1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94
95 /*
96 * Note, kvm_caps fields should *never* have default values, all fields must be
97 * recomputed from scratch during vendor module load, e.g. to account for a
98 * vendor module being reloaded with different module parameters.
99 */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105
106 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
107
108 #define emul_to_vcpu(ctxt) \
109 ((struct kvm_vcpu *)(ctxt)->vcpu)
110
111 /* EFER defaults:
112 * - enable syscall per default because its emulated by KVM
113 * - enable LME and LMA per default on 64 bit KVM
114 */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141
142 #define KVM_X86_OP(func) \
143 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
144 *(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174
175 /*
176 * Flags to manipulate forced emulation behavior (any non-zero value will
177 * enable forced emulation).
178 */
179 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197
198 /*
199 * Restoring the host value for MSRs that are only consumed when running in
200 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201 * returns to userspace, i.e. the kernel can run with the guest's value.
202 */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204
205 struct kvm_user_return_msrs {
206 struct user_return_notifier urn;
207 bool registered;
208 struct kvm_user_return_msr_values {
209 u64 host;
210 u64 curr;
211 } values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218
219 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 KVM_GENERIC_VM_STATS(),
232 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 STATS_DESC_COUNTER(VM, mmu_pte_write),
234 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 STATS_DESC_COUNTER(VM, mmu_flooded),
236 STATS_DESC_COUNTER(VM, mmu_recycled),
237 STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 STATS_DESC_ICOUNTER(VM, pages_4k),
240 STATS_DESC_ICOUNTER(VM, pages_2m),
241 STATS_DESC_ICOUNTER(VM, pages_1g),
242 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 .name_size = KVM_STATS_NAME_SIZE,
249 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 .id_offset = sizeof(struct kvm_stats_header),
251 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 sizeof(kvm_vm_stats_desc),
254 };
255
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 KVM_GENERIC_VCPU_STATS(),
258 STATS_DESC_COUNTER(VCPU, pf_taken),
259 STATS_DESC_COUNTER(VCPU, pf_fixed),
260 STATS_DESC_COUNTER(VCPU, pf_emulate),
261 STATS_DESC_COUNTER(VCPU, pf_spurious),
262 STATS_DESC_COUNTER(VCPU, pf_fast),
263 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 STATS_DESC_COUNTER(VCPU, pf_guest),
265 STATS_DESC_COUNTER(VCPU, tlb_flush),
266 STATS_DESC_COUNTER(VCPU, invlpg),
267 STATS_DESC_COUNTER(VCPU, exits),
268 STATS_DESC_COUNTER(VCPU, io_exits),
269 STATS_DESC_COUNTER(VCPU, mmio_exits),
270 STATS_DESC_COUNTER(VCPU, signal_exits),
271 STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 STATS_DESC_COUNTER(VCPU, l1d_flush),
274 STATS_DESC_COUNTER(VCPU, halt_exits),
275 STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 STATS_DESC_COUNTER(VCPU, irq_exits),
277 STATS_DESC_COUNTER(VCPU, host_state_reload),
278 STATS_DESC_COUNTER(VCPU, fpu_reload),
279 STATS_DESC_COUNTER(VCPU, insn_emulation),
280 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 STATS_DESC_COUNTER(VCPU, hypercalls),
282 STATS_DESC_COUNTER(VCPU, irq_injections),
283 STATS_DESC_COUNTER(VCPU, nmi_injections),
284 STATS_DESC_COUNTER(VCPU, req_event),
285 STATS_DESC_COUNTER(VCPU, nested_run),
286 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 STATS_DESC_COUNTER(VCPU, preemption_reported),
289 STATS_DESC_COUNTER(VCPU, preemption_other),
290 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 .name_size = KVM_STATS_NAME_SIZE,
296 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 .id_offset = sizeof(struct kvm_stats_header),
298 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 sizeof(kvm_vcpu_stats_desc),
301 };
302
303 static struct kmem_cache *x86_emulator_cache;
304
305 /*
306 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
309 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
310 * MSRs that KVM emulates without strictly requiring host support.
311 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
313 * msrs_to_save and emulated_msrs.
314 */
315
316 static const u32 msrs_to_save_base[] = {
317 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 MSR_STAR,
319 #ifdef CONFIG_X86_64
320 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 MSR_IA32_UMWAIT_CONTROL,
332
333 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335
336 static const u32 msrs_to_save_pmu[] = {
337 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 MSR_CORE_PERF_GLOBAL_CTRL,
341 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342
343 /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352
353 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355
356 /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361
362 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370
371 static const u32 emulated_msrs_all[] = {
372 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374
375 #ifdef CONFIG_KVM_HYPERV
376 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 HV_X64_MSR_RESET,
382 HV_X64_MSR_VP_INDEX,
383 HV_X64_MSR_VP_RUNTIME,
384 HV_X64_MSR_SCONTROL,
385 HV_X64_MSR_STIMER0_CONFIG,
386 HV_X64_MSR_VP_ASSIST_PAGE,
387 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 HV_X64_MSR_SYNDBG_OPTIONS,
390 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394
395 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397
398 MSR_IA32_TSC_ADJUST,
399 MSR_IA32_TSC_DEADLINE,
400 MSR_IA32_ARCH_CAPABILITIES,
401 MSR_IA32_PERF_CAPABILITIES,
402 MSR_IA32_MISC_ENABLE,
403 MSR_IA32_MCG_STATUS,
404 MSR_IA32_MCG_CTL,
405 MSR_IA32_MCG_EXT_CTL,
406 MSR_IA32_SMBASE,
407 MSR_SMI_COUNT,
408 MSR_PLATFORM_INFO,
409 MSR_MISC_FEATURES_ENABLES,
410 MSR_AMD64_VIRT_SPEC_CTRL,
411 MSR_AMD64_TSC_RATIO,
412 MSR_IA32_POWER_CTL,
413 MSR_IA32_UCODE_REV,
414
415 /*
416 * KVM always supports the "true" VMX control MSRs, even if the host
417 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
418 * doesn't strictly require them to exist in the host (ignoring that
419 * KVM would refuse to load in the first place if the core set of MSRs
420 * aren't supported).
421 */
422 MSR_IA32_VMX_BASIC,
423 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 MSR_IA32_VMX_MISC,
428 MSR_IA32_VMX_CR0_FIXED0,
429 MSR_IA32_VMX_CR4_FIXED0,
430 MSR_IA32_VMX_VMCS_ENUM,
431 MSR_IA32_VMX_PROCBASED_CTLS2,
432 MSR_IA32_VMX_EPT_VPID_CAP,
433 MSR_IA32_VMX_VMFUNC,
434
435 MSR_K7_HWCR,
436 MSR_KVM_POLL_CONTROL,
437 };
438
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441
442 /*
443 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
445 * feature MSRs, but are handled separately to allow expedited lookups.
446 */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 MSR_AMD64_DE_CFG,
449 MSR_IA32_UCODE_REV,
450 MSR_IA32_ARCH_CAPABILITIES,
451 MSR_IA32_PERF_CAPABILITIES,
452 MSR_PLATFORM_INFO,
453 };
454
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458
459 /*
460 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461 * patch, are immutable once the vCPU model is defined.
462 */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 int i;
466
467 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 return true;
469
470 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 if (msr == msr_based_features_all_except_vmx[i])
472 return msr != MSR_IA32_UCODE_REV;
473 }
474
475 return false;
476 }
477
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 unsigned int i;
481
482 for (i = 0; i < num_msrs_to_save; i++) {
483 if (msrs_to_save[i] == msr_index)
484 return true;
485 }
486
487 for (i = 0; i < num_emulated_msrs; i++) {
488 if (emulated_msrs[i] == msr_index)
489 return true;
490 }
491
492 return false;
493 }
494
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 bool host_initiated);
497
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 u64 *data, bool host_initiated,
500 enum kvm_msr_access rw,
501 msr_access_t msr_access_fn)
502 {
503 const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 int ret;
505
506 BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507
508 /*
509 * Zero the data on read failures to avoid leaking stack data to the
510 * guest and/or userspace, e.g. if the failure is ignored below.
511 */
512 ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 if (ret && rw == MSR_TYPE_R)
514 *data = 0;
515
516 if (ret != KVM_MSR_RET_UNSUPPORTED)
517 return ret;
518
519 /*
520 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 * advertises to userspace, even if an MSR isn't fully supported.
522 * Simply check that @data is '0', which covers both the write '0' case
523 * and all reads (in which case @data is zeroed on failure; see above).
524 */
525 if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 return 0;
527
528 if (!ignore_msrs) {
529 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 op, msr, *data);
531 return ret;
532 }
533
534 if (report_ignored_msrs)
535 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536
537 return 0;
538 }
539
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 unsigned int size = sizeof(struct x86_emulate_ctxt);
544
545 return kmem_cache_create_usercopy("x86_emulator", size,
546 __alignof__(struct x86_emulate_ctxt),
547 SLAB_ACCOUNT, useroffset,
548 size - useroffset, NULL);
549 }
550
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 int i;
556 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 vcpu->arch.apf.gfns[i] = ~0;
558 }
559
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 unsigned slot;
563 struct kvm_user_return_msrs *msrs
564 = container_of(urn, struct kvm_user_return_msrs, urn);
565 struct kvm_user_return_msr_values *values;
566 unsigned long flags;
567
568 /*
569 * Disabling irqs at this point since the following code could be
570 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 */
572 local_irq_save(flags);
573 if (msrs->registered) {
574 msrs->registered = false;
575 user_return_notifier_unregister(urn);
576 }
577 local_irq_restore(flags);
578 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 values = &msrs->values[slot];
580 if (values->host != values->curr) {
581 wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 values->curr = values->host;
583 }
584 }
585 }
586
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 u64 val;
590 int ret;
591
592 preempt_disable();
593 ret = rdmsrl_safe(msr, &val);
594 if (ret)
595 goto out;
596 ret = wrmsrl_safe(msr, val);
597 out:
598 preempt_enable();
599 return ret;
600 }
601
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605
606 if (kvm_probe_user_return_msr(msr))
607 return -1;
608
609 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 int i;
617
618 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 if (kvm_uret_msrs_list[i] == msr)
620 return i;
621 }
622 return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 u64 value;
630 int i;
631
632 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 msrs->values[i].host = value;
635 msrs->values[i].curr = value;
636 }
637 }
638
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 int err;
643
644 value = (value & mask) | (msrs->values[slot].host & ~mask);
645 if (value == msrs->values[slot].curr)
646 return 0;
647 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 if (err)
649 return 1;
650
651 msrs->values[slot].curr = value;
652 if (!msrs->registered) {
653 msrs->urn.on_user_return = kvm_on_user_return;
654 user_return_notifier_register(&msrs->urn);
655 msrs->registered = true;
656 }
657 return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664
665 if (msrs->registered)
666 kvm_on_user_return(&msrs->urn);
667 }
668
669 /*
670 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671 *
672 * Hardware virtualization extension instructions may fault if a reboot turns
673 * off virtualization while processes are running. Usually after catching the
674 * fault we just panic; during reboot instead the instruction is ignored.
675 */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 /* Fault while not rebooting. We want the trace. */
679 BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682
683 #define EXCPT_BENIGN 0
684 #define EXCPT_CONTRIBUTORY 1
685 #define EXCPT_PF 2
686
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 switch (vector) {
690 case PF_VECTOR:
691 return EXCPT_PF;
692 case DE_VECTOR:
693 case TS_VECTOR:
694 case NP_VECTOR:
695 case SS_VECTOR:
696 case GP_VECTOR:
697 return EXCPT_CONTRIBUTORY;
698 default:
699 break;
700 }
701 return EXCPT_BENIGN;
702 }
703
704 #define EXCPT_FAULT 0
705 #define EXCPT_TRAP 1
706 #define EXCPT_ABORT 2
707 #define EXCPT_INTERRUPT 3
708 #define EXCPT_DB 4
709
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 unsigned int mask;
713
714 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 return EXCPT_INTERRUPT;
716
717 mask = 1 << vector;
718
719 /*
720 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 */
723 if (mask & (1 << DB_VECTOR))
724 return EXCPT_DB;
725
726 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 return EXCPT_TRAP;
728
729 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 return EXCPT_ABORT;
731
732 /* Reserved exceptions will result in fault */
733 return EXCPT_FAULT;
734 }
735
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 struct kvm_queued_exception *ex)
738 {
739 if (!ex->has_payload)
740 return;
741
742 switch (ex->vector) {
743 case DB_VECTOR:
744 /*
745 * "Certain debug exceptions may clear bit 0-3. The
746 * remaining contents of the DR6 register are never
747 * cleared by the processor".
748 */
749 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 /*
751 * In order to reflect the #DB exception payload in guest
752 * dr6, three components need to be considered: active low
753 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 * DR6_BS and DR6_BT)
755 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 * In the target guest dr6:
757 * FIXED_1 bits should always be set.
758 * Active low bits should be cleared if 1-setting in payload.
759 * Active high bits should be set if 1-setting in payload.
760 *
761 * Note, the payload is compatible with the pending debug
762 * exceptions/exit qualification under VMX, that active_low bits
763 * are active high in payload.
764 * So they need to be flipped for DR6.
765 */
766 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 vcpu->arch.dr6 |= ex->payload;
768 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769
770 /*
771 * The #DB payload is defined as compatible with the 'pending
772 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 * defined in the 'pending debug exceptions' field (enabled
774 * breakpoint), it is reserved and must be zero in DR6.
775 */
776 vcpu->arch.dr6 &= ~BIT(12);
777 break;
778 case PF_VECTOR:
779 vcpu->arch.cr2 = ex->payload;
780 break;
781 }
782
783 ex->has_payload = false;
784 ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 bool has_error_code, u32 error_code,
790 bool has_payload, unsigned long payload)
791 {
792 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793
794 ex->vector = vector;
795 ex->injected = false;
796 ex->pending = true;
797 ex->has_error_code = has_error_code;
798 ex->error_code = error_code;
799 ex->has_payload = has_payload;
800 ex->payload = payload;
801 }
802
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
804 unsigned nr, bool has_error, u32 error_code,
805 bool has_payload, unsigned long payload, bool reinject)
806 {
807 u32 prev_nr;
808 int class1, class2;
809
810 kvm_make_request(KVM_REQ_EVENT, vcpu);
811
812 /*
813 * If the exception is destined for L2 and isn't being reinjected,
814 * morph it to a VM-Exit if L1 wants to intercept the exception. A
815 * previously injected exception is not checked because it was checked
816 * when it was original queued, and re-checking is incorrect if _L1_
817 * injected the exception, in which case it's exempt from interception.
818 */
819 if (!reinject && is_guest_mode(vcpu) &&
820 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
821 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
822 has_payload, payload);
823 return;
824 }
825
826 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
827 queue:
828 if (reinject) {
829 /*
830 * On VM-Entry, an exception can be pending if and only
831 * if event injection was blocked by nested_run_pending.
832 * In that case, however, vcpu_enter_guest() requests an
833 * immediate exit, and the guest shouldn't proceed far
834 * enough to need reinjection.
835 */
836 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
837 vcpu->arch.exception.injected = true;
838 if (WARN_ON_ONCE(has_payload)) {
839 /*
840 * A reinjected event has already
841 * delivered its payload.
842 */
843 has_payload = false;
844 payload = 0;
845 }
846 } else {
847 vcpu->arch.exception.pending = true;
848 vcpu->arch.exception.injected = false;
849 }
850 vcpu->arch.exception.has_error_code = has_error;
851 vcpu->arch.exception.vector = nr;
852 vcpu->arch.exception.error_code = error_code;
853 vcpu->arch.exception.has_payload = has_payload;
854 vcpu->arch.exception.payload = payload;
855 if (!is_guest_mode(vcpu))
856 kvm_deliver_exception_payload(vcpu,
857 &vcpu->arch.exception);
858 return;
859 }
860
861 /* to check exception */
862 prev_nr = vcpu->arch.exception.vector;
863 if (prev_nr == DF_VECTOR) {
864 /* triple fault -> shutdown */
865 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
866 return;
867 }
868 class1 = exception_class(prev_nr);
869 class2 = exception_class(nr);
870 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
871 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
872 /*
873 * Synthesize #DF. Clear the previously injected or pending
874 * exception so as not to incorrectly trigger shutdown.
875 */
876 vcpu->arch.exception.injected = false;
877 vcpu->arch.exception.pending = false;
878
879 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
880 } else {
881 /* replace previous exception with a new one in a hope
882 that instruction re-execution will regenerate lost
883 exception */
884 goto queue;
885 }
886 }
887
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)888 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
889 {
890 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
891 }
892 EXPORT_SYMBOL_GPL(kvm_queue_exception);
893
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
897 }
898 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
899
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)900 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
901 unsigned long payload)
902 {
903 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
904 }
905 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
906
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)907 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
908 u32 error_code, unsigned long payload)
909 {
910 kvm_multiple_exception(vcpu, nr, true, error_code,
911 true, payload, false);
912 }
913
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)914 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
915 {
916 if (err)
917 kvm_inject_gp(vcpu, 0);
918 else
919 return kvm_skip_emulated_instruction(vcpu);
920
921 return 1;
922 }
923 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
924
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)925 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
926 {
927 if (err) {
928 kvm_inject_gp(vcpu, 0);
929 return 1;
930 }
931
932 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
933 EMULTYPE_COMPLETE_USER_EXIT);
934 }
935
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)936 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
937 {
938 ++vcpu->stat.pf_guest;
939
940 /*
941 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
942 * whether or not L1 wants to intercept "regular" #PF.
943 */
944 if (is_guest_mode(vcpu) && fault->async_page_fault)
945 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
946 true, fault->error_code,
947 true, fault->address);
948 else
949 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
950 fault->address);
951 }
952
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
954 struct x86_exception *fault)
955 {
956 struct kvm_mmu *fault_mmu;
957 WARN_ON_ONCE(fault->vector != PF_VECTOR);
958
959 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
960 vcpu->arch.walk_mmu;
961
962 /*
963 * Invalidate the TLB entry for the faulting address, if it exists,
964 * else the access will fault indefinitely (and to emulate hardware).
965 */
966 if ((fault->error_code & PFERR_PRESENT_MASK) &&
967 !(fault->error_code & PFERR_RSVD_MASK))
968 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
969 KVM_MMU_ROOT_CURRENT);
970
971 fault_mmu->inject_page_fault(vcpu, fault);
972 }
973 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
974
kvm_inject_nmi(struct kvm_vcpu * vcpu)975 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
976 {
977 atomic_inc(&vcpu->arch.nmi_queued);
978 kvm_make_request(KVM_REQ_NMI, vcpu);
979 }
980
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)981 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
982 {
983 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
984 }
985 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
986
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)987 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
988 {
989 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
990 }
991 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
992
993 /*
994 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
995 * a #GP and return false.
996 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)997 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
998 {
999 if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1000 return true;
1001 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1002 return false;
1003 }
1004
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1005 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1006 {
1007 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1008 return true;
1009
1010 kvm_queue_exception(vcpu, UD_VECTOR);
1011 return false;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_require_dr);
1014
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1015 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1016 {
1017 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1018 }
1019
1020 /*
1021 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
1022 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1023 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1026 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1027 gpa_t real_gpa;
1028 int i;
1029 int ret;
1030 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1031
1032 /*
1033 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1034 * to an L1 GPA.
1035 */
1036 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1037 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1038 if (real_gpa == INVALID_GPA)
1039 return 0;
1040
1041 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1042 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1043 cr3 & GENMASK(11, 5), sizeof(pdpte));
1044 if (ret < 0)
1045 return 0;
1046
1047 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1048 if ((pdpte[i] & PT_PRESENT_MASK) &&
1049 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1050 return 0;
1051 }
1052 }
1053
1054 /*
1055 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1056 * Shadow page roots need to be reconstructed instead.
1057 */
1058 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1059 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1060
1061 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1062 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1063 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1064 vcpu->arch.pdptrs_from_userspace = false;
1065
1066 return 1;
1067 }
1068 EXPORT_SYMBOL_GPL(load_pdptrs);
1069
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1070 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1071 {
1072 #ifdef CONFIG_X86_64
1073 if (cr0 & 0xffffffff00000000UL)
1074 return false;
1075 #endif
1076
1077 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1078 return false;
1079
1080 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1081 return false;
1082
1083 return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1084 }
1085
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1086 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1087 {
1088 /*
1089 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1090 * indirect shadow MMUs. If paging is disabled, no updates are needed
1091 * as there are no permission bits to emulate. If TDP is enabled, the
1092 * MMU's metadata needs to be updated, e.g. so that emulating guest
1093 * translations does the right thing, but there's no need to unload the
1094 * root as CR0.WP doesn't affect SPTEs.
1095 */
1096 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1097 if (!(cr0 & X86_CR0_PG))
1098 return;
1099
1100 if (tdp_enabled) {
1101 kvm_init_mmu(vcpu);
1102 return;
1103 }
1104 }
1105
1106 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1107 kvm_clear_async_pf_completion_queue(vcpu);
1108 kvm_async_pf_hash_reset(vcpu);
1109
1110 /*
1111 * Clearing CR0.PG is defined to flush the TLB from the guest's
1112 * perspective.
1113 */
1114 if (!(cr0 & X86_CR0_PG))
1115 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1116 }
1117
1118 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1119 kvm_mmu_reset_context(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1122
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1123 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1124 {
1125 unsigned long old_cr0 = kvm_read_cr0(vcpu);
1126
1127 if (!kvm_is_valid_cr0(vcpu, cr0))
1128 return 1;
1129
1130 cr0 |= X86_CR0_ET;
1131
1132 /* Write to CR0 reserved bits are ignored, even on Intel. */
1133 cr0 &= ~CR0_RESERVED_BITS;
1134
1135 #ifdef CONFIG_X86_64
1136 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1137 (cr0 & X86_CR0_PG)) {
1138 int cs_db, cs_l;
1139
1140 if (!is_pae(vcpu))
1141 return 1;
1142 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1143 if (cs_l)
1144 return 1;
1145 }
1146 #endif
1147 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1148 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1149 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1150 return 1;
1151
1152 if (!(cr0 & X86_CR0_PG) &&
1153 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1154 return 1;
1155
1156 kvm_x86_call(set_cr0)(vcpu, cr0);
1157
1158 kvm_post_set_cr0(vcpu, old_cr0, cr0);
1159
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1163
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1165 {
1166 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_lmsw);
1169
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1170 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1171 {
1172 if (vcpu->arch.guest_state_protected)
1173 return;
1174
1175 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1176
1177 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1178 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1179
1180 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1181 vcpu->arch.ia32_xss != kvm_host.xss)
1182 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1183 }
1184
1185 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1186 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1187 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1188 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1189 wrpkru(vcpu->arch.pkru);
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1192
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1193 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1194 {
1195 if (vcpu->arch.guest_state_protected)
1196 return;
1197
1198 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1199 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1200 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1201 vcpu->arch.pkru = rdpkru();
1202 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1203 wrpkru(vcpu->arch.host_pkru);
1204 }
1205
1206 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1207
1208 if (vcpu->arch.xcr0 != kvm_host.xcr0)
1209 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1210
1211 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1212 vcpu->arch.ia32_xss != kvm_host.xss)
1213 wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1214 }
1215
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1218
1219 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1220 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1221 {
1222 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1223 }
1224 #endif
1225
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1226 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1227 {
1228 u64 xcr0 = xcr;
1229 u64 old_xcr0 = vcpu->arch.xcr0;
1230 u64 valid_bits;
1231
1232 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1233 if (index != XCR_XFEATURE_ENABLED_MASK)
1234 return 1;
1235 if (!(xcr0 & XFEATURE_MASK_FP))
1236 return 1;
1237 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1238 return 1;
1239
1240 /*
1241 * Do not allow the guest to set bits that we do not support
1242 * saving. However, xcr0 bit 0 is always set, even if the
1243 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1244 */
1245 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1246 if (xcr0 & ~valid_bits)
1247 return 1;
1248
1249 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1250 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1251 return 1;
1252
1253 if (xcr0 & XFEATURE_MASK_AVX512) {
1254 if (!(xcr0 & XFEATURE_MASK_YMM))
1255 return 1;
1256 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1257 return 1;
1258 }
1259
1260 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1261 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1262 return 1;
1263
1264 vcpu->arch.xcr0 = xcr0;
1265
1266 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1267 kvm_update_cpuid_runtime(vcpu);
1268 return 0;
1269 }
1270
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1271 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1272 {
1273 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1274 if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1275 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1276 kvm_inject_gp(vcpu, 0);
1277 return 1;
1278 }
1279
1280 return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1283
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1284 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1285 {
1286 return __kvm_is_valid_cr4(vcpu, cr4) &&
1287 kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1288 }
1289
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1290 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1291 {
1292 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1293 kvm_mmu_reset_context(vcpu);
1294
1295 /*
1296 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1297 * according to the SDM; however, stale prev_roots could be reused
1298 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1299 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1300 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1301 * so fall through.
1302 */
1303 if (!tdp_enabled &&
1304 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1305 kvm_mmu_unload(vcpu);
1306
1307 /*
1308 * The TLB has to be flushed for all PCIDs if any of the following
1309 * (architecturally required) changes happen:
1310 * - CR4.PCIDE is changed from 1 to 0
1311 * - CR4.PGE is toggled
1312 *
1313 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1314 */
1315 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1316 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1317 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1318
1319 /*
1320 * The TLB has to be flushed for the current PCID if any of the
1321 * following (architecturally required) changes happen:
1322 * - CR4.SMEP is changed from 0 to 1
1323 * - CR4.PAE is toggled
1324 */
1325 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1326 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1327 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1328
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1331
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1332 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1333 {
1334 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1335
1336 if (!kvm_is_valid_cr4(vcpu, cr4))
1337 return 1;
1338
1339 if (is_long_mode(vcpu)) {
1340 if (!(cr4 & X86_CR4_PAE))
1341 return 1;
1342 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1343 return 1;
1344 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1345 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1346 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1347 return 1;
1348
1349 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1350 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1351 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1352 return 1;
1353 }
1354
1355 kvm_x86_call(set_cr4)(vcpu, cr4);
1356
1357 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1358
1359 return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1362
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1363 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1364 {
1365 struct kvm_mmu *mmu = vcpu->arch.mmu;
1366 unsigned long roots_to_free = 0;
1367 int i;
1368
1369 /*
1370 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1371 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1372 * also via the emulator. KVM's TDP page tables are not in the scope of
1373 * the invalidation, but the guest's TLB entries need to be flushed as
1374 * the CPU may have cached entries in its TLB for the target PCID.
1375 */
1376 if (unlikely(tdp_enabled)) {
1377 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1378 return;
1379 }
1380
1381 /*
1382 * If neither the current CR3 nor any of the prev_roots use the given
1383 * PCID, then nothing needs to be done here because a resync will
1384 * happen anyway before switching to any other CR3.
1385 */
1386 if (kvm_get_active_pcid(vcpu) == pcid) {
1387 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1388 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1389 }
1390
1391 /*
1392 * If PCID is disabled, there is no need to free prev_roots even if the
1393 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1394 * with PCIDE=0.
1395 */
1396 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1397 return;
1398
1399 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1400 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1401 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1402
1403 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1404 }
1405
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1406 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1407 {
1408 bool skip_tlb_flush = false;
1409 unsigned long pcid = 0;
1410 #ifdef CONFIG_X86_64
1411 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1412 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1413 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1414 pcid = cr3 & X86_CR3_PCID_MASK;
1415 }
1416 #endif
1417
1418 /* PDPTRs are always reloaded for PAE paging. */
1419 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1420 goto handle_tlb_flush;
1421
1422 /*
1423 * Do not condition the GPA check on long mode, this helper is used to
1424 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1425 * the current vCPU mode is accurate.
1426 */
1427 if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1428 return 1;
1429
1430 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1431 return 1;
1432
1433 if (cr3 != kvm_read_cr3(vcpu))
1434 kvm_mmu_new_pgd(vcpu, cr3);
1435
1436 vcpu->arch.cr3 = cr3;
1437 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1438 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1439
1440 handle_tlb_flush:
1441 /*
1442 * A load of CR3 that flushes the TLB flushes only the current PCID,
1443 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1444 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1445 * and it's impossible to use a non-zero PCID when PCID is disabled,
1446 * i.e. only PCID=0 can be relevant.
1447 */
1448 if (!skip_tlb_flush)
1449 kvm_invalidate_pcid(vcpu, pcid);
1450
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1454
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1455 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1456 {
1457 if (cr8 & CR8_RESERVED_BITS)
1458 return 1;
1459 if (lapic_in_kernel(vcpu))
1460 kvm_lapic_set_tpr(vcpu, cr8);
1461 else
1462 vcpu->arch.cr8 = cr8;
1463 return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1466
kvm_get_cr8(struct kvm_vcpu * vcpu)1467 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1468 {
1469 if (lapic_in_kernel(vcpu))
1470 return kvm_lapic_get_cr8(vcpu);
1471 else
1472 return vcpu->arch.cr8;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1475
kvm_update_dr0123(struct kvm_vcpu * vcpu)1476 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1477 {
1478 int i;
1479
1480 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1481 for (i = 0; i < KVM_NR_DB_REGS; i++)
1482 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1483 }
1484 }
1485
kvm_update_dr7(struct kvm_vcpu * vcpu)1486 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1487 {
1488 unsigned long dr7;
1489
1490 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1491 dr7 = vcpu->arch.guest_debug_dr7;
1492 else
1493 dr7 = vcpu->arch.dr7;
1494 kvm_x86_call(set_dr7)(vcpu, dr7);
1495 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1496 if (dr7 & DR7_BP_EN_MASK)
1497 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1500
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1501 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1502 {
1503 u64 fixed = DR6_FIXED_1;
1504
1505 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1506 fixed |= DR6_RTM;
1507
1508 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1509 fixed |= DR6_BUS_LOCK;
1510 return fixed;
1511 }
1512
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1513 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1514 {
1515 size_t size = ARRAY_SIZE(vcpu->arch.db);
1516
1517 switch (dr) {
1518 case 0 ... 3:
1519 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1520 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1521 vcpu->arch.eff_db[dr] = val;
1522 break;
1523 case 4:
1524 case 6:
1525 if (!kvm_dr6_valid(val))
1526 return 1; /* #GP */
1527 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1528 break;
1529 case 5:
1530 default: /* 7 */
1531 if (!kvm_dr7_valid(val))
1532 return 1; /* #GP */
1533 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1534 kvm_update_dr7(vcpu);
1535 break;
1536 }
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_set_dr);
1541
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1542 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1543 {
1544 size_t size = ARRAY_SIZE(vcpu->arch.db);
1545
1546 switch (dr) {
1547 case 0 ... 3:
1548 return vcpu->arch.db[array_index_nospec(dr, size)];
1549 case 4:
1550 case 6:
1551 return vcpu->arch.dr6;
1552 case 5:
1553 default: /* 7 */
1554 return vcpu->arch.dr7;
1555 }
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_get_dr);
1558
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1559 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1560 {
1561 u32 ecx = kvm_rcx_read(vcpu);
1562 u64 data;
1563
1564 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1565 kvm_inject_gp(vcpu, 0);
1566 return 1;
1567 }
1568
1569 kvm_rax_write(vcpu, (u32)data);
1570 kvm_rdx_write(vcpu, data >> 32);
1571 return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1574
1575 /*
1576 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1577 * does not yet virtualize. These include:
1578 * 10 - MISC_PACKAGE_CTRLS
1579 * 11 - ENERGY_FILTERING_CTL
1580 * 12 - DOITM
1581 * 18 - FB_CLEAR_CTRL
1582 * 21 - XAPIC_DISABLE_STATUS
1583 * 23 - OVERCLOCKING_STATUS
1584 */
1585
1586 #define KVM_SUPPORTED_ARCH_CAP \
1587 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1588 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1589 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1590 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1591 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1592 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1593
kvm_get_arch_capabilities(void)1594 static u64 kvm_get_arch_capabilities(void)
1595 {
1596 u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1597
1598 /*
1599 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 * the nested hypervisor runs with NX huge pages. If it is not,
1601 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 * L1 guests, so it need not worry about its own (L2) guests.
1603 */
1604 data |= ARCH_CAP_PSCHANGE_MC_NO;
1605
1606 /*
1607 * If we're doing cache flushes (either "always" or "cond")
1608 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 * If an outer hypervisor is doing the cache flush for us
1610 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1611 * capability to the guest too, and if EPT is disabled we're not
1612 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 * require a nested hypervisor to do a flush of its own.
1614 */
1615 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617
1618 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 data |= ARCH_CAP_RDCL_NO;
1620 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 data |= ARCH_CAP_SSB_NO;
1622 if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 data |= ARCH_CAP_MDS_NO;
1624 if (!boot_cpu_has_bug(X86_BUG_RFDS))
1625 data |= ARCH_CAP_RFDS_NO;
1626
1627 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 /*
1629 * If RTM=0 because the kernel has disabled TSX, the host might
1630 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1631 * and therefore knows that there cannot be TAA) but keep
1632 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 * and we want to allow migrating those guests to tsx=off hosts.
1634 */
1635 data &= ~ARCH_CAP_TAA_NO;
1636 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 data |= ARCH_CAP_TAA_NO;
1638 } else {
1639 /*
1640 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 * host so the guest can choose between disabling TSX or
1642 * using VERW to clear CPU buffers.
1643 */
1644 }
1645
1646 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1647 data |= ARCH_CAP_GDS_NO;
1648
1649 return data;
1650 }
1651
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1652 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1653 bool host_initiated)
1654 {
1655 WARN_ON_ONCE(!host_initiated);
1656
1657 switch (index) {
1658 case MSR_IA32_ARCH_CAPABILITIES:
1659 *data = kvm_get_arch_capabilities();
1660 break;
1661 case MSR_IA32_PERF_CAPABILITIES:
1662 *data = kvm_caps.supported_perf_cap;
1663 break;
1664 case MSR_PLATFORM_INFO:
1665 *data = MSR_PLATFORM_INFO_CPUID_FAULT;
1666 break;
1667 case MSR_IA32_UCODE_REV:
1668 rdmsrl_safe(index, data);
1669 break;
1670 default:
1671 return kvm_x86_call(get_feature_msr)(index, data);
1672 }
1673 return 0;
1674 }
1675
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1676 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1677 {
1678 return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1679 kvm_get_feature_msr);
1680 }
1681
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1682 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1685 return false;
1686
1687 if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1688 return false;
1689
1690 if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1691 return false;
1692
1693 if (efer & (EFER_LME | EFER_LMA) &&
1694 !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1695 return false;
1696
1697 if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1698 return false;
1699
1700 return true;
1701
1702 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1703 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1704 {
1705 if (efer & efer_reserved_bits)
1706 return false;
1707
1708 return __kvm_valid_efer(vcpu, efer);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1711
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1712 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1713 {
1714 u64 old_efer = vcpu->arch.efer;
1715 u64 efer = msr_info->data;
1716 int r;
1717
1718 if (efer & efer_reserved_bits)
1719 return 1;
1720
1721 if (!msr_info->host_initiated) {
1722 if (!__kvm_valid_efer(vcpu, efer))
1723 return 1;
1724
1725 if (is_paging(vcpu) &&
1726 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1727 return 1;
1728 }
1729
1730 efer &= ~EFER_LMA;
1731 efer |= vcpu->arch.efer & EFER_LMA;
1732
1733 r = kvm_x86_call(set_efer)(vcpu, efer);
1734 if (r) {
1735 WARN_ON(r > 0);
1736 return r;
1737 }
1738
1739 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1740 kvm_mmu_reset_context(vcpu);
1741
1742 if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1743 (efer & EFER_SVME))
1744 kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1745
1746 return 0;
1747 }
1748
kvm_enable_efer_bits(u64 mask)1749 void kvm_enable_efer_bits(u64 mask)
1750 {
1751 efer_reserved_bits &= ~mask;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1754
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1756 {
1757 struct kvm_x86_msr_filter *msr_filter;
1758 struct msr_bitmap_range *ranges;
1759 struct kvm *kvm = vcpu->kvm;
1760 bool allowed;
1761 int idx;
1762 u32 i;
1763
1764 /* x2APIC MSRs do not support filtering. */
1765 if (index >= 0x800 && index <= 0x8ff)
1766 return true;
1767
1768 idx = srcu_read_lock(&kvm->srcu);
1769
1770 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1771 if (!msr_filter) {
1772 allowed = true;
1773 goto out;
1774 }
1775
1776 allowed = msr_filter->default_allow;
1777 ranges = msr_filter->ranges;
1778
1779 for (i = 0; i < msr_filter->count; i++) {
1780 u32 start = ranges[i].base;
1781 u32 end = start + ranges[i].nmsrs;
1782 u32 flags = ranges[i].flags;
1783 unsigned long *bitmap = ranges[i].bitmap;
1784
1785 if ((index >= start) && (index < end) && (flags & type)) {
1786 allowed = test_bit(index - start, bitmap);
1787 break;
1788 }
1789 }
1790
1791 out:
1792 srcu_read_unlock(&kvm->srcu, idx);
1793
1794 return allowed;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1797
1798 /*
1799 * Write @data into the MSR specified by @index. Select MSR specific fault
1800 * checks are bypassed if @host_initiated is %true.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1803 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1805 bool host_initiated)
1806 {
1807 struct msr_data msr;
1808
1809 switch (index) {
1810 case MSR_FS_BASE:
1811 case MSR_GS_BASE:
1812 case MSR_KERNEL_GS_BASE:
1813 case MSR_CSTAR:
1814 case MSR_LSTAR:
1815 if (is_noncanonical_msr_address(data, vcpu))
1816 return 1;
1817 break;
1818 case MSR_IA32_SYSENTER_EIP:
1819 case MSR_IA32_SYSENTER_ESP:
1820 /*
1821 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1822 * non-canonical address is written on Intel but not on
1823 * AMD (which ignores the top 32-bits, because it does
1824 * not implement 64-bit SYSENTER).
1825 *
1826 * 64-bit code should hence be able to write a non-canonical
1827 * value on AMD. Making the address canonical ensures that
1828 * vmentry does not fail on Intel after writing a non-canonical
1829 * value, and that something deterministic happens if the guest
1830 * invokes 64-bit SYSENTER.
1831 */
1832 data = __canonical_address(data, max_host_virt_addr_bits());
1833 break;
1834 case MSR_TSC_AUX:
1835 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1836 return 1;
1837
1838 if (!host_initiated &&
1839 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1840 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1841 return 1;
1842
1843 /*
1844 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1845 * incomplete and conflicting architectural behavior. Current
1846 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1847 * reserved and always read as zeros. Enforce Intel's reserved
1848 * bits check if the guest CPU is Intel compatible, otherwise
1849 * clear the bits. This ensures cross-vendor migration will
1850 * provide consistent behavior for the guest.
1851 */
1852 if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1853 return 1;
1854
1855 data = (u32)data;
1856 break;
1857 }
1858
1859 msr.data = data;
1860 msr.index = index;
1861 msr.host_initiated = host_initiated;
1862
1863 return kvm_x86_call(set_msr)(vcpu, &msr);
1864 }
1865
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1866 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1867 bool host_initiated)
1868 {
1869 return __kvm_set_msr(vcpu, index, *data, host_initiated);
1870 }
1871
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1872 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1873 u32 index, u64 data, bool host_initiated)
1874 {
1875 return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1876 _kvm_set_msr);
1877 }
1878
1879 /*
1880 * Read the MSR specified by @index into @data. Select MSR specific fault
1881 * checks are bypassed if @host_initiated is %true.
1882 * Returns 0 on success, non-0 otherwise.
1883 * Assumes vcpu_load() was already called.
1884 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1886 bool host_initiated)
1887 {
1888 struct msr_data msr;
1889 int ret;
1890
1891 switch (index) {
1892 case MSR_TSC_AUX:
1893 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1894 return 1;
1895
1896 if (!host_initiated &&
1897 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1898 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1899 return 1;
1900 break;
1901 }
1902
1903 msr.index = index;
1904 msr.host_initiated = host_initiated;
1905
1906 ret = kvm_x86_call(get_msr)(vcpu, &msr);
1907 if (!ret)
1908 *data = msr.data;
1909 return ret;
1910 }
1911
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1913 u32 index, u64 *data, bool host_initiated)
1914 {
1915 return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1916 __kvm_get_msr);
1917 }
1918
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1919 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1920 {
1921 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1922 return KVM_MSR_RET_FILTERED;
1923 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1926
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1927 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1930 return KVM_MSR_RET_FILTERED;
1931 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1934
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1935 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr);
1940
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1941 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_set_msr);
1946
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1947 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1948 {
1949 if (!vcpu->run->msr.error) {
1950 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1951 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1952 }
1953 }
1954
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1955 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1956 {
1957 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1958 }
1959
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1960 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 complete_userspace_rdmsr(vcpu);
1963 return complete_emulated_msr_access(vcpu);
1964 }
1965
complete_fast_msr_access(struct kvm_vcpu * vcpu)1966 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1967 {
1968 return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1969 }
1970
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1971 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1972 {
1973 complete_userspace_rdmsr(vcpu);
1974 return complete_fast_msr_access(vcpu);
1975 }
1976
kvm_msr_reason(int r)1977 static u64 kvm_msr_reason(int r)
1978 {
1979 switch (r) {
1980 case KVM_MSR_RET_UNSUPPORTED:
1981 return KVM_MSR_EXIT_REASON_UNKNOWN;
1982 case KVM_MSR_RET_FILTERED:
1983 return KVM_MSR_EXIT_REASON_FILTER;
1984 default:
1985 return KVM_MSR_EXIT_REASON_INVAL;
1986 }
1987 }
1988
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1989 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1990 u32 exit_reason, u64 data,
1991 int (*completion)(struct kvm_vcpu *vcpu),
1992 int r)
1993 {
1994 u64 msr_reason = kvm_msr_reason(r);
1995
1996 /* Check if the user wanted to know about this MSR fault */
1997 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1998 return 0;
1999
2000 vcpu->run->exit_reason = exit_reason;
2001 vcpu->run->msr.error = 0;
2002 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2003 vcpu->run->msr.reason = msr_reason;
2004 vcpu->run->msr.index = index;
2005 vcpu->run->msr.data = data;
2006 vcpu->arch.complete_userspace_io = completion;
2007
2008 return 1;
2009 }
2010
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2011 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2012 {
2013 u32 ecx = kvm_rcx_read(vcpu);
2014 u64 data;
2015 int r;
2016
2017 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2018
2019 if (!r) {
2020 trace_kvm_msr_read(ecx, data);
2021
2022 kvm_rax_write(vcpu, data & -1u);
2023 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2024 } else {
2025 /* MSR read failed? See if we should ask user space */
2026 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2027 complete_fast_rdmsr, r))
2028 return 0;
2029 trace_kvm_msr_read_ex(ecx);
2030 }
2031
2032 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2035
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2036 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2037 {
2038 u32 ecx = kvm_rcx_read(vcpu);
2039 u64 data = kvm_read_edx_eax(vcpu);
2040 int r;
2041
2042 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2043
2044 if (!r) {
2045 trace_kvm_msr_write(ecx, data);
2046 } else {
2047 /* MSR write failed? See if we should ask user space */
2048 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2049 complete_fast_msr_access, r))
2050 return 0;
2051 /* Signal all other negative errors to userspace */
2052 if (r < 0)
2053 return r;
2054 trace_kvm_msr_write_ex(ecx, data);
2055 }
2056
2057 return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2060
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2061 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2062 {
2063 return kvm_skip_emulated_instruction(vcpu);
2064 }
2065
kvm_emulate_invd(struct kvm_vcpu * vcpu)2066 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2067 {
2068 /* Treat an INVD instruction as a NOP and just skip it. */
2069 return kvm_emulate_as_nop(vcpu);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2072
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2074 {
2075 kvm_queue_exception(vcpu, UD_VECTOR);
2076 return 1;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2079
2080
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2081 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2082 {
2083 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2084 !guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT))
2085 return kvm_handle_invalid_op(vcpu);
2086
2087 pr_warn_once("%s instruction emulated as NOP!\n", insn);
2088 return kvm_emulate_as_nop(vcpu);
2089 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2090 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2091 {
2092 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2095
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2096 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2097 {
2098 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2101
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2102 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2103 {
2104 xfer_to_guest_mode_prepare();
2105
2106 return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2107 kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2108 }
2109
2110 /*
2111 * The fast path for frequent and performance sensitive wrmsr emulation,
2112 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2113 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2114 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2115 * other cases which must be called after interrupts are enabled on the host.
