xref: /linux/fs/eventpoll.c (revision 7879d7aff0ffd969fcb1a59e3f87ebb353e47b7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84 
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87 
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89 
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 } __packed;
106 
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 	/* List header used to link this structure to the "struct epitem" */
110 	struct eppoll_entry *next;
111 
112 	/* The "base" pointer is set to the container "struct epitem" */
113 	struct epitem *base;
114 
115 	/*
116 	 * Wait queue item that will be linked to the target file wait
117 	 * queue head.
118 	 */
119 	wait_queue_entry_t wait;
120 
121 	/* The wait queue head that linked the "wait" wait queue item */
122 	wait_queue_head_t *whead;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132 	union {
133 		/* RB tree node links this structure to the eventpoll RB tree */
134 		struct rb_node rbn;
135 		/* Used to free the struct epitem */
136 		struct rcu_head rcu;
137 	};
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/*
152 	 * Protected by file->f_lock, true for to-be-released epitem already
153 	 * removed from the "struct file" items list; together with
154 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 	 */
156 	bool dying;
157 
158 	/* List containing poll wait queues */
159 	struct eppoll_entry *pwqlist;
160 
161 	/* The "container" of this item */
162 	struct eventpoll *ep;
163 
164 	/* List header used to link this item to the "struct file" items list */
165 	struct hlist_node fllink;
166 
167 	/* wakeup_source used when EPOLLWAKEUP is set */
168 	struct wakeup_source __rcu *ws;
169 
170 	/* The structure that describe the interested events and the source fd */
171 	struct epoll_event event;
172 };
173 
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* Lock which protects rdllist and ovflist */
198 	rwlock_t lock;
199 
200 	/* RB tree root used to store monitored fd structs */
201 	struct rb_root_cached rbr;
202 
203 	/*
204 	 * This is a single linked list that chains all the "struct epitem" that
205 	 * happened while transferring ready events to userspace w/out
206 	 * holding ->lock.
207 	 */
208 	struct epitem *ovflist;
209 
210 	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 	struct wakeup_source *ws;
212 
213 	/* The user that created the eventpoll descriptor */
214 	struct user_struct *user;
215 
216 	struct file *file;
217 
218 	/* used to optimize loop detection check */
219 	u64 gen;
220 	struct hlist_head refs;
221 	u8 loop_check_depth;
222 
223 	/*
224 	 * usage count, used together with epitem->dying to
225 	 * orchestrate the disposal of this struct
226 	 */
227 	refcount_t refcount;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 	/* busy poll timeout */
233 	u32 busy_poll_usecs;
234 	/* busy poll packet budget */
235 	u16 busy_poll_budget;
236 	bool prefer_busy_poll;
237 #endif
238 
239 #ifdef CONFIG_DEBUG_LOCK_ALLOC
240 	/* tracks wakeup nests for lockdep validation */
241 	u8 nests;
242 #endif
243 };
244 
245 /* Wrapper struct used by poll queueing */
246 struct ep_pqueue {
247 	poll_table pt;
248 	struct epitem *epi;
249 };
250 
251 /*
252  * Configuration options available inside /proc/sys/fs/epoll/
253  */
254 /* Maximum number of epoll watched descriptors, per user */
255 static long max_user_watches __read_mostly;
256 
257 /* Used for cycles detection */
258 static DEFINE_MUTEX(epnested_mutex);
259 
260 static u64 loop_check_gen = 0;
261 
262 /* Used to check for epoll file descriptor inclusion loops */
263 static struct eventpoll *inserting_into;
264 
265 /* Slab cache used to allocate "struct epitem" */
266 static struct kmem_cache *epi_cache __ro_after_init;
267 
268 /* Slab cache used to allocate "struct eppoll_entry" */
269 static struct kmem_cache *pwq_cache __ro_after_init;
270 
271 /*
272  * List of files with newly added links, where we may need to limit the number
273  * of emanating paths. Protected by the epnested_mutex.
274  */
275 struct epitems_head {
276 	struct hlist_head epitems;
277 	struct epitems_head *next;
278 };
279 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280 
281 static struct kmem_cache *ephead_cache __ro_after_init;
282 
free_ephead(struct epitems_head * head)283 static inline void free_ephead(struct epitems_head *head)
284 {
285 	if (head)
286 		kmem_cache_free(ephead_cache, head);
287 }
288 
list_file(struct file * file)289 static void list_file(struct file *file)
290 {
291 	struct epitems_head *head;
292 
293 	head = container_of(file->f_ep, struct epitems_head, epitems);
294 	if (!head->next) {
295 		head->next = tfile_check_list;
296 		tfile_check_list = head;
297 	}
298 }
299 
unlist_file(struct epitems_head * head)300 static void unlist_file(struct epitems_head *head)
301 {
302 	struct epitems_head *to_free = head;
303 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304 	if (p) {
305 		struct epitem *epi= container_of(p, struct epitem, fllink);
306 		spin_lock(&epi->ffd.file->f_lock);
307 		if (!hlist_empty(&head->epitems))
308 			to_free = NULL;
309 		head->next = NULL;
310 		spin_unlock(&epi->ffd.file->f_lock);
311 	}
312 	free_ephead(to_free);
313 }
314 
315 #ifdef CONFIG_SYSCTL
316 
317 #include <linux/sysctl.h>
318 
319 static long long_zero;
320 static long long_max = LONG_MAX;
321 
322 static const struct ctl_table epoll_table[] = {
323 	{
324 		.procname	= "max_user_watches",
325 		.data		= &max_user_watches,
326 		.maxlen		= sizeof(max_user_watches),
327 		.mode		= 0644,
328 		.proc_handler	= proc_doulongvec_minmax,
329 		.extra1		= &long_zero,
330 		.extra2		= &long_max,
331 	},
332 };
333 
epoll_sysctls_init(void)334 static void __init epoll_sysctls_init(void)
335 {
336 	register_sysctl("fs/epoll", epoll_table);
337 }
338 #else
339 #define epoll_sysctls_init() do { } while (0)
340 #endif /* CONFIG_SYSCTL */
341 
342 static const struct file_operations eventpoll_fops;
343 
is_file_epoll(struct file * f)344 static inline int is_file_epoll(struct file *f)
345 {
346 	return f->f_op == &eventpoll_fops;
347 }
348 
349 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)350 static inline void ep_set_ffd(struct epoll_filefd *ffd,
351 			      struct file *file, int fd)
352 {
353 	ffd->file = file;
354 	ffd->fd = fd;
355 }
356 
357 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)358 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
359 			     struct epoll_filefd *p2)
360 {
361 	return (p1->file > p2->file ? +1:
362 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
363 }
364 
365 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)366 static inline int ep_is_linked(struct epitem *epi)
367 {
368 	return !list_empty(&epi->rdllink);
369 }
370 
ep_pwq_from_wait(wait_queue_entry_t * p)371 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372 {
373 	return container_of(p, struct eppoll_entry, wait);
374 }
375 
376 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)377 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378 {
379 	return container_of(p, struct eppoll_entry, wait)->base;
380 }
381 
382 /**
383  * ep_events_available - Checks if ready events might be available.
384  *
385  * @ep: Pointer to the eventpoll context.
386  *
387  * Return: a value different than %zero if ready events are available,
388  *          or %zero otherwise.
389  */
ep_events_available(struct eventpoll * ep)390 static inline int ep_events_available(struct eventpoll *ep)
391 {
392 	return !list_empty_careful(&ep->rdllist) ||
393 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
394 }
395 
396 #ifdef CONFIG_NET_RX_BUSY_POLL
397 /**
398  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
399  * from the epoll instance ep is preferred, but if it is not set fallback to
400  * the system-wide global via busy_loop_timeout.
401  *
402  * @start_time: The start time used to compute the remaining time until timeout.
403  * @ep: Pointer to the eventpoll context.
404  *
405  * Return: true if the timeout has expired, false otherwise.
406  */
busy_loop_ep_timeout(unsigned long start_time,struct eventpoll * ep)407 static bool busy_loop_ep_timeout(unsigned long start_time,
408 				 struct eventpoll *ep)
409 {
410 	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
411 
412 	if (bp_usec) {
413 		unsigned long end_time = start_time + bp_usec;
414 		unsigned long now = busy_loop_current_time();
415 
416 		return time_after(now, end_time);
417 	} else {
418 		return busy_loop_timeout(start_time);
419 	}
420 }
421 
ep_busy_loop_on(struct eventpoll * ep)422 static bool ep_busy_loop_on(struct eventpoll *ep)
423 {
424 	return !!READ_ONCE(ep->busy_poll_usecs) ||
425 	       READ_ONCE(ep->prefer_busy_poll) ||
426 	       net_busy_loop_on();
427 }
428 
ep_busy_loop_end(void * p,unsigned long start_time)429 static bool ep_busy_loop_end(void *p, unsigned long start_time)
430 {
431 	struct eventpoll *ep = p;
432 
433 	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
434 }
435 
436 /*
437  * Busy poll if globally on and supporting sockets found && no events,
438  * busy loop will return if need_resched or ep_events_available.
439  *
440  * we must do our busy polling with irqs enabled
441  */
ep_busy_loop(struct eventpoll * ep)442 static bool ep_busy_loop(struct eventpoll *ep)
443 {
444 	unsigned int napi_id = READ_ONCE(ep->napi_id);
445 	u16 budget = READ_ONCE(ep->busy_poll_budget);
446 	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
447 
448 	if (!budget)
449 		budget = BUSY_POLL_BUDGET;
450 
451 	if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) {
452 		napi_busy_loop(napi_id, ep_busy_loop_end,
453 			       ep, prefer_busy_poll, budget);
454 		if (ep_events_available(ep))
455 			return true;
456 		/*
457 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
458 		 * it back in when we have moved a socket with a valid NAPI
459 		 * ID onto the ready list.
460 		 */
461 		if (prefer_busy_poll)
462 			napi_resume_irqs(napi_id);
463 		ep->napi_id = 0;
464 		return false;
465 	}
466 	return false;
467 }
468 
469 /*
470  * Set epoll busy poll NAPI ID from sk.
