xref: /linux/fs/btrfs/compression.c (revision 161ab30da6899f31f8128cec7c833e99fa4d06d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "btrfs_inode.h"
28 #include "bio.h"
29 #include "ordered-data.h"
30 #include "compression.h"
31 #include "extent_io.h"
32 #include "extent_map.h"
33 #include "subpage.h"
34 #include "messages.h"
35 #include "super.h"
36 
37 static struct bio_set btrfs_compressed_bioset;
38 
39 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
40 
41 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
42 {
43 	switch (type) {
44 	case BTRFS_COMPRESS_ZLIB:
45 	case BTRFS_COMPRESS_LZO:
46 	case BTRFS_COMPRESS_ZSTD:
47 	case BTRFS_COMPRESS_NONE:
48 		return btrfs_compress_types[type];
49 	default:
50 		break;
51 	}
52 
53 	return NULL;
54 }
55 
56 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
57 {
58 	return container_of(bbio, struct compressed_bio, bbio);
59 }
60 
61 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
62 						   u64 start, blk_opf_t op,
63 						   btrfs_bio_end_io_t end_io)
64 {
65 	struct btrfs_bio *bbio;
66 
67 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
68 					  GFP_NOFS, &btrfs_compressed_bioset));
69 	btrfs_bio_init(bbio, inode, start, end_io, NULL);
70 	return to_compressed_bio(bbio);
71 }
72 
73 bool btrfs_compress_is_valid_type(const char *str, size_t len)
74 {
75 	int i;
76 
77 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
78 		size_t comp_len = strlen(btrfs_compress_types[i]);
79 
80 		if (len < comp_len)
81 			continue;
82 
83 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
84 			return true;
85 	}
86 	return false;
87 }
88 
89 static int compression_decompress_bio(struct list_head *ws,
90 				      struct compressed_bio *cb)
91 {
92 	switch (cb->compress_type) {
93 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
94 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
95 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
96 	case BTRFS_COMPRESS_NONE:
97 	default:
98 		/*
99 		 * This can't happen, the type is validated several times
100 		 * before we get here.
101 		 */
102 		BUG();
103 	}
104 }
105 
106 static int compression_decompress(int type, struct list_head *ws,
107 		const u8 *data_in, struct folio *dest_folio,
108 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
109 {
110 	switch (type) {
111 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
112 						dest_pgoff, srclen, destlen);
113 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio,
114 						dest_pgoff, srclen, destlen);
115 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
116 						dest_pgoff, srclen, destlen);
117 	case BTRFS_COMPRESS_NONE:
118 	default:
119 		/*
120 		 * This can't happen, the type is validated several times
121 		 * before we get here.
122 		 */
123 		BUG();
124 	}
125 }
126 
127 static int btrfs_decompress_bio(struct compressed_bio *cb);
128 
129 /*
130  * Global cache of last unused pages for compression/decompression.
131  */
132 static struct btrfs_compr_pool {
133 	struct shrinker *shrinker;
134 	spinlock_t lock;
135 	struct list_head list;
136 	int count;
137 	int thresh;
138 } compr_pool;
139 
140 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
141 {
142 	int ret;
143 
144 	/*
145 	 * We must not read the values more than once if 'ret' gets expanded in
146 	 * the return statement so we don't accidentally return a negative
147 	 * number, even if the first condition finds it positive.
148 	 */
149 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
150 
151 	return ret > 0 ? ret : 0;
152 }
153 
154 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
155 {
156 	LIST_HEAD(remove);
157 	struct list_head *tmp, *next;
158 	int freed;
159 
160 	if (compr_pool.count == 0)
161 		return SHRINK_STOP;
162 
163 	/* For now, just simply drain the whole list. */
164 	spin_lock(&compr_pool.lock);
165 	list_splice_init(&compr_pool.list, &remove);
166 	freed = compr_pool.count;
167 	compr_pool.count = 0;
168 	spin_unlock(&compr_pool.lock);
169 
170 	list_for_each_safe(tmp, next, &remove) {
171 		struct page *page = list_entry(tmp, struct page, lru);
172 
173 		ASSERT(page_ref_count(page) == 1);
174 		put_page(page);
175 	}
176 
177 	return freed;
178 }
179 
180 /*
181  * Common wrappers for page allocation from compression wrappers
182  */
183 struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info)
184 {
185 	struct folio *folio = NULL;
186 
187 	/* For bs > ps cases, no cached folio pool for now. */
188 	if (fs_info->block_min_order)
189 		goto alloc;
190 
191 	spin_lock(&compr_pool.lock);
192 	if (compr_pool.count > 0) {
193 		folio = list_first_entry(&compr_pool.list, struct folio, lru);
194 		list_del_init(&folio->lru);
195 		compr_pool.count--;
196 	}
197 	spin_unlock(&compr_pool.lock);
198 
199 	if (folio)
200 		return folio;
201 
202 alloc:
203 	return folio_alloc(GFP_NOFS, fs_info->block_min_order);
204 }
205 
206 void btrfs_free_compr_folio(struct folio *folio)
207 {
208 	bool do_free = false;
209 
210 	/* The folio is from bs > ps fs, no cached pool for now. */
211 	if (folio_order(folio))
212 		goto free;
213 
214 	spin_lock(&compr_pool.lock);
215 	if (compr_pool.count > compr_pool.thresh) {
216 		do_free = true;
217 	} else {
218 		list_add(&folio->lru, &compr_pool.list);
219 		compr_pool.count++;
220 	}
221 	spin_unlock(&compr_pool.lock);
222 
223 	if (!do_free)
224 		return;
225 
226 free:
227 	ASSERT(folio_ref_count(folio) == 1);
228 	folio_put(folio);
229 }
230 
231 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
232 {
233 	struct compressed_bio *cb = to_compressed_bio(bbio);
234 	blk_status_t status = bbio->bio.bi_status;
235 	struct folio_iter fi;
236 
237 	if (!status)
238 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
239 
240 	btrfs_bio_end_io(cb->orig_bbio, status);
241 	bio_for_each_folio_all(fi, &bbio->bio)
242 		btrfs_free_compr_folio(fi.folio);
243 	bio_put(&bbio->bio);
244 }
245 
246 /*
247  * Clear the writeback bits on all of the file
248  * pages for a compressed write
249  */
250 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
251 {
252 	struct inode *inode = &cb->bbio.inode->vfs_inode;
253 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
254 	pgoff_t index = cb->start >> PAGE_SHIFT;
255 	const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
256 	struct folio_batch fbatch;
257 	int i;
258 	int ret;
259 
260 	ret = blk_status_to_errno(cb->bbio.bio.bi_status);
261 	if (ret)
262 		mapping_set_error(inode->i_mapping, ret);
263 
264 	folio_batch_init(&fbatch);
265 	while (index <= end_index) {
266 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
267 				&fbatch);
268 
269 		if (ret == 0)
270 			return;
271 
272 		for (i = 0; i < ret; i++) {
273 			struct folio *folio = fbatch.folios[i];
274 
275 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
276 							  cb->start, cb->len);
277 		}
278 		folio_batch_release(&fbatch);
279 	}
280 	/* the inode may be gone now */
281 }
282 
283 /*
284  * Do the cleanup once all the compressed pages hit the disk.  This will clear
285  * writeback on the file pages and free the compressed pages.
