xref: /linux/drivers/edac/igen6_edac.c (revision d7223aed30cd77be31dabd635e709828f3255366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5.1"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 #define CAPID_E_IBECC_BIT18		BIT(18)
62 
63 /* Error Status */
64 #define ERRSTS_OFFSET			0xc8
65 #define ERRSTS_CE			BIT_ULL(6)
66 #define ERRSTS_UE			BIT_ULL(7)
67 
68 /* Error Command */
69 #define ERRCMD_OFFSET			0xca
70 #define ERRCMD_CE			BIT_ULL(6)
71 #define ERRCMD_UE			BIT_ULL(7)
72 
73 /* IBECC MMIO base address */
74 #define IBECC_BASE			(res_cfg->ibecc_base)
75 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
76 #define IBECC_ACTIVATE_EN		BIT(0)
77 
78 /* IBECC error log */
79 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
80 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
81 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
82 #define ECC_ERROR_LOG_ADDR_SHIFT	5
83 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
84 #define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
85 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
86 
87 /* Host MMIO base address */
88 #define MCHBAR_OFFSET			0x48
89 #define MCHBAR_EN			BIT_ULL(0)
90 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
91 #define MCHBAR_SIZE			0x10000
92 
93 /* Parameters for the channel decode stage */
94 #define IMC_BASE			(res_cfg->imc_base)
95 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
96 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
97 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
98 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
99 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
100 
101 /* Parameters for DRAM decode stage */
102 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
103 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
104 
105 /* DIMM characteristics */
106 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
107 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
108 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
109 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
110 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
111 
112 /* Hash for memory controller selection */
113 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
114 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
115 
116 /* Hash for channel selection */
117 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
118 /* Hash for enhanced channel selection */
119 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
120 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
121 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
122 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
123 
124 /* Parameters for memory slice decode stage */
125 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
126 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
127 
128 static struct res_config {
129 	bool machine_check;
130 	/* The number of present memory controllers. */
131 	int num_imc;
132 	u32 imc_base;
133 	u32 cmf_base;
134 	u32 cmf_size;
135 	u32 ms_hash_offset;
136 	u32 ibecc_base;
137 	u32 ibecc_error_log_offset;
138 	bool (*ibecc_available)(struct pci_dev *pdev);
139 	/* Extract error address logged in IBECC */
140 	u64 (*err_addr)(u64 ecclog);
141 	/* Convert error address logged in IBECC to system physical address */
142 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
143 	/* Convert error address logged in IBECC to integrated memory controller address */
144 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
145 } *res_cfg;
146 
147 struct igen6_imc {
148 	int mc;
149 	struct mem_ctl_info *mci;
150 	struct pci_dev *pdev;
151 	struct device dev;
152 	void __iomem *window;
153 	u64 size;
154 	u64 ch_s_size;
155 	int ch_l_map;
156 	u64 dimm_s_size[NUM_CHANNELS];
157 	u64 dimm_l_size[NUM_CHANNELS];
158 	int dimm_l_map[NUM_CHANNELS];
159 };
160 
161 static struct igen6_pvt {
162 	struct igen6_imc imc[NUM_IMC];
163 	u64 ms_hash;
164 	u64 ms_s_size;
165 	int ms_l_map;
166 } *igen6_pvt;
167 
168 /* The top of low usable DRAM */
169 static u32 igen6_tolud;
170 /* The size of physical memory */
171 static u64 igen6_tom;
172 
173 struct decoded_addr {
174 	int mc;
175 	u64 imc_addr;
176 	u64 sys_addr;
177 	int channel_idx;
178 	u64 channel_addr;
179 	int sub_channel_idx;
180 	u64 sub_channel_addr;
181 };
182 
183 struct ecclog_node {
184 	struct llist_node llnode;
185 	int mc;
186 	u64 ecclog;
187 };
188 
189 /*
190  * In the NMI handler, the driver uses the lock-less memory allocator
191  * to allocate memory to store the IBECC error logs and links the logs
192  * to the lock-less list. Delay printk() and the work of error reporting
193  * to EDAC core in a worker.
194  */
195 #define ECCLOG_POOL_SIZE	PAGE_SIZE
196 static LLIST_HEAD(ecclog_llist);
197 static struct gen_pool *ecclog_pool;
198 static char ecclog_buf[ECCLOG_POOL_SIZE];
199 static struct irq_work ecclog_irq_work;
200 static struct work_struct ecclog_work;
201 
202 /* Compute die IDs for Elkhart Lake with IBECC */
203 #define DID_EHL_SKU5	0x4514
204 #define DID_EHL_SKU6	0x4528
205 #define DID_EHL_SKU7	0x452a
206 #define DID_EHL_SKU8	0x4516
207 #define DID_EHL_SKU9	0x452c
208 #define DID_EHL_SKU10	0x452e
209 #define DID_EHL_SKU11	0x4532
210 #define DID_EHL_SKU12	0x4518
211 #define DID_EHL_SKU13	0x451a
212 #define DID_EHL_SKU14	0x4534
213 #define DID_EHL_SKU15	0x4536
214 
215 /* Compute die IDs for ICL-NNPI with IBECC */
216 #define DID_ICL_SKU8	0x4581
217 #define DID_ICL_SKU10	0x4585
218 #define DID_ICL_SKU11	0x4589
219 #define DID_ICL_SKU12	0x458d
220 
221 /* Compute die IDs for Tiger Lake with IBECC */
222 #define DID_TGL_SKU	0x9a14
223 
224 /* Compute die IDs for Alder Lake with IBECC */
225 #define DID_ADL_SKU1	0x4601
226 #define DID_ADL_SKU2	0x4602
227 #define DID_ADL_SKU3	0x4621
228 #define DID_ADL_SKU4	0x4641
229 
230 /* Compute die IDs for Alder Lake-N with IBECC */
231 #define DID_ADL_N_SKU1	0x4614
232 #define DID_ADL_N_SKU2	0x4617
233 #define DID_ADL_N_SKU3	0x461b
234 #define DID_ADL_N_SKU4	0x461c
235 #define DID_ADL_N_SKU5	0x4673
236 #define DID_ADL_N_SKU6	0x4674
237 #define DID_ADL_N_SKU7	0x4675
