1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <linux/shrinker.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "fs.h" 27 #include "btrfs_inode.h" 28 #include "bio.h" 29 #include "ordered-data.h" 30 #include "compression.h" 31 #include "extent_io.h" 32 #include "extent_map.h" 33 #include "subpage.h" 34 #include "messages.h" 35 #include "super.h" 36 37 static struct bio_set btrfs_compressed_bioset; 38 39 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 40 41 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 42 { 43 switch (type) { 44 case BTRFS_COMPRESS_ZLIB: 45 case BTRFS_COMPRESS_LZO: 46 case BTRFS_COMPRESS_ZSTD: 47 case BTRFS_COMPRESS_NONE: 48 return btrfs_compress_types[type]; 49 default: 50 break; 51 } 52 53 return NULL; 54 } 55 56 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 57 { 58 return container_of(bbio, struct compressed_bio, bbio); 59 } 60 61 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 62 u64 start, blk_opf_t op, 63 btrfs_bio_end_io_t end_io) 64 { 65 struct btrfs_bio *bbio; 66 67 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 68 GFP_NOFS, &btrfs_compressed_bioset)); 69 btrfs_bio_init(bbio, inode, start, end_io, NULL); 70 return to_compressed_bio(bbio); 71 } 72 73 bool btrfs_compress_is_valid_type(const char *str, size_t len) 74 { 75 int i; 76 77 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 78 size_t comp_len = strlen(btrfs_compress_types[i]); 79 80 if (len < comp_len) 81 continue; 82 83 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 84 return true; 85 } 86 return false; 87 } 88 89 static int compression_decompress_bio(struct list_head *ws, 90 struct compressed_bio *cb) 91 { 92 switch (cb->compress_type) { 93 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 94 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 95 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 96 case BTRFS_COMPRESS_NONE: 97 default: 98 /* 99 * This can't happen, the type is validated several times 100 * before we get here. 101 */ 102 BUG(); 103 } 104 } 105 106 static int compression_decompress(int type, struct list_head *ws, 107 const u8 *data_in, struct folio *dest_folio, 108 unsigned long dest_pgoff, size_t srclen, size_t destlen) 109 { 110 switch (type) { 111 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio, 112 dest_pgoff, srclen, destlen); 113 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio, 114 dest_pgoff, srclen, destlen); 115 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio, 116 dest_pgoff, srclen, destlen); 117 case BTRFS_COMPRESS_NONE: 118 default: 119 /* 120 * This can't happen, the type is validated several times 121 * before we get here. 122 */ 123 BUG(); 124 } 125 } 126 127 static int btrfs_decompress_bio(struct compressed_bio *cb); 128 129 /* 130 * Global cache of last unused pages for compression/decompression. 131 */ 132 static struct btrfs_compr_pool { 133 struct shrinker *shrinker; 134 spinlock_t lock; 135 struct list_head list; 136 int count; 137 int thresh; 138 } compr_pool; 139 140 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) 141 { 142 int ret; 143 144 /* 145 * We must not read the values more than once if 'ret' gets expanded in 146 * the return statement so we don't accidentally return a negative 147 * number, even if the first condition finds it positive. 148 */ 149 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); 150 151 return ret > 0 ? ret : 0; 152 } 153 154 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) 155 { 156 LIST_HEAD(remove); 157 struct list_head *tmp, *next; 158 int freed; 159 160 if (compr_pool.count == 0) 161 return SHRINK_STOP; 162 163 /* For now, just simply drain the whole list. */ 164 spin_lock(&compr_pool.lock); 165 list_splice_init(&compr_pool.list, &remove); 166 freed = compr_pool.count; 167 compr_pool.count = 0; 168 spin_unlock(&compr_pool.lock); 169 170 list_for_each_safe(tmp, next, &remove) { 171 struct page *page = list_entry(tmp, struct page, lru); 172 173 ASSERT(page_ref_count(page) == 1); 174 put_page(page); 175 } 176 177 return freed; 178 } 179 180 /* 181 * Common wrappers for page allocation from compression wrappers 182 */ 183 struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info) 184 { 185 struct folio *folio = NULL; 186 187 /* For bs > ps cases, no cached folio pool for now. */ 188 if (fs_info->block_min_order) 189 goto alloc; 190 191 spin_lock(&compr_pool.lock); 192 if (compr_pool.count > 0) { 193 folio = list_first_entry(&compr_pool.list, struct folio, lru); 194 list_del_init(&folio->lru); 195 compr_pool.count--; 196 } 197 spin_unlock(&compr_pool.lock); 198 199 if (folio) 200 return folio; 201 202 alloc: 203 return folio_alloc(GFP_NOFS, fs_info->block_min_order); 204 } 205 206 void btrfs_free_compr_folio(struct folio *folio) 207 { 208 bool do_free = false; 209 210 /* The folio is from bs > ps fs, no cached pool for now. */ 211 if (folio_order(folio)) 212 goto free; 213 214 spin_lock(&compr_pool.lock); 215 if (compr_pool.count > compr_pool.thresh) { 216 do_free = true; 217 } else { 218 list_add(&folio->lru, &compr_pool.list); 219 compr_pool.count++; 220 } 221 spin_unlock(&compr_pool.lock); 222 223 if (!do_free) 224 return; 225 226 free: 227 ASSERT(folio_ref_count(folio) == 1); 228 folio_put(folio); 229 } 230 231 static void end_bbio_compressed_read(struct btrfs_bio *bbio) 232 { 233 struct compressed_bio *cb = to_compressed_bio(bbio); 234 blk_status_t status = bbio->bio.bi_status; 235 struct folio_iter fi; 236 237 if (!status) 238 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 239 240 btrfs_bio_end_io(cb->orig_bbio, status); 241 bio_for_each_folio_all(fi, &bbio->bio) 242 btrfs_free_compr_folio(fi.folio); 243 bio_put(&bbio->bio); 244 } 245 246 /* 247 * Clear the writeback bits on all of the file 248 * pages for a compressed write 249 */ 250 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 251 { 252 struct inode *inode = &cb->bbio.inode->vfs_inode; 253 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 254 pgoff_t index = cb->start >> PAGE_SHIFT; 255 const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 256 struct folio_batch fbatch; 257 int i; 258 int ret; 259 260 ret = blk_status_to_errno(cb->bbio.bio.bi_status); 261 if (ret) 262 mapping_set_error(inode->i_mapping, ret); 263 264 folio_batch_init(&fbatch); 265 while (index <= end_index) { 266 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 267 &fbatch); 268 269 if (ret == 0) 270 return; 271 272 for (i = 0; i < ret; i++) { 273 struct folio *folio = fbatch.folios[i]; 274 275 btrfs_folio_clamp_clear_writeback(fs_info, folio, 276 cb->start, cb->len); 277 } 278 folio_batch_release(&fbatch); 279 } 280 /* the inode may be gone now */ 281 } 282 283 /* 284 * Do the cleanup once all the compressed pages hit the disk. This will clear 285 * writeback on the file pages and free the compressed pages. 