2116 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2117 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2120 return 1;
2121
2122 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2123 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2124 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2125 ((u32)(data >> 32) != X2APIC_BROADCAST))
2126 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2127
2128 return 1;
2129 }
2130
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2131 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 if (!kvm_can_use_hv_timer(vcpu))
2134 return 1;
2135
2136 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2137 return 0;
2138 }
2139
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2140 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2141 {
2142 u32 msr = kvm_rcx_read(vcpu);
2143 u64 data;
2144 fastpath_t ret;
2145 bool handled;
2146
2147 kvm_vcpu_srcu_read_lock(vcpu);
2148
2149 switch (msr) {
2150 case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 data = kvm_read_edx_eax(vcpu);
2152 handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2153 break;
2154 case MSR_IA32_TSC_DEADLINE:
2155 data = kvm_read_edx_eax(vcpu);
2156 handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2157 break;
2158 default:
2159 handled = false;
2160 break;
2161 }
2162
2163 if (handled) {
2164 if (!kvm_skip_emulated_instruction(vcpu))
2165 ret = EXIT_FASTPATH_EXIT_USERSPACE;
2166 else
2167 ret = EXIT_FASTPATH_REENTER_GUEST;
2168 trace_kvm_msr_write(msr, data);
2169 } else {
2170 ret = EXIT_FASTPATH_NONE;
2171 }
2172
2173 kvm_vcpu_srcu_read_unlock(vcpu);
2174
2175 return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2178
2179 /*
2180 * Adapt set_msr() to msr_io()'s calling convention
2181 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2182 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2183 {
2184 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2185 }
2186
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188 {
2189 u64 val;
2190
2191 /*
2192 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2193 * not support modifying the guest vCPU model on the fly, e.g. changing
2194 * the nVMX capabilities while L2 is running is nonsensical. Allow
2195 * writes of the same value, e.g. to allow userspace to blindly stuff
2196 * all MSRs when emulating RESET.
2197 */
2198 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2199 (do_get_msr(vcpu, index, &val) || *data != val))
2200 return -EINVAL;
2201
2202 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2203 }
2204
2205 #ifdef CONFIG_X86_64
2206 struct pvclock_clock {
2207 int vclock_mode;
2208 u64 cycle_last;
2209 u64 mask;
2210 u32 mult;
2211 u32 shift;
2212 u64 base_cycles;
2213 u64 offset;
2214 };
2215
2216 struct pvclock_gtod_data {
2217 seqcount_t seq;
2218
2219 struct pvclock_clock clock; /* extract of a clocksource struct */
2220 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2221
2222 ktime_t offs_boot;
2223 u64 wall_time_sec;
2224 };
2225
2226 static struct pvclock_gtod_data pvclock_gtod_data;
2227
update_pvclock_gtod(struct timekeeper * tk)2228 static void update_pvclock_gtod(struct timekeeper *tk)
2229 {
2230 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2231
2232 write_seqcount_begin(&vdata->seq);
2233
2234 /* copy pvclock gtod data */
2235 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2236 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2237 vdata->clock.mask = tk->tkr_mono.mask;
2238 vdata->clock.mult = tk->tkr_mono.mult;
2239 vdata->clock.shift = tk->tkr_mono.shift;
2240 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2241 vdata->clock.offset = tk->tkr_mono.base;
2242
2243 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2244 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2245 vdata->raw_clock.mask = tk->tkr_raw.mask;
2246 vdata->raw_clock.mult = tk->tkr_raw.mult;
2247 vdata->raw_clock.shift = tk->tkr_raw.shift;
2248 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2249 vdata->raw_clock.offset = tk->tkr_raw.base;
2250
2251 vdata->wall_time_sec = tk->xtime_sec;
2252
2253 vdata->offs_boot = tk->offs_boot;
2254
2255 write_seqcount_end(&vdata->seq);
2256 }
2257
get_kvmclock_base_ns(void)2258 static s64 get_kvmclock_base_ns(void)
2259 {
2260 /* Count up from boot time, but with the frequency of the raw clock. */
2261 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2262 }
2263 #else
get_kvmclock_base_ns(void)2264 static s64 get_kvmclock_base_ns(void)
2265 {
2266 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2267 return ktime_get_boottime_ns();
2268 }
2269 #endif
2270
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2271 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2272 {
2273 int version;
2274 int r;
2275 struct pvclock_wall_clock wc;
2276 u32 wc_sec_hi;
2277 u64 wall_nsec;
2278
2279 if (!wall_clock)
2280 return;
2281
2282 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2283 if (r)
2284 return;
2285
2286 if (version & 1)
2287 ++version; /* first time write, random junk */
2288
2289 ++version;
2290
2291 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2292 return;
2293
2294 wall_nsec = kvm_get_wall_clock_epoch(kvm);
2295
2296 wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2297 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2298 wc.version = version;
2299
2300 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2301
2302 if (sec_hi_ofs) {
2303 wc_sec_hi = wall_nsec >> 32;
2304 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2305 &wc_sec_hi, sizeof(wc_sec_hi));
2306 }
2307
2308 version++;
2309 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2310 }
2311
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2312 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2313 bool old_msr, bool host_initiated)
2314 {
2315 struct kvm_arch *ka = &vcpu->kvm->arch;
2316
2317 if (vcpu->vcpu_id == 0 && !host_initiated) {
2318 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2319 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2320
2321 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2322 }
2323
2324 vcpu->arch.time = system_time;
2325 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2326
2327 /* we verify if the enable bit is set... */
2328 if (system_time & 1)
2329 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2330 sizeof(struct pvclock_vcpu_time_info));
2331 else
2332 kvm_gpc_deactivate(&vcpu->arch.pv_time);
2333
2334 return;
2335 }
2336
div_frac(uint32_t dividend,uint32_t divisor)2337 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2338 {
2339 do_shl32_div32(dividend, divisor);
2340 return dividend;
2341 }
2342
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2343 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2344 s8 *pshift, u32 *pmultiplier)
2345 {
2346 uint64_t scaled64;
2347 int32_t shift = 0;
2348 uint64_t tps64;
2349 uint32_t tps32;
2350
2351 tps64 = base_hz;
2352 scaled64 = scaled_hz;
2353 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2354 tps64 >>= 1;
2355 shift--;
2356 }
2357
2358 tps32 = (uint32_t)tps64;
2359 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2360 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2361 scaled64 >>= 1;
2362 else
2363 tps32 <<= 1;
2364 shift++;
2365 }
2366
2367 *pshift = shift;
2368 *pmultiplier = div_frac(scaled64, tps32);
2369 }
2370
2371 #ifdef CONFIG_X86_64
2372 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2373 #endif
2374
2375 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2376 static unsigned long max_tsc_khz;
2377
adjust_tsc_khz(u32 khz,s32 ppm)2378 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2379 {
2380 u64 v = (u64)khz * (1000000 + ppm);
2381 do_div(v, 1000000);
2382 return v;
2383 }
2384
2385 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2386
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2387 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2388 {
2389 u64 ratio;
2390
2391 /* Guest TSC same frequency as host TSC? */
2392 if (!scale) {
2393 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2394 return 0;
2395 }
2396
2397 /* TSC scaling supported? */
2398 if (!kvm_caps.has_tsc_control) {
2399 if (user_tsc_khz > tsc_khz) {
2400 vcpu->arch.tsc_catchup = 1;
2401 vcpu->arch.tsc_always_catchup = 1;
2402 return 0;
2403 } else {
2404 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2405 return -1;
2406 }
2407 }
2408
2409 /* TSC scaling required - calculate ratio */
2410 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2411 user_tsc_khz, tsc_khz);
2412
2413 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2414 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2415 user_tsc_khz);
2416 return -1;
2417 }
2418
2419 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2420 return 0;
2421 }
2422
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2423 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2424 {
2425 u32 thresh_lo, thresh_hi;
2426 int use_scaling = 0;
2427
2428 /* tsc_khz can be zero if TSC calibration fails */
2429 if (user_tsc_khz == 0) {
2430 /* set tsc_scaling_ratio to a safe value */
2431 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2432 return -1;
2433 }
2434
2435 /* Compute a scale to convert nanoseconds in TSC cycles */
2436 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2437 &vcpu->arch.virtual_tsc_shift,
2438 &vcpu->arch.virtual_tsc_mult);
2439 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2440
2441 /*
2442 * Compute the variation in TSC rate which is acceptable
2443 * within the range of tolerance and decide if the
2444 * rate being applied is within that bounds of the hardware
2445 * rate. If so, no scaling or compensation need be done.
2446 */
2447 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2448 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2449 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2450 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2451 user_tsc_khz, thresh_lo, thresh_hi);
2452 use_scaling = 1;
2453 }
2454 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2455 }
2456
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2457 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2458 {
2459 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2460 vcpu->arch.virtual_tsc_mult,
2461 vcpu->arch.virtual_tsc_shift);
2462 tsc += vcpu->arch.this_tsc_write;
2463 return tsc;
2464 }
2465
2466 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2467 static inline bool gtod_is_based_on_tsc(int mode)
2468 {
2469 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2470 }
2471 #endif
2472
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2473 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2474 {
2475 #ifdef CONFIG_X86_64
2476 struct kvm_arch *ka = &vcpu->kvm->arch;
2477 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2478
2479 /*
2480 * To use the masterclock, the host clocksource must be based on TSC
2481 * and all vCPUs must have matching TSCs. Note, the count for matching
2482 * vCPUs doesn't include the reference vCPU, hence "+1".
2483 */
2484 bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2485 atomic_read(&vcpu->kvm->online_vcpus)) &&
2486 gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2487
2488 /*
2489 * Request a masterclock update if the masterclock needs to be toggled
2490 * on/off, or when starting a new generation and the masterclock is
2491 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2492 * taken _after_ the new generation is created).
2493 */
2494 if ((ka->use_master_clock && new_generation) ||
2495 (ka->use_master_clock != use_master_clock))
2496 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2497
2498 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2499 atomic_read(&vcpu->kvm->online_vcpus),
2500 ka->use_master_clock, gtod->clock.vclock_mode);
2501 #endif
2502 }
2503
2504 /*
2505 * Multiply tsc by a fixed point number represented by ratio.
2506 *
2507 * The most significant 64-N bits (mult) of ratio represent the
2508 * integral part of the fixed point number; the remaining N bits
2509 * (frac) represent the fractional part, ie. ratio represents a fixed
2510 * point number (mult + frac * 2^(-N)).
2511 *
2512 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2513 */
__scale_tsc(u64 ratio,u64 tsc)2514 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2515 {
2516 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2517 }
2518
kvm_scale_tsc(u64 tsc,u64 ratio)2519 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2520 {
2521 u64 _tsc = tsc;
2522
2523 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2524 _tsc = __scale_tsc(ratio, tsc);
2525
2526 return _tsc;
2527 }
2528
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2529 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2530 {
2531 u64 tsc;
2532
2533 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2534
2535 return target_tsc - tsc;
2536 }
2537
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2538 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2539 {
2540 return vcpu->arch.l1_tsc_offset +
2541 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2544
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2545 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2546 {
2547 u64 nested_offset;
2548
2549 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2550 nested_offset = l1_offset;
2551 else
2552 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2553 kvm_caps.tsc_scaling_ratio_frac_bits);
2554
2555 nested_offset += l2_offset;
2556 return nested_offset;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2559
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2560 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2561 {
2562 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2563 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2564 kvm_caps.tsc_scaling_ratio_frac_bits);
2565
2566 return l1_multiplier;
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2569
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2570 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2571 {
2572 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2573 vcpu->arch.l1_tsc_offset,
2574 l1_offset);
2575
2576 vcpu->arch.l1_tsc_offset = l1_offset;
2577
2578 /*
2579 * If we are here because L1 chose not to trap WRMSR to TSC then
2580 * according to the spec this should set L1's TSC (as opposed to
2581 * setting L1's offset for L2).
2582 */
2583 if (is_guest_mode(vcpu))
2584 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2585 l1_offset,
2586 kvm_x86_call(get_l2_tsc_offset)(vcpu),
2587 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2588 else
2589 vcpu->arch.tsc_offset = l1_offset;
2590
2591 kvm_x86_call(write_tsc_offset)(vcpu);
2592 }
2593
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2594 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2595 {
2596 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2597
2598 /* Userspace is changing the multiplier while L2 is active */
2599 if (is_guest_mode(vcpu))
2600 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2601 l1_multiplier,
2602 kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2603 else
2604 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2605
2606 if (kvm_caps.has_tsc_control)
2607 kvm_x86_call(write_tsc_multiplier)(vcpu);
2608 }
2609
kvm_check_tsc_unstable(void)2610 static inline bool kvm_check_tsc_unstable(void)
2611 {
2612 #ifdef CONFIG_X86_64
2613 /*
2614 * TSC is marked unstable when we're running on Hyper-V,
2615 * 'TSC page' clocksource is good.
2616 */
2617 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2618 return false;
2619 #endif
2620 return check_tsc_unstable();
2621 }
2622
2623 /*
2624 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2625 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2626 * participates in.
2627 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2628 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2629 u64 ns, bool matched)
2630 {
2631 struct kvm *kvm = vcpu->kvm;
2632
2633 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2634
2635 /*
2636 * We also track th most recent recorded KHZ, write and time to
2637 * allow the matching interval to be extended at each write.
2638 */
2639 kvm->arch.last_tsc_nsec = ns;
2640 kvm->arch.last_tsc_write = tsc;
2641 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2642 kvm->arch.last_tsc_offset = offset;
2643
2644 vcpu->arch.last_guest_tsc = tsc;
2645
2646 kvm_vcpu_write_tsc_offset(vcpu, offset);
2647
2648 if (!matched) {
2649 /*
2650 * We split periods of matched TSC writes into generations.
2651 * For each generation, we track the original measured
2652 * nanosecond time, offset, and write, so if TSCs are in
2653 * sync, we can match exact offset, and if not, we can match
2654 * exact software computation in compute_guest_tsc()
2655 *
2656 * These values are tracked in kvm->arch.cur_xxx variables.
2657 */
2658 kvm->arch.cur_tsc_generation++;
2659 kvm->arch.cur_tsc_nsec = ns;
2660 kvm->arch.cur_tsc_write = tsc;
2661 kvm->arch.cur_tsc_offset = offset;
2662 kvm->arch.nr_vcpus_matched_tsc = 0;
2663 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2664 kvm->arch.nr_vcpus_matched_tsc++;
2665 }
2666
2667 /* Keep track of which generation this VCPU has synchronized to */
2668 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2669 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2670 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2671
2672 kvm_track_tsc_matching(vcpu, !matched);
2673 }
2674
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2675 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2676 {
2677 u64 data = user_value ? *user_value : 0;
2678 struct kvm *kvm = vcpu->kvm;
2679 u64 offset, ns, elapsed;
2680 unsigned long flags;
2681 bool matched = false;
2682 bool synchronizing = false;
2683
2684 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2685 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2686 ns = get_kvmclock_base_ns();
2687 elapsed = ns - kvm->arch.last_tsc_nsec;
2688
2689 if (vcpu->arch.virtual_tsc_khz) {
2690 if (data == 0) {
2691 /*
2692 * Force synchronization when creating a vCPU, or when
2693 * userspace explicitly writes a zero value.
2694 */
2695 synchronizing = true;
2696 } else if (kvm->arch.user_set_tsc) {
2697 u64 tsc_exp = kvm->arch.last_tsc_write +
2698 nsec_to_cycles(vcpu, elapsed);
2699 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2700 /*
2701 * Here lies UAPI baggage: when a user-initiated TSC write has
2702 * a small delta (1 second) of virtual cycle time against the
2703 * previously set vCPU, we assume that they were intended to be
2704 * in sync and the delta was only due to the racy nature of the
2705 * legacy API.
2706 *
2707 * This trick falls down when restoring a guest which genuinely
2708 * has been running for less time than the 1 second of imprecision
2709 * which we allow for in the legacy API. In this case, the first
2710 * value written by userspace (on any vCPU) should not be subject
2711 * to this 'correction' to make it sync up with values that only
2712 * come from the kernel's default vCPU creation. Make the 1-second
2713 * slop hack only trigger if the user_set_tsc flag is already set.
2714 */
2715 synchronizing = data < tsc_exp + tsc_hz &&
2716 data + tsc_hz > tsc_exp;
2717 }
2718 }
2719
2720 if (user_value)
2721 kvm->arch.user_set_tsc = true;
2722
2723 /*
2724 * For a reliable TSC, we can match TSC offsets, and for an unstable
2725 * TSC, we add elapsed time in this computation. We could let the
2726 * compensation code attempt to catch up if we fall behind, but
2727 * it's better to try to match offsets from the beginning.
2728 */
2729 if (synchronizing &&
2730 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2731 if (!kvm_check_tsc_unstable()) {
2732 offset = kvm->arch.cur_tsc_offset;
2733 } else {
2734 u64 delta = nsec_to_cycles(vcpu, elapsed);
2735 data += delta;
2736 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2737 }
2738 matched = true;
2739 }
2740
2741 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2742 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2743 }
2744
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2745 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2746 s64 adjustment)
2747 {
2748 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2749 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2750 }
2751
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2752 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2753 {
2754 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2755 WARN_ON(adjustment < 0);
2756 adjustment = kvm_scale_tsc((u64) adjustment,
2757 vcpu->arch.l1_tsc_scaling_ratio);
2758 adjust_tsc_offset_guest(vcpu, adjustment);
2759 }
2760
2761 #ifdef CONFIG_X86_64
2762
read_tsc(void)2763 static u64 read_tsc(void)
2764 {
2765 u64 ret = (u64)rdtsc_ordered();
2766 u64 last = pvclock_gtod_data.clock.cycle_last;
2767
2768 if (likely(ret >= last))
2769 return ret;
2770
2771 /*
2772 * GCC likes to generate cmov here, but this branch is extremely
2773 * predictable (it's just a function of time and the likely is
2774 * very likely) and there's a data dependence, so force GCC
2775 * to generate a branch instead. I don't barrier() because
2776 * we don't actually need a barrier, and if this function
2777 * ever gets inlined it will generate worse code.
2778 */
2779 asm volatile ("");
2780 return last;
2781 }
2782
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2783 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2784 int *mode)
2785 {
2786 u64 tsc_pg_val;
2787 long v;
2788
2789 switch (clock->vclock_mode) {
2790 case VDSO_CLOCKMODE_HVCLOCK:
2791 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2792 tsc_timestamp, &tsc_pg_val)) {
2793 /* TSC page valid */
2794 *mode = VDSO_CLOCKMODE_HVCLOCK;
2795 v = (tsc_pg_val - clock->cycle_last) &
2796 clock->mask;
2797 } else {
2798 /* TSC page invalid */
2799 *mode = VDSO_CLOCKMODE_NONE;
2800 }
2801 break;
2802 case VDSO_CLOCKMODE_TSC:
2803 *mode = VDSO_CLOCKMODE_TSC;
2804 *tsc_timestamp = read_tsc();
2805 v = (*tsc_timestamp - clock->cycle_last) &
2806 clock->mask;
2807 break;
2808 default:
2809 *mode = VDSO_CLOCKMODE_NONE;
2810 }
2811
2812 if (*mode == VDSO_CLOCKMODE_NONE)
2813 *tsc_timestamp = v = 0;
2814
2815 return v * clock->mult;
2816 }
2817
2818 /*
2819 * As with get_kvmclock_base_ns(), this counts from boot time, at the
2820 * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2821 */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2822 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2823 {
2824 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2825 unsigned long seq;
2826 int mode;
2827 u64 ns;
2828
2829 do {
2830 seq = read_seqcount_begin(>od->seq);
2831 ns = gtod->raw_clock.base_cycles;
2832 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2833 ns >>= gtod->raw_clock.shift;
2834 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2835 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2836 *t = ns;
2837
2838 return mode;
2839 }
2840
2841 /*
2842 * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2843 * no boot time offset.
2844 */
do_monotonic(s64 * t,u64 * tsc_timestamp)2845 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2846 {
2847 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2848 unsigned long seq;
2849 int mode;
2850 u64 ns;
2851
2852 do {
2853 seq = read_seqcount_begin(>od->seq);
2854 ns = gtod->clock.base_cycles;
2855 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2856 ns >>= gtod->clock.shift;
2857 ns += ktime_to_ns(gtod->clock.offset);
2858 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2859 *t = ns;
2860
2861 return mode;
2862 }
2863
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2864 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2865 {
2866 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 unsigned long seq;
2868 int mode;
2869 u64 ns;
2870
2871 do {
2872 seq = read_seqcount_begin(>od->seq);
2873 ts->tv_sec = gtod->wall_time_sec;
2874 ns = gtod->clock.base_cycles;
2875 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2876 ns >>= gtod->clock.shift;
2877 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2878
2879 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2880 ts->tv_nsec = ns;
2881
2882 return mode;
2883 }
2884
2885 /*
2886 * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2887 * reports the TSC value from which it do so. Returns true if host is
2888 * using TSC based clocksource.
2889 */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892 /* checked again under seqlock below */
2893 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 return false;
2895
2896 return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2897 tsc_timestamp));
2898 }
2899
2900 /*
2901 * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2902 * so. Returns true if host is using TSC based clocksource.
2903 */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 /* checked again under seqlock below */
2907 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 return false;
2909
2910 return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2911 tsc_timestamp));
2912 }
2913
2914 /*
2915 * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2916 * so. Returns true if host is using TSC based clocksource.
2917 *
2918 * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2919 * for that.
2920 */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2921 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2922 u64 *tsc_timestamp)
2923 {
2924 /* checked again under seqlock below */
2925 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926 return false;
2927
2928 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2929 }
2930 #endif
2931
2932 /*
2933 *
2934 * Assuming a stable TSC across physical CPUS, and a stable TSC
2935 * across virtual CPUs, the following condition is possible.
2936 * Each numbered line represents an event visible to both
2937 * CPUs at the next numbered event.
2938 *
2939 * "timespecX" represents host monotonic time. "tscX" represents
2940 * RDTSC value.
2941 *
2942 * VCPU0 on CPU0 | VCPU1 on CPU1
2943 *
2944 * 1. read timespec0,tsc0
2945 * 2. | timespec1 = timespec0 + N
2946 * | tsc1 = tsc0 + M
2947 * 3. transition to guest | transition to guest
2948 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2949 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2950 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2951 *
2952 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2953 *
2954 * - ret0 < ret1
2955 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2956 * ...
2957 * - 0 < N - M => M < N
2958 *
2959 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2960 * always the case (the difference between two distinct xtime instances
2961 * might be smaller then the difference between corresponding TSC reads,
2962 * when updating guest vcpus pvclock areas).
2963 *
2964 * To avoid that problem, do not allow visibility of distinct
2965 * system_timestamp/tsc_timestamp values simultaneously: use a master
2966 * copy of host monotonic time values. Update that master copy
2967 * in lockstep.
2968 *
2969 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2970 *
2971 */
2972
pvclock_update_vm_gtod_copy(struct kvm * kvm)2973 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2974 {
2975 #ifdef CONFIG_X86_64
2976 struct kvm_arch *ka = &kvm->arch;
2977 int vclock_mode;
2978 bool host_tsc_clocksource, vcpus_matched;
2979
2980 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2981 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2982 atomic_read(&kvm->online_vcpus));
2983
2984 /*
2985 * If the host uses TSC clock, then passthrough TSC as stable
2986 * to the guest.
2987 */
2988 host_tsc_clocksource = kvm_get_time_and_clockread(
2989 &ka->master_kernel_ns,
2990 &ka->master_cycle_now);
2991
2992 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2993 && !ka->backwards_tsc_observed
2994 && !ka->boot_vcpu_runs_old_kvmclock;
2995
2996 if (ka->use_master_clock)
2997 atomic_set(&kvm_guest_has_master_clock, 1);
2998
2999 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3000 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3001 vcpus_matched);
3002 #endif
3003 }
3004
kvm_make_mclock_inprogress_request(struct kvm * kvm)3005 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3006 {
3007 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3008 }
3009
__kvm_start_pvclock_update(struct kvm * kvm)3010 static void __kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3013 write_seqcount_begin(&kvm->arch.pvclock_sc);
3014 }
3015
kvm_start_pvclock_update(struct kvm * kvm)3016 static void kvm_start_pvclock_update(struct kvm *kvm)
3017 {
3018 kvm_make_mclock_inprogress_request(kvm);
3019
3020 /* no guest entries from this point */
3021 __kvm_start_pvclock_update(kvm);
3022 }
3023
kvm_end_pvclock_update(struct kvm * kvm)3024 static void kvm_end_pvclock_update(struct kvm *kvm)
3025 {
3026 struct kvm_arch *ka = &kvm->arch;
3027 struct kvm_vcpu *vcpu;
3028 unsigned long i;
3029
3030 write_seqcount_end(&ka->pvclock_sc);
3031 raw_spin_unlock_irq(&ka->tsc_write_lock);
3032 kvm_for_each_vcpu(i, vcpu, kvm)
3033 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3034
3035 /* guest entries allowed */
3036 kvm_for_each_vcpu(i, vcpu, kvm)
3037 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3038 }
3039
kvm_update_masterclock(struct kvm * kvm)3040 static void kvm_update_masterclock(struct kvm *kvm)
3041 {
3042 kvm_hv_request_tsc_page_update(kvm);
3043 kvm_start_pvclock_update(kvm);
3044 pvclock_update_vm_gtod_copy(kvm);
3045 kvm_end_pvclock_update(kvm);
3046 }
3047
3048 /*
3049 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3050 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3051 * can change during boot even if the TSC is constant, as it's possible for KVM
3052 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3053 * notification when calibration completes, but practically speaking calibration
3054 * will complete before userspace is alive enough to create VMs.
3055 */
get_cpu_tsc_khz(void)3056 static unsigned long get_cpu_tsc_khz(void)
3057 {
3058 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3059 return tsc_khz;
3060 else
3061 return __this_cpu_read(cpu_tsc_khz);
3062 }
3063
3064 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3065 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 {
3067 struct kvm_arch *ka = &kvm->arch;
3068 struct pvclock_vcpu_time_info hv_clock;
3069
3070 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3071 get_cpu();
3072
3073 data->flags = 0;
3074 if (ka->use_master_clock &&
3075 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3076 #ifdef CONFIG_X86_64
3077 struct timespec64 ts;
3078
3079 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3080 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3081 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3082 } else
3083 #endif
3084 data->host_tsc = rdtsc();
3085
3086 data->flags |= KVM_CLOCK_TSC_STABLE;
3087 hv_clock.tsc_timestamp = ka->master_cycle_now;
3088 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3089 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3090 &hv_clock.tsc_shift,
3091 &hv_clock.tsc_to_system_mul);
3092 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3093 } else {
3094 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3095 }
3096
3097 put_cpu();
3098 }
3099
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3100 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3101 {
3102 struct kvm_arch *ka = &kvm->arch;
3103 unsigned seq;
3104
3105 do {
3106 seq = read_seqcount_begin(&ka->pvclock_sc);
3107 __get_kvmclock(kvm, data);
3108 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3109 }
3110
get_kvmclock_ns(struct kvm * kvm)3111 u64 get_kvmclock_ns(struct kvm *kvm)
3112 {
3113 struct kvm_clock_data data;
3114
3115 get_kvmclock(kvm, &data);
3116 return data.clock;
3117 }
3118
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3119 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3120 struct gfn_to_pfn_cache *gpc,
3121 unsigned int offset,
3122 bool force_tsc_unstable)
3123 {
3124 struct kvm_vcpu_arch *vcpu = &v->arch;
3125 struct pvclock_vcpu_time_info *guest_hv_clock;
3126 unsigned long flags;
3127
3128 read_lock_irqsave(&gpc->lock, flags);
3129 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3130 read_unlock_irqrestore(&gpc->lock, flags);
3131
3132 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3133 return;
3134
3135 read_lock_irqsave(&gpc->lock, flags);
3136 }
3137
3138 guest_hv_clock = (void *)(gpc->khva + offset);
3139
3140 /*
3141 * This VCPU is paused, but it's legal for a guest to read another
3142 * VCPU's kvmclock, so we really have to follow the specification where
3143 * it says that version is odd if data is being modified, and even after
3144 * it is consistent.
3145 */
3146
3147 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3148 smp_wmb();
3149
3150 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3151 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3152
3153 if (vcpu->pvclock_set_guest_stopped_request) {
3154 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3155 vcpu->pvclock_set_guest_stopped_request = false;
3156 }
3157
3158 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3159
3160 if (force_tsc_unstable)
3161 guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3162
3163 smp_wmb();
3164
3165 guest_hv_clock->version = ++vcpu->hv_clock.version;
3166
3167 kvm_gpc_mark_dirty_in_slot(gpc);
3168 read_unlock_irqrestore(&gpc->lock, flags);
3169
3170 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3171 }
3172
kvm_guest_time_update(struct kvm_vcpu * v)3173 static int kvm_guest_time_update(struct kvm_vcpu *v)
3174 {
3175 unsigned long flags, tgt_tsc_khz;
3176 unsigned seq;
3177 struct kvm_vcpu_arch *vcpu = &v->arch;
3178 struct kvm_arch *ka = &v->kvm->arch;
3179 s64 kernel_ns;
3180 u64 tsc_timestamp, host_tsc;
3181 u8 pvclock_flags;
3182 bool use_master_clock;
3183 #ifdef CONFIG_KVM_XEN
3184 /*
3185 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3186 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3187 * This default behaviour led to bugs in some guest kernels which cause
3188 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3189 */
3190 bool xen_pvclock_tsc_unstable =
3191 ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3192 #endif
3193
3194 kernel_ns = 0;
3195 host_tsc = 0;
3196
3197 /*
3198 * If the host uses TSC clock, then passthrough TSC as stable
3199 * to the guest.
3200 */
3201 do {
3202 seq = read_seqcount_begin(&ka->pvclock_sc);
3203 use_master_clock = ka->use_master_clock;
3204 if (use_master_clock) {
3205 host_tsc = ka->master_cycle_now;
3206 kernel_ns = ka->master_kernel_ns;
3207 }
3208 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3209
3210 /* Keep irq disabled to prevent changes to the clock */
3211 local_irq_save(flags);
3212 tgt_tsc_khz = get_cpu_tsc_khz();
3213 if (unlikely(tgt_tsc_khz == 0)) {
3214 local_irq_restore(flags);
3215 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3216 return 1;
3217 }
3218 if (!use_master_clock) {
3219 host_tsc = rdtsc();
3220 kernel_ns = get_kvmclock_base_ns();
3221 }
3222
3223 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3224
3225 /*
3226 * We may have to catch up the TSC to match elapsed wall clock
3227 * time for two reasons, even if kvmclock is used.
3228 * 1) CPU could have been running below the maximum TSC rate
3229 * 2) Broken TSC compensation resets the base at each VCPU
3230 * entry to avoid unknown leaps of TSC even when running
3231 * again on the same CPU. This may cause apparent elapsed
3232 * time to disappear, and the guest to stand still or run
3233 * very slowly.
3234 */
3235 if (vcpu->tsc_catchup) {
3236 u64 tsc = compute_guest_tsc(v, kernel_ns);
3237 if (tsc > tsc_timestamp) {
3238 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3239 tsc_timestamp = tsc;
3240 }
3241 }
3242
3243 local_irq_restore(flags);
3244
3245 /* With all the info we got, fill in the values */
3246
3247 if (kvm_caps.has_tsc_control)
3248 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3249 v->arch.l1_tsc_scaling_ratio);
3250
3251 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3252 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3253 &vcpu->hv_clock.tsc_shift,
3254 &vcpu->hv_clock.tsc_to_system_mul);
3255 vcpu->hw_tsc_khz = tgt_tsc_khz;
3256 kvm_xen_update_tsc_info(v);
3257 }
3258
3259 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3260 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3261 vcpu->last_guest_tsc = tsc_timestamp;
3262
3263 /* If the host uses TSC clocksource, then it is stable */
3264 pvclock_flags = 0;
3265 if (use_master_clock)
3266 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3267
3268 vcpu->hv_clock.flags = pvclock_flags;
3269
3270 if (vcpu->pv_time.active)
3271 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3272 #ifdef CONFIG_KVM_XEN
3273 if (vcpu->xen.vcpu_info_cache.active)
3274 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3275 offsetof(struct compat_vcpu_info, time),
3276 xen_pvclock_tsc_unstable);
3277 if (vcpu->xen.vcpu_time_info_cache.active)
3278 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3279 xen_pvclock_tsc_unstable);
3280 #endif
3281 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3282 return 0;
3283 }
3284
3285 /*
3286 * The pvclock_wall_clock ABI tells the guest the wall clock time at
3287 * which it started (i.e. its epoch, when its kvmclock was zero).
3288 *
3289 * In fact those clocks are subtly different; wall clock frequency is
3290 * adjusted by NTP and has leap seconds, while the kvmclock is a
3291 * simple function of the TSC without any such adjustment.
3292 *
3293 * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3294 * that and kvmclock, but even that would be subject to change over
3295 * time.
3296 *
3297 * Attempt to calculate the epoch at a given moment using the *same*
3298 * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3299 * wallclock and kvmclock times, and subtracting one from the other.
3300 *
3301 * Fall back to using their values at slightly different moments by
3302 * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3303 */
kvm_get_wall_clock_epoch(struct kvm * kvm)3304 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3305 {
3306 #ifdef CONFIG_X86_64
3307 struct pvclock_vcpu_time_info hv_clock;
3308 struct kvm_arch *ka = &kvm->arch;
3309 unsigned long seq, local_tsc_khz;
3310 struct timespec64 ts;
3311 uint64_t host_tsc;
3312
3313 do {
3314 seq = read_seqcount_begin(&ka->pvclock_sc);
3315
3316 local_tsc_khz = 0;
3317 if (!ka->use_master_clock)
3318 break;
3319
3320 /*
3321 * The TSC read and the call to get_cpu_tsc_khz() must happen
3322 * on the same CPU.
3323 */
3324 get_cpu();
3325
3326 local_tsc_khz = get_cpu_tsc_khz();
3327
3328 if (local_tsc_khz &&
3329 !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3330 local_tsc_khz = 0; /* Fall back to old method */
3331
3332 put_cpu();
3333
3334 /*
3335 * These values must be snapshotted within the seqcount loop.
3336 * After that, it's just mathematics which can happen on any
3337 * CPU at any time.
3338 */
3339 hv_clock.tsc_timestamp = ka->master_cycle_now;
3340 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3341
3342 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3343
3344 /*
3345 * If the conditions were right, and obtaining the wallclock+TSC was
3346 * successful, calculate the KVM clock at the corresponding time and
3347 * subtract one from the other to get the guest's epoch in nanoseconds
3348 * since 1970-01-01.
3349 */
3350 if (local_tsc_khz) {
3351 kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3352 &hv_clock.tsc_shift,
3353 &hv_clock.tsc_to_system_mul);
3354 return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3355 __pvclock_read_cycles(&hv_clock, host_tsc);
3356 }
3357 #endif
3358 return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3359 }
3360
3361 /*
3362 * kvmclock updates which are isolated to a given vcpu, such as
3363 * vcpu->cpu migration, should not allow system_timestamp from
3364 * the rest of the vcpus to remain static. Otherwise ntp frequency
3365 * correction applies to one vcpu's system_timestamp but not
3366 * the others.
3367 *
3368 * So in those cases, request a kvmclock update for all vcpus.
3369 * We need to rate-limit these requests though, as they can
3370 * considerably slow guests that have a large number of vcpus.
3371 * The time for a remote vcpu to update its kvmclock is bound
3372 * by the delay we use to rate-limit the updates.
3373 */
3374
3375 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3376
kvmclock_update_fn(struct work_struct * work)3377 static void kvmclock_update_fn(struct work_struct *work)
3378 {
3379 unsigned long i;
3380 struct delayed_work *dwork = to_delayed_work(work);
3381 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382 kvmclock_update_work);
3383 struct kvm *kvm = container_of(ka, struct kvm, arch);
3384 struct kvm_vcpu *vcpu;
3385
3386 kvm_for_each_vcpu(i, vcpu, kvm) {
3387 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3388 kvm_vcpu_kick(vcpu);
3389 }
3390 }
3391
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3392 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3393 {
3394 struct kvm *kvm = v->kvm;
3395
3396 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3397 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3398 KVMCLOCK_UPDATE_DELAY);
3399 }
3400
3401 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3402
kvmclock_sync_fn(struct work_struct * work)3403 static void kvmclock_sync_fn(struct work_struct *work)
3404 {
3405 struct delayed_work *dwork = to_delayed_work(work);
3406 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3407 kvmclock_sync_work);
3408 struct kvm *kvm = container_of(ka, struct kvm, arch);
3409
3410 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3411 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3412 KVMCLOCK_SYNC_PERIOD);
3413 }
3414
3415 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3416 static bool is_mci_control_msr(u32 msr)
3417 {
3418 return (msr & 3) == 0;
3419 }
is_mci_status_msr(u32 msr)3420 static bool is_mci_status_msr(u32 msr)
3421 {
3422 return (msr & 3) == 1;
3423 }
3424
3425 /*
3426 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3427 */
can_set_mci_status(struct kvm_vcpu * vcpu)3428 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3429 {
3430 /* McStatusWrEn enabled? */
3431 if (guest_cpuid_is_amd_compatible(vcpu))
3432 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3433
3434 return false;
3435 }
3436
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3437 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3438 {
3439 u64 mcg_cap = vcpu->arch.mcg_cap;
3440 unsigned bank_num = mcg_cap & 0xff;
3441 u32 msr = msr_info->index;
3442 u64 data = msr_info->data;
3443 u32 offset, last_msr;
3444
3445 switch (msr) {
3446 case MSR_IA32_MCG_STATUS:
3447 vcpu->arch.mcg_status = data;
3448 break;
3449 case MSR_IA32_MCG_CTL:
3450 if (!(mcg_cap & MCG_CTL_P) &&
3451 (data || !msr_info->host_initiated))
3452 return 1;
3453 if (data != 0 && data != ~(u64)0)
3454 return 1;
3455 vcpu->arch.mcg_ctl = data;
3456 break;
3457 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3458 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3459 if (msr > last_msr)
3460 return 1;
3461
3462 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3463 return 1;
3464 /* An attempt to write a 1 to a reserved bit raises #GP */
3465 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3466 return 1;
3467 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3468 last_msr + 1 - MSR_IA32_MC0_CTL2);
3469 vcpu->arch.mci_ctl2_banks[offset] = data;
3470 break;
3471 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3472 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3473 if (msr > last_msr)
3474 return 1;
3475
3476 /*
3477 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3478 * values are architecturally undefined. But, some Linux
3479 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3480 * issue on AMD K8s, allow bit 10 to be clear when setting all
3481 * other bits in order to avoid an uncaught #GP in the guest.
3482 *
3483 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3484 * single-bit ECC data errors.
3485 */
3486 if (is_mci_control_msr(msr) &&
3487 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3488 return 1;
3489
3490 /*
3491 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3492 * AMD-based CPUs allow non-zero values, but if and only if
3493 * HWCR[McStatusWrEn] is set.
3494 */
3495 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3496 data != 0 && !can_set_mci_status(vcpu))
3497 return 1;
3498
3499 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3500 last_msr + 1 - MSR_IA32_MC0_CTL);
3501 vcpu->arch.mce_banks[offset] = data;
3502 break;
3503 default:
3504 return 1;
3505 }
3506 return 0;
3507 }
3508
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3509 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3510 {
3511 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3512
3513 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3514 }
3515
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3517 {
3518 gpa_t gpa = data & ~0x3f;
3519
3520 /* Bits 4:5 are reserved, Should be zero */
3521 if (data & 0x30)
3522 return 1;
3523
3524 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3525 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3526 return 1;
3527
3528 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3529 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3530 return 1;
3531
3532 if (!lapic_in_kernel(vcpu))
3533 return data ? 1 : 0;
3534
3535 vcpu->arch.apf.msr_en_val = data;
3536
3537 if (!kvm_pv_async_pf_enabled(vcpu)) {
3538 kvm_clear_async_pf_completion_queue(vcpu);
3539 kvm_async_pf_hash_reset(vcpu);
3540 return 0;
3541 }
3542
3543 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3544 sizeof(u64)))
3545 return 1;
3546
3547 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3548 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3549
3550 kvm_async_pf_wakeup_all(vcpu);
3551
3552 return 0;
3553 }
3554
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3555 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3556 {
3557 /* Bits 8-63 are reserved */
3558 if (data >> 8)
3559 return 1;
3560
3561 if (!lapic_in_kernel(vcpu))
3562 return 1;
3563
3564 vcpu->arch.apf.msr_int_val = data;
3565
3566 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3567
3568 return 0;
3569 }
3570
kvmclock_reset(struct kvm_vcpu * vcpu)3571 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3572 {
3573 kvm_gpc_deactivate(&vcpu->arch.pv_time);
3574 vcpu->arch.time = 0;
3575 }
3576
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3577 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3578 {
3579 ++vcpu->stat.tlb_flush;
3580 kvm_x86_call(flush_tlb_all)(vcpu);
3581
3582 /* Flushing all ASIDs flushes the current ASID... */
3583 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3584 }
3585
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3586 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3587 {
3588 ++vcpu->stat.tlb_flush;
3589
3590 if (!tdp_enabled) {
3591 /*
3592 * A TLB flush on behalf of the guest is equivalent to
3593 * INVPCID(all), toggling CR4.PGE, etc., which requires
3594 * a forced sync of the shadow page tables. Ensure all the
3595 * roots are synced and the guest TLB in hardware is clean.
3596 */
3597 kvm_mmu_sync_roots(vcpu);
3598 kvm_mmu_sync_prev_roots(vcpu);
3599 }
3600
3601 kvm_x86_call(flush_tlb_guest)(vcpu);
3602
3603 /*
3604 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3605 * grained flushing.
3606 */
3607 kvm_hv_vcpu_purge_flush_tlb(vcpu);
3608 }
3609
3610
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3611 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3612 {
3613 ++vcpu->stat.tlb_flush;
3614 kvm_x86_call(flush_tlb_current)(vcpu);
3615 }
3616
3617 /*
3618 * Service "local" TLB flush requests, which are specific to the current MMU
3619 * context. In addition to the generic event handling in vcpu_enter_guest(),
3620 * TLB flushes that are targeted at an MMU context also need to be serviced
3621 * prior before nested VM-Enter/VM-Exit.