238 #define DID_ADL_N_SKU8	0x4677
239 #define DID_ADL_N_SKU9	0x4678
240 #define DID_ADL_N_SKU10	0x4679
241 #define DID_ADL_N_SKU11	0x467c
242 #define DID_ADL_N_SKU12	0x4632
243 
244 /* Compute die IDs for Arizona Beach with IBECC */
245 #define DID_AZB_SKU1	0x4676
246 
247 /* Compute did IDs for Amston Lake with IBECC */
248 #define DID_ASL_SKU1	0x464a
249 
250 /* Compute die IDs for Raptor Lake-P with IBECC */
251 #define DID_RPL_P_SKU1	0xa706
252 #define DID_RPL_P_SKU2	0xa707
253 #define DID_RPL_P_SKU3	0xa708
254 #define DID_RPL_P_SKU4	0xa716
255 #define DID_RPL_P_SKU5	0xa718
256 
257 /* Compute die IDs for Meteor Lake-PS with IBECC */
258 #define DID_MTL_PS_SKU1	0x7d21
259 #define DID_MTL_PS_SKU2	0x7d22
260 #define DID_MTL_PS_SKU3	0x7d23
261 #define DID_MTL_PS_SKU4	0x7d24
262 
263 /* Compute die IDs for Meteor Lake-P with IBECC */
264 #define DID_MTL_P_SKU1	0x7d01
265 #define DID_MTL_P_SKU2	0x7d02
266 #define DID_MTL_P_SKU3	0x7d14
267 
268 /* Compute die IDs for Arrow Lake-UH with IBECC */
269 #define DID_ARL_UH_SKU1	0x7d06
270 #define DID_ARL_UH_SKU2	0x7d20
271 #define DID_ARL_UH_SKU3	0x7d30
272 
273 /* Compute die IDs for Panther Lake-H with IBECC */
274 #define DID_PTL_H_SKU1	0xb000
275 #define DID_PTL_H_SKU2	0xb001
276 #define DID_PTL_H_SKU3	0xb002
277 
278 /* Compute die IDs for Wildcat Lake with IBECC */
279 #define DID_WCL_SKU1	0xfd00
280 
get_mchbar(struct pci_dev * pdev,u64 * mchbar)281 static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
282 {
283 	union  {
284 		u64 v;
285 		struct {
286 			u32 v_lo;
287 			u32 v_hi;
288 		};
289 	} u;
290 
291 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
292 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
293 		return -ENODEV;
294 	}
295 
296 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
297 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
298 		return -ENODEV;
299 	}
300 
301 	if (!(u.v & MCHBAR_EN)) {
302 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
303 		return -ENODEV;
304 	}
305 
306 	*mchbar = MCHBAR_BASE(u.v);
307 
308 	return 0;
309 }
310 
ehl_ibecc_available(struct pci_dev * pdev)311 static bool ehl_ibecc_available(struct pci_dev *pdev)
312 {
313 	u32 v;
314 
315 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
316 		return false;
317 
318 	return !!(CAPID_C_IBECC & v);
319 }
320 
ehl_err_addr_to_sys_addr(u64 eaddr,int mc)321 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
322 {
323 	return eaddr;
324 }
325 
ehl_err_addr_to_imc_addr(u64 eaddr,int mc)326 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
327 {
328 	if (eaddr < igen6_tolud)
329 		return eaddr;
330 
331 	if (igen6_tom <= _4GB)
332 		return eaddr + igen6_tolud - _4GB;
333 
334 	if (eaddr >= igen6_tom)
335 		return eaddr + igen6_tolud - igen6_tom;
336 
337 	return eaddr;
338 }
339 
icl_ibecc_available(struct pci_dev * pdev)340 static bool icl_ibecc_available(struct pci_dev *pdev)
341 {
342 	u32 v;
343 
344 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
345 		return false;
346 
347 	return !(CAPID_C_IBECC & v) &&
348 		(boot_cpu_data.x86_stepping >= 1);
349 }
350 
tgl_ibecc_available(struct pci_dev * pdev)351 static bool tgl_ibecc_available(struct pci_dev *pdev)
352 {
353 	u32 v;
354 
355 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
356 		return false;
357 
358 	return !(CAPID_E_IBECC & v);
359 }
360 
mtl_p_ibecc_available(struct pci_dev * pdev)361 static bool mtl_p_ibecc_available(struct pci_dev *pdev)
362 {
363 	u32 v;
364 
365 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
366 		return false;
367 
368 	return !(CAPID_E_IBECC_BIT18 & v);
369 }
370 
mtl_ps_ibecc_available(struct pci_dev * pdev)371 static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
372 {
373 #define MCHBAR_MEMSS_IBECCDIS	0x13c00
374 	void __iomem *window;
375 	u64 mchbar;
376 	u32 val;
377 
378 	if (get_mchbar(pdev, &mchbar))
379 		return false;
380 
381 	window = ioremap(mchbar, MCHBAR_SIZE * 2);
382 	if (!window) {
383 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
384 		return false;
385 	}
386 
387 	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
388 	iounmap(window);
389 
390 	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
391 	return !GET_BITFIELD(val, 6, 6);
392 }
393 
mem_addr_to_sys_addr(u64 maddr)394 static u64 mem_addr_to_sys_addr(u64 maddr)
395 {
396 	if (maddr < igen6_tolud)
397 		return maddr;
398 
399 	if (igen6_tom <= _4GB)
400 		return maddr - igen6_tolud + _4GB;
401 
402 	if (maddr < _4GB)
403 		return maddr - igen6_tolud + igen6_tom;
404 
405 	return maddr;
406 }
407 
mem_slice_hash(u64 addr,u64 mask,u64 hash_init,int intlv_bit)408 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
409 {
410 	u64 hash_addr = addr & mask, hash = hash_init;
411 	u64 intlv = (addr >> intlv_bit) & 1;
412 	int i;
413 
414 	for (i = 6; i < 20; i++)
415 		hash ^= (hash_addr >> i) & 1;
416 
417 	return hash ^ intlv;
418 }
419 
tgl_err_addr_to_mem_addr(u64 eaddr,int mc)420 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
421 {
422 	u64 maddr, hash, mask, ms_s_size;
423 	int intlv_bit;
424 	u32 ms_hash;
425 
426 	ms_s_size = igen6_pvt->ms_s_size;
427 	if (eaddr >= ms_s_size)
428 		return eaddr + ms_s_size;
429 
430 	ms_hash = igen6_pvt->ms_hash;
431 
432 	mask = MEM_SLICE_HASH_MASK(ms_hash);
433 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
434 
435 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
436 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
437 
438 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
439 
440 	return maddr | (hash << intlv_bit);
441 }
442 
tgl_err_addr_to_sys_addr(u64 eaddr,int mc)443 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
444 {
445 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
446 
447 	return mem_addr_to_sys_addr(maddr);
448 }
449 
tgl_err_addr_to_imc_addr(u64 eaddr,int mc)450 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
451 {
452 	return eaddr;
453 }
454 
adl_err_addr_to_sys_addr(u64 eaddr,int mc)455 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
456 {
457 	return mem_addr_to_sys_addr(eaddr);
458 }
459 
adl_err_addr_to_imc_addr(u64 eaddr,int mc)460 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
