xref: /linux/drivers/net/ethernet/broadcom/asp2/bcmasp_intf.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
incr_ring(int index,int ring_count)22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
incr_last_byte(dma_addr_t addr,dma_addr_t beg,int ring_count)32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
incr_first_byte(dma_addr_t addr,dma_addr_t beg,int ring_count)45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
bcmasp_enable_tx(struct bcmasp_intf * intf,int en)57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
bcmasp_enable_rx(struct bcmasp_intf * intf,int en)71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
bcmasp_set_rx_mode(struct net_device * dev)80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
bcmasp_clean_txcb(struct bcmasp_intf * intf,int index)135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
tx_spb_ring_full(struct bcmasp_intf * intf,int cnt)145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
bcmasp_csum_offload(struct net_device * dev,struct sk_buff * skb,bool * csum_hw)159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0);
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1);
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L4;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L4;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf * intf)234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf * intf,dma_addr_t addr)239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf * intf,dma_addr_t addr)244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
bcmasp_tx_spb_dma_rq(struct bcmasp_intf * intf)249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
bcmasp_tx_spb_dma_wq(struct bcmasp_intf * intf,dma_addr_t addr)254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
bcmasp_xmit(struct sk_buff * skb,struct net_device * dev)267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			dev_kfree_skb(skb);
326 			return NETDEV_TX_OK;
327 		}
328 
329 		txcb = &intf->tx_cbs[spb_index];
330 		desc = &intf->tx_spb_cpu[spb_index];
331 		memset(desc, 0, sizeof(*desc));
332 		txcb->skb = skb;
333 		txcb->bytes_sent = total_bytes;
334 		dma_unmap_addr_set(txcb, dma_addr, mapping);
335 		dma_unmap_len_set(txcb, dma_len, size);
336 		if (!i) {
337 			desc->flags |= DESC_SOF;
338 			if (csum_hw)
339 				desc->flags |= DESC_EPKT_CMD;
340 		}
341 
342 		if (i == nr_frags) {
343 			desc->flags |= DESC_EOF;
344 			txcb->last = true;
345 		}
346 
347 		desc->buf = mapping;
348 		desc->size = size;
349 		desc->flags |= DESC_INT_EN;
350 
351 		netif_dbg(intf, tx_queued, dev,
352 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
353 			  __func__, &mapping, desc->size, desc->flags,
354 			  spb_index);
355 
356 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
357 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
358 				       DESC_RING_COUNT);
359 	}
360 
361 	/* Ensure all descriptors have been written to DRAM for the
362 	 * hardware to see up-to-date contents.
363 	 */
364 	wmb();
365 
366 	intf->tx_spb_index = spb_index;
367 	intf->tx_spb_dma_valid = valid;
368 
369 	skb_tx_timestamp(skb);
370 
371 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
372 
373 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
374 		netif_stop_queue(dev);
375 
376 	return NETDEV_TX_OK;
377 }
378 
bcmasp_netif_start(struct net_device * dev)379 static void bcmasp_netif_start(struct net_device *dev)
380 {
381 	struct bcmasp_intf *intf = netdev_priv(dev);
382 
383 	bcmasp_set_rx_mode(dev);
384 	napi_enable(&intf->tx_napi);
385 	napi_enable(&intf->rx_napi);
386 
387 	bcmasp_enable_rx_irq(intf, 1);
388 	bcmasp_enable_tx_irq(intf, 1);
389 	bcmasp_enable_phy_irq(intf, 1);
390 
391 	phy_start(dev->phydev);
392 }
393 
umac_reset(struct bcmasp_intf * intf)394 static void umac_reset(struct bcmasp_intf *intf)
395 {
396 	umac_wl(intf, 0x0, UMC_CMD);
397 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
398 	usleep_range(10, 100);
399 	/* We hold the umac in reset and bring it out of
400 	 * reset when phy link is up.
401 	 */
402 }
403 
umac_set_hw_addr(struct bcmasp_intf * intf,const unsigned char * addr)404 static void umac_set_hw_addr(struct bcmasp_intf *intf,
405 			     const unsigned char *addr)
406 {
407 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
408 		    addr[3];
409 	u32 mac1 = (addr[4] << 8) | addr[5];
410 
411 	umac_wl(intf, mac0, UMC_MAC0);
412 	umac_wl(intf, mac1, UMC_MAC1);
413 }
414 
umac_enable_set(struct bcmasp_intf * intf,u32 mask,unsigned int enable)415 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
416 			    unsigned int enable)
417 {
418 	u32 reg;
419 
420 	reg = umac_rl(intf, UMC_CMD);
421 	if (reg & UMC_CMD_SW_RESET)
422 		return;
423 	if (enable)
424 		reg |= mask;
425 	else
426 		reg &= ~mask;
427 	umac_wl(intf, reg, UMC_CMD);
428 
429 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
430 	 * to be processed (1 msec).
