int new_rd;
4935 
4936 	rd = atomic_read(&buffer->record_disabled);
4937 	do {
4938 		new_rd = rd | RB_BUFFER_OFF;
4939 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4940 }
4941 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4942 
4943 /**
4944  * ring_buffer_record_on - restart writes into the buffer
4945  * @buffer: The ring buffer to start writes to.
4946  *
4947  * This enables all writes to the buffer that was disabled by
4948  * ring_buffer_record_off().
4949  *
4950  * This is different than ring_buffer_record_enable() as
4951  * it works like an on/off switch, where as the enable() version
4952  * must be paired with a disable().
4953  */
ring_buffer_record_on(struct trace_buffer * buffer)4954 void ring_buffer_record_on(struct trace_buffer *buffer)
4955 {
4956 	unsigned int rd;
4957 	unsigned int new_rd;
4958 
4959 	rd = atomic_read(&buffer->record_disabled);
4960 	do {
4961 		new_rd = rd & ~RB_BUFFER_OFF;
4962 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4965 
4966 /**
4967  * ring_buffer_record_is_on - return true if the ring buffer can write
4968  * @buffer: The ring buffer to see if write is enabled
4969  *
4970  * Returns true if the ring buffer is in a state that it accepts writes.
4971  */
ring_buffer_record_is_on(struct trace_buffer * buffer)4972 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4973 {
4974 	return !atomic_read(&buffer->record_disabled);
4975 }
4976 
4977 /**
4978  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4979  * @buffer: The ring buffer to see if write is set enabled
4980  *
4981  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4982  * Note that this does NOT mean it is in a writable state.
4983  *
4984  * It may return true when the ring buffer has been disabled by
4985  * ring_buffer_record_disable(), as that is a temporary disabling of
4986  * the ring buffer.
4987  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4988 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4989 {
4990 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4991 }
4992 
4993 /**
4994  * ring_buffer_record_is_on_cpu - return true if the ring buffer can write
4995  * @buffer: The ring buffer to see if write is enabled
4996  * @cpu: The CPU to test if the ring buffer can write too
4997  *
4998  * Returns true if the ring buffer is in a state that it accepts writes
4999  *   for a particular CPU.
5000  */
ring_buffer_record_is_on_cpu(struct trace_buffer * buffer,int cpu)5001 bool ring_buffer_record_is_on_cpu(struct trace_buffer *buffer, int cpu)
5002 {
5003 	struct ring_buffer_per_cpu *cpu_buffer;
5004 
5005 	cpu_buffer = buffer->buffers[cpu];
5006 
5007 	return ring_buffer_record_is_set_on(buffer) &&
5008 		!atomic_read(&cpu_buffer->record_disabled);
5009 }
5010 
5011 /**
5012  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
5013  * @buffer: The ring buffer to stop writes to.
5014  * @cpu: The CPU buffer to stop
5015  *
5016  * This prevents all writes to the buffer. Any attempt to write
5017  * to the buffer after this will fail and return NULL.
5018  *
5019  * The caller should call synchronize_rcu() after this.
5020  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)5021 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
5022 {
5023 	struct ring_buffer_per_cpu *cpu_buffer;
5024 
5025 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5026 		return;
5027 
5028 	cpu_buffer = buffer->buffers[cpu];
5029 	atomic_inc(&cpu_buffer->record_disabled);
5030 }
5031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
5032 
5033 /**
5034  * ring_buffer_record_enable_cpu - enable writes to the buffer
5035  * @buffer: The ring buffer to enable writes
5036  * @cpu: The CPU to enable.
5037  *
5038  * Note, multiple disables will need the same number of enables
5039  * to truly enable the writing (much like preempt_disable).
5040  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)5041 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
5042 {
5043 	struct ring_buffer_per_cpu *cpu_buffer;
5044 
5045 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5046 		return;
5047 
5048 	cpu_buffer = buffer->buffers[cpu];
5049 	atomic_dec(&cpu_buffer->record_disabled);
5050 }
5051 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
5052 
5053 /**
5054  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
5055  * @buffer: The ring buffer
5056  * @cpu: The per CPU buffer to read from.
5057  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)5058 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
5059 {
5060 	unsigned long flags;
5061 	struct ring_buffer_per_cpu *cpu_buffer;
5062 	struct buffer_page *bpage;
5063 	u64 ret = 0;
5064 
5065 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5066 		return 0;
5067 
5068 	cpu_buffer = buffer->buffers[cpu];
5069 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5070 	/*
5071 	 * if the tail is on reader_page, oldest time stamp is on the reader
5072 	 * page
5073 	 */
5074 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
5075 		bpage = cpu_buffer->reader_page;
5076 	else
5077 		bpage = rb_set_head_page(cpu_buffer);
5078 	if (bpage)
5079 		ret = bpage->page->time_stamp;
5080 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5081 
5082 	return ret;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
5085 
5086 /**
5087  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
5088  * @buffer: The ring buffer
5089  * @cpu: The per CPU buffer to read from.
5090  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)5091 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
5092 {
5093 	struct ring_buffer_per_cpu *cpu_buffer;
5094 	unsigned long ret;
5095 
5096 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097 		return 0;
5098 
5099 	cpu_buffer = buffer->buffers[cpu];
5100 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
5101 
5102 	return ret;
5103 }
5104 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
5105 
5106 /**
5107  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
5108  * @buffer: The ring buffer
5109  * @cpu: The per CPU buffer to get the entries from.
5110  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)5111 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
5112 {
5113 	struct ring_buffer_per_cpu *cpu_buffer;
5114 
5115 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5116 		return 0;
5117 
5118 	cpu_buffer = buffer->buffers[cpu];
5119 
5120 	return rb_num_of_entries(cpu_buffer);
5121 }
5122 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5123 
5124 /**
5125  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5126  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5127  * @buffer: The ring buffer
5128  * @cpu: The per CPU buffer to get the number of overruns from
5129  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)5130 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5131 {
5132 	struct ring_buffer_per_cpu *cpu_buffer;
5133 	unsigned long ret;
5134 
5135 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5136 		return 0;
5137 
5138 	cpu_buffer = buffer->buffers[cpu];
5139 	ret = local_read(&cpu_buffer->overrun);
5140 
5141 	return ret;
5142 }
5143 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5144 
5145 /**
5146  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5147  * commits failing due to the buffer wrapping around while there are uncommitted
5148  * events, such as during an interrupt storm.
5149  * @buffer: The ring buffer
5150  * @cpu: The per CPU buffer to get the number of overruns from
5151  */
5152 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5153 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5154 {
5155 	struct ring_buffer_per_cpu *cpu_buffer;
5156 	unsigned long ret;
5157 
5158 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5159 		return 0;
5160 
5161 	cpu_buffer = buffer->buffers[cpu];
5162 	ret = local_read(&cpu_buffer->commit_overrun);
5163 
5164 	return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5167 
5168 /**
5169  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5170  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5171  * @buffer: The ring buffer
5172  * @cpu: The per CPU buffer to get the number of overruns from
5173  */
5174 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5175 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5176 {
5177 	struct ring_buffer_per_cpu *cpu_buffer;
5178 	unsigned long ret;
5179 
5180 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5181 		return 0;
5182 
5183 	cpu_buffer = buffer->buffers[cpu];
5184 	ret = local_read(&cpu_buffer->dropped_events);
5185 
5186 	return ret;
5187 }
5188 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5189 
5190 /**
5191  * ring_buffer_read_events_cpu - get the number of events successfully read
5192  * @buffer: The ring buffer
5193  * @cpu: The per CPU buffer to get the number of events read
5194  */
5195 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5196 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5197 {
5198 	struct ring_buffer_per_cpu *cpu_buffer;
5199 
5200 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5201 		return 0;
5202 
5203 	cpu_buffer = buffer->buffers[cpu];
5204 	return cpu_buffer->read;
5205 }
5206 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5207 
5208 /**
5209  * ring_buffer_entries - get the number of entries in a buffer
5210  * @buffer: The ring buffer
5211  *
5212  * Returns the total number of entries in the ring buffer
5213  * (all CPU entries)
5214  */
ring_buffer_entries(struct trace_buffer * buffer)5215 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5216 {
5217 	struct ring_buffer_per_cpu *cpu_buffer;
5218 	unsigned long entries = 0;
5219 	int cpu;
5220 
5221 	/* if you care about this being correct, lock the buffer */
5222 	for_each_buffer_cpu(buffer, cpu) {
5223 		cpu_buffer = buffer->buffers[cpu];
5224 		entries += rb_num_of_entries(cpu_buffer);
5225 	}
5226 
5227 	return entries;
5228 }
5229 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5230 
5231 /**
5232  * ring_buffer_overruns - get the number of overruns in buffer
5233  * @buffer: The ring buffer
5234  *
5235  * Returns the total number of overruns in the ring buffer
5236  * (all CPU entries)
5237  */
ring_buffer_overruns(struct trace_buffer * buffer)5238 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5239 {
5240 	struct ring_buffer_per_cpu *cpu_buffer;
5241 	unsigned long overruns = 0;
5242 	int cpu;
5243 
5244 	/* if you care about this being correct, lock the buffer */
5245 	for_each_buffer_cpu(buffer, cpu) {
5246 		cpu_buffer = buffer->buffers[cpu];
5247 		overruns += local_read(&cpu_buffer->overrun);
5248 	}
5249 
5250 	return overruns;
5251 }
5252 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5253 
rb_iter_reset(struct ring_buffer_iter * iter)5254 static void rb_iter_reset(struct ring_buffer_iter *iter)
5255 {
5256 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5257 
5258 	/* Iterator usage is expected to have record disabled */
5259 	iter->head_page = cpu_buffer->reader_page;
5260 	iter->head = cpu_buffer->reader_page->read;
5261 	iter->next_event = iter->head;
5262 
5263 	iter->cache_reader_page = iter->head_page;
5264 	iter->cache_read = cpu_buffer->read;
5265 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5266 
5267 	if (iter->head) {
5268 		iter->read_stamp = cpu_buffer->read_stamp;
5269 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5270 	} else {
5271 		iter->read_stamp = iter->head_page->page->time_stamp;
5272 		iter->page_stamp = iter->read_stamp;
5273 	}
5274 }
5275 
5276 /**
5277  * ring_buffer_iter_reset - reset an iterator
5278  * @iter: The iterator to reset
5279  *
5280  * Resets the iterator, so that it will start from the beginning
5281  * again.
5282  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5283 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5284 {
5285 	struct ring_buffer_per_cpu *cpu_buffer;
5286 	unsigned long flags;
5287 
5288 	if (!iter)
5289 		return;
5290 
5291 	cpu_buffer = iter->cpu_buffer;
5292 
5293 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5294 	rb_iter_reset(iter);
5295 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5296 }
5297 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5298 
5299 /**
5300  * ring_buffer_iter_empty - check if an iterator has no more to read
5301  * @iter: The iterator to check
5302  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5303 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5304 {
5305 	struct ring_buffer_per_cpu *cpu_buffer;
5306 	struct buffer_page *reader;
5307 	struct buffer_page *head_page;
5308 	struct buffer_page *commit_page;
5309 	struct buffer_page *curr_commit_page;
5310 	unsigned commit;
5311 	u64 curr_commit_ts;
5312 	u64 commit_ts;
5313 
5314 	cpu_buffer = iter->cpu_buffer;
5315 	reader = cpu_buffer->reader_page;
5316 	head_page = cpu_buffer->head_page;
5317 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5318 	commit_ts = commit_page->page->time_stamp;
5319 
5320 	/*
5321 	 * When the writer goes across pages, it issues a cmpxchg which
5322 	 * is a mb(), which will synchronize with the rmb here.