461 {
462 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
463 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
464 	int intlv_bit;
465 	u32 mc_hash;
466 
467 	if (eaddr >= 2 * ms_s_size)
468 		return eaddr - ms_s_size;
469 
470 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
471 
472 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
473 
474 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
475 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
476 
477 	return imc_addr;
478 }
479 
rpl_p_err_addr(u64 ecclog)480 static u64 rpl_p_err_addr(u64 ecclog)
481 {
482 	return ECC_ERROR_LOG_ADDR45(ecclog);
483 }
484 
485 static struct res_config ehl_cfg = {
486 	.num_imc		= 1,
487 	.imc_base		= 0x5000,
488 	.ibecc_base		= 0xdc00,
489 	.ibecc_available	= ehl_ibecc_available,
490 	.ibecc_error_log_offset	= 0x170,
491 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
492 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
493 };
494 
495 static struct res_config icl_cfg = {
496 	.num_imc		= 1,
497 	.imc_base		= 0x5000,
498 	.ibecc_base		= 0xd800,
499 	.ibecc_error_log_offset	= 0x170,
500 	.ibecc_available	= icl_ibecc_available,
501 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
502 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
503 };
504 
505 static struct res_config tgl_cfg = {
506 	.machine_check		= true,
507 	.num_imc		= 2,
508 	.imc_base		= 0x5000,
509 	.cmf_base		= 0x11000,
510 	.cmf_size		= 0x800,
511 	.ms_hash_offset		= 0xac,
512 	.ibecc_base		= 0xd400,
513 	.ibecc_error_log_offset	= 0x170,
514 	.ibecc_available	= tgl_ibecc_available,
515 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
516 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
517 };
518 
519 static struct res_config adl_cfg = {
520 	.machine_check		= true,
521 	.num_imc		= 2,
522 	.imc_base		= 0xd800,
523 	.ibecc_base		= 0xd400,
524 	.ibecc_error_log_offset	= 0x68,
525 	.ibecc_available	= tgl_ibecc_available,
526 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
527 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
528 };
529 
530 static struct res_config adl_n_cfg = {
531 	.machine_check		= true,
532 	.num_imc		= 1,
533 	.imc_base		= 0xd800,
534 	.ibecc_base		= 0xd400,
535 	.ibecc_error_log_offset	= 0x68,
536 	.ibecc_available	= tgl_ibecc_available,
537 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
538 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
539 };
540 
541 static struct res_config rpl_p_cfg = {
542 	.machine_check		= true,
543 	.num_imc		= 2,
544 	.imc_base		= 0xd800,
545 	.ibecc_base		= 0xd400,
546 	.ibecc_error_log_offset	= 0x68,
547 	.ibecc_available	= tgl_ibecc_available,
548 	.err_addr		= rpl_p_err_addr,
549 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
550 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
551 };
552 
553 static struct res_config mtl_ps_cfg = {
554 	.machine_check		= true,
555 	.num_imc		= 2,
556 	.imc_base		= 0xd800,
557 	.ibecc_base		= 0xd400,
558 	.ibecc_error_log_offset	= 0x170,
559 	.ibecc_available	= mtl_ps_ibecc_available,
560 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
561 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
562 };
563 
564 static struct res_config mtl_p_cfg = {
565 	.machine_check		= true,
566 	.num_imc		= 2,
567 	.imc_base		= 0xd800,
568 	.ibecc_base		= 0xd400,
569 	.ibecc_error_log_offset	= 0x170,
570 	.ibecc_available	= mtl_p_ibecc_available,
571 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
572 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
573 };
574 
575 static struct res_config wcl_cfg = {
576 	.machine_check		= true,
577 	.num_imc		= 1,
578 	.imc_base		= 0xd800,
579 	.ibecc_base		= 0xd400,
580 	.ibecc_error_log_offset	= 0x170,
581 	.ibecc_available	= mtl_p_ibecc_available,
582 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
583 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
584 };
585 
586 static struct pci_device_id igen6_pci_tbl[] = {
587 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
588 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
589 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
590 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
591 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
592 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
593 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
594 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
595 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
596 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
597 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
598 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
599 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
600 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
601 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
602 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
603 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
604 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
605 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
606 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
607 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
608 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
609 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
610 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
611 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
612 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
613 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
614 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
615 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
616 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
617 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
618 	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
619 	{ PCI_VDEVICE(INTEL, DID_AZB_SKU1), (kernel_ulong_t)&adl_n_cfg },
620 	{ PCI_VDEVICE(INTEL, DID_ASL_SKU1), (kernel_ulong_t)&adl_n_cfg },
621 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
622 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
623 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