471  */
ep_set_busy_poll_napi_id(struct epitem * epi)472 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
473 {
474 	struct eventpoll *ep = epi->ep;
475 	unsigned int napi_id;
476 	struct socket *sock;
477 	struct sock *sk;
478 
479 	if (!ep_busy_loop_on(ep))
480 		return;
481 
482 	sock = sock_from_file(epi->ffd.file);
483 	if (!sock)
484 		return;
485 
486 	sk = sock->sk;
487 	if (!sk)
488 		return;
489 
490 	napi_id = READ_ONCE(sk->sk_napi_id);
491 
492 	/* Non-NAPI IDs can be rejected
493 	 *	or
494 	 * Nothing to do if we already have this ID
495 	 */
496 	if (!napi_id_valid(napi_id) || napi_id == ep->napi_id)
497 		return;
498 
499 	/* record NAPI ID for use in next busy poll */
500 	ep->napi_id = napi_id;
501 }
502 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)503 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
504 				  unsigned long arg)
505 {
506 	struct eventpoll *ep = file->private_data;
507 	void __user *uarg = (void __user *)arg;
508 	struct epoll_params epoll_params;
509 
510 	switch (cmd) {
511 	case EPIOCSPARAMS:
512 		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
513 			return -EFAULT;
514 
515 		/* pad byte must be zero */
516 		if (epoll_params.__pad)
517 			return -EINVAL;
518 
519 		if (epoll_params.busy_poll_usecs > S32_MAX)
520 			return -EINVAL;
521 
522 		if (epoll_params.prefer_busy_poll > 1)
523 			return -EINVAL;
524 
525 		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
526 		    !capable(CAP_NET_ADMIN))
527 			return -EPERM;
528 
529 		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
530 		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
531 		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
532 		return 0;
533 	case EPIOCGPARAMS:
534 		memset(&epoll_params, 0, sizeof(epoll_params));
535 		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
536 		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
537 		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
538 		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
539 			return -EFAULT;
540 		return 0;
541 	default:
542 		return -ENOIOCTLCMD;
543 	}
544 }
545 
ep_suspend_napi_irqs(struct eventpoll * ep)546 static void ep_suspend_napi_irqs(struct eventpoll *ep)
547 {
548 	unsigned int napi_id = READ_ONCE(ep->napi_id);
549 
550 	if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
551 		napi_suspend_irqs(napi_id);
552 }
553 
ep_resume_napi_irqs(struct eventpoll * ep)554 static void ep_resume_napi_irqs(struct eventpoll *ep)
555 {
556 	unsigned int napi_id = READ_ONCE(ep->napi_id);
557 
558 	if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
559 		napi_resume_irqs(napi_id);
560 }
561 
562 #else
563 
ep_busy_loop(struct eventpoll * ep)564 static inline bool ep_busy_loop(struct eventpoll *ep)
565 {
566 	return false;
567 }
568 
ep_set_busy_poll_napi_id(struct epitem * epi)569 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
570 {
571 }
572 
ep_eventpoll_bp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)573 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
574 				  unsigned long arg)
575 {
576 	return -EOPNOTSUPP;
577 }
578 
ep_suspend_napi_irqs(struct eventpoll * ep)579 static void ep_suspend_napi_irqs(struct eventpoll *ep)
580 {
581 }
582 
ep_resume_napi_irqs(struct eventpoll * ep)583 static void ep_resume_napi_irqs(struct eventpoll *ep)
584 {
585 }
586 
587 #endif /* CONFIG_NET_RX_BUSY_POLL */
588 
589 /*
590  * As described in commit 0ccf831cb lockdep: annotate epoll
591  * the use of wait queues used by epoll is done in a very controlled
592  * manner. Wake ups can nest inside each other, but are never done
593  * with the same locking. For example:
594  *
595  *   dfd = socket(...);
596  *   efd1 = epoll_create();
597  *   efd2 = epoll_create();
598  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
599  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
600  *
601  * When a packet arrives to the device underneath "dfd", the net code will
602  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
603  * callback wakeup entry on that queue, and the wake_up() performed by the
604  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
605  * (efd1) notices that it may have some event ready, so it needs to wake up
606  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
607  * that ends up in another wake_up(), after having checked about the
608  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
609  * stack blasting.
610  *
611  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
612  * this special case of epoll.
613  */
614 #ifdef CONFIG_DEBUG_LOCK_ALLOC
615 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,unsigned pollflags)616 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
617 			     unsigned pollflags)
618 {
619 	struct eventpoll *ep_src;
620 	unsigned long flags;
621 	u8 nests = 0;
622 
623 	/*
624 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
625 	 * it might be natural to create a per-cpu nest count. However, since
626 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
627 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
628 	 * protected. Thus, we are introducing a per eventpoll nest field.
629 	 * If we are not being call from ep_poll_callback(), epi is NULL and
630 	 * we are at the first level of nesting, 0. Otherwise, we are being
631 	 * called from ep_poll_callback() and if a previous wakeup source is
632 	 * not an epoll file itself, we are at depth 1 since the wakeup source
633 	 * is depth 0. If the wakeup source is a previous epoll file in the
634 	 * wakeup chain then we use its nests value and record ours as
635 	 * nests + 1. The previous epoll file nests value is stable since its
636 	 * already holding its own poll_wait.lock.
637 	 */
638 	if (epi) {
639 		if ((is_file_epoll(epi->ffd.file))) {
640 			ep_src = epi->ffd.file->private_data;
641 			nests = ep_src->nests;
642 		} else {
643 			nests = 1;
644 		}
645 	}
646 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
647 	ep->nests = nests + 1;
648 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
649 	ep->nests = 0;
650 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
651 }
652 
653 #else
654 
ep_poll_safewake(struct eventpoll * ep,struct epitem * epi,__poll_t pollflags)655 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
656 			     __poll_t pollflags)
657 {
658 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
659 }
660 
661 #endif
662 
ep_remove_wait_queue(struct eppoll_entry * pwq)663 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
664 {
665 	wait_queue_head_t *whead;
666 
667 	rcu_read_lock();
668 	/*
669 	 * If it is cleared by POLLFREE, it should be rcu-safe.
670 	 * If we read NULL we need a barrier paired with
671 	 * smp_store_release() in ep_poll_callback(), otherwise
672 	 * we rely on whead->lock.
673 	 */
674 	whead = smp_load_acquire(&pwq->whead);
675 	if (whead)
676 		remove_wait_queue(whead, &pwq->wait);
677 	rcu_read_unlock();
678 }
679 
680 /*
681  * This function unregisters poll callbacks from the associated file
682  * descriptor.  Must be called with "mtx" held.
683  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)684 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
685 {
686 	struct eppoll_entry **p = &epi->pwqlist;
687 	struct eppoll_entry *pwq;
688 
689 	while ((pwq = *p) != NULL) {
690 		*p = pwq->next;
691 		ep_remove_wait_queue(pwq);
692 		kmem_cache_free(pwq_cache, pwq);
693 	}
694 }
695 
696 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)697 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
698 {
699 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
700 }
701 
702 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)703 static inline void ep_pm_stay_awake(struct epitem *epi)
704 {
705 	struct wakeup_source *ws = ep_wakeup_source(epi);
706 
707 	if (ws)
708 		__pm_stay_awake(ws);
709 }
710 
ep_has_wakeup_source(struct epitem * epi)711 static inline bool ep_has_wakeup_source(struct epitem *epi)
712 {
713 	return rcu_access_pointer(epi->ws) ? true : false;
714 }
715 
716 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)717 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
718 {
719 	struct wakeup_source *ws;
720 
721 	rcu_read_lock();
722 	ws = rcu_dereference(epi->ws);
723 	if (ws)
724 		__pm_stay_awake(ws);
725 	rcu_read_unlock();
726 }
727 
728 
729 /*
730  * ep->mutex needs to be held because we could be hit by
731  * eventpoll_release_file() and epoll_ctl().
732  */
ep_start_scan(struct eventpoll * ep,struct list_head * txlist)733 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
734 {
735 	/*
736 	 * Steal the ready list, and re-init the original one to the
737 	 * empty list. Also, set ep->ovflist to NULL so that events
738 	 * happening while looping w/out locks, are not lost. We cannot
739 	 * have the poll callback to queue directly on ep->rdllist,
740 	 * because we want the "sproc" callback to be able to do it
741 	 * in a lockless way.
742 	 */
743 	lockdep_assert_irqs_enabled();
744 	write_lock_irq(&ep->lock);
745 	list_splice_init(&ep->rdllist, txlist);
746 	WRITE_ONCE(ep->ovflist, NULL);
747 	write_unlock_irq(&ep->lock);
748 }
749 
ep_done_scan(struct eventpoll * ep,struct list_head * txlist)750 static void ep_done_scan(struct eventpoll *ep,
751 			 struct list_head *txlist)
752 {
753 	struct epitem *epi, *nepi;
754 
755 	write_lock_irq(&ep->lock);
756 	/*
757 	 * During the time we spent inside the "sproc" callback, some
758 	 * other events might have been queued by the poll callback.
759 	 * We re-insert them inside the main ready-list here.
760 	 */
761 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
762 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
763 		/*
764 		 * We need to check if the item is already in the list.
765 		 * During the "sproc" callback execution time, items are
766 		 * queued into ->ovflist but the "txlist" might already
767 		 * contain them, and the list_splice() below takes care of them.
768 		 */
769 		if (!ep_is_linked(epi)) {
770 			/*
771 			 * ->ovflist is LIFO, so we have to reverse it in order
772 			 * to keep in FIFO.
773 			 */
774 			list_add(&epi->rdllink, &ep->rdllist);
775 			ep_pm_stay_awake(epi);
776 		}
777 	}
778 	/*
779 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
780 	 * releasing the lock, events will be queued in the normal way inside
781 	 * ep->rdllist.
782 	 */
783 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
784 
785 	/*
786 	 * Quickly re-inject items left on "txlist".
787 	 */
788 	list_splice(txlist, &ep->rdllist);
789 	__pm_relax(ep->ws);
790 
791 	if (!list_empty(&ep->rdllist)) {
792 		if (waitqueue_active(&ep->wq))
793 			wake_up(&ep->wq);
794 	}
795 
796 	write_unlock_irq(&ep->lock);
797 }
798 
ep_get(struct eventpoll * ep)799 static void ep_get(struct eventpoll *ep)
800 {
801 	refcount_inc(&ep->refcount);
802 }
803 
804 /*
805  * Returns true if the event poll can be disposed
806  */
ep_refcount_dec_and_test(struct eventpoll * ep)807 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
808 {
809 	if (!refcount_dec_and_test(&ep->refcount))
810 		return false;
811 
812 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
813 	return true;
814 }
815 
ep_free(struct eventpoll * ep)816 static void ep_free(struct eventpoll *ep)
817 {
818 	ep_resume_napi_irqs(ep);
819 	mutex_destroy(&ep->mtx);
820 	free_uid(ep->user);
821 	wakeup_source_unregister(ep->ws);
822 	kfree(ep);
823 }
824 
825 /*
826  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
827  * all the associated resources. Must be called with "mtx" held.
828  * If the dying flag is set, do the removal only if force is true.