431 	 */
432 	if (enable == 0)
433 		usleep_range(1000, 2000);
434 }
435 
umac_init(struct bcmasp_intf * intf)436 static void umac_init(struct bcmasp_intf *intf)
437 {
438 	umac_wl(intf, 0x800, UMC_FRM_LEN);
439 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
440 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
441 }
442 
bcmasp_tx_reclaim(struct bcmasp_intf * intf)443 static int bcmasp_tx_reclaim(struct bcmasp_intf *intf)
444 {
445 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
446 	struct device *kdev = &intf->parent->pdev->dev;
447 	unsigned long read, released = 0;
448 	struct bcmasp_tx_cb *txcb;
449 	struct bcmasp_desc *desc;
450 	dma_addr_t mapping;
451 
452 	read = bcmasp_intf_tx_read(intf);
453 	while (intf->tx_spb_dma_read != read) {
454 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
455 		mapping = dma_unmap_addr(txcb, dma_addr);
456 
457 		dma_unmap_single(kdev, mapping,
458 				 dma_unmap_len(txcb, dma_len),
459 				 DMA_TO_DEVICE);
460 
461 		if (txcb->last) {
462 			dev_consume_skb_any(txcb->skb);
463 
464 			u64_stats_update_begin(&stats->syncp);
465 			u64_stats_inc(&stats->tx_packets);
466 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
467 			u64_stats_update_end(&stats->syncp);
468 		}
469 
470 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
471 
472 		netif_dbg(intf, tx_done, intf->ndev,
473 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
474 			  __func__, &mapping, desc->size, desc->flags,
475 			  intf->tx_spb_clean_index);
476 
477 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
478 		released++;
479 
480 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
481 						     DESC_RING_COUNT);
482 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
483 							intf->tx_spb_dma_addr,
484 							DESC_RING_COUNT);
485 	}
486 
487 	return released;
488 }
489 
bcmasp_tx_poll(struct napi_struct * napi,int budget)490 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
491 {
492 	struct bcmasp_intf *intf =
493 		container_of(napi, struct bcmasp_intf, tx_napi);
494 	int released = 0;
495 
496 	released = bcmasp_tx_reclaim(intf);
497 
498 	napi_complete(&intf->tx_napi);
499 
500 	bcmasp_enable_tx_irq(intf, 1);
501 
502 	if (released)
503 		netif_wake_queue(intf->ndev);
504 
505 	return 0;
506 }
507 
bcmasp_rx_poll(struct napi_struct * napi,int budget)508 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
509 {
510 	struct bcmasp_intf *intf =
511 		container_of(napi, struct bcmasp_intf, rx_napi);
512 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
513 	struct device *kdev = &intf->parent->pdev->dev;
514 	unsigned long processed = 0;
515 	struct bcmasp_desc *desc;
516 	struct sk_buff *skb;
517 	dma_addr_t valid;
518 	void *data;
519 	u64 flags;
520 	u32 len;
521 
522 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
523 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
524 		valid = intf->rx_edpkt_dma_addr;
525 
526 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
527 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
528 
529 		/* Ensure that descriptor has been fully written to DRAM by
530 		 * hardware before reading by the CPU
531 		 */
532 		rmb();
533 
534 		/* Calculate virt addr by offsetting from physical addr */
535 		data = intf->rx_ring_cpu +
536 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
537 
538 		flags = DESC_FLAGS(desc->buf);
539 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
540 			if (net_ratelimit()) {
541 				netif_err(intf, rx_status, intf->ndev,
542 					  "flags=0x%llx\n", flags);
543 			}
544 
545 			u64_stats_update_begin(&stats->syncp);
546 			if (flags & DESC_CRC_ERR)
547 				u64_stats_inc(&stats->rx_crc_errs);
548 			if (flags & DESC_RX_SYM_ERR)
549 				u64_stats_inc(&stats->rx_sym_errs);
550 			u64_stats_update_end(&stats->syncp);
551 
552 			goto next;
553 		}
554 
555 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
556 					DMA_FROM_DEVICE);
557 
558 		len = desc->size;
559 
560 		skb = napi_alloc_skb(napi, len);
561 		if (!skb) {
562 			u64_stats_update_begin(&stats->syncp);
563 			u64_stats_inc(&stats->rx_dropped);
564 			u64_stats_update_end(&stats->syncp);
565 			intf->mib.alloc_rx_skb_failed++;
566 
567 			goto next;
568 		}
569 
570 		skb_put(skb, len);
571 		memcpy(skb->data, data, len);
572 
573 		skb_pull(skb, 2);
574 		len -= 2;
575 		if (likely(intf->crc_fwd)) {
576 			skb_trim(skb, len - ETH_FCS_LEN);
577 			len -= ETH_FCS_LEN;
578 		}
579 
580 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
581 		    (desc->buf & DESC_CHKSUM))