624 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
625 	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
626 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
627 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
628 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
629 	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
630 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
631 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
632 	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
633 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
634 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
635 	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
636 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
637 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
638 	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
639 	{ PCI_VDEVICE(INTEL, DID_WCL_SKU1), (kernel_ulong_t)&wcl_cfg },
640 	{ },
641 };
642 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
643 
get_width(int dimm_l,u32 mad_dimm)644 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
645 {
646 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
647 			 MAD_DIMM_CH_DSW(mad_dimm);
648 
649 	switch (w) {
650 	case 0:
651 		return DEV_X8;
652 	case 1:
653 		return DEV_X16;
654 	case 2:
655 		return DEV_X32;
656 	default:
657 		return DEV_UNKNOWN;
658 	}
659 }
660 
get_memory_type(u32 mad_inter)661 static enum mem_type get_memory_type(u32 mad_inter)
662 {
663 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
664 
665 	switch (t) {
666 	case 0:
667 		return MEM_DDR4;
668 	case 1:
669 		return MEM_DDR3;
670 	case 2:
671 		return MEM_LPDDR3;
672 	case 3:
673 		return MEM_LPDDR4;
674 	case 4:
675 		return MEM_WIO2;
676 	default:
677 		return MEM_UNKNOWN;
678 	}
679 }
680 
decode_chan_idx(u64 addr,u64 mask,int intlv_bit)681 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
682 {
683 	u64 hash_addr = addr & mask, hash = 0;
684 	u64 intlv = (addr >> intlv_bit) & 1;
685 	int i;
686 
687 	for (i = 6; i < 20; i++)
688 		hash ^= (hash_addr >> i) & 1;
689 
690 	return (int)hash ^ intlv;
691 }
692 
decode_channel_addr(u64 addr,int intlv_bit)693 static u64 decode_channel_addr(u64 addr, int intlv_bit)
694 {
695 	u64 channel_addr;
696 
697 	/* Remove the interleave bit and shift upper part down to fill gap */
698 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
699 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
700 
701 	return channel_addr;
702 }
703 
decode_addr(u64 addr,u32 hash,u64 s_size,int l_map,int * idx,u64 * sub_addr)704 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
705 			int *idx, u64 *sub_addr)
706 {
707 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
708 
709 	if (addr > 2 * s_size) {
710 		*sub_addr = addr - s_size;
711 		*idx = l_map;
712 		return;
713 	}
714 
715 	if (CHANNEL_HASH_MODE(hash)) {
716 		*sub_addr = decode_channel_addr(addr, intlv_bit);
717 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
718 	} else {
719 		*sub_addr = decode_channel_addr(addr, 6);
720 		*idx = GET_BITFIELD(addr, 6, 6);
721 	}
722 }
723 
igen6_decode(struct decoded_addr * res)724 static int igen6_decode(struct decoded_addr *res)
725 {
726 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
727 	u64 addr = res->imc_addr, sub_addr, s_size;
728 	int idx, l_map;
729 	u32 hash;
730 
731 	if (addr >= igen6_tom) {
732 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
733 		return -EINVAL;
734 	}
735 
736 	/* Decode channel */
737 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
738 	s_size = imc->ch_s_size;
739 	l_map  = imc->ch_l_map;
740 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
741 	res->channel_idx  = idx;
742 	res->channel_addr = sub_addr;
743 
744 	/* Decode sub-channel/DIMM */
745 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
746 	s_size = imc->dimm_s_size[idx];
747 	l_map  = imc->dimm_l_map[idx];
748 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
749 	res->sub_channel_idx  = idx;
750 	res->sub_channel_addr = sub_addr;
751 
752 	return 0;
753 }
754 
igen6_output_error(struct decoded_addr * res,struct mem_ctl_info * mci,u64 ecclog)755 static void igen6_output_error(struct decoded_addr *res,
756 			       struct mem_ctl_info *mci, u64 ecclog)
757 {
758 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
759 					 HW_EVENT_ERR_UNCORRECTED :
760 					 HW_EVENT_ERR_CORRECTED;
761 
762 	edac_mc_handle_error(type, mci, 1,
763 			     res->sys_addr >> PAGE_SHIFT,
764 			     res->sys_addr & ~PAGE_MASK,
765 			     ECC_ERROR_LOG_SYND(ecclog),
766 			     res->channel_idx, res->sub_channel_idx,
767 			     -1, "", "");
768 }
769 
ecclog_gen_pool_create(void)770 static struct gen_pool *ecclog_gen_pool_create(void)
771 {
772 	struct gen_pool *pool;
773 
774 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
775 	if (!pool)
776 		return NULL;
777 
778 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
779 		gen_pool_destroy(pool);
780 		return NULL;
781 	}
782 
783 	return pool;
784 }
785 
ecclog_gen_pool_add(int mc,u64 ecclog)786 static int ecclog_gen_pool_add(int mc, u64 ecclog)
787 {
788 	struct ecclog_node *node;
789 
790 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
791 	if (!node)
792 		return -ENOMEM;
793 
794 	node->mc = mc;
795 	node->ecclog = ecclog;
796 	llist_add(&node->llnode, &ecclog_llist);
797 
798 	return 0;
799 }
800 
801 /*
802  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
803  * configuration space status register ERRSTS can indicate whether a
804  * correctable error or an uncorrectable error occurred. We only use the
805  * ECC_ERROR_LOG register to check error type, but need to clear both
806  * registers to enable future error events.
807  */
ecclog_read_and_clear(struct igen6_imc * imc)808 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
809 {
810 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
811 
812 	/*
813 	 * Quirk: The ECC_ERROR_LOG register of certain SoCs may contain
814 	 *        the invalid value ~0. This will result in a flood of invalid
815 	 *        error reports in polling mode. Skip it.