286 * 287 * This also calls the writeback end hooks for the file pages so that metadata 288 * and checksums can be updated in the file. 289 */ 290 static void end_bbio_compressed_write(struct btrfs_bio *bbio) 291 { 292 struct compressed_bio *cb = to_compressed_bio(bbio); 293 struct folio_iter fi; 294 295 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 296 cb->bbio.bio.bi_status == BLK_STS_OK); 297 298 if (cb->writeback) 299 end_compressed_writeback(cb); 300 /* Note, our inode could be gone now. */ 301 bio_for_each_folio_all(fi, &bbio->bio) 302 btrfs_free_compr_folio(fi.folio); 303 bio_put(&cb->bbio.bio); 304 } 305 306 /* 307 * worker function to build and submit bios for previously compressed pages. 308 * The corresponding pages in the inode should be marked for writeback 309 * and the compressed pages should have a reference on them for dropping 310 * when the IO is complete. 311 * 312 * This also checksums the file bytes and gets things ready for 313 * the end io hooks. 314 */ 315 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 316 struct compressed_bio *cb) 317 { 318 struct btrfs_inode *inode = ordered->inode; 319 struct btrfs_fs_info *fs_info = inode->root->fs_info; 320 321 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 322 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 323 ASSERT(cb->writeback); 324 325 cb->start = ordered->file_offset; 326 cb->len = ordered->num_bytes; 327 cb->compressed_len = ordered->disk_num_bytes; 328 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 329 cb->bbio.ordered = ordered; 330 331 btrfs_submit_bbio(&cb->bbio, 0); 332 } 333 334 /* 335 * Allocate a compressed write bio for @inode file offset @start length @len. 336 * 337 * The caller still needs to properly queue all folios and populate involved 338 * members. 339 */ 340 struct compressed_bio *btrfs_alloc_compressed_write(struct btrfs_inode *inode, 341 u64 start, u64 len) 342 { 343 struct compressed_bio *cb; 344 345 cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE, end_bbio_compressed_write); 346 cb->start = start; 347 cb->len = len; 348 cb->writeback = true; 349 350 return cb; 351 } 352 353 /* 354 * Add extra pages in the same compressed file extent so that we don't need to 355 * re-read the same extent again and again. 356 * 357 * NOTE: this won't work well for subpage, as for subpage read, we lock the 358 * full page then submit bio for each compressed/regular extents. 359 * 360 * This means, if we have several sectors in the same page points to the same 361 * on-disk compressed data, we will re-read the same extent many times and 362 * this function can only help for the next page. 363 */ 364 static noinline int add_ra_bio_pages(struct inode *inode, 365 u64 compressed_end, 366 struct compressed_bio *cb, 367 int *memstall, unsigned long *pflags) 368 { 369 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 370 pgoff_t end_index; 371 struct bio *orig_bio = &cb->orig_bbio->bio; 372 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 373 u64 isize = i_size_read(inode); 374 int ret; 375 struct folio *folio; 376 struct extent_map *em; 377 struct address_space *mapping = inode->i_mapping; 378 struct extent_map_tree *em_tree; 379 struct extent_io_tree *tree; 380 int sectors_missed = 0; 381 382 em_tree = &BTRFS_I(inode)->extent_tree; 383 tree = &BTRFS_I(inode)->io_tree; 384 385 if (isize == 0) 386 return 0; 387 388 /* 389 * For current subpage support, we only support 64K page size, 390 * which means maximum compressed extent size (128K) is just 2x page 391 * size. 392 * This makes readahead less effective, so here disable readahead for 393 * subpage for now, until full compressed write is supported. 394 */ 395 if (fs_info->sectorsize < PAGE_SIZE) 396 return 0; 397 398 /* For bs > ps cases, we don't support readahead for compressed folios for now. */ 399 if (fs_info->block_min_order) 400 return 0; 401 402 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 403 404 while (cur < compressed_end) { 405 pgoff_t page_end; 406 pgoff_t pg_index = cur >> PAGE_SHIFT; 407 u32 add_size; 408 409 if (pg_index > end_index) 410 break; 411 412 folio = filemap_get_folio(mapping, pg_index); 413 if (!IS_ERR(folio)) { 414 u64 folio_sz = folio_size(folio); 415 u64 offset = offset_in_folio(folio, cur); 416 417 folio_put(folio); 418 sectors_missed += (folio_sz - offset) >> 419 fs_info->sectorsize_bits; 420 421 /* Beyond threshold, no need to continue */ 422 if (sectors_missed > 4) 423 break; 424 425 /* 426 * Jump to next page start as we already have page for 427 * current offset. 428 */ 429 cur += (folio_sz - offset); 430 continue; 431 } 432 433 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, ~__GFP_FS), 434 0, NULL); 435 if (!folio) 436 break; 437 438 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) { 439 /* There is already a page, skip to page end */ 440 cur += folio_size(folio); 441 folio_put(folio); 442 continue; 443 } 444 445 if (!