286  *
287  * This also calls the writeback end hooks for the file pages so that metadata
288  * and checksums can be updated in the file.
289  */
290 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
291 {
292 	struct compressed_bio *cb = to_compressed_bio(bbio);
293 	struct folio_iter fi;
294 
295 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
296 				    cb->bbio.bio.bi_status == BLK_STS_OK);
297 
298 	if (cb->writeback)
299 		end_compressed_writeback(cb);
300 	/* Note, our inode could be gone now. */
301 	bio_for_each_folio_all(fi, &bbio->bio)
302 		btrfs_free_compr_folio(fi.folio);
303 	bio_put(&cb->bbio.bio);
304 }
305 
306 /*
307  * worker function to build and submit bios for previously compressed pages.
308  * The corresponding pages in the inode should be marked for writeback
309  * and the compressed pages should have a reference on them for dropping
310  * when the IO is complete.
311  *
312  * This also checksums the file bytes and gets things ready for
313  * the end io hooks.
314  */
315 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
316 				   struct compressed_bio *cb)
317 {
318 	struct btrfs_inode *inode = ordered->inode;
319 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
320 
321 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
322 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
323 	ASSERT(cb->writeback);
324 
325 	cb->start = ordered->file_offset;
326 	cb->len = ordered->num_bytes;
327 	cb->compressed_len = ordered->disk_num_bytes;
328 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
329 	cb->bbio.ordered = ordered;
330 
331 	btrfs_submit_bbio(&cb->bbio, 0);
332 }
333 
334 /*
335  * Allocate a compressed write bio for @inode file offset @start length @len.
336  *
337  * The caller still needs to properly queue all folios and populate involved
338  * members.
339  */
340 struct compressed_bio *btrfs_alloc_compressed_write(struct btrfs_inode *inode,
341 						    u64 start, u64 len)
342 {
343 	struct compressed_bio *cb;
344 
345 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE, end_bbio_compressed_write);
346 	cb->start = start;
347 	cb->len = len;
348 	cb->writeback = true;
349 
350 	return cb;
351 }
352 
353 /*
354  * Add extra pages in the same compressed file extent so that we don't need to
355  * re-read the same extent again and again.
356  *
357  * NOTE: this won't work well for subpage, as for subpage read, we lock the
358  * full page then submit bio for each compressed/regular extents.
359  *
360  * This means, if we have several sectors in the same page points to the same
361  * on-disk compressed data, we will re-read the same extent many times and
362  * this function can only help for the next page.
363  */
364 static noinline int add_ra_bio_pages(struct inode *inode,
365 				     u64 compressed_end,
366 				     struct compressed_bio *cb,
367 				     int *memstall, unsigned long *pflags)
368 {
369 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
370 	pgoff_t end_index;
371 	struct bio *orig_bio = &cb->orig_bbio->bio;
372 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
373 	u64 isize = i_size_read(inode);
374 	int ret;
375 	struct folio *folio;
376 	struct extent_map *em;
377 	struct address_space *mapping = inode->i_mapping;
378 	struct extent_map_tree *em_tree;
379 	struct extent_io_tree *tree;
380 	int sectors_missed = 0;
381 
382 	em_tree = &BTRFS_I(inode)->extent_tree;
383 	tree = &BTRFS_I(inode)->io_tree;
384 
385 	if (isize == 0)
386 		return 0;
387 
388 	/*
389 	 * For current subpage support, we only support 64K page size,
390 	 * which means maximum compressed extent size (128K) is just 2x page
391 	 * size.
392 	 * This makes readahead less effective, so here disable readahead for
393 	 * subpage for now, until full compressed write is supported.
394 	 */
395 	if (fs_info->sectorsize < PAGE_SIZE)
396 		return 0;
397 
398 	/* For bs > ps cases, we don't support readahead for compressed folios for now. */
399 	if (fs_info->block_min_order)
400 		return 0;
401 
402 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
403 
404 	while (cur < compressed_end) {
405 		pgoff_t page_end;
406 		pgoff_t pg_index = cur >> PAGE_SHIFT;
407 		u32 add_size;
408 
409 		if (pg_index > end_index)
410 			break;
411 
412 		folio = filemap_get_folio(mapping, pg_index);
413 		if (!IS_ERR(folio)) {
414 			u64 folio_sz = folio_size(folio);
415 			u64 offset = offset_in_folio(folio, cur);
416 
417 			folio_put(folio);
418 			sectors_missed += (folio_sz - offset) >>
419 					  fs_info->sectorsize_bits;
420 
421 			/* Beyond threshold, no need to continue */
422 			if (sectors_missed > 4)
423 				break;
424 
425 			/*
426 			 * Jump to next page start as we already have page for
427 			 * current offset.
428 			 */
429 			cur += (folio_sz - offset);
430 			continue;
431 		}
432 
433 		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, ~__GFP_FS),
434 					    0, NULL);
435 		if (!folio)
436 			break;
437 
438 		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
439 			/* There is already a page, skip to page end */
440 			cur += folio_size(folio);
441 			folio_put(folio);
442 			continue;
443 		}
444 
445 		if (!*memstall && folio_test_workingset(folio)) {
446 			psi_memstall_enter(pflags);
447 			*memstall = 1;
448 		}
449 
450 		ret = set_folio_extent_mapped(folio);
451 		if (ret < 0) {
452 			folio_unlock(folio);
453 			folio_put(folio);
454 			break;
455 		}
456 
457 		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
458 		btrfs_lock_extent(tree, cur, page_end, NULL);
459 		read_lock(&em_tree->lock);
460 		em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
461 		read_unlock(&em_tree->lock);
462 
463 		/*
464 		 * At this point, we have a locked page in the page cache for
465 		 * these bytes in the file.  But, we have to make sure they map
466 		 * to this compressed extent on disk.