5323 	 * (see rb_tail_page_update())
5324 	 */
5325 	smp_rmb();
5326 	commit = rb_page_commit(commit_page);
5327 	/* We want to make sure that the commit page doesn't change */
5328 	smp_rmb();
5329 
5330 	/* Make sure commit page didn't change */
5331 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5332 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5333 
5334 	/* If the commit page changed, then there's more data */
5335 	if (curr_commit_page != commit_page ||
5336 	    curr_commit_ts != commit_ts)
5337 		return 0;
5338 
5339 	/* Still racy, as it may return a false positive, but that's OK */
5340 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5341 		(iter->head_page == reader && commit_page == head_page &&
5342 		 head_page->read == commit &&
5343 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5344 }
5345 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5346 
5347 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5348 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5349 		     struct ring_buffer_event *event)
5350 {
5351 	u64 delta;
5352 
5353 	switch (event->type_len) {
5354 	case RINGBUF_TYPE_PADDING:
5355 		return;
5356 
5357 	case RINGBUF_TYPE_TIME_EXTEND:
5358 		delta = rb_event_time_stamp(event);
5359 		cpu_buffer->read_stamp += delta;
5360 		return;
5361 
5362 	case RINGBUF_TYPE_TIME_STAMP:
5363 		delta = rb_event_time_stamp(event);
5364 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5365 		cpu_buffer->read_stamp = delta;
5366 		return;
5367 
5368 	case RINGBUF_TYPE_DATA:
5369 		cpu_buffer->read_stamp += event->time_delta;
5370 		return;
5371 
5372 	default:
5373 		RB_WARN_ON(cpu_buffer, 1);
5374 	}
5375 }
5376 
5377 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5378 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5379 			  struct ring_buffer_event *event)
5380 {
5381 	u64 delta;
5382 
5383 	switch (event->type_len) {
5384 	case RINGBUF_TYPE_PADDING:
5385 		return;
5386 
5387 	case RINGBUF_TYPE_TIME_EXTEND:
5388 		delta = rb_event_time_stamp(event);
5389 		iter->read_stamp += delta;
5390 		return;
5391 
5392 	case RINGBUF_TYPE_TIME_STAMP:
5393 		delta = rb_event_time_stamp(event);
5394 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5395 		iter->read_stamp = delta;
5396 		return;
5397 
5398 	case RINGBUF_TYPE_DATA:
5399 		iter->read_stamp += event->time_delta;
5400 		return;
5401 
5402 	default:
5403 		RB_WARN_ON(iter->cpu_buffer, 1);
5404 	}
5405 }
5406 
5407 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5408 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5409 {
5410 	struct buffer_page *reader = NULL;
5411 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5412 	unsigned long overwrite;
5413 	unsigned long flags;
5414 	int nr_loops = 0;
5415 	bool ret;
5416 
5417 	local_irq_save(flags);
5418 	arch_spin_lock(&cpu_buffer->lock);
5419 
5420  again:
5421 	/*
5422 	 * This should normally only loop twice. But because the
5423 	 * start of the reader inserts an empty page, it causes
5424 	 * a case where we will loop three times. There should be no
5425 	 * reason to loop four times (that I know of).
5426 	 */
5427 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5428 		reader = NULL;
5429 		goto out;
5430 	}
5431 
5432 	reader = cpu_buffer->reader_page;
5433 
5434 	/* If there's more to read, return this page */
5435 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5436 		goto out;
5437 
5438 	/* Never should we have an index greater than the size */
5439 	if (RB_WARN_ON(cpu_buffer,
5440 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5441 		goto out;
5442 
5443 	/* check if we caught up to the tail */
5444 	reader = NULL;
5445 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5446 		goto out;
5447 
5448 	/* Don't bother swapping if the ring buffer is empty */
5449 	if (rb_num_of_entries(cpu_buffer) == 0)
5450 		goto out;
5451 
5452 	/*
5453 	 * Reset the reader page to size zero.
5454 	 */
5455 	local_set(&cpu_buffer->reader_page->write, 0);
5456 	local_set(&cpu_buffer->reader_page->entries, 0);
5457 	cpu_buffer->reader_page->real_end = 0;
5458 
5459  spin:
5460 	/*
5461 	 * Splice the empty reader page into the list around the head.
5462 	 */
5463 	reader = rb_set_head_page(cpu_buffer);
5464 	if (!reader)
5465 		goto out;
5466 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5467 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5468 
5469 	/*
5470 	 * cpu_buffer->pages just needs to point to the buffer, it
5471 	 *  has no specific buffer page to point to. Lets move it out
5472 	 *  of our way so we don't accidentally swap it.
5473 	 */
5474 	cpu_buffer->pages = reader->list.prev;
5475 
5476 	/* The reader page will be pointing to the new head */
5477 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5478 
5479 	/*
5480 	 * We want to make sure we read the overruns after we set up our
5481 	 * pointers to the next object. The writer side does a
5482 	 * cmpxchg to cross pages which acts as the mb on the writer
5483 	 * side. Note, the reader will constantly fail the swap
5484 	 * while the writer is updating the pointers, so this
5485 	 * guarantees that the overwrite recorded here is the one we
5486 	 * want to compare with the last_overrun.
5487 	 */
5488 	smp_mb();
5489 	overwrite = local_read(&(cpu_buffer->overrun));
5490 
5491 	/*
5492 	 * Here's the tricky part.
5493 	 *
5494 	 * We need to move the pointer past the header page.
5495 	 * But we can only do that if a writer is not currently
5496 	 * moving it. The page before the header page has the
5497 	 * flag bit '1' set if it is pointing to the page we want.
5498 	 * but if the writer is in the process of moving it
5499 	 * then it will be '2' or already moved '0'.
5500 	 */
5501 
5502 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5503 
5504 	/*
5505 	 * If we did not convert it, then we must try again.
5506 	 */
5507 	if (!ret)
5508 		goto spin;
5509 
5510 	if (cpu_buffer->ring_meta)
5511 		rb_update_meta_reader(cpu_buffer, reader);
5512 
5513 	/*
5514 	 * Yay! We succeeded in replacing the page.
5515 	 *
5516 	 * Now make the new head point back to the reader page.
5517 	 */
5518 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5519 	rb_inc_page(&cpu_buffer->head_page);
5520 
5521 	cpu_buffer->cnt++;
5522 	local_inc(&cpu_buffer->pages_read);
5523 
5524 	/* Finally update the reader page to the new head */
5525 	cpu_buffer->reader_page = reader;
5526 	cpu_buffer->reader_page->read = 0;
5527 
5528 	if (overwrite != cpu_buffer->last_overrun) {
5529 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5530 		cpu_buffer->last_overrun = overwrite;
5531 	}
5532 
5533 	goto again;
5534 
5535  out:
5536 	/* Update the read_stamp on the first event */
5537 	if (reader && reader->read == 0)
5538 		cpu_buffer->read_stamp = reader->page->time_stamp;
5539 
5540 	arch_spin_unlock(&cpu_buffer->lock);
5541 	local_irq_restore(flags);
5542 
5543 	/*
5544 	 * The writer has preempt disable, wait for it. But not forever
5545 	 * Although, 1 second is pretty much "forever"
5546 	 */
5547 #define USECS_WAIT	1000000
5548         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5549 		/* If the write is past the end of page, a writer is still updating it */
5550 		if (likely(!reader || rb_page_write(reader) <= bsize))
5551 			break;
5552 
5553 		udelay(1);
5554 
5555 		/* Get the latest version of the reader write value */
5556 		smp_rmb();
5557 	}
5558 
5559 	/* The writer is not moving forward? Something is wrong */
5560 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5561 		reader = NULL;
5562 
5563 	/*
5564 	 * Make sure we see any padding after the write update
5565 	 * (see rb_reset_tail()).
5566 	 *
5567 	 * In addition, a writer may be writing on the reader page
5568 	 * if the page has not been fully filled, so the read barrier
5569 	 * is also needed to make sure we see the content of what is
5570 	 * committed by the writer (see rb_set_commit_to_write()).
5571 	 */
5572 	smp_rmb();
5573 
5574 
5575 	return reader;
5576 }
5577 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5578 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5579 {
5580 	struct ring_buffer_event *event;
5581 	struct buffer_page *reader;
5582 	unsigned length;
5583 
5584 	reader = rb_get_reader_page(cpu_buffer);
5585 
5586 	/* This function should not be called when buffer is empty */
5587 	if (RB_WARN_ON(cpu_buffer, !reader))
5588 		return;
5589 
5590 	event = rb_reader_event(cpu_buffer);
5591 
5592 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5593 		cpu_buffer->read++;
5594 
5595 	rb_update_read_stamp(cpu_buffer, event);
5596 
5597 	length = rb_event_length(event);
5598 	cpu_buffer->reader_page->read += length;
5599 	cpu_buffer->read_bytes += length;
5600 }
5601 
rb_advance_iter(struct ring_buffer_iter * iter)5602 static void rb_advance_iter(struct ring_buffer_iter *iter)
5603 {
5604 	struct ring_buffer_per_cpu *cpu_buffer;
5605 
5606 	cpu_buffer = iter->cpu_buffer;
5607 
5608 	/* If head == next_event then we need to jump to the next event */
5609 	if (iter->head == iter->next_event) {
5610 		/* If the event gets overwritten again, there's nothing to do */
5611 		if (rb_iter_head_event(iter) == NULL)
5612 			return;
5613 	}
5614 
5615 	iter->head = iter->next_event;
5616 
5617 	/*
5618 	 * Check if we are at the end of the buffer.
5619 	 */
5620 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5621 		/* discarded commits can make the page empty */
5622 		if (iter->head_page == cpu_buffer->commit_page)
5623 			return;
5624 		rb_inc_iter(iter);
5625 		return;
5626 	}
5627 
5628 	rb_update_iter_read_stamp(iter, iter->event);
5629 }
5630 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5631 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5632 {
5633 	return cpu_buffer->lost_events;
5634 }
5635 
5636 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5637 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5638 	       unsigned long *lost_events)
5639 {
5640 	struct ring_buffer_event *event;
5641 	struct buffer_page *reader;
5642 	int nr_loops = 0;
5643 
5644 	if (ts)
5645 		*ts = 0;
5646  again:
5647 	/*
5648 	 * We repeat when a time extend is encountered.
5649 	 * Since the time extend is always attached to a data event,
5650 	 * we should never loop more than once.
5651 	 * (We never hit the following condition more than twice).