816 	 */
817 	if (ecclog == ~0)
818 		return 0;
819 
820 	/* Neither a CE nor a UE. Skip it.*/
821 	if (!(ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)))
822 		return 0;
823 
824 	/* Clear CE/UE bits by writing 1s */
825 	writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
826 
827 	return ecclog;
828 }
829 
errsts_clear(struct igen6_imc * imc)830 static void errsts_clear(struct igen6_imc *imc)
831 {
832 	u16 errsts;
833 
834 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
835 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
836 		return;
837 	}
838 
839 	/* Clear CE/UE bits by writing 1s */
840 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
841 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
842 }
843 
errcmd_enable_error_reporting(bool enable)844 static int errcmd_enable_error_reporting(bool enable)
845 {
846 	struct igen6_imc *imc = &igen6_pvt->imc[0];
847 	u16 errcmd;
848 	int rc;
849 
850 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
851 	if (rc)
852 		return pcibios_err_to_errno(rc);
853 
854 	if (enable)
855 		errcmd |= ERRCMD_CE | ERRSTS_UE;
856 	else
857 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
858 
859 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
860 	if (rc)
861 		return pcibios_err_to_errno(rc);
862 
863 	return 0;
864 }
865 
ecclog_handler(void)866 static int ecclog_handler(void)
867 {
868 	struct igen6_imc *imc;
869 	int i, n = 0;
870 	u64 ecclog;
871 
872 	for (i = 0; i < res_cfg->num_imc; i++) {
873 		imc = &igen6_pvt->imc[i];
874 
875 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
876 
877 		ecclog = ecclog_read_and_clear(imc);
878 		if (!ecclog)
879 			continue;
880 
881 		if (!ecclog_gen_pool_add(i, ecclog))
882 			irq_work_queue(&ecclog_irq_work);
883 
884 		n++;
885 	}
886 
887 	return n;
888 }
889 
ecclog_work_cb(struct work_struct * work)890 static void ecclog_work_cb(struct work_struct *work)
891 {
892 	struct ecclog_node *node, *tmp;
893 	struct mem_ctl_info *mci;
894 	struct llist_node *head;
895 	struct decoded_addr res;
896 	u64 eaddr;
897 
898 	head = llist_del_all(&ecclog_llist);
899 	if (!head)
900 		return;
901 
902 	llist_for_each_entry_safe(node, tmp, head, llnode) {
903 		memset(&res, 0, sizeof(res));
904 		if (res_cfg->err_addr)
905 			eaddr = res_cfg->err_addr(node->ecclog);
906 		else
907 			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
908 				ECC_ERROR_LOG_ADDR_SHIFT;
909 		res.mc	     = node->mc;
910 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
911 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
912 
913 		mci = igen6_pvt->imc[res.mc].mci;
914 
915 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
916 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
917 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
918 
919 		if (!igen6_decode(&res))
920 			igen6_output_error(&res, mci, node->ecclog);
921 
922 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
923 	}
924 }
925 
ecclog_irq_work_cb(struct irq_work * irq_work)926 static void ecclog_irq_work_cb(struct irq_work *irq_work)
927 {
928 	int i;
929 
930 	for (i = 0; i < res_cfg->num_imc; i++)
931 		errsts_clear(&igen6_pvt->imc[i]);
932 
933 	if (!llist_empty(&ecclog_llist))
934 		schedule_work(&ecclog_work);
935 }
936 
ecclog_nmi_handler(unsigned int cmd,struct pt_regs * regs)937 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
938 {
939 	unsigned char reason;
940 
941 	if (!ecclog_handler())
942 		return NMI_DONE;
943 
944 	/*
945 	 * Both In-Band ECC correctable error and uncorrectable error are
946 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
947 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
948 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
949 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
950 	 */
951 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
952 	reason |= NMI_REASON_CLEAR_SERR;
953 	outb(reason, NMI_REASON_PORT);
954 	reason &= ~NMI_REASON_CLEAR_SERR;
955 	outb(reason, NMI_REASON_PORT);
956 
957 	return NMI_HANDLED;
958 }
959 
ecclog_mce_handler(struct notifier_block * nb,unsigned long val,void * data)960 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
961 			      void *data)
962 {
963 	struct mce *mce = (struct mce *)data;
964 	char *type;
965 
966 	if (mce->kflags & MCE_HANDLED_CEC)
967 		return NOTIFY_DONE;
968 
969 	/*
970 	 * Ignore unless this is a memory related error.
971 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
972 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
973 	 */
974 	if ((mce->status & 0xefff) >> 7 != 1)
975 		return NOTIFY_DONE;
976 
977 	if (mce->mcgstatus & MCG_STATUS_MCIP)
978 		type = "Exception";
979 	else
980 		type = "Event";
981 
982 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
983 		 mce->extcpu, type, mce->mcgstatus,
984 		 mce->bank, mce->status);
985 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
986 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
987 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
988 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
989 		 mce->cpuvendor, mce->cpuid, mce->time,
990 		 mce->socketid, mce->apicid);
991 	/*
992 	 * We just use the Machine Check for the memory error notification.
993 	 * Each memory controller is associated with an IBECC instance.
994 	 * Directly read and clear the error information(error address and
995 	 * error type) on all the IBECC instances so that we know on which
996 	 * memory controller the memory error(s) occurred.