467 		 */
468 		if (!em || cur < em->start ||
469 		    (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) ||
470 		    (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) !=
471 		    orig_bio->bi_iter.bi_sector) {
472 			btrfs_free_extent_map(em);
473 			btrfs_unlock_extent(tree, cur, page_end, NULL);
474 			folio_unlock(folio);
475 			folio_put(folio);
476 			break;
477 		}
478 		add_size = min(btrfs_extent_map_end(em), page_end + 1) - cur;
479 		btrfs_free_extent_map(em);
480 		btrfs_unlock_extent(tree, cur, page_end, NULL);
481 
482 		if (folio_contains(folio, end_index)) {
483 			size_t zero_offset = offset_in_folio(folio, isize);
484 
485 			if (zero_offset) {
486 				int zeros;
487 				zeros = folio_size(folio) - zero_offset;
488 				folio_zero_range(folio, zero_offset, zeros);
489 			}
490 		}
491 
492 		if (!bio_add_folio(orig_bio, folio, add_size,
493 				   offset_in_folio(folio, cur))) {
494 			folio_unlock(folio);
495 			folio_put(folio);
496 			break;
497 		}
498 		/*
499 		 * If it's subpage, we also need to increase its
500 		 * subpage::readers number, as at endio we will decrease
501 		 * subpage::readers and to unlock the page.
502 		 */
503 		if (fs_info->sectorsize < PAGE_SIZE)
504 			btrfs_folio_set_lock(fs_info, folio, cur, add_size);
505 		folio_put(folio);
506 		cur += add_size;
507 	}
508 	return 0;
509 }
510 
511 /*
512  * for a compressed read, the bio we get passed has all the inode pages
513  * in it.  We don't actually do IO on those pages but allocate new ones
514  * to hold the compressed pages on disk.
515  *
516  * bio->bi_iter.bi_sector points to the compressed extent on disk
517  * bio->bi_io_vec points to all of the inode pages
518  *
519  * After the compressed pages are read, we copy the bytes into the
520  * bio we were passed and then call the bio end_io calls
521  */
522 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
523 {
524 	struct btrfs_inode *inode = bbio->inode;
525 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
526 	struct extent_map_tree *em_tree = &inode->extent_tree;
527 	struct compressed_bio *cb;
528 	unsigned int compressed_len;
529 	const u32 min_folio_size = btrfs_min_folio_size(fs_info);
530 	u64 file_offset = bbio->file_offset;
531 	u64 em_len;
532 	u64 em_start;
533 	struct extent_map *em;
534 	unsigned long pflags;
535 	int memstall = 0;
536 	int ret;
537 
538 	/* we need the actual starting offset of this extent in the file */
539 	read_lock(&em_tree->lock);
540 	em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
541 	read_unlock(&em_tree->lock);
542 	if (!em) {
543 		ret = -EIO;
544 		goto out;
545 	}
546 
547 	ASSERT(btrfs_extent_map_is_compressed(em));
548 	compressed_len = em->disk_num_bytes;
549 
550 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
551 				  end_bbio_compressed_read);
552 
553 	cb->start = em->start - em->offset;
554 	em_len = em->len;
555 	em_start = em->start;
556 
557 	cb->len = bbio->bio.bi_iter.bi_size;
558 	cb->compressed_len = compressed_len;
559 	cb->compress_type = btrfs_extent_map_compression(em);
560 	cb->orig_bbio = bbio;
561 	cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root;
562 
563 	btrfs_free_extent_map(em);
564 
565 	for (int i = 0; i * min_folio_size < compressed_len; i++) {
566 		struct folio *folio;
567 		u32 cur_len = min(compressed_len - i * min_folio_size, min_folio_size);
568 
569 		folio = btrfs_alloc_compr_folio(fs_info);
570 		if (!folio) {
571 			ret = -ENOMEM;
572 			goto out_free_bio;
573 		}
574 
575 		ret = bio_add_folio(&cb->bbio.bio, folio, cur_len, 0);
576 		if (unlikely(!ret)) {
577 			folio_put(folio);
578 			ret = -EINVAL;
579 			goto out_free_bio;
580 		}
581 	}
582 	ASSERT(cb->bbio.bio.bi_iter.bi_size == compressed_len);
583 
584 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
585 			 &pflags);
586 
587 	cb->len = bbio->bio.bi_iter.bi_size;
588 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
589 
590 	if (memstall)
591 		psi_memstall_leave(&pflags);
592 
593 	btrfs_submit_bbio(&cb->bbio, 0);
594 	return;
595 
596 out_free_bio:
597 	cleanup_compressed_bio(cb);
598 out:
599 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
600 }
601 
602 /*
603  * Heuristic uses systematic sampling to collect data from the input data
604  * range, the logic can be tuned by the following constants:
605  *
606  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
607  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
608  */
609 #define SAMPLING_READ_SIZE	(16)
610 #define SAMPLING_INTERVAL	(256)
611 
612 /*
613  * For statistical analysis of the input data we consider bytes that form a
614  * Galois Field of 256 objects. Each object has an attribute count, ie. how
615  * many times the object appeared in the sample.
616  */
617 #define BUCKET_SIZE		(256)
618 
619 /*
620  * The size of the sample is based on a statistical sampling rule of thumb.
621  * The common way is to perform sampling tests as long as the number of
622  * elements in each cell is at least 5.
623  *
624  * Instead of 5, we choose 32 to obtain more accurate results.
625  * If the data contain the maximum number of symbols, which is 256, we obtain a
626  * sample size bound by 8192.
627  *
628  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
629  * from up to 512 locations.