5652 	 */
5653 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5654 		return NULL;
5655 
5656 	reader = rb_get_reader_page(cpu_buffer);
5657 	if (!reader)
5658 		return NULL;
5659 
5660 	event = rb_reader_event(cpu_buffer);
5661 
5662 	switch (event->type_len) {
5663 	case RINGBUF_TYPE_PADDING:
5664 		if (rb_null_event(event))
5665 			RB_WARN_ON(cpu_buffer, 1);
5666 		/*
5667 		 * Because the writer could be discarding every
5668 		 * event it creates (which would probably be bad)
5669 		 * if we were to go back to "again" then we may never
5670 		 * catch up, and will trigger the warn on, or lock
5671 		 * the box. Return the padding, and we will release
5672 		 * the current locks, and try again.
5673 		 */
5674 		return event;
5675 
5676 	case RINGBUF_TYPE_TIME_EXTEND:
5677 		/* Internal data, OK to advance */
5678 		rb_advance_reader(cpu_buffer);
5679 		goto again;
5680 
5681 	case RINGBUF_TYPE_TIME_STAMP:
5682 		if (ts) {
5683 			*ts = rb_event_time_stamp(event);
5684 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5685 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5686 							 cpu_buffer->cpu, ts);
5687 		}
5688 		/* Internal data, OK to advance */
5689 		rb_advance_reader(cpu_buffer);
5690 		goto again;
5691 
5692 	case RINGBUF_TYPE_DATA:
5693 		if (ts && !(*ts)) {
5694 			*ts = cpu_buffer->read_stamp + event->time_delta;
5695 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5696 							 cpu_buffer->cpu, ts);
5697 		}
5698 		if (lost_events)
5699 			*lost_events = rb_lost_events(cpu_buffer);
5700 		return event;
5701 
5702 	default:
5703 		RB_WARN_ON(cpu_buffer, 1);
5704 	}
5705 
5706 	return NULL;
5707 }
5708 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5709 
5710 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5711 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5712 {
5713 	struct trace_buffer *buffer;
5714 	struct ring_buffer_per_cpu *cpu_buffer;
5715 	struct ring_buffer_event *event;
5716 	int nr_loops = 0;
5717 
5718 	if (ts)
5719 		*ts = 0;
5720 
5721 	cpu_buffer = iter->cpu_buffer;
5722 	buffer = cpu_buffer->buffer;
5723 
5724 	/*
5725 	 * Check if someone performed a consuming read to the buffer
5726 	 * or removed some pages from the buffer. In these cases,
5727 	 * iterator was invalidated and we need to reset it.
5728 	 */
5729 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5730 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5731 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5732 		rb_iter_reset(iter);
5733 
5734  again:
5735 	if (ring_buffer_iter_empty(iter))
5736 		return NULL;
5737 
5738 	/*
5739 	 * As the writer can mess with what the iterator is trying
5740 	 * to read, just give up if we fail to get an event after
5741 	 * three tries. The iterator is not as reliable when reading
5742 	 * the ring buffer with an active write as the consumer is.
5743 	 * Do not warn if the three failures is reached.
5744 	 */
5745 	if (++nr_loops > 3)
5746 		return NULL;
5747 
5748 	if (rb_per_cpu_empty(cpu_buffer))
5749 		return NULL;
5750 
5751 	if (iter->head >= rb_page_size(iter->head_page)) {
5752 		rb_inc_iter(iter);
5753 		goto again;
5754 	}
5755 
5756 	event = rb_iter_head_event(iter);
5757 	if (!event)
5758 		goto again;
5759 
5760 	switch (event->type_len) {
5761 	case RINGBUF_TYPE_PADDING:
5762 		if (rb_null_event(event)) {
5763 			rb_inc_iter(iter);
5764 			goto again;
5765 		}
5766 		rb_advance_iter(iter);
5767 		return event;
5768 
5769 	case RINGBUF_TYPE_TIME_EXTEND:
5770 		/* Internal data, OK to advance */
5771 		rb_advance_iter(iter);
5772 		goto again;
5773 
5774 	case RINGBUF_TYPE_TIME_STAMP:
5775 		if (ts) {
5776 			*ts = rb_event_time_stamp(event);
5777 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5778 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5779 							 cpu_buffer->cpu, ts);
5780 		}
5781 		/* Internal data, OK to advance */
5782 		rb_advance_iter(iter);
5783 		goto again;
5784 
5785 	case RINGBUF_TYPE_DATA:
5786 		if (ts && !(*ts)) {
5787 			*ts = iter->read_stamp + event->time_delta;
5788 			ring_buffer_normalize_time_stamp(buffer,
5789 							 cpu_buffer->cpu, ts);
5790 		}
5791 		return event;
5792 
5793 	default:
5794 		RB_WARN_ON(cpu_buffer, 1);
5795 	}
5796 
5797 	return NULL;
5798 }
5799 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5800 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5801 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5802 {
5803 	if (likely(!in_nmi())) {
5804 		raw_spin_lock(&cpu_buffer->reader_lock);
5805 		return true;
5806 	}
5807 
5808 	/*
5809 	 * If an NMI die dumps out the content of the ring buffer
5810 	 * trylock must be used to prevent a deadlock if the NMI
5811 	 * preempted a task that holds the ring buffer locks. If
5812 	 * we get the lock then all is fine, if not, then continue
5813 	 * to do the read, but this can corrupt the ring buffer,
5814 	 * so it must be permanently disabled from future writes.
5815 	 * Reading from NMI is a oneshot deal.
5816 	 */
5817 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5818 		return true;
5819 
5820 	/* Continue without locking, but disable the ring buffer */
5821 	atomic_inc(&cpu_buffer->record_disabled);
5822 	return false;
5823 }
5824 
5825 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5826 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5827 {
5828 	if (likely(locked))
5829 		raw_spin_unlock(&cpu_buffer->reader_lock);
5830 }
5831 
5832 /**
5833  * ring_buffer_peek - peek at the next event to be read
5834  * @buffer: The ring buffer to read
5835  * @cpu: The cpu to peak at
5836  * @ts: The timestamp counter of this event.
5837  * @lost_events: a variable to store if events were lost (may be NULL)
5838  *
5839  * This will return the event that will be read next, but does
5840  * not consume the data.
5841  */
5842 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5843 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5844 		 unsigned long *lost_events)
5845 {
5846 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5847 	struct ring_buffer_event *event;
5848 	unsigned long flags;
5849 	bool dolock;
5850 
5851 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5852 		return NULL;
5853 
5854  again:
5855 	local_irq_save(flags);
5856 	dolock = rb_reader_lock(cpu_buffer);
5857 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5858 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5859 		rb_advance_reader(cpu_buffer);
5860 	rb_reader_unlock(cpu_buffer, dolock);
5861 	local_irq_restore(flags);
5862 
5863 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5864 		goto again;
5865 
5866 	return event;
5867 }
5868 
5869 /** ring_buffer_iter_dropped - report if there are dropped events
5870  * @iter: The ring buffer iterator
5871  *
5872  * Returns true if there was dropped events since the last peek.
5873  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5874 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5875 {
5876 	bool ret = iter->missed_events != 0;
5877 
5878 	iter->missed_events = 0;
5879 	return ret;
5880 }
5881 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5882 
5883 /**
5884  * ring_buffer_iter_peek - peek at the next event to be read
5885  * @iter: The ring buffer iterator
5886  * @ts: The timestamp counter of this event.
5887  *
5888  * This will return the event that will be read next, but does
5889  * not increment the iterator.
5890  */
5891 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5892 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5893 {
5894 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5895 	struct ring_buffer_event *event;
5896 	unsigned long flags;
5897 
5898  again:
5899 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5900 	event = rb_iter_peek(iter, ts);
5901 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5902 
5903 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5904 		goto again;
5905 
5906 	return event;
5907 }
5908 
5909 /**
5910  * ring_buffer_consume - return an event and consume it
5911  * @buffer: The ring buffer to get the next event from
5912  * @cpu: the cpu to read the buffer from
5913  * @ts: a variable to store the timestamp (may be NULL)
5914  * @lost_events: a variable to store if events were lost (may be NULL)
5915  *
5916  * Returns the next event in the ring buffer, and that event is consumed.
5917  * Meaning, that sequential reads will keep returning a different event,
5918  * and eventually empty the ring buffer if the producer is slower.
5919  */
5920 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5921 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5922 		    unsigned long *lost_events)
5923 {
5924 	struct ring_buffer_per_cpu *cpu_buffer;
5925 	struct ring_buffer_event *event = NULL;
5926 	unsigned long flags;
5927 	bool dolock;
5928 
5929  again:
5930 	/* might be called in atomic */
5931 	preempt_disable();
5932 
5933 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5934 		goto out;
5935 
5936 	cpu_buffer = buffer->buffers[cpu];
5937 	local_irq_save(flags);
5938 	dolock = rb_reader_lock(cpu_buffer);
5939 
5940 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5941 	if (event) {
5942 		cpu_buffer->lost_events = 0;
5943 		rb_advance_reader(cpu_buffer);
5944 	}
5945 
5946 	rb_reader_unlock(cpu_buffer, dolock);
5947 	local_irq_restore(flags);
5948 
5949  out:
5950 	preempt_enable();
5951 
5952 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5953 		goto again;
5954 
5955 	return event;
5956 }
5957 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5958 
5959 /**
5960  * ring_buffer_read_start - start a non consuming read of the buffer
5961  * @buffer: The ring buffer to read from
5962  * @cpu: The cpu buffer to iterate over
5963  * @flags: gfp flags to use for memory allocation
5964  *
5965  * This creates an iterator to allow non-consuming iteration through
5966  * the buffer. If the buffer is disabled for writing, it will produce
5967  * the same information each time, but if the buffer is still writing
5968  * then the first hit of a write will cause the iteration to stop.
5969  *
5970  * Must be paired with ring_buffer_read_finish.
5971  */
5972 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5973 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5974 {
5975 	struct ring_buffer_per_cpu *cpu_buffer;
5976 	struct ring_buffer_iter *iter;
5977 
5978 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5979 		return NULL;
5980 
5981 	iter = kzalloc(sizeof(*iter), flags);
5982 	if (!iter)
5983 		return NULL;
5984 
5985 	/* Holds the entire event: data and meta data */
5986 	iter->event_size = buffer->subbuf_size;
5987 	iter->event = kmalloc(iter->event_size, flags);
5988 	if (!iter->event) {
5989 		kfree(iter);
5990 		return NULL;
5991 	}
5992 
5993 	cpu_buffer = buffer->buffers[cpu];
5994 
5995 	iter->cpu_buffer = cpu_buffer;
5996 
5997 	atomic_inc(&cpu_buffer->resize_disabled);
5998 
5999 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6000 	arch_spin_lock(&cpu_buffer->lock);
6001 	rb_iter_reset(iter);
6002 	arch_spin_unlock(&cpu_buffer->lock);
6003 
6004 	return iter;
6005 }
6006 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
6007 
6008 /**
6009  * ring_buffer_read_finish - finish reading the iterator of the buffer
6010  * @iter: The iterator retrieved by ring_buffer_start
6011  *
6012  * This re-enables resizing of the buffer, and frees the iterator.
6013  */
6014 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)6015 ring_buffer_read_finish(struct ring_buffer_iter *iter)
6016 {
6017 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6018 
6019 	/* Use this opportunity to check the integrity of the ring buffer. */
6020 	rb_check_pages(cpu_buffer);
6021 
6022 	atomic_dec(&cpu_buffer->resize_disabled);
6023 	kfree(iter->event);
6024 	kfree(iter);
6025 }
6026 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
6027 
6028 /**
6029  * ring_buffer_iter_advance - advance the iterator to the next location
6030  * @iter: The ring buffer iterator
6031  *
6032  * Move the location of the iterator such that the next read will
6033  * be the next location of the iterator.
