1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42
43 /*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epnested_mutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * The epnested_mutex is acquired when inserting an epoll fd onto another
62 * epoll fd. We do this so that we walk the epoll tree and ensure that this
63 * insertion does not create a cycle of epoll file descriptors, which
64 * could lead to deadlock. We need a global mutex to prevent two
65 * simultaneous inserts (A into B and B into A) from racing and
66 * constructing a cycle without either insert observing that it is
67 * going to.
68 * It is necessary to acquire multiple "ep->mtx"es at once in the
69 * case when one epoll fd is added to another. In this case, we
70 * always acquire the locks in the order of nesting (i.e. after
71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72 * before e2->mtx). Since we disallow cycles of epoll file
73 * descriptors, this ensures that the mutexes are well-ordered. In
74 * order to communicate this nesting to lockdep, when walking a tree
75 * of epoll file descriptors, we use the current recursion depth as
76 * the lockdep subkey.
77 * It is possible to drop the "ep->mtx" and to use the global
78 * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79 * but having "ep->mtx" will make the interface more scalable.
80 * Events that require holding "epnested_mutex" are very rare, while for
81 * normal operations the epoll private "ep->mtx" will guarantee
82 * a better scalability.
83 */
84
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102 struct epoll_filefd {
103 struct file *file;
104 int fd;
105 } __packed;
106
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 /* List header used to link this structure to the "struct epitem" */
110 struct eppoll_entry *next;
111
112 /* The "base" pointer is set to the container "struct epitem" */
113 struct epitem *base;
114
115 /*
116 * Wait queue item that will be linked to the target file wait
117 * queue head.
118 */
119 wait_queue_entry_t wait;
120
121 /* The wait queue head that linked the "wait" wait queue item */
122 wait_queue_head_t *whead;
123 };
124
125 /*
126 * Each file descriptor added to the eventpoll interface will
127 * have an entry of this type linked to the "rbr" RB tree.
128 * Avoid increasing the size of this struct, there can be many thousands
129 * of these on a server and we do not want this to take another cache line.
130 */
131 struct epitem {
132 union {
133 /* RB tree node links this structure to the eventpoll RB tree */
134 struct rb_node rbn;
135 /* Used to free the struct epitem */
136 struct rcu_head rcu;
137 };
138
139 /* List header used to link this structure to the eventpoll ready list */
140 struct list_head rdllink;
141
142 /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
146 struct epitem *next;
147
148 /* The file descriptor information this item refers to */
149 struct epoll_filefd ffd;
150
151 /*
152 * Protected by file->f_lock, true for to-be-released epitem already
153 * removed from the "struct file" items list; together with
154 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 */
156 bool dying;
157
158 /* List containing poll wait queues */
159 struct eppoll_entry *pwqlist;
160
161 /* The "container" of this item */
162 struct eventpoll *ep;
163
164 /* List header used to link this item to the "struct file" items list */
165 struct hlist_node fllink;
166
167 /* wakeup_source used when EPOLLWAKEUP is set */
168 struct wakeup_source __rcu *ws;
169
170 /* The structure that describe the interested events and the source fd */
171 struct epoll_event event;
172 };
173
174 /*
175 * This structure is stored inside the "private_data" member of the file
176 * structure and represents the main data structure for the eventpoll
177 * interface.
178 */
179 struct eventpoll {
180 /*
181 * This mutex is used to ensure that files are not removed
182 * while epoll is using them. This is held during the event
183 * collection loop, the file cleanup path, the epoll file exit
184 * code and the ctl operations.
185 */
186 struct mutex mtx;
187
188 /* Wait queue used by sys_epoll_wait() */
189 wait_queue_head_t wq;
190
191 /* Wait queue used by file->poll() */
192 wait_queue_head_t poll_wait;
193
194 /* List of ready file descriptors */
195 struct list_head rdllist;
196
197 /* Lock which protects rdllist and ovflist */
198 rwlock_t lock;
199
200 /* RB tree root used to store monitored fd structs */
201 struct rb_root_cached rbr;
202
203 /*
204 * This is a single linked list that chains all the "struct epitem" that
205 * happened while transferring ready events to userspace w/out
206 * holding ->lock.
207 */
208 struct epitem *ovflist;
209
210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 struct wakeup_source *ws;
212
213 /* The user that created the eventpoll descriptor */
214 struct user_struct *user;
215
216 struct file *file;
217
218 /* used to optimize loop detection check */
219 u64 gen;
220 struct hlist_head refs;
221 u8 loop_check_depth;
222
223 /*
224 * usage count, used together with epitem->dying to
225 * orchestrate the disposal of this struct
226 */
227 refcount_t refcount;
228
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 /* used to track busy poll napi_id */
231 unsigned int napi_id;
232 /* busy poll timeout */
233 u32 busy_poll_usecs;
234 /* busy poll packet budget */
235 u16 busy_poll_budget;
236 bool prefer_busy_poll;
237 #endif
238
239 #ifdef CONFIG_DEBUG_LOCK_ALLOC
240 /* tracks wakeup nests for lockdep validation */
241 u8 nests;
242 #endif
243 };
244
245 /* Wrapper struct used by poll queueing */
246 struct ep_pqueue {
247 poll_table pt;
248 struct epitem *epi;
249 };
250
251 /*
252 * Configuration options available inside /proc/sys/fs/epoll/
253 */
254 /* Maximum number of epoll watched descriptors, per user */
255 static long max_user_watches __read_mostly;
256
257 /* Used for cycles detection */
258 static DEFINE_MUTEX(epnested_mutex);
259
260 static u64 loop_check_gen = 0;
261
262 /* Used to check for epoll file descriptor inclusion loops */
263 static struct eventpoll *inserting_into;
264
265 /* Slab cache used to allocate "struct epitem" */
266 static struct kmem_cache *epi_cache __ro_after_init;
267
268 /* Slab cache used to allocate "struct eppoll_entry" */
269 static struct kmem_cache *pwq_cache __ro_after_init;
270
271 /*
272 * List of files with newly added links, where we may need to limit the number
273 * of emanating paths. Protected by the epnested_mutex.
274 */
275 struct epitems_head {
276 struct hlist_head epitems;
277 struct epitems_head *next;
278 };
279 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280
281 static struct kmem_cache *ephead_cache __ro_after_init;
282
free_ephead(struct epitems_head * head)283 static inline void free_ephead(struct epitems_head *head)
284 {
285 if (head)
286 kmem_cache_free(ephead_cache, head);
287 }
288
list_file(struct file * file)289 static void list_file(struct file *file)
290 {
291 struct epitems_head *head;
292
293 head = container_of(file->f_ep, struct epitems_head, epitems);
294 if (!head->next) {
295 head->next = tfile_check_list;
296 tfile_check_list = head;
297 }
298 }
299
unlist_file(struct epitems_head * head)300 static void unlist_file(struct epitems_head *head)
301 {
302 struct epitems_head *to_free = head;
303 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304 if (p) {
305 struct epitem *epi= container_of(p, struct epitem, fllink);
306 spin_lock(&epi->ffd.file->f_lock);
307 if (!hlist_empty(&head->epitems))
308 to_free = NULL;
309 head->next = NULL;
310 spin_unlock(&epi->ffd.file->f_lock);
311 }
312 free_ephead(to_free);
313 }
314
315 #ifdef CONFIG_SYSCTL
316
317 #include <linux/sysctl.h>
318
319 static long long_zero;
320 static long long_max = LONG_MAX;
321
322 static const struct ctl_table epoll_table[] = {
323 {
324 .procname = "max_user_watches",
325 .data = &max_user_watches,
326 .maxlen = sizeof(max_user_watches),
327 .mode = 0644,
328 .proc_handler = proc_doulongvec_minmax,
329 .extra1 = &long_zero,
330 .extra2 = &long_max,
331 },
332 };
333
epoll_sysctls_init(void)334 static void __init epoll_sysctls_init(void)
335 {
336 register_sysctl("fs/epoll", epoll_table);
337 }
338 #else
339 #define epoll_sysctls_init() do { } while (0)
340 #endif /* CONFIG_SYSCTL */
341
342 static const struct file_operations eventpoll_fops;
343
is_file_epoll(struct file * f)344 static inline int is_file_epoll(struct file *f)
345 {
346 return f->f_op == &eventpoll_fops;
347 }
348
349 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)350 static inline void ep_set_ffd(struct epoll_filefd *ffd,
351 struct file *file, int fd)
352 {
353 ffd->file = file;
354 ffd->fd = fd;
355 }
356
357 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)358 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
359 struct epoll_filefd *p2)
360 {
361 return (p1->file > p2->file ? +1:
362 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
363 }
364
365 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)366 static inline int ep_is_linked(struct epitem *epi)
367 {
368 return !list_empty(&epi->rdllink);
369 }
370
ep_pwq_from_wait(wait_queue_entry_t * p)371 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372 {
373 return container_of(p, struct eppoll_entry, wait);
374 }
375
376 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)377 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378 {
379 return container_of(p, struct eppoll_entry, wait)->base;
380 }
381
382 /**
383 * ep_events_available - Checks if ready events might be available.
384 *
385 * @ep: Pointer to the eventpoll context.
386 *
387 * Return: a value different than %zero if ready events are available,
388 * or %zero otherwise.
389 */
ep_events_available(struct eventpoll * ep)390 static inline int ep_events_available(struct eventpoll *ep)
391 {
392 return !list_empty_careful(&ep->rdllist) ||
393 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
394 }
395
396 #ifdef CONFIG_NET_RX_BUSY_POLL
397 /**
398 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
399 * from the epoll instance ep is preferred, but if it is not set fallback to
400 * the system-wide global via busy_loop_timeout.
401 *
402 * @start_time: The start time used to compute the remaining time until timeout.
403 * @ep: Pointer to the eventpoll context.
404 *
405 * Return: true if the timeout has expired, false otherwise.