630  */
631 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
632 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
633 
634 struct bucket_item {
635 	u32 count;
636 };
637 
638 struct heuristic_ws {
639 	/* Partial copy of input data */
640 	u8 *sample;
641 	u32 sample_size;
642 	/* Buckets store counters for each byte value */
643 	struct bucket_item *bucket;
644 	/* Sorting buffer */
645 	struct bucket_item *bucket_b;
646 	struct list_head list;
647 };
648 
649 static void free_heuristic_ws(struct list_head *ws)
650 {
651 	struct heuristic_ws *workspace;
652 
653 	workspace = list_entry(ws, struct heuristic_ws, list);
654 
655 	kvfree(workspace->sample);
656 	kfree(workspace->bucket);
657 	kfree(workspace->bucket_b);
658 	kfree(workspace);
659 }
660 
661 static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info)
662 {
663 	struct heuristic_ws *ws;
664 
665 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
666 	if (!ws)
667 		return ERR_PTR(-ENOMEM);
668 
669 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
670 	if (!ws->sample)
671 		goto fail;
672 
673 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
674 	if (!ws->bucket)
675 		goto fail;
676 
677 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
678 	if (!ws->bucket_b)
679 		goto fail;
680 
681 	INIT_LIST_HEAD(&ws->list);
682 	return &ws->list;
683 fail:
684 	free_heuristic_ws(&ws->list);
685 	return ERR_PTR(-ENOMEM);
686 }
687 
688 const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 };
689 
690 static const struct btrfs_compress_levels * const btrfs_compress_levels[] = {
691 	/* The heuristic is represented as compression type 0 */
692 	&btrfs_heuristic_compress,
693 	&btrfs_zlib_compress,
694 	&btrfs_lzo_compress,
695 	&btrfs_zstd_compress,
696 };
697 
698 static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level)
699 {
700 	switch (type) {
701 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info);
702 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level);
703 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(fs_info);
704 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level);
705 	default:
706 		/*
707 		 * This can't happen, the type is validated several times
708 		 * before we get here.
709 		 */
710 		BUG();
711 	}
712 }
713 
714 static void free_workspace(int type, struct list_head *ws)
715 {
716 	switch (type) {
717 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
718 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
719 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
720 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
721 	default:
722 		/*
723 		 * This can't happen, the type is validated several times
724 		 * before we get here.
725 		 */
726 		BUG();
727 	}
728 }
729 
730 static int alloc_workspace_manager(struct btrfs_fs_info *fs_info,
731 				   enum btrfs_compression_type type)
732 {
733 	struct workspace_manager *gwsm;
734 	struct list_head *workspace;
735 
736 	ASSERT(fs_info->compr_wsm[type] == NULL);
737 	gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL);
738 	if (!gwsm)
739 		return -ENOMEM;
740 
741 	INIT_LIST_HEAD(&gwsm->idle_ws);
742 	spin_lock_init(&gwsm->ws_lock);
743 	atomic_set(&gwsm->total_ws, 0);
744 	init_waitqueue_head(&gwsm->ws_wait);
745 	fs_info->compr_wsm[type] = gwsm;
746 
747 	/*
748 	 * Preallocate one workspace for each compression type so we can
749 	 * guarantee forward progress in the worst case
750 	 */
751 	workspace = alloc_workspace(fs_info, type, 0);
752 	if (IS_ERR(workspace)) {
753 		btrfs_warn(fs_info,
754 	"cannot preallocate compression workspace for %s, will try later",
755 			   btrfs_compress_type2str(type));
756 	} else {
757 		atomic_set(&gwsm->total_ws, 1);
758 		gwsm->free_ws = 1;
759 		list_add(workspace, &gwsm->idle_ws);
760 	}
761 	return 0;
762 }
763 
764 static void free_workspace_manager(struct btrfs_fs_info *fs_info,
765 				   enum btrfs_compression_type type)
766 {
767 	struct list_head *ws;
768 	struct workspace_manager *gwsm = fs_info->compr_wsm[type];
769 
770 	/* ZSTD uses its own workspace manager, should enter here. */
771 	ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES);
772 	if (!gwsm)
773 		return;
774 	fs_info->compr_wsm[type] = NULL;
775 	while (!list_empty(&gwsm->idle_ws)) {
776 		ws = gwsm->idle_ws.next;
777 		list_del(ws);
778 		free_workspace(type, ws);
779 		atomic_dec(&gwsm->total_ws);
780 	}
781 	kfree(gwsm);
782 }
783 
784 /*
785  * This finds an available workspace or allocates a new one.
786  * If it's not possible to allocate a new one, waits until there's one.
787  * Preallocation makes a forward progress guarantees and we do not return
788  * errors.
789  */
790 struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
791 {
792 	struct workspace_manager *wsm = fs_info->compr_wsm[type];
793 	struct list_head *workspace;
794 	int cpus = num_online_cpus();
795 	unsigned nofs_flag;
796 	struct list_head *idle_ws;
797 	spinlock_t *ws_lock;
798 	atomic_t *total_ws;
799 	wait_queue_head_t *ws_wait;
800 	int *free_ws;
801 
802 	ASSERT(wsm);
803 	idle_ws	 = &wsm->idle_ws;
804 	ws_lock	 = &wsm->ws_lock;
805 	total_ws = &wsm->total_ws;
806 	ws_wait	 = &wsm->ws_wait;
807 	free_ws	 = &wsm->free_ws;
808 
809 again:
810 	spin_lock(ws_lock);
811 	if (!list_empty(idle_ws)) {
812 		workspace = idle_ws->next;
813 		list_del(workspace);
814 		(*free_ws)--;
815 		spin_unlock(ws_lock);
816 		return workspace;
817 
818 	}
819 	if (atomic_read(total_ws) > cpus) {
820 		DEFINE_WAIT(wait);
821 
822 		spin_unlock(ws_lock);
823 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
824 		if (atomic_read(total_ws) > cpus && !*free_ws)
825 			schedule();
826 		finish_wait(ws_wait, &wait);
827 		goto again;
828 	}
829 	atomic_inc(total_ws);
830 	spin_unlock(ws_lock);
831 
832 	/*
833 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
834 	 * to turn it off here because we might get called from the restricted
835 	 * context of btrfs_compress_bio/btrfs_compress_pages
836 	 */
837 	nofs_flag = memalloc_nofs_save();
838 	workspace = alloc_workspace(fs_info, type, level);
839 	memalloc_nofs_restore(nofs_flag);
840 
841 	if (IS_ERR(workspace)) {
842 		atomic_dec(total_ws);
843 		wake_up(ws_wait);
844 
845 		/*
846 		 * Do not return the error but go back to waiting. There's a
847 		 * workspace preallocated for each type and the compression
848 		 * time is bounded so we get to a workspace eventually. This
849 		 * makes our caller's life easier.
850 		 *
851 		 * To prevent silent and low-probability deadlocks (when the
852 		 * initial preallocation fails), check if there are any
853 		 * workspaces at all.
854 		 */
855 		if (atomic_read(total_ws) == 0) {
856 			static DEFINE_RATELIMIT_STATE(_rs,
857 					/* once per minute */ 60 * HZ,
858 					/* no burst */ 1);
859 
860 			if (__ratelimit(&_rs))
861 				btrfs_warn(fs_info,
862 				"no compression workspaces, low memory, retrying");
863 		}
864 		goto again;
865 	}
866 	return workspace;
867 }
868 
869 static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level)
870 {
871 	switch (type) {
872 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level);
873 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level);
874 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(fs_info, type, level);
875 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level);
876 	default:
877 		/*
878 		 * This can't happen, the type is validated several times
879 		 * before we get here.