6034  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)6035 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
6036 {
6037 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
6038 	unsigned long flags;
6039 
6040 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6041 
6042 	rb_advance_iter(iter);
6043 
6044 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6045 }
6046 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
6047 
6048 /**
6049  * ring_buffer_size - return the size of the ring buffer (in bytes)
6050  * @buffer: The ring buffer.
6051  * @cpu: The CPU to get ring buffer size from.
6052  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)6053 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
6054 {
6055 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6056 		return 0;
6057 
6058 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
6059 }
6060 EXPORT_SYMBOL_GPL(ring_buffer_size);
6061 
6062 /**
6063  * ring_buffer_max_event_size - return the max data size of an event
6064  * @buffer: The ring buffer.
6065  *
6066  * Returns the maximum size an event can be.
6067  */
ring_buffer_max_event_size(struct trace_buffer * buffer)6068 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
6069 {
6070 	/* If abs timestamp is requested, events have a timestamp too */
6071 	if (ring_buffer_time_stamp_abs(buffer))
6072 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
6073 	return buffer->max_data_size;
6074 }
6075 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6076 
rb_clear_buffer_page(struct buffer_page * page)6077 static void rb_clear_buffer_page(struct buffer_page *page)
6078 {
6079 	local_set(&page->write, 0);
6080 	local_set(&page->entries, 0);
6081 	rb_init_page(page->page);
6082 	page->read = 0;
6083 }
6084 
6085 /*
6086  * When the buffer is memory mapped to user space, each sub buffer
6087  * has a unique id that is used by the meta data to tell the user
6088  * where the current reader page is.
6089  *
6090  * For a normal allocated ring buffer, the id is saved in the buffer page
6091  * id field, and updated via this function.
6092  *
6093  * But for a fixed memory mapped buffer, the id is already assigned for
6094  * fixed memory ordering in the memory layout and can not be used. Instead
6095  * the index of where the page lies in the memory layout is used.
6096  *
6097  * For the normal pages, set the buffer page id with the passed in @id
6098  * value and return that.
6099  *
6100  * For fixed memory mapped pages, get the page index in the memory layout
6101  * and return that as the id.
6102  */
rb_page_id(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage,int id)6103 static int rb_page_id(struct ring_buffer_per_cpu *cpu_buffer,
6104 		      struct buffer_page *bpage, int id)
6105 {
6106 	/*
6107 	 * For boot buffers, the id is the index,
6108 	 * otherwise, set the buffer page with this id
6109 	 */
6110 	if (cpu_buffer->ring_meta)
6111 		id = rb_meta_subbuf_idx(cpu_buffer->ring_meta, bpage->page);
6112 	else
6113 		bpage->id = id;
6114 
6115 	return id;
6116 }
6117 
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6118 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6119 {
6120 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6121 
6122 	if (!meta)
6123 		return;
6124 
6125 	meta->reader.read = cpu_buffer->reader_page->read;
6126 	meta->reader.id = rb_page_id(cpu_buffer, cpu_buffer->reader_page,
6127 				     cpu_buffer->reader_page->id);
6128 
6129 	meta->reader.lost_events = cpu_buffer->lost_events;
6130 
6131 	meta->entries = local_read(&cpu_buffer->entries);
6132 	meta->overrun = local_read(&cpu_buffer->overrun);
6133 	meta->read = cpu_buffer->read;
6134 
6135 	/* Some archs do not have data cache coherency between kernel and user-space */
6136 	flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6137 }
6138 
6139 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6140 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6141 {
6142 	struct buffer_page *page;
6143 
6144 	rb_head_page_deactivate(cpu_buffer);
6145 
6146 	cpu_buffer->head_page
6147 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6148 	rb_clear_buffer_page(cpu_buffer->head_page);
6149 	list_for_each_entry(page, cpu_buffer->pages, list) {
6150 		rb_clear_buffer_page(page);
6151 	}
6152 
6153 	cpu_buffer->tail_page = cpu_buffer->head_page;
6154 	cpu_buffer->commit_page = cpu_buffer->head_page;
6155 
6156 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6157 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6158 	rb_clear_buffer_page(cpu_buffer->reader_page);
6159 
6160 	local_set(&cpu_buffer->entries_bytes, 0);
6161 	local_set(&cpu_buffer->overrun, 0);
6162 	local_set(&cpu_buffer->commit_overrun, 0);
6163 	local_set(&cpu_buffer->dropped_events, 0);
6164 	local_set(&cpu_buffer->entries, 0);
6165 	local_set(&cpu_buffer->committing, 0);
6166 	local_set(&cpu_buffer->commits, 0);
6167 	local_set(&cpu_buffer->pages_touched, 0);
6168 	local_set(&cpu_buffer->pages_lost, 0);
6169 	local_set(&cpu_buffer->pages_read, 0);
6170 	cpu_buffer->last_pages_touch = 0;
6171 	cpu_buffer->shortest_full = 0;
6172 	cpu_buffer->read = 0;
6173 	cpu_buffer->read_bytes = 0;
6174 
6175 	rb_time_set(&cpu_buffer->write_stamp, 0);
6176 	rb_time_set(&cpu_buffer->before_stamp, 0);
6177 
6178 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6179 
6180 	cpu_buffer->lost_events = 0;
6181 	cpu_buffer->last_overrun = 0;
6182 
6183 	rb_head_page_activate(cpu_buffer);
6184 	cpu_buffer->pages_removed = 0;
6185 
6186 	if (cpu_buffer->mapped) {
6187 		rb_update_meta_page(cpu_buffer);
6188 		if (cpu_buffer->ring_meta) {
6189 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6190 			meta->commit_buffer = meta->head_buffer;
6191 		}
6192 	}
6193 }
6194 
6195 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6196 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6197 {
6198 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6199 
6200 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6201 		return;
6202 
6203 	arch_spin_lock(&cpu_buffer->lock);
6204 
6205 	rb_reset_cpu(cpu_buffer);
6206 
6207 	arch_spin_unlock(&cpu_buffer->lock);
6208 }
6209 
6210 /**
6211  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6212  * @buffer: The ring buffer to reset a per cpu buffer of
6213  * @cpu: The CPU buffer to be reset
6214  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6215 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6216 {
6217 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6218 
6219 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6220 		return;
6221 
6222 	/* prevent another thread from changing buffer sizes */
6223 	mutex_lock(&buffer->mutex);
6224 
6225 	atomic_inc(&cpu_buffer->resize_disabled);
6226 	atomic_inc(&cpu_buffer->record_disabled);
6227 
6228 	/* Make sure all commits have finished */
6229 	synchronize_rcu();
6230 
6231 	reset_disabled_cpu_buffer(cpu_buffer);
6232 
6233 	atomic_dec(&cpu_buffer->record_disabled);
6234 	atomic_dec(&cpu_buffer->resize_disabled);
6235 
6236 	mutex_unlock(&buffer->mutex);
6237 }
6238 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6239 
6240 /* Flag to ensure proper resetting of atomic variables */
6241 #define RESET_BIT	(1 << 30)
6242 
6243 /**
6244  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6245  * @buffer: The ring buffer to reset a per cpu buffer of
6246  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6247 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6248 {
6249 	struct ring_buffer_per_cpu *cpu_buffer;
6250 	int cpu;
6251 
6252 	/* prevent another thread from changing buffer sizes */
6253 	mutex_lock(&buffer->mutex);
6254 
6255 	for_each_online_buffer_cpu(buffer, cpu) {
6256 		cpu_buffer = buffer->buffers[cpu];
6257 
6258 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6259 		atomic_inc(&cpu_buffer->record_disabled);
6260 	}
6261 
6262 	/* Make sure all commits have finished */
6263 	synchronize_rcu();
6264 
6265 	for_each_buffer_cpu(buffer, cpu) {
6266 		cpu_buffer = buffer->buffers[cpu];
6267 
6268 		/*
6269 		 * If a CPU came online during the synchronize_rcu(), then
6270 		 * ignore it.
6271 		 */
6272 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6273 			continue;
6274 
6275 		reset_disabled_cpu_buffer(cpu_buffer);
6276 
6277 		atomic_dec(&cpu_buffer->record_disabled);
6278 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6279 	}
6280 
6281 	mutex_unlock(&buffer->mutex);
6282 }
6283 
6284 /**
6285  * ring_buffer_reset - reset a ring buffer
6286  * @buffer: The ring buffer to reset all cpu buffers
6287  */
ring_buffer_reset(struct trace_buffer * buffer)6288 void ring_buffer_reset(struct trace_buffer *buffer)
6289 {
6290 	struct ring_buffer_per_cpu *cpu_buffer;
6291 	int cpu;
6292 
6293 	/* prevent another thread from changing buffer sizes */
6294 	mutex_lock(&buffer->mutex);
6295 
6296 	for_each_buffer_cpu(buffer, cpu) {
6297 		cpu_buffer = buffer->buffers[cpu];
6298 
6299 		atomic_inc(&cpu_buffer->resize_disabled);
6300 		atomic_inc(&cpu_buffer->record_disabled);
6301 	}
6302 
6303 	/* Make sure all commits have finished */
6304 	synchronize_rcu();
6305 
6306 	for_each_buffer_cpu(buffer, cpu) {
6307 		cpu_buffer = buffer->buffers[cpu];
6308 
6309 		reset_disabled_cpu_buffer(cpu_buffer);
6310 
6311 		atomic_dec(&cpu_buffer->record_disabled);
6312 		atomic_dec(&cpu_buffer->resize_disabled);
6313 	}
6314 
6315 	mutex_unlock(&buffer->mutex);
6316 }
6317 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6318 
6319 /**
6320  * ring_buffer_empty - is the ring buffer empty?
6321  * @buffer: The ring buffer to test
6322  */
ring_buffer_empty(struct trace_buffer * buffer)6323 bool ring_buffer_empty(struct trace_buffer *buffer)
6324 {
6325 	struct ring_buffer_per_cpu *cpu_buffer;
6326 	unsigned long flags;
6327 	bool dolock;
6328 	bool ret;
6329 	int cpu;
6330 
6331 	/* yes this is racy, but if you don't like the race, lock the buffer */
6332 	for_each_buffer_cpu(buffer, cpu) {
6333 		cpu_buffer = buffer->buffers[cpu];
6334 		local_irq_save(flags);
6335 		dolock = rb_reader_lock(cpu_buffer);
6336 		ret = rb_per_cpu_empty(cpu_buffer);
6337 		rb_reader_unlock(cpu_buffer, dolock);
6338 		local_irq_restore(flags);
6339 
6340 		if (!ret)
6341 			return false;
6342 	}
6343 
6344 	return true;
6345 }
6346 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6347 
6348 /**
6349  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6350  * @buffer: The ring buffer
6351  * @cpu: The CPU buffer to test
6352  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6353 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6354 {
6355 	struct ring_buffer_per_cpu *cpu_buffer;
6356 	unsigned long flags;
6357 	bool dolock;
6358 	bool ret;
6359 
6360 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6361 		return true;
6362 
6363 	cpu_buffer = buffer->buffers[cpu];
6364 	local_irq_save(flags);
6365 	dolock = rb_reader_lock(cpu_buffer);
6366 	ret = rb_per_cpu_empty(cpu_buffer);
6367 	rb_reader_unlock(cpu_buffer, dolock);
6368 	local_irq_restore(flags);
6369 
6370 	return ret;
6371 }
6372 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6373 
6374 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6375 /**
6376  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6377  * @buffer_a: One buffer to swap with
6378  * @buffer_b: The other buffer to swap with
6379  * @cpu: the CPU of the buffers to swap
6380  *
6381  * This function is useful for tracers that want to take a "snapshot"
6382  * of a CPU buffer and has another back up buffer lying around.