*memstall && folio_test_workingset(folio)) { 446 psi_memstall_enter(pflags); 447 *memstall = 1; 448 } 449 450 ret = set_folio_extent_mapped(folio); 451 if (ret < 0) { 452 folio_unlock(folio); 453 folio_put(folio); 454 break; 455 } 456 457 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1; 458 btrfs_lock_extent(tree, cur, page_end, NULL); 459 read_lock(&em_tree->lock); 460 em = btrfs_lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 461 read_unlock(&em_tree->lock); 462 463 /* 464 * At this point, we have a locked page in the page cache for 465 * these bytes in the file. But, we have to make sure they map 466 * to this compressed extent on disk. 467 */ 468 if (!em || cur < em->start || 469 (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) || 470 (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) != 471 orig_bio->bi_iter.bi_sector) { 472 btrfs_free_extent_map(em); 473 btrfs_unlock_extent(tree, cur, page_end, NULL); 474 folio_unlock(folio); 475 folio_put(folio); 476 break; 477 } 478 add_size = min(btrfs_extent_map_end(em), page_end + 1) - cur; 479 btrfs_free_extent_map(em); 480 btrfs_unlock_extent(tree, cur, page_end, NULL); 481 482 if (folio_contains(folio, end_index)) { 483 size_t zero_offset = offset_in_folio(folio, isize); 484 485 if (zero_offset) { 486 int zeros; 487 zeros = folio_size(folio) - zero_offset; 488 folio_zero_range(folio, zero_offset, zeros); 489 } 490 } 491 492 if (!bio_add_folio(orig_bio, folio, add_size, 493 offset_in_folio(folio, cur))) { 494 folio_unlock(folio); 495 folio_put(folio); 496 break; 497 } 498 /* 499 * If it's subpage, we also need to increase its 500 * subpage::readers number, as at endio we will decrease 501 * subpage::readers and to unlock the page. 502 */ 503 if (fs_info->sectorsize < PAGE_SIZE) 504 btrfs_folio_set_lock(fs_info, folio, cur, add_size); 505 folio_put(folio); 506 cur += add_size; 507 } 508 return 0; 509 } 510 511 /* 512 * for a compressed read, the bio we get passed has all the inode pages 513 * in it. We don't actually do IO on those pages but allocate new ones 514 * to hold the compressed pages on disk. 515 * 516 * bio->bi_iter.bi_sector points to the compressed extent on disk 517 * bio->bi_io_vec points to all of the inode pages 518 * 519 * After the compressed pages are read, we copy the bytes into the 520 * bio we were passed and then call the bio end_io calls 521 */ 522 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 523 { 524 struct btrfs_inode *inode = bbio->inode; 525 struct btrfs_fs_info *fs_info = inode->root->fs_info; 526 struct extent_map_tree *em_tree = &inode->extent_tree; 527 struct compressed_bio *cb; 528 unsigned int compressed_len; 529 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 530 u64 file_offset = bbio->file_offset; 531 u64 em_len; 532 u64 em_start; 533 struct extent_map *em; 534 unsigned long pflags; 535 int memstall = 0; 536 int ret; 537 538 /* we need the actual starting offset of this extent in the file */ 539 read_lock(&em_tree->lock); 540 em = btrfs_lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 541 read_unlock(&em_tree->lock); 542 if (!em) { 543 ret = -EIO; 544 goto out; 545 } 546 547 ASSERT(btrfs_extent_map_is_compressed(em)); 548 compressed_len = em->disk_num_bytes; 549 550 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 551 end_bbio_compressed_read); 552 553 cb->start = em->start - em->offset; 554 em_len = em->len; 555 em_start = em->start; 556 557 cb->len = bbio->bio.bi_iter.bi_size; 558 cb->compressed_len = compressed_len; 559 cb->compress_type = btrfs_extent_map_compression(em); 560 cb->orig_bbio = bbio; 561 cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root; 562 563 btrfs_free_extent_map(em); 564 565 for (int i = 0; i * min_folio_size < compressed_len; i++) { 566 struct folio *folio; 567 u32 cur_len = min(compressed_len - i * min_folio_size, min_folio_size); 568 569 folio = btrfs_alloc_compr_folio(fs_info); 570 if (!folio) { 571 ret = -ENOMEM; 572 goto out_free_bio; 573 } 574 575 ret = bio_add_folio(&cb->bbio.bio, folio, cur_len, 0); 576 if (unlikely(!ret)) { 577 folio_put(folio); 578 ret = -EINVAL; 579 goto out_free_bio; 580 } 581 } 582 ASSERT(cb->bbio.bio.bi_iter.bi_size == compressed_len); 583 584 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 585 &pflags); 586 587 cb->len = bbio->bio.bi_iter.bi_size; 588 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 589 590 if (memstall) 591 psi_memstall_leave(&pflags); 592 593 btrfs_submit_bbio(&cb->bbio, 0); 594 return; 595 596 out_free_bio: 597 cleanup_compressed_bio(cb); 598 out: 599 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 600 } 601 602 /* 603 * Heuristic uses systematic sampling to collect data from the input data 604 * range, the logic can be tuned by the following constants: 605 * 606 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 607 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 608 */ 609 #define SAMPLING_READ_SIZE (16) 610 #define SAMPLING_INTERVAL (256) 611 612 /* 613 * For statistical analysis of the input data we consider bytes that form a 614 * Galois Field of 256 objects. Each object has an attribute count, ie. how 615 * many times the object appeared in the sample. 616 */ 617 #define BUCKET_SIZE (256) 618 619 /* 620 * The size of the sample is based on a statistical sampling rule of thumb. 621 * The common way is to perform sampling tests as long as the number of 622 * elements in each cell is at least 5. 623 * 624 * Instead of 5, we choose 32 to obtain more accurate results. 625 * If the data contain the maximum number of symbols, which is 256, we obtain a 626 * sample size bound by 8192. 627 * 628 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 629 * from up to 512 locations. 