880 		 */
881 		BUG();
882 	}
883 }
884 
885 /*
886  * put a workspace struct back on the list or free it if we have enough
887  * idle ones sitting around
888  */
889 void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
890 {
891 	struct workspace_manager *gwsm = fs_info->compr_wsm[type];
892 	struct list_head *idle_ws;
893 	spinlock_t *ws_lock;
894 	atomic_t *total_ws;
895 	wait_queue_head_t *ws_wait;
896 	int *free_ws;
897 
898 	ASSERT(gwsm);
899 	idle_ws	 = &gwsm->idle_ws;
900 	ws_lock	 = &gwsm->ws_lock;
901 	total_ws = &gwsm->total_ws;
902 	ws_wait	 = &gwsm->ws_wait;
903 	free_ws	 = &gwsm->free_ws;
904 
905 	spin_lock(ws_lock);
906 	if (*free_ws <= num_online_cpus()) {
907 		list_add(ws, idle_ws);
908 		(*free_ws)++;
909 		spin_unlock(ws_lock);
910 		goto wake;
911 	}
912 	spin_unlock(ws_lock);
913 
914 	free_workspace(type, ws);
915 	atomic_dec(total_ws);
916 wake:
917 	cond_wake_up(ws_wait);
918 }
919 
920 static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws)
921 {
922 	switch (type) {
923 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws);
924 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws);
925 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(fs_info, type, ws);
926 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws);
927 	default:
928 		/*
929 		 * This can't happen, the type is validated several times
930 		 * before we get here.
931 		 */
932 		BUG();
933 	}
934 }
935 
936 /*
937  * Adjust @level according to the limits of the compression algorithm or
938  * fallback to default
939  */
940 static int btrfs_compress_set_level(unsigned int type, int level)
941 {
942 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
943 
944 	if (level == 0)
945 		level = levels->default_level;
946 	else
947 		level = clamp(level, levels->min_level, levels->max_level);
948 
949 	return level;
950 }
951 
952 /*
953  * Check whether the @level is within the valid range for the given type.
954  */
955 bool btrfs_compress_level_valid(unsigned int type, int level)
956 {
957 	const struct btrfs_compress_levels *levels = btrfs_compress_levels[type];
958 
959 	return levels->min_level <= level && level <= levels->max_level;
960 }
961 
962 /* Wrapper around find_get_page(), with extra error message. */
963 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
964 				     struct folio **in_folio_ret)
965 {
966 	struct folio *in_folio;
967 
968 	/*
969 	 * The compressed write path should have the folio locked already, thus
970 	 * we only need to grab one reference.
971 	 */
972 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
973 	if (IS_ERR(in_folio)) {
974 		struct btrfs_inode *inode = BTRFS_I(mapping->host);
975 
976 		btrfs_crit(inode->root->fs_info,
977 		"failed to get page cache, root %lld ino %llu file offset %llu",
978 			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
979 		return -ENOENT;
980 	}
981 	*in_folio_ret = in_folio;
982 	return 0;
983 }
984 
985 /*
986  * Given an address space and start and length, compress the page cache
987  * contents into @cb.
988  *
989  * @type_level:      is encoded algorithm and level, where level 0 means whatever
990  *                   default the algorithm chooses and is opaque here;
991  *                   - compression algo are 0-3
992  *                   - the level are bits 4-7
993  *
994  * @cb->bbio.bio.bi_iter.bi_size will indicate the compressed data size.
995  * The bi_size may not be sectorsize aligned, thus the caller still need
996  * to do the round up before submission.
997  *
998  * This function will allocate compressed folios with btrfs_alloc_compr_folio(),
999  * thus callers must make sure the endio function and error handling are using
1000  * btrfs_free_compr_folio() to release those folios.
1001  * This is already done in end_bbio_compressed_write() and cleanup_compressed_bio().
1002  */
1003 struct compressed_bio *btrfs_compress_bio(struct btrfs_inode *inode,
1004 					  u64 start, u32 len, unsigned int type,
1005 					  int level, blk_opf_t write_flags)
1006 {
1007 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1008 	struct list_head *workspace;
1009 	struct compressed_bio *cb;
1010 	int ret;
1011 
1012 	cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
1013 				  end_bbio_compressed_write);
1014 	cb->start = start;
1015 	cb->len = len;
1016 	cb->writeback = true;
1017 	cb->compress_type = type;
1018 
1019 	level = btrfs_compress_set_level(type, level);
1020 	workspace = get_workspace(fs_info, type, level);
1021 	switch (type) {
1022 	case BTRFS_COMPRESS_ZLIB:
1023 		ret = zlib_compress_bio(workspace, cb);
1024 		break;
1025 	case BTRFS_COMPRESS_LZO:
1026 		ret = lzo_compress_bio(workspace, cb);
1027 		break;
1028 	case BTRFS_COMPRESS_ZSTD:
1029 		ret = zstd_compress_bio(workspace, cb);
1030 		break;
1031 	case BTRFS_COMPRESS_NONE:
1032 	default:
1033 		/*
1034 		 * This can happen when compression races with remount setting
1035 		 * it to 'no compress', while caller doesn't call
1036 		 * inode_need_compress() to check if we really need to
1037 		 * compress.
1038 		 *
1039 		 * Not a big deal, just need to inform caller that we
1040 		 * haven't allocated any pages yet.
1041 		 */
1042 		ret = -E2BIG;
1043 	}
1044 
1045 	put_workspace(fs_info, type, workspace);
1046 	if (ret < 0) {
1047 		cleanup_compressed_bio(cb);
1048 		return ERR_PTR(ret);
1049 	}
1050 	return cb;
1051 }
1052 
1053 static int btrfs_decompress_bio(struct compressed_bio *cb)
1054 {
1055 	struct btrfs_fs_info *fs_info = cb_to_fs_info(cb);
1056 	struct list_head *workspace;
1057 	int ret;
1058 	int type = cb->compress_type;
1059 
1060 	workspace = get_workspace(fs_info, type, 0);
1061 	ret = compression_decompress_bio(workspace, cb);
1062 	put_workspace(fs_info, type, workspace);
1063 
1064 	if (!ret)
1065 		zero_fill_bio(&cb->orig_bbio->bio);
1066 	return ret;
1067 }
1068 
1069 /*
1070  * a less complex decompression routine.  Our compressed data fits in a
1071  * single page, and we want to read a single page out of it.