582 			skb->ip_summed = CHECKSUM_UNNECESSARY;
583 
584 		skb->protocol = eth_type_trans(skb, intf->ndev);
585 
586 		napi_gro_receive(napi, skb);
587 
588 		u64_stats_update_begin(&stats->syncp);
589 		u64_stats_inc(&stats->rx_packets);
590 		u64_stats_add(&stats->rx_bytes, len);
591 		u64_stats_update_end(&stats->syncp);
592 
593 next:
594 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
595 					    desc->size));
596 
597 		processed++;
598 		intf->rx_edpkt_dma_read =
599 			incr_first_byte(intf->rx_edpkt_dma_read,
600 					intf->rx_edpkt_dma_addr,
601 					DESC_RING_COUNT);
602 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
603 						 DESC_RING_COUNT);
604 	}
605 
606 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
607 
608 	if (processed < budget && napi_complete_done(&intf->rx_napi, processed))
609 		bcmasp_enable_rx_irq(intf, 1);
610 
611 	return processed;
612 }
613 
bcmasp_adj_link(struct net_device * dev)614 static void bcmasp_adj_link(struct net_device *dev)
615 {
616 	struct bcmasp_intf *intf = netdev_priv(dev);
617 	struct phy_device *phydev = dev->phydev;
618 	u32 cmd_bits = 0, reg;
619 	int changed = 0;
620 
621 	if (intf->old_link != phydev->link) {
622 		changed = 1;
623 		intf->old_link = phydev->link;
624 	}
625 
626 	if (intf->old_duplex != phydev->duplex) {
627 		changed = 1;
628 		intf->old_duplex = phydev->duplex;
629 	}
630 
631 	switch (phydev->speed) {
632 	case SPEED_2500:
633 		cmd_bits = UMC_CMD_SPEED_2500;
634 		break;
635 	case SPEED_1000:
636 		cmd_bits = UMC_CMD_SPEED_1000;
637 		break;
638 	case SPEED_100:
639 		cmd_bits = UMC_CMD_SPEED_100;
640 		break;
641 	case SPEED_10:
642 		cmd_bits = UMC_CMD_SPEED_10;
643 		break;
644 	default:
645 		break;
646 	}
647 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
648 
649 	if (phydev->duplex == DUPLEX_HALF)
650 		cmd_bits |= UMC_CMD_HD_EN;
651 
652 	if (intf->old_pause != phydev->pause) {
653 		changed = 1;
654 		intf->old_pause = phydev->pause;
655 	}
656 
657 	if (!phydev->pause)
658 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
659 
660 	if (!changed)
661 		return;
662 
663 	if (phydev->link) {
664 		reg = umac_rl(intf, UMC_CMD);
665 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
666 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
667 			UMC_CMD_TX_PAUSE_IGNORE);
668 		reg |= cmd_bits;
669 		if (reg & UMC_CMD_SW_RESET) {
670 			reg &= ~UMC_CMD_SW_RESET;
671 			umac_wl(intf, reg, UMC_CMD);
672 			udelay(2);
673 			reg |= UMC_CMD_TX_EN | UMC_CMD_RX_EN | UMC_CMD_PROMISC;
674 		}
675 		umac_wl(intf, reg, UMC_CMD);
676 
677 		umac_wl(intf, phydev->eee_cfg.tx_lpi_timer, UMC_EEE_LPI_TIMER);
678 		reg = umac_rl(intf, UMC_EEE_CTRL);
679 		if (phydev->enable_tx_lpi)
680 			reg |= EEE_EN;
681 		else
682 			reg &= ~EEE_EN;
683 		umac_wl(intf, reg, UMC_EEE_CTRL);
684 	}
685 
686 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
687 	if (phydev->link)
688 		reg |= RGMII_LINK;
689 	else
690 		reg &= ~RGMII_LINK;
691 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
692 
693 	if (changed)
694 		phy_print_status(phydev);
695 }
696 
bcmasp_alloc_buffers(struct bcmasp_intf * intf)697 static int bcmasp_alloc_buffers(struct bcmasp_intf *intf)
698 {
699 	struct device *kdev = &intf->parent->pdev->dev;
700 	struct page *buffer_pg;
701 
702 	/* Alloc RX */
703 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
704 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
705 	if (!buffer_pg)
706 		return -ENOMEM;
707 
708 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
709 	intf->rx_ring_dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
710 					 DMA_FROM_DEVICE);
711 	if (dma_mapping_error(kdev, intf->rx_ring_dma))
712 		goto free_rx_buffer;
713 
714 	intf->rx_edpkt_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
715 						&intf->rx_edpkt_dma_addr, GFP_KERNEL);
716 	if (!intf->rx_edpkt_cpu)
717 		goto free_rx_buffer_dma;
718 
719 	/* Alloc TX */
720 	intf->tx_spb_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
721 					      &intf->tx_spb_dma_addr, GFP_KERNEL);
722 	if (!intf->tx_spb_cpu)
723 		goto free_rx_edpkt_dma;
724 
725 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
726 			       GFP_KERNEL);
727 	if (!intf->tx_cbs)
728 		goto free_tx_spb_dma;
729 
730 	return 0;
731 
732 free_tx_spb_dma:
733 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
734 			  intf->tx_spb_dma_addr);
735 free_rx_edpkt_dma:
736 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
737 			  intf->rx_edpkt_dma_addr);
738 free_rx_buffer_dma:
739 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
740 		       DMA_FROM_DEVICE);
741 free_rx_buffer:
742 	__free_pages(buffer_pg, intf->rx_buf_order);
743 
744 	return -ENOMEM;
745 }
746 
bcmasp_reclaim_free_buffers(struct bcmasp_intf * intf)747 static void bcmasp_reclaim_free_buffers(struct bcmasp_intf *intf)
748 {
749 	struct device *kdev = &intf->parent->pdev->dev;
750 
751 	/* RX buffers */
752 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
753 			  intf->rx_edpkt_dma_addr);
754 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
755 		       DMA_FROM_DEVICE);
756 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
757 
758 	/* TX buffers */
759 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
760 			  intf->tx_spb_dma_addr);
761 	kfree(intf->tx_cbs);
762 }
763 
bcmasp_init_rx(struct bcmasp_intf * intf)764 static void bcmasp_init_rx(struct bcmasp_intf *intf)
765 {
766 	/* Restart from index 0 */
767 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
768 	intf->rx_edpkt_dma_valid = intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1);
769 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
770 	intf->rx_edpkt_index = 0;
771 
772 	/* Make sure channels are disabled */
773 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
774 
775 	/* Rx SPB */
776 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
777 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
778 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
779 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
780 			RX_EDPKT_RING_BUFFER_END);
781 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
782 			RX_EDPKT_RING_BUFFER_VALID);
783 
784 	/* EDPKT */
785 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
786 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
787 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
788 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
789 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
790 			RX_EDPKT_CFG_CFG0);
791 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
792 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
793 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
794 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_END);
795 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_VALID);
796 
797 	umac2fb_wl(intf, UMAC2FB_CFG_DEFAULT_EN | ((intf->channel + 11) <<
798 		   UMAC2FB_CFG_CHID_SHIFT) | (0xd << UMAC2FB_CFG_OK_SEND_SHIFT),
799 		   UMAC2FB_CFG);
800 }
801 
802 
bcmasp_init_tx(struct bcmasp_intf * intf)803 static void bcmasp_init_tx(struct bcmasp_intf *intf)
804 {
805 	/* Restart from index 0 */
806 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
807 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
808 	intf->tx_spb_index = 0;
809 	intf->tx_spb_clean_index = 0;
810 	memset(intf->tx_cbs, 0, sizeof(struct bcmasp_tx_cb) * DESC_RING_COUNT);
811 
812 	/* Make sure channels are disabled */
813 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
814 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
815 
816 	/* Tx SPB */
817 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
818 		       TX_SPB_CTRL_XF_CTRL2);
819 
820 	if (intf->parent->tx_chan_offset)
821 		tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
822 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
823 
824 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
825 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
826 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
827 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
828 }
829 
bcmasp_ephy_enable_set(struct bcmasp_intf * intf,bool enable)830 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
831 {
832 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
833 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
834 	u32 reg;
835 
836 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
837 	if (enable) {
838 		reg &= ~RGMII_EPHY_CK25_DIS;
839 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
840 		mdelay(1);
841 
842 		reg &= ~mask;
843 		reg |= RGMII_EPHY_RESET;
844 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
845 		mdelay(1);
846 
847 		reg &= ~RGMII_EPHY_RESET;
848 	} else {
849 		reg |= mask | RGMII_EPHY_RESET;
850 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
851 		mdelay(1);
852 		reg |= RGMII_EPHY_CK25_DIS;
853 	}
854 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
855 	mdelay(1);
856 
857 	/* Set or clear the LED control override to avoid lighting up LEDs
858 	 * while the EPHY is powered off and drawing unnecessary current.