829  * This prevents ep_clear_and_put() from dropping all the ep references
830  * while running concurrently with eventpoll_release_file().
831  * Returns true if the eventpoll can be disposed.
832  */
__ep_remove(struct eventpoll * ep,struct epitem * epi,bool force)833 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
834 {
835 	struct file *file = epi->ffd.file;
836 	struct epitems_head *to_free;
837 	struct hlist_head *head;
838 
839 	lockdep_assert_irqs_enabled();
840 
841 	/*
842 	 * Removes poll wait queue hooks.
843 	 */
844 	ep_unregister_pollwait(ep, epi);
845 
846 	/* Remove the current item from the list of epoll hooks */
847 	spin_lock(&file->f_lock);
848 	if (epi->dying && !force) {
849 		spin_unlock(&file->f_lock);
850 		return false;
851 	}
852 
853 	to_free = NULL;
854 	head = file->f_ep;
855 	if (head->first == &epi->fllink && !epi->fllink.next) {
856 		/* See eventpoll_release() for details. */
857 		WRITE_ONCE(file->f_ep, NULL);
858 		if (!is_file_epoll(file)) {
859 			struct epitems_head *v;
860 			v = container_of(head, struct epitems_head, epitems);
861 			if (!smp_load_acquire(&v->next))
862 				to_free = v;
863 		}
864 	}
865 	hlist_del_rcu(&epi->fllink);
866 	spin_unlock(&file->f_lock);
867 	free_ephead(to_free);
868 
869 	rb_erase_cached(&epi->rbn, &ep->rbr);
870 
871 	write_lock_irq(&ep->lock);
872 	if (ep_is_linked(epi))
873 		list_del_init(&epi->rdllink);
874 	write_unlock_irq(&ep->lock);
875 
876 	wakeup_source_unregister(ep_wakeup_source(epi));
877 	/*
878 	 * At this point it is safe to free the eventpoll item. Use the union
879 	 * field epi->rcu, since we are trying to minimize the size of
880 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
881 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
882 	 * use of the rbn field.
883 	 */
884 	kfree_rcu(epi, rcu);
885 
886 	percpu_counter_dec(&ep->user->epoll_watches);
887 	return true;
888 }
889 
890 /*
891  * ep_remove variant for callers owing an additional reference to the ep
892  */
ep_remove_safe(struct eventpoll * ep,struct epitem * epi)893 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
894 {
895 	if (__ep_remove(ep, epi, false))
896 		WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
897 }
898 
ep_clear_and_put(struct eventpoll * ep)899 static void ep_clear_and_put(struct eventpoll *ep)
900 {
901 	struct rb_node *rbp, *next;
902 	struct epitem *epi;
903 
904 	/* We need to release all tasks waiting for these file */
905 	if (waitqueue_active(&ep->poll_wait))
906 		ep_poll_safewake(ep, NULL, 0);
907 
908 	mutex_lock(&ep->mtx);
909 
910 	/*
911 	 * Walks through the whole tree by unregistering poll callbacks.
912 	 */
913 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
914 		epi = rb_entry(rbp, struct epitem, rbn);
915 
916 		ep_unregister_pollwait(ep, epi);
917 		cond_resched();
918 	}
919 
920 	/*
921 	 * Walks through the whole tree and try to free each "struct epitem".
922 	 * Note that ep_remove_safe() will not remove the epitem in case of a
923 	 * racing eventpoll_release_file(); the latter will do the removal.
924 	 * At this point we are sure no poll callbacks will be lingering around.
925 	 * Since we still own a reference to the eventpoll struct, the loop can't
926 	 * dispose it.
927 	 */
928 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
929 		next = rb_next(rbp);
930 		epi = rb_entry(rbp, struct epitem, rbn);
931 		ep_remove_safe(ep, epi);
932 		cond_resched();
933 	}
934 
935 	mutex_unlock(&ep->mtx);
936 	if (ep_refcount_dec_and_test(ep))
937 		ep_free(ep);
938 }
939 
ep_eventpoll_ioctl(struct file * file,unsigned int cmd,unsigned long arg)940 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
941 			       unsigned long arg)
942 {
943 	int ret;
944 
945 	if (!is_file_epoll(file))
946 		return -EINVAL;
947 
948 	switch (cmd) {
949 	case EPIOCSPARAMS:
950 	case EPIOCGPARAMS:
951 		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
952 		break;
953 	default:
954 		ret = -EINVAL;
955 		break;
956 	}
957 
958 	return ret;
959 }
960 
ep_eventpoll_release(struct inode * inode,struct file * file)961 static int ep_eventpoll_release(struct inode *inode, struct file *file)
962 {
963 	struct eventpoll *ep = file->private_data;
964 
965 	if (ep)
966 		ep_clear_and_put(ep);
967 
968 	return 0;
969 }
970 
971 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
972 
__ep_eventpoll_poll(struct file * file,poll_table * wait,int depth)973 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
974 {
975 	struct eventpoll *ep = file->private_data;
976 	LIST_HEAD(txlist);
977 	struct epitem *epi, *tmp;
978 	poll_table pt;
979 	__poll_t res = 0;
980 
981 	init_poll_funcptr(&pt, NULL);
982 
983 	/* Insert inside our poll wait queue */
984 	poll_wait(file, &ep->poll_wait, wait);
985 
986 	/*
987 	 * Proceed to find out if wanted events are really available inside
988 	 * the ready list.
989 	 */
990 	mutex_lock_nested(&ep->mtx, depth);
991 	ep_start_scan(ep, &txlist);
992 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
993 		if (ep_item_poll(epi, &pt, depth + 1)) {
994 			res = EPOLLIN | EPOLLRDNORM;
995 			break;
996 		} else {
997 			/*
998 			 * Item has been dropped into the ready list by the poll
999 			 * callback, but it's not actually ready, as far as
1000 			 * caller requested events goes. We can remove it here.
1001 			 */
1002 			__pm_relax(ep_wakeup_source(epi));
1003 			list_del_init(&epi->rdllink);
1004 		}
1005 	}
1006 	ep_done_scan(ep, &txlist);
1007 	mutex_unlock(&ep->mtx);
1008 	return res;
1009 }
1010 
1011 /*
1012  * The ffd.file pointer may be in the process of being torn down due to
1013  * being closed, but we may not have finished eventpoll_release() yet.
1014  *
1015  * Normally, even with the atomic_long_inc_not_zero, the file may have
1016  * been free'd and then gotten re-allocated to something else (since
1017  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1018  *
1019  * But for epoll, users hold the ep->mtx mutex, and as such any file in
1020  * the process of being free'd will block in eventpoll_release_file()
1021  * and thus the underlying file allocation will not be free'd, and the
1022  * file re-use cannot happen.
1023  *
1024  * For the same reason we can avoid a rcu_read_lock() around the
1025  * operation - 'ffd.file' cannot go away even if the refcount has
1026  * reached zero (but we must still not call out to ->poll() functions
1027  * etc).
1028  */
epi_fget(const struct epitem * epi)1029 static struct file *epi_fget(const struct epitem *epi)
1030 {
1031 	struct file *file;
1032 
1033 	file = epi->ffd.file;
1034 	if (!file_ref_get(&file->f_ref))
1035 		file = NULL;
1036 	return file;
1037 }
1038 
1039 /*
1040  * Differs from ep_eventpoll_poll() in that internal callers already have
1041  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1042  * is correctly annotated.
1043  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)1044 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1045 				 int depth)
1046 {
1047 	struct file *file = epi_fget(epi);
1048 	__poll_t res;
1049 
1050 	/*
1051 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
1052 	 * treat this more as "file doesn't exist, poll didn't happen".
1053 	 */
1054 	if (!file)
1055 		return 0;
1056 
1057 	pt->_key = epi->event.events;
1058 	if (!is_file_epoll(file))
1059 		res = vfs_poll(file, pt);
1060 	else
1061 		res = __ep_eventpoll_poll(file, pt, depth);
1062 	fput(file);
1063 	return res & epi->event.events;
1064 }
1065 
ep_eventpoll_poll(struct file * file,poll_table * wait)1066 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1067 {
1068 	return __ep_eventpoll_poll(file, wait, 0);
1069 }
1070 
1071 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)1072 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1073 {
1074 	struct eventpoll *ep = f->private_data;
1075 	struct rb_node *rbp;
1076 
1077 	mutex_lock(&ep->mtx);
1078 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1080 		struct inode *inode = file_inode(epi->ffd.file);
1081 
1082 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1083 			   " pos:%lli ino:%lx sdev:%x\n",
1084 			   epi->ffd.fd, epi->event.events,
1085 			   (long long)epi->event.data,
1086 			   (long long)epi->ffd.file->f_pos,
1087 			   inode->i_ino, inode->i_sb->s_dev);
1088 		if (seq_has_overflowed(m))
1089 			break;
1090 	}
1091 	mutex_unlock(&ep->mtx);
1092 }
1093 #endif
1094 
1095 /* File callbacks that implement the eventpoll file behaviour */
1096 static const struct file_operations eventpoll_fops = {
1097 #ifdef CONFIG_PROC_FS
1098 	.show_fdinfo	= ep_show_fdinfo,
1099 #endif
1100 	.release	= ep_eventpoll_release,
1101 	.poll		= ep_eventpoll_poll,
1102 	.llseek		= noop_llseek,
1103 	.unlocked_ioctl	= ep_eventpoll_ioctl,
1104 	.compat_ioctl   = compat_ptr_ioctl,
1105 };
1106 
1107 /*
1108  * This is called from eventpoll_release() to unlink files from the eventpoll
1109  * interface. We need to have this facility to cleanup correctly files that are
1110  * closed without being removed from the eventpoll interface.
1111  */
eventpoll_release_file(struct file * file)1112 void eventpoll_release_file(struct file *file)
1113 {
1114 	struct eventpoll *ep;
1115 	struct epitem *epi;
1116 	bool dispose;
1117 
1118 	/*
1119 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1120 	 * touching the epitems list before eventpoll_release_file() can access
1121 	 * the ep->mtx.