1072  * dest_pgoff tells us the offset into the destination folio where we write the
1073  * decompressed data.
1074  */
1075 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1076 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1077 {
1078 	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1079 	struct list_head *workspace;
1080 	const u32 sectorsize = fs_info->sectorsize;
1081 	int ret;
1082 
1083 	/*
1084 	 * The full destination folio range should not exceed the folio size.
1085 	 * And the @destlen should not exceed sectorsize, as this is only called for
1086 	 * inline file extents, which should not exceed sectorsize.
1087 	 */
1088 	ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize);
1089 
1090 	workspace = get_workspace(fs_info, type, 0);
1091 	ret = compression_decompress(type, workspace, data_in, dest_folio,
1092 				     dest_pgoff, srclen, destlen);
1093 	put_workspace(fs_info, type, workspace);
1094 
1095 	return ret;
1096 }
1097 
1098 int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info)
1099 {
1100 	int ret;
1101 
1102 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1103 	if (ret < 0)
1104 		goto error;
1105 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1106 	if (ret < 0)
1107 		goto error;
1108 	ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1109 	if (ret < 0)
1110 		goto error;
1111 	ret = zstd_alloc_workspace_manager(fs_info);
1112 	if (ret < 0)
1113 		goto error;
1114 	return 0;
1115 error:
1116 	btrfs_free_compress_wsm(fs_info);
1117 	return ret;
1118 }
1119 
1120 void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info)
1121 {
1122 	free_workspace_manager(fs_info, BTRFS_COMPRESS_NONE);
1123 	free_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB);
1124 	free_workspace_manager(fs_info, BTRFS_COMPRESS_LZO);
1125 	zstd_free_workspace_manager(fs_info);
1126 }
1127 
1128 int __init btrfs_init_compress(void)
1129 {
1130 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1131 			offsetof(struct compressed_bio, bbio.bio),
1132 			BIOSET_NEED_BVECS))
1133 		return -ENOMEM;
1134 
1135 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1136 	if (!compr_pool.shrinker)
1137 		return -ENOMEM;
1138 
1139 	spin_lock_init(&compr_pool.lock);
1140 	INIT_LIST_HEAD(&compr_pool.list);
1141 	compr_pool.count = 0;
1142 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1143 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1144 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1145 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1146 	compr_pool.shrinker->batch = 32;
1147 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1148 	shrinker_register(compr_pool.shrinker);
1149 
1150 	return 0;
1151 }
1152 
1153 void __cold btrfs_exit_compress(void)
1154 {
1155 	/* For now scan drains all pages and does not touch the parameters. */
1156 	btrfs_compr_pool_scan(NULL, NULL);
1157 	shrinker_free(compr_pool.shrinker);
1158 
1159 	bioset_exit(&btrfs_compressed_bioset);
1160 }
1161 
1162 /*
1163  * The bvec is a single page bvec from a bio that contains folios from a filemap.
1164  *
1165  * Since the folio may be a large one, and if the bv_page is not a head page of
1166  * a large folio, then page->index is unreliable.
1167  *
1168  * Thus we need this helper to grab the proper file offset.
1169  */
1170 static u64 file_offset_from_bvec(const struct bio_vec *bvec)
1171 {
1172 	const struct page *page = bvec->bv_page;
1173 	const struct folio *folio = page_folio(page);
1174 
1175 	return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset;
1176 }
1177 
1178 /*
1179  * Copy decompressed data from working buffer to pages.
1180  *
1181  * @buf:		The decompressed data buffer
1182  * @buf_len:		The decompressed data length
1183  * @decompressed:	Number of bytes that are already decompressed inside the
1184  * 			compressed extent
1185  * @cb:			The compressed extent descriptor
1186  * @orig_bio:		The original bio that the caller wants to read for
1187  *
1188  * An easier to understand graph is like below:
1189  *
1190  * 		|<- orig_bio ->|     |<- orig_bio->|
1191  * 	|<-------      full decompressed extent      ----->|
1192  * 	|<-----------    @cb range   ---->|
1193  * 	|			|<-- @buf_len -->|
1194  * 	|<--- @decompressed --->|
1195  *
1196  * Note that, @cb can be a subpage of the full decompressed extent, but
1197  * @cb->start always has the same as the orig_file_offset value of the full
1198  * decompressed extent.
1199  *
1200  * When reading compressed extent, we have to read the full compressed extent,
1201  * while @orig_bio may only want part of the range.
1202  * Thus this function will ensure only data covered by @orig_bio will be copied
1203  * to.
1204  *
1205  * Return 0 if we have copied all needed contents for @orig_bio.
1206  * Return >0 if we need continue decompress.
1207  */
1208 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1209 			      struct compressed_bio *cb, u32 decompressed)
1210 {
1211 	struct bio *orig_bio = &cb->orig_bbio->bio;
1212 	/* Offset inside the full decompressed extent */
1213 	u32 cur_offset;
1214 
1215 	cur_offset = decompressed;
1216 	/* The main loop to do the copy */
1217 	while (cur_offset < decompressed + buf_len) {
1218 		struct bio_vec bvec;
1219 		size_t copy_len;
1220 		u32 copy_start;
1221 		/* Offset inside the full decompressed extent */
1222 		u32 bvec_offset;
1223 		void *kaddr;
1224 
1225 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1226 		/*
1227 		 * cb->start may underflow, but subtracting that value can still
1228 		 * give us correct offset inside the full decompressed extent.
1229 		 */
1230 		bvec_offset = file_offset_from_bvec(&bvec) - cb->start;
1231 
1232 		/* Haven't reached the bvec range, exit */
1233 		if (decompressed + buf_len <= bvec_offset)
1234 			return 1;
1235 
1236 		copy_start = max(cur_offset, bvec_offset);
1237 		copy_len = min(bvec_offset + bvec.bv_len,
1238 			       decompressed + buf_len) - copy_start;
1239 		ASSERT(copy_len);
1240 
1241 		/*
1242 		 * Extra range check to ensure we didn't go beyond
1243 		 * @buf + @buf_len.