630 */ 631 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 632 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 633 634 struct bucket_item { 635 u32 count; 636 }; 637 638 struct heuristic_ws { 639 /* Partial copy of input data */ 640 u8 *sample; 641 u32 sample_size; 642 /* Buckets store counters for each byte value */ 643 struct bucket_item *bucket; 644 /* Sorting buffer */ 645 struct bucket_item *bucket_b; 646 struct list_head list; 647 }; 648 649 static void free_heuristic_ws(struct list_head *ws) 650 { 651 struct heuristic_ws *workspace; 652 653 workspace = list_entry(ws, struct heuristic_ws, list); 654 655 kvfree(workspace->sample); 656 kfree(workspace->bucket); 657 kfree(workspace->bucket_b); 658 kfree(workspace); 659 } 660 661 static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info) 662 { 663 struct heuristic_ws *ws; 664 665 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 666 if (!ws) 667 return ERR_PTR(-ENOMEM); 668 669 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 670 if (!ws->sample) 671 goto fail; 672 673 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 674 if (!ws->bucket) 675 goto fail; 676 677 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 678 if (!ws->bucket_b) 679 goto fail; 680 681 INIT_LIST_HEAD(&ws->list); 682 return &ws->list; 683 fail: 684 free_heuristic_ws(&ws->list); 685 return ERR_PTR(-ENOMEM); 686 } 687 688 const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 }; 689 690 static const struct btrfs_compress_levels * const btrfs_compress_levels[] = { 691 /* The heuristic is represented as compression type 0 */ 692 &btrfs_heuristic_compress, 693 &btrfs_zlib_compress, 694 &btrfs_lzo_compress, 695 &btrfs_zstd_compress, 696 }; 697 698 static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level) 699 { 700 switch (type) { 701 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info); 702 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level); 703 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(fs_info); 704 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level); 705 default: 706 /* 707 * This can't happen, the type is validated several times 708 * before we get here. 709 */ 710 BUG(); 711 } 712 } 713 714 static void free_workspace(int type, struct list_head *ws) 715 { 716 switch (type) { 717 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 718 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 719 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 720 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 721 default: 722 /* 723 * This can't happen, the type is validated several times 724 * before we get here. 725 */ 726 BUG(); 727 } 728 } 729 730 static int alloc_workspace_manager(struct btrfs_fs_info *fs_info, 731 enum btrfs_compression_type type) 732 { 733 struct workspace_manager *gwsm; 734 struct list_head *workspace; 735 736 ASSERT(fs_info->compr_wsm[type] == NULL); 737 gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL); 738 if (!gwsm) 739 return -ENOMEM; 740 741 INIT_LIST_HEAD(&gwsm->idle_ws); 742 spin_lock_init(&gwsm->ws_lock); 743 atomic_set(&gwsm->total_ws, 0); 744 init_waitqueue_head(&gwsm->ws_wait); 745 fs_info->compr_wsm[type] = gwsm; 746 747 /* 748 * Preallocate one workspace for each compression type so we can 749 * guarantee forward progress in the worst case 750 */ 751 workspace = alloc_workspace(fs_info, type, 0); 752 if (IS_ERR(workspace)) { 753 btrfs_warn(fs_info, 754 "cannot preallocate compression workspace for %s, will try later", 755 btrfs_compress_type2str(type)); 756 } else { 757 atomic_set(&gwsm->total_ws, 1); 758 gwsm->free_ws = 1; 759 list_add(workspace, &gwsm->idle_ws); 760 } 761 return 0; 762 } 763 764 static void free_workspace_manager(struct btrfs_fs_info *fs_info, 765 enum btrfs_compression_type type) 766 { 767 struct list_head *ws; 768 struct workspace_manager *gwsm = fs_info->compr_wsm[type]; 769 770 /* ZSTD uses its own workspace manager, should enter here. */ 771 ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES); 772 if (!gwsm) 773 return; 774 fs_info->compr_wsm[type] = NULL; 775 while (!list_empty(&gwsm->idle_ws)) { 776 ws = gwsm->idle_ws.next; 777 list_del(ws); 778 free_workspace(type, ws); 779 atomic_dec(&gwsm->total_ws); 780 } 781 kfree(gwsm); 782 } 783 784 /* 785 * This finds an available workspace or allocates a new one. 786 * If it's not possible to allocate a new one, waits until there's one. 787 * Preallocation makes a forward progress guarantees and we do not return 788 * errors. 789 */ 790 struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level) 791 { 792 struct workspace_manager *wsm = fs_info->compr_wsm[type]; 793 struct list_head *workspace; 794 int cpus = num_online_cpus(); 795 unsigned nofs_flag; 796 struct list_head *idle_ws; 797 spinlock_t *ws_lock; 798 atomic_t *total_ws; 799 wait_queue_head_t *ws_wait; 800 int *free_ws; 801 802 ASSERT(wsm); 803 idle_ws = &wsm->idle_ws; 804 ws_lock = &wsm->ws_lock; 805 total_ws = &wsm->total_ws; 806 ws_wait = &wsm->ws_wait; 807 free_ws = &wsm->free_ws; 808 809 again: 810 spin_lock(ws_lock); 811 if (!list_empty(idle_ws)) { 812 workspace = idle_ws->next; 813 list_del(workspace); 814 (*free_ws)--; 815 spin_unlock(ws_lock); 816 return workspace; 817 818 } 819 if (atomic_read(total_ws) > cpus) { 820 DEFINE_WAIT(wait); 821 822 spin_unlock(ws_lock); 823 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 824 if (atomic_read(total_ws) > cpus && !*free_ws) 825 schedule(); 826 finish_wait(ws_wait, &wait); 827 goto again; 828 } 829 atomic_inc(total_ws); 830 spin_unlock(ws_lock); 831 832 /* 833 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 834 * to turn it off here because we might get called from the restricted 835 * context of btrfs_compress_bio/btrfs_compress_pages 836 */ 837 nofs_flag = memalloc_nofs_save(); 838 workspace = alloc_workspace(fs_info, type, level); 839 memalloc_nofs_restore(nofs_flag); 840 841 if (IS_ERR(workspace)) { 842 atomic_dec(total_ws); 843 wake_up(ws_wait); 844 845 /* 846 * Do not return the error but go back to waiting. There's a 847 * workspace preallocated for each type and the compression 848 * time is bounded so we get to a workspace eventually. This 849 * makes our caller's life easier. 