859 	 */
860 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
861 	if (enable)
862 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
863 	else
864 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
865 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
866 }
867 
bcmasp_rgmii_mode_en_set(struct bcmasp_intf * intf,bool enable)868 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
869 {
870 	u32 reg;
871 
872 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
873 	reg &= ~RGMII_OOB_DIS;
874 	if (enable)
875 		reg |= RGMII_MODE_EN;
876 	else
877 		reg &= ~RGMII_MODE_EN;
878 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
879 }
880 
bcmasp_netif_deinit(struct net_device * dev)881 static void bcmasp_netif_deinit(struct net_device *dev)
882 {
883 	struct bcmasp_intf *intf = netdev_priv(dev);
884 	u32 reg, timeout = 1000;
885 
886 	napi_disable(&intf->tx_napi);
887 
888 	bcmasp_enable_tx(intf, 0);
889 
890 	/* Flush any TX packets in the pipe */
891 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
892 	do {
893 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
894 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
895 			break;
896 		usleep_range(1000, 2000);
897 	} while (timeout-- > 0);
898 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
899 
900 	bcmasp_tx_reclaim(intf);
901 
902 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
903 
904 	phy_stop(dev->phydev);
905 
906 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
907 
908 	bcmasp_flush_rx_port(intf);
909 	usleep_range(1000, 2000);
910 	bcmasp_enable_rx(intf, 0);
911 
912 	napi_disable(&intf->rx_napi);
913 
914 	/* Disable interrupts */
915 	bcmasp_enable_tx_irq(intf, 0);
916 	bcmasp_enable_rx_irq(intf, 0);
917 	bcmasp_enable_phy_irq(intf, 0);
918 
919 	netif_napi_del(&intf->tx_napi);
920 	netif_napi_del(&intf->rx_napi);
921 }
922 
bcmasp_stop(struct net_device * dev)923 static int bcmasp_stop(struct net_device *dev)
924 {
925 	struct bcmasp_intf *intf = netdev_priv(dev);
926 
927 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
928 
929 	/* Stop tx from updating HW */
930 	netif_tx_disable(dev);
931 
932 	bcmasp_netif_deinit(dev);
933 
934 	bcmasp_reclaim_free_buffers(intf);
935 
936 	phy_disconnect(dev->phydev);
937 
938 	/* Disable internal EPHY or external PHY */
939 	if (intf->internal_phy)
940 		bcmasp_ephy_enable_set(intf, false);
941 	else
942 		bcmasp_rgmii_mode_en_set(intf, false);
943 
944 	/* Disable the interface clocks */
945 	bcmasp_core_clock_set_intf(intf, false);
946 
947 	clk_disable_unprepare(intf->parent->clk);
948 
949 	return 0;
950 }
951 
bcmasp_configure_port(struct bcmasp_intf * intf)952 static void bcmasp_configure_port(struct bcmasp_intf *intf)
953 {
954 	u32 reg, id_mode_dis = 0;
955 
956 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
957 	reg &= ~RGMII_PORT_MODE_MASK;
958 
959 	switch (intf->phy_interface) {
960 	case PHY_INTERFACE_MODE_RGMII:
961 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
962 		 *		(requires PCB or receiver-side delay)
963 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
964 		 *
965 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
966 		 */
967 		id_mode_dis = RGMII_ID_MODE_DIS;
968 		fallthrough;
969 	case PHY_INTERFACE_MODE_RGMII_TXID:
970 		reg |= RGMII_PORT_MODE_EXT_GPHY;
971 		break;
972 	case PHY_INTERFACE_MODE_MII:
973 		reg |= RGMII_PORT_MODE_EXT_EPHY;
974 		break;
975 	default:
976 		break;
977 	}
978 
979 	if (intf->internal_phy)
980 		reg |= RGMII_PORT_MODE_EPHY;
981 
982 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
983 
984 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
985 	reg &= ~RGMII_ID_MODE_DIS;
986 	reg |= id_mode_dis;
987 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
988 }
989 
bcmasp_netif_init(struct net_device * dev,bool phy_connect)990 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
991 {
992 	struct bcmasp_intf *intf = netdev_priv(dev);
993 	phy_interface_t phy_iface = intf->phy_interface;
994 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
995 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
996 			PHY_BRCM_IDDQ_SUSPEND;
997 	struct phy_device *phydev = NULL;
998 	int ret;
999 
1000 	/* Always enable interface clocks */
1001 	bcmasp_core_clock_set_intf(intf, true);
1002 
1003 	/* Enable internal PHY or external PHY before any MAC activity */
1004 	if (intf->internal_phy)
1005 		bcmasp_ephy_enable_set(intf, true);
1006 	else
1007 		bcmasp_rgmii_mode_en_set(intf, true);
1008 	bcmasp_configure_port(intf);
1009 
1010 	/* This is an ugly quirk but we have not been correctly
1011 	 * interpreting the phy_interface values and we have done that
1012 	 * across different drivers, so at least we are consistent in
1013 	 * our mistakes.