1122 	 */
1123 again:
1124 	spin_lock(&file->f_lock);
1125 	if (file->f_ep && file->f_ep->first) {
1126 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1127 		epi->dying = true;
1128 		spin_unlock(&file->f_lock);
1129 
1130 		/*
1131 		 * ep access is safe as we still own a reference to the ep
1132 		 * struct
1133 		 */
1134 		ep = epi->ep;
1135 		mutex_lock(&ep->mtx);
1136 		dispose = __ep_remove(ep, epi, true);
1137 		mutex_unlock(&ep->mtx);
1138 
1139 		if (dispose && ep_refcount_dec_and_test(ep))
1140 			ep_free(ep);
1141 		goto again;
1142 	}
1143 	spin_unlock(&file->f_lock);
1144 }
1145 
ep_alloc(struct eventpoll ** pep)1146 static int ep_alloc(struct eventpoll **pep)
1147 {
1148 	struct eventpoll *ep;
1149 
1150 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1151 	if (unlikely(!ep))
1152 		return -ENOMEM;
1153 
1154 	mutex_init(&ep->mtx);
1155 	rwlock_init(&ep->lock);
1156 	init_waitqueue_head(&ep->wq);
1157 	init_waitqueue_head(&ep->poll_wait);
1158 	INIT_LIST_HEAD(&ep->rdllist);
1159 	ep->rbr = RB_ROOT_CACHED;
1160 	ep->ovflist = EP_UNACTIVE_PTR;
1161 	ep->user = get_current_user();
1162 	refcount_set(&ep->refcount, 1);
1163 
1164 	*pep = ep;
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Search the file inside the eventpoll tree. The RB tree operations
1171  * are protected by the "mtx" mutex, and ep_find() must be called with
1172  * "mtx" held.
1173  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1174 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1175 {
1176 	int kcmp;
1177 	struct rb_node *rbp;
1178 	struct epitem *epi, *epir = NULL;
1179 	struct epoll_filefd ffd;
1180 
1181 	ep_set_ffd(&ffd, file, fd);
1182 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1183 		epi = rb_entry(rbp, struct epitem, rbn);
1184 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1185 		if (kcmp > 0)
1186 			rbp = rbp->rb_right;
1187 		else if (kcmp < 0)
1188 			rbp = rbp->rb_left;
1189 		else {
1190 			epir = epi;
1191 			break;
1192 		}
1193 	}
1194 
1195 	return epir;
1196 }
1197 
1198 #ifdef CONFIG_KCMP
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1199 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1200 {
1201 	struct rb_node *rbp;
1202 	struct epitem *epi;
1203 
1204 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1205 		epi = rb_entry(rbp, struct epitem, rbn);
1206 		if (epi->ffd.fd == tfd) {
1207 			if (toff == 0)
1208 				return epi;
1209 			else
1210 				toff--;
1211 		}
1212 		cond_resched();
1213 	}
1214 
1215 	return NULL;
1216 }
1217 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1218 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1219 				     unsigned long toff)
1220 {
1221 	struct file *file_raw;
1222 	struct eventpoll *ep;
1223 	struct epitem *epi;
1224 
1225 	if (!is_file_epoll(file))
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	ep = file->private_data;
1229 
1230 	mutex_lock(&ep->mtx);
1231 	epi = ep_find_tfd(ep, tfd, toff);
1232 	if (epi)
1233 		file_raw = epi->ffd.file;
1234 	else
1235 		file_raw = ERR_PTR(-ENOENT);
1236 	mutex_unlock(&ep->mtx);
1237 
1238 	return file_raw;
1239 }
1240 #endif /* CONFIG_KCMP */
1241 
1242 /*
1243  * Adds a new entry to the tail of the list in a lockless way, i.e.
1244  * multiple CPUs are allowed to call this function concurrently.
1245  *
1246  * Beware: it is necessary to prevent any other modifications of the
1247  *         existing list until all changes are completed, in other words
1248  *         concurrent list_add_tail_lockless() calls should be protected
1249  *         with a read lock, where write lock acts as a barrier which
1250  *         makes sure all list_add_tail_lockless() calls are fully
1251  *         completed.
1252  *
1253  *        Also an element can be locklessly added to the list only in one
1254  *        direction i.e. either to the tail or to the head, otherwise
1255  *        concurrent access will corrupt the list.
1256  *
1257  * Return: %false if element has been already added to the list, %true
1258  * otherwise.
1259  */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1260 static inline bool list_add_tail_lockless(struct list_head *new,
1261 					  struct list_head *head)
1262 {
1263 	struct list_head *prev;
1264 
1265 	/*
1266 	 * This is simple 'new->next = head' operation, but cmpxchg()
1267 	 * is used in order to detect that same element has been just
1268 	 * added to the list from another CPU: the winner observes
1269 	 * new->next == new.
1270 	 */
1271 	if (!try_cmpxchg(&new->next, &new, head))
1272 		return false;
1273 
1274 	/*
1275 	 * Initially ->next of a new element must be updated with the head
1276 	 * (we are inserting to the tail) and only then pointers are atomically
1277 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1278 	 * updated before pointers are actually swapped and pointers are
1279 	 * swapped before prev->next is updated.
1280 	 */
1281 
1282 	prev = xchg(&head->prev, new);
1283 
1284 	/*
1285 	 * It is safe to modify prev->next and new->prev, because a new element
1286 	 * is added only to the tail and new->next is updated before XCHG.
1287 	 */
1288 
1289 	prev->next = new;
1290 	new->prev = prev;
1291 
1292 	return true;
1293 }
1294 
1295 /*
1296  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1297  * i.e. multiple CPUs are allowed to call this function concurrently.
1298  *
1299  * Return: %false if epi element has been already chained, %true otherwise.
1300  */
chain_epi_lockless(struct epitem * epi)1301 static inline bool chain_epi_lockless(struct epitem *epi)
1302 {
1303 	struct eventpoll *ep = epi->ep;
1304 
1305 	/* Fast preliminary check */
1306 	if (epi->next != EP_UNACTIVE_PTR)
1307 		return false;
1308 
1309 	/* Check that the same epi has not been just chained from another CPU */
1310 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1311 		return false;
1312 
1313 	/* Atomically exchange tail */
1314 	epi->next = xchg(&ep->ovflist, epi);
1315 
1316 	return true;
1317 }
1318 
1319 /*
1320  * This is the callback that is passed to the wait queue wakeup
1321  * mechanism. It is called by the stored file descriptors when they
1322  * have events to report.
1323  *
1324  * This callback takes a read lock in order not to contend with concurrent
1325  * events from another file descriptor, thus all modifications to ->rdllist
1326  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1327  * ep_start/done_scan(), which stops all list modifications and guarantees
1328  * that lists state is seen correctly.
1329  *
1330  * Another thing worth to mention is that ep_poll_callback() can be called
1331  * concurrently for the same @epi from different CPUs if poll table was inited
1332  * with several wait queues entries.  Plural wakeup from different CPUs of a
1333  * single wait queue is serialized by wq.lock, but the case when multiple wait
1334  * queues are used should be detected accordingly.  This is detected using
1335  * cmpxchg() operation.
1336  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1337 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1338 {
1339 	int pwake = 0;
1340 	struct epitem *epi = ep_item_from_wait(wait);
1341 	struct eventpoll *ep = epi->ep;
1342 	__poll_t pollflags = key_to_poll(key);
1343 	unsigned long flags;
1344 	int ewake = 0;
1345 
1346 	read_lock_irqsave(&ep->lock, flags);
1347 
1348 	ep_set_busy_poll_napi_id(epi);
1349 
1350 	/*
1351 	 * If the event mask does not contain any poll(2) event, we consider the
1352 	 * descriptor to be disabled. This condition is likely the effect of the
1353 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1354 	 * until the next EPOLL_CTL_MOD will be issued.
1355 	 */
1356 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1357 		goto out_unlock;
1358 
1359 	/*
1360 	 * Check the events coming with the callback. At this stage, not
1361 	 * every device reports the events in the "key" parameter of the
1362 	 * callback. We need to be able to handle both cases here, hence the
1363 	 * test for "key" != NULL before the event match test.
1364 	 */
1365 	if (pollflags && !(pollflags & epi->event.events))
1366 		goto out_unlock;
1367 
1368 	/*
1369 	 * If we are transferring events to userspace, we can hold no locks
1370 	 * (because we're accessing user memory, and because of linux f_op->poll()
1371 	 * semantics). All the events that happen during that period of time are
1372 	 * chained in ep->ovflist and requeued later on.
1373 	 */
1374 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1375 		if (chain_epi_lockless(epi))
1376 			ep_pm_stay_awake_rcu(epi);
1377 	} else if (!ep_is_linked(epi)) {
1378 		/* In the usual case, add event to ready list. */
1379 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1380 			ep_pm_stay_awake_rcu(epi);
1381 	}
1382 
1383 	/*
1384 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1385 	 * wait list.
1386 	 */
1387 	if (waitqueue_active(&ep->wq)) {
1388 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1389 					!(pollflags & POLLFREE)) {
1390 			switch (pollflags & EPOLLINOUT_BITS) {
1391 			case EPOLLIN:
1392 				if (epi->event.events & EPOLLIN)
1393 					ewake = 1;
1394 				break;
1395 			case EPOLLOUT:
1396 				if (epi->event.events & EPOLLOUT)
1397 					ewake = 1;
1398 				break;
1399 			case 0:
1400 				ewake = 1;
1401 				break;
1402 			}
1403 		}
1404 		if (sync)
1405 			wake_up_sync(&ep->wq);
1406 		else
1407 			wake_up(&ep->wq);
1408 	}
1409 	if (waitqueue_active(&ep->poll_wait))
1410 		pwake++;
1411 
1412 out_unlock:
1413 	read_unlock_irqrestore(&ep->lock, flags);
1414 
1415 	/* We have to call this outside the lock */
1416 	if (pwake)
1417 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1418 
1419 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1420 		ewake = 1;
1421 
1422 	if (pollflags & POLLFREE) {
1423 		/*
1424 		 * If we race with ep_remove_wait_queue() it can miss
1425 		 * ->whead = NULL and do another remove_wait_queue() after
1426 		 * us, so we can't use __remove_wait_queue().
1427 		 */
1428 		list_del_init(&wait->entry);
1429 		/*
1430 		 * ->whead != NULL protects us from the race with
1431 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1432 		 * takes whead->lock held by the caller. Once we nullify it,
1433 		 * nothing protects ep/epi or even wait.
1434 		 */
1435 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1436 	}
1437 
1438 	return ewake;
1439 }
1440 
1441 /*
1442  * This is the callback that is used to add our wait queue to the
1443  * target file wakeup lists.