3622 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3623 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3624 {
3625 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3626 kvm_vcpu_flush_tlb_current(vcpu);
3627
3628 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3629 kvm_vcpu_flush_tlb_guest(vcpu);
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3632
record_steal_time(struct kvm_vcpu * vcpu)3633 static void record_steal_time(struct kvm_vcpu *vcpu)
3634 {
3635 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3636 struct kvm_steal_time __user *st;
3637 struct kvm_memslots *slots;
3638 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3639 u64 steal;
3640 u32 version;
3641
3642 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3643 kvm_xen_runstate_set_running(vcpu);
3644 return;
3645 }
3646
3647 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3648 return;
3649
3650 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3651 return;
3652
3653 slots = kvm_memslots(vcpu->kvm);
3654
3655 if (unlikely(slots->generation != ghc->generation ||
3656 gpa != ghc->gpa ||
3657 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3658 /* We rely on the fact that it fits in a single page. */
3659 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3660
3661 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3662 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3663 return;
3664 }
3665
3666 st = (struct kvm_steal_time __user *)ghc->hva;
3667 /*
3668 * Doing a TLB flush here, on the guest's behalf, can avoid
3669 * expensive IPIs.
3670 */
3671 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3672 u8 st_preempted = 0;
3673 int err = -EFAULT;
3674
3675 if (!user_access_begin(st, sizeof(*st)))
3676 return;
3677
3678 asm volatile("1: xchgb %0, %2\n"
3679 "xor %1, %1\n"
3680 "2:\n"
3681 _ASM_EXTABLE_UA(1b, 2b)
3682 : "+q" (st_preempted),
3683 "+&r" (err),
3684 "+m" (st->preempted));
3685 if (err)
3686 goto out;
3687
3688 user_access_end();
3689
3690 vcpu->arch.st.preempted = 0;
3691
3692 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3693 st_preempted & KVM_VCPU_FLUSH_TLB);
3694 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3695 kvm_vcpu_flush_tlb_guest(vcpu);
3696
3697 if (!user_access_begin(st, sizeof(*st)))
3698 goto dirty;
3699 } else {
3700 if (!user_access_begin(st, sizeof(*st)))
3701 return;
3702
3703 unsafe_put_user(0, &st->preempted, out);
3704 vcpu->arch.st.preempted = 0;
3705 }
3706
3707 unsafe_get_user(version, &st->version, out);
3708 if (version & 1)
3709 version += 1; /* first time write, random junk */
3710
3711 version += 1;
3712 unsafe_put_user(version, &st->version, out);
3713
3714 smp_wmb();
3715
3716 unsafe_get_user(steal, &st->steal, out);
3717 steal += current->sched_info.run_delay -
3718 vcpu->arch.st.last_steal;
3719 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3720 unsafe_put_user(steal, &st->steal, out);
3721
3722 version += 1;
3723 unsafe_put_user(version, &st->version, out);
3724
3725 out:
3726 user_access_end();
3727 dirty:
3728 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3729 }
3730
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3732 {
3733 u32 msr = msr_info->index;
3734 u64 data = msr_info->data;
3735
3736 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3737 return kvm_xen_write_hypercall_page(vcpu, data);
3738
3739 switch (msr) {
3740 case MSR_AMD64_NB_CFG:
3741 case MSR_IA32_UCODE_WRITE:
3742 case MSR_VM_HSAVE_PA:
3743 case MSR_AMD64_PATCH_LOADER:
3744 case MSR_AMD64_BU_CFG2:
3745 case MSR_AMD64_DC_CFG:
3746 case MSR_AMD64_TW_CFG:
3747 case MSR_F15H_EX_CFG:
3748 break;
3749
3750 case MSR_IA32_UCODE_REV:
3751 if (msr_info->host_initiated)
3752 vcpu->arch.microcode_version = data;
3753 break;
3754 case MSR_IA32_ARCH_CAPABILITIES:
3755 if (!msr_info->host_initiated ||
3756 !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3757 return KVM_MSR_RET_UNSUPPORTED;
3758 vcpu->arch.arch_capabilities = data;
3759 break;
3760 case MSR_IA32_PERF_CAPABILITIES:
3761 if (!msr_info->host_initiated ||
3762 !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3763 return KVM_MSR_RET_UNSUPPORTED;
3764
3765 if (data & ~kvm_caps.supported_perf_cap)
3766 return 1;
3767
3768 /*
3769 * Note, this is not just a performance optimization! KVM
3770 * disallows changing feature MSRs after the vCPU has run; PMU
3771 * refresh will bug the VM if called after the vCPU has run.
3772 */
3773 if (vcpu->arch.perf_capabilities == data)
3774 break;
3775
3776 vcpu->arch.perf_capabilities = data;
3777 kvm_pmu_refresh(vcpu);
3778 break;
3779 case MSR_IA32_PRED_CMD: {
3780 u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3781
3782 if (!msr_info->host_initiated) {
3783 if ((!guest_has_pred_cmd_msr(vcpu)))
3784 return 1;
3785
3786 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3787 !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3788 reserved_bits |= PRED_CMD_IBPB;
3789
3790 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3791 reserved_bits |= PRED_CMD_SBPB;
3792 }
3793
3794 if (!boot_cpu_has(X86_FEATURE_IBPB))
3795 reserved_bits |= PRED_CMD_IBPB;
3796
3797 if (!boot_cpu_has(X86_FEATURE_SBPB))
3798 reserved_bits |= PRED_CMD_SBPB;
3799
3800 if (data & reserved_bits)
3801 return 1;
3802
3803 if (!data)
3804 break;
3805
3806 wrmsrl(MSR_IA32_PRED_CMD, data);
3807 break;
3808 }
3809 case MSR_IA32_FLUSH_CMD:
3810 if (!msr_info->host_initiated &&
3811 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3812 return 1;
3813
3814 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3815 return 1;
3816 if (!data)
3817 break;
3818
3819 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3820 break;
3821 case MSR_EFER:
3822 return set_efer(vcpu, msr_info);
3823 case MSR_K7_HWCR:
3824 data &= ~(u64)0x40; /* ignore flush filter disable */
3825 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3826 data &= ~(u64)0x8; /* ignore TLB cache disable */
3827
3828 /*
3829 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3830 * through at least v6.6 whine if TscFreqSel is clear,
3831 * depending on F/M/S.
3832 */
3833 if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3834 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3835 return 1;
3836 }
3837 vcpu->arch.msr_hwcr = data;
3838 break;
3839 case MSR_FAM10H_MMIO_CONF_BASE:
3840 if (data != 0) {
3841 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3842 return 1;
3843 }
3844 break;
3845 case MSR_IA32_CR_PAT:
3846 if (!kvm_pat_valid(data))
3847 return 1;
3848
3849 vcpu->arch.pat = data;
3850 break;
3851 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3852 case MSR_MTRRdefType:
3853 return kvm_mtrr_set_msr(vcpu, msr, data);
3854 case MSR_IA32_APICBASE:
3855 return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3856 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3857 return kvm_x2apic_msr_write(vcpu, msr, data);
3858 case MSR_IA32_TSC_DEADLINE:
3859 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3860 break;
3861 case MSR_IA32_TSC_ADJUST:
3862 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3863 if (!msr_info->host_initiated) {
3864 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3865 adjust_tsc_offset_guest(vcpu, adj);
3866 /* Before back to guest, tsc_timestamp must be adjusted
3867 * as well, otherwise guest's percpu pvclock time could jump.
3868 */
3869 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3870 }
3871 vcpu->arch.ia32_tsc_adjust_msr = data;
3872 }
3873 break;
3874 case MSR_IA32_MISC_ENABLE: {
3875 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3876
3877 if (!msr_info->host_initiated) {
3878 /* RO bits */
3879 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3880 return 1;
3881
3882 /* R bits, i.e. writes are ignored, but don't fault. */
3883 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3884 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3885 }
3886
3887 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3888 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3889 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3890 return 1;
3891 vcpu->arch.ia32_misc_enable_msr = data;
3892 kvm_update_cpuid_runtime(vcpu);
3893 } else {
3894 vcpu->arch.ia32_misc_enable_msr = data;
3895 }
3896 break;
3897 }
3898 case MSR_IA32_SMBASE:
3899 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3900 return 1;
3901 vcpu->arch.smbase = data;
3902 break;
3903 case MSR_IA32_POWER_CTL:
3904 vcpu->arch.msr_ia32_power_ctl = data;
3905 break;
3906 case MSR_IA32_TSC:
3907 if (msr_info->host_initiated) {
3908 kvm_synchronize_tsc(vcpu, &data);
3909 } else {
3910 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3911 adjust_tsc_offset_guest(vcpu, adj);
3912 vcpu->arch.ia32_tsc_adjust_msr += adj;
3913 }
3914 break;
3915 case MSR_IA32_XSS:
3916 if (!msr_info->host_initiated &&
3917 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3918 return 1;
3919 /*
3920 * KVM supports exposing PT to the guest, but does not support
3921 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3922 * XSAVES/XRSTORS to save/restore PT MSRs.
3923 */
3924 if (data & ~kvm_caps.supported_xss)
3925 return 1;
3926 vcpu->arch.ia32_xss = data;
3927 kvm_update_cpuid_runtime(vcpu);
3928 break;
3929 case MSR_SMI_COUNT:
3930 if (!msr_info->host_initiated)
3931 return 1;
3932 vcpu->arch.smi_count = data;
3933 break;
3934 case MSR_KVM_WALL_CLOCK_NEW:
3935 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 return 1;
3937
3938 vcpu->kvm->arch.wall_clock = data;
3939 kvm_write_wall_clock(vcpu->kvm, data, 0);
3940 break;
3941 case MSR_KVM_WALL_CLOCK:
3942 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3943 return 1;
3944
3945 vcpu->kvm->arch.wall_clock = data;
3946 kvm_write_wall_clock(vcpu->kvm, data, 0);
3947 break;
3948 case MSR_KVM_SYSTEM_TIME_NEW:
3949 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 return 1;
3951
3952 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3953 break;
3954 case MSR_KVM_SYSTEM_TIME:
3955 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3956 return 1;
3957
3958 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3959 break;
3960 case MSR_KVM_ASYNC_PF_EN:
3961 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3962 return 1;
3963
3964 if (kvm_pv_enable_async_pf(vcpu, data))
3965 return 1;
3966 break;
3967 case MSR_KVM_ASYNC_PF_INT:
3968 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3969 return 1;
3970
3971 if (kvm_pv_enable_async_pf_int(vcpu, data))
3972 return 1;
3973 break;
3974 case MSR_KVM_ASYNC_PF_ACK:
3975 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 return 1;
3977 if (data & 0x1) {
3978 vcpu->arch.apf.pageready_pending = false;
3979 kvm_check_async_pf_completion(vcpu);
3980 }
3981 break;
3982 case MSR_KVM_STEAL_TIME:
3983 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3984 return 1;
3985
3986 if (unlikely(!sched_info_on()))
3987 return 1;
3988
3989 if (data & KVM_STEAL_RESERVED_MASK)
3990 return 1;
3991
3992 vcpu->arch.st.msr_val = data;
3993
3994 if (!(data & KVM_MSR_ENABLED))
3995 break;
3996
3997 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3998
3999 break;
4000 case MSR_KVM_PV_EOI_EN:
4001 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 return 1;
4003
4004 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4005 return 1;
4006 break;
4007
4008 case MSR_KVM_POLL_CONTROL:
4009 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4010 return 1;
4011
4012 /* only enable bit supported */
4013 if (data & (-1ULL << 1))
4014 return 1;
4015
4016 vcpu->arch.msr_kvm_poll_control = data;
4017 break;
4018
4019 case MSR_IA32_MCG_CTL:
4020 case MSR_IA32_MCG_STATUS:
4021 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4022 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 return set_msr_mce(vcpu, msr_info);
4024
4025 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4026 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4027 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4028 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4029 if (kvm_pmu_is_valid_msr(vcpu, msr))
4030 return kvm_pmu_set_msr(vcpu, msr_info);
4031
4032 if (data)
4033 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4034 break;
4035 case MSR_K7_CLK_CTL:
4036 /*
4037 * Ignore all writes to this no longer documented MSR.
4038 * Writes are only relevant for old K7 processors,
4039 * all pre-dating SVM, but a recommended workaround from
4040 * AMD for these chips. It is possible to specify the
4041 * affected processor models on the command line, hence
4042 * the need to ignore the workaround.
4043 */
4044 break;
4045 #ifdef CONFIG_KVM_HYPERV
4046 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4047 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4048 case HV_X64_MSR_SYNDBG_OPTIONS:
4049 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4050 case HV_X64_MSR_CRASH_CTL:
4051 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4052 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4053 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4054 case HV_X64_MSR_TSC_EMULATION_STATUS:
4055 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4056 return kvm_hv_set_msr_common(vcpu, msr, data,
4057 msr_info->host_initiated);
4058 #endif
4059 case MSR_IA32_BBL_CR_CTL3:
4060 /* Drop writes to this legacy MSR -- see rdmsr
4061 * counterpart for further detail.
4062 */
4063 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4064 break;
4065 case MSR_AMD64_OSVW_ID_LENGTH:
4066 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4067 return 1;
4068 vcpu->arch.osvw.length = data;
4069 break;
4070 case MSR_AMD64_OSVW_STATUS:
4071 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4072 return 1;
4073 vcpu->arch.osvw.status = data;
4074 break;
4075 case MSR_PLATFORM_INFO:
4076 if (!msr_info->host_initiated)
4077 return 1;
4078 vcpu->arch.msr_platform_info = data;
4079 break;
4080 case MSR_MISC_FEATURES_ENABLES:
4081 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4082 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4083 !supports_cpuid_fault(vcpu)))
4084 return 1;
4085 vcpu->arch.msr_misc_features_enables = data;
4086 break;
4087 #ifdef CONFIG_X86_64
4088 case MSR_IA32_XFD:
4089 if (!msr_info->host_initiated &&
4090 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4091 return 1;
4092
4093 if (data & ~kvm_guest_supported_xfd(vcpu))
4094 return 1;
4095
4096 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4097 break;
4098 case MSR_IA32_XFD_ERR:
4099 if (!msr_info->host_initiated &&
4100 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4101 return 1;
4102
4103 if (data & ~kvm_guest_supported_xfd(vcpu))
4104 return 1;
4105
4106 vcpu->arch.guest_fpu.xfd_err = data;
4107 break;
4108 #endif
4109 default:
4110 if (kvm_pmu_is_valid_msr(vcpu, msr))
4111 return kvm_pmu_set_msr(vcpu, msr_info);
4112
4113 return KVM_MSR_RET_UNSUPPORTED;
4114 }
4115 return 0;
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4118
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4119 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4120 {
4121 u64 data;
4122 u64 mcg_cap = vcpu->arch.mcg_cap;
4123 unsigned bank_num = mcg_cap & 0xff;
4124 u32 offset, last_msr;
4125
4126 switch (msr) {
4127 case MSR_IA32_P5_MC_ADDR:
4128 case MSR_IA32_P5_MC_TYPE:
4129 data = 0;
4130 break;
4131 case MSR_IA32_MCG_CAP:
4132 data = vcpu->arch.mcg_cap;
4133 break;
4134 case MSR_IA32_MCG_CTL:
4135 if (!(mcg_cap & MCG_CTL_P) && !host)
4136 return 1;
4137 data = vcpu->arch.mcg_ctl;
4138 break;
4139 case MSR_IA32_MCG_STATUS:
4140 data = vcpu->arch.mcg_status;
4141 break;
4142 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4143 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4144 if (msr > last_msr)
4145 return 1;
4146
4147 if (!(mcg_cap & MCG_CMCI_P) && !host)
4148 return 1;
4149 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4150 last_msr + 1 - MSR_IA32_MC0_CTL2);
4151 data = vcpu->arch.mci_ctl2_banks[offset];
4152 break;
4153 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4154 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4155 if (msr > last_msr)
4156 return 1;
4157
4158 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4159 last_msr + 1 - MSR_IA32_MC0_CTL);
4160 data = vcpu->arch.mce_banks[offset];
4161 break;
4162 default:
4163 return 1;
4164 }
4165 *pdata = data;
4166 return 0;
4167 }
4168
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4169 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4170 {
4171 switch (msr_info->index) {
4172 case MSR_IA32_PLATFORM_ID:
4173 case MSR_IA32_EBL_CR_POWERON:
4174 case MSR_IA32_LASTBRANCHFROMIP:
4175 case MSR_IA32_LASTBRANCHTOIP:
4176 case MSR_IA32_LASTINTFROMIP:
4177 case MSR_IA32_LASTINTTOIP:
4178 case MSR_AMD64_SYSCFG:
4179 case MSR_K8_TSEG_ADDR:
4180 case MSR_K8_TSEG_MASK:
4181 case MSR_VM_HSAVE_PA:
4182 case MSR_K8_INT_PENDING_MSG:
4183 case MSR_AMD64_NB_CFG:
4184 case MSR_FAM10H_MMIO_CONF_BASE:
4185 case MSR_AMD64_BU_CFG2:
4186 case MSR_IA32_PERF_CTL:
4187 case MSR_AMD64_DC_CFG:
4188 case MSR_AMD64_TW_CFG:
4189 case MSR_F15H_EX_CFG:
4190 /*
4191 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4192 * limit) MSRs. Just return 0, as we do not want to expose the host
4193 * data here. Do not conditionalize this on CPUID, as KVM does not do
4194 * so for existing CPU-specific MSRs.
4195 */
4196 case MSR_RAPL_POWER_UNIT:
4197 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4198 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4199 case MSR_PKG_ENERGY_STATUS: /* Total package */
4200 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
4201 msr_info->data = 0;
4202 break;
4203 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4204 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4205 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4206 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4207 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4208 return kvm_pmu_get_msr(vcpu, msr_info);
4209 msr_info->data = 0;
4210 break;
4211 case MSR_IA32_UCODE_REV:
4212 msr_info->data = vcpu->arch.microcode_version;
4213 break;
4214 case MSR_IA32_ARCH_CAPABILITIES:
4215 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4216 return KVM_MSR_RET_UNSUPPORTED;
4217 msr_info->data = vcpu->arch.arch_capabilities;
4218 break;
4219 case MSR_IA32_PERF_CAPABILITIES:
4220 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4221 return KVM_MSR_RET_UNSUPPORTED;
4222 msr_info->data = vcpu->arch.perf_capabilities;
4223 break;
4224 case MSR_IA32_POWER_CTL:
4225 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4226 break;
4227 case MSR_IA32_TSC: {
4228 /*
4229 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4230 * even when not intercepted. AMD manual doesn't explicitly
4231 * state this but appears to behave the same.
4232 *
4233 * On userspace reads and writes, however, we unconditionally
4234 * return L1's TSC value to ensure backwards-compatible
4235 * behavior for migration.
4236 */
4237 u64 offset, ratio;
4238
4239 if (msr_info->host_initiated) {
4240 offset = vcpu->arch.l1_tsc_offset;
4241 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4242 } else {
4243 offset = vcpu->arch.tsc_offset;
4244 ratio = vcpu->arch.tsc_scaling_ratio;
4245 }
4246
4247 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4248 break;
4249 }
4250 case MSR_IA32_CR_PAT:
4251 msr_info->data = vcpu->arch.pat;
4252 break;
4253 case MSR_MTRRcap:
4254 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4255 case MSR_MTRRdefType:
4256 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4257 case 0xcd: /* fsb frequency */
4258 msr_info->data = 3;
4259 break;
4260 /*
4261 * MSR_EBC_FREQUENCY_ID
4262 * Conservative value valid for even the basic CPU models.
4263 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4264 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4265 * and 266MHz for model 3, or 4. Set Core Clock
4266 * Frequency to System Bus Frequency Ratio to 1 (bits
4267 * 31:24) even though these are only valid for CPU
4268 * models > 2, however guests may end up dividing or
4269 * multiplying by zero otherwise.
4270 */
4271 case MSR_EBC_FREQUENCY_ID:
4272 msr_info->data = 1 << 24;
4273 break;
4274 case MSR_IA32_APICBASE:
4275 msr_info->data = vcpu->arch.apic_base;
4276 break;
4277 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4278 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4279 case MSR_IA32_TSC_DEADLINE:
4280 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4281 break;
4282 case MSR_IA32_TSC_ADJUST:
4283 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4284 break;
4285 case MSR_IA32_MISC_ENABLE:
4286 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4287 break;
4288 case MSR_IA32_SMBASE:
4289 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4290 return 1;
4291 msr_info->data = vcpu->arch.smbase;
4292 break;
4293 case MSR_SMI_COUNT:
4294 msr_info->data = vcpu->arch.smi_count;
4295 break;
4296 case MSR_IA32_PERF_STATUS:
4297 /* TSC increment by tick */
4298 msr_info->data = 1000ULL;
4299 /* CPU multiplier */
4300 msr_info->data |= (((uint64_t)4ULL) << 40);
4301 break;
4302 case MSR_EFER:
4303 msr_info->data = vcpu->arch.efer;
4304 break;
4305 case MSR_KVM_WALL_CLOCK:
4306 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307 return 1;
4308
4309 msr_info->data = vcpu->kvm->arch.wall_clock;
4310 break;
4311 case MSR_KVM_WALL_CLOCK_NEW:
4312 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313 return 1;
4314
4315 msr_info->data = vcpu->kvm->arch.wall_clock;
4316 break;
4317 case MSR_KVM_SYSTEM_TIME:
4318 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4319 return 1;
4320
4321 msr_info->data = vcpu->arch.time;
4322 break;
4323 case MSR_KVM_SYSTEM_TIME_NEW:
4324 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4325 return 1;
4326
4327 msr_info->data = vcpu->arch.time;
4328 break;
4329 case MSR_KVM_ASYNC_PF_EN:
4330 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4331 return 1;
4332
4333 msr_info->data = vcpu->arch.apf.msr_en_val;
4334 break;
4335 case MSR_KVM_ASYNC_PF_INT:
4336 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4337 return 1;
4338
4339 msr_info->data = vcpu->arch.apf.msr_int_val;
4340 break;
4341 case MSR_KVM_ASYNC_PF_ACK:
4342 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4343 return 1;
4344
4345 msr_info->data = 0;
4346 break;
4347 case MSR_KVM_STEAL_TIME:
4348 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4349 return 1;
4350
4351 msr_info->data = vcpu->arch.st.msr_val;
4352 break;
4353 case MSR_KVM_PV_EOI_EN:
4354 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4355 return 1;
4356
4357 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4358 break;
4359 case MSR_KVM_POLL_CONTROL:
4360 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4361 return 1;
4362
4363 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4364 break;
4365 case MSR_IA32_P5_MC_ADDR:
4366 case MSR_IA32_P5_MC_TYPE:
4367 case MSR_IA32_MCG_CAP:
4368 case MSR_IA32_MCG_CTL:
4369 case MSR_IA32_MCG_STATUS:
4370 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4371 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4372 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4373 msr_info->host_initiated);
4374 case MSR_IA32_XSS:
4375 if (!msr_info->host_initiated &&
4376 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4377 return 1;
4378 msr_info->data = vcpu->arch.ia32_xss;
4379 break;
4380 case MSR_K7_CLK_CTL:
4381 /*
4382 * Provide expected ramp-up count for K7. All other
4383 * are set to zero, indicating minimum divisors for
4384 * every field.
4385 *
4386 * This prevents guest kernels on AMD host with CPU
4387 * type 6, model 8 and higher from exploding due to
4388 * the rdmsr failing.
4389 */
4390 msr_info->data = 0x20000000;
4391 break;
4392 #ifdef CONFIG_KVM_HYPERV
4393 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4394 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4395 case HV_X64_MSR_SYNDBG_OPTIONS:
4396 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4397 case HV_X64_MSR_CRASH_CTL:
4398 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4399 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4400 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4401 case HV_X64_MSR_TSC_EMULATION_STATUS:
4402 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4403 return kvm_hv_get_msr_common(vcpu,
4404 msr_info->index, &msr_info->data,
4405 msr_info->host_initiated);
4406 #endif
4407 case MSR_IA32_BBL_CR_CTL3:
4408 /* This legacy MSR exists but isn't fully documented in current
4409 * silicon. It is however accessed by winxp in very narrow
4410 * scenarios where it sets bit #19, itself documented as
4411 * a "reserved" bit. Best effort attempt to source coherent
4412 * read data here should the balance of the register be
4413 * interpreted by the guest:
4414 *
4415 * L2 cache control register 3: 64GB range, 256KB size,
4416 * enabled, latency 0x1, configured
4417 */
4418 msr_info->data = 0xbe702111;
4419 break;
4420 case MSR_AMD64_OSVW_ID_LENGTH:
4421 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4422 return 1;
4423 msr_info->data = vcpu->arch.osvw.length;
4424 break;
4425 case MSR_AMD64_OSVW_STATUS:
4426 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4427 return 1;
4428 msr_info->data = vcpu->arch.osvw.status;
4429 break;
4430 case MSR_PLATFORM_INFO:
4431 if (!msr_info->host_initiated &&
4432 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4433 return 1;
4434 msr_info->data = vcpu->arch.msr_platform_info;
4435 break;
4436 case MSR_MISC_FEATURES_ENABLES:
4437 msr_info->data = vcpu->arch.msr_misc_features_enables;
4438 break;
4439 case MSR_K7_HWCR:
4440 msr_info->data = vcpu->arch.msr_hwcr;
4441 break;
4442 #ifdef CONFIG_X86_64
4443 case MSR_IA32_XFD:
4444 if (!msr_info->host_initiated &&
4445 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4446 return 1;
4447
4448 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4449 break;
4450 case MSR_IA32_XFD_ERR:
4451 if (!msr_info->host_initiated &&
4452 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4453 return 1;
4454
4455 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4456 break;
4457 #endif
4458 default:
4459 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4460 return kvm_pmu_get_msr(vcpu, msr_info);
4461
4462 return KVM_MSR_RET_UNSUPPORTED;
4463 }
4464 return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4467
4468 /*
4469 * Read or write a bunch of msrs. All parameters are kernel addresses.
4470 *
4471 * @return number of msrs set successfully.
4472 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4473 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4474 struct kvm_msr_entry *entries,
4475 int (*do_msr)(struct kvm_vcpu *vcpu,
4476 unsigned index, u64 *data))
4477 {
4478 int i;
4479
4480 for (i = 0; i < msrs->nmsrs; ++i)
4481 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4482 break;
4483
4484 return i;
4485 }
4486
4487 /*
4488 * Read or write a bunch of msrs. Parameters are user addresses.
4489 *
4490 * @return number of msrs set successfully.
4491 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4492 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4493 int (*do_msr)(struct kvm_vcpu *vcpu,
4494 unsigned index, u64 *data),
4495 int writeback)
4496 {
4497 struct kvm_msrs msrs;
4498 struct kvm_msr_entry *entries;
4499 unsigned size;
4500 int r;
4501
4502 r = -EFAULT;
4503 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4504 goto out;
4505
4506 r = -E2BIG;
4507 if (msrs.nmsrs >= MAX_IO_MSRS)
4508 goto out;
4509
4510 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4511 entries = memdup_user(user_msrs->entries, size);
4512 if (IS_ERR(entries)) {
4513 r = PTR_ERR(entries);
4514 goto out;
4515 }
4516
4517 r = __msr_io(vcpu, &msrs, entries, do_msr);
4518
4519 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4520 r = -EFAULT;
4521
4522 kfree(entries);
4523 out:
4524 return r;
4525 }
4526
kvm_can_mwait_in_guest(void)4527 static inline bool kvm_can_mwait_in_guest(void)
4528 {
4529 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4530 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4531 boot_cpu_has(X86_FEATURE_ARAT);
4532 }
4533
kvm_get_allowed_disable_exits(void)4534 static u64 kvm_get_allowed_disable_exits(void)
4535 {
4536 u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4537
4538 if (!mitigate_smt_rsb) {
4539 r |= KVM_X86_DISABLE_EXITS_HLT |
4540 KVM_X86_DISABLE_EXITS_CSTATE;
4541
4542 if (kvm_can_mwait_in_guest())
4543 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4544 }
4545 return r;
4546 }
4547
4548 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 struct kvm_cpuid2 cpuid;
4553 int r;
4554
4555 r = -EFAULT;
4556 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 return r;
4558
4559 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 if (r)
4561 return r;
4562
4563 r = -EFAULT;
4564 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 return r;
4566
4567 return 0;
4568 }
4569 #endif
4570
kvm_is_vm_type_supported(unsigned long type)4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4577 {
4578 int r = 0;
4579
4580 switch (ext) {
4581 case KVM_CAP_IRQCHIP:
4582 case KVM_CAP_HLT:
4583 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4584 case KVM_CAP_SET_TSS_ADDR:
4585 case KVM_CAP_EXT_CPUID:
4586 case KVM_CAP_EXT_EMUL_CPUID:
4587 case KVM_CAP_CLOCKSOURCE:
4588 case KVM_CAP_PIT:
4589 case KVM_CAP_NOP_IO_DELAY:
4590 case KVM_CAP_MP_STATE:
4591 case KVM_CAP_SYNC_MMU:
4592 case KVM_CAP_USER_NMI:
4593 case KVM_CAP_REINJECT_CONTROL:
4594 case KVM_CAP_IRQ_INJECT_STATUS:
4595 case KVM_CAP_IOEVENTFD:
4596 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4597 case KVM_CAP_PIT2:
4598 case KVM_CAP_PIT_STATE2:
4599 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4600 case KVM_CAP_VCPU_EVENTS:
4601 #ifdef CONFIG_KVM_HYPERV
4602 case KVM_CAP_HYPERV:
4603 case KVM_CAP_HYPERV_VAPIC:
4604 case KVM_CAP_HYPERV_SPIN:
4605 case KVM_CAP_HYPERV_TIME:
4606 case KVM_CAP_HYPERV_SYNIC:
4607 case KVM_CAP_HYPERV_SYNIC2:
4608 case KVM_CAP_HYPERV_VP_INDEX:
4609 case KVM_CAP_HYPERV_EVENTFD:
4610 case KVM_CAP_HYPERV_TLBFLUSH:
4611 case KVM_CAP_HYPERV_SEND_IPI:
4612 case KVM_CAP_HYPERV_CPUID:
4613 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4614 case KVM_CAP_SYS_HYPERV_CPUID:
4615 #endif
4616 case KVM_CAP_PCI_SEGMENT:
4617 case KVM_CAP_DEBUGREGS:
4618 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4619 case KVM_CAP_XSAVE:
4620 case KVM_CAP_ASYNC_PF:
4621 case KVM_CAP_ASYNC_PF_INT:
4622 case KVM_CAP_GET_TSC_KHZ:
4623 case KVM_CAP_KVMCLOCK_CTRL:
4624 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4625 case KVM_CAP_TSC_DEADLINE_TIMER:
4626 case KVM_CAP_DISABLE_QUIRKS:
4627 case KVM_CAP_SET_BOOT_CPU_ID:
4628 case KVM_CAP_SPLIT_IRQCHIP:
4629 case KVM_CAP_IMMEDIATE_EXIT:
4630 case KVM_CAP_PMU_EVENT_FILTER:
4631 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4632 case KVM_CAP_GET_MSR_FEATURES:
4633 case KVM_CAP_MSR_PLATFORM_INFO:
4634 case KVM_CAP_EXCEPTION_PAYLOAD:
4635 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4636 case KVM_CAP_SET_GUEST_DEBUG:
4637 case KVM_CAP_LAST_CPU:
4638 case KVM_CAP_X86_USER_SPACE_MSR:
4639 case KVM_CAP_X86_MSR_FILTER:
4640 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4641 #ifdef CONFIG_X86_SGX_KVM
4642 case KVM_CAP_SGX_ATTRIBUTE:
4643 #endif
4644 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4645 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4646 case KVM_CAP_SREGS2:
4647 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4648 case KVM_CAP_VCPU_ATTRIBUTES:
4649 case KVM_CAP_SYS_ATTRIBUTES:
4650 case KVM_CAP_VAPIC:
4651 case KVM_CAP_ENABLE_CAP:
4652 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4653 case KVM_CAP_IRQFD_RESAMPLE:
4654 case KVM_CAP_MEMORY_FAULT_INFO:
4655 case KVM_CAP_X86_GUEST_MODE:
4656 r = 1;
4657 break;
4658 case KVM_CAP_PRE_FAULT_MEMORY:
4659 r = tdp_enabled;
4660 break;
4661 case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4662 r = APIC_BUS_CYCLE_NS_DEFAULT;
4663 break;
4664 case KVM_CAP_EXIT_HYPERCALL:
4665 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4666 break;
4667 case KVM_CAP_SET_GUEST_DEBUG2:
4668 return KVM_GUESTDBG_VALID_MASK;
4669 #ifdef CONFIG_KVM_XEN
4670 case KVM_CAP_XEN_HVM:
4671 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4672 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4673 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4674 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4675 KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4676 KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4677 KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4678 if (sched_info_on())
4679 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4680 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4681 break;
4682 #endif
4683 case KVM_CAP_SYNC_REGS:
4684 r = KVM_SYNC_X86_VALID_FIELDS;
4685 break;
4686 case KVM_CAP_ADJUST_CLOCK:
4687 r = KVM_CLOCK_VALID_FLAGS;
4688 break;
4689 case KVM_CAP_X86_DISABLE_EXITS:
4690 r = kvm_get_allowed_disable_exits();
4691 break;
4692 case KVM_CAP_X86_SMM:
4693 if (!IS_ENABLED(CONFIG_KVM_SMM))
4694 break;
4695
4696 /* SMBASE is usually relocated above 1M on modern chipsets,
4697 * and SMM handlers might indeed rely on 4G segment limits,
4698 * so do not report SMM to be available if real mode is
4699 * emulated via vm86 mode. Still, do not go to great lengths
4700 * to avoid userspace's usage of the feature, because it is a
4701 * fringe case that is not enabled except via specific settings
4702 * of the module parameters.
4703 */
4704 r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4705 break;
4706 case KVM_CAP_NR_VCPUS:
4707 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4708 break;
4709 case KVM_CAP_MAX_VCPUS:
4710 r = KVM_MAX_VCPUS;
4711 break;
4712 case KVM_CAP_MAX_VCPU_ID:
4713 r = KVM_MAX_VCPU_IDS;
4714 break;
4715 case KVM_CAP_PV_MMU: /* obsolete */
4716 r = 0;
4717 break;
4718 case KVM_CAP_MCE:
4719 r = KVM_MAX_MCE_BANKS;
4720 break;
4721 case KVM_CAP_XCRS:
4722 r = boot_cpu_has(X86_FEATURE_XSAVE);
4723 break;
4724 case KVM_CAP_TSC_CONTROL:
4725 case KVM_CAP_VM_TSC_CONTROL:
4726 r = kvm_caps.has_tsc_control;
4727 break;
4728 case KVM_CAP_X2APIC_API:
4729 r = KVM_X2APIC_API_VALID_FLAGS;
4730 break;
4731 case KVM_CAP_NESTED_STATE:
4732 r = kvm_x86_ops.nested_ops->get_state ?
4733 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4734 break;
4735 #ifdef CONFIG_KVM_HYPERV
4736 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4737 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4738 break;
4739 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4740 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4741 break;
4742 #endif
4743 case KVM_CAP_SMALLER_MAXPHYADDR:
4744 r = (int) allow_smaller_maxphyaddr;
4745 break;
4746 case KVM_CAP_STEAL_TIME:
4747 r = sched_info_on();
4748 break;
4749 case KVM_CAP_X86_BUS_LOCK_EXIT:
4750 if (kvm_caps.has_bus_lock_exit)
4751 r = KVM_BUS_LOCK_DETECTION_OFF |
4752 KVM_BUS_LOCK_DETECTION_EXIT;
4753 else
4754 r = 0;
4755 break;
4756 case KVM_CAP_XSAVE2: {
4757 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4758 if (r < sizeof(struct kvm_xsave))
4759 r = sizeof(struct kvm_xsave);
4760 break;
4761 }
4762 case KVM_CAP_PMU_CAPABILITY:
4763 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4764 break;
4765 case KVM_CAP_DISABLE_QUIRKS2:
4766 r = KVM_X86_VALID_QUIRKS;
4767 break;
4768 case KVM_CAP_X86_NOTIFY_VMEXIT:
4769 r = kvm_caps.has_notify_vmexit;
4770 break;
4771 case KVM_CAP_VM_TYPES:
4772 r = kvm_caps.supported_vm_types;
4773 break;
4774 case KVM_CAP_READONLY_MEM:
4775 r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4776 break;
4777 default:
4778 break;
4779 }
4780 return r;
4781 }
4782
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4783 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4784 {
4785 if (attr->group) {
4786 if (kvm_x86_ops.dev_get_attr)
4787 return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4788 return -ENXIO;
4789 }
4790
4791 switch (attr->attr) {
4792 case KVM_X86_XCOMP_GUEST_SUPP:
4793 *val = kvm_caps.supported_xcr0;
4794 return 0;
4795 default:
4796 return -ENXIO;
4797 }
4798 }
4799
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4800 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4801 {
4802 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4803 int r;
4804 u64 val;
4805
4806 r = __kvm_x86_dev_get_attr(attr, &val);
4807 if (r < 0)
4808 return r;
4809
4810 if (put_user(val, uaddr))
4811 return -EFAULT;
4812
4813 return 0;
4814 }
4815
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4816 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4817 {
4818 u64 val;
4819
4820 return __kvm_x86_dev_get_attr(attr, &val);
4821 }
4822
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4823 long kvm_arch_dev_ioctl(struct file *filp,
4824 unsigned int ioctl, unsigned long arg)
4825 {
4826 void __user *argp = (void __user *)arg;
4827 long r;
4828
4829 switch (ioctl) {
4830 case KVM_GET_MSR_INDEX_LIST: {
4831 struct kvm_msr_list __user *user_msr_list = argp;
4832 struct kvm_msr_list msr_list;
4833 unsigned n;
4834
4835 r = -EFAULT;
4836 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4837 goto out;
4838 n = msr_list.nmsrs;
4839 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4840 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4841 goto out;
4842 r = -E2BIG;
4843 if (n < msr_list.nmsrs)
4844 goto out;
4845 r = -EFAULT;
4846 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4847 num_msrs_to_save * sizeof(u32)))
4848 goto out;
4849 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4850 &emulated_msrs,
4851 num_emulated_msrs * sizeof(u32)))
4852 goto out;
4853 r = 0;
4854 break;
4855 }
4856 case KVM_GET_SUPPORTED_CPUID:
4857 case KVM_GET_EMULATED_CPUID: {
4858 struct kvm_cpuid2 __user *cpuid_arg = argp;
4859 struct kvm_cpuid2 cpuid;
4860
4861 r = -EFAULT;
4862 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4863 goto out;
4864
4865 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4866 ioctl);
4867 if (r)
4868 goto out;
4869
4870 r = -EFAULT;
4871 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4872 goto out;
4873 r = 0;
4874 break;
4875 }
4876 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4877 r = -EFAULT;
4878 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4879 sizeof(kvm_caps.supported_mce_cap)))
4880 goto out;
4881 r = 0;
4882 break;
4883 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4884 struct kvm_msr_list __user *user_msr_list = argp;
4885 struct kvm_msr_list msr_list;
4886 unsigned int n;
4887
4888 r = -EFAULT;
4889 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4890 goto out;
4891 n = msr_list.nmsrs;
4892 msr_list.nmsrs = num_msr_based_features;
4893 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4894 goto out;
4895 r = -E2BIG;
4896 if (n < msr_list.nmsrs)
4897 goto out;
4898 r = -EFAULT;
4899 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4900 num_msr_based_features * sizeof(u32)))
4901 goto out;
4902 r = 0;
4903 break;
4904 }
4905 case KVM_GET_MSRS:
4906 r = msr_io(NULL, argp, do_get_feature_msr, 1);
4907 break;
4908 #ifdef CONFIG_KVM_HYPERV
4909 case KVM_GET_SUPPORTED_HV_CPUID:
4910 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4911 break;
4912 #endif
4913 case KVM_GET_DEVICE_ATTR: {
4914 struct kvm_device_attr attr;
4915 r = -EFAULT;
4916 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4917 break;
4918 r = kvm_x86_dev_get_attr(&attr);
4919 break;
4920 }
4921 case KVM_HAS_DEVICE_ATTR: {
4922 struct kvm_device_attr attr;
4923 r = -EFAULT;
4924 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4925 break;
4926 r = kvm_x86_dev_has_attr(&attr);
4927 break;
4928 }
4929 default:
4930 r = -EINVAL;
4931 break;
4932 }
4933 out:
4934 return r;
4935 }
4936
wbinvd_ipi(void * garbage)4937 static void wbinvd_ipi(void *garbage)
4938 {
4939 wbinvd();
4940 }
4941
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4942 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4943 {
4944 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4945 }
4946
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4947 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4948 {
4949 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4950
4951 vcpu->arch.l1tf_flush_l1d = true;
4952
4953 if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4954 pmu->need_cleanup = true;
4955 kvm_make_request(KVM_REQ_PMU, vcpu);
4956 }
4957
4958 /* Address WBINVD may be executed by guest */
4959 if (need_emulate_wbinvd(vcpu)) {
4960 if (kvm_x86_call(has_wbinvd_exit)())
4961 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4962 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4963 smp_call_function_single(vcpu->cpu,
4964 wbinvd_ipi, NULL, 1);
4965 }
4966
4967 kvm_x86_call(vcpu_load)(vcpu, cpu);
4968
4969 /* Save host pkru register if supported */
4970 vcpu->arch.host_pkru = read_pkru();
4971
4972 /* Apply any externally detected TSC adjustments (due to suspend) */
4973 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4974 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4975 vcpu->arch.tsc_offset_adjustment = 0;
4976 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4977 }
4978
4979 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4980 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4981 rdtsc() - vcpu->arch.last_host_tsc;
4982 if (tsc_delta < 0)
4983 mark_tsc_unstable("KVM discovered backwards TSC");
4984
4985 if (kvm_check_tsc_unstable()) {
4986 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4987 vcpu->arch.last_guest_tsc);
4988 kvm_vcpu_write_tsc_offset(vcpu, offset);
4989 vcpu->arch.tsc_catchup = 1;
4990 }
4991
4992 if (kvm_lapic_hv_timer_in_use(vcpu))
4993 kvm_lapic_restart_hv_timer(vcpu);
4994
4995 /*
4996 * On a host with synchronized TSC, there is no need to update
4997 * kvmclock on vcpu->cpu migration
4998 */
4999 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5000 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5001 if (vcpu->cpu != cpu)
5002 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5003 vcpu->cpu = cpu;
5004 }
5005
5006 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5007 }
5008
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5009 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5010 {
5011 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5012 struct kvm_steal_time __user *st;
5013 struct kvm_memslots *slots;
5014 static const u8 preempted = KVM_VCPU_PREEMPTED;
5015 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5016
5017 /*
5018 * The vCPU can be marked preempted if and only if the VM-Exit was on
5019 * an instruction boundary and will not trigger guest emulation of any
5020 * kind (see vcpu_run). Vendor specific code controls (conservatively)
5021 * when this is true, for example allowing the vCPU to be marked
5022 * preempted if and only if the VM-Exit was due to a host interrupt.
5023 */
5024 if (!vcpu->arch.at_instruction_boundary) {
5025 vcpu->stat.preemption_other++;
5026 return;
5027 }
5028
5029 vcpu->stat.preemption_reported++;
5030 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5031 return;
5032
5033 if (vcpu->arch.st.preempted)
5034 return;
5035
5036 /* This happens on process exit */
5037 if (unlikely(current->mm != vcpu->kvm->mm))
5038 return;
5039
5040 slots = kvm_memslots(vcpu->kvm);
5041
5042 if (unlikely(slots->generation != ghc->generation ||
5043 gpa != ghc->gpa ||
5044 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5045 return;
5046
5047 st = (struct kvm_steal_time __user *)ghc->hva;
5048 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5049
5050 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5051 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5052
5053 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5054 }
5055
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5056 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5057 {
5058 int idx;
5059
5060 if (vcpu->preempted) {
5061 /*
5062 * Assume protected guests are in-kernel. Inefficient yielding
5063 * due to false positives is preferable to never yielding due
5064 * to false negatives.