1014 	 *
1015 	 * When the Generic PHY driver is in use either the PHY has
1016 	 * been strapped or programmed correctly by the boot loader so
1017 	 * we should stick to our incorrect interpretation since we
1018 	 * have validated it.
1019 	 *
1020 	 * Now when a dedicated PHY driver is in use, we need to
1021 	 * reverse the meaning of the phy_interface_mode values to
1022 	 * something that the PHY driver will interpret and act on such
1023 	 * that we have two mistakes canceling themselves so to speak.
1024 	 * We only do this for the two modes that GENET driver
1025 	 * officially supports on Broadcom STB chips:
1026 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1027 	 * Other modes are not *officially* supported with the boot
1028 	 * loader and the scripted environment generating Device Tree
1029 	 * blobs for those platforms.
1030 	 *
1031 	 * Note that internal PHY and fixed-link configurations are not
1032 	 * affected because they use different phy_interface_t values
1033 	 * or the Generic PHY driver.
1034 	 */
1035 	switch (phy_iface) {
1036 	case PHY_INTERFACE_MODE_RGMII:
1037 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1038 		break;
1039 	case PHY_INTERFACE_MODE_RGMII_TXID:
1040 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1041 		break;
1042 	default:
1043 		break;
1044 	}
1045 
1046 	if (phy_connect) {
1047 		phydev = of_phy_connect(dev, intf->phy_dn,
1048 					bcmasp_adj_link, phy_flags,
1049 					phy_iface);
1050 		if (!phydev) {
1051 			ret = -ENODEV;
1052 			netdev_err(dev, "could not attach to PHY\n");
1053 			goto err_phy_disable;
1054 		}
1055 
1056 		if (intf->internal_phy)
1057 			dev->phydev->irq = PHY_MAC_INTERRUPT;
1058 
1059 		/* Indicate that the MAC is responsible for PHY PM */
1060 		phydev->mac_managed_pm = true;
1061 
1062 		/* Set phylib's copy of the LPI timer */
1063 		phydev->eee_cfg.tx_lpi_timer = umac_rl(intf, UMC_EEE_LPI_TIMER);
1064 	}
1065 
1066 	umac_reset(intf);
1067 
1068 	umac_init(intf);
1069 
1070 	umac_set_hw_addr(intf, dev->dev_addr);
1071 
1072 	intf->old_duplex = -1;
1073 	intf->old_link = -1;
1074 	intf->old_pause = -1;
1075 
1076 	bcmasp_init_tx(intf);
1077 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
1078 	bcmasp_enable_tx(intf, 1);
1079 
1080 	bcmasp_init_rx(intf);
1081 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
1082 	bcmasp_enable_rx(intf, 1);
1083 
1084 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1085 
1086 	bcmasp_netif_start(dev);
1087 
1088 	netif_start_queue(dev);
1089 
1090 	return 0;
1091 
1092 err_phy_disable:
1093 	if (intf->internal_phy)
1094 		bcmasp_ephy_enable_set(intf, false);
1095 	else
1096 		bcmasp_rgmii_mode_en_set(intf, false);
1097 	return ret;
1098 }
1099 
bcmasp_open(struct net_device * dev)1100 static int bcmasp_open(struct net_device *dev)
1101 {
1102 	struct bcmasp_intf *intf = netdev_priv(dev);
1103 	int ret;
1104 
1105 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1106 
1107 	ret = bcmasp_alloc_buffers(intf);
1108 	if (ret)
1109 		return ret;
1110 
1111 	ret = clk_prepare_enable(intf->parent->clk);
1112 	if (ret)
1113 		goto err_free_mem;
1114 
1115 	ret = bcmasp_netif_init(dev, true);
1116 	if (ret) {
1117 		clk_disable_unprepare(intf->parent->clk);
1118 		goto err_free_mem;
1119 	}
1120 
1121 	return ret;
1122 
1123 err_free_mem:
1124 	bcmasp_reclaim_free_buffers(intf);
1125 
1126 	return ret;
1127 }
1128 
bcmasp_tx_timeout(struct net_device * dev,unsigned int txqueue)1129 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1130 {
1131 	struct bcmasp_intf *intf = netdev_priv(dev);
1132 
1133 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1134 	intf->mib.tx_timeout_cnt++;
1135 }
1136 
bcmasp_get_phys_port_name(struct net_device * dev,char * name,size_t len)1137 static int bcmasp_get_phys_port_name(struct net_device *dev,
1138 				     char *name, size_t len)
1139 {
1140 	struct bcmasp_intf *intf = netdev_priv(dev);
1141 
1142 	if (snprintf(name, len, "p%d", intf->port) >= len)
1143 		return -EINVAL;
1144 
1145 	return 0;
1146 }
1147 
bcmasp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1148 static void bcmasp_get_stats64(struct net_device *dev,
1149 			       struct rtnl_link_stats64 *stats)
1150 {
1151 	struct bcmasp_intf *intf = netdev_priv(dev);
1152 	struct bcmasp_intf_stats64 *lstats;
1153 	unsigned int start;
1154 
1155 	lstats = &intf->stats64;