6383  * it is expected that the tracer handles the cpu buffer not being
6384  * used at the moment.
6385  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6386 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6387 			 struct trace_buffer *buffer_b, int cpu)
6388 {
6389 	struct ring_buffer_per_cpu *cpu_buffer_a;
6390 	struct ring_buffer_per_cpu *cpu_buffer_b;
6391 	int ret = -EINVAL;
6392 
6393 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6394 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6395 		return -EINVAL;
6396 
6397 	cpu_buffer_a = buffer_a->buffers[cpu];
6398 	cpu_buffer_b = buffer_b->buffers[cpu];
6399 
6400 	/* It's up to the callers to not try to swap mapped buffers */
6401 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped))
6402 		return -EBUSY;
6403 
6404 	/* At least make sure the two buffers are somewhat the same */
6405 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6406 		return -EINVAL;
6407 
6408 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6409 		return -EINVAL;
6410 
6411 	if (atomic_read(&buffer_a->record_disabled))
6412 		return -EAGAIN;
6413 
6414 	if (atomic_read(&buffer_b->record_disabled))
6415 		return -EAGAIN;
6416 
6417 	if (atomic_read(&cpu_buffer_a->record_disabled))
6418 		return -EAGAIN;
6419 
6420 	if (atomic_read(&cpu_buffer_b->record_disabled))
6421 		return -EAGAIN;
6422 
6423 	/*
6424 	 * We can't do a synchronize_rcu here because this
6425 	 * function can be called in atomic context.
6426 	 * Normally this will be called from the same CPU as cpu.
6427 	 * If not it's up to the caller to protect this.
6428 	 */
6429 	atomic_inc(&cpu_buffer_a->record_disabled);
6430 	atomic_inc(&cpu_buffer_b->record_disabled);
6431 
6432 	ret = -EBUSY;
6433 	if (local_read(&cpu_buffer_a->committing))
6434 		goto out_dec;
6435 	if (local_read(&cpu_buffer_b->committing))
6436 		goto out_dec;
6437 
6438 	/*
6439 	 * When resize is in progress, we cannot swap it because
6440 	 * it will mess the state of the cpu buffer.
6441 	 */
6442 	if (atomic_read(&buffer_a->resizing))
6443 		goto out_dec;
6444 	if (atomic_read(&buffer_b->resizing))
6445 		goto out_dec;
6446 
6447 	buffer_a->buffers[cpu] = cpu_buffer_b;
6448 	buffer_b->buffers[cpu] = cpu_buffer_a;
6449 
6450 	cpu_buffer_b->buffer = buffer_a;
6451 	cpu_buffer_a->buffer = buffer_b;
6452 
6453 	ret = 0;
6454 
6455 out_dec:
6456 	atomic_dec(&cpu_buffer_a->record_disabled);
6457 	atomic_dec(&cpu_buffer_b->record_disabled);
6458 	return ret;
6459 }
6460 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6461 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6462 
6463 /**
6464  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6465  * @buffer: the buffer to allocate for.
6466  * @cpu: the cpu buffer to allocate.
6467  *
6468  * This function is used in conjunction with ring_buffer_read_page.
6469  * When reading a full page from the ring buffer, these functions
6470  * can be used to speed up the process. The calling function should
6471  * allocate a few pages first with this function. Then when it
6472  * needs to get pages from the ring buffer, it passes the result
6473  * of this function into ring_buffer_read_page, which will swap
6474  * the page that was allocated, with the read page of the buffer.
6475  *
6476  * Returns:
6477  *  The page allocated, or ERR_PTR
6478  */
6479 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6480 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6481 {
6482 	struct ring_buffer_per_cpu *cpu_buffer;
6483 	struct buffer_data_read_page *bpage = NULL;
6484 	unsigned long flags;
6485 
6486 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6487 		return ERR_PTR(-ENODEV);
6488 
6489 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6490 	if (!bpage)
6491 		return ERR_PTR(-ENOMEM);
6492 
6493 	bpage->order = buffer->subbuf_order;
6494 	cpu_buffer = buffer->buffers[cpu];
6495 	local_irq_save(flags);
6496 	arch_spin_lock(&cpu_buffer->lock);
6497 
6498 	if (cpu_buffer->free_page) {
6499 		bpage->data = cpu_buffer->free_page;
6500 		cpu_buffer->free_page = NULL;
6501 	}
6502 
6503 	arch_spin_unlock(&cpu_buffer->lock);
6504 	local_irq_restore(flags);
6505 
6506 	if (bpage->data) {
6507 		rb_init_page(bpage->data);
6508 	} else {
6509 		bpage->data = alloc_cpu_data(cpu, cpu_buffer->buffer->subbuf_order);
6510 		if (!bpage->data) {
6511 			kfree(bpage);
6512 			return ERR_PTR(-ENOMEM);
6513 		}
6514 	}
6515 
6516 	return bpage;
6517 }
6518 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6519 
6520 /**
6521  * ring_buffer_free_read_page - free an allocated read page
6522  * @buffer: the buffer the page was allocate for
6523  * @cpu: the cpu buffer the page came from
6524  * @data_page: the page to free
6525  *
6526  * Free a page allocated from ring_buffer_alloc_read_page.
6527  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6528 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6529 				struct buffer_data_read_page *data_page)
6530 {
6531 	struct ring_buffer_per_cpu *cpu_buffer;
6532 	struct buffer_data_page *bpage = data_page->data;
6533 	struct page *page = virt_to_page(bpage);
6534 	unsigned long flags;
6535 
6536 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6537 		return;
6538 
6539 	cpu_buffer = buffer->buffers[cpu];
6540 
6541 	/*
6542 	 * If the page is still in use someplace else, or order of the page
6543 	 * is different from the subbuffer order of the buffer -
6544 	 * we can't reuse it
6545 	 */
6546 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6547 		goto out;
6548 
6549 	local_irq_save(flags);
6550 	arch_spin_lock(&cpu_buffer->lock);
6551 
6552 	if (!cpu_buffer->free_page) {
6553 		cpu_buffer->free_page = bpage;
6554 		bpage = NULL;
6555 	}
6556 
6557 	arch_spin_unlock(&cpu_buffer->lock);
6558 	local_irq_restore(flags);
6559 
6560  out:
6561 	free_pages((unsigned long)bpage, data_page->order);
6562 	kfree(data_page);
6563 }
6564 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6565 
6566 /**
6567  * ring_buffer_read_page - extract a page from the ring buffer
6568  * @buffer: buffer to extract from
6569  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6570  * @len: amount to extract
6571  * @cpu: the cpu of the buffer to extract
6572  * @full: should the extraction only happen when the page is full.
6573  *
6574  * This function will pull out a page from the ring buffer and consume it.
6575  * @data_page must be the address of the variable that was returned
6576  * from ring_buffer_alloc_read_page. This is because the page might be used
6577  * to swap with a page in the ring buffer.
6578  *
6579  * for example:
6580  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6581  *	if (IS_ERR(rpage))
6582  *		return PTR_ERR(rpage);
6583  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6584  *	if (ret >= 0)
6585  *		process_page(ring_buffer_read_page_data(rpage), ret);
6586  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6587  *
6588  * When @full is set, the function will not return true unless
6589  * the writer is off the reader page.
6590  *
6591  * Note: it is up to the calling functions to handle sleeps and wakeups.
6592  *  The ring buffer can be used anywhere in the kernel and can not
6593  *  blindly call wake_up. The layer that uses the ring buffer must be
6594  *  responsible for that.
6595  *
6596  * Returns:
6597  *  >=0 if data has been transferred, returns the offset of consumed data.
6598  *  <0 if no data has been transferred.
6599  */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6600 int ring_buffer_read_page(struct trace_buffer *buffer,
6601 			  struct buffer_data_read_page *data_page,
6602 			  size_t len, int cpu, int full)
6603 {
6604 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6605 	struct ring_buffer_event *event;
6606 	struct buffer_data_page *bpage;
6607 	struct buffer_page *reader;
6608 	unsigned long missed_events;
6609 	unsigned int commit;
6610 	unsigned int read;
6611 	u64 save_timestamp;
6612 
6613 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6614 		return -1;
6615 
6616 	/*
6617 	 * If len is not big enough to hold the page header, then
6618 	 * we can not copy anything.
6619 	 */
6620 	if (len <= BUF_PAGE_HDR_SIZE)
6621 		return -1;
6622 
6623 	len -= BUF_PAGE_HDR_SIZE;
6624 
6625 	if (!data_page || !data_page->data)
6626 		return -1;
6627 
6628 	if (data_page->order != buffer->subbuf_order)
6629 		return -1;
6630 
6631 	bpage = data_page->data;
6632 	if (!bpage)
6633 		return -1;
6634 
6635 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
6636 
6637 	reader = rb_get_reader_page(cpu_buffer);
6638 	if (!reader)
6639 		return -1;
6640 
6641 	event = rb_reader_event(cpu_buffer);
6642 
6643 	read = reader->read;
6644 	commit = rb_page_size(reader);
6645 
6646 	/* Check if any events were dropped */
6647 	missed_events = cpu_buffer->lost_events;
6648 
6649 	/*
6650 	 * If this page has been partially read or
6651 	 * if len is not big enough to read the rest of the page or
6652 	 * a writer is still on the page, then
6653 	 * we must copy the data from the page to the buffer.
6654 	 * Otherwise, we can simply swap the page with the one passed in.
6655 	 */
6656 	if (read || (len < (commit - read)) ||
6657 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6658 	    cpu_buffer->mapped) {
6659 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6660 		unsigned int rpos = read;
6661 		unsigned int pos = 0;
6662 		unsigned int size;
6663 
6664 		/*
6665 		 * If a full page is expected, this can still be returned
6666 		 * if there's been a previous partial read and the
6667 		 * rest of the page can be read and the commit page is off
6668 		 * the reader page.
6669 		 */
6670 		if (full &&
6671 		    (!read || (len < (commit - read)) ||
6672 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6673 			return -1;
6674 
6675 		if (len > (commit - read))
6676 			len = (commit - read);
6677 
6678 		/* Always keep the time extend and data together */
6679 		size = rb_event_ts_length(event);
6680 
6681 		if (len < size)
6682 			return -1;
6683 
6684 		/* save the current timestamp, since the user will need it */
6685 		save_timestamp = cpu_buffer->read_stamp;
6686 
6687 		/* Need to copy one event at a time */
6688 		do {
6689 			/* We need the size of one event, because
6690 			 * rb_advance_reader only advances by one event,
6691 			 * whereas rb_event_ts_length may include the size of
6692 			 * one or two events.