850 * 851 * To prevent silent and low-probability deadlocks (when the 852 * initial preallocation fails), check if there are any 853 * workspaces at all. 854 */ 855 if (atomic_read(total_ws) == 0) { 856 static DEFINE_RATELIMIT_STATE(_rs, 857 /* once per minute */ 60 * HZ, 858 /* no burst */ 1); 859 860 if (__ratelimit(&_rs)) 861 btrfs_warn(fs_info, 862 "no compression workspaces, low memory, retrying"); 863 } 864 goto again; 865 } 866 return workspace; 867 } 868 869 static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level) 870 { 871 switch (type) { 872 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level); 873 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level); 874 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(fs_info, type, level); 875 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level); 876 default: 877 /* 878 * This can't happen, the type is validated several times 879 * before we get here. 880 */ 881 BUG(); 882 } 883 } 884 885 /* 886 * put a workspace struct back on the list or free it if we have enough 887 * idle ones sitting around 888 */ 889 void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) 890 { 891 struct workspace_manager *gwsm = fs_info->compr_wsm[type]; 892 struct list_head *idle_ws; 893 spinlock_t *ws_lock; 894 atomic_t *total_ws; 895 wait_queue_head_t *ws_wait; 896 int *free_ws; 897 898 ASSERT(gwsm); 899 idle_ws = &gwsm->idle_ws; 900 ws_lock = &gwsm->ws_lock; 901 total_ws = &gwsm->total_ws; 902 ws_wait = &gwsm->ws_wait; 903 free_ws = &gwsm->free_ws; 904 905 spin_lock(ws_lock); 906 if (*free_ws <= num_online_cpus()) { 907 list_add(ws, idle_ws); 908 (*free_ws)++; 909 spin_unlock(ws_lock); 910 goto wake; 911 } 912 spin_unlock(ws_lock); 913 914 free_workspace(type, ws); 915 atomic_dec(total_ws); 916 wake: 917 cond_wake_up(ws_wait); 918 } 919 920 static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) 921 { 922 switch (type) { 923 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws); 924 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws); 925 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(fs_info, type, ws); 926 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws); 927 default: 928 /* 929 * This can't happen, the type is validated several times 930 * before we get here. 931 */ 932 BUG(); 933 } 934 } 935 936 /* 937 * Adjust @level according to the limits of the compression algorithm or 938 * fallback to default 939 */ 940 static int btrfs_compress_set_level(unsigned int type, int level) 941 { 942 const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; 943 944 if (level == 0) 945 level = levels->default_level; 946 else 947 level = clamp(level, levels->min_level, levels->max_level); 948 949 return level; 950 } 951 952 /* 953 * Check whether the @level is within the valid range for the given type. 954 */ 955 bool btrfs_compress_level_valid(unsigned int type, int level) 956 { 957 const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; 958 959 return levels->min_level <= level && level <= levels->max_level; 960 } 961 962 /* Wrapper around find_get_page(), with extra error message. */ 963 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, 964 struct folio **in_folio_ret) 965 { 966 struct folio *in_folio; 967 968 /* 969 * The compressed write path should have the folio locked already, thus 970 * we only need to grab one reference. 971 */ 972 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT); 973 if (IS_ERR(in_folio)) { 974 struct btrfs_inode *inode = BTRFS_I(mapping->host); 975 976 btrfs_crit(inode->root->fs_info, 977 "failed to get page cache, root %lld ino %llu file offset %llu", 978 btrfs_root_id(inode->root), btrfs_ino(inode), start); 979 return -ENOENT; 980 } 981 *in_folio_ret = in_folio; 982 return 0; 983 } 984 985 /* 986 * Given an address space and start and length, compress the page cache 987 * contents into @cb. 988 * 989 * @type_level: is encoded algorithm and level, where level 0 means whatever 990 * default the algorithm chooses and is opaque here; 991 * - compression algo are 0-3 992 * - the level are bits 4-7 993 * 994 * @cb->bbio.bio.bi_iter.bi_size will indicate the compressed data size. 995 * The bi_size may not be sectorsize aligned, thus the caller still need 996 * to do the round up before submission. 997 * 998 * This function will allocate compressed folios with btrfs_alloc_compr_folio(), 999 * thus callers must make sure the endio function and error handling are using 1000 * btrfs_free_compr_folio() to release those folios. 1001 * This is already done in end_bbio_compressed_write() and cleanup_compressed_bio(). 1002 */ 1003 struct compressed_bio *btrfs_compress_bio(struct btrfs_inode *inode, 1004 u64 start, u32 len, unsigned int type, 1005 int level, blk_opf_t write_flags) 1006 { 1007 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1008 struct list_head *workspace; 1009 struct compressed_bio *cb; 1010 int ret; 1011 1012 cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags, 1013 end_bbio_compressed_write); 1014 cb->start = start; 1015 cb->len = len; 1016 cb->writeback = true; 1017 cb->compress_type = type; 1018 1019 level = btrfs_compress_set_level(type, level); 1020 workspace = get_workspace(fs_info, type, level); 1021 switch (type) { 1022 case BTRFS_COMPRESS_ZLIB: 1023 ret = zlib_compress_bio(workspace, cb); 1024 break; 1025 case BTRFS_COMPRESS_LZO: 1026 ret = lzo_compress_bio(workspace, cb); 1027 break; 1028 case BTRFS_COMPRESS_ZSTD: 1029 ret = zstd_compress_bio(workspace, cb); 1030 break; 1031 case BTRFS_COMPRESS_NONE: 1032 default: 1033 /* 1034 * This can happen when compression races with remount setting 1035 * it to 'no compress', while caller doesn't call 1036 * inode_need_compress() to check if we really need to 1037 * compress. 