997 	 */
998 	if (!ecclog_handler())
999 		return NOTIFY_DONE;
1000 
1001 	mce->kflags |= MCE_HANDLED_EDAC;
1002 
1003 	return NOTIFY_DONE;
1004 }
1005 
1006 static struct notifier_block ecclog_mce_dec = {
1007 	.notifier_call	= ecclog_mce_handler,
1008 	.priority	= MCE_PRIO_EDAC,
1009 };
1010 
igen6_check_ecc(struct igen6_imc * imc)1011 static bool igen6_check_ecc(struct igen6_imc *imc)
1012 {
1013 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
1014 
1015 	return !!(activate & IBECC_ACTIVATE_EN);
1016 }
1017 
igen6_get_dimm_config(struct mem_ctl_info * mci)1018 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
1019 {
1020 	struct igen6_imc *imc = mci->pvt_info;
1021 	u32 mad_inter, mad_intra, mad_dimm;
1022 	int i, j, ndimms, mc = imc->mc;
1023 	struct dimm_info *dimm;
1024 	enum mem_type mtype;
1025 	enum dev_type dtype;
1026 	u64 dsize;
1027 	bool ecc;
1028 
1029 	edac_dbg(2, "\n");
1030 
1031 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
1032 	mtype = get_memory_type(mad_inter);
1033 	ecc = igen6_check_ecc(imc);
1034 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
1035 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
1036 
1037 	for (i = 0; i < NUM_CHANNELS; i++) {
1038 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
1039 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
1040 
1041 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1042 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1043 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1044 		imc->size += imc->dimm_s_size[i];
1045 		imc->size += imc->dimm_l_size[i];
1046 		ndimms = 0;
1047 
1048 		for (j = 0; j < NUM_DIMMS; j++) {
1049 			dimm = edac_get_dimm(mci, i, j, 0);
1050 
1051 			if (j ^ imc->dimm_l_map[i]) {
1052 				dtype = get_width(0, mad_dimm);
1053 				dsize = imc->dimm_s_size[i];
1054 			} else {
1055 				dtype = get_width(1, mad_dimm);
1056 				dsize = imc->dimm_l_size[i];
1057 			}
1058 
1059 			if (!dsize)
1060 				continue;
1061 
1062 			dimm->grain = 64;
1063 			dimm->mtype = mtype;
1064 			dimm->dtype = dtype;
1065 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1066 			dimm->edac_mode = EDAC_SECDED;
1067 			snprintf(dimm->label, sizeof(dimm->label),
1068 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1069 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1070 				 mc, i, j, dsize >> 20, dimm->nr_pages);
1071 
1072 			ndimms++;
1073 		}
1074 
1075 		if (ndimms && !ecc) {
1076 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1077 			return -ENODEV;
1078 		}
1079 	}
1080 
1081 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1082 
1083 	return 0;
1084 }
1085 
1086 #ifdef CONFIG_EDAC_DEBUG
1087 /* Top of upper usable DRAM */
1088 static u64 igen6_touud;
1089 #define TOUUD_OFFSET	0xa8
1090 
igen6_reg_dump(struct igen6_imc * imc)1091 static void igen6_reg_dump(struct igen6_imc *imc)
1092 {
1093 	int i;
1094 
1095 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1096 		 readl(imc->window + CHANNEL_HASH_OFFSET));
1097 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1098 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1099 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1100 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1101 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1102 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1103 
1104 	for (i = 0; i < NUM_CHANNELS; i++) {
1105 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1106 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1107 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1108 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1109 	}
1110 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1111 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1112 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1113 }
1114 
1115 static struct dentry *igen6_test;
1116 
debugfs_u64_set(void * data,u64 val)1117 static int debugfs_u64_set(void *data, u64 val)
1118 {
1119 	u64 ecclog;
1120 
1121 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1122 		edac_dbg(0, "Address 0x%llx out of range\n", val);
1123 		return 0;
1124 	}
1125 
1126 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1127 
1128 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1129 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1130 
1131 	if (!ecclog_gen_pool_add(0, ecclog))
1132 		irq_work_queue(&ecclog_irq_work);
1133 
1134 	return 0;
1135 }
1136 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1137 
igen6_debug_setup(void)1138 static void igen6_debug_setup(void)
1139 {
1140 	igen6_test = edac_debugfs_create_dir("igen6_test");
1141 	if (!igen6_test)
1142 		return;
1143 
1144 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1145 				      NULL, &fops_u64_wo)) {
1146 		debugfs_remove(igen6_test);
1147 		igen6_test = NULL;
1148 	}
1149 }
1150 
igen6_debug_teardown(void)1151 static void igen6_debug_teardown(void)
1152 {
1153 	debugfs_remove_recursive(igen6_test);
1154 }
1155 #else
igen6_reg_dump(struct igen6_imc * imc)1156 static void igen6_reg_dump(struct igen6_imc *imc) {}
igen6_debug_setup(void)1157 static void igen6_debug_setup(void) {}
igen6_debug_teardown(void)1158 static void igen6_debug_teardown(void) {}
1159 #endif
1160 
igen6_pci_setup(struct pci_dev * pdev,u64 * mchbar)1161 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1162 {
1163 	union  {
1164 		u64 v;
1165 		struct {
1166 			u32 v_lo;
1167 			u32 v_hi;
1168 		};
1169 	} u;
1170 
1171 	edac_dbg(2, "\n");
1172 
1173 	if (!res_cfg->ibecc_available(pdev)) {
1174 		edac_dbg(2, "No In-Band ECC IP\n");
1175 		goto fail;
1176 	}
1177 