6693 			 * We have already ensured there's enough space if this
6694 			 * is a time extend. */
6695 			size = rb_event_length(event);
6696 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6697 
6698 			len -= size;
6699 
6700 			rb_advance_reader(cpu_buffer);
6701 			rpos = reader->read;
6702 			pos += size;
6703 
6704 			if (rpos >= commit)
6705 				break;
6706 
6707 			event = rb_reader_event(cpu_buffer);
6708 			/* Always keep the time extend and data together */
6709 			size = rb_event_ts_length(event);
6710 		} while (len >= size);
6711 
6712 		/* update bpage */
6713 		local_set(&bpage->commit, pos);
6714 		bpage->time_stamp = save_timestamp;
6715 
6716 		/* we copied everything to the beginning */
6717 		read = 0;
6718 	} else {
6719 		/* update the entry counter */
6720 		cpu_buffer->read += rb_page_entries(reader);
6721 		cpu_buffer->read_bytes += rb_page_size(reader);
6722 
6723 		/* swap the pages */
6724 		rb_init_page(bpage);
6725 		bpage = reader->page;
6726 		reader->page = data_page->data;
6727 		local_set(&reader->write, 0);
6728 		local_set(&reader->entries, 0);
6729 		reader->read = 0;
6730 		data_page->data = bpage;
6731 
6732 		/*
6733 		 * Use the real_end for the data size,
6734 		 * This gives us a chance to store the lost events
6735 		 * on the page.
6736 		 */
6737 		if (reader->real_end)
6738 			local_set(&bpage->commit, reader->real_end);
6739 	}
6740 
6741 	cpu_buffer->lost_events = 0;
6742 
6743 	commit = local_read(&bpage->commit);
6744 	/*
6745 	 * Set a flag in the commit field if we lost events
6746 	 */
6747 	if (missed_events) {
6748 		/* If there is room at the end of the page to save the
6749 		 * missed events, then record it there.
6750 		 */
6751 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6752 			memcpy(&bpage->data[commit], &missed_events,
6753 			       sizeof(missed_events));
6754 			local_add(RB_MISSED_STORED, &bpage->commit);
6755 			commit += sizeof(missed_events);
6756 		}
6757 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6758 	}
6759 
6760 	/*
6761 	 * This page may be off to user land. Zero it out here.
6762 	 */
6763 	if (commit < buffer->subbuf_size)
6764 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6765 
6766 	return read;
6767 }
6768 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6769 
6770 /**
6771  * ring_buffer_read_page_data - get pointer to the data in the page.
6772  * @page:  the page to get the data from
6773  *
6774  * Returns pointer to the actual data in this page.
6775  */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6776 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6777 {
6778 	return page->data;
6779 }
6780 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6781 
6782 /**
6783  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6784  * @buffer: the buffer to get the sub buffer size from
6785  *
6786  * Returns size of the sub buffer, in bytes.
6787  */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6788 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6789 {
6790 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6791 }
6792 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6793 
6794 /**
6795  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6796  * @buffer: The ring_buffer to get the system sub page order from
6797  *
6798  * By default, one ring buffer sub page equals to one system page. This parameter
6799  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6800  * extended, but must be an order of system page size.
6801  *
6802  * Returns the order of buffer sub page size, in system pages:
6803  * 0 means the sub buffer size is 1 system page and so forth.
6804  * In case of an error < 0 is returned.
6805  */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6806 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6807 {
6808 	if (!buffer)
6809 		return -EINVAL;
6810 
6811 	return buffer->subbuf_order;
6812 }
6813 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6814 
6815 /**
6816  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6817  * @buffer: The ring_buffer to set the new page size.
6818  * @order: Order of the system pages in one sub buffer page
6819  *
6820  * By default, one ring buffer pages equals to one system page. This API can be
6821  * used to set new size of the ring buffer page. The size must be order of
6822  * system page size, that's why the input parameter @order is the order of
6823  * system pages that are allocated for one ring buffer page:
6824  *  0 - 1 system page
6825  *  1 - 2 system pages
6826  *  3 - 4 system pages
6827  *  ...
6828  *
6829  * Returns 0 on success or < 0 in case of an error.
6830  */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6831 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6832 {
6833 	struct ring_buffer_per_cpu *cpu_buffer;
6834 	struct buffer_page *bpage, *tmp;
6835 	int old_order, old_size;
6836 	int nr_pages;
6837 	int psize;
6838 	int err;
6839 	int cpu;
6840 
6841 	if (!buffer || order < 0)
6842 		return -EINVAL;
6843 
6844 	if (buffer->subbuf_order == order)
6845 		return 0;
6846 
6847 	psize = (1 << order) * PAGE_SIZE;
6848 	if (psize <= BUF_PAGE_HDR_SIZE)
6849 		return -EINVAL;
6850 
6851 	/* Size of a subbuf cannot be greater than the write counter */
6852 	if (psize > RB_WRITE_MASK + 1)
6853 		return -EINVAL;
6854 
6855 	old_order = buffer->subbuf_order;
6856 	old_size = buffer->subbuf_size;
6857 
6858 	/* prevent another thread from changing buffer sizes */
6859 	guard(mutex)(&buffer->mutex);
6860 	atomic_inc(&buffer->record_disabled);
6861 
6862 	/* Make sure all commits have finished */
6863 	synchronize_rcu();
6864 
6865 	buffer->subbuf_order = order;
6866 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6867 
6868 	/* Make sure all new buffers are allocated, before deleting the old ones */
6869 	for_each_buffer_cpu(buffer, cpu) {
6870 
6871 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6872 			continue;
6873 
6874 		cpu_buffer = buffer->buffers[cpu];
6875 
6876 		if (cpu_buffer->mapped) {
6877 			err = -EBUSY;
6878 			goto error;
6879 		}
6880 
6881 		/* Update the number of pages to match the new size */
6882 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6883 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6884 
6885 		/* we need a minimum of two pages */
6886 		if (nr_pages < 2)
6887 			nr_pages = 2;
6888 
6889 		cpu_buffer->nr_pages_to_update = nr_pages;
6890 
6891 		/* Include the reader page */
6892 		nr_pages++;
6893 
6894 		/* Allocate the new size buffer */
6895 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6896 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6897 					&cpu_buffer->new_pages)) {
6898 			/* not enough memory for new pages */
6899 			err = -ENOMEM;
6900 			goto error;
6901 		}
6902 	}
6903 
6904 	for_each_buffer_cpu(buffer, cpu) {
6905 		struct buffer_data_page *old_free_data_page;
6906 		struct list_head old_pages;
6907 		unsigned long flags;
6908 
6909 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6910 			continue;
6911 
6912 		cpu_buffer = buffer->buffers[cpu];
6913 
6914 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6915 
6916 		/* Clear the head bit to make the link list normal to read */
6917 		rb_head_page_deactivate(cpu_buffer);
6918 
6919 		/*
6920 		 * Collect buffers from the cpu_buffer pages list and the
6921 		 * reader_page on old_pages, so they can be freed later when not
6922 		 * under a spinlock. The pages list is a linked list with no
6923 		 * head, adding old_pages turns it into a regular list with
6924 		 * old_pages being the head.
6925 		 */
6926 		list_add(&old_pages, cpu_buffer->pages);
6927 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6928 
6929 		/* One page was allocated for the reader page */
6930 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6931 						     struct buffer_page, list);
6932 		list_del_init(&cpu_buffer->reader_page->list);
6933 
6934 		/* Install the new pages, remove the head from the list */
6935 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6936 		list_del_init(&cpu_buffer->new_pages);
6937 		cpu_buffer->cnt++;
6938 
6939 		cpu_buffer->head_page
6940 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6941 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6942 
6943 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6944 		cpu_buffer->nr_pages_to_update = 0;
6945 
6946 		old_free_data_page = cpu_buffer->free_page;
6947 		cpu_buffer->free_page = NULL;
6948 
6949 		rb_head_page_activate(cpu_buffer);
6950 
6951 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6952 
6953 		/* Free old sub buffers */
6954 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6955 			list_del_init(&bpage->list);
6956 			free_buffer_page(bpage);
6957 		}
6958 		free_pages((unsigned long)old_free_data_page, old_order);
6959 
6960 		rb_check_pages(cpu_buffer);
6961 	}
6962 
6963 	atomic_dec(&buffer->record_disabled);
6964 
6965 	return 0;
6966 
6967 error:
6968 	buffer->subbuf_order = old_order;
6969 	buffer->subbuf_size = old_size;
6970 
6971 	atomic_dec(&buffer->record_disabled);
6972 
6973 	for_each_buffer_cpu(buffer, cpu) {
6974 		cpu_buffer = buffer->buffers[cpu];
6975 
6976 		if (!cpu_buffer->nr_pages_to_update)
6977 			continue;
6978 
6979 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6980 			list_del_init(&bpage->list);
6981 			free_buffer_page(bpage);
6982 		}
6983 	}
6984 
6985 	return err;
6986 }
6987 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6988 
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6989 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6990 {
6991 	struct page *page;
6992 
6993 	if (cpu_buffer->meta_page)
6994 		return 0;
6995 
6996 	page = alloc_page(GFP_USER | __GFP_ZERO);
6997 	if (!page)
6998 		return -ENOMEM;
6999 
7000 	cpu_buffer->meta_page = page_to_virt(page);
7001 
7002 	return 0;
7003 }
7004 
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)7005 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
7006 {
7007 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
7008 
7009 	free_page(addr);
7010 	cpu_buffer->meta_page = NULL;
7011 }
7012 
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)7013 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
7014 				   unsigned long *subbuf_ids)
7015 {
7016 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
7017 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
7018 	struct buffer_page *first_subbuf, *subbuf;
7019 	int cnt = 0;
7020 	int id = 0;
7021 
7022 	id = rb_page_id(cpu_buffer, cpu_buffer->reader_page, id);
7023 	subbuf_ids[id++] = (unsigned long)cpu_buffer->reader_page->page;
7024 	cnt++;
7025 
7026 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7027 	do {
7028 		id = rb_page_id(cpu_buffer, subbuf, id);
7029 
7030 		if (WARN_ON(id >= nr_subbufs))
7031 			break;
7032 
7033 		subbuf_ids[id] = (unsigned long)subbuf->page;
7034 
7035 		rb_inc_page(&subbuf);
7036 		id++;
7037 		cnt++;
7038 	} while (subbuf != first_subbuf);
7039 
7040 	WARN_ON(cnt != nr_subbufs);
7041 
7042 	/* install subbuf ID to kern VA translation */
7043 	cpu_buffer->subbuf_ids = subbuf_ids;
7044 
7045 	meta->meta_struct_len = sizeof(*meta);
7046 	meta->nr_subbufs = nr_subbufs;
7047 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7048 	meta->meta_page_size = meta->subbuf_size;
7049 
7050 	rb_update_meta_page(cpu_buffer);
7051 }
7052 
7053 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7054 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7055 {
7056 	struct ring_buffer_per_cpu *cpu_buffer;
7057 
7058 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7059 		return ERR_PTR(-EINVAL);
7060 
7061 	cpu_buffer = buffer->buffers[cpu];
7062 
7063 	mutex_lock(&cpu_buffer->mapping_lock);
7064 
7065 	if (!cpu_buffer->user_mapped) {
7066 		mutex_unlock(&cpu_buffer->mapping_lock);
7067 		return ERR_PTR(-ENODEV);
7068 	}
7069 
7070 	return cpu_buffer;
7071 }
7072 
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7073 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7074 {
7075 	mutex_unlock(&cpu_buffer->mapping_lock);
7076 }
7077 
7078 /*
7079  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7080  * to be set-up or torn-down.