406 */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)407 static bool busy_loop_ep_timeout(unsigned long start_time,
408 struct eventpoll *ep)
409 {
410 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
411
412 if (bp_usec) {
413 unsigned long end_time = start_time + bp_usec;
414 unsigned long now = busy_loop_current_time();
415
416 return time_after(now, end_time);
417 } else {
418 return busy_loop_timeout(start_time);
419 }
420 }
421
ep_busy_loop_on(struct eventpoll * ep)422 static bool ep_busy_loop_on(struct eventpoll *ep)
423 {
424 return !!READ_ONCE(ep->busy_poll_usecs) ||
425 READ_ONCE(ep->prefer_busy_poll) ||
426 net_busy_loop_on();
427 }
428
ep_busy_loop_end(void * p,unsigned long start_time)429 static bool ep_busy_loop_end(void *p, unsigned long start_time)
430 {
431 struct eventpoll *ep = p;
432
433 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
434 }
435
436 /*
437 * Busy poll if globally on and supporting sockets found && no events,
438 * busy loop will return if need_resched or ep_events_available.
439 *
440 * we must do our busy polling with irqs enabled
441 */
ep_busy_loop(struct eventpoll * ep)442 static bool ep_busy_loop(struct eventpoll *ep)
443 {
444 unsigned int napi_id = READ_ONCE(ep->napi_id);
445 u16 budget = READ_ONCE(ep->busy_poll_budget);
446 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
447
448 if (!budget)
449 budget = BUSY_POLL_BUDGET;
450
451 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) {
452 napi_busy_loop(napi_id, ep_busy_loop_end,
453 ep, prefer_busy_poll, budget);
454 if (ep_events_available(ep))
455 return true;
456 /*
457 * Busy poll timed out. Drop NAPI ID for now, we can add
458 * it back in when we have moved a socket with a valid NAPI
459 * ID onto the ready list.
460 */
461 if (prefer_busy_poll)
462 napi_resume_irqs(napi_id);
463 ep->napi_id = 0;
464 return false;
465 }
466 return false;
467 }
468
469 /*
470 * Set epoll busy poll NAPI ID from sk.
471 */
ep_set_busy_poll_napi_id(struct epitem * epi)472 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
473 {
474 struct eventpoll *ep = epi->ep;
475 unsigned int napi_id;
476 struct socket *sock;
477 struct sock *sk;
478
479 if (!ep_busy_loop_on(ep))
480 return;
481
482 sock = sock_from_file(epi->ffd.file);
483 if (!sock)
484 return;
485
486 sk = sock->sk;
487 if (!sk)
488 return;
489
490 napi_id = READ_ONCE(sk->sk_napi_id);
491
492 /* Non-NAPI IDs can be rejected
493 * or
494 * Nothing to do if we already have this ID
495 */
496 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id)
497 return;
498
499 /* record NAPI ID for use in next busy poll */
500 ep->napi_id = napi_id;
501 }
502
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)503 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
504 unsigned long arg)
505 {
506 struct eventpoll *ep = file->private_data;
507 void __user *uarg = (void __user *)arg;
508 struct epoll_params epoll_params;
509
510 switch (cmd) {
511 case EPIOCSPARAMS:
512 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
513 return -EFAULT;
514
515 /* pad byte must be zero */
516 if (epoll_params.__pad)
517 return -EINVAL;
518
519 if (epoll_params.busy_poll_usecs > S32_MAX)
520 return -EINVAL;
521
522 if (epoll_params.prefer_busy_poll > 1)
523 return -EINVAL;
524
525 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
526 !capable(CAP_NET_ADMIN))
527 return -EPERM;
528
529 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
530 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
531 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
532 return 0;
533 case EPIOCGPARAMS:
534 memset(&epoll_params, 0, sizeof(epoll_params));
535 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
536 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
537 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
538 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
539 return -EFAULT;
540 return 0;
541 default:
542 return -ENOIOCTLCMD;
543 }
544 }
545
ep_suspend_napi_irqs(struct eventpoll * ep)546 static void ep_suspend_napi_irqs(struct eventpoll *ep)
547 {
548 unsigned int napi_id = READ_ONCE(ep->napi_id);
549
550 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
551 napi_suspend_irqs(napi_id);
552 }
553
ep_resume_napi_irqs(struct eventpoll * ep)554 static void ep_resume_napi_irqs(struct eventpoll *ep)
555 {
556 unsigned int napi_id = READ_ONCE(ep->napi_id);
557
558 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
559 napi_resume_irqs(napi_id);
560 }
561
562 #else
563
ep_busy_loop(struct eventpoll * ep)564 static inline bool ep_busy_loop(struct eventpoll *ep)
565 {
566 return false;
567 }
568
ep_set_busy_poll_napi_id(struct epitem * epi)569 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
570 {
571 }
572
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)573 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
574 unsigned long arg)
575 {
576 return -EOPNOTSUPP;
577 }
578
ep_suspend_napi_irqs(struct eventpoll * ep)579 static void ep_suspend_napi_irqs(struct eventpoll *ep)
580 {
581 }
582
ep_resume_napi_irqs(struct eventpoll * ep)583 static void ep_resume_napi_irqs(struct eventpoll *ep)
584 {
585 }
586
587 #endif /* CONFIG_NET_RX_BUSY_POLL */
588
589 /*
590 * As described in commit 0ccf831cb lockdep: annotate epoll
591 * the use of wait queues used by epoll is done in a very controlled
592 * manner. Wake ups can nest inside each other, but are never done
593 * with the same locking. For example:
594 *
595 * dfd = socket(...);
596 * efd1 = epoll_create();
597 * efd2 = epoll_create();
598 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
599 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
600 *
601 * When a packet arrives to the device underneath "dfd", the net code will
602 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
603 * callback wakeup entry on that queue, and the wake_up() performed by the
604 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
605 * (efd1) notices that it may have some event ready, so it needs to wake up
606 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
607 * that ends up in another wake_up(), after having checked about the
608 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
609 * stack blasting.
610 *
611 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
612 * this special case of epoll.
613 */
614 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)616 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
617 unsigned pollflags)
618 {
619 struct eventpoll *ep_src;
620 unsigned long flags;
621 u8 nests = 0;
622
623 /*
624 * To set the subclass or nesting level for spin_lock_irqsave_nested()
625 * it might be natural to create a per-cpu nest count. However, since
626 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
627 * schedule() in the -rt kernel, the per-cpu variable are no longer
628 * protected. Thus, we are introducing a per eventpoll nest field.
629 * If we are not being call from ep_poll_callback(), epi is NULL and
630 * we are at the first level of nesting, 0. Otherwise, we are being
631 * called from ep_poll_callback() and if a previous wakeup source is
632 * not an epoll file itself, we are at depth 1 since the wakeup source
633 * is depth 0. If the wakeup source is a previous epoll file in the
634 * wakeup chain then we use its nests value and record ours as
635 * nests + 1. The previous epoll file nests value is stable since its
636 * already holding its own poll_wait.lock.
637 */
638 if (epi) {
639 if ((is_file_epoll(epi->ffd.file))) {
640 ep_src = epi->ffd.file->private_data;
641 nests = ep_src->nests;
642 } else {
643 nests = 1;
644 }
645 }
646 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
647 ep->nests = nests + 1;
648 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
649 ep->nests = 0;
650 spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
651 }
652
653 #else
654
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)655 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
656 __poll_t pollflags)
657 {
658 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
659 }
660
661 #endif
662
ep_remove_wait_queue(struct eppoll_entry * pwq)663 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
664 {
665 wait_queue_head_t *whead;
666
667 rcu_read_lock();
668 /*
669 * If it is cleared by POLLFREE, it should be rcu-safe.
670 * If we read NULL we need a barrier paired with
671 * smp_store_release() in ep_poll_callback(), otherwise
672 * we rely on whead->lock.
673 */
674 whead = smp_load_acquire(&pwq->whead);
675 if (whead)
676 remove_wait_queue(whead, &pwq->wait);
677 rcu_read_unlock();
678 }
679
680 /*
681 * This function unregisters poll callbacks from the associated file
682 * descriptor. Must be called with "mtx" held.
683 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)684 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
685 {
686 struct eppoll_entry **p = &epi->pwqlist;
687 struct eppoll_entry *pwq;
688
689 while ((pwq = *p) != NULL) {
690 *p = pwq->next;
691 ep_remove_wait_queue(pwq);
692 kmem_cache_free(pwq_cache, pwq);
693 }
694 }
695
696 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)697 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
698 {
699 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
700 }
701
702 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)703 static inline void ep_pm_stay_awake(struct epitem *epi)
704 {
705 struct wakeup_source *ws = ep_wakeup_source(epi);
706
707 if (ws)
708 __pm_stay_awake(ws);
709 }
710
ep_has_wakeup_source(struct epitem * epi)711 static inline bool ep_has_wakeup_source(struct epitem *epi)
712 {
713 return rcu_access_pointer(epi->ws) ? true : false;
714 }
715
716 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)717 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
718 {
719 struct wakeup_source *ws;
720
721 rcu_read_lock();
722 ws = rcu_dereference(epi->ws);
723 if (ws)
724 __pm_stay_awake(ws);
725 rcu_read_unlock();
726 }
727
728
729 /*
730 * ep->mutex needs to be held because we could be hit by
731 * eventpoll_release_file() and epoll_ctl().
732 */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)733 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
734 {
735 /*
736 * Steal the ready list, and re-init the original one to the
737 * empty list. Also, set ep->ovflist to NULL so that events
738 * happening while looping w/out locks, are not lost. We cannot
739 * have the poll callback to queue directly on ep->rdllist,
740 * because we want the "sproc" callback to be able to do it
741 * in a lockless way.
742 */
743 lockdep_assert_irqs_enabled();
744 write_lock_irq(&ep->lock);
745 list_splice_init(&ep->rdllist, txlist);
746 WRITE_ONCE(ep->ovflist, NULL);
747 write_unlock_irq(&ep->lock);
748 }
749
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)750 static void ep_done_scan(struct eventpoll *ep,
751 struct list_head *txlist)
752 {
753 struct epitem *epi, *nepi;
754
755 write_lock_irq(&ep->lock);
756 /*
757 * During the time we spent inside the "sproc" callback, some
758 * other events might have been queued by the poll callback.
759 * We re-insert them inside the main ready-list here.
760 */
761 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
762 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
763 /*
764 * We need to check if the item is already in the list.
765 * During the "sproc" callback execution time, items are
766 * queued into ->ovflist but the "txlist" might already
767 * contain them, and the list_splice() below takes care of them.