1444  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1445 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1446 				 poll_table *pt)
1447 {
1448 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1449 	struct epitem *epi = epq->epi;
1450 	struct eppoll_entry *pwq;
1451 
1452 	if (unlikely(!epi))	// an earlier allocation has failed
1453 		return;
1454 
1455 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1456 	if (unlikely(!pwq)) {
1457 		epq->epi = NULL;
1458 		return;
1459 	}
1460 
1461 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1462 	pwq->whead = whead;
1463 	pwq->base = epi;
1464 	if (epi->event.events & EPOLLEXCLUSIVE)
1465 		add_wait_queue_exclusive(whead, &pwq->wait);
1466 	else
1467 		add_wait_queue(whead, &pwq->wait);
1468 	pwq->next = epi->pwqlist;
1469 	epi->pwqlist = pwq;
1470 }
1471 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1472 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1473 {
1474 	int kcmp;
1475 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1476 	struct epitem *epic;
1477 	bool leftmost = true;
1478 
1479 	while (*p) {
1480 		parent = *p;
1481 		epic = rb_entry(parent, struct epitem, rbn);
1482 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1483 		if (kcmp > 0) {
1484 			p = &parent->rb_right;
1485 			leftmost = false;
1486 		} else
1487 			p = &parent->rb_left;
1488 	}
1489 	rb_link_node(&epi->rbn, parent, p);
1490 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1491 }
1492 
1493 
1494 
1495 #define PATH_ARR_SIZE 5
1496 /*
1497  * These are the number paths of length 1 to 5, that we are allowing to emanate
1498  * from a single file of interest. For example, we allow 1000 paths of length
1499  * 1, to emanate from each file of interest. This essentially represents the
1500  * potential wakeup paths, which need to be limited in order to avoid massive
1501  * uncontrolled wakeup storms. The common use case should be a single ep which
1502  * is connected to n file sources. In this case each file source has 1 path
1503  * of length 1. Thus, the numbers below should be more than sufficient. These
1504  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1505  * and delete can't add additional paths. Protected by the epnested_mutex.
1506  */
1507 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1508 static int path_count[PATH_ARR_SIZE];
1509 
path_count_inc(int nests)1510 static int path_count_inc(int nests)
1511 {
1512 	/* Allow an arbitrary number of depth 1 paths */
1513 	if (nests == 0)
1514 		return 0;
1515 
1516 	if (++path_count[nests] > path_limits[nests])
1517 		return -1;
1518 	return 0;
1519 }
1520 
path_count_init(void)1521 static void path_count_init(void)
1522 {
1523 	int i;
1524 
1525 	for (i = 0; i < PATH_ARR_SIZE; i++)
1526 		path_count[i] = 0;
1527 }
1528 
reverse_path_check_proc(struct hlist_head * refs,int depth)1529 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1530 {
1531 	int error = 0;
1532 	struct epitem *epi;
1533 
1534 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1535 		return -1;
1536 
1537 	/* CTL_DEL can remove links here, but that can't increase our count */
1538 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1539 		struct hlist_head *refs = &epi->ep->refs;
1540 		if (hlist_empty(refs))
1541 			error = path_count_inc(depth);
1542 		else
1543 			error = reverse_path_check_proc(refs, depth + 1);
1544 		if (error != 0)
1545 			break;
1546 	}
1547 	return error;
1548 }
1549 
1550 /**
1551  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1552  *                      links that are proposed to be newly added. We need to
1553  *                      make sure that those added links don't add too many
1554  *                      paths such that we will spend all our time waking up
1555  *                      eventpoll objects.
1556  *
1557  * Return: %zero if the proposed links don't create too many paths,
1558  *	    %-1 otherwise.
1559  */
reverse_path_check(void)1560 static int reverse_path_check(void)
1561 {
1562 	struct epitems_head *p;
1563 
1564 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1565 		int error;
1566 		path_count_init();
1567 		rcu_read_lock();
1568 		error = reverse_path_check_proc(&p->epitems, 0);
1569 		rcu_read_unlock();
1570 		if (error)
1571 			return error;
1572 	}
1573 	return 0;
1574 }
1575 
ep_create_wakeup_source(struct epitem * epi)1576 static int ep_create_wakeup_source(struct epitem *epi)
1577 {
1578 	struct name_snapshot n;
1579 	struct wakeup_source *ws;
1580 
1581 	if (!epi->ep->ws) {
1582 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1583 		if (!epi->ep->ws)
1584 			return -ENOMEM;
1585 	}
1586 
1587 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1588 	ws = wakeup_source_register(NULL, n.name.name);
1589 	release_dentry_name_snapshot(&n);
1590 
1591 	if (!ws)
1592 		return -ENOMEM;
1593 	rcu_assign_pointer(epi->ws, ws);
1594 
1595 	return 0;
1596 }
1597 
1598 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1599 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1600 {
1601 	struct wakeup_source *ws = ep_wakeup_source(epi);
1602 
1603 	RCU_INIT_POINTER(epi->ws, NULL);
1604 
1605 	/*
1606 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1607 	 * used internally by wakeup_source_remove, too (called by
1608 	 * wakeup_source_unregister), so we cannot use call_rcu
1609 	 */
1610 	synchronize_rcu();
1611 	wakeup_source_unregister(ws);
1612 }
1613 
attach_epitem(struct file * file,struct epitem * epi)1614 static int attach_epitem(struct file *file, struct epitem *epi)
1615 {
1616 	struct epitems_head *to_free = NULL;
1617 	struct hlist_head *head = NULL;
1618 	struct eventpoll *ep = NULL;
1619 
1620 	if (is_file_epoll(file))
1621 		ep = file->private_data;
1622 
1623 	if (ep) {
1624 		head = &ep->refs;
1625 	} else if (!READ_ONCE(file->f_ep)) {
1626 allocate:
1627 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1628 		if (!to_free)
1629 			return -ENOMEM;
1630 		head = &to_free->epitems;
1631 	}
1632 	spin_lock(&file->f_lock);
1633 	if (!file->f_ep) {
1634 		if (unlikely(!head)) {
1635 			spin_unlock(&file->f_lock);
1636 			goto allocate;
1637 		}
1638 		/* See eventpoll_release() for details. */
1639 		WRITE_ONCE(file->f_ep, head);
1640 		to_free = NULL;
1641 	}
1642 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1643 	spin_unlock(&file->f_lock);
1644 	free_ephead(to_free);
1645 	return 0;
1646 }
1647 
1648 /*
1649  * Must be called with "mtx" held.
1650  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1651 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1652 		     struct file *tfile, int fd, int full_check)
1653 {
1654 	int error, pwake = 0;
1655 	__poll_t revents;
1656 	struct epitem *epi;
1657 	struct ep_pqueue epq;
1658 	struct eventpoll *tep = NULL;
1659 
1660 	if (is_file_epoll(tfile))
1661 		tep = tfile->private_data;
1662 
1663 	lockdep_assert_irqs_enabled();
1664 
1665 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1666 					    max_user_watches) >= 0))
1667 		return -ENOSPC;
1668 	percpu_counter_inc(&ep->user->epoll_watches);
1669 
1670 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1671 		percpu_counter_dec(&ep->user->epoll_watches);
1672 		return -ENOMEM;
1673 	}
1674 
1675 	/* Item initialization follow here ... */
1676 	INIT_LIST_HEAD(&epi->rdllink);
1677 	epi->ep = ep;
1678 	ep_set_ffd(&epi->ffd, tfile, fd);
1679 	epi->event = *event;
1680 	epi->next = EP_UNACTIVE_PTR;
1681 
1682 	if (tep)
1683 		mutex_lock_nested(&tep->mtx, 1);
1684 	/* Add the current item to the list of active epoll hook for this file */
1685 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1686 		if (tep)
1687 			mutex_unlock(&tep->mtx);
1688 		kmem_cache_free(epi_cache, epi);
1689 		percpu_counter_dec(&ep->user->epoll_watches);
1690 		return -ENOMEM;
1691 	}
1692 
1693 	if (full_check && !tep)
1694 		list_file(tfile);
1695 
1696 	/*
1697 	 * Add the current item to the RB tree. All RB tree operations are
1698 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1699 	 */
1700 	ep_rbtree_insert(ep, epi);
1701 	if (tep)
1702 		mutex_unlock(&tep->mtx);
1703 
1704 	/*
1705 	 * ep_remove_safe() calls in the later error paths can't lead to
1706 	 * ep_free() as the ep file itself still holds an ep reference.
1707 	 */
1708 	ep_get(ep);
1709 
1710 	/* now check if we've created too many backpaths */
1711 	if (unlikely(full_check && reverse_path_check())) {
1712 		ep_remove_safe(ep, epi);
1713 		return -EINVAL;
1714 	}
1715 
1716 	if (epi->event.events & EPOLLWAKEUP) {
1717 		error = ep_create_wakeup_source(epi);
1718 		if (error) {
1719 			ep_remove_safe(ep, epi);
1720 			return error;
1721 		}
1722 	}
1723 
1724 	/* Initialize the poll table using the queue callback */
1725 	epq.epi = epi;
1726 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1727 
1728 	/*
1729 	 * Attach the item to the poll hooks and get current event bits.
1730 	 * We can safely use the file* here because its usage count has
1731 	 * been increased by the caller of this function. Note that after
1732 	 * this operation completes, the poll callback can start hitting
1733 	 * the new item.
1734 	 */
1735 	revents = ep_item_poll(epi, &epq.pt, 1);
1736 
1737 	/*
1738 	 * We have to check if something went wrong during the poll wait queue
1739 	 * install process. Namely an allocation for a wait queue failed due
1740 	 * high memory pressure.
1741 	 */
1742 	if (unlikely(!epq.epi)) {
1743 		ep_remove_safe(ep, epi);
1744 		return -ENOMEM;
1745 	}
1746 
1747 	/* We have to drop the new item inside our item list to keep track of it */
1748 	write_lock_irq(&ep->lock);
1749 
1750 	/* record NAPI ID of new item if present */
1751 	ep_set_busy_poll_napi_id(epi);
1752 
1753 	/* If the file is already "ready" we drop it inside the ready list */
1754 	if (revents && !ep_is_linked(epi)) {
1755 		list_add_tail(&epi->rdllink, &ep->rdllist);
1756 		ep_pm_stay_awake(epi);
1757 
1758 		/* Notify waiting tasks that events are available */
1759 		if (waitqueue_active(&ep->wq))
1760 			wake_up(&ep->wq);
1761 		if (waitqueue_active(&ep->poll_wait))
1762 			pwake++;
1763 	}
1764 
1765 	write_unlock_irq(&ep->lock);
1766 
1767 	/* We have to call this outside the lock */
1768 	if (pwake)
1769 		ep_poll_safewake(ep, NULL, 0);
1770 
1771 	return 0;
1772 }
1773 
1774 /*
1775  * Modify the interest event mask by dropping an event if the new mask
1776  * has a match in the current file status. Must be called with "mtx" held.
1777  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1778 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1779 		     const struct epoll_event *event)
1780 {
1781 	int pwake = 0;
1782 	poll_table pt;
1783 
1784 	lockdep_assert_irqs_enabled();
1785 
1786 	init_poll_funcptr(&pt, NULL);
1787 
1788 	/*
1789 	 * Set the new event interest mask before calling f_op->poll();
1790 	 * otherwise we might miss an event that happens between the
1791 	 * f_op->poll() call and the new event set registering.