1178 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1179 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1180 		goto fail;
1181 	}
1182 
1183 	igen6_tolud &= GENMASK(31, 20);
1184 
1185 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1186 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1187 		goto fail;
1188 	}
1189 
1190 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1191 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1192 		goto fail;
1193 	}
1194 
1195 	igen6_tom = u.v & GENMASK_ULL(38, 20);
1196 
1197 	if (get_mchbar(pdev, mchbar))
1198 		goto fail;
1199 
1200 #ifdef CONFIG_EDAC_DEBUG
1201 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1202 		edac_dbg(2, "Failed to read lower TOUUD\n");
1203 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1204 		edac_dbg(2, "Failed to read upper TOUUD\n");
1205 	else
1206 		igen6_touud = u.v & GENMASK_ULL(38, 20);
1207 #endif
1208 
1209 	return 0;
1210 fail:
1211 	return -ENODEV;
1212 }
1213 
igen6_check(struct mem_ctl_info * mci)1214 static void igen6_check(struct mem_ctl_info *mci)
1215 {
1216 	struct igen6_imc *imc = mci->pvt_info;
1217 	u64 ecclog;
1218 
1219 	/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
1220 	ecclog = ecclog_read_and_clear(imc);
1221 	if (!ecclog)
1222 		return;
1223 
1224 	if (!ecclog_gen_pool_add(imc->mc, ecclog))
1225 		irq_work_queue(&ecclog_irq_work);
1226 }
1227 
1228 /* Check whether the memory controller is absent. */
igen6_imc_absent(void __iomem * window)1229 static bool igen6_imc_absent(void __iomem *window)
1230 {
1231 	return readl(window + MAD_INTER_CHANNEL_OFFSET) == ~0;
1232 }
1233 
igen6_register_mci(int mc,void __iomem * window,struct pci_dev * pdev)1234 static int igen6_register_mci(int mc, void __iomem *window, struct pci_dev *pdev)
1235 {
1236 	struct edac_mc_layer layers[2];
1237 	struct mem_ctl_info *mci;
1238 	struct igen6_imc *imc;
1239 	int rc;
1240 
1241 	edac_dbg(2, "\n");
1242 
1243 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1244 	layers[0].size = NUM_CHANNELS;
1245 	layers[0].is_virt_csrow = false;
1246 	layers[1].type = EDAC_MC_LAYER_SLOT;
1247 	layers[1].size = NUM_DIMMS;
1248 	layers[1].is_virt_csrow = true;
1249 
1250 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1251 	if (!mci) {
1252 		rc = -ENOMEM;
1253 		goto fail;
1254 	}
1255 
1256 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1257 	if (!mci->ctl_name) {
1258 		rc = -ENOMEM;
1259 		goto fail2;
1260 	}
1261 
1262 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1263 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1264 	mci->edac_cap = EDAC_FLAG_SECDED;
1265 	mci->mod_name = EDAC_MOD_STR;
1266 	mci->dev_name = pci_name(pdev);
1267 	if (edac_op_state == EDAC_OPSTATE_POLL)
1268 		mci->edac_check = igen6_check;
1269 	mci->pvt_info = &igen6_pvt->imc[mc];
1270 
1271 	imc = mci->pvt_info;
1272 	device_initialize(&imc->dev);
1273 	/*
1274 	 * EDAC core uses mci->pdev(pointer of structure device) as
1275 	 * memory controller ID. The client SoCs attach one or more
1276 	 * memory controllers to single pci_dev (single pci_dev->dev
1277 	 * can be for multiple memory controllers).
1278 	 *
1279 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1280 	 * for the first memory controller and assign a unique imc->dev
1281 	 * to mci->pdev for each non-first memory controller.
1282 	 */
1283 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1284 	imc->mc	= mc;
1285 	imc->pdev = pdev;
1286 	imc->window = window;
1287 
1288 	igen6_reg_dump(imc);
1289 
1290 	rc = igen6_get_dimm_config(mci);
1291 	if (rc)
1292 		goto fail3;
1293 
1294 	rc = edac_mc_add_mc(mci);
1295 	if (rc) {
1296 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1297 		goto fail3;
1298 	}
1299 
1300 	imc->mci = mci;
1301 	return 0;
1302 fail3:
1303 	mci->pvt_info = NULL;
1304 	kfree(mci->ctl_name);
1305 fail2:
1306 	edac_mc_free(mci);
1307 fail:
1308 	return rc;
1309 }
1310 
igen6_unregister_mcis(void)1311 static void igen6_unregister_mcis(void)
1312 {
1313 	struct mem_ctl_info *mci;
1314 	struct igen6_imc *imc;
1315 	int i;
1316 
1317 	edac_dbg(2, "\n");
1318 
1319 	for (i = 0; i < res_cfg->num_imc; i++) {
1320 		imc = &igen6_pvt->imc[i];
1321 		mci = imc->mci;
1322 		if (!mci)
1323 			continue;
1324 
1325 		edac_mc_del_mc(mci->pdev);
1326 		kfree(mci->ctl_name);
1327 		mci->pvt_info = NULL;
1328 		edac_mc_free(mci);
1329 		iounmap(imc->window);
1330 	}
1331 }
1332 
igen6_register_mcis(struct pci_dev * pdev,u64 mchbar)1333 static int igen6_register_mcis(struct pci_dev *pdev, u64 mchbar)
1334 {
1335 	void __iomem *window;
1336 	int lmc, pmc, rc;
1337 	u64 base;
1338 
1339 	for (lmc = 0, pmc = 0; pmc < NUM_IMC; pmc++) {
1340 		base   = mchbar + pmc * MCHBAR_SIZE;
1341 		window = ioremap(base, MCHBAR_SIZE);
1342 		if (!window) {
1343 			igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx for mc%d\n", base, pmc);
1344 			rc = -ENOMEM;
1345 			goto out_unregister_mcis;
1346 		}
1347 
1348 		if (igen6_imc_absent(window)) {
1349 			iounmap(window);
1350 			edac_dbg(2, "Skip absent mc%d\n", pmc);
1351 			continue;
1352 		}
1353 
1354 		rc = igen6_register_mci(lmc, window, pdev);
1355 		if (rc)
1356 			goto out_iounmap;
1357 
1358 		/* Done, if all present MCs are detected and registered. */
1359 		if (++lmc >= res_cfg->num_imc)
1360 			break;
1361 	}
1362 
1363 	if (!lmc) {
1364 		igen6_printk(KERN_ERR, "No mc found.\n");
1365 		return -ENODEV;
1366 	}
1367 
1368 	if (lmc < res_cfg->num_imc) {
1369 		igen6_printk(KERN_DEBUG, "Expected %d mcs, but only %d detected.",
1370 			     res_cfg->num_imc, lmc);
1371 		res_cfg->num_imc = lmc;
1372 	}
1373 
1374 	return 0;
1375 
1376 out_iounmap:
1377 	iounmap(window);