768 */
769 if (!ep_is_linked(epi)) {
770 /*
771 * ->ovflist is LIFO, so we have to reverse it in order
772 * to keep in FIFO.
773 */
774 list_add(&epi->rdllink, &ep->rdllist);
775 ep_pm_stay_awake(epi);
776 }
777 }
778 /*
779 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
780 * releasing the lock, events will be queued in the normal way inside
781 * ep->rdllist.
782 */
783 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
784
785 /*
786 * Quickly re-inject items left on "txlist".
787 */
788 list_splice(txlist, &ep->rdllist);
789 __pm_relax(ep->ws);
790
791 if (!list_empty(&ep->rdllist)) {
792 if (waitqueue_active(&ep->wq))
793 wake_up(&ep->wq);
794 }
795
796 write_unlock_irq(&ep->lock);
797 }
798
ep_get(struct eventpoll * ep)799 static void ep_get(struct eventpoll *ep)
800 {
801 refcount_inc(&ep->refcount);
802 }
803
804 /*
805 * Returns true if the event poll can be disposed
806 */
ep_refcount_dec_and_test(struct eventpoll * ep)807 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
808 {
809 if (!refcount_dec_and_test(&ep->refcount))
810 return false;
811
812 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
813 return true;
814 }
815
ep_free(struct eventpoll * ep)816 static void ep_free(struct eventpoll *ep)
817 {
818 ep_resume_napi_irqs(ep);
819 mutex_destroy(&ep->mtx);
820 free_uid(ep->user);
821 wakeup_source_unregister(ep->ws);
822 kfree(ep);
823 }
824
825 /*
826 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
827 * all the associated resources. Must be called with "mtx" held.
828 * If the dying flag is set, do the removal only if force is true.
829 * This prevents ep_clear_and_put() from dropping all the ep references
830 * while running concurrently with eventpoll_release_file().
831 * Returns true if the eventpoll can be disposed.
832 */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)833 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
834 {
835 struct file *file = epi->ffd.file;
836 struct epitems_head *to_free;
837 struct hlist_head *head;
838
839 lockdep_assert_irqs_enabled();
840
841 /*
842 * Removes poll wait queue hooks.
843 */
844 ep_unregister_pollwait(ep, epi);
845
846 /* Remove the current item from the list of epoll hooks */
847 spin_lock(&file->f_lock);
848 if (epi->dying && !force) {
849 spin_unlock(&file->f_lock);
850 return false;
851 }
852
853 to_free = NULL;
854 head = file->f_ep;
855 if (head->first == &epi->fllink && !epi->fllink.next) {
856 /* See eventpoll_release() for details. */
857 WRITE_ONCE(file->f_ep, NULL);
858 if (!is_file_epoll(file)) {
859 struct epitems_head *v;
860 v = container_of(head, struct epitems_head, epitems);
861 if (!smp_load_acquire(&v->next))
862 to_free = v;
863 }
864 }
865 hlist_del_rcu(&epi->fllink);
866 spin_unlock(&file->f_lock);
867 free_ephead(to_free);
868
869 rb_erase_cached(&epi->rbn, &ep->rbr);
870
871 write_lock_irq(&ep->lock);
872 if (ep_is_linked(epi))
873 list_del_init(&epi->rdllink);
874 write_unlock_irq(&ep->lock);
875
876 wakeup_source_unregister(ep_wakeup_source(epi));
877 /*
878 * At this point it is safe to free the eventpoll item. Use the union
879 * field epi->rcu, since we are trying to minimize the size of
880 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
881 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
882 * use of the rbn field.
883 */
884 kfree_rcu(epi, rcu);
885
886 percpu_counter_dec(&ep->user->epoll_watches);
887 return true;
888 }
889
890 /*
891 * ep_remove variant for callers owing an additional reference to the ep
892 */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)893 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
894 {
895 if (__ep_remove(ep, epi, false))
896 WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
897 }
898
ep_clear_and_put(struct eventpoll * ep)899 static void ep_clear_and_put(struct eventpoll *ep)
900 {
901 struct rb_node *rbp, *next;
902 struct epitem *epi;
903
904 /* We need to release all tasks waiting for these file */
905 if (waitqueue_active(&ep->poll_wait))
906 ep_poll_safewake(ep, NULL, 0);
907
908 mutex_lock(&ep->mtx);
909
910 /*
911 * Walks through the whole tree by unregistering poll callbacks.
912 */
913 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
914 epi = rb_entry(rbp, struct epitem, rbn);
915
916 ep_unregister_pollwait(ep, epi);
917 cond_resched();
918 }
919
920 /*
921 * Walks through the whole tree and try to free each "struct epitem".
922 * Note that ep_remove_safe() will not remove the epitem in case of a
923 * racing eventpoll_release_file(); the latter will do the removal.
924 * At this point we are sure no poll callbacks will be lingering around.
925 * Since we still own a reference to the eventpoll struct, the loop can't
926 * dispose it.
927 */
928 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
929 next = rb_next(rbp);
930 epi = rb_entry(rbp, struct epitem, rbn);
931 ep_remove_safe(ep, epi);
932 cond_resched();
933 }
934
935 mutex_unlock(&ep->mtx);
936 if (ep_refcount_dec_and_test(ep))
937 ep_free(ep);
938 }
939
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)940 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
941 unsigned long arg)
942 {
943 int ret;
944
945 if (!is_file_epoll(file))
946 return -EINVAL;
947
948 switch (cmd) {
949 case EPIOCSPARAMS:
950 case EPIOCGPARAMS:
951 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
952 break;
953 default:
954 ret = -EINVAL;
955 break;
956 }
957
958 return ret;
959 }
960
ep_eventpoll_release(struct inode * inode,struct file * file)961 static int ep_eventpoll_release(struct inode *inode, struct file *file)
962 {
963 struct eventpoll *ep = file->private_data;
964
965 if (ep)
966 ep_clear_and_put(ep);
967
968 return 0;
969 }
970
971 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
972
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)973 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
974 {
975 struct eventpoll *ep = file->private_data;
976 LIST_HEAD(txlist);
977 struct epitem *epi, *tmp;
978 poll_table pt;
979 __poll_t res = 0;
980
981 init_poll_funcptr(&pt, NULL);
982
983 /* Insert inside our poll wait queue */
984 poll_wait(file, &ep->poll_wait, wait);
985
986 /*
987 * Proceed to find out if wanted events are really available inside
988 * the ready list.
989 */
990 mutex_lock_nested(&ep->mtx, depth);
991 ep_start_scan(ep, &txlist);
992 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
993 if (ep_item_poll(epi, &pt, depth + 1)) {
994 res = EPOLLIN | EPOLLRDNORM;
995 break;
996 } else {
997 /*
998 * Item has been dropped into the ready list by the poll
999 * callback, but it's not actually ready, as far as
1000 * caller requested events goes. We can remove it here.
1001 */
1002 __pm_relax(ep_wakeup_source(epi));
1003 list_del_init(&epi->rdllink);
1004 }
1005 }
1006 ep_done_scan(ep, &txlist);
1007 mutex_unlock(&ep->mtx);
1008 return res;
1009 }
1010
1011 /*
1012 * The ffd.file pointer may be in the process of being torn down due to
1013 * being closed, but we may not have finished eventpoll_release() yet.
1014 *
1015 * Normally, even with the atomic_long_inc_not_zero, the file may have
1016 * been free'd and then gotten re-allocated to something else (since
1017 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1018 *
1019 * But for epoll, users hold the ep->mtx mutex, and as such any file in
1020 * the process of being free'd will block in eventpoll_release_file()
1021 * and thus the underlying file allocation will not be free'd, and the
1022 * file re-use cannot happen.
1023 *
1024 * For the same reason we can avoid a rcu_read_lock() around the
1025 * operation - 'ffd.file' cannot go away even if the refcount has
1026 * reached zero (but we must still not call out to ->poll() functions
1027 * etc).
1028 */
epi_fget(const struct epitem * epi)1029 static struct file *epi_fget(const struct epitem *epi)
1030 {
1031 struct file *file;
1032
1033 file = epi->ffd.file;
1034 if (!file_ref_get(&file->f_ref))
1035 file = NULL;
1036 return file;
1037 }
1038
1039 /*
1040 * Differs from ep_eventpoll_poll() in that internal callers already have
1041 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1042 * is correctly annotated.
1043 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1044 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1045 int depth)
1046 {
1047 struct file *file = epi_fget(epi);
1048 __poll_t res;
1049
1050 /*
1051 * We could return EPOLLERR | EPOLLHUP or something, but let's
1052 * treat this more as "file doesn't exist, poll didn't happen".
1053 */
1054 if (!file)
1055 return 0;
1056
1057 pt->_key = epi->event.events;
1058 if (!is_file_epoll(file))
1059 res = vfs_poll(file, pt);
1060 else
1061 res = __ep_eventpoll_poll(file, pt, depth);
1062 fput(file);
1063 return res & epi->event.events;
1064 }
1065
ep_eventpoll_poll(struct file * file,poll_table * wait)1066 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1067 {
1068 return __ep_eventpoll_poll(file, wait, 0);
1069 }
1070
1071 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1072 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1073 {
1074 struct eventpoll *ep = f->private_data;
1075 struct rb_node *rbp;
1076
1077 mutex_lock(&ep->mtx);
1078 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1080 struct inode *inode = file_inode(epi->ffd.file);
1081
1082 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1083 " pos:%lli ino:%lx sdev:%x\n",
1084 epi->ffd.fd, epi->event.events,
1085 (long long)epi->event.data,
1086 (long long)epi->ffd.file->f_pos,
1087 inode->i_ino, inode->i_sb->s_dev);
1088 if (seq_has_overflowed(m))
1089 break;
1090 }
1091 mutex_unlock(&ep->mtx);
1092 }
1093 #endif
1094
1095 /* File callbacks that implement the eventpoll file behaviour */
1096 static const struct file_operations eventpoll_fops = {
1097 #ifdef CONFIG_PROC_FS
1098 .show_fdinfo = ep_show_fdinfo,
1099 #endif
1100 .release = ep_eventpoll_release,
1101 .poll = ep_eventpoll_poll,
1102 .llseek = noop_llseek,
1103 .unlocked_ioctl = ep_eventpoll_ioctl,
1104 .compat_ioctl = compat_ptr_ioctl,
1105 };
1106
1107 /*
1108 * This is called from eventpoll_release() to unlink files from the eventpoll
1109 * interface. We need to have this facility to cleanup correctly files that are
1110 * closed without being removed from the eventpoll interface.