1792 	 */
1793 	epi->event.events = event->events; /* need barrier below */
1794 	epi->event.data = event->data; /* protected by mtx */
1795 	if (epi->event.events & EPOLLWAKEUP) {
1796 		if (!ep_has_wakeup_source(epi))
1797 			ep_create_wakeup_source(epi);
1798 	} else if (ep_has_wakeup_source(epi)) {
1799 		ep_destroy_wakeup_source(epi);
1800 	}
1801 
1802 	/*
1803 	 * The following barrier has two effects:
1804 	 *
1805 	 * 1) Flush epi changes above to other CPUs.  This ensures
1806 	 *    we do not miss events from ep_poll_callback if an
1807 	 *    event occurs immediately after we call f_op->poll().
1808 	 *    We need this because we did not take ep->lock while
1809 	 *    changing epi above (but ep_poll_callback does take
1810 	 *    ep->lock).
1811 	 *
1812 	 * 2) We also need to ensure we do not miss _past_ events
1813 	 *    when calling f_op->poll().  This barrier also
1814 	 *    pairs with the barrier in wq_has_sleeper (see
1815 	 *    comments for wq_has_sleeper).
1816 	 *
1817 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1818 	 * (or both) will notice the readiness of an item.
1819 	 */
1820 	smp_mb();
1821 
1822 	/*
1823 	 * Get current event bits. We can safely use the file* here because
1824 	 * its usage count has been increased by the caller of this function.
1825 	 * If the item is "hot" and it is not registered inside the ready
1826 	 * list, push it inside.
1827 	 */
1828 	if (ep_item_poll(epi, &pt, 1)) {
1829 		write_lock_irq(&ep->lock);
1830 		if (!ep_is_linked(epi)) {
1831 			list_add_tail(&epi->rdllink, &ep->rdllist);
1832 			ep_pm_stay_awake(epi);
1833 
1834 			/* Notify waiting tasks that events are available */
1835 			if (waitqueue_active(&ep->wq))
1836 				wake_up(&ep->wq);
1837 			if (waitqueue_active(&ep->poll_wait))
1838 				pwake++;
1839 		}
1840 		write_unlock_irq(&ep->lock);
1841 	}
1842 
1843 	/* We have to call this outside the lock */
1844 	if (pwake)
1845 		ep_poll_safewake(ep, NULL, 0);
1846 
1847 	return 0;
1848 }
1849 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1850 static int ep_send_events(struct eventpoll *ep,
1851 			  struct epoll_event __user *events, int maxevents)
1852 {
1853 	struct epitem *epi, *tmp;
1854 	LIST_HEAD(txlist);
1855 	poll_table pt;
1856 	int res = 0;
1857 
1858 	/*
1859 	 * Always short-circuit for fatal signals to allow threads to make a
1860 	 * timely exit without the chance of finding more events available and
1861 	 * fetching repeatedly.
1862 	 */
1863 	if (fatal_signal_pending(current))
1864 		return -EINTR;
1865 
1866 	init_poll_funcptr(&pt, NULL);
1867 
1868 	mutex_lock(&ep->mtx);
1869 	ep_start_scan(ep, &txlist);
1870 
1871 	/*
1872 	 * We can loop without lock because we are passed a task private list.
1873 	 * Items cannot vanish during the loop we are holding ep->mtx.
1874 	 */
1875 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1876 		struct wakeup_source *ws;
1877 		__poll_t revents;
1878 
1879 		if (res >= maxevents)
1880 			break;
1881 
1882 		/*
1883 		 * Activate ep->ws before deactivating epi->ws to prevent
1884 		 * triggering auto-suspend here (in case we reactive epi->ws
1885 		 * below).
1886 		 *
1887 		 * This could be rearranged to delay the deactivation of epi->ws
1888 		 * instead, but then epi->ws would temporarily be out of sync
1889 		 * with ep_is_linked().
1890 		 */
1891 		ws = ep_wakeup_source(epi);
1892 		if (ws) {
1893 			if (ws->active)
1894 				__pm_stay_awake(ep->ws);
1895 			__pm_relax(ws);
1896 		}
1897 
1898 		list_del_init(&epi->rdllink);
1899 
1900 		/*
1901 		 * If the event mask intersect the caller-requested one,
1902 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1903 		 * so no operations coming from userspace can change the item.
1904 		 */
1905 		revents = ep_item_poll(epi, &pt, 1);
1906 		if (!revents)
1907 			continue;
1908 
1909 		events = epoll_put_uevent(revents, epi->event.data, events);
1910 		if (!events) {
1911 			list_add(&epi->rdllink, &txlist);
1912 			ep_pm_stay_awake(epi);
1913 			if (!res)
1914 				res = -EFAULT;
1915 			break;
1916 		}
1917 		res++;
1918 		if (epi->event.events & EPOLLONESHOT)
1919 			epi->event.events &= EP_PRIVATE_BITS;
1920 		else if (!(epi->event.events & EPOLLET)) {
1921 			/*
1922 			 * If this file has been added with Level
1923 			 * Trigger mode, we need to insert back inside
1924 			 * the ready list, so that the next call to
1925 			 * epoll_wait() will check again the events
1926 			 * availability. At this point, no one can insert
1927 			 * into ep->rdllist besides us. The epoll_ctl()
1928 			 * callers are locked out by
1929 			 * ep_send_events() holding "mtx" and the
1930 			 * poll callback will queue them in ep->ovflist.
1931 			 */
1932 			list_add_tail(&epi->rdllink, &ep->rdllist);
1933 			ep_pm_stay_awake(epi);
1934 		}
1935 	}
1936 	ep_done_scan(ep, &txlist);
1937 	mutex_unlock(&ep->mtx);
1938 
1939 	return res;
1940 }
1941 
ep_timeout_to_timespec(struct timespec64 * to,long ms)1942 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1943 {
1944 	struct timespec64 now;
1945 
1946 	if (ms < 0)
1947 		return NULL;
1948 
1949 	if (!ms) {
1950 		to->tv_sec = 0;
1951 		to->tv_nsec = 0;
1952 		return to;
1953 	}
1954 
1955 	to->tv_sec = ms / MSEC_PER_SEC;
1956 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1957 
1958 	ktime_get_ts64(&now);
1959 	*to = timespec64_add_safe(now, *to);
1960 	return to;
1961 }
1962 
1963 /*
1964  * autoremove_wake_function, but remove even on failure to wake up, because we
1965  * know that default_wake_function/ttwu will only fail if the thread is already
1966  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1967  * try to reuse it.
1968  */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1969 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1970 				       unsigned int mode, int sync, void *key)
1971 {
1972 	int ret = default_wake_function(wq_entry, mode, sync, key);
1973 
1974 	/*
1975 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1976 	 * iterations see the cause of this wakeup.
1977 	 */
1978 	list_del_init_careful(&wq_entry->entry);
1979 	return ret;
1980 }
1981 
ep_try_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1982 static int ep_try_send_events(struct eventpoll *ep,
1983 			      struct epoll_event __user *events, int maxevents)
1984 {
1985 	int res;
1986 
1987 	/*
1988 	 * Try to transfer events to user space. In case we get 0 events and
1989 	 * there's still timeout left over, we go trying again in search of
1990 	 * more luck.
1991 	 */
1992 	res = ep_send_events(ep, events, maxevents);
1993 	if (res > 0)
1994 		ep_suspend_napi_irqs(ep);
1995 	return res;
1996 }
1997 
ep_schedule_timeout(ktime_t * to)1998 static int ep_schedule_timeout(ktime_t *to)
1999 {
2000 	if (to)
2001 		return ktime_after(*to, ktime_get());
2002 	else
2003 		return 1;
2004 }
2005 
2006 /**
2007  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
2008  *           event buffer.
2009  *
2010  * @ep: Pointer to the eventpoll context.
2011  * @events: Pointer to the userspace buffer where the ready events should be
2012  *          stored.
2013  * @maxevents: Size (in terms of number of events) of the caller event buffer.
2014  * @timeout: Maximum timeout for the ready events fetch operation, in
2015  *           timespec. If the timeout is zero, the function will not block,
2016  *           while if the @timeout ptr is NULL, the function will block
2017  *           until at least one event has been retrieved (or an error
2018  *           occurred).
2019  *
2020  * Return: the number of ready events which have been fetched, or an
2021  *          error code, in case of error.
2022  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout)2023 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
2024 		   int maxevents, struct timespec64 *timeout)
2025 {
2026 	int res, eavail, timed_out = 0;
2027 	u64 slack = 0;
2028 	wait_queue_entry_t wait;
2029 	ktime_t expires, *to = NULL;
2030 
2031 	lockdep_assert_irqs_enabled();
2032 
2033 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2034 		slack = select_estimate_accuracy(timeout);
2035 		to = &expires;
2036 		*to = timespec64_to_ktime(*timeout);
2037 	} else if (timeout) {
2038 		/*
2039 		 * Avoid the unnecessary trip to the wait queue loop, if the
2040 		 * caller specified a non blocking operation.
2041 		 */
2042 		timed_out = 1;
2043 	}
2044 
2045 	/*
2046 	 * This call is racy: We may or may not see events that are being added
2047 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2048 	 * with a non-zero timeout, this thread will check the ready list under
2049 	 * lock and will add to the wait queue.  For cases with a zero
2050 	 * timeout, the user by definition should not care and will have to
2051 	 * recheck again.
2052 	 */
2053 	eavail = ep_events_available(ep);
2054 
2055 	while (1) {
2056 		if (eavail) {
2057 			res = ep_try_send_events(ep, events, maxevents);
2058 			if (res)
2059 				return res;
2060 		}
2061 
2062 		if (timed_out)
2063 			return 0;
2064 
2065 		eavail = ep_busy_loop(ep);
2066 		if (eavail)
2067 			continue;
2068 
2069 		if (signal_pending(current))
2070 			return -EINTR;
2071 
2072 		/*
2073 		 * Internally init_wait() uses autoremove_wake_function(),
2074 		 * thus wait entry is removed from the wait queue on each
2075 		 * wakeup. Why it is important? In case of several waiters
2076 		 * each new wakeup will hit the next waiter, giving it the
2077 		 * chance to harvest new event. Otherwise wakeup can be
2078 		 * lost. This is also good performance-wise, because on
2079 		 * normal wakeup path no need to call __remove_wait_queue()
2080 		 * explicitly, thus ep->lock is not taken, which halts the
2081 		 * event delivery.