5065 */
5066 vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5067 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5068
5069 /*
5070 * Take the srcu lock as memslots will be accessed to check the gfn
5071 * cache generation against the memslots generation.
5072 */
5073 idx = srcu_read_lock(&vcpu->kvm->srcu);
5074 if (kvm_xen_msr_enabled(vcpu->kvm))
5075 kvm_xen_runstate_set_preempted(vcpu);
5076 else
5077 kvm_steal_time_set_preempted(vcpu);
5078 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5079 }
5080
5081 kvm_x86_call(vcpu_put)(vcpu);
5082 vcpu->arch.last_host_tsc = rdtsc();
5083 }
5084
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5085 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5086 struct kvm_lapic_state *s)
5087 {
5088 kvm_x86_call(sync_pir_to_irr)(vcpu);
5089
5090 return kvm_apic_get_state(vcpu, s);
5091 }
5092
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5093 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5094 struct kvm_lapic_state *s)
5095 {
5096 int r;
5097
5098 r = kvm_apic_set_state(vcpu, s);
5099 if (r)
5100 return r;
5101 update_cr8_intercept(vcpu);
5102
5103 return 0;
5104 }
5105
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5106 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5107 {
5108 /*
5109 * We can accept userspace's request for interrupt injection
5110 * as long as we have a place to store the interrupt number.
5111 * The actual injection will happen when the CPU is able to
5112 * deliver the interrupt.
5113 */
5114 if (kvm_cpu_has_extint(vcpu))
5115 return false;
5116
5117 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
5118 return (!lapic_in_kernel(vcpu) ||
5119 kvm_apic_accept_pic_intr(vcpu));
5120 }
5121
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5122 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5123 {
5124 /*
5125 * Do not cause an interrupt window exit if an exception
5126 * is pending or an event needs reinjection; userspace
5127 * might want to inject the interrupt manually using KVM_SET_REGS
5128 * or KVM_SET_SREGS. For that to work, we must be at an
5129 * instruction boundary and with no events half-injected.
5130 */
5131 return (kvm_arch_interrupt_allowed(vcpu) &&
5132 kvm_cpu_accept_dm_intr(vcpu) &&
5133 !kvm_event_needs_reinjection(vcpu) &&
5134 !kvm_is_exception_pending(vcpu));
5135 }
5136
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5137 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5138 struct kvm_interrupt *irq)
5139 {
5140 if (irq->irq >= KVM_NR_INTERRUPTS)
5141 return -EINVAL;
5142
5143 if (!irqchip_in_kernel(vcpu->kvm)) {
5144 kvm_queue_interrupt(vcpu, irq->irq, false);
5145 kvm_make_request(KVM_REQ_EVENT, vcpu);
5146 return 0;
5147 }
5148
5149 /*
5150 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5151 * fail for in-kernel 8259.
5152 */
5153 if (pic_in_kernel(vcpu->kvm))
5154 return -ENXIO;
5155
5156 if (vcpu->arch.pending_external_vector != -1)
5157 return -EEXIST;
5158
5159 vcpu->arch.pending_external_vector = irq->irq;
5160 kvm_make_request(KVM_REQ_EVENT, vcpu);
5161 return 0;
5162 }
5163
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5164 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5165 {
5166 kvm_inject_nmi(vcpu);
5167
5168 return 0;
5169 }
5170
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5171 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5172 struct kvm_tpr_access_ctl *tac)
5173 {
5174 if (tac->flags)
5175 return -EINVAL;
5176 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5177 return 0;
5178 }
5179
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5180 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5181 u64 mcg_cap)
5182 {
5183 int r;
5184 unsigned bank_num = mcg_cap & 0xff, bank;
5185
5186 r = -EINVAL;
5187 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5188 goto out;
5189 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5190 goto out;
5191 r = 0;
5192 vcpu->arch.mcg_cap = mcg_cap;
5193 /* Init IA32_MCG_CTL to all 1s */
5194 if (mcg_cap & MCG_CTL_P)
5195 vcpu->arch.mcg_ctl = ~(u64)0;
5196 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5197 for (bank = 0; bank < bank_num; bank++) {
5198 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5199 if (mcg_cap & MCG_CMCI_P)
5200 vcpu->arch.mci_ctl2_banks[bank] = 0;
5201 }
5202
5203 kvm_apic_after_set_mcg_cap(vcpu);
5204
5205 kvm_x86_call(setup_mce)(vcpu);
5206 out:
5207 return r;
5208 }
5209
5210 /*
5211 * Validate this is an UCNA (uncorrectable no action) error by checking the
5212 * MCG_STATUS and MCi_STATUS registers:
5213 * - none of the bits for Machine Check Exceptions are set
5214 * - both the VAL (valid) and UC (uncorrectable) bits are set
5215 * MCI_STATUS_PCC - Processor Context Corrupted
5216 * MCI_STATUS_S - Signaled as a Machine Check Exception
5217 * MCI_STATUS_AR - Software recoverable Action Required
5218 */
is_ucna(struct kvm_x86_mce * mce)5219 static bool is_ucna(struct kvm_x86_mce *mce)
5220 {
5221 return !mce->mcg_status &&
5222 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5223 (mce->status & MCI_STATUS_VAL) &&
5224 (mce->status & MCI_STATUS_UC);
5225 }
5226
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5227 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5228 {
5229 u64 mcg_cap = vcpu->arch.mcg_cap;
5230
5231 banks[1] = mce->status;
5232 banks[2] = mce->addr;
5233 banks[3] = mce->misc;
5234 vcpu->arch.mcg_status = mce->mcg_status;
5235
5236 if (!(mcg_cap & MCG_CMCI_P) ||
5237 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5238 return 0;
5239
5240 if (lapic_in_kernel(vcpu))
5241 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5242
5243 return 0;
5244 }
5245
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5246 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5247 struct kvm_x86_mce *mce)
5248 {
5249 u64 mcg_cap = vcpu->arch.mcg_cap;
5250 unsigned bank_num = mcg_cap & 0xff;
5251 u64 *banks = vcpu->arch.mce_banks;
5252
5253 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5254 return -EINVAL;
5255
5256 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5257
5258 if (is_ucna(mce))
5259 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5260
5261 /*
5262 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5263 * reporting is disabled
5264 */
5265 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5266 vcpu->arch.mcg_ctl != ~(u64)0)
5267 return 0;
5268 /*
5269 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5270 * reporting is disabled for the bank
5271 */
5272 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5273 return 0;
5274 if (mce->status & MCI_STATUS_UC) {
5275 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5276 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5277 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5278 return 0;
5279 }
5280 if (banks[1] & MCI_STATUS_VAL)
5281 mce->status |= MCI_STATUS_OVER;
5282 banks[2] = mce->addr;
5283 banks[3] = mce->misc;
5284 vcpu->arch.mcg_status = mce->mcg_status;
5285 banks[1] = mce->status;
5286 kvm_queue_exception(vcpu, MC_VECTOR);
5287 } else if (!(banks[1] & MCI_STATUS_VAL)
5288 || !(banks[1] & MCI_STATUS_UC)) {
5289 if (banks[1] & MCI_STATUS_VAL)
5290 mce->status |= MCI_STATUS_OVER;
5291 banks[2] = mce->addr;
5292 banks[3] = mce->misc;
5293 banks[1] = mce->status;
5294 } else
5295 banks[1] |= MCI_STATUS_OVER;
5296 return 0;
5297 }
5298
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5299 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5300 struct kvm_vcpu_events *events)
5301 {
5302 struct kvm_queued_exception *ex;
5303
5304 process_nmi(vcpu);
5305
5306 #ifdef CONFIG_KVM_SMM
5307 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5308 process_smi(vcpu);
5309 #endif
5310
5311 /*
5312 * KVM's ABI only allows for one exception to be migrated. Luckily,
5313 * the only time there can be two queued exceptions is if there's a
5314 * non-exiting _injected_ exception, and a pending exiting exception.
5315 * In that case, ignore the VM-Exiting exception as it's an extension
5316 * of the injected exception.
5317 */
5318 if (vcpu->arch.exception_vmexit.pending &&
5319 !vcpu->arch.exception.pending &&
5320 !vcpu->arch.exception.injected)
5321 ex = &vcpu->arch.exception_vmexit;
5322 else
5323 ex = &vcpu->arch.exception;
5324
5325 /*
5326 * In guest mode, payload delivery should be deferred if the exception
5327 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5328 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5329 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5330 * propagate the payload and so it cannot be safely deferred. Deliver
5331 * the payload if the capability hasn't been requested.
5332 */
5333 if (!vcpu->kvm->arch.exception_payload_enabled &&
5334 ex->pending && ex->has_payload)
5335 kvm_deliver_exception_payload(vcpu, ex);
5336
5337 memset(events, 0, sizeof(*events));
5338
5339 /*
5340 * The API doesn't provide the instruction length for software
5341 * exceptions, so don't report them. As long as the guest RIP
5342 * isn't advanced, we should expect to encounter the exception
5343 * again.
5344 */
5345 if (!kvm_exception_is_soft(ex->vector)) {
5346 events->exception.injected = ex->injected;
5347 events->exception.pending = ex->pending;
5348 /*
5349 * For ABI compatibility, deliberately conflate
5350 * pending and injected exceptions when
5351 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5352 */
5353 if (!vcpu->kvm->arch.exception_payload_enabled)
5354 events->exception.injected |= ex->pending;
5355 }
5356 events->exception.nr = ex->vector;
5357 events->exception.has_error_code = ex->has_error_code;
5358 events->exception.error_code = ex->error_code;
5359 events->exception_has_payload = ex->has_payload;
5360 events->exception_payload = ex->payload;
5361
5362 events->interrupt.injected =
5363 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5364 events->interrupt.nr = vcpu->arch.interrupt.nr;
5365 events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5366
5367 events->nmi.injected = vcpu->arch.nmi_injected;
5368 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5369 events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5370
5371 /* events->sipi_vector is never valid when reporting to user space */
5372
5373 #ifdef CONFIG_KVM_SMM
5374 events->smi.smm = is_smm(vcpu);
5375 events->smi.pending = vcpu->arch.smi_pending;
5376 events->smi.smm_inside_nmi =
5377 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5378 #endif
5379 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5380
5381 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5382 | KVM_VCPUEVENT_VALID_SHADOW
5383 | KVM_VCPUEVENT_VALID_SMM);
5384 if (vcpu->kvm->arch.exception_payload_enabled)
5385 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5386 if (vcpu->kvm->arch.triple_fault_event) {
5387 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5388 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5389 }
5390 }
5391
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5392 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5393 struct kvm_vcpu_events *events)
5394 {
5395 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5396 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5397 | KVM_VCPUEVENT_VALID_SHADOW
5398 | KVM_VCPUEVENT_VALID_SMM
5399 | KVM_VCPUEVENT_VALID_PAYLOAD
5400 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5401 return -EINVAL;
5402
5403 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5404 if (!vcpu->kvm->arch.exception_payload_enabled)
5405 return -EINVAL;
5406 if (events->exception.pending)
5407 events->exception.injected = 0;
5408 else
5409 events->exception_has_payload = 0;
5410 } else {
5411 events->exception.pending = 0;
5412 events->exception_has_payload = 0;
5413 }
5414
5415 if ((events->exception.injected || events->exception.pending) &&
5416 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5417 return -EINVAL;
5418
5419 /* INITs are latched while in SMM */
5420 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5421 (events->smi.smm || events->smi.pending) &&
5422 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5423 return -EINVAL;
5424
5425 process_nmi(vcpu);
5426
5427 /*
5428 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5429 * morph the exception to a VM-Exit if appropriate. Do this only for
5430 * pending exceptions, already-injected exceptions are not subject to
5431 * intercpetion. Note, userspace that conflates pending and injected
5432 * is hosed, and will incorrectly convert an injected exception into a
5433 * pending exception, which in turn may cause a spurious VM-Exit.
5434 */
5435 vcpu->arch.exception_from_userspace = events->exception.pending;
5436
5437 vcpu->arch.exception_vmexit.pending = false;
5438
5439 vcpu->arch.exception.injected = events->exception.injected;
5440 vcpu->arch.exception.pending = events->exception.pending;
5441 vcpu->arch.exception.vector = events->exception.nr;
5442 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5443 vcpu->arch.exception.error_code = events->exception.error_code;
5444 vcpu->arch.exception.has_payload = events->exception_has_payload;
5445 vcpu->arch.exception.payload = events->exception_payload;
5446
5447 vcpu->arch.interrupt.injected = events->interrupt.injected;
5448 vcpu->arch.interrupt.nr = events->interrupt.nr;
5449 vcpu->arch.interrupt.soft = events->interrupt.soft;
5450 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5451 kvm_x86_call(set_interrupt_shadow)(vcpu,
5452 events->interrupt.shadow);
5453
5454 vcpu->arch.nmi_injected = events->nmi.injected;
5455 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5456 vcpu->arch.nmi_pending = 0;
5457 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5458 if (events->nmi.pending)
5459 kvm_make_request(KVM_REQ_NMI, vcpu);
5460 }
5461 kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5462
5463 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5464 lapic_in_kernel(vcpu))
5465 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5466
5467 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5468 #ifdef CONFIG_KVM_SMM
5469 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5470 kvm_leave_nested(vcpu);
5471 kvm_smm_changed(vcpu, events->smi.smm);
5472 }
5473
5474 vcpu->arch.smi_pending = events->smi.pending;
5475
5476 if (events->smi.smm) {
5477 if (events->smi.smm_inside_nmi)
5478 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5479 else
5480 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5481 }
5482
5483 #else
5484 if (events->smi.smm || events->smi.pending ||
5485 events->smi.smm_inside_nmi)
5486 return -EINVAL;
5487 #endif
5488
5489 if (lapic_in_kernel(vcpu)) {
5490 if (events->smi.latched_init)
5491 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5492 else
5493 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5494 }
5495 }
5496
5497 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5498 if (!vcpu->kvm->arch.triple_fault_event)
5499 return -EINVAL;
5500 if (events->triple_fault.pending)
5501 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5502 else
5503 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5504 }
5505
5506 kvm_make_request(KVM_REQ_EVENT, vcpu);
5507
5508 return 0;
5509 }
5510
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5511 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5512 struct kvm_debugregs *dbgregs)
5513 {
5514 unsigned int i;
5515
5516 if (vcpu->kvm->arch.has_protected_state &&
5517 vcpu->arch.guest_state_protected)
5518 return -EINVAL;
5519
5520 memset(dbgregs, 0, sizeof(*dbgregs));
5521
5522 BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5523 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5524 dbgregs->db[i] = vcpu->arch.db[i];
5525
5526 dbgregs->dr6 = vcpu->arch.dr6;
5527 dbgregs->dr7 = vcpu->arch.dr7;
5528 return 0;
5529 }
5530
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5531 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5532 struct kvm_debugregs *dbgregs)
5533 {
5534 unsigned int i;
5535
5536 if (vcpu->kvm->arch.has_protected_state &&
5537 vcpu->arch.guest_state_protected)
5538 return -EINVAL;
5539
5540 if (dbgregs->flags)
5541 return -EINVAL;
5542
5543 if (!kvm_dr6_valid(dbgregs->dr6))
5544 return -EINVAL;
5545 if (!kvm_dr7_valid(dbgregs->dr7))
5546 return -EINVAL;
5547
5548 for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5549 vcpu->arch.db[i] = dbgregs->db[i];
5550
5551 kvm_update_dr0123(vcpu);
5552 vcpu->arch.dr6 = dbgregs->dr6;
5553 vcpu->arch.dr7 = dbgregs->dr7;
5554 kvm_update_dr7(vcpu);
5555
5556 return 0;
5557 }
5558
5559
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5560 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5561 u8 *state, unsigned int size)
5562 {
5563 /*
5564 * Only copy state for features that are enabled for the guest. The
5565 * state itself isn't problematic, but setting bits in the header for
5566 * features that are supported in *this* host but not exposed to the
5567 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5568 * compatible host without the features that are NOT exposed to the
5569 * guest.
5570 *
5571 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5572 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5573 * supported by the host.
5574 */
5575 u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5576 XFEATURE_MASK_FPSSE;
5577
5578 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5579 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5580
5581 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5582 supported_xcr0, vcpu->arch.pkru);
5583 return 0;
5584 }
5585
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5586 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5587 struct kvm_xsave *guest_xsave)
5588 {
5589 return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5590 sizeof(guest_xsave->region));
5591 }
5592
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5593 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5594 struct kvm_xsave *guest_xsave)
5595 {
5596 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5597 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5598
5599 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5600 guest_xsave->region,
5601 kvm_caps.supported_xcr0,
5602 &vcpu->arch.pkru);
5603 }
5604
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5605 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5606 struct kvm_xcrs *guest_xcrs)
5607 {
5608 if (vcpu->kvm->arch.has_protected_state &&
5609 vcpu->arch.guest_state_protected)
5610 return -EINVAL;
5611
5612 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5613 guest_xcrs->nr_xcrs = 0;
5614 return 0;
5615 }
5616
5617 guest_xcrs->nr_xcrs = 1;
5618 guest_xcrs->flags = 0;
5619 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5620 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5621 return 0;
5622 }
5623
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5624 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5625 struct kvm_xcrs *guest_xcrs)
5626 {
5627 int i, r = 0;
5628
5629 if (vcpu->kvm->arch.has_protected_state &&
5630 vcpu->arch.guest_state_protected)
5631 return -EINVAL;
5632
5633 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5634 return -EINVAL;
5635
5636 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5637 return -EINVAL;
5638
5639 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5640 /* Only support XCR0 currently */
5641 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5642 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5643 guest_xcrs->xcrs[i].value);
5644 break;
5645 }
5646 if (r)
5647 r = -EINVAL;
5648 return r;
5649 }
5650
5651 /*
5652 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5653 * stopped by the hypervisor. This function will be called from the host only.
5654 * EINVAL is returned when the host attempts to set the flag for a guest that
5655 * does not support pv clocks.
5656 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5657 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5658 {
5659 if (!vcpu->arch.pv_time.active)
5660 return -EINVAL;
5661 vcpu->arch.pvclock_set_guest_stopped_request = true;
5662 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5663 return 0;
5664 }
5665
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5666 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5667 struct kvm_device_attr *attr)
5668 {
5669 int r;
5670
5671 switch (attr->attr) {
5672 case KVM_VCPU_TSC_OFFSET:
5673 r = 0;
5674 break;
5675 default:
5676 r = -ENXIO;
5677 }
5678
5679 return r;
5680 }
5681
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5682 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5683 struct kvm_device_attr *attr)
5684 {
5685 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5686 int r;
5687
5688 switch (attr->attr) {
5689 case KVM_VCPU_TSC_OFFSET:
5690 r = -EFAULT;
5691 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5692 break;
5693 r = 0;
5694 break;
5695 default:
5696 r = -ENXIO;
5697 }
5698
5699 return r;
5700 }
5701
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5702 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5703 struct kvm_device_attr *attr)
5704 {
5705 u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5706 struct kvm *kvm = vcpu->kvm;
5707 int r;
5708
5709 switch (attr->attr) {
5710 case KVM_VCPU_TSC_OFFSET: {
5711 u64 offset, tsc, ns;
5712 unsigned long flags;
5713 bool matched;
5714
5715 r = -EFAULT;
5716 if (get_user(offset, uaddr))
5717 break;
5718
5719 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5720
5721 matched = (vcpu->arch.virtual_tsc_khz &&
5722 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5723 kvm->arch.last_tsc_offset == offset);
5724
5725 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5726 ns = get_kvmclock_base_ns();
5727
5728 kvm->arch.user_set_tsc = true;
5729 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5730 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5731
5732 r = 0;
5733 break;
5734 }
5735 default:
5736 r = -ENXIO;
5737 }
5738
5739 return r;
5740 }
5741
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5742 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5743 unsigned int ioctl,
5744 void __user *argp)
5745 {
5746 struct kvm_device_attr attr;
5747 int r;
5748
5749 if (copy_from_user(&attr, argp, sizeof(attr)))
5750 return -EFAULT;
5751
5752 if (attr.group != KVM_VCPU_TSC_CTRL)
5753 return -ENXIO;
5754
5755 switch (ioctl) {
5756 case KVM_HAS_DEVICE_ATTR:
5757 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5758 break;
5759 case KVM_GET_DEVICE_ATTR:
5760 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5761 break;
5762 case KVM_SET_DEVICE_ATTR:
5763 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5764 break;
5765 }
5766
5767 return r;
5768 }
5769
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5770 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5771 struct kvm_enable_cap *cap)
5772 {
5773 if (cap->flags)
5774 return -EINVAL;
5775
5776 switch (cap->cap) {
5777 #ifdef CONFIG_KVM_HYPERV
5778 case KVM_CAP_HYPERV_SYNIC2:
5779 if (cap->args[0])
5780 return -EINVAL;
5781 fallthrough;
5782
5783 case KVM_CAP_HYPERV_SYNIC:
5784 if (!irqchip_in_kernel(vcpu->kvm))
5785 return -EINVAL;
5786 return kvm_hv_activate_synic(vcpu, cap->cap ==
5787 KVM_CAP_HYPERV_SYNIC2);
5788 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5789 {
5790 int r;
5791 uint16_t vmcs_version;
5792 void __user *user_ptr;
5793
5794 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5795 return -ENOTTY;
5796 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5797 if (!r) {
5798 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5799 if (copy_to_user(user_ptr, &vmcs_version,
5800 sizeof(vmcs_version)))
5801 r = -EFAULT;
5802 }
5803 return r;
5804 }
5805 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5806 if (!kvm_x86_ops.enable_l2_tlb_flush)
5807 return -ENOTTY;
5808
5809 return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5810
5811 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5812 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5813 #endif
5814
5815 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5816 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5817 return 0;
5818 default:
5819 return -EINVAL;
5820 }
5821 }
5822
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5823 long kvm_arch_vcpu_ioctl(struct file *filp,
5824 unsigned int ioctl, unsigned long arg)
5825 {
5826 struct kvm_vcpu *vcpu = filp->private_data;
5827 void __user *argp = (void __user *)arg;
5828 int r;
5829 union {
5830 struct kvm_sregs2 *sregs2;
5831 struct kvm_lapic_state *lapic;
5832 struct kvm_xsave *xsave;
5833 struct kvm_xcrs *xcrs;
5834 void *buffer;
5835 } u;
5836
5837 vcpu_load(vcpu);
5838
5839 u.buffer = NULL;
5840 switch (ioctl) {
5841 case KVM_GET_LAPIC: {
5842 r = -EINVAL;
5843 if (!lapic_in_kernel(vcpu))
5844 goto out;
5845 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5846
5847 r = -ENOMEM;
5848 if (!u.lapic)
5849 goto out;
5850 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5851 if (r)
5852 goto out;
5853 r = -EFAULT;
5854 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5855 goto out;
5856 r = 0;
5857 break;
5858 }
5859 case KVM_SET_LAPIC: {
5860 r = -EINVAL;
5861 if (!lapic_in_kernel(vcpu))
5862 goto out;
5863 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5864 if (IS_ERR(u.lapic)) {
5865 r = PTR_ERR(u.lapic);
5866 goto out_nofree;
5867 }
5868
5869 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5870 break;
5871 }
5872 case KVM_INTERRUPT: {
5873 struct kvm_interrupt irq;
5874
5875 r = -EFAULT;
5876 if (copy_from_user(&irq, argp, sizeof(irq)))
5877 goto out;
5878 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5879 break;
5880 }
5881 case KVM_NMI: {
5882 r = kvm_vcpu_ioctl_nmi(vcpu);
5883 break;
5884 }
5885 case KVM_SMI: {
5886 r = kvm_inject_smi(vcpu);
5887 break;
5888 }
5889 case KVM_SET_CPUID: {
5890 struct kvm_cpuid __user *cpuid_arg = argp;
5891 struct kvm_cpuid cpuid;
5892
5893 r = -EFAULT;
5894 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5895 goto out;
5896 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5897 break;
5898 }
5899 case KVM_SET_CPUID2: {
5900 struct kvm_cpuid2 __user *cpuid_arg = argp;
5901 struct kvm_cpuid2 cpuid;
5902
5903 r = -EFAULT;
5904 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5905 goto out;
5906 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5907 cpuid_arg->entries);
5908 break;
5909 }
5910 case KVM_GET_CPUID2: {
5911 struct kvm_cpuid2 __user *cpuid_arg = argp;
5912 struct kvm_cpuid2 cpuid;
5913
5914 r = -EFAULT;
5915 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5916 goto out;
5917 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5918 cpuid_arg->entries);
5919 if (r)
5920 goto out;
5921 r = -EFAULT;
5922 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5923 goto out;
5924 r = 0;
5925 break;
5926 }
5927 case KVM_GET_MSRS: {
5928 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5929 r = msr_io(vcpu, argp, do_get_msr, 1);
5930 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5931 break;
5932 }
5933 case KVM_SET_MSRS: {
5934 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5935 r = msr_io(vcpu, argp, do_set_msr, 0);
5936 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5937 break;
5938 }
5939 case KVM_TPR_ACCESS_REPORTING: {
5940 struct kvm_tpr_access_ctl tac;
5941
5942 r = -EFAULT;
5943 if (copy_from_user(&tac, argp, sizeof(tac)))
5944 goto out;
5945 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5946 if (r)
5947 goto out;
5948 r = -EFAULT;
5949 if (copy_to_user(argp, &tac, sizeof(tac)))
5950 goto out;
5951 r = 0;
5952 break;
5953 };
5954 case KVM_SET_VAPIC_ADDR: {
5955 struct kvm_vapic_addr va;
5956 int idx;
5957
5958 r = -EINVAL;
5959 if (!lapic_in_kernel(vcpu))
5960 goto out;
5961 r = -EFAULT;
5962 if (copy_from_user(&va, argp, sizeof(va)))
5963 goto out;
5964 idx = srcu_read_lock(&vcpu->kvm->srcu);
5965 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5966 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5967 break;
5968 }
5969 case KVM_X86_SETUP_MCE: {
5970 u64 mcg_cap;
5971
5972 r = -EFAULT;
5973 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5974 goto out;
5975 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5976 break;
5977 }
5978 case KVM_X86_SET_MCE: {
5979 struct kvm_x86_mce mce;
5980
5981 r = -EFAULT;
5982 if (copy_from_user(&mce, argp, sizeof(mce)))
5983 goto out;
5984 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5985 break;
5986 }
5987 case KVM_GET_VCPU_EVENTS: {
5988 struct kvm_vcpu_events events;
5989
5990 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5991
5992 r = -EFAULT;
5993 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5994 break;
5995 r = 0;
5996 break;
5997 }
5998 case KVM_SET_VCPU_EVENTS: {
5999 struct kvm_vcpu_events events;
6000
6001 r = -EFAULT;
6002 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6003 break;
6004
6005 kvm_vcpu_srcu_read_lock(vcpu);
6006 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6007 kvm_vcpu_srcu_read_unlock(vcpu);
6008 break;
6009 }
6010 case KVM_GET_DEBUGREGS: {
6011 struct kvm_debugregs dbgregs;
6012
6013 r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6014 if (r < 0)
6015 break;
6016
6017 r = -EFAULT;
6018 if (copy_to_user(argp, &dbgregs,
6019 sizeof(struct kvm_debugregs)))
6020 break;
6021 r = 0;
6022 break;
6023 }
6024 case KVM_SET_DEBUGREGS: {
6025 struct kvm_debugregs dbgregs;
6026
6027 r = -EFAULT;
6028 if (copy_from_user(&dbgregs, argp,
6029 sizeof(struct kvm_debugregs)))
6030 break;
6031
6032 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6033 break;
6034 }
6035 case KVM_GET_XSAVE: {
6036 r = -EINVAL;
6037 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6038 break;
6039
6040 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6041 r = -ENOMEM;
6042 if (!u.xsave)
6043 break;
6044
6045 r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6046 if (r < 0)
6047 break;
6048
6049 r = -EFAULT;
6050 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6051 break;
6052 r = 0;
6053 break;
6054 }
6055 case KVM_SET_XSAVE: {
6056 int size = vcpu->arch.guest_fpu.uabi_size;
6057
6058 u.xsave = memdup_user(argp, size);
6059 if (IS_ERR(u.xsave)) {
6060 r = PTR_ERR(u.xsave);
6061 goto out_nofree;
6062 }
6063
6064 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6065 break;
6066 }
6067
6068 case KVM_GET_XSAVE2: {
6069 int size = vcpu->arch.guest_fpu.uabi_size;
6070
6071 u.xsave = kzalloc(size, GFP_KERNEL);
6072 r = -ENOMEM;
6073 if (!u.xsave)
6074 break;
6075
6076 r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6077 if (r < 0)
6078 break;
6079
6080 r = -EFAULT;
6081 if (copy_to_user(argp, u.xsave, size))
6082 break;
6083
6084 r = 0;
6085 break;
6086 }
6087
6088 case KVM_GET_XCRS: {
6089 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6090 r = -ENOMEM;
6091 if (!u.xcrs)
6092 break;
6093
6094 r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6095 if (r < 0)
6096 break;
6097
6098 r = -EFAULT;
6099 if (copy_to_user(argp, u.xcrs,
6100 sizeof(struct kvm_xcrs)))
6101 break;
6102 r = 0;
6103 break;
6104 }
6105 case KVM_SET_XCRS: {
6106 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6107 if (IS_ERR(u.xcrs)) {
6108 r = PTR_ERR(u.xcrs);
6109 goto out_nofree;
6110 }
6111
6112 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6113 break;
6114 }
6115 case KVM_SET_TSC_KHZ: {
6116 u32 user_tsc_khz;
6117
6118 r = -EINVAL;
6119 user_tsc_khz = (u32)arg;
6120
6121 if (kvm_caps.has_tsc_control &&
6122 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6123 goto out;
6124
6125 if (user_tsc_khz == 0)
6126 user_tsc_khz = tsc_khz;
6127
6128 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6129 r = 0;
6130
6131 goto out;
6132 }
6133 case KVM_GET_TSC_KHZ: {
6134 r = vcpu->arch.virtual_tsc_khz;
6135 goto out;
6136 }
6137 case KVM_KVMCLOCK_CTRL: {
6138 r = kvm_set_guest_paused(vcpu);
6139 goto out;
6140 }
6141 case KVM_ENABLE_CAP: {
6142 struct kvm_enable_cap cap;
6143
6144 r = -EFAULT;
6145 if (copy_from_user(&cap, argp, sizeof(cap)))
6146 goto out;
6147 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6148 break;
6149 }
6150 case KVM_GET_NESTED_STATE: {
6151 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6152 u32 user_data_size;
6153
6154 r = -EINVAL;
6155 if (!kvm_x86_ops.nested_ops->get_state)
6156 break;
6157
6158 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6159 r = -EFAULT;
6160 if (get_user(user_data_size, &user_kvm_nested_state->size))
6161 break;
6162
6163 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6164 user_data_size);
6165 if (r < 0)
6166 break;
6167
6168 if (r > user_data_size) {
6169 if (put_user(r, &user_kvm_nested_state->size))
6170 r = -EFAULT;
6171 else
6172 r = -E2BIG;
6173 break;
6174 }
6175
6176 r = 0;
6177 break;
6178 }
6179 case KVM_SET_NESTED_STATE: {
6180 struct kvm_nested_state __user *user_kvm_nested_state = argp;
6181 struct kvm_nested_state kvm_state;
6182 int idx;
6183
6184 r = -EINVAL;
6185 if (!kvm_x86_ops.nested_ops->set_state)
6186 break;
6187
6188 r = -EFAULT;
6189 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6190 break;
6191
6192 r = -EINVAL;
6193 if (kvm_state.size < sizeof(kvm_state))
6194 break;
6195
6196 if (kvm_state.flags &
6197 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6198 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6199 | KVM_STATE_NESTED_GIF_SET))
6200 break;
6201
6202 /* nested_run_pending implies guest_mode. */
6203 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6204 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6205 break;
6206
6207 idx = srcu_read_lock(&vcpu->kvm->srcu);
6208 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6209 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6210 break;
6211 }
6212 #ifdef CONFIG_KVM_HYPERV
6213 case KVM_GET_SUPPORTED_HV_CPUID:
6214 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6215 break;
6216 #endif
6217 #ifdef CONFIG_KVM_XEN
6218 case KVM_XEN_VCPU_GET_ATTR: {
6219 struct kvm_xen_vcpu_attr xva;
6220
6221 r = -EFAULT;
6222 if (copy_from_user(&xva, argp, sizeof(xva)))
6223 goto out;
6224 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6225 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6226 r = -EFAULT;
6227 break;
6228 }
6229 case KVM_XEN_VCPU_SET_ATTR: {
6230 struct kvm_xen_vcpu_attr xva;
6231
6232 r = -EFAULT;
6233 if (copy_from_user(&xva, argp, sizeof(xva)))
6234 goto out;
6235 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6236 break;
6237 }
6238 #endif
6239 case KVM_GET_SREGS2: {
6240 r = -EINVAL;
6241 if (vcpu->kvm->arch.has_protected_state &&
6242 vcpu->arch.guest_state_protected)
6243 goto out;
6244
6245 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6246 r = -ENOMEM;
6247 if (!u.sregs2)
6248 goto out;
6249 __get_sregs2(vcpu, u.sregs2);
6250 r = -EFAULT;
6251 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6252 goto out;
6253 r = 0;
6254 break;
6255 }
6256 case KVM_SET_SREGS2: {
6257 r = -EINVAL;
6258 if (vcpu->kvm->arch.has_protected_state &&
6259 vcpu->arch.guest_state_protected)
6260 goto out;
6261
6262 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6263 if (IS_ERR(u.sregs2)) {
6264 r = PTR_ERR(u.sregs2);
6265 u.sregs2 = NULL;
6266 goto out;
6267 }
6268 r = __set_sregs2(vcpu, u.sregs2);
6269 break;
6270 }
6271 case KVM_HAS_DEVICE_ATTR:
6272 case KVM_GET_DEVICE_ATTR:
6273 case KVM_SET_DEVICE_ATTR:
6274 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6275 break;
6276 default:
6277 r = -EINVAL;
6278 }
6279 out:
6280 kfree(u.buffer);
6281 out_nofree:
6282 vcpu_put(vcpu);
6283 return r;
6284 }
6285
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6286 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6287 {
6288 return VM_FAULT_SIGBUS;
6289 }
6290
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6291 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6292 {
6293 int ret;
6294
6295 if (addr > (unsigned int)(-3 * PAGE_SIZE))
6296 return -EINVAL;
6297 ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6298 return ret;
6299 }
6300
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6301 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6302 u64 ident_addr)
6303 {
6304 return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6305 }
6306
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6307 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6308 unsigned long kvm_nr_mmu_pages)
6309 {
6310 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6311 return -EINVAL;
6312
6313 mutex_lock(&kvm->slots_lock);
6314
6315 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6316 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6317
6318 mutex_unlock(&kvm->slots_lock);
6319 return 0;
6320 }
6321
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6322 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6323 {
6324 struct kvm_pic *pic = kvm->arch.vpic;
6325 int r;
6326
6327 r = 0;
6328 switch (chip->chip_id) {
6329 case KVM_IRQCHIP_PIC_MASTER:
6330 memcpy(&chip->chip.pic, &pic->pics[0],
6331 sizeof(struct kvm_pic_state));
6332 break;
6333 case KVM_IRQCHIP_PIC_SLAVE:
6334 memcpy(&chip->chip.pic, &pic->pics[1],
6335 sizeof(struct kvm_pic_state));
6336 break;
6337 case KVM_IRQCHIP_IOAPIC:
6338 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6339 break;
6340 default:
6341 r = -EINVAL;
6342 break;
6343 }
6344 return r;
6345 }
6346
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6347 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6348 {
6349 struct kvm_pic *pic = kvm->arch.vpic;
6350 int r;
6351
6352 r = 0;
6353 switch (chip->chip_id) {
6354 case KVM_IRQCHIP_PIC_MASTER:
6355 spin_lock(&pic->lock);
6356 memcpy(&pic->pics[0], &chip->chip.pic,
6357 sizeof(struct kvm_pic_state));
6358 spin_unlock(&pic->lock);
6359 break;
6360 case KVM_IRQCHIP_PIC_SLAVE:
6361 spin_lock(&pic->lock);
6362 memcpy(&pic->pics[1], &chip->chip.pic,
6363 sizeof(struct kvm_pic_state));
6364 spin_unlock(&pic->lock);
6365 break;
6366 case KVM_IRQCHIP_IOAPIC:
6367 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6368 break;
6369 default:
6370 r = -EINVAL;
6371 break;
6372 }
6373 kvm_pic_update_irq(pic);
6374 return r;
6375 }
6376
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6377 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6378 {
6379 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6380
6381 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6382
6383 mutex_lock(&kps->lock);
6384 memcpy(ps, &kps->channels, sizeof(*ps));
6385 mutex_unlock(&kps->lock);
6386 return 0;
6387 }
6388
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6389 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6390 {
6391 int i;
6392 struct kvm_pit *pit = kvm->arch.vpit;
6393
6394 mutex_lock(&pit->pit_state.lock);
6395 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6396 for (i = 0; i < 3; i++)
6397 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6398 mutex_unlock(&pit->pit_state.lock);
6399 return 0;
6400 }
6401
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6402 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6403 {
6404 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6405 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6406 sizeof(ps->channels));
6407 ps->flags = kvm->arch.vpit->pit_state.flags;
6408 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6409 memset(&ps->reserved, 0, sizeof(ps->reserved));
6410 return 0;
6411 }
6412
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6413 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6414 {
6415 int start = 0;
6416 int i;
6417 u32 prev_legacy, cur_legacy;
6418 struct kvm_pit *pit = kvm->arch.vpit;
6419
6420 mutex_lock(&pit->pit_state.lock);
6421 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6422 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6423 if (!prev_legacy && cur_legacy)
6424 start = 1;
6425 memcpy(&pit->pit_state.channels, &ps->channels,
6426 sizeof(pit->pit_state.channels));
6427 pit->pit_state.flags = ps->flags;
6428 for (i = 0; i < 3; i++)
6429 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6430 start && i == 0);
6431 mutex_unlock(&pit->pit_state.lock);
6432 return 0;
6433 }
6434
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6435 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6436 struct kvm_reinject_control *control)
6437 {
6438 struct kvm_pit *pit = kvm->arch.vpit;
6439
6440 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6441 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6442 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6443 */
6444 mutex_lock(&pit->pit_state.lock);
6445 kvm_pit_set_reinject(pit, control->pit_reinject);
6446 mutex_unlock(&pit->pit_state.lock);
6447
6448 return 0;
6449 }
6450
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6451 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6452 {
6453
6454 /*
6455 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6456 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6457 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6458 * VM-Exit.
6459 */
6460 struct kvm_vcpu *vcpu;
6461 unsigned long i;
6462
6463 if (!kvm_x86_ops.cpu_dirty_log_size)
6464 return;
6465
6466 kvm_for_each_vcpu(i, vcpu, kvm)
6467 kvm_vcpu_kick(vcpu);
6468 }
6469
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6470 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6471 bool line_status)
6472 {
6473 if (!irqchip_in_kernel(kvm))
6474 return -ENXIO;
6475
6476 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6477 irq_event->irq, irq_event->level,
6478 line_status);
6479 return 0;
6480 }
6481
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6482 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6483 struct kvm_enable_cap *cap)
6484 {
6485 int r;
6486
6487 if (cap->flags)
6488 return -EINVAL;
6489
6490 switch (cap->cap) {
6491 case KVM_CAP_DISABLE_QUIRKS2:
6492 r = -EINVAL;
6493 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6494 break;
6495 fallthrough;
6496 case KVM_CAP_DISABLE_QUIRKS:
6497 kvm->arch.disabled_quirks = cap->args[0];
6498 r = 0;
6499 break;
6500 case KVM_CAP_SPLIT_IRQCHIP: {
6501 mutex_lock(&kvm->lock);
6502 r = -EINVAL;
6503 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6504 goto split_irqchip_unlock;
6505 r = -EEXIST;
6506 if (irqchip_in_kernel(kvm))
6507 goto split_irqchip_unlock;
6508 if (kvm->created_vcpus)
6509 goto split_irqchip_unlock;
6510 /* Pairs with irqchip_in_kernel. */
6511 smp_wmb();
6512 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6513 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6514 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6515 r = 0;
6516 split_irqchip_unlock:
6517 mutex_unlock(&kvm->lock);
6518 break;
6519 }
6520 case KVM_CAP_X2APIC_API:
6521 r = -EINVAL;
6522 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6523 break;
6524
6525 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6526 kvm->arch.x2apic_format = true;
6527 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6528 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6529
6530 r = 0;
6531 break;
6532 case KVM_CAP_X86_DISABLE_EXITS:
6533 r = -EINVAL;
6534 if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6535 break;
6536
6537 mutex_lock(&kvm->lock);
6538 if (kvm->created_vcpus)
6539 goto disable_exits_unlock;
6540
6541 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6542 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6543
6544 if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6545 cpu_smt_possible() &&
6546 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6547 pr_warn_once(SMT_RSB_MSG);
6548
6549 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6550 kvm->arch.pause_in_guest = true;
6551 if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6552 kvm->arch.mwait_in_guest = true;
6553 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6554 kvm->arch.hlt_in_guest = true;
6555 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6556 kvm->arch.cstate_in_guest = true;
6557 r = 0;
6558 disable_exits_unlock:
6559 mutex_unlock(&kvm->lock);
6560 break;
6561 case KVM_CAP_MSR_PLATFORM_INFO:
6562 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6563 r = 0;
6564 break;
6565 case KVM_CAP_EXCEPTION_PAYLOAD:
6566 kvm->arch.exception_payload_enabled = cap->args[0];
6567 r = 0;
6568 break;
6569 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6570 kvm->arch.triple_fault_event = cap->args[0];
6571 r = 0;
6572 break;
6573 case KVM_CAP_X86_USER_SPACE_MSR:
6574 r = -EINVAL;
6575 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6576 break;
6577 kvm->arch.user_space_msr_mask = cap->args[0];
6578 r = 0;
6579 break;
6580 case KVM_CAP_X86_BUS_LOCK_EXIT:
6581 r = -EINVAL;
6582 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6583 break;
6584
6585 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6586 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6587 break;
6588
6589 if (kvm_caps.has_bus_lock_exit &&
6590 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6591 kvm->arch.bus_lock_detection_enabled = true;
6592 r = 0;
6593 break;
6594 #ifdef CONFIG_X86_SGX_KVM
6595 case KVM_CAP_SGX_ATTRIBUTE: {
6596 unsigned long allowed_attributes = 0;
6597
6598 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6599 if (r)
6600 break;
6601
6602 /* KVM only supports the PROVISIONKEY privileged attribute. */
6603 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6604 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6605 kvm->arch.sgx_provisioning_allowed = true;
6606 else
6607 r = -EINVAL;
6608 break;
6609 }
6610 #endif
6611 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6612 r = -EINVAL;
6613 if (!kvm_x86_ops.vm_copy_enc_context_from)
6614 break;
6615
6616 r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6617 break;
6618 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6619 r = -EINVAL;
6620 if (!kvm_x86_ops.vm_move_enc_context_from)
6621 break;
6622
6623 r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6624 break;
6625 case KVM_CAP_EXIT_HYPERCALL:
6626 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6627 r = -EINVAL;
6628 break;
6629 }
6630 kvm->arch.hypercall_exit_enabled = cap->args[0];
6631 r = 0;
6632 break;
6633 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6634 r = -EINVAL;
6635 if (cap->args[0] & ~1)
6636 break;
6637 kvm->arch.exit_on_emulation_error = cap->args[0];
6638 r = 0;
6639 break;
6640 case KVM_CAP_PMU_CAPABILITY:
6641 r = -EINVAL;
6642 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6643 break;
6644
6645 mutex_lock(&kvm->lock);
6646 if (!kvm->created_vcpus) {
6647 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6648 r = 0;
6649 }
6650 mutex_unlock(&kvm->lock);
6651 break;
6652 case KVM_CAP_MAX_VCPU_ID:
6653 r = -EINVAL;
6654 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6655 break;
6656
6657 mutex_lock(&kvm->lock);
6658 if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6659 ;
6660 } else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6661 r = 0;
6662 } else if (!kvm->arch.max_vcpu_ids) {
6663 kvm->arch.max_vcpu_ids = cap->args[0];
6664 r = 0;
6665 }
6666 mutex_unlock(&kvm->lock);
6667 break;
6668 case KVM_CAP_X86_NOTIFY_VMEXIT:
6669 r = -EINVAL;
6670 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6671 break;
6672 if (!kvm_caps.has_notify_vmexit)
6673 break;
6674 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6675 break;
6676 mutex_lock(&kvm->lock);
6677 if (!kvm->created_vcpus) {
6678 kvm->arch.notify_window = cap->args[0] >> 32;
6679 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6680 r = 0;
6681 }
6682 mutex_unlock(&kvm->lock);
6683 break;
6684 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6685 r = -EINVAL;
6686
6687 /*
6688 * Since the risk of disabling NX hugepages is a guest crashing
6689 * the system, ensure the userspace process has permission to
6690 * reboot the system.