1111 */
eventpoll_release_file(struct file * file)1112 void eventpoll_release_file(struct file *file)
1113 {
1114 struct eventpoll *ep;
1115 struct epitem *epi;
1116 bool dispose;
1117
1118 /*
1119 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1120 * touching the epitems list before eventpoll_release_file() can access
1121 * the ep->mtx.
1122 */
1123 again:
1124 spin_lock(&file->f_lock);
1125 if (file->f_ep && file->f_ep->first) {
1126 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1127 epi->dying = true;
1128 spin_unlock(&file->f_lock);
1129
1130 /*
1131 * ep access is safe as we still own a reference to the ep
1132 * struct
1133 */
1134 ep = epi->ep;
1135 mutex_lock(&ep->mtx);
1136 dispose = __ep_remove(ep, epi, true);
1137 mutex_unlock(&ep->mtx);
1138
1139 if (dispose && ep_refcount_dec_and_test(ep))
1140 ep_free(ep);
1141 goto again;
1142 }
1143 spin_unlock(&file->f_lock);
1144 }
1145
ep_alloc(struct eventpoll ** pep)1146 static int ep_alloc(struct eventpoll **pep)
1147 {
1148 struct eventpoll *ep;
1149
1150 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1151 if (unlikely(!ep))
1152 return -ENOMEM;
1153
1154 mutex_init(&ep->mtx);
1155 rwlock_init(&ep->lock);
1156 init_waitqueue_head(&ep->wq);
1157 init_waitqueue_head(&ep->poll_wait);
1158 INIT_LIST_HEAD(&ep->rdllist);
1159 ep->rbr = RB_ROOT_CACHED;
1160 ep->ovflist = EP_UNACTIVE_PTR;
1161 ep->user = get_current_user();
1162 refcount_set(&ep->refcount, 1);
1163
1164 *pep = ep;
1165
1166 return 0;
1167 }
1168
1169 /*
1170 * Search the file inside the eventpoll tree. The RB tree operations
1171 * are protected by the "mtx" mutex, and ep_find() must be called with
1172 * "mtx" held.
1173 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1174 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1175 {
1176 int kcmp;
1177 struct rb_node *rbp;
1178 struct epitem *epi, *epir = NULL;
1179 struct epoll_filefd ffd;
1180
1181 ep_set_ffd(&ffd, file, fd);
1182 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1183 epi = rb_entry(rbp, struct epitem, rbn);
1184 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1185 if (kcmp > 0)
1186 rbp = rbp->rb_right;
1187 else if (kcmp < 0)
1188 rbp = rbp->rb_left;
1189 else {
1190 epir = epi;
1191 break;
1192 }
1193 }
1194
1195 return epir;
1196 }
1197
1198 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1199 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1200 {
1201 struct rb_node *rbp;
1202 struct epitem *epi;
1203
1204 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1205 epi = rb_entry(rbp, struct epitem, rbn);
1206 if (epi->ffd.fd == tfd) {
1207 if (toff == 0)
1208 return epi;
1209 else
1210 toff--;
1211 }
1212 cond_resched();
1213 }
1214
1215 return NULL;
1216 }
1217
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1218 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1219 unsigned long toff)
1220 {
1221 struct file *file_raw;
1222 struct eventpoll *ep;
1223 struct epitem *epi;
1224
1225 if (!is_file_epoll(file))
1226 return ERR_PTR(-EINVAL);
1227
1228 ep = file->private_data;
1229
1230 mutex_lock(&ep->mtx);
1231 epi = ep_find_tfd(ep, tfd, toff);
1232 if (epi)
1233 file_raw = epi->ffd.file;
1234 else
1235 file_raw = ERR_PTR(-ENOENT);
1236 mutex_unlock(&ep->mtx);
1237
1238 return file_raw;
1239 }
1240 #endif /* CONFIG_KCMP */
1241
1242 /*
1243 * Adds a new entry to the tail of the list in a lockless way, i.e.
1244 * multiple CPUs are allowed to call this function concurrently.
1245 *
1246 * Beware: it is necessary to prevent any other modifications of the
1247 * existing list until all changes are completed, in other words
1248 * concurrent list_add_tail_lockless() calls should be protected
1249 * with a read lock, where write lock acts as a barrier which
1250 * makes sure all list_add_tail_lockless() calls are fully
1251 * completed.
1252 *
1253 * Also an element can be locklessly added to the list only in one
1254 * direction i.e. either to the tail or to the head, otherwise
1255 * concurrent access will corrupt the list.
1256 *
1257 * Return: %false if element has been already added to the list, %true
1258 * otherwise.
1259 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1260 static inline bool list_add_tail_lockless(struct list_head *new,
1261 struct list_head *head)
1262 {
1263 struct list_head *prev;
1264
1265 /*
1266 * This is simple 'new->next = head' operation, but cmpxchg()
1267 * is used in order to detect that same element has been just
1268 * added to the list from another CPU: the winner observes
1269 * new->next == new.
1270 */
1271 if (!try_cmpxchg(&new->next, &new, head))
1272 return false;
1273
1274 /*
1275 * Initially ->next of a new element must be updated with the head
1276 * (we are inserting to the tail) and only then pointers are atomically
1277 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1278 * updated before pointers are actually swapped and pointers are
1279 * swapped before prev->next is updated.
1280 */
1281
1282 prev = xchg(&head->prev, new);
1283
1284 /*
1285 * It is safe to modify prev->next and new->prev, because a new element
1286 * is added only to the tail and new->next is updated before XCHG.
1287 */
1288
1289 prev->next = new;
1290 new->prev = prev;
1291
1292 return true;
1293 }
1294
1295 /*
1296 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1297 * i.e. multiple CPUs are allowed to call this function concurrently.
1298 *
1299 * Return: %false if epi element has been already chained, %true otherwise.
1300 */
chain_epi_lockless(struct epitem * epi)1301 static inline bool chain_epi_lockless(struct epitem *epi)
1302 {
1303 struct eventpoll *ep = epi->ep;
1304
1305 /* Fast preliminary check */
1306 if (epi->next != EP_UNACTIVE_PTR)
1307 return false;
1308
1309 /* Check that the same epi has not been just chained from another CPU */
1310 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1311 return false;
1312
1313 /* Atomically exchange tail */
1314 epi->next = xchg(&ep->ovflist, epi);
1315
1316 return true;
1317 }
1318
1319 /*
1320 * This is the callback that is passed to the wait queue wakeup
1321 * mechanism. It is called by the stored file descriptors when they
1322 * have events to report.
1323 *
1324 * This callback takes a read lock in order not to contend with concurrent
1325 * events from another file descriptor, thus all modifications to ->rdllist
1326 * or ->ovflist are lockless. Read lock is paired with the write lock from
1327 * ep_start/done_scan(), which stops all list modifications and guarantees
1328 * that lists state is seen correctly.
1329 *
1330 * Another thing worth to mention is that ep_poll_callback() can be called
1331 * concurrently for the same @epi from different CPUs if poll table was inited
1332 * with several wait queues entries. Plural wakeup from different CPUs of a
1333 * single wait queue is serialized by wq.lock, but the case when multiple wait
1334 * queues are used should be detected accordingly. This is detected using
1335 * cmpxchg() operation.
1336 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1337 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1338 {
1339 int pwake = 0;
1340 struct epitem *epi = ep_item_from_wait(wait);
1341 struct eventpoll *ep = epi->ep;
1342 __poll_t pollflags = key_to_poll(key);
1343 unsigned long flags;
1344 int ewake = 0;
1345
1346 read_lock_irqsave(&ep->lock, flags);
1347
1348 ep_set_busy_poll_napi_id(epi);
1349
1350 /*
1351 * If the event mask does not contain any poll(2) event, we consider the
1352 * descriptor to be disabled. This condition is likely the effect of the
1353 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1354 * until the next EPOLL_CTL_MOD will be issued.
1355 */
1356 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1357 goto out_unlock;
1358
1359 /*
1360 * Check the events coming with the callback. At this stage, not
1361 * every device reports the events in the "key" parameter of the
1362 * callback. We need to be able to handle both cases here, hence the
1363 * test for "key" != NULL before the event match test.
1364 */
1365 if (pollflags && !(pollflags & epi->event.events))
1366 goto out_unlock;
1367
1368 /*
1369 * If we are transferring events to userspace, we can hold no locks
1370 * (because we're accessing user memory, and because of linux f_op->poll()
1371 * semantics). All the events that happen during that period of time are
1372 * chained in ep->ovflist and requeued later on.
1373 */
1374 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1375 if (chain_epi_lockless(epi))
1376 ep_pm_stay_awake_rcu(epi);
1377 } else if (!ep_is_linked(epi)) {
1378 /* In the usual case, add event to ready list. */
1379 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1380 ep_pm_stay_awake_rcu(epi);
1381 }
1382
1383 /*
1384 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1385 * wait list.
1386 */
1387 if (waitqueue_active(&ep->wq)) {
1388 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1389 !(pollflags & POLLFREE)) {
1390 switch (pollflags & EPOLLINOUT_BITS) {
1391 case EPOLLIN:
1392 if (epi->event.events & EPOLLIN)
1393 ewake = 1;
1394 break;
1395 case EPOLLOUT:
1396 if (epi->event.events & EPOLLOUT)
1397 ewake = 1;
1398 break;
1399 case 0:
1400 ewake = 1;
1401 break;
1402 }
1403 }
1404 if (sync)
1405 wake_up_sync(&ep->wq);
1406 else
1407 wake_up(&ep->wq);
1408 }
1409 if (waitqueue_active(&ep->poll_wait))
1410 pwake++;
1411
1412 out_unlock:
1413 read_unlock_irqrestore(&ep->lock, flags);
1414
1415 /* We have to call this outside the lock */
1416 if (pwake)
1417 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1418
1419 if (!(epi->event.events & EPOLLEXCLUSIVE))
1420 ewake = 1;
1421
1422 if (pollflags & POLLFREE) {
1423 /*
1424 * If we race with ep_remove_wait_queue() it can miss
1425 * ->whead = NULL and do another remove_wait_queue() after
1426 * us, so we can't use __remove_wait_queue().