2082 		 *
2083 		 * In fact, we now use an even more aggressive function that
2084 		 * unconditionally removes, because we don't reuse the wait
2085 		 * entry between loop iterations. This lets us also avoid the
2086 		 * performance issue if a process is killed, causing all of its
2087 		 * threads to wake up without being removed normally.
2088 		 */
2089 		init_wait(&wait);
2090 		wait.func = ep_autoremove_wake_function;
2091 
2092 		write_lock_irq(&ep->lock);
2093 		/*
2094 		 * Barrierless variant, waitqueue_active() is called under
2095 		 * the same lock on wakeup ep_poll_callback() side, so it
2096 		 * is safe to avoid an explicit barrier.
2097 		 */
2098 		__set_current_state(TASK_INTERRUPTIBLE);
2099 
2100 		/*
2101 		 * Do the final check under the lock. ep_start/done_scan()
2102 		 * plays with two lists (->rdllist and ->ovflist) and there
2103 		 * is always a race when both lists are empty for short
2104 		 * period of time although events are pending, so lock is
2105 		 * important.
2106 		 */
2107 		eavail = ep_events_available(ep);
2108 		if (!eavail)
2109 			__add_wait_queue_exclusive(&ep->wq, &wait);
2110 
2111 		write_unlock_irq(&ep->lock);
2112 
2113 		if (!eavail)
2114 			timed_out = !ep_schedule_timeout(to) ||
2115 				!schedule_hrtimeout_range(to, slack,
2116 							  HRTIMER_MODE_ABS);
2117 		__set_current_state(TASK_RUNNING);
2118 
2119 		/*
2120 		 * We were woken up, thus go and try to harvest some events.
2121 		 * If timed out and still on the wait queue, recheck eavail
2122 		 * carefully under lock, below.
2123 		 */
2124 		eavail = 1;
2125 
2126 		if (!list_empty_careful(&wait.entry)) {
2127 			write_lock_irq(&ep->lock);
2128 			/*
2129 			 * If the thread timed out and is not on the wait queue,
2130 			 * it means that the thread was woken up after its
2131 			 * timeout expired before it could reacquire the lock.
2132 			 * Thus, when wait.entry is empty, it needs to harvest
2133 			 * events.
2134 			 */
2135 			if (timed_out)
2136 				eavail = list_empty(&wait.entry);
2137 			__remove_wait_queue(&ep->wq, &wait);
2138 			write_unlock_irq(&ep->lock);
2139 		}
2140 	}
2141 }
2142 
2143 /**
2144  * ep_loop_check_proc - verify that adding an epoll file @ep inside another
2145  *                      epoll file does not create closed loops, and
2146  *                      determine the depth of the subtree starting at @ep
2147  *
2148  * @ep: the &struct eventpoll to be currently checked.
2149  * @depth: Current depth of the path being checked.
2150  *
2151  * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep.
2152  */
ep_loop_check_proc(struct eventpoll * ep,int depth)2153 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2154 {
2155 	int result = 0;
2156 	struct rb_node *rbp;
2157 	struct epitem *epi;
2158 
2159 	if (ep->gen == loop_check_gen)
2160 		return ep->loop_check_depth;
2161 
2162 	mutex_lock_nested(&ep->mtx, depth + 1);
2163 	ep->gen = loop_check_gen;
2164 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2165 		epi = rb_entry(rbp, struct epitem, rbn);
2166 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2167 			struct eventpoll *ep_tovisit;
2168 			ep_tovisit = epi->ffd.file->private_data;
2169 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2170 				result = INT_MAX;
2171 			else
2172 				result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1);
2173 			if (result > EP_MAX_NESTS)
2174 				break;
2175 		} else {
2176 			/*
2177 			 * If we've reached a file that is not associated with
2178 			 * an ep, then we need to check if the newly added
2179 			 * links are going to add too many wakeup paths. We do
2180 			 * this by adding it to the tfile_check_list, if it's
2181 			 * not already there, and calling reverse_path_check()
2182 			 * during ep_insert().
2183 			 */
2184 			list_file(epi->ffd.file);
2185 		}
2186 	}
2187 	ep->loop_check_depth = result;
2188 	mutex_unlock(&ep->mtx);
2189 
2190 	return result;
2191 }
2192 
2193 /* ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards */
ep_get_upwards_depth_proc(struct eventpoll * ep,int depth)2194 static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth)
2195 {
2196 	int result = 0;
2197 	struct epitem *epi;
2198 
2199 	if (ep->gen == loop_check_gen)
2200 		return ep->loop_check_depth;
2201 	hlist_for_each_entry_rcu(epi, &ep->refs, fllink)
2202 		result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1);
2203 	ep->gen = loop_check_gen;
2204 	ep->loop_check_depth = result;
2205 	return result;
2206 }
2207 
2208 /**
2209  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2210  *                 into another epoll file (represented by @ep) does not create
2211  *                 closed loops or too deep chains.
2212  *
2213  * @ep: Pointer to the epoll we are inserting into.
2214  * @to: Pointer to the epoll to be inserted.
2215  *
2216  * Return: %zero if adding the epoll @to inside the epoll @from
2217  * does not violate the constraints, or %-1 otherwise.
2218  */
ep_loop_check(struct eventpoll * ep,struct eventpoll * to)2219 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2220 {
2221 	int depth, upwards_depth;
2222 
2223 	inserting_into = ep;
2224 	/*
2225 	 * Check how deep down we can get from @to, and whether it is possible
2226 	 * to loop up to @ep.
2227 	 */
2228 	depth = ep_loop_check_proc(to, 0);
2229 	if (depth > EP_MAX_NESTS)
2230 		return -1;
2231 	/* Check how far up we can go from @ep. */
2232 	rcu_read_lock();
2233 	upwards_depth = ep_get_upwards_depth_proc(ep, 0);
2234 	rcu_read_unlock();
2235 
2236 	return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0;
2237 }
2238 
clear_tfile_check_list(void)2239 static void clear_tfile_check_list(void)
2240 {
2241 	rcu_read_lock();
2242 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2243 		struct epitems_head *head = tfile_check_list;
2244 		tfile_check_list = head->next;
2245 		unlist_file(head);
2246 	}
2247 	rcu_read_unlock();
2248 }
2249 
2250 /*
2251  * Open an eventpoll file descriptor.
2252  */
do_epoll_create(int flags)2253 static int do_epoll_create(int flags)
2254 {
2255 	int error, fd;
2256 	struct eventpoll *ep = NULL;
2257 	struct file *file;
2258 
2259 	/* Check the EPOLL_* constant for consistency.  */
2260 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2261 
2262 	if (flags & ~EPOLL_CLOEXEC)
2263 		return -EINVAL;
2264 	/*
2265 	 * Create the internal data structure ("struct eventpoll").
2266 	 */
2267 	error = ep_alloc(&ep);
2268 	if (error < 0)
2269 		return error;
2270 	/*
2271 	 * Creates all the items needed to setup an eventpoll file. That is,
2272 	 * a file structure and a free file descriptor.
2273 	 */
2274 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2275 	if (fd < 0) {
2276 		error = fd;
2277 		goto out_free_ep;
2278 	}
2279 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2280 				 O_RDWR | (flags & O_CLOEXEC));
2281 	if (IS_ERR(file)) {
2282 		error = PTR_ERR(file);
2283 		goto out_free_fd;
2284 	}
2285 	ep->file = file;
2286 	fd_install(fd, file);
2287 	return fd;
2288 
2289 out_free_fd:
2290 	put_unused_fd(fd);
2291 out_free_ep:
2292 	ep_clear_and_put(ep);
2293 	return error;
2294 }
2295 
SYSCALL_DEFINE1(epoll_create1,int,flags)2296 SYSCALL_DEFINE1(epoll_create1, int, flags)
2297 {
2298 	return do_epoll_create(flags);
2299 }
2300 
SYSCALL_DEFINE1(epoll_create,int,size)2301 SYSCALL_DEFINE1(epoll_create, int, size)
2302 {
2303 	if (size <= 0)
2304 		return -EINVAL;
2305 
2306 	return do_epoll_create(0);
2307 }
2308 
2309 #ifdef CONFIG_PM_SLEEP
ep_take_care_of_epollwakeup(struct epoll_event * epev)2310 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2311 {
2312 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2313 		epev->events &= ~EPOLLWAKEUP;
2314 }
2315 #else
ep_take_care_of_epollwakeup(struct epoll_event * epev)2316 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2317 {
2318 	epev->events &= ~EPOLLWAKEUP;
2319 }
2320 #endif
2321 
epoll_mutex_lock(struct mutex * mutex,int depth,bool nonblock)2322 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2323 				   bool nonblock)
2324 {
2325 	if (!nonblock) {
2326 		mutex_lock_nested(mutex, depth);
2327 		return 0;
2328 	}
2329 	if (mutex_trylock(mutex))
2330 		return 0;
2331 	return -EAGAIN;
2332 }
2333 
do_epoll_ctl(int epfd,int op,int fd,struct epoll_event * epds,bool nonblock)2334 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2335 		 bool nonblock)
2336 {
2337 	int error;
2338 	int full_check = 0;
2339 	struct eventpoll *ep;
2340 	struct epitem *epi;
2341 	struct eventpoll *tep = NULL;
2342 
2343 	CLASS(fd, f)(epfd);
2344 	if (fd_empty(f))
2345 		return -EBADF;
2346 
2347 	/* Get the "struct file *" for the target file */
2348 	CLASS(fd, tf)(fd);
2349 	if (fd_empty(tf))
2350 		return -EBADF;
2351 
2352 	/* The target file descriptor must support poll */
2353 	if (!file_can_poll(fd_file(tf)))
2354 		return -EPERM;
2355 
2356 	/* Check if EPOLLWAKEUP is allowed */
2357 	if (ep_op_has_event(op))
2358 		ep_take_care_of_epollwakeup(epds);
2359 
2360 	/*
2361 	 * We have to check that the file structure underneath the file descriptor
2362 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2363 	 * adding an epoll file descriptor inside itself.
2364 	 */
2365 	error = -EINVAL;
2366 	if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2367 		goto error_tgt_fput;
2368 
2369 	/*
2370 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2371 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2372 	 * Also, we do not currently supported nested exclusive wakeups.
2373 	 */
2374 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2375 		if (op == EPOLL_CTL_MOD)
2376 			goto error_tgt_fput;
2377 		if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2378 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2379 			goto error_tgt_fput;
2380 	}
2381 
2382 	/*
2383 	 * At this point it is safe to assume that the "private_data" contains
2384 	 * our own data structure.