1038 * 1039 * Not a big deal, just need to inform caller that we 1040 * haven't allocated any pages yet. 1041 */ 1042 ret = -E2BIG; 1043 } 1044 1045 put_workspace(fs_info, type, workspace); 1046 if (ret < 0) { 1047 cleanup_compressed_bio(cb); 1048 return ERR_PTR(ret); 1049 } 1050 return cb; 1051 } 1052 1053 static int btrfs_decompress_bio(struct compressed_bio *cb) 1054 { 1055 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); 1056 struct list_head *workspace; 1057 int ret; 1058 int type = cb->compress_type; 1059 1060 workspace = get_workspace(fs_info, type, 0); 1061 ret = compression_decompress_bio(workspace, cb); 1062 put_workspace(fs_info, type, workspace); 1063 1064 if (!ret) 1065 zero_fill_bio(&cb->orig_bbio->bio); 1066 return ret; 1067 } 1068 1069 /* 1070 * a less complex decompression routine. Our compressed data fits in a 1071 * single page, and we want to read a single page out of it. 1072 * dest_pgoff tells us the offset into the destination folio where we write the 1073 * decompressed data. 1074 */ 1075 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio, 1076 unsigned long dest_pgoff, size_t srclen, size_t destlen) 1077 { 1078 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio); 1079 struct list_head *workspace; 1080 const u32 sectorsize = fs_info->sectorsize; 1081 int ret; 1082 1083 /* 1084 * The full destination folio range should not exceed the folio size. 1085 * And the @destlen should not exceed sectorsize, as this is only called for 1086 * inline file extents, which should not exceed sectorsize. 1087 */ 1088 ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize); 1089 1090 workspace = get_workspace(fs_info, type, 0); 1091 ret = compression_decompress(type, workspace, data_in, dest_folio, 1092 dest_pgoff, srclen, destlen); 1093 put_workspace(fs_info, type, workspace); 1094 1095 return ret; 1096 } 1097 1098 int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info) 1099 { 1100 int ret; 1101 1102 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_NONE); 1103 if (ret < 0) 1104 goto error; 1105 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB); 1106 if (ret < 0) 1107 goto error; 1108 ret = alloc_workspace_manager(fs_info, BTRFS_COMPRESS_LZO); 1109 if (ret < 0) 1110 goto error; 1111 ret = zstd_alloc_workspace_manager(fs_info); 1112 if (ret < 0) 1113 goto error; 1114 return 0; 1115 error: 1116 btrfs_free_compress_wsm(fs_info); 1117 return ret; 1118 } 1119 1120 void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info) 1121 { 1122 free_workspace_manager(fs_info, BTRFS_COMPRESS_NONE); 1123 free_workspace_manager(fs_info, BTRFS_COMPRESS_ZLIB); 1124 free_workspace_manager(fs_info, BTRFS_COMPRESS_LZO); 1125 zstd_free_workspace_manager(fs_info); 1126 } 1127 1128 int __init btrfs_init_compress(void) 1129 { 1130 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 1131 offsetof(struct compressed_bio, bbio.bio), 1132 BIOSET_NEED_BVECS)) 1133 return -ENOMEM; 1134 1135 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); 1136 if (!compr_pool.shrinker) 1137 return -ENOMEM; 1138 1139 spin_lock_init(&compr_pool.lock); 1140 INIT_LIST_HEAD(&compr_pool.list); 1141 compr_pool.count = 0; 1142 /* 128K / 4K = 32, for 8 threads is 256 pages. */ 1143 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; 1144 compr_pool.shrinker->count_objects = btrfs_compr_pool_count; 1145 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; 1146 compr_pool.shrinker->batch = 32; 1147 compr_pool.shrinker->seeks = DEFAULT_SEEKS; 1148 shrinker_register(compr_pool.shrinker); 1149 1150 return 0; 1151 } 1152 1153 void __cold btrfs_exit_compress(void) 1154 { 1155 /* For now scan drains all pages and does not touch the parameters. */ 1156 btrfs_compr_pool_scan(NULL, NULL); 1157 shrinker_free(compr_pool.shrinker); 1158 1159 bioset_exit(&btrfs_compressed_bioset); 1160 } 1161 1162 /* 1163 * The bvec is a single page bvec from a bio that contains folios from a filemap. 1164 * 1165 * Since the folio may be a large one, and if the bv_page is not a head page of 1166 * a large folio, then page->index is unreliable. 1167 * 1168 * Thus we need this helper to grab the proper file offset. 1169 */ 1170 static u64 file_offset_from_bvec(const struct bio_vec *bvec) 1171 { 1172 const struct page *page = bvec->bv_page; 1173 const struct folio *folio = page_folio(page); 1174 1175 return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset; 1176 } 1177 1178 /* 1179 * Copy decompressed data from working buffer to pages. 1180 * 1181 * @buf: The decompressed data buffer 1182 * @buf_len: The decompressed data length 1183 * @decompressed: Number of bytes that are already decompressed inside the 1184 * compressed extent 1185 * @cb: The compressed extent descriptor 1186 * @orig_bio: The original bio that the caller wants to read for 1187 * 1188 * An easier to understand graph is like below: 1189 * 1190 * |<- orig_bio ->| |<- orig_bio->| 1191 * |<------- full decompressed extent ----->| 1192 * |<----------- @cb range ---->| 1193 * | |<-- @buf_len -->| 1194 * |<--- @decompressed --->| 1195 * 1196 * Note that, @cb can be a subpage of the full decompressed extent, but 1197 * @cb->start always has the same as the orig_file_offset value of the full 1198 * decompressed extent. 1199 * 1200 * When reading compressed extent, we have to read the full compressed extent, 1201 * while @orig_bio may only want part of the range. 1202 * Thus this function will ensure only data covered by @orig_bio will be copied 1203 * to. 1204 * 1205 * Return 0 if we have copied all needed contents for @orig_bio. 1206 * Return >0 if we need continue decompress. 1207 */ 1208 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1209 struct compressed_bio *cb, u32 decompressed) 1210 { 1211 struct bio *orig_bio = &cb->orig_bbio->bio; 1212 /* Offset inside the full decompressed extent */ 1213 u32 cur_offset; 1214 1215 cur_offset = decompressed; 1216 /* The main loop to do the copy */ 1217 while (cur_offset < decompressed + buf_len) { 1218 struct bio_vec bvec; 1219 size_t copy_len; 1220 u32 copy_start; 1221 /* Offset inside the full decompressed extent */ 1222 u32 bvec_offset; 1223 void *kaddr; 1224 1225 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1226 /* 1227 * cb->start may underflow, but subtracting that value can still 1228 * give us correct offset inside the full decompressed extent. 