1427 */
1428 list_del_init(&wait->entry);
1429 /*
1430 * ->whead != NULL protects us from the race with
1431 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1432 * takes whead->lock held by the caller. Once we nullify it,
1433 * nothing protects ep/epi or even wait.
1434 */
1435 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1436 }
1437
1438 return ewake;
1439 }
1440
1441 /*
1442 * This is the callback that is used to add our wait queue to the
1443 * target file wakeup lists.
1444 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1445 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1446 poll_table *pt)
1447 {
1448 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1449 struct epitem *epi = epq->epi;
1450 struct eppoll_entry *pwq;
1451
1452 if (unlikely(!epi)) // an earlier allocation has failed
1453 return;
1454
1455 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1456 if (unlikely(!pwq)) {
1457 epq->epi = NULL;
1458 return;
1459 }
1460
1461 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1462 pwq->whead = whead;
1463 pwq->base = epi;
1464 if (epi->event.events & EPOLLEXCLUSIVE)
1465 add_wait_queue_exclusive(whead, &pwq->wait);
1466 else
1467 add_wait_queue(whead, &pwq->wait);
1468 pwq->next = epi->pwqlist;
1469 epi->pwqlist = pwq;
1470 }
1471
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1472 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1473 {
1474 int kcmp;
1475 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1476 struct epitem *epic;
1477 bool leftmost = true;
1478
1479 while (*p) {
1480 parent = *p;
1481 epic = rb_entry(parent, struct epitem, rbn);
1482 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1483 if (kcmp > 0) {
1484 p = &parent->rb_right;
1485 leftmost = false;
1486 } else
1487 p = &parent->rb_left;
1488 }
1489 rb_link_node(&epi->rbn, parent, p);
1490 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1491 }
1492
1493
1494
1495 #define PATH_ARR_SIZE 5
1496 /*
1497 * These are the number paths of length 1 to 5, that we are allowing to emanate
1498 * from a single file of interest. For example, we allow 1000 paths of length
1499 * 1, to emanate from each file of interest. This essentially represents the
1500 * potential wakeup paths, which need to be limited in order to avoid massive
1501 * uncontrolled wakeup storms. The common use case should be a single ep which
1502 * is connected to n file sources. In this case each file source has 1 path
1503 * of length 1. Thus, the numbers below should be more than sufficient. These
1504 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1505 * and delete can't add additional paths. Protected by the epnested_mutex.
1506 */
1507 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1508 static int path_count[PATH_ARR_SIZE];
1509
path_count_inc(int nests)1510 static int path_count_inc(int nests)
1511 {
1512 /* Allow an arbitrary number of depth 1 paths */
1513 if (nests == 0)
1514 return 0;
1515
1516 if (++path_count[nests] > path_limits[nests])
1517 return -1;
1518 return 0;
1519 }
1520
path_count_init(void)1521 static void path_count_init(void)
1522 {
1523 int i;
1524
1525 for (i = 0; i < PATH_ARR_SIZE; i++)
1526 path_count[i] = 0;
1527 }
1528
reverse_path_check_proc(struct hlist_head * refs,int depth)1529 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1530 {
1531 int error = 0;
1532 struct epitem *epi;
1533
1534 if (depth > EP_MAX_NESTS) /* too deep nesting */
1535 return -1;
1536
1537 /* CTL_DEL can remove links here, but that can't increase our count */
1538 hlist_for_each_entry_rcu(epi, refs, fllink) {
1539 struct hlist_head *refs = &epi->ep->refs;
1540 if (hlist_empty(refs))
1541 error = path_count_inc(depth);
1542 else
1543 error = reverse_path_check_proc(refs, depth + 1);
1544 if (error != 0)
1545 break;
1546 }
1547 return error;
1548 }
1549
1550 /**
1551 * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1552 * links that are proposed to be newly added. We need to
1553 * make sure that those added links don't add too many
1554 * paths such that we will spend all our time waking up
1555 * eventpoll objects.
1556 *
1557 * Return: %zero if the proposed links don't create too many paths,
1558 * %-1 otherwise.
1559 */
reverse_path_check(void)1560 static int reverse_path_check(void)
1561 {
1562 struct epitems_head *p;
1563
1564 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1565 int error;
1566 path_count_init();
1567 rcu_read_lock();
1568 error = reverse_path_check_proc(&p->epitems, 0);
1569 rcu_read_unlock();
1570 if (error)
1571 return error;
1572 }
1573 return 0;
1574 }
1575
ep_create_wakeup_source(struct epitem * epi)1576 static int ep_create_wakeup_source(struct epitem *epi)
1577 {
1578 struct name_snapshot n;
1579 struct wakeup_source *ws;
1580
1581 if (!epi->ep->ws) {
1582 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1583 if (!epi->ep->ws)
1584 return -ENOMEM;
1585 }
1586
1587 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1588 ws = wakeup_source_register(NULL, n.name.name);
1589 release_dentry_name_snapshot(&n);
1590
1591 if (!ws)
1592 return -ENOMEM;
1593 rcu_assign_pointer(epi->ws, ws);
1594
1595 return 0;
1596 }
1597
1598 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1599 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1600 {
1601 struct wakeup_source *ws = ep_wakeup_source(epi);
1602
1603 RCU_INIT_POINTER(epi->ws, NULL);
1604
1605 /*
1606 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1607 * used internally by wakeup_source_remove, too (called by
1608 * wakeup_source_unregister), so we cannot use call_rcu
1609 */
1610 synchronize_rcu();
1611 wakeup_source_unregister(ws);
1612 }
1613
attach_epitem(struct file * file,struct epitem * epi)1614 static int attach_epitem(struct file *file, struct epitem *epi)
1615 {
1616 struct epitems_head *to_free = NULL;
1617 struct hlist_head *head = NULL;
1618 struct eventpoll *ep = NULL;
1619
1620 if (is_file_epoll(file))
1621 ep = file->private_data;
1622
1623 if (ep) {
1624 head = &ep->refs;
1625 } else if (!READ_ONCE(file->f_ep)) {
1626 allocate:
1627 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1628 if (!to_free)
1629 return -ENOMEM;
1630 head = &to_free->epitems;
1631 }
1632 spin_lock(&file->f_lock);
1633 if (!file->f_ep) {
1634 if (unlikely(!head)) {
1635 spin_unlock(&file->f_lock);
1636 goto allocate;
1637 }
1638 /* See eventpoll_release() for details. */
1639 WRITE_ONCE(file->f_ep, head);
1640 to_free = NULL;
1641 }
1642 hlist_add_head_rcu(&epi->fllink, file->f_ep);
1643 spin_unlock(&file->f_lock);
1644 free_ephead(to_free);
1645 return 0;
1646 }
1647
1648 /*
1649 * Must be called with "mtx" held.
1650 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1651 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1652 struct file *tfile, int fd, int full_check)
1653 {
1654 int error, pwake = 0;
1655 __poll_t revents;
1656 struct epitem *epi;
1657 struct ep_pqueue epq;
1658 struct eventpoll *tep = NULL;
1659
1660 if (is_file_epoll(tfile))
1661 tep = tfile->private_data;
1662
1663 lockdep_assert_irqs_enabled();
1664
1665 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1666 max_user_watches) >= 0))
1667 return -ENOSPC;
1668 percpu_counter_inc(&ep->user->epoll_watches);
1669
1670 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1671 percpu_counter_dec(&ep->user->epoll_watches);
1672 return -ENOMEM;
1673 }
1674
1675 /* Item initialization follow here ... */
1676 INIT_LIST_HEAD(&epi->rdllink);
1677 epi->ep = ep;
1678 ep_set_ffd(&epi->ffd, tfile, fd);
1679 epi->event = *event;
1680 epi->next = EP_UNACTIVE_PTR;
1681
1682 if (tep)
1683 mutex_lock_nested(&tep->mtx, 1);
1684 /* Add the current item to the list of active epoll hook for this file */
1685 if (unlikely(attach_epitem(tfile, epi) < 0)) {
1686 if (tep)
1687 mutex_unlock(&tep->mtx);
1688 kmem_cache_free(epi_cache, epi);
1689 percpu_counter_dec(&ep->user->epoll_watches);
1690 return -ENOMEM;
1691 }
1692
1693 if (full_check && !tep)
1694 list_file(tfile);
1695
1696 /*
1697 * Add the current item to the RB tree. All RB tree operations are
1698 * protected by "mtx", and ep_insert() is called with "mtx" held.
1699 */
1700 ep_rbtree_insert(ep, epi);
1701 if (tep)
1702 mutex_unlock(&tep->mtx);
1703
1704 /*
1705 * ep_remove_safe() calls in the later error paths can't lead to
1706 * ep_free() as the ep file itself still holds an ep reference.
1707 */
1708 ep_get(ep);
1709
1710 /* now check if we've created too many backpaths */
1711 if (unlikely(full_check && reverse_path_check())) {
1712 ep_remove_safe(ep, epi);
1713 return -EINVAL;
1714 }
1715
1716 if (epi->event.events & EPOLLWAKEUP) {
1717 error = ep_create_wakeup_source(epi);
1718 if (error) {
1719 ep_remove_safe(ep, epi);
1720 return error;
1721 }
1722 }
1723
1724 /* Initialize the poll table using the queue callback */
1725 epq.epi = epi;
1726 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1727
1728 /*
1729 * Attach the item to the poll hooks and get current event bits.
1730 * We can safely use the file* here because its usage count has
1731 * been increased by the caller of this function. Note that after
1732 * this operation completes, the poll callback can start hitting
1733 * the new item.
1734 */
1735 revents = ep_item_poll(epi, &epq.pt, 1);
1736
1737 /*
1738 * We have to check if something went wrong during the poll wait queue
1739 * install process. Namely an allocation for a wait queue failed due
1740 * high memory pressure.