1244 		 */
1245 		ASSERT(copy_start - decompressed < buf_len);
1246 
1247 		kaddr = bvec_kmap_local(&bvec);
1248 		memcpy(kaddr, buf + copy_start - decompressed, copy_len);
1249 		kunmap_local(kaddr);
1250 
1251 		cur_offset += copy_len;
1252 		bio_advance(orig_bio, copy_len);
1253 		/* Finished the bio */
1254 		if (!orig_bio->bi_iter.bi_size)
1255 			return 0;
1256 	}
1257 	return 1;
1258 }
1259 
1260 /*
1261  * Shannon Entropy calculation
1262  *
1263  * Pure byte distribution analysis fails to determine compressibility of data.
1264  * Try calculating entropy to estimate the average minimum number of bits
1265  * needed to encode the sampled data.
1266  *
1267  * For convenience, return the percentage of needed bits, instead of amount of
1268  * bits directly.
1269  *
1270  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1271  *			    and can be compressible with high probability
1272  *
1273  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1274  *
1275  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1276  */
1277 #define ENTROPY_LVL_ACEPTABLE		(65)
1278 #define ENTROPY_LVL_HIGH		(80)
1279 
1280 /*
1281  * For increased precision in shannon_entropy calculation,
1282  * let's do pow(n, M) to save more digits after comma:
1283  *
1284  * - maximum int bit length is 64
1285  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1286  * - 13 * 4 = 52 < 64		-> M = 4
1287  *
1288  * So use pow(n, 4).
1289  */
1290 static inline u32 ilog2_w(u64 n)
1291 {
1292 	return ilog2(n * n * n * n);
1293 }
1294 
1295 static u32 shannon_entropy(struct heuristic_ws *ws)
1296 {
1297 	const u32 entropy_max = 8 * ilog2_w(2);
1298 	u32 entropy_sum = 0;
1299 	u32 p, p_base, sz_base;
1300 	u32 i;
1301 
1302 	sz_base = ilog2_w(ws->sample_size);
1303 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1304 		p = ws->bucket[i].count;
1305 		p_base = ilog2_w(p);
1306 		entropy_sum += p * (sz_base - p_base);
1307 	}
1308 
1309 	entropy_sum /= ws->sample_size;
1310 	return entropy_sum * 100 / entropy_max;
1311 }
1312 
1313 #define RADIX_BASE		4U
1314 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1315 
1316 static u8 get4bits(u64 num, int shift) {
1317 	u8 low4bits;
1318 
1319 	num >>= shift;
1320 	/* Reverse order */
1321 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1322 	return low4bits;
1323 }
1324 
1325 /*
1326  * Use 4 bits as radix base
1327  * Use 16 u32 counters for calculating new position in buf array
1328  *
1329  * @array     - array that will be sorted
1330  * @array_buf - buffer array to store sorting results
1331  *              must be equal in size to @array
1332  * @num       - array size
1333  */
1334 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1335 		       int num)
1336 {
1337 	u64 max_num;
1338 	u64 buf_num;
1339 	u32 counters[COUNTERS_SIZE];
1340 	u32 new_addr;
1341 	u32 addr;
1342 	int bitlen;
1343 	int shift;
1344 	int i;
1345 
1346 	/*
1347 	 * Try avoid useless loop iterations for small numbers stored in big
1348 	 * counters.  Example: 48 33 4 ... in 64bit array
1349 	 */
1350 	max_num = array[0].count;
1351 	for (i = 1; i < num; i++) {
1352 		buf_num = array[i].count;
1353 		if (buf_num > max_num)
1354 			max_num = buf_num;
1355 	}
1356 
1357 	buf_num = ilog2(max_num);
1358 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1359 
1360 	shift = 0;
1361 	while (shift < bitlen) {
1362 		memset(counters, 0, sizeof(counters));
1363 
1364 		for (i = 0; i < num; i++) {
1365 			buf_num = array[i].count;
1366 			addr = get4bits(buf_num, shift);
1367 			counters[addr]++;
1368 		}
1369 
1370 		for (i = 1; i < COUNTERS_SIZE; i++)
1371 			counters[i] += counters[i - 1];
1372 
1373 		for (i = num - 1; i >= 0; i--) {
1374 			buf_num = array[i].count;
1375 			addr = get4bits(buf_num, shift);
1376 			counters[addr]--;
1377 			new_addr = counters[addr];
1378 			array_buf[new_addr] = array[i];
1379 		}
1380 
1381 		shift += RADIX_BASE;
1382 
1383 		/*
1384 		 * Normal radix expects to move data from a temporary array, to
1385 		 * the main one.  But that requires some CPU time. Avoid that
1386 		 * by doing another sort iteration to original array instead of
1387 		 * memcpy()
1388 		 */
1389 		memset(counters, 0, sizeof(counters));
1390 
1391 		for (i = 0; i < num; i ++) {
1392 			buf_num = array_buf[i].count;
1393 			addr = get4bits(buf_num, shift);
1394 			counters[addr]++;
1395 		}
1396 
1397 		for (i = 1; i < COUNTERS_SIZE; i++)
1398 			counters[i] += counters[i - 1];
1399 
1400 		for (i = num - 1; i >= 0; i--) {
1401 			buf_num = array_buf[i].count;
1402 			addr = get4bits(buf_num, shift);
1403 			counters[addr]--;
1404 			new_addr = counters[addr];
1405 			array[new_addr] = array_buf[i];
1406 		}
1407 
1408 		shift += RADIX_BASE;
1409 	}
1410 }
1411 
1412 /*
1413  * Size of the core byte set - how many bytes cover 90% of the sample
1414  *
1415  * There are several types of structured binary data that use nearly all byte
1416  * values. The distribution can be uniform and counts in all buckets will be
1417  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1418  *
1419  * Other possibility is normal (Gaussian) distribution, where the data could
1420  * be potentially compressible, but we have to take a few more steps to decide
1421  * how much.
1422  *
1423  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1424  *                       compression algo can easy fix that
1425  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1426  *                       probability is not compressible
1427  */
1428 #define BYTE_CORE_SET_LOW		(64)
1429 #define BYTE_CORE_SET_HIGH		(200)
1430 
1431 static int byte_core_set_size(struct heuristic_ws *ws)
1432 {
1433 	u32 i;
1434 	u32 coreset_sum = 0;
1435 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1436 	struct bucket_item *bucket = ws->bucket;
1437 
1438 	/* Sort in reverse order */
1439 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1440 
1441 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1442 		coreset_sum += bucket[i].count;
1443 
1444 	if (coreset_sum > core_set_threshold)
1445 		return i;
1446 
1447 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1448 		coreset_sum += bucket[i].count;
1449 		if (coreset_sum > core_set_threshold)
1450 			break;
1451 	}
1452 
1453 	return i;
1454 }
1455 
1456 /*
1457  * Count byte values in buckets.