1229 */ 1230 bvec_offset = file_offset_from_bvec(&bvec) - cb->start; 1231 1232 /* Haven't reached the bvec range, exit */ 1233 if (decompressed + buf_len <= bvec_offset) 1234 return 1; 1235 1236 copy_start = max(cur_offset, bvec_offset); 1237 copy_len = min(bvec_offset + bvec.bv_len, 1238 decompressed + buf_len) - copy_start; 1239 ASSERT(copy_len); 1240 1241 /* 1242 * Extra range check to ensure we didn't go beyond 1243 * @buf + @buf_len. 1244 */ 1245 ASSERT(copy_start - decompressed < buf_len); 1246 1247 kaddr = bvec_kmap_local(&bvec); 1248 memcpy(kaddr, buf + copy_start - decompressed, copy_len); 1249 kunmap_local(kaddr); 1250 1251 cur_offset += copy_len; 1252 bio_advance(orig_bio, copy_len); 1253 /* Finished the bio */ 1254 if (!orig_bio->bi_iter.bi_size) 1255 return 0; 1256 } 1257 return 1; 1258 } 1259 1260 /* 1261 * Shannon Entropy calculation 1262 * 1263 * Pure byte distribution analysis fails to determine compressibility of data. 1264 * Try calculating entropy to estimate the average minimum number of bits 1265 * needed to encode the sampled data. 1266 * 1267 * For convenience, return the percentage of needed bits, instead of amount of 1268 * bits directly. 1269 * 1270 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1271 * and can be compressible with high probability 1272 * 1273 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1274 * 1275 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1276 */ 1277 #define ENTROPY_LVL_ACEPTABLE (65) 1278 #define ENTROPY_LVL_HIGH (80) 1279 1280 /* 1281 * For increased precision in shannon_entropy calculation, 1282 * let's do pow(n, M) to save more digits after comma: 1283 * 1284 * - maximum int bit length is 64 1285 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1286 * - 13 * 4 = 52 < 64 -> M = 4 1287 * 1288 * So use pow(n, 4). 1289 */ 1290 static inline u32 ilog2_w(u64 n) 1291 { 1292 return ilog2(n * n * n * n); 1293 } 1294 1295 static u32 shannon_entropy(struct heuristic_ws *ws) 1296 { 1297 const u32 entropy_max = 8 * ilog2_w(2); 1298 u32 entropy_sum = 0; 1299 u32 p, p_base, sz_base; 1300 u32 i; 1301 1302 sz_base = ilog2_w(ws->sample_size); 1303 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1304 p = ws->bucket[i].count; 1305 p_base = ilog2_w(p); 1306 entropy_sum += p * (sz_base - p_base); 1307 } 1308 1309 entropy_sum /= ws->sample_size; 1310 return entropy_sum * 100 / entropy_max; 1311 } 1312 1313 #define RADIX_BASE 4U 1314 #define COUNTERS_SIZE (1U << RADIX_BASE) 1315 1316 static u8 get4bits(u64 num, int shift) { 1317 u8 low4bits; 1318 1319 num >>= shift; 1320 /* Reverse order */ 1321 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1322 return low4bits; 1323 } 1324 1325 /* 1326 * Use 4 bits as radix base 1327 * Use 16 u32 counters for calculating new position in buf array 1328 * 1329 * @array - array that will be sorted 1330 * @array_buf - buffer array to store sorting results 1331 * must be equal in size to @array 1332 * @num - array size 1333 */ 1334 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1335 int num) 1336 { 1337 u64 max_num; 1338 u64 buf_num; 1339 u32 counters[COUNTERS_SIZE]; 1340 u32 new_addr; 1341 u32 addr; 1342 int bitlen; 1343 int shift; 1344 int i; 1345 1346 /* 1347 * Try avoid useless loop iterations for small numbers stored in big 1348 * counters. Example: 48 33 4 ... in 64bit array 1349 */ 1350 max_num = array[0].count; 1351 for (i = 1; i < num; i++) { 1352 buf_num = array[i].count; 1353 if (buf_num > max_num) 1354 max_num = buf_num; 1355 } 1356 1357 buf_num = ilog2(max_num); 1358 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1359 1360 shift = 0; 1361 while (shift < bitlen) { 1362 memset(counters, 0, sizeof(counters)); 1363 1364 for (i = 0; i < num; i++) { 1365 buf_num = array[i].count; 1366 addr = get4bits(buf_num, shift); 1367 counters[addr]++; 1368 } 1369 1370 for (i = 1; i < COUNTERS_SIZE; i++) 1371 counters[i] += counters[i - 1]; 1372 1373 for (i = num - 1; i >= 0; i--) { 1374 buf_num = array[i].count; 1375 addr = get4bits(buf_num, shift); 1376 counters[addr]--; 1377 new_addr = counters[addr]; 1378 array_buf[new_addr] = array[i]; 1379 } 1380 1381 shift += RADIX_BASE; 1382 1383 /* 1384 * Normal radix expects to move data from a temporary array, to 1385 * the main one. But that requires some CPU time. Avoid that 1386 * by doing another sort iteration to original array instead of 1387 * memcpy() 1388 */ 1389 memset(counters, 0, sizeof(counters)); 1390 1391 for (i = 0; i < num; i ++) { 1392 buf_num = array_buf[i].count; 1393 addr = get4bits(buf_num, shift); 1394 counters[addr]++; 1395 } 1396 1397 for (i = 1; i < COUNTERS_SIZE; i++) 1398 counters[i] += counters[i - 1]; 1399 1400 for (i = num - 1; i >= 0; i--) { 1401 buf_num = array_buf[i].count; 1402 addr = get4bits(buf_num, shift); 1403 counters[addr]--; 1404 new_addr = counters[addr]; 1405 array[new_addr] = array_buf[i]; 1406 } 1407 1408 shift += RADIX_BASE; 1409 } 1410 } 1411 1412 /* 1413 * Size of the core byte set - how many bytes cover 90% of the sample 1414 * 1415 * There are several types of structured binary data that use nearly all byte 1416 * values. The distribution can be uniform and counts in all buckets will be 1417 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1418 * 1419 * Other possibility is normal (Gaussian) distribution, where the data could 1420 * be potentially compressible, but we have to take a few more steps to decide 1421 * how much. 1422 * 1423 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1424 * compression algo can easy fix that 1425 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1426 * probability is not compressible 1427 */ 1428 #define BYTE_CORE_SET_LOW (64) 1429 #define BYTE_CORE_SET_HIGH (200) 1430 1431 static int byte_core_set_size(struct heuristic_ws *ws) 1432 { 1433 u32 i; 1434 u32 coreset_sum = 0; 1435 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1436 struct bucket_item *bucket = ws->bucket; 1437 1438 /* Sort in reverse order */ 1439 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1440 1441 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1442 coreset_sum += bucket[i].count; 1443 1444 if (coreset_sum > core_set_threshold) 1445 return i; 1446 1447 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1448 coreset_sum += bucket[i].count; 1449 if (coreset_sum > core_set_threshold) 1450 break; 1451 } 1452 1453 return i; 1454 } 1455 1456 /* 1457 * Count byte values in buckets. 