1741 */
1742 if (unlikely(!epq.epi)) {
1743 ep_remove_safe(ep, epi);
1744 return -ENOMEM;
1745 }
1746
1747 /* We have to drop the new item inside our item list to keep track of it */
1748 write_lock_irq(&ep->lock);
1749
1750 /* record NAPI ID of new item if present */
1751 ep_set_busy_poll_napi_id(epi);
1752
1753 /* If the file is already "ready" we drop it inside the ready list */
1754 if (revents && !ep_is_linked(epi)) {
1755 list_add_tail(&epi->rdllink, &ep->rdllist);
1756 ep_pm_stay_awake(epi);
1757
1758 /* Notify waiting tasks that events are available */
1759 if (waitqueue_active(&ep->wq))
1760 wake_up(&ep->wq);
1761 if (waitqueue_active(&ep->poll_wait))
1762 pwake++;
1763 }
1764
1765 write_unlock_irq(&ep->lock);
1766
1767 /* We have to call this outside the lock */
1768 if (pwake)
1769 ep_poll_safewake(ep, NULL, 0);
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * Modify the interest event mask by dropping an event if the new mask
1776 * has a match in the current file status. Must be called with "mtx" held.
1777 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1778 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1779 const struct epoll_event *event)
1780 {
1781 int pwake = 0;
1782 poll_table pt;
1783
1784 lockdep_assert_irqs_enabled();
1785
1786 init_poll_funcptr(&pt, NULL);
1787
1788 /*
1789 * Set the new event interest mask before calling f_op->poll();
1790 * otherwise we might miss an event that happens between the
1791 * f_op->poll() call and the new event set registering.
1792 */
1793 epi->event.events = event->events; /* need barrier below */
1794 epi->event.data = event->data; /* protected by mtx */
1795 if (epi->event.events & EPOLLWAKEUP) {
1796 if (!ep_has_wakeup_source(epi))
1797 ep_create_wakeup_source(epi);
1798 } else if (ep_has_wakeup_source(epi)) {
1799 ep_destroy_wakeup_source(epi);
1800 }
1801
1802 /*
1803 * The following barrier has two effects:
1804 *
1805 * 1) Flush epi changes above to other CPUs. This ensures
1806 * we do not miss events from ep_poll_callback if an
1807 * event occurs immediately after we call f_op->poll().
1808 * We need this because we did not take ep->lock while
1809 * changing epi above (but ep_poll_callback does take
1810 * ep->lock).
1811 *
1812 * 2) We also need to ensure we do not miss _past_ events
1813 * when calling f_op->poll(). This barrier also
1814 * pairs with the barrier in wq_has_sleeper (see
1815 * comments for wq_has_sleeper).
1816 *
1817 * This barrier will now guarantee ep_poll_callback or f_op->poll
1818 * (or both) will notice the readiness of an item.
1819 */
1820 smp_mb();
1821
1822 /*
1823 * Get current event bits. We can safely use the file* here because
1824 * its usage count has been increased by the caller of this function.
1825 * If the item is "hot" and it is not registered inside the ready
1826 * list, push it inside.
1827 */
1828 if (ep_item_poll(epi, &pt, 1)) {
1829 write_lock_irq(&ep->lock);
1830 if (!ep_is_linked(epi)) {
1831 list_add_tail(&epi->rdllink, &ep->rdllist);
1832 ep_pm_stay_awake(epi);
1833
1834 /* Notify waiting tasks that events are available */
1835 if (waitqueue_active(&ep->wq))
1836 wake_up(&ep->wq);
1837 if (waitqueue_active(&ep->poll_wait))
1838 pwake++;
1839 }
1840 write_unlock_irq(&ep->lock);
1841 }
1842
1843 /* We have to call this outside the lock */
1844 if (pwake)
1845 ep_poll_safewake(ep, NULL, 0);
1846
1847 return 0;
1848 }
1849
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1850 static int ep_send_events(struct eventpoll *ep,
1851 struct epoll_event __user *events, int maxevents)
1852 {
1853 struct epitem *epi, *tmp;
1854 LIST_HEAD(txlist);
1855 poll_table pt;
1856 int res = 0;
1857
1858 /*
1859 * Always short-circuit for fatal signals to allow threads to make a
1860 * timely exit without the chance of finding more events available and
1861 * fetching repeatedly.
1862 */
1863 if (fatal_signal_pending(current))
1864 return -EINTR;
1865
1866 init_poll_funcptr(&pt, NULL);
1867
1868 mutex_lock(&ep->mtx);
1869 ep_start_scan(ep, &txlist);
1870
1871 /*
1872 * We can loop without lock because we are passed a task private list.
1873 * Items cannot vanish during the loop we are holding ep->mtx.
1874 */
1875 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1876 struct wakeup_source *ws;
1877 __poll_t revents;
1878
1879 if (res >= maxevents)
1880 break;
1881
1882 /*
1883 * Activate ep->ws before deactivating epi->ws to prevent
1884 * triggering auto-suspend here (in case we reactive epi->ws
1885 * below).
1886 *
1887 * This could be rearranged to delay the deactivation of epi->ws
1888 * instead, but then epi->ws would temporarily be out of sync
1889 * with ep_is_linked().
1890 */
1891 ws = ep_wakeup_source(epi);
1892 if (ws) {
1893 if (ws->active)
1894 __pm_stay_awake(ep->ws);
1895 __pm_relax(ws);
1896 }
1897
1898 list_del_init(&epi->rdllink);
1899
1900 /*
1901 * If the event mask intersect the caller-requested one,
1902 * deliver the event to userspace. Again, we are holding ep->mtx,
1903 * so no operations coming from userspace can change the item.
1904 */
1905 revents = ep_item_poll(epi, &pt, 1);
1906 if (!revents)
1907 continue;
1908
1909 events = epoll_put_uevent(revents, epi->event.data, events);
1910 if (!events) {
1911 list_add(&epi->rdllink, &txlist);
1912 ep_pm_stay_awake(epi);
1913 if (!res)
1914 res = -EFAULT;
1915 break;
1916 }
1917 res++;
1918 if (epi->event.events & EPOLLONESHOT)
1919 epi->event.events &= EP_PRIVATE_BITS;
1920 else if (!(epi->event.events & EPOLLET)) {
1921 /*
1922 * If this file has been added with Level
1923 * Trigger mode, we need to insert back inside
1924 * the ready list, so that the next call to
1925 * epoll_wait() will check again the events
1926 * availability. At this point, no one can insert
1927 * into ep->rdllist besides us. The epoll_ctl()
1928 * callers are locked out by
1929 * ep_send_events() holding "mtx" and the
1930 * poll callback will queue them in ep->ovflist.
1931 */
1932 list_add_tail(&epi->rdllink, &ep->rdllist);
1933 ep_pm_stay_awake(epi);
1934 }
1935 }
1936 ep_done_scan(ep, &txlist);
1937 mutex_unlock(&ep->mtx);
1938
1939 return res;
1940 }
1941
ep_timeout_to_timespec(struct timespec64 * to,long ms)1942 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1943 {
1944 struct timespec64 now;
1945
1946 if (ms < 0)
1947 return NULL;
1948
1949 if (!ms) {
1950 to->tv_sec = 0;
1951 to->tv_nsec = 0;
1952 return to;
1953 }
1954
1955 to->tv_sec = ms / MSEC_PER_SEC;
1956 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1957
1958 ktime_get_ts64(&now);
1959 *to = timespec64_add_safe(now, *to);
1960 return to;
1961 }
1962
1963 /*
1964 * autoremove_wake_function, but remove even on failure to wake up, because we
1965 * know that default_wake_function/ttwu will only fail if the thread is already
1966 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1967 * try to reuse it.
1968 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1969 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1970 unsigned int mode, int sync, void *key)
1971 {
1972 int ret = default_wake_function(wq_entry, mode, sync, key);
1973
1974 /*
1975 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1976 * iterations see the cause of this wakeup.
1977 */
1978 list_del_init_careful(&wq_entry->entry);
1979 return ret;
1980 }
1981
ep_try_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1982 static int ep_try_send_events(struct eventpoll *ep,
1983 struct epoll_event __user *events, int maxevents)
1984 {
1985 int res;
1986
1987 /*
1988 * Try to transfer events to user space. In case we get 0 events and
1989 * there's still timeout left over, we go trying again in search of
1990 * more luck.
1991 */
1992 res = ep_send_events(ep, events, maxevents);
1993 if (res > 0)
1994 ep_suspend_napi_irqs(ep);
1995 return res;
1996 }
1997
ep_schedule_timeout(ktime_t * to)1998 static int ep_schedule_timeout(ktime_t *to)
1999 {
2000 if (to)
2001 return ktime_after(*to, ktime_get());
2002 else
2003 return 1;
2004 }
2005
2006 /**
2007 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
2008 * event buffer.
2009 *
2010 * @ep: Pointer to the eventpoll context.
2011 * @events: Pointer to the userspace buffer where the ready events should be
2012 * stored.
2013 * @maxevents: Size (in terms of number of events) of the caller event buffer.
2014 * @timeout: Maximum timeout for the ready events fetch operation, in
2015 * timespec. If the timeout is zero, the function will not block,
2016 * while if the @timeout ptr is NULL, the function will block
2017 * until at least one event has been retrieved (or an error
2018 * occurred).
2019 *
2020 * Return: the number of ready events which have been fetched, or an
2021 * error code, in case of error.
2022 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)2023 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
2024 int maxevents, struct timespec64 *timeout)
2025 {
2026 int res, eavail, timed_out = 0;
2027 u64 slack = 0;
2028 wait_queue_entry_t wait;
2029 ktime_t expires, *to = NULL;
2030
2031 lockdep_assert_irqs_enabled();
2032
2033 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2034 slack = select_estimate_accuracy(timeout);
2035 to = &expires;
2036 *to = timespec64_to_ktime(*timeout);
2037 } else if (timeout) {
2038 /*
2039 * Avoid the unnecessary trip to the wait queue loop, if the
2040 * caller specified a non blocking operation.
2041 */
2042 timed_out = 1;
2043 }
2044
2045 /*
2046 * This call is racy: We may or may not see events that are being added
2047 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2048 * with a non-zero timeout, this thread will check the ready list under
2049 * lock and will add to the wait queue. For cases with a zero
2050 * timeout, the user by definition should not care and will have to
2051 * recheck again.