1156 
1157 	do {
1158 		start = u64_stats_fetch_begin(&lstats->syncp);
1159 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1160 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1161 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1162 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1163 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1164 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1165 
1166 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1167 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1168 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1169 }
1170 
1171 static const struct net_device_ops bcmasp_netdev_ops = {
1172 	.ndo_open		= bcmasp_open,
1173 	.ndo_stop		= bcmasp_stop,
1174 	.ndo_start_xmit		= bcmasp_xmit,
1175 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1176 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1177 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1178 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1179 	.ndo_set_mac_address	= eth_mac_addr,
1180 	.ndo_get_stats64	= bcmasp_get_stats64,
1181 };
1182 
bcmasp_map_res(struct bcmasp_priv * priv,struct bcmasp_intf * intf)1183 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1184 {
1185 	/* Per port */
1186 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1187 	intf->res.umac2fb = priv->base + (UMAC2FB_OFFSET + priv->rx_ctrl_offset +
1188 					  (intf->port * 0x4));
1189 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1190 
1191 	/* Per ch */
1192 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1193 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1194 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1195 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1196 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1197 
1198 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1199 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1200 }
1201 
bcmasp_interface_create(struct bcmasp_priv * priv,struct device_node * ndev_dn,int i)1202 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1203 					    struct device_node *ndev_dn, int i)
1204 {
1205 	struct device *dev = &priv->pdev->dev;
1206 	struct bcmasp_intf *intf;
1207 	struct net_device *ndev;
1208 	int ch, port, ret;
1209 
1210 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1211 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1212 		goto err;
1213 	}
1214 
1215 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1216 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1217 		goto err;
1218 	}
1219 
1220 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1221 	if (!ndev) {
1222 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1223 		goto err;
1224 	}
1225 	intf = netdev_priv(ndev);
1226 
1227 	intf->parent = priv;
1228 	intf->ndev = ndev;
1229 	intf->channel = ch;
1230 	intf->port = port;
1231 	intf->ndev_dn = ndev_dn;
1232 	intf->index = i;
1233 
1234 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1235 	if (ret < 0) {
1236 		dev_err(dev, "invalid PHY mode property\n");
1237 		goto err_free_netdev;
1238 	}
1239 
1240 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1241 		intf->internal_phy = true;
1242 
1243 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1244 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1245 		ret = of_phy_register_fixed_link(ndev_dn);
1246 		if (ret) {
1247 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1248 				 ndev_dn->name);
1249 			goto err_free_netdev;
1250 		}
1251 		intf->phy_dn = ndev_dn;
1252 	}
1253 
1254 	/* Map resource */
1255 	bcmasp_map_res(priv, intf);
1256 
1257 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1258 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1259 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1260 	    (intf->port != 1 && intf->internal_phy)) {
1261 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1262 			   phy_modes(intf->phy_interface), intf->port);
1263 		ret = -EINVAL;
1264 		goto err_free_netdev;
1265 	}
1266 
1267 	ret = of_get_ethdev_address(ndev_dn, ndev);
1268 	if (ret) {
1269 		netdev_warn(ndev, "using random Ethernet MAC\n");
1270 		eth_hw_addr_random(ndev);
1271 	}
1272 
1273 	SET_NETDEV_DEV(ndev, dev);
1274 	intf->ops = &bcmasp_intf_ops;
1275 	ndev->netdev_ops = &bcmasp_netdev_ops;