6691 *
6692 * Note that unlike the reboot() syscall, the process must have
6693 * this capability in the root namespace because exposing
6694 * /dev/kvm into a container does not limit the scope of the
6695 * iTLB multihit bug to that container. In other words,
6696 * this must use capable(), not ns_capable().
6697 */
6698 if (!capable(CAP_SYS_BOOT)) {
6699 r = -EPERM;
6700 break;
6701 }
6702
6703 if (cap->args[0])
6704 break;
6705
6706 mutex_lock(&kvm->lock);
6707 if (!kvm->created_vcpus) {
6708 kvm->arch.disable_nx_huge_pages = true;
6709 r = 0;
6710 }
6711 mutex_unlock(&kvm->lock);
6712 break;
6713 case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6714 u64 bus_cycle_ns = cap->args[0];
6715 u64 unused;
6716
6717 /*
6718 * Guard against overflow in tmict_to_ns(). 128 is the highest
6719 * divide value that can be programmed in APIC_TDCR.
6720 */
6721 r = -EINVAL;
6722 if (!bus_cycle_ns ||
6723 check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6724 break;
6725
6726 r = 0;
6727 mutex_lock(&kvm->lock);
6728 if (!irqchip_in_kernel(kvm))
6729 r = -ENXIO;
6730 else if (kvm->created_vcpus)
6731 r = -EINVAL;
6732 else
6733 kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6734 mutex_unlock(&kvm->lock);
6735 break;
6736 }
6737 default:
6738 r = -EINVAL;
6739 break;
6740 }
6741 return r;
6742 }
6743
kvm_alloc_msr_filter(bool default_allow)6744 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6745 {
6746 struct kvm_x86_msr_filter *msr_filter;
6747
6748 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6749 if (!msr_filter)
6750 return NULL;
6751
6752 msr_filter->default_allow = default_allow;
6753 return msr_filter;
6754 }
6755
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6756 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6757 {
6758 u32 i;
6759
6760 if (!msr_filter)
6761 return;
6762
6763 for (i = 0; i < msr_filter->count; i++)
6764 kfree(msr_filter->ranges[i].bitmap);
6765
6766 kfree(msr_filter);
6767 }
6768
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6769 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6770 struct kvm_msr_filter_range *user_range)
6771 {
6772 unsigned long *bitmap;
6773 size_t bitmap_size;
6774
6775 if (!user_range->nmsrs)
6776 return 0;
6777
6778 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6779 return -EINVAL;
6780
6781 if (!user_range->flags)
6782 return -EINVAL;
6783
6784 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6785 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6786 return -EINVAL;
6787
6788 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6789 if (IS_ERR(bitmap))
6790 return PTR_ERR(bitmap);
6791
6792 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6793 .flags = user_range->flags,
6794 .base = user_range->base,
6795 .nmsrs = user_range->nmsrs,
6796 .bitmap = bitmap,
6797 };
6798
6799 msr_filter->count++;
6800 return 0;
6801 }
6802
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6803 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6804 struct kvm_msr_filter *filter)
6805 {
6806 struct kvm_x86_msr_filter *new_filter, *old_filter;
6807 bool default_allow;
6808 bool empty = true;
6809 int r;
6810 u32 i;
6811
6812 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6813 return -EINVAL;
6814
6815 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6816 empty &= !filter->ranges[i].nmsrs;
6817
6818 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6819 if (empty && !default_allow)
6820 return -EINVAL;
6821
6822 new_filter = kvm_alloc_msr_filter(default_allow);
6823 if (!new_filter)
6824 return -ENOMEM;
6825
6826 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6827 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6828 if (r) {
6829 kvm_free_msr_filter(new_filter);
6830 return r;
6831 }
6832 }
6833
6834 mutex_lock(&kvm->lock);
6835 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6836 mutex_is_locked(&kvm->lock));
6837 mutex_unlock(&kvm->lock);
6838 synchronize_srcu(&kvm->srcu);
6839
6840 kvm_free_msr_filter(old_filter);
6841
6842 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6843
6844 return 0;
6845 }
6846
6847 #ifdef CONFIG_KVM_COMPAT
6848 /* for KVM_X86_SET_MSR_FILTER */
6849 struct kvm_msr_filter_range_compat {
6850 __u32 flags;
6851 __u32 nmsrs;
6852 __u32 base;
6853 __u32 bitmap;
6854 };
6855
6856 struct kvm_msr_filter_compat {
6857 __u32 flags;
6858 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6859 };
6860
6861 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6862
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6863 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6864 unsigned long arg)
6865 {
6866 void __user *argp = (void __user *)arg;
6867 struct kvm *kvm = filp->private_data;
6868 long r = -ENOTTY;
6869
6870 switch (ioctl) {
6871 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6872 struct kvm_msr_filter __user *user_msr_filter = argp;
6873 struct kvm_msr_filter_compat filter_compat;
6874 struct kvm_msr_filter filter;
6875 int i;
6876
6877 if (copy_from_user(&filter_compat, user_msr_filter,
6878 sizeof(filter_compat)))
6879 return -EFAULT;
6880
6881 filter.flags = filter_compat.flags;
6882 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6883 struct kvm_msr_filter_range_compat *cr;
6884
6885 cr = &filter_compat.ranges[i];
6886 filter.ranges[i] = (struct kvm_msr_filter_range) {
6887 .flags = cr->flags,
6888 .nmsrs = cr->nmsrs,
6889 .base = cr->base,
6890 .bitmap = (__u8 *)(ulong)cr->bitmap,
6891 };
6892 }
6893
6894 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6895 break;
6896 }
6897 }
6898
6899 return r;
6900 }
6901 #endif
6902
6903 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6904 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6905 {
6906 struct kvm_vcpu *vcpu;
6907 unsigned long i;
6908 int ret = 0;
6909
6910 mutex_lock(&kvm->lock);
6911 kvm_for_each_vcpu(i, vcpu, kvm) {
6912 if (!vcpu->arch.pv_time.active)
6913 continue;
6914
6915 ret = kvm_set_guest_paused(vcpu);
6916 if (ret) {
6917 kvm_err("Failed to pause guest VCPU%d: %d\n",
6918 vcpu->vcpu_id, ret);
6919 break;
6920 }
6921 }
6922 mutex_unlock(&kvm->lock);
6923
6924 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6925 }
6926
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6927 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6928 {
6929 switch (state) {
6930 case PM_HIBERNATION_PREPARE:
6931 case PM_SUSPEND_PREPARE:
6932 return kvm_arch_suspend_notifier(kvm);
6933 }
6934
6935 return NOTIFY_DONE;
6936 }
6937 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6938
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6939 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6940 {
6941 struct kvm_clock_data data = { 0 };
6942
6943 get_kvmclock(kvm, &data);
6944 if (copy_to_user(argp, &data, sizeof(data)))
6945 return -EFAULT;
6946
6947 return 0;
6948 }
6949
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6950 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6951 {
6952 struct kvm_arch *ka = &kvm->arch;
6953 struct kvm_clock_data data;
6954 u64 now_raw_ns;
6955
6956 if (copy_from_user(&data, argp, sizeof(data)))
6957 return -EFAULT;
6958
6959 /*
6960 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6961 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6962 */
6963 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6964 return -EINVAL;
6965
6966 kvm_hv_request_tsc_page_update(kvm);
6967 kvm_start_pvclock_update(kvm);
6968 pvclock_update_vm_gtod_copy(kvm);
6969
6970 /*
6971 * This pairs with kvm_guest_time_update(): when masterclock is
6972 * in use, we use master_kernel_ns + kvmclock_offset to set
6973 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6974 * is slightly ahead) here we risk going negative on unsigned
6975 * 'system_time' when 'data.clock' is very small.
6976 */
6977 if (data.flags & KVM_CLOCK_REALTIME) {
6978 u64 now_real_ns = ktime_get_real_ns();
6979
6980 /*
6981 * Avoid stepping the kvmclock backwards.
6982 */
6983 if (now_real_ns > data.realtime)
6984 data.clock += now_real_ns - data.realtime;
6985 }
6986
6987 if (ka->use_master_clock)
6988 now_raw_ns = ka->master_kernel_ns;
6989 else
6990 now_raw_ns = get_kvmclock_base_ns();
6991 ka->kvmclock_offset = data.clock - now_raw_ns;
6992 kvm_end_pvclock_update(kvm);
6993 return 0;
6994 }
6995
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6996 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6997 {
6998 struct kvm *kvm = filp->private_data;
6999 void __user *argp = (void __user *)arg;
7000 int r = -ENOTTY;
7001 /*
7002 * This union makes it completely explicit to gcc-3.x
7003 * that these two variables' stack usage should be
7004 * combined, not added together.
7005 */
7006 union {
7007 struct kvm_pit_state ps;
7008 struct kvm_pit_state2 ps2;
7009 struct kvm_pit_config pit_config;
7010 } u;
7011
7012 switch (ioctl) {
7013 case KVM_SET_TSS_ADDR:
7014 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7015 break;
7016 case KVM_SET_IDENTITY_MAP_ADDR: {
7017 u64 ident_addr;
7018
7019 mutex_lock(&kvm->lock);
7020 r = -EINVAL;
7021 if (kvm->created_vcpus)
7022 goto set_identity_unlock;
7023 r = -EFAULT;
7024 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7025 goto set_identity_unlock;
7026 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7027 set_identity_unlock:
7028 mutex_unlock(&kvm->lock);
7029 break;
7030 }
7031 case KVM_SET_NR_MMU_PAGES:
7032 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7033 break;
7034 case KVM_CREATE_IRQCHIP: {
7035 mutex_lock(&kvm->lock);
7036
7037 r = -EEXIST;
7038 if (irqchip_in_kernel(kvm))
7039 goto create_irqchip_unlock;
7040
7041 r = -EINVAL;
7042 if (kvm->created_vcpus)
7043 goto create_irqchip_unlock;
7044
7045 r = kvm_pic_init(kvm);
7046 if (r)
7047 goto create_irqchip_unlock;
7048
7049 r = kvm_ioapic_init(kvm);
7050 if (r) {
7051 kvm_pic_destroy(kvm);
7052 goto create_irqchip_unlock;
7053 }
7054
7055 r = kvm_setup_default_irq_routing(kvm);
7056 if (r) {
7057 kvm_ioapic_destroy(kvm);
7058 kvm_pic_destroy(kvm);
7059 goto create_irqchip_unlock;
7060 }
7061 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7062 smp_wmb();
7063 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7064 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7065 create_irqchip_unlock:
7066 mutex_unlock(&kvm->lock);
7067 break;
7068 }
7069 case KVM_CREATE_PIT:
7070 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7071 goto create_pit;
7072 case KVM_CREATE_PIT2:
7073 r = -EFAULT;
7074 if (copy_from_user(&u.pit_config, argp,
7075 sizeof(struct kvm_pit_config)))
7076 goto out;
7077 create_pit:
7078 mutex_lock(&kvm->lock);
7079 r = -EEXIST;
7080 if (kvm->arch.vpit)
7081 goto create_pit_unlock;
7082 r = -ENOENT;
7083 if (!pic_in_kernel(kvm))
7084 goto create_pit_unlock;
7085 r = -ENOMEM;
7086 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7087 if (kvm->arch.vpit)
7088 r = 0;
7089 create_pit_unlock:
7090 mutex_unlock(&kvm->lock);
7091 break;
7092 case KVM_GET_IRQCHIP: {
7093 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7094 struct kvm_irqchip *chip;
7095
7096 chip = memdup_user(argp, sizeof(*chip));
7097 if (IS_ERR(chip)) {
7098 r = PTR_ERR(chip);
7099 goto out;
7100 }
7101
7102 r = -ENXIO;
7103 if (!irqchip_kernel(kvm))
7104 goto get_irqchip_out;
7105 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7106 if (r)
7107 goto get_irqchip_out;
7108 r = -EFAULT;
7109 if (copy_to_user(argp, chip, sizeof(*chip)))
7110 goto get_irqchip_out;
7111 r = 0;
7112 get_irqchip_out:
7113 kfree(chip);
7114 break;
7115 }
7116 case KVM_SET_IRQCHIP: {
7117 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7118 struct kvm_irqchip *chip;
7119
7120 chip = memdup_user(argp, sizeof(*chip));
7121 if (IS_ERR(chip)) {
7122 r = PTR_ERR(chip);
7123 goto out;
7124 }
7125
7126 r = -ENXIO;
7127 if (!irqchip_kernel(kvm))
7128 goto set_irqchip_out;
7129 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7130 set_irqchip_out:
7131 kfree(chip);
7132 break;
7133 }
7134 case KVM_GET_PIT: {
7135 r = -EFAULT;
7136 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7137 goto out;
7138 r = -ENXIO;
7139 if (!kvm->arch.vpit)
7140 goto out;
7141 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7142 if (r)
7143 goto out;
7144 r = -EFAULT;
7145 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7146 goto out;
7147 r = 0;
7148 break;
7149 }
7150 case KVM_SET_PIT: {
7151 r = -EFAULT;
7152 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7153 goto out;
7154 mutex_lock(&kvm->lock);
7155 r = -ENXIO;
7156 if (!kvm->arch.vpit)
7157 goto set_pit_out;
7158 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7159 set_pit_out:
7160 mutex_unlock(&kvm->lock);
7161 break;
7162 }
7163 case KVM_GET_PIT2: {
7164 r = -ENXIO;
7165 if (!kvm->arch.vpit)
7166 goto out;
7167 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7168 if (r)
7169 goto out;
7170 r = -EFAULT;
7171 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7172 goto out;
7173 r = 0;
7174 break;
7175 }
7176 case KVM_SET_PIT2: {
7177 r = -EFAULT;
7178 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7179 goto out;
7180 mutex_lock(&kvm->lock);
7181 r = -ENXIO;
7182 if (!kvm->arch.vpit)
7183 goto set_pit2_out;
7184 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7185 set_pit2_out:
7186 mutex_unlock(&kvm->lock);
7187 break;
7188 }
7189 case KVM_REINJECT_CONTROL: {
7190 struct kvm_reinject_control control;
7191 r = -EFAULT;
7192 if (copy_from_user(&control, argp, sizeof(control)))
7193 goto out;
7194 r = -ENXIO;
7195 if (!kvm->arch.vpit)
7196 goto out;
7197 r = kvm_vm_ioctl_reinject(kvm, &control);
7198 break;
7199 }
7200 case KVM_SET_BOOT_CPU_ID:
7201 r = 0;
7202 mutex_lock(&kvm->lock);
7203 if (kvm->created_vcpus)
7204 r = -EBUSY;
7205 else if (arg > KVM_MAX_VCPU_IDS ||
7206 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7207 r = -EINVAL;
7208 else
7209 kvm->arch.bsp_vcpu_id = arg;
7210 mutex_unlock(&kvm->lock);
7211 break;
7212 #ifdef CONFIG_KVM_XEN
7213 case KVM_XEN_HVM_CONFIG: {
7214 struct kvm_xen_hvm_config xhc;
7215 r = -EFAULT;
7216 if (copy_from_user(&xhc, argp, sizeof(xhc)))
7217 goto out;
7218 r = kvm_xen_hvm_config(kvm, &xhc);
7219 break;
7220 }
7221 case KVM_XEN_HVM_GET_ATTR: {
7222 struct kvm_xen_hvm_attr xha;
7223
7224 r = -EFAULT;
7225 if (copy_from_user(&xha, argp, sizeof(xha)))
7226 goto out;
7227 r = kvm_xen_hvm_get_attr(kvm, &xha);
7228 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7229 r = -EFAULT;
7230 break;
7231 }
7232 case KVM_XEN_HVM_SET_ATTR: {
7233 struct kvm_xen_hvm_attr xha;
7234
7235 r = -EFAULT;
7236 if (copy_from_user(&xha, argp, sizeof(xha)))
7237 goto out;
7238 r = kvm_xen_hvm_set_attr(kvm, &xha);
7239 break;
7240 }
7241 case KVM_XEN_HVM_EVTCHN_SEND: {
7242 struct kvm_irq_routing_xen_evtchn uxe;
7243
7244 r = -EFAULT;
7245 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7246 goto out;
7247 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7248 break;
7249 }
7250 #endif
7251 case KVM_SET_CLOCK:
7252 r = kvm_vm_ioctl_set_clock(kvm, argp);
7253 break;
7254 case KVM_GET_CLOCK:
7255 r = kvm_vm_ioctl_get_clock(kvm, argp);
7256 break;
7257 case KVM_SET_TSC_KHZ: {
7258 u32 user_tsc_khz;
7259
7260 r = -EINVAL;
7261 user_tsc_khz = (u32)arg;
7262
7263 if (kvm_caps.has_tsc_control &&
7264 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7265 goto out;
7266
7267 if (user_tsc_khz == 0)
7268 user_tsc_khz = tsc_khz;
7269
7270 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7271 r = 0;
7272
7273 goto out;
7274 }
7275 case KVM_GET_TSC_KHZ: {
7276 r = READ_ONCE(kvm->arch.default_tsc_khz);
7277 goto out;
7278 }
7279 case KVM_MEMORY_ENCRYPT_OP: {
7280 r = -ENOTTY;
7281 if (!kvm_x86_ops.mem_enc_ioctl)
7282 goto out;
7283
7284 r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7285 break;
7286 }
7287 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7288 struct kvm_enc_region region;
7289
7290 r = -EFAULT;
7291 if (copy_from_user(®ion, argp, sizeof(region)))
7292 goto out;
7293
7294 r = -ENOTTY;
7295 if (!kvm_x86_ops.mem_enc_register_region)
7296 goto out;
7297
7298 r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion);
7299 break;
7300 }
7301 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7302 struct kvm_enc_region region;
7303
7304 r = -EFAULT;
7305 if (copy_from_user(®ion, argp, sizeof(region)))
7306 goto out;
7307
7308 r = -ENOTTY;
7309 if (!kvm_x86_ops.mem_enc_unregister_region)
7310 goto out;
7311
7312 r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion);
7313 break;
7314 }
7315 #ifdef CONFIG_KVM_HYPERV
7316 case KVM_HYPERV_EVENTFD: {
7317 struct kvm_hyperv_eventfd hvevfd;
7318
7319 r = -EFAULT;
7320 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7321 goto out;
7322 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7323 break;
7324 }
7325 #endif
7326 case KVM_SET_PMU_EVENT_FILTER:
7327 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7328 break;
7329 case KVM_X86_SET_MSR_FILTER: {
7330 struct kvm_msr_filter __user *user_msr_filter = argp;
7331 struct kvm_msr_filter filter;
7332
7333 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7334 return -EFAULT;
7335
7336 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7337 break;
7338 }
7339 default:
7340 r = -ENOTTY;
7341 }
7342 out:
7343 return r;
7344 }
7345
kvm_probe_feature_msr(u32 msr_index)7346 static void kvm_probe_feature_msr(u32 msr_index)
7347 {
7348 u64 data;
7349
7350 if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7351 return;
7352
7353 msr_based_features[num_msr_based_features++] = msr_index;
7354 }
7355
kvm_probe_msr_to_save(u32 msr_index)7356 static void kvm_probe_msr_to_save(u32 msr_index)
7357 {
7358 u32 dummy[2];
7359
7360 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7361 return;
7362
7363 /*
7364 * Even MSRs that are valid in the host may not be exposed to guests in
7365 * some cases.
7366 */
7367 switch (msr_index) {
7368 case MSR_IA32_BNDCFGS:
7369 if (!kvm_mpx_supported())
7370 return;
7371 break;
7372 case MSR_TSC_AUX:
7373 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7374 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7375 return;
7376 break;
7377 case MSR_IA32_UMWAIT_CONTROL:
7378 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7379 return;
7380 break;
7381 case MSR_IA32_RTIT_CTL:
7382 case MSR_IA32_RTIT_STATUS:
7383 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7384 return;
7385 break;
7386 case MSR_IA32_RTIT_CR3_MATCH:
7387 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7388 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7389 return;
7390 break;
7391 case MSR_IA32_RTIT_OUTPUT_BASE:
7392 case MSR_IA32_RTIT_OUTPUT_MASK:
7393 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7394 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7395 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7396 return;
7397 break;
7398 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7399 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7400 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7401 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7402 return;
7403 break;
7404 case MSR_ARCH_PERFMON_PERFCTR0 ...
7405 MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7406 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7407 kvm_pmu_cap.num_counters_gp)
7408 return;
7409 break;
7410 case MSR_ARCH_PERFMON_EVENTSEL0 ...
7411 MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7412 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7413 kvm_pmu_cap.num_counters_gp)
7414 return;
7415 break;
7416 case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7417 MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7418 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7419 kvm_pmu_cap.num_counters_fixed)
7420 return;
7421 break;
7422 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7423 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7424 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7425 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7426 return;
7427 break;
7428 case MSR_IA32_XFD:
7429 case MSR_IA32_XFD_ERR:
7430 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7431 return;
7432 break;
7433 case MSR_IA32_TSX_CTRL:
7434 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7435 return;
7436 break;
7437 default:
7438 break;
7439 }
7440
7441 msrs_to_save[num_msrs_to_save++] = msr_index;
7442 }
7443
kvm_init_msr_lists(void)7444 static void kvm_init_msr_lists(void)
7445 {
7446 unsigned i;
7447
7448 BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7449 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7450
7451 num_msrs_to_save = 0;
7452 num_emulated_msrs = 0;
7453 num_msr_based_features = 0;
7454
7455 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7456 kvm_probe_msr_to_save(msrs_to_save_base[i]);
7457
7458 if (enable_pmu) {
7459 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7460 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7461 }
7462
7463 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7464 if (!kvm_x86_call(has_emulated_msr)(NULL,
7465 emulated_msrs_all[i]))
7466 continue;
7467
7468 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7469 }
7470
7471 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7472 kvm_probe_feature_msr(i);
7473
7474 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7475 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7476 }
7477
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7478 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7479 const void *v)
7480 {
7481 int handled = 0;
7482 int n;
7483
7484 do {
7485 n = min(len, 8);
7486 if (!(lapic_in_kernel(vcpu) &&
7487 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7488 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7489 break;
7490 handled += n;
7491 addr += n;
7492 len -= n;
7493 v += n;
7494 } while (len);
7495
7496 return handled;
7497 }
7498
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7499 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7500 {
7501 int handled = 0;
7502 int n;
7503
7504 do {
7505 n = min(len, 8);
7506 if (!(lapic_in_kernel(vcpu) &&
7507 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7508 addr, n, v))
7509 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7510 break;
7511 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7512 handled += n;
7513 addr += n;
7514 len -= n;
7515 v += n;
7516 } while (len);
7517
7518 return handled;
7519 }
7520
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7521 void kvm_set_segment(struct kvm_vcpu *vcpu,
7522 struct kvm_segment *var, int seg)
7523 {
7524 kvm_x86_call(set_segment)(vcpu, var, seg);
7525 }
7526
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7527 void kvm_get_segment(struct kvm_vcpu *vcpu,
7528 struct kvm_segment *var, int seg)
7529 {
7530 kvm_x86_call(get_segment)(vcpu, var, seg);
7531 }
7532
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7533 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7534 struct x86_exception *exception)
7535 {
7536 struct kvm_mmu *mmu = vcpu->arch.mmu;
7537 gpa_t t_gpa;
7538
7539 BUG_ON(!mmu_is_nested(vcpu));
7540
7541 /* NPT walks are always user-walks */
7542 access |= PFERR_USER_MASK;
7543 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7544
7545 return t_gpa;
7546 }
7547
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7548 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7549 struct x86_exception *exception)
7550 {
7551 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552
7553 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7554 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7555 }
7556 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7557
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7558 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7559 struct x86_exception *exception)
7560 {
7561 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7562
7563 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7564 access |= PFERR_WRITE_MASK;
7565 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7568
7569 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7570 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7571 struct x86_exception *exception)
7572 {
7573 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7574
7575 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7576 }
7577
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7578 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7579 struct kvm_vcpu *vcpu, u64 access,
7580 struct x86_exception *exception)
7581 {
7582 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583 void *data = val;
7584 int r = X86EMUL_CONTINUE;
7585
7586 while (bytes) {
7587 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7588 unsigned offset = addr & (PAGE_SIZE-1);
7589 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7590 int ret;
7591
7592 if (gpa == INVALID_GPA)
7593 return X86EMUL_PROPAGATE_FAULT;
7594 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7595 offset, toread);
7596 if (ret < 0) {
7597 r = X86EMUL_IO_NEEDED;
7598 goto out;
7599 }
7600
7601 bytes -= toread;
7602 data += toread;
7603 addr += toread;
7604 }
7605 out:
7606 return r;
7607 }
7608
7609 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7610 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7611 gva_t addr, void *val, unsigned int bytes,
7612 struct x86_exception *exception)
7613 {
7614 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7615 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7616 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7617 unsigned offset;
7618 int ret;
7619
7620 /* Inline kvm_read_guest_virt_helper for speed. */
7621 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7622 exception);
7623 if (unlikely(gpa == INVALID_GPA))
7624 return X86EMUL_PROPAGATE_FAULT;
7625
7626 offset = addr & (PAGE_SIZE-1);
7627 if (WARN_ON(offset + bytes > PAGE_SIZE))
7628 bytes = (unsigned)PAGE_SIZE - offset;
7629 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7630 offset, bytes);
7631 if (unlikely(ret < 0))
7632 return X86EMUL_IO_NEEDED;
7633
7634 return X86EMUL_CONTINUE;
7635 }
7636
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7637 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7638 gva_t addr, void *val, unsigned int bytes,
7639 struct x86_exception *exception)
7640 {
7641 u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7642
7643 /*
7644 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7645 * is returned, but our callers are not ready for that and they blindly
7646 * call kvm_inject_page_fault. Ensure that they at least do not leak
7647 * uninitialized kernel stack memory into cr2 and error code.
7648 */
7649 memset(exception, 0, sizeof(*exception));
7650 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7651 exception);
7652 }
7653 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7654
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7655 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7656 gva_t addr, void *val, unsigned int bytes,
7657 struct x86_exception *exception, bool system)
7658 {
7659 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7660 u64 access = 0;
7661
7662 if (system)
7663 access |= PFERR_IMPLICIT_ACCESS;
7664 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7665 access |= PFERR_USER_MASK;
7666
7667 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7668 }
7669
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7670 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7671 struct kvm_vcpu *vcpu, u64 access,
7672 struct x86_exception *exception)
7673 {
7674 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7675 void *data = val;
7676 int r = X86EMUL_CONTINUE;
7677
7678 while (bytes) {
7679 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7680 unsigned offset = addr & (PAGE_SIZE-1);
7681 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7682 int ret;
7683
7684 if (gpa == INVALID_GPA)
7685 return X86EMUL_PROPAGATE_FAULT;
7686 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7687 if (ret < 0) {
7688 r = X86EMUL_IO_NEEDED;
7689 goto out;
7690 }
7691
7692 bytes -= towrite;
7693 data += towrite;
7694 addr += towrite;
7695 }
7696 out:
7697 return r;
7698 }
7699
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7700 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7701 unsigned int bytes, struct x86_exception *exception,
7702 bool system)
7703 {
7704 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7705 u64 access = PFERR_WRITE_MASK;
7706
7707 if (system)
7708 access |= PFERR_IMPLICIT_ACCESS;
7709 else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7710 access |= PFERR_USER_MASK;
7711
7712 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7713 access, exception);
7714 }
7715
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7716 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7717 unsigned int bytes, struct x86_exception *exception)
7718 {
7719 /* kvm_write_guest_virt_system can pull in tons of pages. */
7720 vcpu->arch.l1tf_flush_l1d = true;
7721
7722 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7723 PFERR_WRITE_MASK, exception);
7724 }
7725 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7726
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7727 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7728 void *insn, int insn_len)
7729 {
7730 return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7731 insn, insn_len);
7732 }
7733
handle_ud(struct kvm_vcpu * vcpu)7734 int handle_ud(struct kvm_vcpu *vcpu)
7735 {
7736 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7737 int fep_flags = READ_ONCE(force_emulation_prefix);
7738 int emul_type = EMULTYPE_TRAP_UD;
7739 char sig[5]; /* ud2; .ascii "kvm" */
7740 struct x86_exception e;
7741 int r;
7742
7743 r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7744 if (r != X86EMUL_CONTINUE)
7745 return 1;
7746
7747 if (fep_flags &&
7748 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7749 sig, sizeof(sig), &e) == 0 &&
7750 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7751 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7752 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7753 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7754 emul_type = EMULTYPE_TRAP_UD_FORCED;
7755 }
7756
7757 return kvm_emulate_instruction(vcpu, emul_type);
7758 }
7759 EXPORT_SYMBOL_GPL(handle_ud);
7760
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7761 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7762 gpa_t gpa, bool write)
7763 {
7764 /* For APIC access vmexit */
7765 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7766 return 1;
7767
7768 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7769 trace_vcpu_match_mmio(gva, gpa, write, true);
7770 return 1;
7771 }
7772
7773 return 0;
7774 }
7775
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7776 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7777 gpa_t *gpa, struct x86_exception *exception,
7778 bool write)
7779 {
7780 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7781 u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7782 | (write ? PFERR_WRITE_MASK : 0);
7783
7784 /*
7785 * currently PKRU is only applied to ept enabled guest so
7786 * there is no pkey in EPT page table for L1 guest or EPT
7787 * shadow page table for L2 guest.
7788 */
7789 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7790 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7791 vcpu->arch.mmio_access, 0, access))) {
7792 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7793 (gva & (PAGE_SIZE - 1));
7794 trace_vcpu_match_mmio(gva, *gpa, write, false);
7795 return 1;
7796 }
7797
7798 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7799
7800 if (*gpa == INVALID_GPA)
7801 return -1;
7802
7803 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7804 }
7805
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7806 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7807 const void *val, int bytes)
7808 {
7809 int ret;
7810
7811 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7812 if (ret < 0)
7813 return 0;
7814 kvm_page_track_write(vcpu, gpa, val, bytes);
7815 return 1;
7816 }
7817
7818 struct read_write_emulator_ops {
7819 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7820 int bytes);
7821 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7822 void *val, int bytes);
7823 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7824 int bytes, void *val);
7825 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7826 void *val, int bytes);
7827 bool write;
7828 };
7829
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7830 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7831 {
7832 if (vcpu->mmio_read_completed) {
7833 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7834 vcpu->mmio_fragments[0].gpa, val);
7835 vcpu->mmio_read_completed = 0;
7836 return 1;
7837 }
7838
7839 return 0;
7840 }
7841
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7842 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7843 void *val, int bytes)
7844 {
7845 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7846 }
7847
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7848 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7849 void *val, int bytes)
7850 {
7851 return emulator_write_phys(vcpu, gpa, val, bytes);
7852 }
7853
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7854 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7855 {
7856 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7857 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7858 }
7859
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7860 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7861 void *val, int bytes)
7862 {
7863 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7864 return X86EMUL_IO_NEEDED;
7865 }
7866
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7867 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7868 void *val, int bytes)
7869 {
7870 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7871
7872 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7873 return X86EMUL_CONTINUE;
7874 }
7875
7876 static const struct read_write_emulator_ops read_emultor = {
7877 .read_write_prepare = read_prepare,
7878 .read_write_emulate = read_emulate,
7879 .read_write_mmio = vcpu_mmio_read,
7880 .read_write_exit_mmio = read_exit_mmio,
7881 };
7882
7883 static const struct read_write_emulator_ops write_emultor = {
7884 .read_write_emulate = write_emulate,
7885 .read_write_mmio = write_mmio,
7886 .read_write_exit_mmio = write_exit_mmio,
7887 .write = true,
7888 };
7889
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7890 static int emulator_read_write_onepage(unsigned long addr, void *val,
7891 unsigned int bytes,
7892 struct x86_exception *exception,
7893 struct kvm_vcpu *vcpu,
7894 const struct read_write_emulator_ops *ops)
7895 {
7896 gpa_t gpa;
7897 int handled, ret;
7898 bool write = ops->write;
7899 struct kvm_mmio_fragment *frag;
7900 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7901
7902 /*
7903 * If the exit was due to a NPF we may already have a GPA.
7904 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7905 * Note, this cannot be used on string operations since string
7906 * operation using rep will only have the initial GPA from the NPF
7907 * occurred.
7908 */
7909 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7910 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7911 gpa = ctxt->gpa_val;
7912 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7913 } else {
7914 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7915 if (ret < 0)
7916 return X86EMUL_PROPAGATE_FAULT;
7917 }
7918
7919 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7920 return X86EMUL_CONTINUE;
7921
7922 /*
7923 * Is this MMIO handled locally?
7924 */
7925 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7926 if (handled == bytes)
7927 return X86EMUL_CONTINUE;
7928
7929 gpa += handled;
7930 bytes -= handled;
7931 val += handled;
7932
7933 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7934 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7935 frag->gpa = gpa;
7936 frag->data = val;
7937 frag->len = bytes;
7938 return X86EMUL_CONTINUE;
7939 }
7940
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7941 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7942 unsigned long addr,
7943 void *val, unsigned int bytes,
7944 struct x86_exception *exception,
7945 const struct read_write_emulator_ops *ops)
7946 {
7947 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7948 gpa_t gpa;
7949 int rc;
7950
7951 if (ops->read_write_prepare &&
7952 ops->read_write_prepare(vcpu, val, bytes))
7953 return X86EMUL_CONTINUE;
7954
7955 vcpu->mmio_nr_fragments = 0;
7956
7957 /* Crossing a page boundary? */
7958 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7959 int now;
7960
7961 now = -addr & ~PAGE_MASK;
7962 rc = emulator_read_write_onepage(addr, val, now, exception,
7963 vcpu, ops);
7964
7965 if (rc != X86EMUL_CONTINUE)
7966 return rc;
7967 addr += now;
7968 if (ctxt->mode != X86EMUL_MODE_PROT64)
7969 addr = (u32)addr;
7970 val += now;
7971 bytes -= now;
7972 }
7973
7974 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7975 vcpu, ops);
7976 if (rc != X86EMUL_CONTINUE)
7977 return rc;
7978
7979 if (!vcpu->mmio_nr_fragments)
7980 return rc;
7981
7982 gpa = vcpu->mmio_fragments[0].gpa;
7983
7984 vcpu->mmio_needed = 1;
7985 vcpu->mmio_cur_fragment = 0;
7986
7987 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7988 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7989 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7990 vcpu->run->mmio.phys_addr = gpa;
7991
7992 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7993 }
7994
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7995 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7996 unsigned long addr,
7997 void *val,
7998 unsigned int bytes,
7999 struct x86_exception *exception)
8000 {
8001 return emulator_read_write(ctxt, addr, val, bytes,
8002 exception, &read_emultor);
8003 }
8004
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8005 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8006 unsigned long addr,
8007 const void *val,
8008 unsigned int bytes,
8009 struct x86_exception *exception)
8010 {
8011 return emulator_read_write(ctxt, addr, (void *)val, bytes,
8012 exception, &write_emultor);
8013 }
8014
8015 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8016 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8017
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8018 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8019 unsigned long addr,
8020 const void *old,
8021 const void *new,
8022 unsigned int bytes,
8023 struct x86_exception *exception)
8024 {
8025 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8026 u64 page_line_mask;
8027 unsigned long hva;
8028 gpa_t gpa;
8029 int r;
8030
8031 /* guests cmpxchg8b have to be emulated atomically */
8032 if (bytes > 8 || (bytes & (bytes - 1)))
8033 goto emul_write;
8034
8035 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8036
8037 if (gpa == INVALID_GPA ||
8038 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8039 goto emul_write;
8040
8041 /*
8042 * Emulate the atomic as a straight write to avoid #AC if SLD is
8043 * enabled in the host and the access splits a cache line.
8044 */
8045 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8046 page_line_mask = ~(cache_line_size() - 1);
8047 else
8048 page_line_mask = PAGE_MASK;
8049
8050 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8051 goto emul_write;
8052
8053 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8054 if (kvm_is_error_hva(hva))
8055 goto emul_write;
8056
8057 hva += offset_in_page(gpa);
8058
8059 switch (bytes) {
8060 case 1:
8061 r = emulator_try_cmpxchg_user(u8, hva, old, new);
8062 break;
8063 case 2:
8064 r = emulator_try_cmpxchg_user(u16, hva, old, new);
8065 break;
8066 case 4:
8067 r = emulator_try_cmpxchg_user(u32, hva, old, new);
8068 break;
8069 case 8:
8070 r = emulator_try_cmpxchg_user(u64, hva, old, new);
8071 break;
8072 default:
8073 BUG();
8074 }
8075
8076 if (r < 0)
8077 return X86EMUL_UNHANDLEABLE;
8078
8079 /*
8080 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8081 * successful, as the old value is written back on failure. Note, for
8082 * live migration, this is unnecessarily conservative as CMPXCHG writes
8083 * back the original value and the access is atomic, but KVM's ABI is
8084 * that all writes are dirty logged, regardless of the value written.
8085 */
8086 kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8087
8088 if (r)
8089 return X86EMUL_CMPXCHG_FAILED;
8090
8091 kvm_page_track_write(vcpu, gpa, new, bytes);
8092
8093 return X86EMUL_CONTINUE;
8094
8095 emul_write:
8096 pr_warn_once("emulating exchange as write\n");
8097
8098 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8099 }
8100
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8101 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8102 unsigned short port, void *data,
8103 unsigned int count, bool in)
8104 {
8105 unsigned i;
8106 int r;
8107
8108 WARN_ON_ONCE(vcpu->arch.pio.count);
8109 for (i = 0; i < count; i++) {
8110 if (in)
8111 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8112 else
8113 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8114
8115 if (r) {
8116 if (i == 0)
8117 goto userspace_io;
8118
8119 /*
8120 * Userspace must have unregistered the device while PIO
8121 * was running. Drop writes / read as 0.
8122 */
8123 if (in)
8124 memset(data, 0, size * (count - i));
8125 break;
8126 }
8127
8128 data += size;
8129 }
8130 return 1;
8131
8132 userspace_io:
8133 vcpu->arch.pio.port = port;
8134 vcpu->arch.pio.in = in;
8135 vcpu->arch.pio.count = count;
8136 vcpu->arch.pio.size = size;
8137
8138 if (in)
8139 memset(vcpu->arch.pio_data, 0, size * count);
8140 else
8141 memcpy(vcpu->arch.pio_data, data, size * count);
8142
8143 vcpu->run->exit_reason = KVM_EXIT_IO;
8144 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8145 vcpu->run->io.size = size;
8146 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8147 vcpu->run->io.count = count;
8148 vcpu->run->io.port = port;
8149 return 0;
8150 }
8151
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8152 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8153 unsigned short port, void *val, unsigned int count)
8154 {
8155 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8156 if (r)
8157 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8158
8159 return r;
8160 }
8161
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8162 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8163 {
8164 int size = vcpu->arch.pio.size;
8165 unsigned int count = vcpu->arch.pio.count;
8166 memcpy(val, vcpu->arch.pio_data, size * count);
8167 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8168 vcpu->arch.pio.count = 0;
8169 }
8170
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8171 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8172 int size, unsigned short port, void *val,
8173 unsigned int count)
8174 {
8175 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8176 if (vcpu->arch.pio.count) {
8177 /*
8178 * Complete a previous iteration that required userspace I/O.
8179 * Note, @count isn't guaranteed to match pio.count as userspace
8180 * can modify ECX before rerunning the vCPU. Ignore any such
8181 * shenanigans as KVM doesn't support modifying the rep count,
8182 * and the emulator ensures @count doesn't overflow the buffer.