7081  */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7082 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7083 			       bool inc)
7084 {
7085 	unsigned long flags;
7086 
7087 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7088 
7089 	/* mapped is always greater or equal to user_mapped */
7090 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7091 		return -EINVAL;
7092 
7093 	if (inc && cpu_buffer->mapped == UINT_MAX)
7094 		return -EBUSY;
7095 
7096 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7097 		return -EINVAL;
7098 
7099 	mutex_lock(&cpu_buffer->buffer->mutex);
7100 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7101 
7102 	if (inc) {
7103 		cpu_buffer->user_mapped++;
7104 		cpu_buffer->mapped++;
7105 	} else {
7106 		cpu_buffer->user_mapped--;
7107 		cpu_buffer->mapped--;
7108 	}
7109 
7110 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7111 	mutex_unlock(&cpu_buffer->buffer->mutex);
7112 
7113 	return 0;
7114 }
7115 
7116 /*
7117  *   +--------------+  pgoff == 0
7118  *   |   meta page  |
7119  *   +--------------+  pgoff == 1
7120  *   | subbuffer 0  |
7121  *   |              |
7122  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7123  *   | subbuffer 1  |
7124  *   |              |
7125  *         ...
7126  */
7127 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7128 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7129 			struct vm_area_struct *vma)
7130 {
7131 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7132 	unsigned int subbuf_pages, subbuf_order;
7133 	struct page **pages __free(kfree) = NULL;
7134 	int p = 0, s = 0;
7135 	int err;
7136 
7137 	/* Refuse MP_PRIVATE or writable mappings */
7138 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7139 	    !(vma->vm_flags & VM_MAYSHARE))
7140 		return -EPERM;
7141 
7142 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7143 	subbuf_pages = 1 << subbuf_order;
7144 
7145 	if (subbuf_order && pgoff % subbuf_pages)
7146 		return -EINVAL;
7147 
7148 	/*
7149 	 * Make sure the mapping cannot become writable later. Also tell the VM
7150 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7151 	 */
7152 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7153 		     VM_MAYWRITE);
7154 
7155 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7156 
7157 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7158 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7159 	if (nr_pages <= pgoff)
7160 		return -EINVAL;
7161 
7162 	nr_pages -= pgoff;
7163 
7164 	nr_vma_pages = vma_pages(vma);
7165 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7166 		return -EINVAL;
7167 
7168 	nr_pages = nr_vma_pages;
7169 
7170 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7171 	if (!pages)
7172 		return -ENOMEM;
7173 
7174 	if (!pgoff) {
7175 		unsigned long meta_page_padding;
7176 
7177 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7178 
7179 		/*
7180 		 * Pad with the zero-page to align the meta-page with the
7181 		 * sub-buffers.
7182 		 */
7183 		meta_page_padding = subbuf_pages - 1;
7184 		while (meta_page_padding-- && p < nr_pages) {
7185 			unsigned long __maybe_unused zero_addr =
7186 				vma->vm_start + (PAGE_SIZE * p);
7187 
7188 			pages[p++] = ZERO_PAGE(zero_addr);
7189 		}
7190 	} else {
7191 		/* Skip the meta-page */
7192 		pgoff -= subbuf_pages;
7193 
7194 		s += pgoff / subbuf_pages;
7195 	}
7196 
7197 	while (p < nr_pages) {
7198 		struct page *page;
7199 		int off = 0;
7200 
7201 		if (WARN_ON_ONCE(s >= nr_subbufs))
7202 			return -EINVAL;
7203 
7204 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7205 
7206 		for (; off < (1 << (subbuf_order)); off++, page++) {
7207 			if (p >= nr_pages)
7208 				break;
7209 
7210 			pages[p++] = page;
7211 		}
7212 		s++;
7213 	}
7214 
7215 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7216 
7217 	return err;
7218 }
7219 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7220 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7221 			struct vm_area_struct *vma)
7222 {
7223 	return -EOPNOTSUPP;
7224 }
7225 #endif
7226 
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7227 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7228 		    struct vm_area_struct *vma)
7229 {
7230 	struct ring_buffer_per_cpu *cpu_buffer;
7231 	unsigned long flags, *subbuf_ids;
7232 	int err;
7233 
7234 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7235 		return -EINVAL;
7236 
7237 	cpu_buffer = buffer->buffers[cpu];
7238 
7239 	guard(mutex)(&cpu_buffer->mapping_lock);
7240 
7241 	if (cpu_buffer->user_mapped) {
7242 		err = __rb_map_vma(cpu_buffer, vma);
7243 		if (!err)
7244 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7245 		return err;
7246 	}
7247 
7248 	/* prevent another thread from changing buffer/sub-buffer sizes */
7249 	guard(mutex)(&buffer->mutex);
7250 
7251 	err = rb_alloc_meta_page(cpu_buffer);
7252 	if (err)
7253 		return err;
7254 
7255 	/* subbuf_ids include the reader while nr_pages does not */
7256 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7257 	if (!subbuf_ids) {
7258 		rb_free_meta_page(cpu_buffer);
7259 		return -ENOMEM;
7260 	}
7261 
7262 	atomic_inc(&cpu_buffer->resize_disabled);
7263 
7264 	/*
7265 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7266 	 * assigned.
7267 	 */
7268 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7269 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7270 
7271 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7272 
7273 	err = __rb_map_vma(cpu_buffer, vma);
7274 	if (!err) {
7275 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7276 		/* This is the first time it is mapped by user */
7277 		cpu_buffer->mapped++;
7278 		cpu_buffer->user_mapped = 1;
7279 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7280 	} else {
7281 		kfree(cpu_buffer->subbuf_ids);
7282 		cpu_buffer->subbuf_ids = NULL;
7283 		rb_free_meta_page(cpu_buffer);
7284 		atomic_dec(&cpu_buffer->resize_disabled);
7285 	}
7286 
7287 	return err;
7288 }
7289 
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7290 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7291 {
7292 	struct ring_buffer_per_cpu *cpu_buffer;
7293 	unsigned long flags;
7294 
7295 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7296 		return -EINVAL;
7297 
7298 	cpu_buffer = buffer->buffers[cpu];
7299 
7300 	guard(mutex)(&cpu_buffer->mapping_lock);
7301 
7302 	if (!cpu_buffer->user_mapped) {
7303 		return -ENODEV;
7304 	} else if (cpu_buffer->user_mapped > 1) {
7305 		__rb_inc_dec_mapped(cpu_buffer, false);
7306 		return 0;
7307 	}
7308 
7309 	guard(mutex)(&buffer->mutex);
7310 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7311 
7312 	/* This is the last user space mapping */
7313 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7314 		cpu_buffer->mapped--;
7315 	cpu_buffer->user_mapped = 0;
7316 
7317 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7318 
7319 	kfree(cpu_buffer->subbuf_ids);
7320 	cpu_buffer->subbuf_ids = NULL;
7321 	rb_free_meta_page(cpu_buffer);
7322 	atomic_dec(&cpu_buffer->resize_disabled);
7323 
7324 	return 0;
7325 }
7326 
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7327 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7328 {
7329 	struct ring_buffer_per_cpu *cpu_buffer;
7330 	struct buffer_page *reader;
7331 	unsigned long missed_events;
7332 	unsigned long reader_size;
7333 	unsigned long flags;
7334 
7335 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7336 	if (IS_ERR(cpu_buffer))
7337 		return (int)PTR_ERR(cpu_buffer);
7338 
7339 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7340 
7341 consume:
7342 	if (rb_per_cpu_empty(cpu_buffer))
7343 		goto out;
7344 
7345 	reader_size = rb_page_size(cpu_buffer->reader_page);
7346 
7347 	/*
7348 	 * There are data to be read on the current reader page, we can
7349 	 * return to the caller. But before that, we assume the latter will read
7350 	 * everything. Let's update the kernel reader accordingly.
7351 	 */
7352 	if (cpu_buffer->reader_page->read < reader_size) {
7353 		while (cpu_buffer->reader_page->read < reader_size)
7354 			rb_advance_reader(cpu_buffer);
7355 		goto out;
7356 	}
7357 
7358 	/* Did the reader catch up with the writer? */
7359 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
7360 		goto out;
7361 
7362 	reader = rb_get_reader_page(cpu_buffer);
7363 	if (WARN_ON(!reader))
7364 		goto out;
7365 
7366 	/* Check if any events were dropped */
7367 	missed_events = cpu_buffer->lost_events;
7368 
7369 	if (missed_events) {
7370 		if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7371 			struct buffer_data_page *bpage = reader->page;
7372 			unsigned int commit;
7373 			/*
7374 			 * Use the real_end for the data size,
7375 			 * This gives us a chance to store the lost events
7376 			 * on the page.
7377 			 */
7378 			if (reader->real_end)
7379 				local_set(&bpage->commit, reader->real_end);
7380 			/*
7381 			 * If there is room at the end of the page to save the
7382 			 * missed events, then record it there.
7383 			 */
7384 			commit = rb_page_size(reader);
7385 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7386 				memcpy(&bpage->data[commit], &missed_events,
7387 				       sizeof(missed_events));
7388 				local_add(RB_MISSED_STORED, &bpage->commit);
7389 			}
7390 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7391 		} else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7392 				      "Reader on commit with %ld missed events",
7393 				      missed_events)) {
7394 			/*
7395 			 * There shouldn't be any missed events if the tail_page
7396 			 * is on the reader page. But if the tail page is not on the
7397 			 * reader page and the commit_page is, that would mean that
7398 			 * there's a commit_overrun (an interrupt preempted an
7399 			 * addition of an event and then filled the buffer
7400 			 * with new events). In this case it's not an
7401 			 * error, but it should still be reported.
7402 			 *
7403 			 * TODO: Add missed events to the page for user space to know.
7404 			 */
7405 			pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7406 				cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7407 		}
7408 	}
7409 
7410 	cpu_buffer->lost_events = 0;
7411 
7412 	goto consume;
7413 
7414 out:
7415 	/* Some archs do not have data cache coherency between kernel and user-space */
7416 	flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7417 				buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7418 
7419 	rb_update_meta_page(cpu_buffer);
7420 
7421 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7422 	rb_put_mapped_buffer(cpu_buffer);
7423 
7424 	return 0;
7425 }
7426 
7427 /*
7428  * We only allocate new buffers, never free them if the CPU goes down.
7429  * If we were to free the buffer, then the user would lose any trace that was in
7430  * the buffer.