1458 * This heuristic can detect textual data (configs, xml, json, html, etc). 1459 * Because in most text-like data byte set is restricted to limited number of 1460 * possible characters, and that restriction in most cases makes data easy to 1461 * compress. 1462 * 1463 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1464 * less - compressible 1465 * more - need additional analysis 1466 */ 1467 #define BYTE_SET_THRESHOLD (64) 1468 1469 static u32 byte_set_size(const struct heuristic_ws *ws) 1470 { 1471 u32 i; 1472 u32 byte_set_size = 0; 1473 1474 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1475 if (ws->bucket[i].count > 0) 1476 byte_set_size++; 1477 } 1478 1479 /* 1480 * Continue collecting count of byte values in buckets. If the byte 1481 * set size is bigger then the threshold, it's pointless to continue, 1482 * the detection technique would fail for this type of data. 1483 */ 1484 for (; i < BUCKET_SIZE; i++) { 1485 if (ws->bucket[i].count > 0) { 1486 byte_set_size++; 1487 if (byte_set_size > BYTE_SET_THRESHOLD) 1488 return byte_set_size; 1489 } 1490 } 1491 1492 return byte_set_size; 1493 } 1494 1495 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1496 { 1497 const u32 half_of_sample = ws->sample_size / 2; 1498 const u8 *data = ws->sample; 1499 1500 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1501 } 1502 1503 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1504 struct heuristic_ws *ws) 1505 { 1506 struct page *page; 1507 pgoff_t index, index_end; 1508 u32 i, curr_sample_pos; 1509 u8 *in_data; 1510 1511 /* 1512 * Compression handles the input data by chunks of 128KiB 1513 * (defined by BTRFS_MAX_UNCOMPRESSED) 1514 * 1515 * We do the same for the heuristic and loop over the whole range. 1516 * 1517 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1518 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1519 */ 1520 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1521 end = start + BTRFS_MAX_UNCOMPRESSED; 1522 1523 index = start >> PAGE_SHIFT; 1524 index_end = end >> PAGE_SHIFT; 1525 1526 /* Don't miss unaligned end */ 1527 if (!PAGE_ALIGNED(end)) 1528 index_end++; 1529 1530 curr_sample_pos = 0; 1531 while (index < index_end) { 1532 page = find_get_page(inode->i_mapping, index); 1533 in_data = kmap_local_page(page); 1534 /* Handle case where the start is not aligned to PAGE_SIZE */ 1535 i = start % PAGE_SIZE; 1536 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1537 /* Don't sample any garbage from the last page */ 1538 if (start > end - SAMPLING_READ_SIZE) 1539 break; 1540 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1541 SAMPLING_READ_SIZE); 1542 i += SAMPLING_INTERVAL; 1543 start += SAMPLING_INTERVAL; 1544 curr_sample_pos += SAMPLING_READ_SIZE; 1545 } 1546 kunmap_local(in_data); 1547 put_page(page); 1548 1549 index++; 1550 } 1551 1552 ws->sample_size = curr_sample_pos; 1553 } 1554 1555 /* 1556 * Compression heuristic. 1557 * 1558 * The following types of analysis can be performed: 1559 * - detect mostly zero data 1560 * - detect data with low "byte set" size (text, etc) 1561 * - detect data with low/high "core byte" set 1562 * 1563 * Return non-zero if the compression should be done, 0 otherwise. 1564 */ 1565 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) 1566 { 1567 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1568 struct list_head *ws_list = get_workspace(fs_info, 0, 0); 1569 struct heuristic_ws *ws; 1570 u32 i; 1571 u8 byte; 1572 int ret = 0; 1573 1574 ws = list_entry(ws_list, struct heuristic_ws, list); 1575 1576 heuristic_collect_sample(&inode->vfs_inode, start, end, ws); 1577 1578 if (sample_repeated_patterns(ws)) { 1579 ret = 1; 1580 goto out; 1581 } 1582 1583 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1584 1585 for (i = 0; i < ws->sample_size; i++) { 1586 byte = ws->sample[i]; 1587 ws->bucket[byte].count++; 1588 } 1589 1590 i = byte_set_size(ws); 1591 if (i < BYTE_SET_THRESHOLD) { 1592 ret = 2; 1593 goto out; 1594 } 1595 1596 i = byte_core_set_size(ws); 1597 if (i <= BYTE_CORE_SET_LOW) { 1598 ret = 3; 1599 goto out; 1600 } 1601 1602 if (i >= BYTE_CORE_SET_HIGH) { 1603 ret = 0; 1604 goto out; 1605 } 1606 1607 i = shannon_entropy(ws); 1608 if (i <= ENTROPY_LVL_ACEPTABLE) { 1609 ret = 4; 1610 goto out; 1611 } 1612 1613 /* 1614 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1615 * needed to give green light to compression. 1616 * 1617 * For now just assume that compression at that level is not worth the 1618 * resources because: 1619 * 1620 * 1. it is possible to defrag the data later 1621 * 1622 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1623 * values, every bucket has counter at level ~54. The heuristic would 1624 * be confused. This can happen when data have some internal repeated 1625 * patterns like "abbacbbc...". This can be detected by analyzing 1626 * pairs of bytes, which is too costly. 1627 */ 1628 if (i < ENTROPY_LVL_HIGH) { 1629 ret = 5; 1630 goto out; 1631 } else { 1632 ret = 0; 1633 goto out; 1634 } 1635 1636 out: 1637 put_workspace(fs_info, 0, ws_list); 1638 return ret; 1639 } 1640 1641 /* 1642 * Convert the compression suffix (eg. after "zlib" starting with ":") to level. 1643 * 1644 * If the resulting level exceeds the algo's supported levels, it will be clamped. 1645 * 1646 * Return <0 if no valid string can be found. 1647 * Return 0 if everything is fine. 1648 */ 1649 int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret) 1650 { 1651 int level = 0; 1652 int ret; 1653 1654 if (!type) { 1655 *level_ret = btrfs_compress_set_level(type, level); 1656 return 0; 1657 } 1658 1659 if (str[0] == ':') { 1660 ret = kstrtoint(str + 1, 10, &level); 1661 if (ret) 1662 return ret; 1663 } 1664 1665 *level_ret = btrfs_compress_set_level(type, level); 1666 return 0; 1667 } 1668