2052 */
2053 eavail = ep_events_available(ep);
2054
2055 while (1) {
2056 if (eavail) {
2057 res = ep_try_send_events(ep, events, maxevents);
2058 if (res)
2059 return res;
2060 }
2061
2062 if (timed_out)
2063 return 0;
2064
2065 eavail = ep_busy_loop(ep);
2066 if (eavail)
2067 continue;
2068
2069 if (signal_pending(current))
2070 return -EINTR;
2071
2072 /*
2073 * Internally init_wait() uses autoremove_wake_function(),
2074 * thus wait entry is removed from the wait queue on each
2075 * wakeup. Why it is important? In case of several waiters
2076 * each new wakeup will hit the next waiter, giving it the
2077 * chance to harvest new event. Otherwise wakeup can be
2078 * lost. This is also good performance-wise, because on
2079 * normal wakeup path no need to call __remove_wait_queue()
2080 * explicitly, thus ep->lock is not taken, which halts the
2081 * event delivery.
2082 *
2083 * In fact, we now use an even more aggressive function that
2084 * unconditionally removes, because we don't reuse the wait
2085 * entry between loop iterations. This lets us also avoid the
2086 * performance issue if a process is killed, causing all of its
2087 * threads to wake up without being removed normally.
2088 */
2089 init_wait(&wait);
2090 wait.func = ep_autoremove_wake_function;
2091
2092 write_lock_irq(&ep->lock);
2093 /*
2094 * Barrierless variant, waitqueue_active() is called under
2095 * the same lock on wakeup ep_poll_callback() side, so it
2096 * is safe to avoid an explicit barrier.
2097 */
2098 __set_current_state(TASK_INTERRUPTIBLE);
2099
2100 /*
2101 * Do the final check under the lock. ep_start/done_scan()
2102 * plays with two lists (->rdllist and ->ovflist) and there
2103 * is always a race when both lists are empty for short
2104 * period of time although events are pending, so lock is
2105 * important.
2106 */
2107 eavail = ep_events_available(ep);
2108 if (!eavail)
2109 __add_wait_queue_exclusive(&ep->wq, &wait);
2110
2111 write_unlock_irq(&ep->lock);
2112
2113 if (!eavail)
2114 timed_out = !ep_schedule_timeout(to) ||
2115 !schedule_hrtimeout_range(to, slack,
2116 HRTIMER_MODE_ABS);
2117 __set_current_state(TASK_RUNNING);
2118
2119 /*
2120 * We were woken up, thus go and try to harvest some events.
2121 * If timed out and still on the wait queue, recheck eavail
2122 * carefully under lock, below.
2123 */
2124 eavail = 1;
2125
2126 if (!list_empty_careful(&wait.entry)) {
2127 write_lock_irq(&ep->lock);
2128 /*
2129 * If the thread timed out and is not on the wait queue,
2130 * it means that the thread was woken up after its
2131 * timeout expired before it could reacquire the lock.
2132 * Thus, when wait.entry is empty, it needs to harvest
2133 * events.
2134 */
2135 if (timed_out)
2136 eavail = list_empty(&wait.entry);
2137 __remove_wait_queue(&ep->wq, &wait);
2138 write_unlock_irq(&ep->lock);
2139 }
2140 }
2141 }
2142
2143 /**
2144 * ep_loop_check_proc - verify that adding an epoll file @ep inside another
2145 * epoll file does not create closed loops, and
2146 * determine the depth of the subtree starting at @ep
2147 *
2148 * @ep: the &struct eventpoll to be currently checked.
2149 * @depth: Current depth of the path being checked.
2150 *
2151 * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep.
2152 */
ep_loop_check_proc(struct eventpoll * ep,int depth)2153 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2154 {
2155 int result = 0;
2156 struct rb_node *rbp;
2157 struct epitem *epi;
2158
2159 if (ep->gen == loop_check_gen)
2160 return ep->loop_check_depth;
2161
2162 mutex_lock_nested(&ep->mtx, depth + 1);
2163 ep->gen = loop_check_gen;
2164 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2165 epi = rb_entry(rbp, struct epitem, rbn);
2166 if (unlikely(is_file_epoll(epi->ffd.file))) {
2167 struct eventpoll *ep_tovisit;
2168 ep_tovisit = epi->ffd.file->private_data;
2169 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2170 result = INT_MAX;
2171 else
2172 result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1);
2173 if (result > EP_MAX_NESTS)
2174 break;
2175 } else {
2176 /*
2177 * If we've reached a file that is not associated with
2178 * an ep, then we need to check if the newly added
2179 * links are going to add too many wakeup paths. We do
2180 * this by adding it to the tfile_check_list, if it's
2181 * not already there, and calling reverse_path_check()
2182 * during ep_insert().
2183 */
2184 list_file(epi->ffd.file);
2185 }
2186 }
2187 ep->loop_check_depth = result;
2188 mutex_unlock(&ep->mtx);
2189
2190 return result;
2191 }
2192
2193 /* ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards */
ep_get_upwards_depth_proc(struct eventpoll * ep,int depth)2194 static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth)
2195 {
2196 int result = 0;
2197 struct epitem *epi;
2198
2199 if (ep->gen == loop_check_gen)
2200 return ep->loop_check_depth;
2201 hlist_for_each_entry_rcu(epi, &ep->refs, fllink)
2202 result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1);
2203 ep->gen = loop_check_gen;
2204 ep->loop_check_depth = result;
2205 return result;
2206 }
2207
2208 /**
2209 * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2210 * into another epoll file (represented by @ep) does not create
2211 * closed loops or too deep chains.
2212 *
2213 * @ep: Pointer to the epoll we are inserting into.
2214 * @to: Pointer to the epoll to be inserted.
2215 *
2216 * Return: %zero if adding the epoll @to inside the epoll @from
2217 * does not violate the constraints, or %-1 otherwise.
2218 */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2219 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2220 {
2221 int depth, upwards_depth;
2222
2223 inserting_into = ep;
2224 /*
2225 * Check how deep down we can get from @to, and whether it is possible
2226 * to loop up to @ep.
2227 */
2228 depth = ep_loop_check_proc(to, 0);
2229 if (depth > EP_MAX_NESTS)
2230 return -1;
2231 /* Check how far up we can go from @ep. */
2232 rcu_read_lock();
2233 upwards_depth = ep_get_upwards_depth_proc(ep, 0);
2234 rcu_read_unlock();
2235
2236 return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0;
2237 }
2238
clear_tfile_check_list(void)2239 static void clear_tfile_check_list(void)
2240 {
2241 rcu_read_lock();
2242 while (tfile_check_list != EP_UNACTIVE_PTR) {
2243 struct epitems_head *head = tfile_check_list;
2244 tfile_check_list = head->next;
2245 unlist_file(head);
2246 }
2247 rcu_read_unlock();
2248 }
2249
2250 /*
2251 * Open an eventpoll file descriptor.
2252 */
do_epoll_create(int flags)2253 static int do_epoll_create(int flags)
2254 {
2255 int error, fd;
2256 struct eventpoll *ep = NULL;
2257 struct file *file;
2258
2259 /* Check the EPOLL_* constant for consistency. */
2260 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2261
2262 if (flags & ~EPOLL_CLOEXEC)
2263 return -EINVAL;
2264 /*
2265 * Create the internal data structure ("struct eventpoll").
2266 */
2267 error = ep_alloc(&ep);
2268 if (error < 0)
2269 return error;
2270 /*
2271 * Creates all the items needed to setup an eventpoll file. That is,
2272 * a file structure and a free file descriptor.
2273 */
2274 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2275 if (fd < 0) {
2276 error = fd;
2277 goto out_free_ep;
2278 }
2279 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2280 O_RDWR | (flags & O_CLOEXEC));
2281 if (IS_ERR(file)) {
2282 error = PTR_ERR(file);
2283 goto out_free_fd;
2284 }
2285 ep->file = file;
2286 fd_install(fd, file);
2287 return fd;
2288
2289 out_free_fd:
2290 put_unused_fd(fd);
2291 out_free_ep:
2292 ep_clear_and_put(ep);
2293 return error;
2294 }
2295
SYSCALL_DEFINE1(epoll_create1,int,flags)2296 SYSCALL_DEFINE1(epoll_create1, int, flags)
2297 {
2298 return do_epoll_create(flags);
2299 }
2300
SYSCALL_DEFINE1(epoll_create,int,size)2301 SYSCALL_DEFINE1(epoll_create, int, size)
2302 {
2303 if (size <= 0)
2304 return -EINVAL;
2305
2306 return do_epoll_create(0);
2307 }
2308
2309 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2310 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2311 {
2312 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2313 epev->events &= ~EPOLLWAKEUP;
2314 }
2315 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2316 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2317 {
2318 epev->events &= ~EPOLLWAKEUP;
2319 }
2320 #endif
2321
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2322 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2323 bool nonblock)
2324 {
2325 if (!nonblock) {
2326 mutex_lock_nested(mutex, depth);
2327 return 0;
2328 }
2329 if (mutex_trylock(mutex))
2330 return 0;
2331 return -EAGAIN;
2332 }
2333
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2334 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2335 bool nonblock)
2336 {
2337 int error;
2338 int full_check = 0;
2339 struct eventpoll *ep;
2340 struct epitem *epi;
2341 struct eventpoll *tep = NULL;
2342
2343 CLASS(fd, f)(epfd);
2344 if (fd_empty(f))
2345 return -EBADF;
2346
2347 /* Get the "struct file *" for the target file */
2348 CLASS(fd, tf)(fd);
2349 if (fd_empty(tf))
2350 return -EBADF;
2351
2352 /* The target file descriptor must support poll */
2353 if (!file_can_poll(fd_file(tf)))
2354 return -EPERM;
2355
2356 /* Check if EPOLLWAKEUP is allowed */
2357 if (ep_op_has_event(op))
2358 ep_take_care_of_epollwakeup(epds);
2359
2360 /*
2361 * We have to check that the file structure underneath the file descriptor
2362 * the user passed to us _is_ an eventpoll file. And also we do not permit
2363 * adding an epoll file descriptor inside itself.
2364 */
2365 error = -EINVAL;
2366 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2367 goto error_tgt_fput;
2368
2369 /*
2370 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2371 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2372 * Also, we do not currently supported nested exclusive wakeups.