2385 	 */
2386 	ep = fd_file(f)->private_data;
2387 
2388 	/*
2389 	 * When we insert an epoll file descriptor inside another epoll file
2390 	 * descriptor, there is the chance of creating closed loops, which are
2391 	 * better be handled here, than in more critical paths. While we are
2392 	 * checking for loops we also determine the list of files reachable
2393 	 * and hang them on the tfile_check_list, so we can check that we
2394 	 * haven't created too many possible wakeup paths.
2395 	 *
2396 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2397 	 * the epoll file descriptor is attaching directly to a wakeup source,
2398 	 * unless the epoll file descriptor is nested. The purpose of taking the
2399 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2400 	 * deep wakeup paths from forming in parallel through multiple
2401 	 * EPOLL_CTL_ADD operations.
2402 	 */
2403 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2404 	if (error)
2405 		goto error_tgt_fput;
2406 	if (op == EPOLL_CTL_ADD) {
2407 		if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2408 		    is_file_epoll(fd_file(tf))) {
2409 			mutex_unlock(&ep->mtx);
2410 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2411 			if (error)
2412 				goto error_tgt_fput;
2413 			loop_check_gen++;
2414 			full_check = 1;
2415 			if (is_file_epoll(fd_file(tf))) {
2416 				tep = fd_file(tf)->private_data;
2417 				error = -ELOOP;
2418 				if (ep_loop_check(ep, tep) != 0)
2419 					goto error_tgt_fput;
2420 			}
2421 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2422 			if (error)
2423 				goto error_tgt_fput;
2424 		}
2425 	}
2426 
2427 	/*
2428 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2429 	 * above, we can be sure to be able to use the item looked up by
2430 	 * ep_find() till we release the mutex.
2431 	 */
2432 	epi = ep_find(ep, fd_file(tf), fd);
2433 
2434 	error = -EINVAL;
2435 	switch (op) {
2436 	case EPOLL_CTL_ADD:
2437 		if (!epi) {
2438 			epds->events |= EPOLLERR | EPOLLHUP;
2439 			error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2440 		} else
2441 			error = -EEXIST;
2442 		break;
2443 	case EPOLL_CTL_DEL:
2444 		if (epi) {
2445 			/*
2446 			 * The eventpoll itself is still alive: the refcount
2447 			 * can't go to zero here.
2448 			 */
2449 			ep_remove_safe(ep, epi);
2450 			error = 0;
2451 		} else {
2452 			error = -ENOENT;
2453 		}
2454 		break;
2455 	case EPOLL_CTL_MOD:
2456 		if (epi) {
2457 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2458 				epds->events |= EPOLLERR | EPOLLHUP;
2459 				error = ep_modify(ep, epi, epds);
2460 			}
2461 		} else
2462 			error = -ENOENT;
2463 		break;
2464 	}
2465 	mutex_unlock(&ep->mtx);
2466 
2467 error_tgt_fput:
2468 	if (full_check) {
2469 		clear_tfile_check_list();
2470 		loop_check_gen++;
2471 		mutex_unlock(&epnested_mutex);
2472 	}
2473 	return error;
2474 }
2475 
2476 /*
2477  * The following function implements the controller interface for
2478  * the eventpoll file that enables the insertion/removal/change of
2479  * file descriptors inside the interest set.
2480  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2481 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2482 		struct epoll_event __user *, event)
2483 {
2484 	struct epoll_event epds;
2485 
2486 	if (ep_op_has_event(op) &&
2487 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2488 		return -EFAULT;
2489 
2490 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2491 }
2492 
ep_check_params(struct file * file,struct epoll_event __user * evs,int maxevents)2493 static int ep_check_params(struct file *file, struct epoll_event __user *evs,
2494 			   int maxevents)
2495 {
2496 	/* The maximum number of event must be greater than zero */
2497 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2498 		return -EINVAL;
2499 
2500 	/* Verify that the area passed by the user is writeable */
2501 	if (!access_ok(evs, maxevents * sizeof(struct epoll_event)))
2502 		return -EFAULT;
2503 
2504 	/*
2505 	 * We have to check that the file structure underneath the fd
2506 	 * the user passed to us _is_ an eventpoll file.
2507 	 */
2508 	if (!is_file_epoll(file))
2509 		return -EINVAL;
2510 
2511 	return 0;
2512 }
2513 
epoll_sendevents(struct file * file,struct epoll_event __user * events,int maxevents)2514 int epoll_sendevents(struct file *file, struct epoll_event __user *events,
2515 		     int maxevents)
2516 {
2517 	struct eventpoll *ep;
2518 	int ret;
2519 
2520 	ret = ep_check_params(file, events, maxevents);
2521 	if (unlikely(ret))
2522 		return ret;
2523 
2524 	ep = file->private_data;
2525 	/*
2526 	 * Racy call, but that's ok - it should get retried based on
2527 	 * poll readiness anyway.
2528 	 */
2529 	if (ep_events_available(ep))
2530 		return ep_try_send_events(ep, events, maxevents);
2531 	return 0;
2532 }
2533 
2534 /*
2535  * Implement the event wait interface for the eventpoll file. It is the kernel
2536  * part of the user space epoll_wait(2).
2537  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to)2538 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2539 			 int maxevents, struct timespec64 *to)
2540 {
2541 	struct eventpoll *ep;
2542 	int ret;
2543 
2544 	/* Get the "struct file *" for the eventpoll file */
2545 	CLASS(fd, f)(epfd);
2546 	if (fd_empty(f))
2547 		return -EBADF;
2548 
2549 	ret = ep_check_params(fd_file(f), events, maxevents);
2550 	if (unlikely(ret))
2551 		return ret;
2552 
2553 	/*
2554 	 * At this point it is safe to assume that the "private_data" contains
2555 	 * our own data structure.
2556 	 */
2557 	ep = fd_file(f)->private_data;
2558 
2559 	/* Time to fish for events ... */
2560 	return ep_poll(ep, events, maxevents, to);
2561 }
2562 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2563 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2564 		int, maxevents, int, timeout)
2565 {
2566 	struct timespec64 to;
2567 
2568 	return do_epoll_wait(epfd, events, maxevents,
2569 			     ep_timeout_to_timespec(&to, timeout));
2570 }
2571 
2572 /*
2573  * Implement the event wait interface for the eventpoll file. It is the kernel
2574  * part of the user space epoll_pwait(2).
2575  */
do_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * to,const sigset_t __user * sigmask,size_t sigsetsize)2576 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2577 			  int maxevents, struct timespec64 *to,
2578 			  const sigset_t __user *sigmask, size_t sigsetsize)
2579 {
2580 	int error;
2581 
2582 	/*
2583 	 * If the caller wants a certain signal mask to be set during the wait,
2584 	 * we apply it here.
2585 	 */
2586 	error = set_user_sigmask(sigmask, sigsetsize);
2587 	if (error)
2588 		return error;
2589 
2590 	error = do_epoll_wait(epfd, events, maxevents, to);
2591 
2592 	restore_saved_sigmask_unless(error == -EINTR);
2593 
2594 	return error;
2595 }
2596 
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2597 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2598 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2599 		size_t, sigsetsize)
2600 {
2601 	struct timespec64 to;
2602 
2603 	return do_epoll_pwait(epfd, events, maxevents,
2604 			      ep_timeout_to_timespec(&to, timeout),
2605 			      sigmask, sigsetsize);
2606 }
2607 
SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2608 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2609 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2610 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2611 {
2612 	struct timespec64 ts, *to = NULL;
2613 
2614 	if (timeout) {
2615 		if (get_timespec64(&ts, timeout))
2616 			return -EFAULT;
2617 		to = &ts;
2618 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2619 			return -EINVAL;
2620 	}
2621 
2622 	return do_epoll_pwait(epfd, events, maxevents, to,
2623 			      sigmask, sigsetsize);
2624 }
2625 
2626 #ifdef CONFIG_COMPAT
do_compat_epoll_pwait(int epfd,struct epoll_event __user * events,int maxevents,struct timespec64 * timeout,const compat_sigset_t __user * sigmask,compat_size_t sigsetsize)2627 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2628 				 int maxevents, struct timespec64 *timeout,
2629 				 const compat_sigset_t __user *sigmask,
2630 				 compat_size_t sigsetsize)
2631 {
2632 	long err;
2633 
2634 	/*
2635 	 * If the caller wants a certain signal mask to be set during the wait,
2636 	 * we apply it here.
2637 	 */
2638 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2639 	if (err)
2640 		return err;
2641 
2642 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2643 
2644 	restore_saved_sigmask_unless(err == -EINTR);
2645 
2646 	return err;
2647 }
2648 
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2649 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2650 		       struct epoll_event __user *, events,
2651 		       int, maxevents, int, timeout,
2652 		       const compat_sigset_t __user *, sigmask,
2653 		       compat_size_t, sigsetsize)
2654 {
2655 	struct timespec64 to;
2656 
2657 	return do_compat_epoll_pwait(epfd, events, maxevents,
2658 				     ep_timeout_to_timespec(&to, timeout),
2659 				     sigmask, sigsetsize);
2660 }
2661 
COMPAT_SYSCALL_DEFINE6(epoll_pwait2,int,epfd,struct epoll_event __user *,events,int,maxevents,const struct __kernel_timespec __user *,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2662 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2663 		       struct epoll_event __user *, events,
2664 		       int, maxevents,
2665 		       const struct __kernel_timespec __user *, timeout,
2666 		       const compat_sigset_t __user *, sigmask,
2667 		       compat_size_t, sigsetsize)
2668 {
2669 	struct timespec64 ts, *to = NULL;
2670 
2671 	if (timeout) {
2672 		if (get_timespec64(&ts, timeout))
2673 			return -EFAULT;
2674 		to = &ts;
2675 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2676 			return -EINVAL;
2677 	}
2678 
2679 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2680 				     sigmask, sigsetsize);
2681 }
2682 
2683 #endif
2684 
eventpoll_init(void)2685 static int __init eventpoll_init(void)
2686 {
2687 	struct sysinfo si;
2688 
2689 	si_meminfo(&si);
2690 	/*
2691 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2692 	 */
2693 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2694 		EP_ITEM_COST;
2695 	BUG_ON(max_user_watches < 0);
2696 
2697 	/*
2698 	 * We can have many thousands of epitems, so prevent this from
2699 	 * using an extra cache line on 64-bit (and smaller) CPUs
2700 	 */
2701 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2702 
2703 	/* Allocates slab cache used to allocate "struct epitem" items */
2704 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2705 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2706 
2707 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2708 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2709 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2710 	epoll_sysctls_init();
2711 
2712 	ephead_cache = kmem_cache_create("ep_head",
2713 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2714 
2715 	return 0;
2716 }
2717 fs_initcall(eventpoll_init);
2718