1378 
1379 out_unregister_mcis:
1380 	igen6_unregister_mcis();
1381 
1382 	return rc;
1383 }
1384 
igen6_mem_slice_setup(u64 mchbar)1385 static int igen6_mem_slice_setup(u64 mchbar)
1386 {
1387 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1388 	u64 base = mchbar + res_cfg->cmf_base;
1389 	u32 offset = res_cfg->ms_hash_offset;
1390 	u32 size = res_cfg->cmf_size;
1391 	u64 ms_s_size, ms_hash;
1392 	void __iomem *cmf;
1393 	int ms_l_map;
1394 
1395 	edac_dbg(2, "\n");
1396 
1397 	if (imc[0].size < imc[1].size) {
1398 		ms_s_size = imc[0].size;
1399 		ms_l_map  = 1;
1400 	} else {
1401 		ms_s_size = imc[1].size;
1402 		ms_l_map  = 0;
1403 	}
1404 
1405 	igen6_pvt->ms_s_size = ms_s_size;
1406 	igen6_pvt->ms_l_map  = ms_l_map;
1407 
1408 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1409 		 ms_s_size >> 20, ms_l_map);
1410 
1411 	if (!size)
1412 		return 0;
1413 
1414 	cmf = ioremap(base, size);
1415 	if (!cmf) {
1416 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1417 		return -ENODEV;
1418 	}
1419 
1420 	ms_hash = readq(cmf + offset);
1421 	igen6_pvt->ms_hash = ms_hash;
1422 
1423 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1424 
1425 	iounmap(cmf);
1426 
1427 	return 0;
1428 }
1429 
register_err_handler(void)1430 static int register_err_handler(void)
1431 {
1432 	int rc;
1433 
1434 	if (res_cfg->machine_check) {
1435 		mce_register_decode_chain(&ecclog_mce_dec);
1436 		return 0;
1437 	}
1438 
1439 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1440 				  0, IGEN6_NMI_NAME);
1441 	if (rc) {
1442 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1443 		return rc;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
unregister_err_handler(void)1449 static void unregister_err_handler(void)
1450 {
1451 	if (res_cfg->machine_check) {
1452 		mce_unregister_decode_chain(&ecclog_mce_dec);
1453 		return;
1454 	}
1455 
1456 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1457 }
1458 
opstate_set(const struct res_config * cfg,const struct pci_device_id * ent)1459 static void opstate_set(const struct res_config *cfg, const struct pci_device_id *ent)
1460 {
1461 	/*
1462 	 * Quirk: Certain SoCs' error reporting interrupts don't work.
1463 	 *        Force polling mode for them to ensure that memory error
1464 	 *        events can be handled.
1465 	 */
1466 	if (ent->device == DID_ADL_N_SKU4) {
1467 		edac_op_state = EDAC_OPSTATE_POLL;
1468 		return;
1469 	}
1470 
1471 	/* Set the mode according to the configuration data. */
1472 	if (cfg->machine_check)
1473 		edac_op_state = EDAC_OPSTATE_INT;
1474 	else
1475 		edac_op_state = EDAC_OPSTATE_NMI;
1476 }
1477 
igen6_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1478 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1479 {
1480 	u64 mchbar;
1481 	int rc;
1482 
1483 	edac_dbg(2, "\n");
1484 
1485 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1486 	if (!igen6_pvt)
1487 		return -ENOMEM;
1488 
1489 	res_cfg = (struct res_config *)ent->driver_data;
1490 
1491 	rc = igen6_pci_setup(pdev, &mchbar);
1492 	if (rc)
1493 		goto fail;
1494 
1495 	opstate_set(res_cfg, ent);
1496 
1497 	rc = igen6_register_mcis(pdev, mchbar);
1498 	if (rc)
1499 		goto fail;
1500 
1501 	if (res_cfg->num_imc > 1) {
1502 		rc = igen6_mem_slice_setup(mchbar);
1503 		if (rc)
1504 			goto fail2;
1505 	}
1506 
1507 	ecclog_pool = ecclog_gen_pool_create();
1508 	if (!ecclog_pool) {
1509 		rc = -ENOMEM;
1510 		goto fail2;
1511 	}
1512 
1513 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1514 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1515 
1516 	rc = register_err_handler();
1517 	if (rc)
1518 		goto fail3;
1519 
1520 	/* Enable error reporting */
1521 	rc = errcmd_enable_error_reporting(true);
1522 	if (rc) {
1523 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1524 		goto fail4;
1525 	}
1526 
1527 	/* Check if any pending errors before/during the registration of the error handler */
1528 	ecclog_handler();
1529 
1530 	igen6_debug_setup();
1531 	return 0;
1532 fail4:
1533 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1534 fail3:
1535 	gen_pool_destroy(ecclog_pool);
1536 fail2:
1537 	igen6_unregister_mcis();
1538 fail:
1539 	kfree(igen6_pvt);
1540 	return rc;
1541 }
1542 
igen6_remove(struct pci_dev * pdev)1543 static void igen6_remove(struct pci_dev *pdev)
1544 {
1545 	edac_dbg(2, "\n");
1546 
1547 	igen6_debug_teardown();
1548 	errcmd_enable_error_reporting(false);
1549 	unregister_err_handler();
1550 	irq_work_sync(&ecclog_irq_work);
1551 	flush_work(&ecclog_work);
1552 	gen_pool_destroy(ecclog_pool);
1553 	igen6_unregister_mcis();
1554 	kfree(igen6_pvt);
1555 }
1556 
1557 static struct pci_driver igen6_driver = {
1558 	.name     = EDAC_MOD_STR,
1559 	.probe    = igen6_probe,
1560 	.remove   = igen6_remove,
1561 	.id_table = igen6_pci_tbl,
1562 };
1563 
igen6_init(void)1564 static int __init igen6_init(void)
1565 {
1566 	const char *owner;
1567 	int rc;
1568 
1569 	edac_dbg(2, "\n");
1570 
1571 	if (ghes_get_devices())
1572 		return -EBUSY;
1573 
1574 	owner = edac_get_owner();
1575 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1576 		return -EBUSY;
1577 
1578 	rc = pci_register_driver(&igen6_driver);
1579 	if (rc)
1580 		return rc;
1581 
1582 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1583 
1584 	return 0;
1585 }
1586 
igen6_exit(void)1587 static void __exit igen6_exit(void)
1588 {
1589 	edac_dbg(2, "\n");
1590 
1591 	pci_unregister_driver(&igen6_driver);
1592 }
1593 
1594 module_init(igen6_init);
1595 module_exit(igen6_exit);
1596 
1597 MODULE_LICENSE("GPL v2");
1598 MODULE_AUTHOR("Qiuxu Zhuo");
1599 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1600