8183 */
8184 complete_emulator_pio_in(vcpu, val);
8185 return 1;
8186 }
8187
8188 return emulator_pio_in(vcpu, size, port, val, count);
8189 }
8190
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8191 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8192 unsigned short port, const void *val,
8193 unsigned int count)
8194 {
8195 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8196 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8197 }
8198
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8199 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8200 int size, unsigned short port,
8201 const void *val, unsigned int count)
8202 {
8203 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8204 }
8205
get_segment_base(struct kvm_vcpu * vcpu,int seg)8206 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8207 {
8208 return kvm_x86_call(get_segment_base)(vcpu, seg);
8209 }
8210
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8211 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8212 {
8213 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8214 }
8215
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8216 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8217 {
8218 if (!need_emulate_wbinvd(vcpu))
8219 return X86EMUL_CONTINUE;
8220
8221 if (kvm_x86_call(has_wbinvd_exit)()) {
8222 int cpu = get_cpu();
8223
8224 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8225 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8226 wbinvd_ipi, NULL, 1);
8227 put_cpu();
8228 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8229 } else
8230 wbinvd();
8231 return X86EMUL_CONTINUE;
8232 }
8233
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8234 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8235 {
8236 kvm_emulate_wbinvd_noskip(vcpu);
8237 return kvm_skip_emulated_instruction(vcpu);
8238 }
8239 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8240
8241
8242
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8243 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8244 {
8245 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8246 }
8247
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8248 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8249 {
8250 return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8251 }
8252
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8253 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8254 unsigned long value)
8255 {
8256
8257 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8258 }
8259
mk_cr_64(u64 curr_cr,u32 new_val)8260 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8261 {
8262 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8263 }
8264
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8265 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8266 {
8267 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8268 unsigned long value;
8269
8270 switch (cr) {
8271 case 0:
8272 value = kvm_read_cr0(vcpu);
8273 break;
8274 case 2:
8275 value = vcpu->arch.cr2;
8276 break;
8277 case 3:
8278 value = kvm_read_cr3(vcpu);
8279 break;
8280 case 4:
8281 value = kvm_read_cr4(vcpu);
8282 break;
8283 case 8:
8284 value = kvm_get_cr8(vcpu);
8285 break;
8286 default:
8287 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8288 return 0;
8289 }
8290
8291 return value;
8292 }
8293
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8294 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8295 {
8296 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8297 int res = 0;
8298
8299 switch (cr) {
8300 case 0:
8301 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8302 break;
8303 case 2:
8304 vcpu->arch.cr2 = val;
8305 break;
8306 case 3:
8307 res = kvm_set_cr3(vcpu, val);
8308 break;
8309 case 4:
8310 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8311 break;
8312 case 8:
8313 res = kvm_set_cr8(vcpu, val);
8314 break;
8315 default:
8316 kvm_err("%s: unexpected cr %u\n", __func__, cr);
8317 res = -1;
8318 }
8319
8320 return res;
8321 }
8322
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8323 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8324 {
8325 return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8326 }
8327
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8328 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8329 {
8330 kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8331 }
8332
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8333 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334 {
8335 kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8336 }
8337
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8338 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8339 {
8340 kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8341 }
8342
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8343 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8344 {
8345 kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8346 }
8347
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8348 static unsigned long emulator_get_cached_segment_base(
8349 struct x86_emulate_ctxt *ctxt, int seg)
8350 {
8351 return get_segment_base(emul_to_vcpu(ctxt), seg);
8352 }
8353
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8354 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8355 struct desc_struct *desc, u32 *base3,
8356 int seg)
8357 {
8358 struct kvm_segment var;
8359
8360 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8361 *selector = var.selector;
8362
8363 if (var.unusable) {
8364 memset(desc, 0, sizeof(*desc));
8365 if (base3)
8366 *base3 = 0;
8367 return false;
8368 }
8369
8370 if (var.g)
8371 var.limit >>= 12;
8372 set_desc_limit(desc, var.limit);
8373 set_desc_base(desc, (unsigned long)var.base);
8374 #ifdef CONFIG_X86_64
8375 if (base3)
8376 *base3 = var.base >> 32;
8377 #endif
8378 desc->type = var.type;
8379 desc->s = var.s;
8380 desc->dpl = var.dpl;
8381 desc->p = var.present;
8382 desc->avl = var.avl;
8383 desc->l = var.l;
8384 desc->d = var.db;
8385 desc->g = var.g;
8386
8387 return true;
8388 }
8389
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8390 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8391 struct desc_struct *desc, u32 base3,
8392 int seg)
8393 {
8394 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8395 struct kvm_segment var;
8396
8397 var.selector = selector;
8398 var.base = get_desc_base(desc);
8399 #ifdef CONFIG_X86_64
8400 var.base |= ((u64)base3) << 32;
8401 #endif
8402 var.limit = get_desc_limit(desc);
8403 if (desc->g)
8404 var.limit = (var.limit << 12) | 0xfff;
8405 var.type = desc->type;
8406 var.dpl = desc->dpl;
8407 var.db = desc->d;
8408 var.s = desc->s;
8409 var.l = desc->l;
8410 var.g = desc->g;
8411 var.avl = desc->avl;
8412 var.present = desc->p;
8413 var.unusable = !var.present;
8414 var.padding = 0;
8415
8416 kvm_set_segment(vcpu, &var, seg);
8417 return;
8418 }
8419
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8420 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8421 u32 msr_index, u64 *pdata)
8422 {
8423 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8424 int r;
8425
8426 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8427 if (r < 0)
8428 return X86EMUL_UNHANDLEABLE;
8429
8430 if (r) {
8431 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8432 complete_emulated_rdmsr, r))
8433 return X86EMUL_IO_NEEDED;
8434
8435 trace_kvm_msr_read_ex(msr_index);
8436 return X86EMUL_PROPAGATE_FAULT;
8437 }
8438
8439 trace_kvm_msr_read(msr_index, *pdata);
8440 return X86EMUL_CONTINUE;
8441 }
8442
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8443 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8444 u32 msr_index, u64 data)
8445 {
8446 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8447 int r;
8448
8449 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8450 if (r < 0)
8451 return X86EMUL_UNHANDLEABLE;
8452
8453 if (r) {
8454 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8455 complete_emulated_msr_access, r))
8456 return X86EMUL_IO_NEEDED;
8457
8458 trace_kvm_msr_write_ex(msr_index, data);
8459 return X86EMUL_PROPAGATE_FAULT;
8460 }
8461
8462 trace_kvm_msr_write(msr_index, data);
8463 return X86EMUL_CONTINUE;
8464 }
8465
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8466 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8467 u32 msr_index, u64 *pdata)
8468 {
8469 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8470 }
8471
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8472 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8473 {
8474 return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8475 }
8476
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8477 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8478 u32 pmc, u64 *pdata)
8479 {
8480 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8481 }
8482
emulator_halt(struct x86_emulate_ctxt * ctxt)8483 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8484 {
8485 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8486 }
8487
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8488 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8489 struct x86_instruction_info *info,
8490 enum x86_intercept_stage stage)
8491 {
8492 return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8493 &ctxt->exception);
8494 }
8495
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8496 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8497 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8498 bool exact_only)
8499 {
8500 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8501 }
8502
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8503 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8504 {
8505 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8506 }
8507
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8508 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8509 {
8510 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8511 }
8512
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8513 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8514 {
8515 return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8516 }
8517
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8518 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8519 {
8520 return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8521 }
8522
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8523 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8524 {
8525 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8526 }
8527
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8528 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8529 {
8530 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8531 }
8532
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8533 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8534 {
8535 kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8536 }
8537
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8538 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8539 {
8540 return is_smm(emul_to_vcpu(ctxt));
8541 }
8542
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8543 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8544 {
8545 return is_guest_mode(emul_to_vcpu(ctxt));
8546 }
8547
8548 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8549 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8550 {
8551 WARN_ON_ONCE(1);
8552 return X86EMUL_UNHANDLEABLE;
8553 }
8554 #endif
8555
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8556 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8557 {
8558 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8559 }
8560
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8561 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8562 {
8563 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8564 }
8565
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8566 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8567 {
8568 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8569
8570 if (!kvm->vm_bugged)
8571 kvm_vm_bugged(kvm);
8572 }
8573
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8574 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8575 gva_t addr, unsigned int flags)
8576 {
8577 if (!kvm_x86_ops.get_untagged_addr)
8578 return addr;
8579
8580 return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8581 addr, flags);
8582 }
8583
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8584 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8585 gva_t addr, unsigned int flags)
8586 {
8587 return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8588 }
8589
8590 static const struct x86_emulate_ops emulate_ops = {
8591 .vm_bugged = emulator_vm_bugged,
8592 .read_gpr = emulator_read_gpr,
8593 .write_gpr = emulator_write_gpr,
8594 .read_std = emulator_read_std,
8595 .write_std = emulator_write_std,
8596 .fetch = kvm_fetch_guest_virt,
8597 .read_emulated = emulator_read_emulated,
8598 .write_emulated = emulator_write_emulated,
8599 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8600 .invlpg = emulator_invlpg,
8601 .pio_in_emulated = emulator_pio_in_emulated,
8602 .pio_out_emulated = emulator_pio_out_emulated,
8603 .get_segment = emulator_get_segment,
8604 .set_segment = emulator_set_segment,
8605 .get_cached_segment_base = emulator_get_cached_segment_base,
8606 .get_gdt = emulator_get_gdt,
8607 .get_idt = emulator_get_idt,
8608 .set_gdt = emulator_set_gdt,
8609 .set_idt = emulator_set_idt,
8610 .get_cr = emulator_get_cr,
8611 .set_cr = emulator_set_cr,
8612 .cpl = emulator_get_cpl,
8613 .get_dr = emulator_get_dr,
8614 .set_dr = emulator_set_dr,
8615 .set_msr_with_filter = emulator_set_msr_with_filter,
8616 .get_msr_with_filter = emulator_get_msr_with_filter,
8617 .get_msr = emulator_get_msr,
8618 .check_rdpmc_early = emulator_check_rdpmc_early,
8619 .read_pmc = emulator_read_pmc,
8620 .halt = emulator_halt,
8621 .wbinvd = emulator_wbinvd,
8622 .fix_hypercall = emulator_fix_hypercall,
8623 .intercept = emulator_intercept,
8624 .get_cpuid = emulator_get_cpuid,
8625 .guest_has_movbe = emulator_guest_has_movbe,
8626 .guest_has_fxsr = emulator_guest_has_fxsr,
8627 .guest_has_rdpid = emulator_guest_has_rdpid,
8628 .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8629 .set_nmi_mask = emulator_set_nmi_mask,
8630 .is_smm = emulator_is_smm,
8631 .is_guest_mode = emulator_is_guest_mode,
8632 .leave_smm = emulator_leave_smm,
8633 .triple_fault = emulator_triple_fault,
8634 .set_xcr = emulator_set_xcr,
8635 .get_untagged_addr = emulator_get_untagged_addr,
8636 .is_canonical_addr = emulator_is_canonical_addr,
8637 };
8638
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8639 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8640 {
8641 u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8642 /*
8643 * an sti; sti; sequence only disable interrupts for the first
8644 * instruction. So, if the last instruction, be it emulated or
8645 * not, left the system with the INT_STI flag enabled, it
8646 * means that the last instruction is an sti. We should not
8647 * leave the flag on in this case. The same goes for mov ss
8648 */
8649 if (int_shadow & mask)
8650 mask = 0;
8651 if (unlikely(int_shadow || mask)) {
8652 kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8653 if (!mask)
8654 kvm_make_request(KVM_REQ_EVENT, vcpu);
8655 }
8656 }
8657
inject_emulated_exception(struct kvm_vcpu * vcpu)8658 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8659 {
8660 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8661
8662 if (ctxt->exception.vector == PF_VECTOR)
8663 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8664 else if (ctxt->exception.error_code_valid)
8665 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8666 ctxt->exception.error_code);
8667 else
8668 kvm_queue_exception(vcpu, ctxt->exception.vector);
8669 }
8670
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8671 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8672 {
8673 struct x86_emulate_ctxt *ctxt;
8674
8675 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8676 if (!ctxt) {
8677 pr_err("failed to allocate vcpu's emulator\n");
8678 return NULL;
8679 }
8680
8681 ctxt->vcpu = vcpu;
8682 ctxt->ops = &emulate_ops;
8683 vcpu->arch.emulate_ctxt = ctxt;
8684
8685 return ctxt;
8686 }
8687
init_emulate_ctxt(struct kvm_vcpu * vcpu)8688 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8689 {
8690 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8691 int cs_db, cs_l;
8692
8693 kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8694
8695 ctxt->gpa_available = false;
8696 ctxt->eflags = kvm_get_rflags(vcpu);
8697 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8698
8699 ctxt->eip = kvm_rip_read(vcpu);
8700 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8701 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8702 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8703 cs_db ? X86EMUL_MODE_PROT32 :
8704 X86EMUL_MODE_PROT16;
8705 ctxt->interruptibility = 0;
8706 ctxt->have_exception = false;
8707 ctxt->exception.vector = -1;
8708 ctxt->perm_ok = false;
8709
8710 init_decode_cache(ctxt);
8711 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8712 }
8713
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8714 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8715 {
8716 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8717 int ret;
8718
8719 init_emulate_ctxt(vcpu);
8720
8721 ctxt->op_bytes = 2;
8722 ctxt->ad_bytes = 2;
8723 ctxt->_eip = ctxt->eip + inc_eip;
8724 ret = emulate_int_real(ctxt, irq);
8725
8726 if (ret != X86EMUL_CONTINUE) {
8727 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8728 } else {
8729 ctxt->eip = ctxt->_eip;
8730 kvm_rip_write(vcpu, ctxt->eip);
8731 kvm_set_rflags(vcpu, ctxt->eflags);
8732 }
8733 }
8734 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8735
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8736 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8737 u8 ndata, u8 *insn_bytes, u8 insn_size)
8738 {
8739 struct kvm_run *run = vcpu->run;
8740 u64 info[5];
8741 u8 info_start;
8742
8743 /*
8744 * Zero the whole array used to retrieve the exit info, as casting to
8745 * u32 for select entries will leave some chunks uninitialized.
8746 */
8747 memset(&info, 0, sizeof(info));
8748
8749 kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8750 (u32 *)&info[3], (u32 *)&info[4]);
8751
8752 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8753 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8754
8755 /*
8756 * There's currently space for 13 entries, but 5 are used for the exit
8757 * reason and info. Restrict to 4 to reduce the maintenance burden
8758 * when expanding kvm_run.emulation_failure in the future.
8759 */
8760 if (WARN_ON_ONCE(ndata > 4))
8761 ndata = 4;
8762
8763 /* Always include the flags as a 'data' entry. */
8764 info_start = 1;
8765 run->emulation_failure.flags = 0;
8766
8767 if (insn_size) {
8768 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8769 sizeof(run->emulation_failure.insn_bytes) != 16));
8770 info_start += 2;
8771 run->emulation_failure.flags |=
8772 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8773 run->emulation_failure.insn_size = insn_size;
8774 memset(run->emulation_failure.insn_bytes, 0x90,
8775 sizeof(run->emulation_failure.insn_bytes));
8776 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8777 }
8778
8779 memcpy(&run->internal.data[info_start], info, sizeof(info));
8780 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8781 ndata * sizeof(data[0]));
8782
8783 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8784 }
8785
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8786 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8787 {
8788 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8789
8790 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8791 ctxt->fetch.end - ctxt->fetch.data);
8792 }
8793
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8794 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8795 u8 ndata)
8796 {
8797 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8798 }
8799 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8800
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8801 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8802 {
8803 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8804 }
8805 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8806
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8807 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8808 {
8809 u32 reason, intr_info, error_code;
8810 struct kvm_run *run = vcpu->run;
8811 u64 info1, info2;
8812 int ndata = 0;
8813
8814 kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8815 &intr_info, &error_code);
8816
8817 run->internal.data[ndata++] = info2;
8818 run->internal.data[ndata++] = reason;
8819 run->internal.data[ndata++] = info1;
8820 run->internal.data[ndata++] = gpa;
8821 run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8822
8823 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8824 run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8825 run->internal.ndata = ndata;
8826 }
8827 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8828
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8829 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8830 {
8831 struct kvm *kvm = vcpu->kvm;
8832
8833 ++vcpu->stat.insn_emulation_fail;
8834 trace_kvm_emulate_insn_failed(vcpu);
8835
8836 if (emulation_type & EMULTYPE_VMWARE_GP) {
8837 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8838 return 1;
8839 }
8840
8841 if (kvm->arch.exit_on_emulation_error ||
8842 (emulation_type & EMULTYPE_SKIP)) {
8843 prepare_emulation_ctxt_failure_exit(vcpu);
8844 return 0;
8845 }
8846
8847 kvm_queue_exception(vcpu, UD_VECTOR);
8848
8849 if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8850 prepare_emulation_ctxt_failure_exit(vcpu);
8851 return 0;
8852 }
8853
8854 return 1;
8855 }
8856
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8857 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8858 gpa_t cr2_or_gpa,
8859 int emulation_type)
8860 {
8861 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8862 return false;
8863
8864 /*
8865 * If the failed instruction faulted on an access to page tables that
8866 * are used to translate any part of the instruction, KVM can't resolve
8867 * the issue by unprotecting the gfn, as zapping the shadow page will
8868 * result in the instruction taking a !PRESENT page fault and thus put
8869 * the vCPU into an infinite loop of page faults. E.g. KVM will create
8870 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8871 * then zap the SPTE to unprotect the gfn, and then do it all over
8872 * again. Report the error to userspace.
8873 */
8874 if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8875 return false;
8876
8877 /*
8878 * If emulation may have been triggered by a write to a shadowed page
8879 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8880 * guest to let the CPU re-execute the instruction in the hope that the
8881 * CPU can cleanly execute the instruction that KVM failed to emulate.
8882 */
8883 __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8884
8885 /*
8886 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8887 * all SPTEs were already zapped by a different task. The alternative
8888 * is to report the error to userspace and likely terminate the guest,
8889 * and the last_retry_{eip,addr} checks will prevent retrying the page
8890 * fault indefinitely, i.e. there's nothing to lose by retrying.
8891 */
8892 return true;
8893 }
8894
8895 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8896 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8897
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8898 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8899 unsigned long *db)
8900 {
8901 u32 dr6 = 0;
8902 int i;
8903 u32 enable, rwlen;
8904
8905 enable = dr7;
8906 rwlen = dr7 >> 16;
8907 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8908 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8909 dr6 |= (1 << i);
8910 return dr6;
8911 }
8912
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8913 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8914 {
8915 struct kvm_run *kvm_run = vcpu->run;
8916
8917 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8918 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8919 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8920 kvm_run->debug.arch.exception = DB_VECTOR;
8921 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8922 return 0;
8923 }
8924 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8925 return 1;
8926 }
8927
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8928 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8929 {
8930 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8931 int r;
8932
8933 r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8934 if (unlikely(!r))
8935 return 0;
8936
8937 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8938
8939 /*
8940 * rflags is the old, "raw" value of the flags. The new value has
8941 * not been saved yet.
8942 *
8943 * This is correct even for TF set by the guest, because "the
8944 * processor will not generate this exception after the instruction
8945 * that sets the TF flag".
8946 */
8947 if (unlikely(rflags & X86_EFLAGS_TF))
8948 r = kvm_vcpu_do_singlestep(vcpu);
8949 return r;
8950 }
8951 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8952
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8953 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8954 {
8955 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8956 return true;
8957
8958 /*
8959 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8960 * active, but AMD compatible CPUs do not.
8961 */
8962 if (!guest_cpuid_is_intel_compatible(vcpu))
8963 return false;
8964
8965 return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8966 }
8967
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8968 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8969 int emulation_type, int *r)
8970 {
8971 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8972
8973 /*
8974 * Do not check for code breakpoints if hardware has already done the
8975 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8976 * the instruction has passed all exception checks, and all intercepted
8977 * exceptions that trigger emulation have lower priority than code
8978 * breakpoints, i.e. the fact that the intercepted exception occurred
8979 * means any code breakpoints have already been serviced.
8980 *
8981 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8982 * hardware has checked the RIP of the magic prefix, but not the RIP of
8983 * the instruction being emulated. The intent of forced emulation is
8984 * to behave as if KVM intercepted the instruction without an exception
8985 * and without a prefix.
8986 */
8987 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8988 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8989 return false;
8990
8991 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8992 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8993 struct kvm_run *kvm_run = vcpu->run;
8994 unsigned long eip = kvm_get_linear_rip(vcpu);
8995 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8996 vcpu->arch.guest_debug_dr7,
8997 vcpu->arch.eff_db);
8998
8999 if (dr6 != 0) {
9000 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9001 kvm_run->debug.arch.pc = eip;
9002 kvm_run->debug.arch.exception = DB_VECTOR;
9003 kvm_run->exit_reason = KVM_EXIT_DEBUG;
9004 *r = 0;
9005 return true;
9006 }
9007 }
9008
9009 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9010 !kvm_is_code_breakpoint_inhibited(vcpu)) {
9011 unsigned long eip = kvm_get_linear_rip(vcpu);
9012 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9013 vcpu->arch.dr7,
9014 vcpu->arch.db);
9015
9016 if (dr6 != 0) {
9017 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9018 *r = 1;
9019 return true;
9020 }
9021 }
9022
9023 return false;
9024 }
9025
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9026 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9027 {
9028 switch (ctxt->opcode_len) {
9029 case 1:
9030 switch (ctxt->b) {
9031 case 0xe4: /* IN */
9032 case 0xe5:
9033 case 0xec:
9034 case 0xed:
9035 case 0xe6: /* OUT */
9036 case 0xe7:
9037 case 0xee:
9038 case 0xef:
9039 case 0x6c: /* INS */
9040 case 0x6d:
9041 case 0x6e: /* OUTS */
9042 case 0x6f:
9043 return true;
9044 }
9045 break;
9046 case 2:
9047 switch (ctxt->b) {
9048 case 0x33: /* RDPMC */
9049 return true;
9050 }
9051 break;
9052 }
9053
9054 return false;
9055 }
9056
9057 /*
9058 * Decode an instruction for emulation. The caller is responsible for handling
9059 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
9060 * (and wrong) when emulating on an intercepted fault-like exception[*], as
9061 * code breakpoints have higher priority and thus have already been done by
9062 * hardware.
9063 *
9064 * [*] Except #MC, which is higher priority, but KVM should never emulate in
9065 * response to a machine check.
9066 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9067 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9068 void *insn, int insn_len)
9069 {
9070 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9071 int r;
9072
9073 init_emulate_ctxt(vcpu);
9074
9075 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9076
9077 trace_kvm_emulate_insn_start(vcpu);
9078 ++vcpu->stat.insn_emulation;
9079
9080 return r;
9081 }
9082 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9083
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9084 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9085 int emulation_type, void *insn, int insn_len)
9086 {
9087 int r;
9088 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9089 bool writeback = true;
9090
9091 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9092 (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9093 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9094 emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9095
9096 r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9097 if (r != X86EMUL_CONTINUE) {
9098 if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9099 return 1;
9100
9101 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9102 emulation_type))
9103 return 1;
9104
9105 if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9106 kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9107 return 0;
9108 }
9109
9110 WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9111 return handle_emulation_failure(vcpu, emulation_type);
9112 }
9113
9114 vcpu->arch.l1tf_flush_l1d = true;
9115
9116 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9117 kvm_clear_exception_queue(vcpu);
9118
9119 /*
9120 * Return immediately if RIP hits a code breakpoint, such #DBs
9121 * are fault-like and are higher priority than any faults on
9122 * the code fetch itself.
9123 */
9124 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9125 return r;
9126
9127 r = x86_decode_emulated_instruction(vcpu, emulation_type,
9128 insn, insn_len);
9129 if (r != EMULATION_OK) {
9130 if ((emulation_type & EMULTYPE_TRAP_UD) ||
9131 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9132 kvm_queue_exception(vcpu, UD_VECTOR);
9133 return 1;
9134 }
9135 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9136 emulation_type))
9137 return 1;
9138
9139 if (ctxt->have_exception &&
9140 !(emulation_type & EMULTYPE_SKIP)) {
9141 /*
9142 * #UD should result in just EMULATION_FAILED, and trap-like
9143 * exception should not be encountered during decode.
9144 */
9145 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9146 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9147 inject_emulated_exception(vcpu);
9148 return 1;
9149 }
9150 return handle_emulation_failure(vcpu, emulation_type);
9151 }
9152 }
9153
9154 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9155 !is_vmware_backdoor_opcode(ctxt)) {
9156 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9157 return 1;
9158 }
9159
9160 /*
9161 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9162 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9163 * The caller is responsible for updating interruptibility state and
9164 * injecting single-step #DBs.
9165 */
9166 if (emulation_type & EMULTYPE_SKIP) {
9167 if (ctxt->mode != X86EMUL_MODE_PROT64)
9168 ctxt->eip = (u32)ctxt->_eip;
9169 else
9170 ctxt->eip = ctxt->_eip;
9171
9172 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9173 r = 1;
9174 goto writeback;
9175 }
9176
9177 kvm_rip_write(vcpu, ctxt->eip);
9178 if (ctxt->eflags & X86_EFLAGS_RF)
9179 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9180 return 1;
9181 }
9182
9183 /*
9184 * If emulation was caused by a write-protection #PF on a non-page_table
9185 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9186 * and retry the instruction, as the vCPU is likely no longer using the
9187 * gfn as a page table.
9188 */
9189 if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9190 !x86_page_table_writing_insn(ctxt) &&
9191 kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9192 return 1;
9193
9194 /* this is needed for vmware backdoor interface to work since it
9195 changes registers values during IO operation */
9196 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9197 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9198 emulator_invalidate_register_cache(ctxt);
9199 }
9200
9201 restart:
9202 if (emulation_type & EMULTYPE_PF) {
9203 /* Save the faulting GPA (cr2) in the address field */
9204 ctxt->exception.address = cr2_or_gpa;
9205
9206 /* With shadow page tables, cr2 contains a GVA or nGPA. */
9207 if (vcpu->arch.mmu->root_role.direct) {
9208 ctxt->gpa_available = true;
9209 ctxt->gpa_val = cr2_or_gpa;
9210 }
9211 } else {
9212 /* Sanitize the address out of an abundance of paranoia. */
9213 ctxt->exception.address = 0;
9214 }
9215
9216 r = x86_emulate_insn(ctxt);
9217
9218 if (r == EMULATION_INTERCEPTED)
9219 return 1;
9220
9221 if (r == EMULATION_FAILED) {
9222 if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9223 emulation_type))
9224 return 1;
9225
9226 return handle_emulation_failure(vcpu, emulation_type);
9227 }
9228
9229 if (ctxt->have_exception) {
9230 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9231 vcpu->mmio_needed = false;
9232 r = 1;
9233 inject_emulated_exception(vcpu);
9234 } else if (vcpu->arch.pio.count) {
9235 if (!vcpu->arch.pio.in) {
9236 /* FIXME: return into emulator if single-stepping. */
9237 vcpu->arch.pio.count = 0;
9238 } else {
9239 writeback = false;
9240 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9241 }
9242 r = 0;
9243 } else if (vcpu->mmio_needed) {
9244 ++vcpu->stat.mmio_exits;
9245
9246 if (!vcpu->mmio_is_write)
9247 writeback = false;
9248 r = 0;
9249 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9250 } else if (vcpu->arch.complete_userspace_io) {
9251 writeback = false;
9252 r = 0;
9253 } else if (r == EMULATION_RESTART)
9254 goto restart;
9255 else
9256 r = 1;
9257
9258 writeback:
9259 if (writeback) {
9260 unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9261 toggle_interruptibility(vcpu, ctxt->interruptibility);
9262 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9263
9264 /*
9265 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9266 * only supports code breakpoints and general detect #DB, both
9267 * of which are fault-like.
9268 */
9269 if (!ctxt->have_exception ||
9270 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9271 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9272 if (ctxt->is_branch)
9273 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9274 kvm_rip_write(vcpu, ctxt->eip);
9275 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9276 r = kvm_vcpu_do_singlestep(vcpu);
9277 kvm_x86_call(update_emulated_instruction)(vcpu);
9278 __kvm_set_rflags(vcpu, ctxt->eflags);
9279 }
9280
9281 /*
9282 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9283 * do nothing, and it will be requested again as soon as
9284 * the shadow expires. But we still need to check here,
9285 * because POPF has no interrupt shadow.
9286 */
9287 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9288 kvm_make_request(KVM_REQ_EVENT, vcpu);
9289 } else
9290 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9291
9292 return r;
9293 }
9294
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9295 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9296 {
9297 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9298 }
9299 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9300
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9301 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9302 void *insn, int insn_len)
9303 {
9304 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9305 }
9306 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9307
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9308 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9309 {
9310 vcpu->arch.pio.count = 0;
9311 return 1;
9312 }
9313
complete_fast_pio_out(struct kvm_vcpu * vcpu)9314 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9315 {
9316 vcpu->arch.pio.count = 0;
9317
9318 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9319 return 1;
9320
9321 return kvm_skip_emulated_instruction(vcpu);
9322 }
9323
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9324 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9325 unsigned short port)
9326 {
9327 unsigned long val = kvm_rax_read(vcpu);
9328 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9329
9330 if (ret)
9331 return ret;
9332
9333 /*
9334 * Workaround userspace that relies on old KVM behavior of %rip being
9335 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9336 */
9337 if (port == 0x7e &&
9338 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9339 vcpu->arch.complete_userspace_io =
9340 complete_fast_pio_out_port_0x7e;
9341 kvm_skip_emulated_instruction(vcpu);
9342 } else {
9343 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9344 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9345 }
9346 return 0;
9347 }
9348
complete_fast_pio_in(struct kvm_vcpu * vcpu)9349 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9350 {
9351 unsigned long val;
9352
9353 /* We should only ever be called with arch.pio.count equal to 1 */
9354 BUG_ON(vcpu->arch.pio.count != 1);
9355
9356 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9357 vcpu->arch.pio.count = 0;
9358 return 1;
9359 }
9360
9361 /* For size less than 4 we merge, else we zero extend */
9362 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9363
9364 complete_emulator_pio_in(vcpu, &val);
9365 kvm_rax_write(vcpu, val);
9366
9367 return kvm_skip_emulated_instruction(vcpu);
9368 }
9369
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9370 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9371 unsigned short port)
9372 {
9373 unsigned long val;
9374 int ret;
9375
9376 /* For size less than 4 we merge, else we zero extend */
9377 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9378
9379 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9380 if (ret) {
9381 kvm_rax_write(vcpu, val);
9382 return ret;
9383 }
9384
9385 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9386 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9387
9388 return 0;
9389 }
9390
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9391 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9392 {
9393 int ret;
9394
9395 if (in)
9396 ret = kvm_fast_pio_in(vcpu, size, port);
9397 else
9398 ret = kvm_fast_pio_out(vcpu, size, port);
9399 return ret && kvm_skip_emulated_instruction(vcpu);
9400 }
9401 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9402
kvmclock_cpu_down_prep(unsigned int cpu)9403 static int kvmclock_cpu_down_prep(unsigned int cpu)
9404 {
9405 __this_cpu_write(cpu_tsc_khz, 0);
9406 return 0;
9407 }
9408
tsc_khz_changed(void * data)9409 static void tsc_khz_changed(void *data)
9410 {
9411 struct cpufreq_freqs *freq = data;
9412 unsigned long khz;
9413
9414 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9415
9416 if (data)
9417 khz = freq->new;
9418 else
9419 khz = cpufreq_quick_get(raw_smp_processor_id());
9420 if (!khz)
9421 khz = tsc_khz;
9422 __this_cpu_write(cpu_tsc_khz, khz);
9423 }
9424
9425 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9426 static void kvm_hyperv_tsc_notifier(void)
9427 {
9428 struct kvm *kvm;
9429 int cpu;
9430
9431 mutex_lock(&kvm_lock);
9432 list_for_each_entry(kvm, &vm_list, vm_list)
9433 kvm_make_mclock_inprogress_request(kvm);
9434
9435 /* no guest entries from this point */
9436 hyperv_stop_tsc_emulation();
9437
9438 /* TSC frequency always matches when on Hyper-V */
9439 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9440 for_each_present_cpu(cpu)
9441 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9442 }
9443 kvm_caps.max_guest_tsc_khz = tsc_khz;
9444
9445 list_for_each_entry(kvm, &vm_list, vm_list) {
9446 __kvm_start_pvclock_update(kvm);
9447 pvclock_update_vm_gtod_copy(kvm);
9448 kvm_end_pvclock_update(kvm);
9449 }
9450
9451 mutex_unlock(&kvm_lock);
9452 }
9453 #endif
9454
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9455 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9456 {
9457 struct kvm *kvm;
9458 struct kvm_vcpu *vcpu;
9459 int send_ipi = 0;
9460 unsigned long i;
9461
9462 /*
9463 * We allow guests to temporarily run on slowing clocks,
9464 * provided we notify them after, or to run on accelerating
9465 * clocks, provided we notify them before. Thus time never
9466 * goes backwards.
9467 *
9468 * However, we have a problem. We can't atomically update
9469 * the frequency of a given CPU from this function; it is
9470 * merely a notifier, which can be called from any CPU.
9471 * Changing the TSC frequency at arbitrary points in time
9472 * requires a recomputation of local variables related to
9473 * the TSC for each VCPU. We must flag these local variables
9474 * to be updated and be sure the update takes place with the
9475 * new frequency before any guests proceed.
9476 *
9477 * Unfortunately, the combination of hotplug CPU and frequency
9478 * change creates an intractable locking scenario; the order
9479 * of when these callouts happen is undefined with respect to
9480 * CPU hotplug, and they can race with each other. As such,
9481 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9482 * undefined; you can actually have a CPU frequency change take
9483 * place in between the computation of X and the setting of the
9484 * variable. To protect against this problem, all updates of
9485 * the per_cpu tsc_khz variable are done in an interrupt
9486 * protected IPI, and all callers wishing to update the value
9487 * must wait for a synchronous IPI to complete (which is trivial
9488 * if the caller is on the CPU already). This establishes the
9489 * necessary total order on variable updates.
9490 *
9491 * Note that because a guest time update may take place
9492 * anytime after the setting of the VCPU's request bit, the
9493 * correct TSC value must be set before the request. However,
9494 * to ensure the update actually makes it to any guest which
9495 * starts running in hardware virtualization between the set
9496 * and the acquisition of the spinlock, we must also ping the
9497 * CPU after setting the request bit.
9498 *
9499 */
9500
9501 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9502
9503 mutex_lock(&kvm_lock);
9504 list_for_each_entry(kvm, &vm_list, vm_list) {
9505 kvm_for_each_vcpu(i, vcpu, kvm) {
9506 if (vcpu->cpu != cpu)
9507 continue;
9508 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9509 if (vcpu->cpu != raw_smp_processor_id())
9510 send_ipi = 1;
9511 }
9512 }
9513 mutex_unlock(&kvm_lock);
9514
9515 if (freq->old < freq->new && send_ipi) {
9516 /*
9517 * We upscale the frequency. Must make the guest
9518 * doesn't see old kvmclock values while running with
9519 * the new frequency, otherwise we risk the guest sees
9520 * time go backwards.
9521 *
9522 * In case we update the frequency for another cpu
9523 * (which might be in guest context) send an interrupt
9524 * to kick the cpu out of guest context. Next time
9525 * guest context is entered kvmclock will be updated,
9526 * so the guest will not see stale values.
9527 */
9528 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9529 }
9530 }
9531
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9532 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9533 void *data)
9534 {
9535 struct cpufreq_freqs *freq = data;
9536 int cpu;
9537
9538 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9539 return 0;
9540 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9541 return 0;
9542
9543 for_each_cpu(cpu, freq->policy->cpus)
9544 __kvmclock_cpufreq_notifier(freq, cpu);
9545
9546 return 0;
9547 }
9548
9549 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9550 .notifier_call = kvmclock_cpufreq_notifier
9551 };
9552
kvmclock_cpu_online(unsigned int cpu)9553 static int kvmclock_cpu_online(unsigned int cpu)
9554 {
9555 tsc_khz_changed(NULL);
9556 return 0;
9557 }
9558
kvm_timer_init(void)9559 static void kvm_timer_init(void)
9560 {
9561 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9562 max_tsc_khz = tsc_khz;
9563
9564 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9565 struct cpufreq_policy *policy;
9566 int cpu;
9567
9568 cpu = get_cpu();
9569 policy = cpufreq_cpu_get(cpu);
9570 if (policy) {
9571 if (policy->cpuinfo.max_freq)
9572 max_tsc_khz = policy->cpuinfo.max_freq;
9573 cpufreq_cpu_put(policy);
9574 }
9575 put_cpu();
9576 }
9577 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9578 CPUFREQ_TRANSITION_NOTIFIER);
9579
9580 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9581 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9582 }
9583 }
9584
9585 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9586 static void pvclock_gtod_update_fn(struct work_struct *work)
9587 {
9588 struct kvm *kvm;
9589 struct kvm_vcpu *vcpu;
9590 unsigned long i;
9591
9592 mutex_lock(&kvm_lock);
9593 list_for_each_entry(kvm, &vm_list, vm_list)
9594 kvm_for_each_vcpu(i, vcpu, kvm)
9595 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9596 atomic_set(&kvm_guest_has_master_clock, 0);
9597 mutex_unlock(&kvm_lock);
9598 }
9599
9600 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9601
9602 /*
9603 * Indirection to move queue_work() out of the tk_core.seq write held
9604 * region to prevent possible deadlocks against time accessors which
9605 * are invoked with work related locks held.
9606 */
pvclock_irq_work_fn(struct irq_work * w)9607 static void pvclock_irq_work_fn(struct irq_work *w)
9608 {
9609 queue_work(system_long_wq, &pvclock_gtod_work);
9610 }
9611
9612 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9613
9614 /*
9615 * Notification about pvclock gtod data update.
9616 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9617 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9618 void *priv)
9619 {
9620 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9621 struct timekeeper *tk = priv;
9622
9623 update_pvclock_gtod(tk);
9624
9625 /*
9626 * Disable master clock if host does not trust, or does not use,
9627 * TSC based clocksource. Delegate queue_work() to irq_work as
9628 * this is invoked with tk_core.seq write held.
9629 */
9630 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9631 atomic_read(&kvm_guest_has_master_clock) != 0)
9632 irq_work_queue(&pvclock_irq_work);
9633 return 0;
9634 }
9635
9636 static struct notifier_block pvclock_gtod_notifier = {
9637 .notifier_call = pvclock_gtod_notify,
9638 };
9639 #endif
9640
kvm_ops_update(struct kvm_x86_init_ops * ops)9641 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9642 {
9643 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9644
9645 #define __KVM_X86_OP(func) \
9646 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9647 #define KVM_X86_OP(func) \
9648 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9649 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9650 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9651 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9652 (void *)__static_call_return0);
9653 #include <asm/kvm-x86-ops.h>
9654 #undef __KVM_X86_OP
9655
9656 kvm_pmu_ops_update(ops->pmu_ops);
9657 }
9658
kvm_x86_check_processor_compatibility(void)9659 static int kvm_x86_check_processor_compatibility(void)
9660 {
9661 int cpu = smp_processor_id();
9662 struct cpuinfo_x86 *c = &cpu_data(cpu);
9663
9664 /*
9665 * Compatibility checks are done when loading KVM and when enabling
9666 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9667 * compatible, i.e. KVM should never perform a compatibility check on
9668 * an offline CPU.
9669 */
9670 WARN_ON(!cpu_online(cpu));
9671
9672 if (__cr4_reserved_bits(cpu_has, c) !=
9673 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9674 return -EIO;
9675
9676 return kvm_x86_call(check_processor_compatibility)();
9677 }
9678
kvm_x86_check_cpu_compat(void * ret)9679 static void kvm_x86_check_cpu_compat(void *ret)
9680 {
9681 *(int *)ret = kvm_x86_check_processor_compatibility();
9682 }
9683
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9684 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9685 {
9686 u64 host_pat;
9687 int r, cpu;
9688
9689 guard(mutex)(&vendor_module_lock);
9690
9691 if (kvm_x86_ops.enable_virtualization_cpu) {
9692 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9693 return -EEXIST;
9694 }
9695
9696 /*
9697 * KVM explicitly assumes that the guest has an FPU and
9698 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9699 * vCPU's FPU state as a fxregs_state struct.
9700 */
9701 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9702 pr_err("inadequate fpu\n");
9703 return -EOPNOTSUPP;
9704 }
9705
9706 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9707 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9708 return -EOPNOTSUPP;
9709 }
9710
9711 /*
9712 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9713 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9714 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9715 * with an exception. PAT[0] is set to WB on RESET and also by the
9716 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9717 */
9718 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9719 (host_pat & GENMASK(2, 0)) != 6) {
9720 pr_err("host PAT[0] is not WB\n");
9721 return -EIO;
9722 }
9723
9724 memset(&kvm_caps, 0, sizeof(kvm_caps));
9725
9726 x86_emulator_cache = kvm_alloc_emulator_cache();
9727 if (!x86_emulator_cache) {
9728 pr_err("failed to allocate cache for x86 emulator\n");
9729 return -ENOMEM;
9730 }
9731
9732 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9733 if (!user_return_msrs) {
9734 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9735 r = -ENOMEM;
9736 goto out_free_x86_emulator_cache;
9737 }
9738 kvm_nr_uret_msrs = 0;
9739
9740 r = kvm_mmu_vendor_module_init();
9741 if (r)
9742 goto out_free_percpu;
9743
9744 kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9745 kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9746
9747 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9748 kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9749 kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9750 }
9751
9752 rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9753
9754 if (boot_cpu_has(X86_FEATURE_XSAVES))
9755 rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9756
9757 kvm_init_pmu_capability(ops->pmu_ops);
9758
9759 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9760 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9761
9762 r = ops->hardware_setup();
9763 if (r != 0)
9764 goto out_mmu_exit;
9765
9766 kvm_ops_update(ops);
9767
9768 for_each_online_cpu(cpu) {
9769 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9770 if (r < 0)
9771 goto out_unwind_ops;
9772 }
9773
9774 /*
9775 * Point of no return! DO NOT add error paths below this point unless
9776 * absolutely necessary, as most operations from this point forward
9777 * require unwinding.
9778 */
9779 kvm_timer_init();
9780
9781 if (pi_inject_timer == -1)
9782 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9783 #ifdef CONFIG_X86_64
9784 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9785
9786 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9787 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9788 #endif
9789
9790 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9791
9792 if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9793 kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9794
9795 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9796 kvm_caps.supported_xss = 0;
9797
9798 if (kvm_caps.has_tsc_control) {
9799 /*
9800 * Make sure the user can only configure tsc_khz values that
9801 * fit into a signed integer.
9802 * A min value is not calculated because it will always
9803 * be 1 on all machines.
9804 */
9805 u64 max = min(0x7fffffffULL,
9806 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9807 kvm_caps.max_guest_tsc_khz = max;
9808 }
9809 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9810 kvm_init_msr_lists();
9811 return 0;
9812
9813 out_unwind_ops:
9814 kvm_x86_ops.enable_virtualization_cpu = NULL;
9815 kvm_x86_call(hardware_unsetup)();
9816 out_mmu_exit:
9817 kvm_mmu_vendor_module_exit();
9818 out_free_percpu:
9819 free_percpu(user_return_msrs);
9820 out_free_x86_emulator_cache:
9821 kmem_cache_destroy(x86_emulator_cache);
9822 return r;
9823 }
9824 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9825
kvm_x86_vendor_exit(void)9826 void kvm_x86_vendor_exit(void)
9827 {
9828 kvm_unregister_perf_callbacks();
9829
9830 #ifdef CONFIG_X86_64
9831 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9832 clear_hv_tscchange_cb();
9833 #endif
9834 kvm_lapic_exit();
9835
9836 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9837 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9838 CPUFREQ_TRANSITION_NOTIFIER);
9839 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9840 }
9841 #ifdef CONFIG_X86_64
9842 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9843 irq_work_sync(&pvclock_irq_work);
9844 cancel_work_sync(&pvclock_gtod_work);
9845 #endif
9846 kvm_x86_call(hardware_unsetup)();
9847 kvm_mmu_vendor_module_exit();
9848 free_percpu(user_return_msrs);
9849 kmem_cache_destroy(x86_emulator_cache);
9850 #ifdef CONFIG_KVM_XEN
9851 static_key_deferred_flush(&kvm_xen_enabled);
9852 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9853 #endif
9854 mutex_lock(&vendor_module_lock);
9855 kvm_x86_ops.enable_virtualization_cpu = NULL;
9856 mutex_unlock(&vendor_module_lock);
9857 }
9858 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9859
9860 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9861 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9862 unsigned long clock_type)
9863 {
9864 struct kvm_clock_pairing clock_pairing;
9865 struct timespec64 ts;
9866 u64 cycle;
9867 int ret;
9868
9869 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9870 return -KVM_EOPNOTSUPP;
9871
9872 /*
9873 * When tsc is in permanent catchup mode guests won't be able to use
9874 * pvclock_read_retry loop to get consistent view of pvclock
9875 */
9876 if (vcpu->arch.tsc_always_catchup)
9877 return -KVM_EOPNOTSUPP;
9878
9879 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9880 return -KVM_EOPNOTSUPP;
9881
9882 clock_pairing.sec = ts.tv_sec;
9883 clock_pairing.nsec = ts.tv_nsec;
9884 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9885 clock_pairing.flags = 0;
9886 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9887
9888 ret = 0;
9889 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9890 sizeof(struct kvm_clock_pairing)))
9891 ret = -KVM_EFAULT;
9892
9893 return ret;
9894 }
9895 #endif
9896
9897 /*
9898 * kvm_pv_kick_cpu_op: Kick a vcpu.
9899 *
9900 * @apicid - apicid of vcpu to be kicked.
9901 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9902 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9903 {
9904 /*
9905 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9906 * common code, e.g. for tracing. Defer initialization to the compiler.