2373 */
2374 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2375 if (op == EPOLL_CTL_MOD)
2376 goto error_tgt_fput;
2377 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2378 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2379 goto error_tgt_fput;
2380 }
2381
2382 /*
2383 * At this point it is safe to assume that the "private_data" contains
2384 * our own data structure.
2385 */
2386 ep = fd_file(f)->private_data;
2387
2388 /*
2389 * When we insert an epoll file descriptor inside another epoll file
2390 * descriptor, there is the chance of creating closed loops, which are
2391 * better be handled here, than in more critical paths. While we are
2392 * checking for loops we also determine the list of files reachable
2393 * and hang them on the tfile_check_list, so we can check that we
2394 * haven't created too many possible wakeup paths.
2395 *
2396 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2397 * the epoll file descriptor is attaching directly to a wakeup source,
2398 * unless the epoll file descriptor is nested. The purpose of taking the
2399 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2400 * deep wakeup paths from forming in parallel through multiple
2401 * EPOLL_CTL_ADD operations.
2402 */
2403 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2404 if (error)
2405 goto error_tgt_fput;
2406 if (op == EPOLL_CTL_ADD) {
2407 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2408 is_file_epoll(fd_file(tf))) {
2409 mutex_unlock(&ep->mtx);
2410 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2411 if (error)
2412 goto error_tgt_fput;
2413 loop_check_gen++;
2414 full_check = 1;
2415 if (is_file_epoll(fd_file(tf))) {
2416 tep = fd_file(tf)->private_data;
2417 error = -ELOOP;
2418 if (ep_loop_check(ep, tep) != 0)
2419 goto error_tgt_fput;
2420 }
2421 error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2422 if (error)
2423 goto error_tgt_fput;
2424 }
2425 }
2426
2427 /*
2428 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2429 * above, we can be sure to be able to use the item looked up by
2430 * ep_find() till we release the mutex.
2431 */
2432 epi = ep_find(ep, fd_file(tf), fd);
2433
2434 error = -EINVAL;
2435 switch (op) {
2436 case EPOLL_CTL_ADD:
2437 if (!epi) {
2438 epds->events |= EPOLLERR | EPOLLHUP;
2439 error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2440 } else
2441 error = -EEXIST;
2442 break;
2443 case EPOLL_CTL_DEL:
2444 if (epi) {
2445 /*
2446 * The eventpoll itself is still alive: the refcount
2447 * can't go to zero here.
2448 */
2449 ep_remove_safe(ep, epi);
2450 error = 0;
2451 } else {
2452 error = -ENOENT;
2453 }
2454 break;
2455 case EPOLL_CTL_MOD:
2456 if (epi) {
2457 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2458 epds->events |= EPOLLERR | EPOLLHUP;
2459 error = ep_modify(ep, epi, epds);
2460 }
2461 } else
2462 error = -ENOENT;
2463 break;
2464 }
2465 mutex_unlock(&ep->mtx);
2466
2467 error_tgt_fput:
2468 if (full_check) {
2469 clear_tfile_check_list();
2470 loop_check_gen++;
2471 mutex_unlock(&epnested_mutex);
2472 }
2473 return error;
2474 }
2475
2476 /*
2477 * The following function implements the controller interface for
2478 * the eventpoll file that enables the insertion/removal/change of
2479 * file descriptors inside the interest set.
2480 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2481 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2482 struct epoll_event __user *, event)
2483 {
2484 struct epoll_event epds;
2485
2486 if (ep_op_has_event(op) &&
2487 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2488 return -EFAULT;
2489
2490 return do_epoll_ctl(epfd, op, fd, &epds, false);
2491 }
2492
ep_check_params(struct file * file,struct epoll_event __user * evs,int maxevents)2493 static int ep_check_params(struct file *file, struct epoll_event __user *evs,
2494 int maxevents)
2495 {
2496 /* The maximum number of event must be greater than zero */
2497 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2498 return -EINVAL;
2499
2500 /* Verify that the area passed by the user is writeable */
2501 if (!access_ok(evs, maxevents * sizeof(struct epoll_event)))
2502 return -EFAULT;
2503
2504 /*
2505 * We have to check that the file structure underneath the fd
2506 * the user passed to us _is_ an eventpoll file.
2507 */
2508 if (!is_file_epoll(file))
2509 return -EINVAL;
2510
2511 return 0;
2512 }
2513
epoll_sendevents(struct file * file,struct epoll_event __user * events,int maxevents)2514 int epoll_sendevents(struct file *file, struct epoll_event __user *events,
2515 int maxevents)
2516 {
2517 struct eventpoll *ep;
2518 int ret;
2519
2520 ret = ep_check_params(file, events, maxevents);
2521 if (unlikely(ret))
2522 return ret;
2523
2524 ep = file->private_data;
2525 /*
2526 * Racy call, but that's ok - it should get retried based on
2527 * poll readiness anyway.
2528 */
2529 if (ep_events_available(ep))
2530 return ep_try_send_events(ep, events, maxevents);
2531 return 0;
2532 }
2533
2534 /*
2535 * Implement the event wait interface for the eventpoll file. It is the kernel
2536 * part of the user space epoll_wait(2).
2537 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2538 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2539 int maxevents, struct timespec64 *to)
2540 {
2541 struct eventpoll *ep;
2542 int ret;
2543
2544 /* Get the "struct file *" for the eventpoll file */
2545 CLASS(fd, f)(epfd);
2546 if (fd_empty(f))
2547 return -EBADF;
2548
2549 ret = ep_check_params(fd_file(f), events, maxevents);
2550 if (unlikely(ret))
2551 return ret;
2552
2553 /*
2554 * At this point it is safe to assume that the "private_data" contains
2555 * our own data structure.
2556 */
2557 ep = fd_file(f)->private_data;
2558
2559 /* Time to fish for events ... */
2560 return ep_poll(ep, events, maxevents, to);
2561 }
2562
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2563 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2564 int, maxevents, int, timeout)
2565 {
2566 struct timespec64 to;
2567
2568 return do_epoll_wait(epfd, events, maxevents,
2569 ep_timeout_to_timespec(&to, timeout));
2570 }
2571
2572 /*
2573 * Implement the event wait interface for the eventpoll file. It is the kernel
2574 * part of the user space epoll_pwait(2).
2575 */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2576 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2577 int maxevents, struct timespec64 *to,
2578 const sigset_t __user *sigmask, size_t sigsetsize)
2579 {
2580 int error;
2581
2582 /*
2583 * If the caller wants a certain signal mask to be set during the wait,
2584 * we apply it here.
2585 */
2586 error = set_user_sigmask(sigmask, sigsetsize);
2587 if (error)
2588 return error;
2589
2590 error = do_epoll_wait(epfd, events, maxevents, to);
2591
2592 restore_saved_sigmask_unless(error == -EINTR);
2593
2594 return error;
2595 }
2596
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2597 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2598 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2599 size_t, sigsetsize)
2600 {
2601 struct timespec64 to;
2602
2603 return do_epoll_pwait(epfd, events, maxevents,
2604 ep_timeout_to_timespec(&to, timeout),
2605 sigmask, sigsetsize);
2606 }
2607
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2608 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2609 int, maxevents, const struct __kernel_timespec __user *, timeout,
2610 const sigset_t __user *, sigmask, size_t, sigsetsize)
2611 {
2612 struct timespec64 ts, *to = NULL;
2613
2614 if (timeout) {
2615 if (get_timespec64(&ts, timeout))
2616 return -EFAULT;
2617 to = &ts;
2618 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2619 return -EINVAL;
2620 }
2621
2622 return do_epoll_pwait(epfd, events, maxevents, to,
2623 sigmask, sigsetsize);
2624 }
2625
2626 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2627 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2628 int maxevents, struct timespec64 *timeout,
2629 const compat_sigset_t __user *sigmask,
2630 compat_size_t sigsetsize)
2631 {
2632 long err;
2633
2634 /*
2635 * If the caller wants a certain signal mask to be set during the wait,
2636 * we apply it here.
2637 */
2638 err = set_compat_user_sigmask(sigmask, sigsetsize);
2639 if (err)
2640 return err;
2641
2642 err = do_epoll_wait(epfd, events, maxevents, timeout);
2643
2644 restore_saved_sigmask_unless(err == -EINTR);
2645
2646 return err;
2647 }
2648
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2649 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2650 struct epoll_event __user *, events,
2651 int, maxevents, int, timeout,
2652 const compat_sigset_t __user *, sigmask,
2653 compat_size_t, sigsetsize)
2654 {
2655 struct timespec64 to;
2656
2657 return do_compat_epoll_pwait(epfd, events, maxevents,
2658 ep_timeout_to_timespec(&to, timeout),
2659 sigmask, sigsetsize);
2660 }
2661
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2662 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2663 struct epoll_event __user *, events,
2664 int, maxevents,
2665 const struct __kernel_timespec __user *, timeout,
2666 const compat_sigset_t __user *, sigmask,
2667 compat_size_t, sigsetsize)
2668 {
2669 struct timespec64 ts, *to = NULL;
2670
2671 if (timeout) {
2672 if (get_timespec64(&ts, timeout))
2673 return -EFAULT;
2674 to = &ts;
2675 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2676 return -EINVAL;
2677 }
2678
2679 return do_compat_epoll_pwait(epfd, events, maxevents, to,
2680 sigmask, sigsetsize);
2681 }
2682
2683 #endif
2684
eventpoll_init(void)2685 static int __init eventpoll_init(void)
2686 {
2687 struct sysinfo si;
2688
2689 si_meminfo(&si);
2690 /*
2691 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2692 */
2693 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2694 EP_ITEM_COST;
2695 BUG_ON(max_user_watches < 0);
2696
2697 /*
2698 * We can have many thousands of epitems, so prevent this from
2699 * using an extra cache line on 64-bit (and smaller) CPUs
2700 */
2701 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2702
2703 /* Allocates slab cache used to allocate "struct epitem" items */
2704 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2705 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2706
2707 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2708 pwq_cache = kmem_cache_create("eventpoll_pwq",
2709 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2710 epoll_sysctls_init();
2711
2712 ephead_cache = kmem_cache_create("ep_head",
2713 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2714
2715 return 0;
2716 }
2717 fs_initcall(eventpoll_init);
2718