1276 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1277 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1278 					  NETIF_MSG_PROBE |
1279 					  NETIF_MSG_LINK);
1280 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1281 			  NETIF_F_RXCSUM;
1282 	ndev->hw_features |= ndev->features;
1283 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1284 
1285 	netdev_sw_irq_coalesce_default_on(ndev);
1286 
1287 	return intf;
1288 
1289 err_free_netdev:
1290 	free_netdev(ndev);
1291 err:
1292 	return NULL;
1293 }
1294 
bcmasp_interface_destroy(struct bcmasp_intf * intf)1295 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1296 {
1297 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1298 		unregister_netdev(intf->ndev);
1299 	if (of_phy_is_fixed_link(intf->ndev_dn))
1300 		of_phy_deregister_fixed_link(intf->ndev_dn);
1301 	free_netdev(intf->ndev);
1302 }
1303 
bcmasp_suspend_to_wol(struct bcmasp_intf * intf)1304 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1305 {
1306 	struct net_device *ndev = intf->ndev;
1307 	u32 reg;
1308 
1309 	reg = umac_rl(intf, UMC_MPD_CTRL);
1310 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1311 		reg |= UMC_MPD_CTRL_MPD_EN;
1312 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1313 	if (intf->wolopts & WAKE_MAGICSECURE) {
1314 		/* Program the SecureOn password */
1315 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1316 			UMC_PSW_MS);
1317 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1318 			UMC_PSW_LS);
1319 		reg |= UMC_MPD_CTRL_PSW_EN;
1320 	}
1321 	umac_wl(intf, reg, UMC_MPD_CTRL);
1322 
1323 	if (intf->wolopts & WAKE_FILTER)
1324 		bcmasp_netfilt_suspend(intf);
1325 
1326 	/* Bring UniMAC out of reset if needed and enable RX */
1327 	reg = umac_rl(intf, UMC_CMD);
1328 	if (reg & UMC_CMD_SW_RESET)
1329 		reg &= ~UMC_CMD_SW_RESET;
1330 
1331 	reg |= UMC_CMD_RX_EN | UMC_CMD_PROMISC;
1332 	umac_wl(intf, reg, UMC_CMD);
1333 
1334 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1335 
1336 	if (intf->parent->wol_irq > 0) {
1337 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1338 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1339 	}
1340 
1341 	if (ndev->phydev && ndev->phydev->eee_cfg.eee_enabled &&
1342 	    intf->parent->eee_fixup)
1343 		intf->parent->eee_fixup(intf, true);
1344 
1345 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1346 }
1347 
bcmasp_interface_suspend(struct bcmasp_intf * intf)1348 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1349 {
1350 	struct device *kdev = &intf->parent->pdev->dev;
1351 	struct net_device *dev = intf->ndev;
1352 
1353 	if (!netif_running(dev))
1354 		return 0;
1355 
1356 	netif_device_detach(dev);
1357 
1358 	bcmasp_netif_deinit(dev);
1359 
1360 	if (!intf->wolopts) {
1361 		if (intf->internal_phy)
1362 			bcmasp_ephy_enable_set(intf, false);
1363 		else
1364 			bcmasp_rgmii_mode_en_set(intf, false);
1365 
1366 		/* If Wake-on-LAN is disabled, we can safely
1367 		 * disable the network interface clocks.
1368 		 */
1369 		bcmasp_core_clock_set_intf(intf, false);
1370 	}
1371 
1372 	if (device_may_wakeup(kdev) && intf->wolopts)
1373 		bcmasp_suspend_to_wol(intf);
1374 
1375 	clk_disable_unprepare(intf->parent->clk);
1376 
1377 	return 0;
1378 }
1379 
bcmasp_resume_from_wol(struct bcmasp_intf * intf)1380 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1381 {
1382 	u32 reg;
1383 
1384 	if (intf->ndev->phydev && intf->ndev->phydev->eee_cfg.eee_enabled &&
1385 	    intf->parent->eee_fixup)
1386 		intf->parent->eee_fixup(intf, false);
1387 
1388 	reg = umac_rl(intf, UMC_MPD_CTRL);
1389 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1390 	umac_wl(intf, reg, UMC_MPD_CTRL);
1391 
1392 	if (intf->parent->wol_irq > 0) {
1393 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1394 				     ASP_WAKEUP_INTR2_MASK_SET);
1395 	}
1396 }
1397 
bcmasp_interface_resume(struct bcmasp_intf * intf)1398 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1399 {
1400 	struct net_device *dev = intf->ndev;
1401 	int ret;
1402 
1403 	if (!netif_running(dev))
1404 		return 0;
1405 
1406 	ret = clk_prepare_enable(intf->parent->clk);
1407 	if (ret)
1408 		return ret;
1409 
1410 	ret = bcmasp_netif_init(dev, false);
1411 	if (ret)
1412 		goto out;
1413 
1414 	bcmasp_resume_from_wol(intf);
1415 
1416 	netif_device_attach(dev);
1417 
1418 	return 0;
1419 
1420 out:
1421 	clk_disable_unprepare(intf->parent->clk);
1422 	return ret;
1423 }
1424