9907 */
9908 struct kvm_lapic_irq lapic_irq = {
9909 .delivery_mode = APIC_DM_REMRD,
9910 .dest_mode = APIC_DEST_PHYSICAL,
9911 .shorthand = APIC_DEST_NOSHORT,
9912 .dest_id = apicid,
9913 };
9914
9915 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9916 }
9917
kvm_apicv_activated(struct kvm * kvm)9918 bool kvm_apicv_activated(struct kvm *kvm)
9919 {
9920 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9921 }
9922 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9923
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9924 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9925 {
9926 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9927 ulong vcpu_reasons =
9928 kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9929
9930 return (vm_reasons | vcpu_reasons) == 0;
9931 }
9932 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9933
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9934 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9935 enum kvm_apicv_inhibit reason, bool set)
9936 {
9937 const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9938
9939 BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9940
9941 if (set)
9942 __set_bit(reason, inhibits);
9943 else
9944 __clear_bit(reason, inhibits);
9945
9946 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9947 }
9948
kvm_apicv_init(struct kvm * kvm)9949 static void kvm_apicv_init(struct kvm *kvm)
9950 {
9951 enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9952 APICV_INHIBIT_REASON_DISABLED;
9953
9954 set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9955
9956 init_rwsem(&kvm->arch.apicv_update_lock);
9957 }
9958
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9959 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9960 {
9961 struct kvm_vcpu *target = NULL;
9962 struct kvm_apic_map *map;
9963
9964 vcpu->stat.directed_yield_attempted++;
9965
9966 if (single_task_running())
9967 goto no_yield;
9968
9969 rcu_read_lock();
9970 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9971
9972 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9973 target = map->phys_map[dest_id]->vcpu;
9974
9975 rcu_read_unlock();
9976
9977 if (!target || !READ_ONCE(target->ready))
9978 goto no_yield;
9979
9980 /* Ignore requests to yield to self */
9981 if (vcpu == target)
9982 goto no_yield;
9983
9984 if (kvm_vcpu_yield_to(target) <= 0)
9985 goto no_yield;
9986
9987 vcpu->stat.directed_yield_successful++;
9988
9989 no_yield:
9990 return;
9991 }
9992
complete_hypercall_exit(struct kvm_vcpu * vcpu)9993 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9994 {
9995 u64 ret = vcpu->run->hypercall.ret;
9996
9997 if (!is_64_bit_hypercall(vcpu))
9998 ret = (u32)ret;
9999 kvm_rax_write(vcpu, ret);
10000 return kvm_skip_emulated_instruction(vcpu);
10001 }
10002
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10003 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10004 unsigned long a0, unsigned long a1,
10005 unsigned long a2, unsigned long a3,
10006 int op_64_bit, int cpl,
10007 int (*complete_hypercall)(struct kvm_vcpu *))
10008 {
10009 unsigned long ret;
10010
10011 ++vcpu->stat.hypercalls;
10012
10013 trace_kvm_hypercall(nr, a0, a1, a2, a3);
10014
10015 if (!op_64_bit) {
10016 nr &= 0xFFFFFFFF;
10017 a0 &= 0xFFFFFFFF;
10018 a1 &= 0xFFFFFFFF;
10019 a2 &= 0xFFFFFFFF;
10020 a3 &= 0xFFFFFFFF;
10021 }
10022
10023 if (cpl) {
10024 ret = -KVM_EPERM;
10025 goto out;
10026 }
10027
10028 ret = -KVM_ENOSYS;
10029
10030 switch (nr) {
10031 case KVM_HC_VAPIC_POLL_IRQ:
10032 ret = 0;
10033 break;
10034 case KVM_HC_KICK_CPU:
10035 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10036 break;
10037
10038 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10039 kvm_sched_yield(vcpu, a1);
10040 ret = 0;
10041 break;
10042 #ifdef CONFIG_X86_64
10043 case KVM_HC_CLOCK_PAIRING:
10044 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10045 break;
10046 #endif
10047 case KVM_HC_SEND_IPI:
10048 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10049 break;
10050
10051 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10052 break;
10053 case KVM_HC_SCHED_YIELD:
10054 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10055 break;
10056
10057 kvm_sched_yield(vcpu, a0);
10058 ret = 0;
10059 break;
10060 case KVM_HC_MAP_GPA_RANGE: {
10061 u64 gpa = a0, npages = a1, attrs = a2;
10062
10063 ret = -KVM_ENOSYS;
10064 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10065 break;
10066
10067 if (!PAGE_ALIGNED(gpa) || !npages ||
10068 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10069 ret = -KVM_EINVAL;
10070 break;
10071 }
10072
10073 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
10074 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
10075 /*
10076 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10077 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10078 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
10079 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10080 */
10081 vcpu->run->hypercall.ret = 0;
10082 vcpu->run->hypercall.args[0] = gpa;
10083 vcpu->run->hypercall.args[1] = npages;
10084 vcpu->run->hypercall.args[2] = attrs;
10085 vcpu->run->hypercall.flags = 0;
10086 if (op_64_bit)
10087 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10088
10089 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10090 vcpu->arch.complete_userspace_io = complete_hypercall;
10091 return 0;
10092 }
10093 default:
10094 ret = -KVM_ENOSYS;
10095 break;
10096 }
10097
10098 out:
10099 vcpu->run->hypercall.ret = ret;
10100 return 1;
10101 }
10102 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10103
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10104 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10105 {
10106 if (kvm_xen_hypercall_enabled(vcpu->kvm))
10107 return kvm_xen_hypercall(vcpu);
10108
10109 if (kvm_hv_hypercall_enabled(vcpu))
10110 return kvm_hv_hypercall(vcpu);
10111
10112 return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10113 is_64_bit_hypercall(vcpu),
10114 kvm_x86_call(get_cpl)(vcpu),
10115 complete_hypercall_exit);
10116 }
10117 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10118
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10119 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10120 {
10121 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10122 char instruction[3];
10123 unsigned long rip = kvm_rip_read(vcpu);
10124
10125 /*
10126 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10127 * the pieces.
10128 */
10129 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10130 ctxt->exception.error_code_valid = false;
10131 ctxt->exception.vector = UD_VECTOR;
10132 ctxt->have_exception = true;
10133 return X86EMUL_PROPAGATE_FAULT;
10134 }
10135
10136 kvm_x86_call(patch_hypercall)(vcpu, instruction);
10137
10138 return emulator_write_emulated(ctxt, rip, instruction, 3,
10139 &ctxt->exception);
10140 }
10141
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10142 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10143 {
10144 return vcpu->run->request_interrupt_window &&
10145 likely(!pic_in_kernel(vcpu->kvm));
10146 }
10147
10148 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)10149 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10150 {
10151 struct kvm_run *kvm_run = vcpu->run;
10152
10153 kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10154 kvm_run->cr8 = kvm_get_cr8(vcpu);
10155 kvm_run->apic_base = vcpu->arch.apic_base;
10156
10157 kvm_run->ready_for_interrupt_injection =
10158 pic_in_kernel(vcpu->kvm) ||
10159 kvm_vcpu_ready_for_interrupt_injection(vcpu);
10160
10161 if (is_smm(vcpu))
10162 kvm_run->flags |= KVM_RUN_X86_SMM;
10163 if (is_guest_mode(vcpu))
10164 kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10165 }
10166
update_cr8_intercept(struct kvm_vcpu * vcpu)10167 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10168 {
10169 int max_irr, tpr;
10170
10171 if (!kvm_x86_ops.update_cr8_intercept)
10172 return;
10173
10174 if (!lapic_in_kernel(vcpu))
10175 return;
10176
10177 if (vcpu->arch.apic->apicv_active)
10178 return;
10179
10180 if (!vcpu->arch.apic->vapic_addr)
10181 max_irr = kvm_lapic_find_highest_irr(vcpu);
10182 else
10183 max_irr = -1;
10184
10185 if (max_irr != -1)
10186 max_irr >>= 4;
10187
10188 tpr = kvm_lapic_get_cr8(vcpu);
10189
10190 kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10191 }
10192
10193
kvm_check_nested_events(struct kvm_vcpu * vcpu)10194 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10195 {
10196 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10197 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10198 return 1;
10199 }
10200
10201 return kvm_x86_ops.nested_ops->check_events(vcpu);
10202 }
10203
kvm_inject_exception(struct kvm_vcpu * vcpu)10204 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10205 {
10206 /*
10207 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10208 * exceptions don't report error codes. The presence of an error code
10209 * is carried with the exception and only stripped when the exception
10210 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10211 * report an error code despite the CPU being in Real Mode.
10212 */
10213 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10214
10215 trace_kvm_inj_exception(vcpu->arch.exception.vector,
10216 vcpu->arch.exception.has_error_code,
10217 vcpu->arch.exception.error_code,
10218 vcpu->arch.exception.injected);
10219
10220 kvm_x86_call(inject_exception)(vcpu);
10221 }
10222
10223 /*
10224 * Check for any event (interrupt or exception) that is ready to be injected,
10225 * and if there is at least one event, inject the event with the highest
10226 * priority. This handles both "pending" events, i.e. events that have never
10227 * been injected into the guest, and "injected" events, i.e. events that were
10228 * injected as part of a previous VM-Enter, but weren't successfully delivered
10229 * and need to be re-injected.
10230 *
10231 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10232 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10233 * be able to inject exceptions in the "middle" of an instruction, and so must
10234 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10235 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10236 * boundaries is necessary and correct.
10237 *
10238 * For simplicity, KVM uses a single path to inject all events (except events
10239 * that are injected directly from L1 to L2) and doesn't explicitly track
10240 * instruction boundaries for asynchronous events. However, because VM-Exits
10241 * that can occur during instruction execution typically result in KVM skipping
10242 * the instruction or injecting an exception, e.g. instruction and exception
10243 * intercepts, and because pending exceptions have higher priority than pending
10244 * interrupts, KVM still honors instruction boundaries in most scenarios.
10245 *
10246 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10247 * the instruction or inject an exception, then KVM can incorrecty inject a new
10248 * asynchronous event if the event became pending after the CPU fetched the
10249 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10250 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10251 * injected on the restarted instruction instead of being deferred until the
10252 * instruction completes.
10253 *
10254 * In practice, this virtualization hole is unlikely to be observed by the
10255 * guest, and even less likely to cause functional problems. To detect the
10256 * hole, the guest would have to trigger an event on a side effect of an early
10257 * phase of instruction execution, e.g. on the instruction fetch from memory.
10258 * And for it to be a functional problem, the guest would need to depend on the
10259 * ordering between that side effect, the instruction completing, _and_ the
10260 * delivery of the asynchronous event.
10261 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10262 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10263 bool *req_immediate_exit)
10264 {
10265 bool can_inject;
10266 int r;
10267
10268 /*
10269 * Process nested events first, as nested VM-Exit supersedes event
10270 * re-injection. If there's an event queued for re-injection, it will
10271 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10272 */
10273 if (is_guest_mode(vcpu))
10274 r = kvm_check_nested_events(vcpu);
10275 else
10276 r = 0;
10277
10278 /*
10279 * Re-inject exceptions and events *especially* if immediate entry+exit
10280 * to/from L2 is needed, as any event that has already been injected
10281 * into L2 needs to complete its lifecycle before injecting a new event.
10282 *
10283 * Don't re-inject an NMI or interrupt if there is a pending exception.
10284 * This collision arises if an exception occurred while vectoring the
10285 * injected event, KVM intercepted said exception, and KVM ultimately
10286 * determined the fault belongs to the guest and queues the exception
10287 * for injection back into the guest.
10288 *
10289 * "Injected" interrupts can also collide with pending exceptions if
10290 * userspace ignores the "ready for injection" flag and blindly queues
10291 * an interrupt. In that case, prioritizing the exception is correct,
10292 * as the exception "occurred" before the exit to userspace. Trap-like
10293 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10294 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10295 * priority, they're only generated (pended) during instruction
10296 * execution, and interrupts are recognized at instruction boundaries.
10297 * Thus a pending fault-like exception means the fault occurred on the
10298 * *previous* instruction and must be serviced prior to recognizing any
10299 * new events in order to fully complete the previous instruction.
10300 */
10301 if (vcpu->arch.exception.injected)
10302 kvm_inject_exception(vcpu);
10303 else if (kvm_is_exception_pending(vcpu))
10304 ; /* see above */
10305 else if (vcpu->arch.nmi_injected)
10306 kvm_x86_call(inject_nmi)(vcpu);
10307 else if (vcpu->arch.interrupt.injected)
10308 kvm_x86_call(inject_irq)(vcpu, true);
10309
10310 /*
10311 * Exceptions that morph to VM-Exits are handled above, and pending
10312 * exceptions on top of injected exceptions that do not VM-Exit should
10313 * either morph to #DF or, sadly, override the injected exception.
10314 */
10315 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10316 vcpu->arch.exception.pending);
10317
10318 /*
10319 * Bail if immediate entry+exit to/from the guest is needed to complete
10320 * nested VM-Enter or event re-injection so that a different pending
10321 * event can be serviced (or if KVM needs to exit to userspace).
10322 *
10323 * Otherwise, continue processing events even if VM-Exit occurred. The
10324 * VM-Exit will have cleared exceptions that were meant for L2, but
10325 * there may now be events that can be injected into L1.
10326 */
10327 if (r < 0)
10328 goto out;
10329
10330 /*
10331 * A pending exception VM-Exit should either result in nested VM-Exit
10332 * or force an immediate re-entry and exit to/from L2, and exception
10333 * VM-Exits cannot be injected (flag should _never_ be set).
10334 */
10335 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10336 vcpu->arch.exception_vmexit.pending);
10337
10338 /*
10339 * New events, other than exceptions, cannot be injected if KVM needs
10340 * to re-inject a previous event. See above comments on re-injecting
10341 * for why pending exceptions get priority.
10342 */
10343 can_inject = !kvm_event_needs_reinjection(vcpu);
10344
10345 if (vcpu->arch.exception.pending) {
10346 /*
10347 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10348 * value pushed on the stack. Trap-like exception and all #DBs
10349 * leave RF as-is (KVM follows Intel's behavior in this regard;
10350 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10351 *
10352 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10353 * describe the behavior of General Detect #DBs, which are
10354 * fault-like. They do _not_ set RF, a la code breakpoints.
10355 */
10356 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10357 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10358 X86_EFLAGS_RF);
10359
10360 if (vcpu->arch.exception.vector == DB_VECTOR) {
10361 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10362 if (vcpu->arch.dr7 & DR7_GD) {
10363 vcpu->arch.dr7 &= ~DR7_GD;
10364 kvm_update_dr7(vcpu);
10365 }
10366 }
10367
10368 kvm_inject_exception(vcpu);
10369
10370 vcpu->arch.exception.pending = false;
10371 vcpu->arch.exception.injected = true;
10372
10373 can_inject = false;
10374 }
10375
10376 /* Don't inject interrupts if the user asked to avoid doing so */
10377 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10378 return 0;
10379
10380 /*
10381 * Finally, inject interrupt events. If an event cannot be injected
10382 * due to architectural conditions (e.g. IF=0) a window-open exit
10383 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10384 * and can architecturally be injected, but we cannot do it right now:
10385 * an interrupt could have arrived just now and we have to inject it
10386 * as a vmexit, or there could already an event in the queue, which is
10387 * indicated by can_inject. In that case we request an immediate exit
10388 * in order to make progress and get back here for another iteration.
10389 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10390 */
10391 #ifdef CONFIG_KVM_SMM
10392 if (vcpu->arch.smi_pending) {
10393 r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10394 -EBUSY;
10395 if (r < 0)
10396 goto out;
10397 if (r) {
10398 vcpu->arch.smi_pending = false;
10399 ++vcpu->arch.smi_count;
10400 enter_smm(vcpu);
10401 can_inject = false;
10402 } else
10403 kvm_x86_call(enable_smi_window)(vcpu);
10404 }
10405 #endif
10406
10407 if (vcpu->arch.nmi_pending) {
10408 r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10409 -EBUSY;
10410 if (r < 0)
10411 goto out;
10412 if (r) {
10413 --vcpu->arch.nmi_pending;
10414 vcpu->arch.nmi_injected = true;
10415 kvm_x86_call(inject_nmi)(vcpu);
10416 can_inject = false;
10417 WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10418 }
10419 if (vcpu->arch.nmi_pending)
10420 kvm_x86_call(enable_nmi_window)(vcpu);
10421 }
10422
10423 if (kvm_cpu_has_injectable_intr(vcpu)) {
10424 r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10425 -EBUSY;
10426 if (r < 0)
10427 goto out;
10428 if (r) {
10429 int irq = kvm_cpu_get_interrupt(vcpu);
10430
10431 if (!WARN_ON_ONCE(irq == -1)) {
10432 kvm_queue_interrupt(vcpu, irq, false);
10433 kvm_x86_call(inject_irq)(vcpu, false);
10434 WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10435 }
10436 }
10437 if (kvm_cpu_has_injectable_intr(vcpu))
10438 kvm_x86_call(enable_irq_window)(vcpu);
10439 }
10440
10441 if (is_guest_mode(vcpu) &&
10442 kvm_x86_ops.nested_ops->has_events &&
10443 kvm_x86_ops.nested_ops->has_events(vcpu, true))
10444 *req_immediate_exit = true;
10445
10446 /*
10447 * KVM must never queue a new exception while injecting an event; KVM
10448 * is done emulating and should only propagate the to-be-injected event
10449 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10450 * infinite loop as KVM will bail from VM-Enter to inject the pending
10451 * exception and start the cycle all over.
10452 *
10453 * Exempt triple faults as they have special handling and won't put the
10454 * vCPU into an infinite loop. Triple fault can be queued when running
10455 * VMX without unrestricted guest, as that requires KVM to emulate Real
10456 * Mode events (see kvm_inject_realmode_interrupt()).
10457 */
10458 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10459 vcpu->arch.exception_vmexit.pending);
10460 return 0;
10461
10462 out:
10463 if (r == -EBUSY) {
10464 *req_immediate_exit = true;
10465 r = 0;
10466 }
10467 return r;
10468 }
10469
process_nmi(struct kvm_vcpu * vcpu)10470 static void process_nmi(struct kvm_vcpu *vcpu)
10471 {
10472 unsigned int limit;
10473
10474 /*
10475 * x86 is limited to one NMI pending, but because KVM can't react to
10476 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10477 * scheduled out, KVM needs to play nice with two queued NMIs showing
10478 * up at the same time. To handle this scenario, allow two NMIs to be
10479 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10480 * waiting for a previous NMI injection to complete (which effectively
10481 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10482 * will request an NMI window to handle the second NMI.
10483 */
10484 if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10485 limit = 1;
10486 else
10487 limit = 2;
10488
10489 /*
10490 * Adjust the limit to account for pending virtual NMIs, which aren't
10491 * tracked in vcpu->arch.nmi_pending.
10492 */
10493 if (kvm_x86_call(is_vnmi_pending)(vcpu))
10494 limit--;
10495
10496 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10497 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10498
10499 if (vcpu->arch.nmi_pending &&
10500 (kvm_x86_call(set_vnmi_pending)(vcpu)))
10501 vcpu->arch.nmi_pending--;
10502
10503 if (vcpu->arch.nmi_pending)
10504 kvm_make_request(KVM_REQ_EVENT, vcpu);
10505 }
10506
10507 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10508 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10509 {
10510 return vcpu->arch.nmi_pending +
10511 kvm_x86_call(is_vnmi_pending)(vcpu);
10512 }
10513
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10514 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10515 unsigned long *vcpu_bitmap)
10516 {
10517 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10518 }
10519
kvm_make_scan_ioapic_request(struct kvm * kvm)10520 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10521 {
10522 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10523 }
10524
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10525 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10526 {
10527 struct kvm_lapic *apic = vcpu->arch.apic;
10528 bool activate;
10529
10530 if (!lapic_in_kernel(vcpu))
10531 return;
10532
10533 down_read(&vcpu->kvm->arch.apicv_update_lock);
10534 preempt_disable();
10535
10536 /* Do not activate APICV when APIC is disabled */
10537 activate = kvm_vcpu_apicv_activated(vcpu) &&
10538 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10539
10540 if (apic->apicv_active == activate)
10541 goto out;
10542
10543 apic->apicv_active = activate;
10544 kvm_apic_update_apicv(vcpu);
10545 kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10546
10547 /*
10548 * When APICv gets disabled, we may still have injected interrupts
10549 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10550 * still active when the interrupt got accepted. Make sure
10551 * kvm_check_and_inject_events() is called to check for that.
10552 */
10553 if (!apic->apicv_active)
10554 kvm_make_request(KVM_REQ_EVENT, vcpu);
10555
10556 out:
10557 preempt_enable();
10558 up_read(&vcpu->kvm->arch.apicv_update_lock);
10559 }
10560 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10561
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10562 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10563 {
10564 if (!lapic_in_kernel(vcpu))
10565 return;
10566
10567 /*
10568 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10569 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10570 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10571 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10572 * this case so that KVM can use the AVIC doorbell to inject interrupts
10573 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10574 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10575 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10576 * access page is sticky.
10577 */
10578 if (apic_x2apic_mode(vcpu->arch.apic) &&
10579 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10580 kvm_inhibit_apic_access_page(vcpu);
10581
10582 __kvm_vcpu_update_apicv(vcpu);
10583 }
10584
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10585 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10586 enum kvm_apicv_inhibit reason, bool set)
10587 {
10588 unsigned long old, new;
10589
10590 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10591
10592 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10593 return;
10594
10595 old = new = kvm->arch.apicv_inhibit_reasons;
10596
10597 set_or_clear_apicv_inhibit(&new, reason, set);
10598
10599 if (!!old != !!new) {
10600 /*
10601 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10602 * false positives in the sanity check WARN in vcpu_enter_guest().
10603 * This task will wait for all vCPUs to ack the kick IRQ before
10604 * updating apicv_inhibit_reasons, and all other vCPUs will
10605 * block on acquiring apicv_update_lock so that vCPUs can't
10606 * redo vcpu_enter_guest() without seeing the new inhibit state.
10607 *
10608 * Note, holding apicv_update_lock and taking it in the read
10609 * side (handling the request) also prevents other vCPUs from
10610 * servicing the request with a stale apicv_inhibit_reasons.
10611 */
10612 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10613 kvm->arch.apicv_inhibit_reasons = new;
10614 if (new) {
10615 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10616 int idx = srcu_read_lock(&kvm->srcu);
10617
10618 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10619 srcu_read_unlock(&kvm->srcu, idx);
10620 }
10621 } else {
10622 kvm->arch.apicv_inhibit_reasons = new;
10623 }
10624 }
10625
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10626 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10627 enum kvm_apicv_inhibit reason, bool set)
10628 {
10629 if (!enable_apicv)
10630 return;
10631
10632 down_write(&kvm->arch.apicv_update_lock);
10633 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10634 up_write(&kvm->arch.apicv_update_lock);
10635 }
10636 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10637
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10639 {
10640 if (!kvm_apic_present(vcpu))
10641 return;
10642
10643 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10644
10645 kvm_x86_call(sync_pir_to_irr)(vcpu);
10646
10647 if (irqchip_split(vcpu->kvm))
10648 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10649 else if (ioapic_in_kernel(vcpu->kvm))
10650 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10651
10652 if (is_guest_mode(vcpu))
10653 vcpu->arch.load_eoi_exitmap_pending = true;
10654 else
10655 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10656 }
10657
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10658 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10659 {
10660 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10661 return;
10662
10663 #ifdef CONFIG_KVM_HYPERV
10664 if (to_hv_vcpu(vcpu)) {
10665 u64 eoi_exit_bitmap[4];
10666
10667 bitmap_or((ulong *)eoi_exit_bitmap,
10668 vcpu->arch.ioapic_handled_vectors,
10669 to_hv_synic(vcpu)->vec_bitmap, 256);
10670 kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10671 return;
10672 }
10673 #endif
10674 kvm_x86_call(load_eoi_exitmap)(
10675 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10676 }
10677
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10678 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10679 {
10680 kvm_x86_call(guest_memory_reclaimed)(kvm);
10681 }
10682
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10683 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10684 {
10685 if (!lapic_in_kernel(vcpu))
10686 return;
10687
10688 kvm_x86_call(set_apic_access_page_addr)(vcpu);
10689 }
10690
10691 /*
10692 * Called within kvm->srcu read side.
10693 * Returns 1 to let vcpu_run() continue the guest execution loop without
10694 * exiting to the userspace. Otherwise, the value will be returned to the
10695 * userspace.
10696 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10697 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10698 {
10699 int r;
10700 bool req_int_win =
10701 dm_request_for_irq_injection(vcpu) &&
10702 kvm_cpu_accept_dm_intr(vcpu);
10703 fastpath_t exit_fastpath;
10704
10705 bool req_immediate_exit = false;
10706
10707 if (kvm_request_pending(vcpu)) {
10708 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10709 r = -EIO;
10710 goto out;
10711 }
10712
10713 if (kvm_dirty_ring_check_request(vcpu)) {
10714 r = 0;
10715 goto out;
10716 }
10717
10718 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10719 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10720 r = 0;
10721 goto out;
10722 }
10723 }
10724 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10725 kvm_mmu_free_obsolete_roots(vcpu);
10726 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10727 __kvm_migrate_timers(vcpu);
10728 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10729 kvm_update_masterclock(vcpu->kvm);
10730 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10731 kvm_gen_kvmclock_update(vcpu);
10732 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10733 r = kvm_guest_time_update(vcpu);
10734 if (unlikely(r))
10735 goto out;
10736 }
10737 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10738 kvm_mmu_sync_roots(vcpu);
10739 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10740 kvm_mmu_load_pgd(vcpu);
10741
10742 /*
10743 * Note, the order matters here, as flushing "all" TLB entries
10744 * also flushes the "current" TLB entries, i.e. servicing the
10745 * flush "all" will clear any request to flush "current".
10746 */
10747 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10748 kvm_vcpu_flush_tlb_all(vcpu);
10749
10750 kvm_service_local_tlb_flush_requests(vcpu);
10751
10752 /*
10753 * Fall back to a "full" guest flush if Hyper-V's precise
10754 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10755 * the flushes are considered "remote" and not "local" because
10756 * the requests can be initiated from other vCPUs.
10757 */
10758 #ifdef CONFIG_KVM_HYPERV
10759 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10760 kvm_hv_vcpu_flush_tlb(vcpu))
10761 kvm_vcpu_flush_tlb_guest(vcpu);
10762 #endif
10763
10764 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10765 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10766 r = 0;
10767 goto out;
10768 }
10769 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10770 if (is_guest_mode(vcpu))
10771 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10772
10773 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10774 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10775 vcpu->mmio_needed = 0;
10776 r = 0;
10777 goto out;
10778 }
10779 }
10780 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10781 /* Page is swapped out. Do synthetic halt */
10782 vcpu->arch.apf.halted = true;
10783 r = 1;
10784 goto out;
10785 }
10786 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10787 record_steal_time(vcpu);
10788 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10789 kvm_pmu_handle_event(vcpu);
10790 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10791 kvm_pmu_deliver_pmi(vcpu);
10792 #ifdef CONFIG_KVM_SMM
10793 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10794 process_smi(vcpu);
10795 #endif
10796 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10797 process_nmi(vcpu);
10798 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10799 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10800 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10801 vcpu->arch.ioapic_handled_vectors)) {
10802 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10803 vcpu->run->eoi.vector =
10804 vcpu->arch.pending_ioapic_eoi;
10805 r = 0;
10806 goto out;
10807 }
10808 }
10809 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10810 vcpu_scan_ioapic(vcpu);
10811 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10812 vcpu_load_eoi_exitmap(vcpu);
10813 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10814 kvm_vcpu_reload_apic_access_page(vcpu);
10815 #ifdef CONFIG_KVM_HYPERV
10816 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10817 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10818 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10819 vcpu->run->system_event.ndata = 0;
10820 r = 0;
10821 goto out;
10822 }
10823 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10824 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10826 vcpu->run->system_event.ndata = 0;
10827 r = 0;
10828 goto out;
10829 }
10830 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10831 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10832
10833 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10834 vcpu->run->hyperv = hv_vcpu->exit;
10835 r = 0;
10836 goto out;
10837 }
10838
10839 /*
10840 * KVM_REQ_HV_STIMER has to be processed after
10841 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10842 * depend on the guest clock being up-to-date
10843 */
10844 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10845 kvm_hv_process_stimers(vcpu);
10846 #endif
10847 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10848 kvm_vcpu_update_apicv(vcpu);
10849 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10850 kvm_check_async_pf_completion(vcpu);
10851 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10852 kvm_x86_call(msr_filter_changed)(vcpu);
10853
10854 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10855 kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10856
10857 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10858 kvm_vcpu_reset(vcpu, true);
10859 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10860 r = 1;
10861 goto out;
10862 }
10863 }
10864 }
10865
10866 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10867 kvm_xen_has_interrupt(vcpu)) {
10868 ++vcpu->stat.req_event;
10869 r = kvm_apic_accept_events(vcpu);
10870 if (r < 0) {
10871 r = 0;
10872 goto out;
10873 }
10874 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10875 r = 1;
10876 goto out;
10877 }
10878
10879 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10880 if (r < 0) {
10881 r = 0;
10882 goto out;
10883 }
10884 if (req_int_win)
10885 kvm_x86_call(enable_irq_window)(vcpu);
10886
10887 if (kvm_lapic_enabled(vcpu)) {
10888 update_cr8_intercept(vcpu);
10889 kvm_lapic_sync_to_vapic(vcpu);
10890 }
10891 }
10892
10893 r = kvm_mmu_reload(vcpu);
10894 if (unlikely(r)) {
10895 goto cancel_injection;
10896 }
10897
10898 preempt_disable();
10899
10900 kvm_x86_call(prepare_switch_to_guest)(vcpu);
10901
10902 /*
10903 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10904 * IPI are then delayed after guest entry, which ensures that they
10905 * result in virtual interrupt delivery.
10906 */
10907 local_irq_disable();
10908
10909 /* Store vcpu->apicv_active before vcpu->mode. */
10910 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10911
10912 kvm_vcpu_srcu_read_unlock(vcpu);
10913
10914 /*
10915 * 1) We should set ->mode before checking ->requests. Please see
10916 * the comment in kvm_vcpu_exiting_guest_mode().
10917 *
10918 * 2) For APICv, we should set ->mode before checking PID.ON. This
10919 * pairs with the memory barrier implicit in pi_test_and_set_on
10920 * (see vmx_deliver_posted_interrupt).
10921 *
10922 * 3) This also orders the write to mode from any reads to the page
10923 * tables done while the VCPU is running. Please see the comment
10924 * in kvm_flush_remote_tlbs.
10925 */
10926 smp_mb__after_srcu_read_unlock();
10927
10928 /*
10929 * Process pending posted interrupts to handle the case where the
10930 * notification IRQ arrived in the host, or was never sent (because the
10931 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10932 * status, KVM doesn't update assigned devices when APICv is inhibited,
10933 * i.e. they can post interrupts even if APICv is temporarily disabled.
10934 */
10935 if (kvm_lapic_enabled(vcpu))
10936 kvm_x86_call(sync_pir_to_irr)(vcpu);
10937
10938 if (kvm_vcpu_exit_request(vcpu)) {
10939 vcpu->mode = OUTSIDE_GUEST_MODE;
10940 smp_wmb();
10941 local_irq_enable();
10942 preempt_enable();
10943 kvm_vcpu_srcu_read_lock(vcpu);
10944 r = 1;
10945 goto cancel_injection;
10946 }
10947
10948 if (req_immediate_exit)
10949 kvm_make_request(KVM_REQ_EVENT, vcpu);
10950
10951 fpregs_assert_state_consistent();
10952 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10953 switch_fpu_return();
10954
10955 if (vcpu->arch.guest_fpu.xfd_err)
10956 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10957
10958 if (unlikely(vcpu->arch.switch_db_regs)) {
10959 set_debugreg(0, 7);
10960 set_debugreg(vcpu->arch.eff_db[0], 0);
10961 set_debugreg(vcpu->arch.eff_db[1], 1);
10962 set_debugreg(vcpu->arch.eff_db[2], 2);
10963 set_debugreg(vcpu->arch.eff_db[3], 3);
10964 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10965 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10966 kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10967 } else if (unlikely(hw_breakpoint_active())) {
10968 set_debugreg(0, 7);
10969 }
10970
10971 vcpu->arch.host_debugctl = get_debugctlmsr();
10972
10973 guest_timing_enter_irqoff();
10974
10975 for (;;) {
10976 /*
10977 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10978 * update must kick and wait for all vCPUs before toggling the
10979 * per-VM state, and responding vCPUs must wait for the update
10980 * to complete before servicing KVM_REQ_APICV_UPDATE.
10981 */
10982 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10983 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10984
10985 exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10986 req_immediate_exit);
10987 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10988 break;
10989
10990 if (kvm_lapic_enabled(vcpu))
10991 kvm_x86_call(sync_pir_to_irr)(vcpu);
10992
10993 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10994 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10995 break;
10996 }
10997
10998 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10999 ++vcpu->stat.exits;
11000 }
11001
11002 /*
11003 * Do this here before restoring debug registers on the host. And
11004 * since we do this before handling the vmexit, a DR access vmexit
11005 * can (a) read the correct value of the debug registers, (b) set
11006 * KVM_DEBUGREG_WONT_EXIT again.
11007 */
11008 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11009 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11010 kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11011 kvm_update_dr0123(vcpu);
11012 kvm_update_dr7(vcpu);
11013 }
11014
11015 /*
11016 * If the guest has used debug registers, at least dr7
11017 * will be disabled while returning to the host.
11018 * If we don't have active breakpoints in the host, we don't
11019 * care about the messed up debug address registers. But if
11020 * we have some of them active, restore the old state.
11021 */
11022 if (hw_breakpoint_active())
11023 hw_breakpoint_restore();
11024
11025 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11026 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11027
11028 vcpu->mode = OUTSIDE_GUEST_MODE;
11029 smp_wmb();
11030
11031 /*
11032 * Sync xfd before calling handle_exit_irqoff() which may
11033 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11034 * in #NM irqoff handler).
11035 */
11036 if (vcpu->arch.xfd_no_write_intercept)
11037 fpu_sync_guest_vmexit_xfd_state();
11038
11039 kvm_x86_call(handle_exit_irqoff)(vcpu);
11040
11041 if (vcpu->arch.guest_fpu.xfd_err)
11042 wrmsrl(MSR_IA32_XFD_ERR, 0);
11043
11044 /*
11045 * Consume any pending interrupts, including the possible source of
11046 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11047 * An instruction is required after local_irq_enable() to fully unblock
11048 * interrupts on processors that implement an interrupt shadow, the
11049 * stat.exits increment will do nicely.
11050 */
11051 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11052 local_irq_enable();
11053 ++vcpu->stat.exits;
11054 local_irq_disable();
11055 kvm_after_interrupt(vcpu);
11056
11057 /*
11058 * Wait until after servicing IRQs to account guest time so that any
11059 * ticks that occurred while running the guest are properly accounted
11060 * to the guest. Waiting until IRQs are enabled degrades the accuracy
11061 * of accounting via context tracking, but the loss of accuracy is
11062 * acceptable for all known use cases.
11063 */
11064 guest_timing_exit_irqoff();
11065
11066 local_irq_enable();
11067 preempt_enable();
11068
11069 kvm_vcpu_srcu_read_lock(vcpu);
11070
11071 /*
11072 * Call this to ensure WC buffers in guest are evicted after each VM
11073 * Exit, so that the evicted WC writes can be snooped across all cpus
11074 */
11075 smp_mb__after_srcu_read_lock();
11076
11077 /*
11078 * Profile KVM exit RIPs:
11079 */
11080 if (unlikely(prof_on == KVM_PROFILING)) {
11081 unsigned long rip = kvm_rip_read(vcpu);
11082 profile_hit(KVM_PROFILING, (void *)rip);
11083 }
11084
11085 if (unlikely(vcpu->arch.tsc_always_catchup))
11086 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11087
11088 if (vcpu->arch.apic_attention)
11089 kvm_lapic_sync_from_vapic(vcpu);
11090
11091 if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11092 return 0;
11093
11094 r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11095 return r;
11096
11097 cancel_injection:
11098 if (req_immediate_exit)
11099 kvm_make_request(KVM_REQ_EVENT, vcpu);
11100 kvm_x86_call(cancel_injection)(vcpu);
11101 if (unlikely(vcpu->arch.apic_attention))
11102 kvm_lapic_sync_from_vapic(vcpu);
11103 out:
11104 return r;
11105 }
11106
kvm_vcpu_running(struct kvm_vcpu * vcpu)11107 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11108 {
11109 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11110 !vcpu->arch.apf.halted);
11111 }
11112
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11113 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11114 {
11115 if (!list_empty_careful(&vcpu->async_pf.done))
11116 return true;
11117
11118 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11119 kvm_apic_init_sipi_allowed(vcpu))
11120 return true;
11121
11122 if (vcpu->arch.pv.pv_unhalted)
11123 return true;
11124
11125 if (kvm_is_exception_pending(vcpu))
11126 return true;
11127
11128 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11129 (vcpu->arch.nmi_pending &&
11130 kvm_x86_call(nmi_allowed)(vcpu, false)))
11131 return true;
11132
11133 #ifdef CONFIG_KVM_SMM
11134 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11135 (vcpu->arch.smi_pending &&
11136 kvm_x86_call(smi_allowed)(vcpu, false)))
11137 return true;
11138 #endif
11139
11140 if (kvm_test_request(KVM_REQ_PMI, vcpu))
11141 return true;
11142
11143 if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11144 return true;
11145
11146 if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11147 return true;
11148
11149 if (kvm_hv_has_stimer_pending(vcpu))
11150 return true;
11151
11152 if (is_guest_mode(vcpu) &&
11153 kvm_x86_ops.nested_ops->has_events &&
11154 kvm_x86_ops.nested_ops->has_events(vcpu, false))
11155 return true;
11156
11157 if (kvm_xen_has_pending_events(vcpu))
11158 return true;
11159
11160 return false;
11161 }
11162
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11163 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11164 {
11165 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11166 }
11167
11168 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)11169 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11170 {
11171 bool hv_timer;
11172
11173 if (!kvm_arch_vcpu_runnable(vcpu)) {
11174 /*
11175 * Switch to the software timer before halt-polling/blocking as
11176 * the guest's timer may be a break event for the vCPU, and the
11177 * hypervisor timer runs only when the CPU is in guest mode.
11178 * Switch before halt-polling so that KVM recognizes an expired
11179 * timer before blocking.
11180 */
11181 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11182 if (hv_timer)
11183 kvm_lapic_switch_to_sw_timer(vcpu);
11184
11185 kvm_vcpu_srcu_read_unlock(vcpu);
11186 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11187 kvm_vcpu_halt(vcpu);
11188 else
11189 kvm_vcpu_block(vcpu);
11190 kvm_vcpu_srcu_read_lock(vcpu);
11191
11192 if (hv_timer)
11193 kvm_lapic_switch_to_hv_timer(vcpu);
11194
11195 /*
11196 * If the vCPU is not runnable, a signal or another host event
11197 * of some kind is pending; service it without changing the
11198 * vCPU's activity state.
11199 */
11200 if (!kvm_arch_vcpu_runnable(vcpu))
11201 return 1;
11202 }
11203
11204 /*
11205 * Evaluate nested events before exiting the halted state. This allows
11206 * the halt state to be recorded properly in the VMCS12's activity
11207 * state field (AMD does not have a similar field and a VM-Exit always
11208 * causes a spurious wakeup from HLT).
11209 */
11210 if (is_guest_mode(vcpu)) {
11211 int r = kvm_check_nested_events(vcpu);
11212
11213 WARN_ON_ONCE(r == -EBUSY);
11214 if (r < 0)
11215 return 0;
11216 }
11217
11218 if (kvm_apic_accept_events(vcpu) < 0)
11219 return 0;
11220 switch(vcpu->arch.mp_state) {
11221 case KVM_MP_STATE_HALTED:
11222 case KVM_MP_STATE_AP_RESET_HOLD:
11223 vcpu->arch.pv.pv_unhalted = false;
11224 vcpu->arch.mp_state =
11225 KVM_MP_STATE_RUNNABLE;
11226 fallthrough;
11227 case KVM_MP_STATE_RUNNABLE:
11228 vcpu->arch.apf.halted = false;
11229 break;
11230 case KVM_MP_STATE_INIT_RECEIVED:
11231 break;
11232 default:
11233 WARN_ON_ONCE(1);
11234 break;
11235 }
11236 return 1;
11237 }
11238
11239 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)11240 static int vcpu_run(struct kvm_vcpu *vcpu)
11241 {
11242 int r;
11243
11244 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11245
11246 for (;;) {
11247 /*
11248 * If another guest vCPU requests a PV TLB flush in the middle
11249 * of instruction emulation, the rest of the emulation could
11250 * use a stale page translation. Assume that any code after
11251 * this point can start executing an instruction.
11252 */
11253 vcpu->arch.at_instruction_boundary = false;
11254 if (kvm_vcpu_running(vcpu)) {
11255 r = vcpu_enter_guest(vcpu);
11256 } else {
11257 r = vcpu_block(vcpu);
11258 }
11259
11260 if (r <= 0)
11261 break;
11262
11263 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11264 if (kvm_xen_has_pending_events(vcpu))
11265 kvm_xen_inject_pending_events(vcpu);
11266
11267 if (kvm_cpu_has_pending_timer(vcpu))
11268 kvm_inject_pending_timer_irqs(vcpu);
11269
11270 if (dm_request_for_irq_injection(vcpu) &&
11271 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11272 r = 0;
11273 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11274 ++vcpu->stat.request_irq_exits;
11275 break;
11276 }
11277
11278 if (__xfer_to_guest_mode_work_pending()) {
11279 kvm_vcpu_srcu_read_unlock(vcpu);
11280 r = xfer_to_guest_mode_handle_work(vcpu);
11281 kvm_vcpu_srcu_read_lock(vcpu);
11282 if (r)
11283 return r;
11284 }
11285 }
11286
11287 return r;
11288 }
11289
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11290 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11291 {
11292 /*
11293 * The vCPU has halted, e.g. executed HLT. Update the run state if the
11294 * local APIC is in-kernel, the run loop will detect the non-runnable
11295 * state and halt the vCPU. Exit to userspace if the local APIC is
11296 * managed by userspace, in which case userspace is responsible for
11297 * handling wake events.
11298 */
11299 ++vcpu->stat.halt_exits;
11300 if (lapic_in_kernel(vcpu)) {
11301 if (kvm_vcpu_has_events(vcpu))
11302 vcpu->arch.pv.pv_unhalted = false;
11303 else
11304 vcpu->arch.mp_state = state;
11305 return 1;
11306 } else {
11307 vcpu->run->exit_reason = reason;
11308 return 0;
11309 }
11310 }
11311
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11312 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11313 {
11314 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11315 }
11316 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11317
kvm_emulate_halt(struct kvm_vcpu * vcpu)11318 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11319 {
11320 int ret = kvm_skip_emulated_instruction(vcpu);
11321 /*
11322 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11323 * KVM_EXIT_DEBUG here.