1458  * This heuristic can detect textual data (configs, xml, json, html, etc).
1459  * Because in most text-like data byte set is restricted to limited number of
1460  * possible characters, and that restriction in most cases makes data easy to
1461  * compress.
1462  *
1463  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1464  *	less - compressible
1465  *	more - need additional analysis
1466  */
1467 #define BYTE_SET_THRESHOLD		(64)
1468 
1469 static u32 byte_set_size(const struct heuristic_ws *ws)
1470 {
1471 	u32 i;
1472 	u32 byte_set_size = 0;
1473 
1474 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1475 		if (ws->bucket[i].count > 0)
1476 			byte_set_size++;
1477 	}
1478 
1479 	/*
1480 	 * Continue collecting count of byte values in buckets.  If the byte
1481 	 * set size is bigger then the threshold, it's pointless to continue,
1482 	 * the detection technique would fail for this type of data.
1483 	 */
1484 	for (; i < BUCKET_SIZE; i++) {
1485 		if (ws->bucket[i].count > 0) {
1486 			byte_set_size++;
1487 			if (byte_set_size > BYTE_SET_THRESHOLD)
1488 				return byte_set_size;
1489 		}
1490 	}
1491 
1492 	return byte_set_size;
1493 }
1494 
1495 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1496 {
1497 	const u32 half_of_sample = ws->sample_size / 2;
1498 	const u8 *data = ws->sample;
1499 
1500 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1501 }
1502 
1503 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1504 				     struct heuristic_ws *ws)
1505 {
1506 	struct page *page;
1507 	pgoff_t index, index_end;
1508 	u32 i, curr_sample_pos;
1509 	u8 *in_data;
1510 
1511 	/*
1512 	 * Compression handles the input data by chunks of 128KiB
1513 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1514 	 *
1515 	 * We do the same for the heuristic and loop over the whole range.
1516 	 *
1517 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1518 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1519 	 */
1520 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1521 		end = start + BTRFS_MAX_UNCOMPRESSED;
1522 
1523 	index = start >> PAGE_SHIFT;
1524 	index_end = end >> PAGE_SHIFT;
1525 
1526 	/* Don't miss unaligned end */
1527 	if (!PAGE_ALIGNED(end))
1528 		index_end++;
1529 
1530 	curr_sample_pos = 0;
1531 	while (index < index_end) {
1532 		page = find_get_page(inode->i_mapping, index);
1533 		in_data = kmap_local_page(page);
1534 		/* Handle case where the start is not aligned to PAGE_SIZE */
1535 		i = start % PAGE_SIZE;
1536 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1537 			/* Don't sample any garbage from the last page */
1538 			if (start > end - SAMPLING_READ_SIZE)
1539 				break;
1540 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1541 					SAMPLING_READ_SIZE);
1542 			i += SAMPLING_INTERVAL;
1543 			start += SAMPLING_INTERVAL;
1544 			curr_sample_pos += SAMPLING_READ_SIZE;
1545 		}
1546 		kunmap_local(in_data);
1547 		put_page(page);
1548 
1549 		index++;
1550 	}
1551 
1552 	ws->sample_size = curr_sample_pos;
1553 }
1554 
1555 /*
1556  * Compression heuristic.
1557  *
1558  * The following types of analysis can be performed:
1559  * - detect mostly zero data
1560  * - detect data with low "byte set" size (text, etc)
1561  * - detect data with low/high "core byte" set
1562  *
1563  * Return non-zero if the compression should be done, 0 otherwise.
1564  */
1565 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1566 {
1567 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1568 	struct list_head *ws_list = get_workspace(fs_info, 0, 0);
1569 	struct heuristic_ws *ws;
1570 	u32 i;
1571 	u8 byte;
1572 	int ret = 0;
1573 
1574 	ws = list_entry(ws_list, struct heuristic_ws, list);
1575 
1576 	heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1577 
1578 	if (sample_repeated_patterns(ws)) {
1579 		ret = 1;
1580 		goto out;
1581 	}
1582 
1583 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1584 
1585 	for (i = 0; i < ws->sample_size; i++) {
1586 		byte = ws->sample[i];
1587 		ws->bucket[byte].count++;
1588 	}
1589 
1590 	i = byte_set_size(ws);
1591 	if (i < BYTE_SET_THRESHOLD) {
1592 		ret = 2;
1593 		goto out;
1594 	}
1595 
1596 	i = byte_core_set_size(ws);
1597 	if (i <= BYTE_CORE_SET_LOW) {
1598 		ret = 3;
1599 		goto out;
1600 	}
1601 
1602 	if (i >= BYTE_CORE_SET_HIGH) {
1603 		ret = 0;
1604 		goto out;
1605 	}
1606 
1607 	i = shannon_entropy(ws);
1608 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1609 		ret = 4;
1610 		goto out;
1611 	}
1612 
1613 	/*
1614 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1615 	 * needed to give green light to compression.
1616 	 *
1617 	 * For now just assume that compression at that level is not worth the
1618 	 * resources because:
1619 	 *
1620 	 * 1. it is possible to defrag the data later
1621 	 *
1622 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1623 	 * values, every bucket has counter at level ~54. The heuristic would
1624 	 * be confused. This can happen when data have some internal repeated
1625 	 * patterns like "abbacbbc...". This can be detected by analyzing
1626 	 * pairs of bytes, which is too costly.
1627 	 */
1628 	if (i < ENTROPY_LVL_HIGH) {
1629 		ret = 5;
1630 		goto out;
1631 	} else {
1632 		ret = 0;
1633 		goto out;
1634 	}
1635 
1636 out:
1637 	put_workspace(fs_info, 0, ws_list);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Convert the compression suffix (eg. after "zlib" starting with ":") to level.
1643  *
1644  * If the resulting level exceeds the algo's supported levels, it will be clamped.
1645  *
1646  * Return <0 if no valid string can be found.
1647  * Return 0 if everything is fine.
1648  */
1649 int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret)
1650 {
1651 	int level = 0;
1652 	int ret;
1653 
1654 	if (!type) {
1655 		*level_ret = btrfs_compress_set_level(type, level);
1656 		return 0;
1657 	}
1658 
1659 	if (str[0] == ':') {
1660 		ret = kstrtoint(str + 1, 10, &level);
1661 		if (ret)
1662 			return ret;
1663 	}
1664 
1665 	*level_ret = btrfs_compress_set_level(type, level);
1666 	return 0;
1667 }
1668