7431  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7432 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7433 {
7434 	struct trace_buffer *buffer;
7435 	long nr_pages_same;
7436 	int cpu_i;
7437 	unsigned long nr_pages;
7438 
7439 	buffer = container_of(node, struct trace_buffer, node);
7440 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7441 		return 0;
7442 
7443 	nr_pages = 0;
7444 	nr_pages_same = 1;
7445 	/* check if all cpu sizes are same */
7446 	for_each_buffer_cpu(buffer, cpu_i) {
7447 		/* fill in the size from first enabled cpu */
7448 		if (nr_pages == 0)
7449 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7450 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7451 			nr_pages_same = 0;
7452 			break;
7453 		}
7454 	}
7455 	/* allocate minimum pages, user can later expand it */
7456 	if (!nr_pages_same)
7457 		nr_pages = 2;
7458 	buffer->buffers[cpu] =
7459 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7460 	if (!buffer->buffers[cpu]) {
7461 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7462 		     cpu);
7463 		return -ENOMEM;
7464 	}
7465 	smp_wmb();
7466 	cpumask_set_cpu(cpu, buffer->cpumask);
7467 	return 0;
7468 }
7469 
7470 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7471 /*
7472  * This is a basic integrity check of the ring buffer.
7473  * Late in the boot cycle this test will run when configured in.
7474  * It will kick off a thread per CPU that will go into a loop
7475  * writing to the per cpu ring buffer various sizes of data.
7476  * Some of the data will be large items, some small.
7477  *
7478  * Another thread is created that goes into a spin, sending out
7479  * IPIs to the other CPUs to also write into the ring buffer.
7480  * this is to test the nesting ability of the buffer.
7481  *
7482  * Basic stats are recorded and reported. If something in the
7483  * ring buffer should happen that's not expected, a big warning
7484  * is displayed and all ring buffers are disabled.
7485  */
7486 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7487 
7488 struct rb_test_data {
7489 	struct trace_buffer *buffer;
7490 	unsigned long		events;
7491 	unsigned long		bytes_written;
7492 	unsigned long		bytes_alloc;
7493 	unsigned long		bytes_dropped;
7494 	unsigned long		events_nested;
7495 	unsigned long		bytes_written_nested;
7496 	unsigned long		bytes_alloc_nested;
7497 	unsigned long		bytes_dropped_nested;
7498 	int			min_size_nested;
7499 	int			max_size_nested;
7500 	int			max_size;
7501 	int			min_size;
7502 	int			cpu;
7503 	int			cnt;
7504 };
7505 
7506 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7507 
7508 /* 1 meg per cpu */
7509 #define RB_TEST_BUFFER_SIZE	1048576
7510 
7511 static char rb_string[] __initdata =
7512 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7513 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7514 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7515 
7516 static bool rb_test_started __initdata;
7517 
7518 struct rb_item {
7519 	int size;
7520 	char str[];
7521 };
7522 
rb_write_something(struct rb_test_data * data,bool nested)7523 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7524 {
7525 	struct ring_buffer_event *event;
7526 	struct rb_item *item;
7527 	bool started;
7528 	int event_len;
7529 	int size;
7530 	int len;
7531 	int cnt;
7532 
7533 	/* Have nested writes different that what is written */
7534 	cnt = data->cnt + (nested ? 27 : 0);
7535 
7536 	/* Multiply cnt by ~e, to make some unique increment */
7537 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7538 
7539 	len = size + sizeof(struct rb_item);
7540 
7541 	started = rb_test_started;
7542 	/* read rb_test_started before checking buffer enabled */
7543 	smp_rmb();
7544 
7545 	event = ring_buffer_lock_reserve(data->buffer, len);
7546 	if (!event) {
7547 		/* Ignore dropped events before test starts. */
7548 		if (started) {
7549 			if (nested)
7550 				data->bytes_dropped_nested += len;
7551 			else
7552 				data->bytes_dropped += len;
7553 		}
7554 		return len;
7555 	}
7556 
7557 	event_len = ring_buffer_event_length(event);
7558 
7559 	if (RB_WARN_ON(data->buffer, event_len < len))
7560 		goto out;
7561 
7562 	item = ring_buffer_event_data(event);
7563 	item->size = size;
7564 	memcpy(item->str, rb_string, size);
7565 
7566 	if (nested) {
7567 		data->bytes_alloc_nested += event_len;
7568 		data->bytes_written_nested += len;
7569 		data->events_nested++;
7570 		if (!data->min_size_nested || len < data->min_size_nested)
7571 			data->min_size_nested = len;
7572 		if (len > data->max_size_nested)
7573 			data->max_size_nested = len;
7574 	} else {
7575 		data->bytes_alloc += event_len;
7576 		data->bytes_written += len;
7577 		data->events++;
7578 		if (!data->min_size || len < data->min_size)
7579 			data->max_size = len;
7580 		if (len > data->max_size)
7581 			data->max_size = len;
7582 	}
7583 
7584  out:
7585 	ring_buffer_unlock_commit(data->buffer);
7586 
7587 	return 0;
7588 }
7589 
rb_test(void * arg)7590 static __init int rb_test(void *arg)
7591 {
7592 	struct rb_test_data *data = arg;
7593 
7594 	while (!kthread_should_stop()) {
7595 		rb_write_something(data, false);
7596 		data->cnt++;
7597 
7598 		set_current_state(TASK_INTERRUPTIBLE);
7599 		/* Now sleep between a min of 100-300us and a max of 1ms */
7600 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7601 	}
7602 
7603 	return 0;
7604 }
7605 
rb_ipi(void * ignore)7606 static __init void rb_ipi(void *ignore)
7607 {
7608 	struct rb_test_data *data;
7609 	int cpu = smp_processor_id();
7610 
7611 	data = &rb_data[cpu];
7612 	rb_write_something(data, true);
7613 }
7614 
rb_hammer_test(void * arg)7615 static __init int rb_hammer_test(void *arg)
7616 {
7617 	while (!kthread_should_stop()) {
7618 
7619 		/* Send an IPI to all cpus to write data! */
7620 		smp_call_function(rb_ipi, NULL, 1);
7621 		/* No sleep, but for non preempt, let others run */
7622 		schedule();
7623 	}
7624 
7625 	return 0;
7626 }
7627 
test_ringbuffer(void)7628 static __init int test_ringbuffer(void)
7629 {
7630 	struct task_struct *rb_hammer;
7631 	struct trace_buffer *buffer;
7632 	int cpu;
7633 	int ret = 0;
7634 
7635 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7636 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7637 		return 0;
7638 	}
7639 
7640 	pr_info("Running ring buffer tests...\n");
7641 
7642 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7643 	if (WARN_ON(!buffer))
7644 		return 0;
7645 
7646 	/* Disable buffer so that threads can't write to it yet */
7647 	ring_buffer_record_off(buffer);
7648 
7649 	for_each_online_cpu(cpu) {
7650 		rb_data[cpu].buffer = buffer;
7651 		rb_data[cpu].cpu = cpu;
7652 		rb_data[cpu].cnt = cpu;
7653 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7654 						     cpu, "rbtester/%u");
7655 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7656 			pr_cont("FAILED\n");
7657 			ret = PTR_ERR(rb_threads[cpu]);
7658 			goto out_free;
7659 		}
7660 	}
7661 
7662 	/* Now create the rb hammer! */
7663 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7664 	if (WARN_ON(IS_ERR(rb_hammer))) {
7665 		pr_cont("FAILED\n");
7666 		ret = PTR_ERR(rb_hammer);
7667 		goto out_free;
7668 	}
7669 
7670 	ring_buffer_record_on(buffer);
7671 	/*
7672 	 * Show buffer is enabled before setting rb_test_started.
7673 	 * Yes there's a small race window where events could be
7674 	 * dropped and the thread won't catch it. But when a ring
7675 	 * buffer gets enabled, there will always be some kind of
7676 	 * delay before other CPUs see it. Thus, we don't care about
7677 	 * those dropped events. We care about events dropped after
7678 	 * the threads see that the buffer is active.
7679 	 */
7680 	smp_wmb();
7681 	rb_test_started = true;
7682 
7683 	set_current_state(TASK_INTERRUPTIBLE);
7684 	/* Just run for 10 seconds */
7685 	schedule_timeout(10 * HZ);
7686 
7687 	kthread_stop(rb_hammer);
7688 
7689  out_free:
7690 	for_each_online_cpu(cpu) {
7691 		if (!rb_threads[cpu])
7692 			break;
7693 		kthread_stop(rb_threads[cpu]);
7694 	}
7695 	if (ret) {
7696 		ring_buffer_free(buffer);
7697 		return ret;
7698 	}
7699 
7700 	/* Report! */
7701 	pr_info("finished\n");
7702 	for_each_online_cpu(cpu) {
7703 		struct ring_buffer_event *event;
7704 		struct rb_test_data *data = &rb_data[cpu];
7705 		struct rb_item *item;
7706 		unsigned long total_events;
7707 		unsigned long total_dropped;
7708 		unsigned long total_written;
7709 		unsigned long total_alloc;
7710 		unsigned long total_read = 0;
7711 		unsigned long total_size = 0;
7712 		unsigned long total_len = 0;
7713 		unsigned long total_lost = 0;
7714 		unsigned long lost;
7715 		int big_event_size;
7716 		int small_event_size;
7717 
7718 		ret = -1;
7719 
7720 		total_events = data->events + data->events_nested;
7721 		total_written = data->bytes_written + data->bytes_written_nested;
7722 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7723 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7724 
7725 		big_event_size = data->max_size + data->max_size_nested;
7726 		small_event_size = data->min_size + data->min_size_nested;
7727 
7728 		pr_info("CPU %d:\n", cpu);
7729 		pr_info("              events:    %ld\n", total_events);
7730 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7731 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7732 		pr_info("       written bytes:    %ld\n", total_written);
7733 		pr_info("       biggest event:    %d\n", big_event_size);
7734 		pr_info("      smallest event:    %d\n", small_event_size);
7735 
7736 		if (RB_WARN_ON(buffer, total_dropped))
7737 			break;
7738 
7739 		ret = 0;
7740 
7741 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7742 			total_lost += lost;
7743 			item = ring_buffer_event_data(event);
7744 			total_len += ring_buffer_event_length(event);
7745 			total_size += item->size + sizeof(struct rb_item);
7746 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7747 				pr_info("FAILED!\n");
7748 				pr_info("buffer had: %.*s\n", item->size, item->str);
7749 				pr_info("expected:   %.*s\n", item->size, rb_string);
7750 				RB_WARN_ON(buffer, 1);
7751 				ret = -1;
7752 				break;
7753 			}
7754 			total_read++;
7755 		}
7756 		if (ret)
7757 			break;
7758 
7759 		ret = -1;
7760 
7761 		pr_info("         read events:   %ld\n", total_read);
7762 		pr_info("         lost events:   %ld\n", total_lost);
7763 		pr_info("        total events:   %ld\n", total_lost + total_read);
7764 		pr_info("  recorded len bytes:   %ld\n", total_len);
7765 		pr_info(" recorded size bytes:   %ld\n", total_size);
7766 		if (total_lost) {
7767 			pr_info(" With dropped events, record len and size may not match\n"
7768 				" alloced and written from above\n");
7769 		} else {
7770 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7771 				       total_size != total_written))
7772 				break;
7773 		}
7774 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7775 			break;
7776 
7777 		ret = 0;
7778 	}
7779 	if (!ret)
7780 		pr_info("Ring buffer PASSED!\n");
7781 
7782 	ring_buffer_free(buffer);
7783 	return 0;
7784 }
7785 
7786 late_initcall(test_ringbuffer);
7787 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7788