11324 */
11325 return kvm_emulate_halt_noskip(vcpu) && ret;
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11328
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11329 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11330 {
11331 int ret;
11332
11333 kvm_vcpu_srcu_read_lock(vcpu);
11334 ret = kvm_emulate_halt(vcpu);
11335 kvm_vcpu_srcu_read_unlock(vcpu);
11336
11337 if (!ret)
11338 return EXIT_FASTPATH_EXIT_USERSPACE;
11339
11340 if (kvm_vcpu_running(vcpu))
11341 return EXIT_FASTPATH_REENTER_GUEST;
11342
11343 return EXIT_FASTPATH_EXIT_HANDLED;
11344 }
11345 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11346
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11347 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11348 {
11349 int ret = kvm_skip_emulated_instruction(vcpu);
11350
11351 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11352 KVM_EXIT_AP_RESET_HOLD) && ret;
11353 }
11354 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11355
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11356 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11357 {
11358 return kvm_vcpu_apicv_active(vcpu) &&
11359 kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11360 }
11361
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11362 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11363 {
11364 return vcpu->arch.preempted_in_kernel;
11365 }
11366
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11367 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11368 {
11369 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11370 return true;
11371
11372 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11373 #ifdef CONFIG_KVM_SMM
11374 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11375 #endif
11376 kvm_test_request(KVM_REQ_EVENT, vcpu))
11377 return true;
11378
11379 return kvm_arch_dy_has_pending_interrupt(vcpu);
11380 }
11381
complete_emulated_io(struct kvm_vcpu * vcpu)11382 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11383 {
11384 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11385 }
11386
complete_emulated_pio(struct kvm_vcpu * vcpu)11387 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11388 {
11389 BUG_ON(!vcpu->arch.pio.count);
11390
11391 return complete_emulated_io(vcpu);
11392 }
11393
11394 /*
11395 * Implements the following, as a state machine:
11396 *
11397 * read:
11398 * for each fragment
11399 * for each mmio piece in the fragment
11400 * write gpa, len
11401 * exit
11402 * copy data
11403 * execute insn
11404 *
11405 * write:
11406 * for each fragment
11407 * for each mmio piece in the fragment
11408 * write gpa, len
11409 * copy data
11410 * exit
11411 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11412 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11413 {
11414 struct kvm_run *run = vcpu->run;
11415 struct kvm_mmio_fragment *frag;
11416 unsigned len;
11417
11418 BUG_ON(!vcpu->mmio_needed);
11419
11420 /* Complete previous fragment */
11421 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11422 len = min(8u, frag->len);
11423 if (!vcpu->mmio_is_write)
11424 memcpy(frag->data, run->mmio.data, len);
11425
11426 if (frag->len <= 8) {
11427 /* Switch to the next fragment. */
11428 frag++;
11429 vcpu->mmio_cur_fragment++;
11430 } else {
11431 /* Go forward to the next mmio piece. */
11432 frag->data += len;
11433 frag->gpa += len;
11434 frag->len -= len;
11435 }
11436
11437 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11438 vcpu->mmio_needed = 0;
11439
11440 /* FIXME: return into emulator if single-stepping. */
11441 if (vcpu->mmio_is_write)
11442 return 1;
11443 vcpu->mmio_read_completed = 1;
11444 return complete_emulated_io(vcpu);
11445 }
11446
11447 run->exit_reason = KVM_EXIT_MMIO;
11448 run->mmio.phys_addr = frag->gpa;
11449 if (vcpu->mmio_is_write)
11450 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11451 run->mmio.len = min(8u, frag->len);
11452 run->mmio.is_write = vcpu->mmio_is_write;
11453 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11454 return 0;
11455 }
11456
11457 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11458 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11459 {
11460 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11461 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11462 trace_kvm_fpu(1);
11463 }
11464
11465 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11466 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11467 {
11468 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11469 ++vcpu->stat.fpu_reload;
11470 trace_kvm_fpu(0);
11471 }
11472
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11473 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11474 {
11475 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11476 struct kvm_run *kvm_run = vcpu->run;
11477 int r;
11478
11479 r = kvm_mmu_post_init_vm(vcpu->kvm);
11480 if (r)
11481 return r;
11482
11483 vcpu_load(vcpu);
11484 kvm_sigset_activate(vcpu);
11485 kvm_run->flags = 0;
11486 kvm_load_guest_fpu(vcpu);
11487
11488 kvm_vcpu_srcu_read_lock(vcpu);
11489 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11490 if (!vcpu->wants_to_run) {
11491 r = -EINTR;
11492 goto out;
11493 }
11494
11495 /*
11496 * Don't bother switching APIC timer emulation from the
11497 * hypervisor timer to the software timer, the only way for the
11498 * APIC timer to be active is if userspace stuffed vCPU state,
11499 * i.e. put the vCPU into a nonsensical state. Only an INIT
11500 * will transition the vCPU out of UNINITIALIZED (without more
11501 * state stuffing from userspace), which will reset the local
11502 * APIC and thus cancel the timer or drop the IRQ (if the timer
11503 * already expired).
11504 */
11505 kvm_vcpu_srcu_read_unlock(vcpu);
11506 kvm_vcpu_block(vcpu);
11507 kvm_vcpu_srcu_read_lock(vcpu);
11508
11509 if (kvm_apic_accept_events(vcpu) < 0) {
11510 r = 0;
11511 goto out;
11512 }
11513 r = -EAGAIN;
11514 if (signal_pending(current)) {
11515 r = -EINTR;
11516 kvm_run->exit_reason = KVM_EXIT_INTR;
11517 ++vcpu->stat.signal_exits;
11518 }
11519 goto out;
11520 }
11521
11522 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11523 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11524 r = -EINVAL;
11525 goto out;
11526 }
11527
11528 if (kvm_run->kvm_dirty_regs) {
11529 r = sync_regs(vcpu);
11530 if (r != 0)
11531 goto out;
11532 }
11533
11534 /* re-sync apic's tpr */
11535 if (!lapic_in_kernel(vcpu)) {
11536 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11537 r = -EINVAL;
11538 goto out;
11539 }
11540 }
11541
11542 /*
11543 * If userspace set a pending exception and L2 is active, convert it to
11544 * a pending VM-Exit if L1 wants to intercept the exception.
11545 */
11546 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11547 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11548 ex->error_code)) {
11549 kvm_queue_exception_vmexit(vcpu, ex->vector,
11550 ex->has_error_code, ex->error_code,
11551 ex->has_payload, ex->payload);
11552 ex->injected = false;
11553 ex->pending = false;
11554 }
11555 vcpu->arch.exception_from_userspace = false;
11556
11557 if (unlikely(vcpu->arch.complete_userspace_io)) {
11558 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11559 vcpu->arch.complete_userspace_io = NULL;
11560 r = cui(vcpu);
11561 if (r <= 0)
11562 goto out;
11563 } else {
11564 WARN_ON_ONCE(vcpu->arch.pio.count);
11565 WARN_ON_ONCE(vcpu->mmio_needed);
11566 }
11567
11568 if (!vcpu->wants_to_run) {
11569 r = -EINTR;
11570 goto out;
11571 }
11572
11573 r = kvm_x86_call(vcpu_pre_run)(vcpu);
11574 if (r <= 0)
11575 goto out;
11576
11577 r = vcpu_run(vcpu);
11578
11579 out:
11580 kvm_put_guest_fpu(vcpu);
11581 if (kvm_run->kvm_valid_regs)
11582 store_regs(vcpu);
11583 post_kvm_run_save(vcpu);
11584 kvm_vcpu_srcu_read_unlock(vcpu);
11585
11586 kvm_sigset_deactivate(vcpu);
11587 vcpu_put(vcpu);
11588 return r;
11589 }
11590
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11591 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11592 {
11593 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11594 /*
11595 * We are here if userspace calls get_regs() in the middle of
11596 * instruction emulation. Registers state needs to be copied
11597 * back from emulation context to vcpu. Userspace shouldn't do
11598 * that usually, but some bad designed PV devices (vmware
11599 * backdoor interface) need this to work
11600 */
11601 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11602 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11603 }
11604 regs->rax = kvm_rax_read(vcpu);
11605 regs->rbx = kvm_rbx_read(vcpu);
11606 regs->rcx = kvm_rcx_read(vcpu);
11607 regs->rdx = kvm_rdx_read(vcpu);
11608 regs->rsi = kvm_rsi_read(vcpu);
11609 regs->rdi = kvm_rdi_read(vcpu);
11610 regs->rsp = kvm_rsp_read(vcpu);
11611 regs->rbp = kvm_rbp_read(vcpu);
11612 #ifdef CONFIG_X86_64
11613 regs->r8 = kvm_r8_read(vcpu);
11614 regs->r9 = kvm_r9_read(vcpu);
11615 regs->r10 = kvm_r10_read(vcpu);
11616 regs->r11 = kvm_r11_read(vcpu);
11617 regs->r12 = kvm_r12_read(vcpu);
11618 regs->r13 = kvm_r13_read(vcpu);
11619 regs->r14 = kvm_r14_read(vcpu);
11620 regs->r15 = kvm_r15_read(vcpu);
11621 #endif
11622
11623 regs->rip = kvm_rip_read(vcpu);
11624 regs->rflags = kvm_get_rflags(vcpu);
11625 }
11626
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11627 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11628 {
11629 if (vcpu->kvm->arch.has_protected_state &&
11630 vcpu->arch.guest_state_protected)
11631 return -EINVAL;
11632
11633 vcpu_load(vcpu);
11634 __get_regs(vcpu, regs);
11635 vcpu_put(vcpu);
11636 return 0;
11637 }
11638
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11639 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11640 {
11641 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11642 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11643
11644 kvm_rax_write(vcpu, regs->rax);
11645 kvm_rbx_write(vcpu, regs->rbx);
11646 kvm_rcx_write(vcpu, regs->rcx);
11647 kvm_rdx_write(vcpu, regs->rdx);
11648 kvm_rsi_write(vcpu, regs->rsi);
11649 kvm_rdi_write(vcpu, regs->rdi);
11650 kvm_rsp_write(vcpu, regs->rsp);
11651 kvm_rbp_write(vcpu, regs->rbp);
11652 #ifdef CONFIG_X86_64
11653 kvm_r8_write(vcpu, regs->r8);
11654 kvm_r9_write(vcpu, regs->r9);
11655 kvm_r10_write(vcpu, regs->r10);
11656 kvm_r11_write(vcpu, regs->r11);
11657 kvm_r12_write(vcpu, regs->r12);
11658 kvm_r13_write(vcpu, regs->r13);
11659 kvm_r14_write(vcpu, regs->r14);
11660 kvm_r15_write(vcpu, regs->r15);
11661 #endif
11662
11663 kvm_rip_write(vcpu, regs->rip);
11664 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11665
11666 vcpu->arch.exception.pending = false;
11667 vcpu->arch.exception_vmexit.pending = false;
11668
11669 kvm_make_request(KVM_REQ_EVENT, vcpu);
11670 }
11671
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11672 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11673 {
11674 if (vcpu->kvm->arch.has_protected_state &&
11675 vcpu->arch.guest_state_protected)
11676 return -EINVAL;
11677
11678 vcpu_load(vcpu);
11679 __set_regs(vcpu, regs);
11680 vcpu_put(vcpu);
11681 return 0;
11682 }
11683
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11684 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11685 {
11686 struct desc_ptr dt;
11687
11688 if (vcpu->arch.guest_state_protected)
11689 goto skip_protected_regs;
11690
11691 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11692 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11693 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11694 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11695 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11696 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11697
11698 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11699 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11700
11701 kvm_x86_call(get_idt)(vcpu, &dt);
11702 sregs->idt.limit = dt.size;
11703 sregs->idt.base = dt.address;
11704 kvm_x86_call(get_gdt)(vcpu, &dt);
11705 sregs->gdt.limit = dt.size;
11706 sregs->gdt.base = dt.address;
11707
11708 sregs->cr2 = vcpu->arch.cr2;
11709 sregs->cr3 = kvm_read_cr3(vcpu);
11710
11711 skip_protected_regs:
11712 sregs->cr0 = kvm_read_cr0(vcpu);
11713 sregs->cr4 = kvm_read_cr4(vcpu);
11714 sregs->cr8 = kvm_get_cr8(vcpu);
11715 sregs->efer = vcpu->arch.efer;
11716 sregs->apic_base = vcpu->arch.apic_base;
11717 }
11718
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11719 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11720 {
11721 __get_sregs_common(vcpu, sregs);
11722
11723 if (vcpu->arch.guest_state_protected)
11724 return;
11725
11726 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11727 set_bit(vcpu->arch.interrupt.nr,
11728 (unsigned long *)sregs->interrupt_bitmap);
11729 }
11730
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11731 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11732 {
11733 int i;
11734
11735 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11736
11737 if (vcpu->arch.guest_state_protected)
11738 return;
11739
11740 if (is_pae_paging(vcpu)) {
11741 for (i = 0 ; i < 4 ; i++)
11742 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11743 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11744 }
11745 }
11746
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11747 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11748 struct kvm_sregs *sregs)
11749 {
11750 if (vcpu->kvm->arch.has_protected_state &&
11751 vcpu->arch.guest_state_protected)
11752 return -EINVAL;
11753
11754 vcpu_load(vcpu);
11755 __get_sregs(vcpu, sregs);
11756 vcpu_put(vcpu);
11757 return 0;
11758 }
11759
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11760 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11761 struct kvm_mp_state *mp_state)
11762 {
11763 int r;
11764
11765 vcpu_load(vcpu);
11766 if (kvm_mpx_supported())
11767 kvm_load_guest_fpu(vcpu);
11768
11769 r = kvm_apic_accept_events(vcpu);
11770 if (r < 0)
11771 goto out;
11772 r = 0;
11773
11774 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11775 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11776 vcpu->arch.pv.pv_unhalted)
11777 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11778 else
11779 mp_state->mp_state = vcpu->arch.mp_state;
11780
11781 out:
11782 if (kvm_mpx_supported())
11783 kvm_put_guest_fpu(vcpu);
11784 vcpu_put(vcpu);
11785 return r;
11786 }
11787
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11788 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11789 struct kvm_mp_state *mp_state)
11790 {
11791 int ret = -EINVAL;
11792
11793 vcpu_load(vcpu);
11794
11795 switch (mp_state->mp_state) {
11796 case KVM_MP_STATE_UNINITIALIZED:
11797 case KVM_MP_STATE_HALTED:
11798 case KVM_MP_STATE_AP_RESET_HOLD:
11799 case KVM_MP_STATE_INIT_RECEIVED:
11800 case KVM_MP_STATE_SIPI_RECEIVED:
11801 if (!lapic_in_kernel(vcpu))
11802 goto out;
11803 break;
11804
11805 case KVM_MP_STATE_RUNNABLE:
11806 break;
11807
11808 default:
11809 goto out;
11810 }
11811
11812 /*
11813 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11814 * forcing the guest into INIT/SIPI if those events are supposed to be
11815 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11816 * if an SMI is pending as well.
11817 */
11818 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11819 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11820 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11821 goto out;
11822
11823 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11824 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11825 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11826 } else
11827 vcpu->arch.mp_state = mp_state->mp_state;
11828 kvm_make_request(KVM_REQ_EVENT, vcpu);
11829
11830 ret = 0;
11831 out:
11832 vcpu_put(vcpu);
11833 return ret;
11834 }
11835
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11836 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11837 int reason, bool has_error_code, u32 error_code)
11838 {
11839 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11840 int ret;
11841
11842 init_emulate_ctxt(vcpu);
11843
11844 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11845 has_error_code, error_code);
11846
11847 /*
11848 * Report an error userspace if MMIO is needed, as KVM doesn't support
11849 * MMIO during a task switch (or any other complex operation).
11850 */
11851 if (ret || vcpu->mmio_needed) {
11852 vcpu->mmio_needed = false;
11853 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11854 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11855 vcpu->run->internal.ndata = 0;
11856 return 0;
11857 }
11858
11859 kvm_rip_write(vcpu, ctxt->eip);
11860 kvm_set_rflags(vcpu, ctxt->eflags);
11861 return 1;
11862 }
11863 EXPORT_SYMBOL_GPL(kvm_task_switch);
11864
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11865 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11866 {
11867 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11868 /*
11869 * When EFER.LME and CR0.PG are set, the processor is in
11870 * 64-bit mode (though maybe in a 32-bit code segment).
11871 * CR4.PAE and EFER.LMA must be set.
11872 */
11873 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11874 return false;
11875 if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11876 return false;
11877 } else {
11878 /*
11879 * Not in 64-bit mode: EFER.LMA is clear and the code
11880 * segment cannot be 64-bit.
11881 */
11882 if (sregs->efer & EFER_LMA || sregs->cs.l)
11883 return false;
11884 }
11885
11886 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11887 kvm_is_valid_cr0(vcpu, sregs->cr0);
11888 }
11889
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11890 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11891 int *mmu_reset_needed, bool update_pdptrs)
11892 {
11893 int idx;
11894 struct desc_ptr dt;
11895
11896 if (!kvm_is_valid_sregs(vcpu, sregs))
11897 return -EINVAL;
11898
11899 if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11900 return -EINVAL;
11901
11902 if (vcpu->arch.guest_state_protected)
11903 return 0;
11904
11905 dt.size = sregs->idt.limit;
11906 dt.address = sregs->idt.base;
11907 kvm_x86_call(set_idt)(vcpu, &dt);
11908 dt.size = sregs->gdt.limit;
11909 dt.address = sregs->gdt.base;
11910 kvm_x86_call(set_gdt)(vcpu, &dt);
11911
11912 vcpu->arch.cr2 = sregs->cr2;
11913 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11914 vcpu->arch.cr3 = sregs->cr3;
11915 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11916 kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11917
11918 kvm_set_cr8(vcpu, sregs->cr8);
11919
11920 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11921 kvm_x86_call(set_efer)(vcpu, sregs->efer);
11922
11923 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11924 kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11925
11926 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11927 kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11928
11929 if (update_pdptrs) {
11930 idx = srcu_read_lock(&vcpu->kvm->srcu);
11931 if (is_pae_paging(vcpu)) {
11932 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11933 *mmu_reset_needed = 1;
11934 }
11935 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11936 }
11937
11938 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11939 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11940 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11941 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11942 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11943 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11944
11945 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11946 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11947
11948 update_cr8_intercept(vcpu);
11949
11950 /* Older userspace won't unhalt the vcpu on reset. */
11951 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11952 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11953 !is_protmode(vcpu))
11954 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11955
11956 return 0;
11957 }
11958
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11959 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11960 {
11961 int pending_vec, max_bits;
11962 int mmu_reset_needed = 0;
11963 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11964
11965 if (ret)
11966 return ret;
11967
11968 if (mmu_reset_needed) {
11969 kvm_mmu_reset_context(vcpu);
11970 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11971 }
11972
11973 max_bits = KVM_NR_INTERRUPTS;
11974 pending_vec = find_first_bit(
11975 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11976
11977 if (pending_vec < max_bits) {
11978 kvm_queue_interrupt(vcpu, pending_vec, false);
11979 pr_debug("Set back pending irq %d\n", pending_vec);
11980 kvm_make_request(KVM_REQ_EVENT, vcpu);
11981 }
11982 return 0;
11983 }
11984
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11985 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11986 {
11987 int mmu_reset_needed = 0;
11988 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11989 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11990 !(sregs2->efer & EFER_LMA);
11991 int i, ret;
11992
11993 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11994 return -EINVAL;
11995
11996 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11997 return -EINVAL;
11998
11999 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12000 &mmu_reset_needed, !valid_pdptrs);
12001 if (ret)
12002 return ret;
12003
12004 if (valid_pdptrs) {
12005 for (i = 0; i < 4 ; i++)
12006 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12007
12008 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12009 mmu_reset_needed = 1;
12010 vcpu->arch.pdptrs_from_userspace = true;
12011 }
12012 if (mmu_reset_needed) {
12013 kvm_mmu_reset_context(vcpu);
12014 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12015 }
12016 return 0;
12017 }
12018
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12019 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12020 struct kvm_sregs *sregs)
12021 {
12022 int ret;
12023
12024 if (vcpu->kvm->arch.has_protected_state &&
12025 vcpu->arch.guest_state_protected)
12026 return -EINVAL;
12027
12028 vcpu_load(vcpu);
12029 ret = __set_sregs(vcpu, sregs);
12030 vcpu_put(vcpu);
12031 return ret;
12032 }
12033
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12034 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12035 {
12036 bool set = false;
12037 struct kvm_vcpu *vcpu;
12038 unsigned long i;
12039
12040 if (!enable_apicv)
12041 return;
12042
12043 down_write(&kvm->arch.apicv_update_lock);
12044
12045 kvm_for_each_vcpu(i, vcpu, kvm) {
12046 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12047 set = true;
12048 break;
12049 }
12050 }
12051 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12052 up_write(&kvm->arch.apicv_update_lock);
12053 }
12054
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12055 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12056 struct kvm_guest_debug *dbg)
12057 {
12058 unsigned long rflags;
12059 int i, r;
12060
12061 if (vcpu->arch.guest_state_protected)
12062 return -EINVAL;
12063
12064 vcpu_load(vcpu);
12065
12066 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12067 r = -EBUSY;
12068 if (kvm_is_exception_pending(vcpu))
12069 goto out;
12070 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12071 kvm_queue_exception(vcpu, DB_VECTOR);
12072 else
12073 kvm_queue_exception(vcpu, BP_VECTOR);
12074 }
12075
12076 /*
12077 * Read rflags as long as potentially injected trace flags are still
12078 * filtered out.
12079 */
12080 rflags = kvm_get_rflags(vcpu);
12081
12082 vcpu->guest_debug = dbg->control;
12083 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12084 vcpu->guest_debug = 0;
12085
12086 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12087 for (i = 0; i < KVM_NR_DB_REGS; ++i)
12088 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12089 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12090 } else {
12091 for (i = 0; i < KVM_NR_DB_REGS; i++)
12092 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12093 }
12094 kvm_update_dr7(vcpu);
12095
12096 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12097 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12098
12099 /*
12100 * Trigger an rflags update that will inject or remove the trace
12101 * flags.
12102 */
12103 kvm_set_rflags(vcpu, rflags);
12104
12105 kvm_x86_call(update_exception_bitmap)(vcpu);
12106
12107 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12108
12109 r = 0;
12110
12111 out:
12112 vcpu_put(vcpu);
12113 return r;
12114 }
12115
12116 /*
12117 * Translate a guest virtual address to a guest physical address.
12118 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12119 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12120 struct kvm_translation *tr)
12121 {
12122 unsigned long vaddr = tr->linear_address;
12123 gpa_t gpa;
12124 int idx;
12125
12126 vcpu_load(vcpu);
12127
12128 idx = srcu_read_lock(&vcpu->kvm->srcu);
12129 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12130 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12131 tr->physical_address = gpa;
12132 tr->valid = gpa != INVALID_GPA;
12133 tr->writeable = 1;
12134 tr->usermode = 0;
12135
12136 vcpu_put(vcpu);
12137 return 0;
12138 }
12139
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12140 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12141 {
12142 struct fxregs_state *fxsave;
12143
12144 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12145 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12146
12147 vcpu_load(vcpu);
12148
12149 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12150 memcpy(fpu->fpr, fxsave->st_space, 128);
12151 fpu->fcw = fxsave->cwd;
12152 fpu->fsw = fxsave->swd;
12153 fpu->ftwx = fxsave->twd;
12154 fpu->last_opcode = fxsave->fop;
12155 fpu->last_ip = fxsave->rip;
12156 fpu->last_dp = fxsave->rdp;
12157 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12158
12159 vcpu_put(vcpu);
12160 return 0;
12161 }
12162
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12163 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12164 {
12165 struct fxregs_state *fxsave;
12166
12167 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12168 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12169
12170 vcpu_load(vcpu);
12171
12172 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12173
12174 memcpy(fxsave->st_space, fpu->fpr, 128);
12175 fxsave->cwd = fpu->fcw;
12176 fxsave->swd = fpu->fsw;
12177 fxsave->twd = fpu->ftwx;
12178 fxsave->fop = fpu->last_opcode;
12179 fxsave->rip = fpu->last_ip;
12180 fxsave->rdp = fpu->last_dp;
12181 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12182
12183 vcpu_put(vcpu);
12184 return 0;
12185 }
12186
store_regs(struct kvm_vcpu * vcpu)12187 static void store_regs(struct kvm_vcpu *vcpu)
12188 {
12189 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12190
12191 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12192 __get_regs(vcpu, &vcpu->run->s.regs.regs);
12193
12194 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12195 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12196
12197 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12198 kvm_vcpu_ioctl_x86_get_vcpu_events(
12199 vcpu, &vcpu->run->s.regs.events);
12200 }
12201
sync_regs(struct kvm_vcpu * vcpu)12202 static int sync_regs(struct kvm_vcpu *vcpu)
12203 {
12204 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12205 __set_regs(vcpu, &vcpu->run->s.regs.regs);
12206 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12207 }
12208
12209 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12210 struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12211
12212 if (__set_sregs(vcpu, &sregs))
12213 return -EINVAL;
12214
12215 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12216 }
12217
12218 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12219 struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12220
12221 if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12222 return -EINVAL;
12223
12224 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12225 }
12226
12227 return 0;
12228 }
12229
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12230 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12231 {
12232 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12233 pr_warn_once("SMP vm created on host with unstable TSC; "
12234 "guest TSC will not be reliable\n");
12235
12236 if (!kvm->arch.max_vcpu_ids)
12237 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12238
12239 if (id >= kvm->arch.max_vcpu_ids)
12240 return -EINVAL;
12241
12242 return kvm_x86_call(vcpu_precreate)(kvm);
12243 }
12244
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12245 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12246 {
12247 struct page *page;
12248 int r;
12249
12250 vcpu->arch.last_vmentry_cpu = -1;
12251 vcpu->arch.regs_avail = ~0;
12252 vcpu->arch.regs_dirty = ~0;
12253
12254 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12255
12256 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12257 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12258 else
12259 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12260
12261 r = kvm_mmu_create(vcpu);
12262 if (r < 0)
12263 return r;
12264
12265 r = kvm_create_lapic(vcpu);
12266 if (r < 0)
12267 goto fail_mmu_destroy;
12268
12269 r = -ENOMEM;
12270
12271 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12272 if (!page)
12273 goto fail_free_lapic;
12274 vcpu->arch.pio_data = page_address(page);
12275
12276 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12277 GFP_KERNEL_ACCOUNT);
12278 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12279 GFP_KERNEL_ACCOUNT);
12280 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12281 goto fail_free_mce_banks;
12282 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12283
12284 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12285 GFP_KERNEL_ACCOUNT))
12286 goto fail_free_mce_banks;
12287
12288 if (!alloc_emulate_ctxt(vcpu))
12289 goto free_wbinvd_dirty_mask;
12290
12291 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12292 pr_err("failed to allocate vcpu's fpu\n");
12293 goto free_emulate_ctxt;
12294 }
12295
12296 kvm_async_pf_hash_reset(vcpu);
12297
12298 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12299 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12300 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12301 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12302 }
12303 kvm_pmu_init(vcpu);
12304
12305 vcpu->arch.pending_external_vector = -1;
12306 vcpu->arch.preempted_in_kernel = false;
12307
12308 #if IS_ENABLED(CONFIG_HYPERV)
12309 vcpu->arch.hv_root_tdp = INVALID_PAGE;
12310 #endif
12311
12312 r = kvm_x86_call(vcpu_create)(vcpu);
12313 if (r)
12314 goto free_guest_fpu;
12315
12316 kvm_xen_init_vcpu(vcpu);
12317 vcpu_load(vcpu);
12318 kvm_vcpu_after_set_cpuid(vcpu);
12319 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12320 kvm_vcpu_reset(vcpu, false);
12321 kvm_init_mmu(vcpu);
12322 vcpu_put(vcpu);
12323 return 0;
12324
12325 free_guest_fpu:
12326 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12327 free_emulate_ctxt:
12328 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12329 free_wbinvd_dirty_mask:
12330 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12331 fail_free_mce_banks:
12332 kfree(vcpu->arch.mce_banks);
12333 kfree(vcpu->arch.mci_ctl2_banks);
12334 free_page((unsigned long)vcpu->arch.pio_data);
12335 fail_free_lapic:
12336 kvm_free_lapic(vcpu);
12337 fail_mmu_destroy:
12338 kvm_mmu_destroy(vcpu);
12339 return r;
12340 }
12341
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12343 {
12344 struct kvm *kvm = vcpu->kvm;
12345
12346 if (mutex_lock_killable(&vcpu->mutex))
12347 return;
12348 vcpu_load(vcpu);
12349 kvm_synchronize_tsc(vcpu, NULL);
12350 vcpu_put(vcpu);
12351
12352 /* poll control enabled by default */
12353 vcpu->arch.msr_kvm_poll_control = 1;
12354
12355 mutex_unlock(&vcpu->mutex);
12356
12357 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12358 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12359 KVMCLOCK_SYNC_PERIOD);
12360 }
12361
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12362 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12363 {
12364 int idx;
12365
12366 kvmclock_reset(vcpu);
12367
12368 kvm_x86_call(vcpu_free)(vcpu);
12369
12370 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12371 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12372 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12373
12374 kvm_xen_destroy_vcpu(vcpu);
12375 kvm_hv_vcpu_uninit(vcpu);
12376 kvm_pmu_destroy(vcpu);
12377 kfree(vcpu->arch.mce_banks);
12378 kfree(vcpu->arch.mci_ctl2_banks);
12379 kvm_free_lapic(vcpu);
12380 idx = srcu_read_lock(&vcpu->kvm->srcu);
12381 kvm_mmu_destroy(vcpu);
12382 srcu_read_unlock(&vcpu->kvm->srcu, idx);
12383 free_page((unsigned long)vcpu->arch.pio_data);
12384 kvfree(vcpu->arch.cpuid_entries);
12385 }
12386
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12387 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12388 {
12389 struct kvm_cpuid_entry2 *cpuid_0x1;
12390 unsigned long old_cr0 = kvm_read_cr0(vcpu);
12391 unsigned long new_cr0;
12392
12393 /*
12394 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12395 * to handle side effects. RESET emulation hits those flows and relies
12396 * on emulated/virtualized registers, including those that are loaded
12397 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12398 * to detect improper or missing initialization.
12399 */
12400 WARN_ON_ONCE(!init_event &&
12401 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12402
12403 /*
12404 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12405 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12406 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12407 * bits), i.e. virtualization is disabled.
12408 */
12409 if (is_guest_mode(vcpu))
12410 kvm_leave_nested(vcpu);
12411
12412 kvm_lapic_reset(vcpu, init_event);
12413
12414 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12415 vcpu->arch.hflags = 0;
12416
12417 vcpu->arch.smi_pending = 0;
12418 vcpu->arch.smi_count = 0;
12419 atomic_set(&vcpu->arch.nmi_queued, 0);
12420 vcpu->arch.nmi_pending = 0;
12421 vcpu->arch.nmi_injected = false;
12422 kvm_clear_interrupt_queue(vcpu);
12423 kvm_clear_exception_queue(vcpu);
12424
12425 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12426 kvm_update_dr0123(vcpu);
12427 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12428 vcpu->arch.dr7 = DR7_FIXED_1;
12429 kvm_update_dr7(vcpu);
12430
12431 vcpu->arch.cr2 = 0;
12432
12433 kvm_make_request(KVM_REQ_EVENT, vcpu);
12434 vcpu->arch.apf.msr_en_val = 0;
12435 vcpu->arch.apf.msr_int_val = 0;
12436 vcpu->arch.st.msr_val = 0;
12437
12438 kvmclock_reset(vcpu);
12439
12440 kvm_clear_async_pf_completion_queue(vcpu);
12441 kvm_async_pf_hash_reset(vcpu);
12442 vcpu->arch.apf.halted = false;
12443
12444 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12445 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12446
12447 /*
12448 * All paths that lead to INIT are required to load the guest's
12449 * FPU state (because most paths are buried in KVM_RUN).
12450 */
12451 if (init_event)
12452 kvm_put_guest_fpu(vcpu);
12453
12454 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12455 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12456
12457 if (init_event)
12458 kvm_load_guest_fpu(vcpu);
12459 }
12460
12461 if (!init_event) {
12462 vcpu->arch.smbase = 0x30000;
12463
12464 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12465
12466 vcpu->arch.msr_misc_features_enables = 0;
12467 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12468 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12469
12470 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12471 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12472 }
12473
12474 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12475 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12476 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12477
12478 /*
12479 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12480 * if no CPUID match is found. Note, it's impossible to get a match at
12481 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12482 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12483 * on RESET. But, go through the motions in case that's ever remedied.
12484 */
12485 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12486 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12487
12488 kvm_x86_call(vcpu_reset)(vcpu, init_event);
12489
12490 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12491 kvm_rip_write(vcpu, 0xfff0);
12492
12493 vcpu->arch.cr3 = 0;
12494 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12495
12496 /*
12497 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12498 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12499 * (or qualify) that with a footnote stating that CD/NW are preserved.
12500 */
12501 new_cr0 = X86_CR0_ET;
12502 if (init_event)
12503 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12504 else
12505 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12506
12507 kvm_x86_call(set_cr0)(vcpu, new_cr0);
12508 kvm_x86_call(set_cr4)(vcpu, 0);
12509 kvm_x86_call(set_efer)(vcpu, 0);
12510 kvm_x86_call(update_exception_bitmap)(vcpu);
12511
12512 /*
12513 * On the standard CR0/CR4/EFER modification paths, there are several
12514 * complex conditions determining whether the MMU has to be reset and/or
12515 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12516 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12517 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12518 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12519 */
12520 if (old_cr0 & X86_CR0_PG) {
12521 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12522 kvm_mmu_reset_context(vcpu);
12523 }
12524
12525 /*
12526 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12527 * APM states the TLBs are untouched by INIT, but it also states that
12528 * the TLBs are flushed on "External initialization of the processor."
12529 * Flush the guest TLB regardless of vendor, there is no meaningful
12530 * benefit in relying on the guest to flush the TLB immediately after
12531 * INIT. A spurious TLB flush is benign and likely negligible from a
12532 * performance perspective.
12533 */
12534 if (init_event)
12535 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12536 }
12537 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12538
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12539 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12540 {
12541 struct kvm_segment cs;
12542
12543 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12544 cs.selector = vector << 8;
12545 cs.base = vector << 12;
12546 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12547 kvm_rip_write(vcpu, 0);
12548 }
12549 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12550
kvm_arch_enable_virtualization(void)12551 void kvm_arch_enable_virtualization(void)
12552 {
12553 cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12554 }
12555
kvm_arch_disable_virtualization(void)12556 void kvm_arch_disable_virtualization(void)
12557 {
12558 cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12559 }
12560
kvm_arch_enable_virtualization_cpu(void)12561 int kvm_arch_enable_virtualization_cpu(void)
12562 {
12563 struct kvm *kvm;
12564 struct kvm_vcpu *vcpu;
12565 unsigned long i;
12566 int ret;
12567 u64 local_tsc;
12568 u64 max_tsc = 0;
12569 bool stable, backwards_tsc = false;
12570
12571 kvm_user_return_msr_cpu_online();
12572
12573 ret = kvm_x86_check_processor_compatibility();
12574 if (ret)
12575 return ret;
12576
12577 ret = kvm_x86_call(enable_virtualization_cpu)();
12578 if (ret != 0)
12579 return ret;
12580
12581 local_tsc = rdtsc();
12582 stable = !kvm_check_tsc_unstable();
12583 list_for_each_entry(kvm, &vm_list, vm_list) {
12584 kvm_for_each_vcpu(i, vcpu, kvm) {
12585 if (!stable && vcpu->cpu == smp_processor_id())
12586 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12587 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12588 backwards_tsc = true;
12589 if (vcpu->arch.last_host_tsc > max_tsc)
12590 max_tsc = vcpu->arch.last_host_tsc;
12591 }
12592 }
12593 }
12594
12595 /*
12596 * Sometimes, even reliable TSCs go backwards. This happens on
12597 * platforms that reset TSC during suspend or hibernate actions, but
12598 * maintain synchronization. We must compensate. Fortunately, we can
12599 * detect that condition here, which happens early in CPU bringup,
12600 * before any KVM threads can be running. Unfortunately, we can't
12601 * bring the TSCs fully up to date with real time, as we aren't yet far
12602 * enough into CPU bringup that we know how much real time has actually
12603 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12604 * variables that haven't been updated yet.
12605 *
12606 * So we simply find the maximum observed TSC above, then record the
12607 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12608 * the adjustment will be applied. Note that we accumulate
12609 * adjustments, in case multiple suspend cycles happen before some VCPU
12610 * gets a chance to run again. In the event that no KVM threads get a
12611 * chance to run, we will miss the entire elapsed period, as we'll have
12612 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12613 * loose cycle time. This isn't too big a deal, since the loss will be
12614 * uniform across all VCPUs (not to mention the scenario is extremely
12615 * unlikely). It is possible that a second hibernate recovery happens
12616 * much faster than a first, causing the observed TSC here to be
12617 * smaller; this would require additional padding adjustment, which is
12618 * why we set last_host_tsc to the local tsc observed here.
12619 *
12620 * N.B. - this code below runs only on platforms with reliable TSC,
12621 * as that is the only way backwards_tsc is set above. Also note
12622 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12623 * have the same delta_cyc adjustment applied if backwards_tsc
12624 * is detected. Note further, this adjustment is only done once,
12625 * as we reset last_host_tsc on all VCPUs to stop this from being
12626 * called multiple times (one for each physical CPU bringup).
12627 *
12628 * Platforms with unreliable TSCs don't have to deal with this, they
12629 * will be compensated by the logic in vcpu_load, which sets the TSC to
12630 * catchup mode. This will catchup all VCPUs to real time, but cannot
12631 * guarantee that they stay in perfect synchronization.
12632 */
12633 if (backwards_tsc) {
12634 u64 delta_cyc = max_tsc - local_tsc;
12635 list_for_each_entry(kvm, &vm_list, vm_list) {
12636 kvm->arch.backwards_tsc_observed = true;
12637 kvm_for_each_vcpu(i, vcpu, kvm) {
12638 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12639 vcpu->arch.last_host_tsc = local_tsc;
12640 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12641 }
12642
12643 /*
12644 * We have to disable TSC offset matching.. if you were
12645 * booting a VM while issuing an S4 host suspend....
12646 * you may have some problem. Solving this issue is
12647 * left as an exercise to the reader.
12648 */
12649 kvm->arch.last_tsc_nsec = 0;
12650 kvm->arch.last_tsc_write = 0;
12651 }
12652
12653 }
12654 return 0;
12655 }
12656
kvm_arch_disable_virtualization_cpu(void)12657 void kvm_arch_disable_virtualization_cpu(void)
12658 {
12659 kvm_x86_call(disable_virtualization_cpu)();
12660 drop_user_return_notifiers();
12661 }
12662
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12663 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12664 {
12665 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12666 }
12667
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12668 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12669 {
12670 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12671 }
12672
kvm_arch_free_vm(struct kvm * kvm)12673 void kvm_arch_free_vm(struct kvm *kvm)
12674 {
12675 #if IS_ENABLED(CONFIG_HYPERV)
12676 kfree(kvm->arch.hv_pa_pg);
12677 #endif
12678 __kvm_arch_free_vm(kvm);
12679 }
12680
12681
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12682 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12683 {
12684 int ret;
12685 unsigned long flags;
12686
12687 if (!kvm_is_vm_type_supported(type))
12688 return -EINVAL;
12689
12690 kvm->arch.vm_type = type;
12691 kvm->arch.has_private_mem =
12692 (type == KVM_X86_SW_PROTECTED_VM);
12693 /* Decided by the vendor code for other VM types. */
12694 kvm->arch.pre_fault_allowed =
12695 type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12696
12697 ret = kvm_page_track_init(kvm);
12698 if (ret)
12699 goto out;
12700
12701 kvm_mmu_init_vm(kvm);
12702
12703 ret = kvm_x86_call(vm_init)(kvm);
12704 if (ret)
12705 goto out_uninit_mmu;
12706
12707 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12708 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12709
12710 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12711 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12712 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12713 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12714 &kvm->arch.irq_sources_bitmap);
12715
12716 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12717 mutex_init(&kvm->arch.apic_map_lock);
12718 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12719 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12720
12721 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12722 pvclock_update_vm_gtod_copy(kvm);
12723 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12724
12725 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12726 kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12727 kvm->arch.guest_can_read_msr_platform_info = true;
12728 kvm->arch.enable_pmu = enable_pmu;
12729
12730 #if IS_ENABLED(CONFIG_HYPERV)
12731 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12732 kvm->arch.hv_root_tdp = INVALID_PAGE;
12733 #endif
12734
12735 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12736 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12737
12738 kvm_apicv_init(kvm);
12739 kvm_hv_init_vm(kvm);
12740 kvm_xen_init_vm(kvm);
12741
12742 if (ignore_msrs && !report_ignored_msrs) {
12743 pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12744 "a supported configuration. Lying to the guest about the existence of MSRs\n"
12745 "may cause the guest operating system to hang or produce errors. If a guest\n"
12746 "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12747 }
12748
12749 once_init(&kvm->arch.nx_once);
12750 return 0;
12751
12752 out_uninit_mmu:
12753 kvm_mmu_uninit_vm(kvm);
12754 kvm_page_track_cleanup(kvm);
12755 out:
12756 return ret;
12757 }
12758
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12759 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12760 {
12761 vcpu_load(vcpu);
12762 kvm_mmu_unload(vcpu);
12763 vcpu_put(vcpu);
12764 }
12765
kvm_unload_vcpu_mmus(struct kvm * kvm)12766 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12767 {
12768 unsigned long i;
12769 struct kvm_vcpu *vcpu;
12770
12771 kvm_for_each_vcpu(i, vcpu, kvm) {
12772 kvm_clear_async_pf_completion_queue(vcpu);
12773 kvm_unload_vcpu_mmu(vcpu);
12774 }
12775 }
12776
kvm_arch_sync_events(struct kvm * kvm)12777 void kvm_arch_sync_events(struct kvm *kvm)
12778 {
12779 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12780 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12781 kvm_free_pit(kvm);
12782 }
12783
12784 /**
12785 * __x86_set_memory_region: Setup KVM internal memory slot
12786 *
12787 * @kvm: the kvm pointer to the VM.
12788 * @id: the slot ID to setup.
12789 * @gpa: the GPA to install the slot (unused when @size == 0).
12790 * @size: the size of the slot. Set to zero to uninstall a slot.
12791 *
12792 * This function helps to setup a KVM internal memory slot. Specify
12793 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12794 * slot. The return code can be one of the following:
12795 *
12796 * HVA: on success (uninstall will return a bogus HVA)
12797 * -errno: on error
12798 *
12799 * The caller should always use IS_ERR() to check the return value
12800 * before use. Note, the KVM internal memory slots are guaranteed to
12801 * remain valid and unchanged until the VM is destroyed, i.e., the
12802 * GPA->HVA translation will not change. However, the HVA is a user
12803 * address, i.e. its accessibility is not guaranteed, and must be
12804 * accessed via __copy_{to,from}_user().
12805 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12806 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12807 u32 size)
12808 {
12809 int i, r;
12810 unsigned long hva, old_npages;
12811 struct kvm_memslots *slots = kvm_memslots(kvm);
12812 struct kvm_memory_slot *slot;
12813
12814 lockdep_assert_held(&kvm->slots_lock);
12815
12816 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12817 return ERR_PTR_USR(-EINVAL);
12818
12819 slot = id_to_memslot(slots, id);
12820 if (size) {
12821 if (slot && slot->npages)
12822 return ERR_PTR_USR(-EEXIST);
12823
12824 /*
12825 * MAP_SHARED to prevent internal slot pages from being moved
12826 * by fork()/COW.
12827 */
12828 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12829 MAP_SHARED | MAP_ANONYMOUS, 0);
12830 if (IS_ERR_VALUE(hva))
12831 return (void __user *)hva;
12832 } else {
12833 if (!slot || !slot->npages)
12834 return NULL;
12835
12836 old_npages = slot->npages;
12837 hva = slot->userspace_addr;
12838 }
12839
12840 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12841 struct kvm_userspace_memory_region2 m;
12842
12843 m.slot = id | (i << 16);
12844 m.flags = 0;
12845 m.guest_phys_addr = gpa;
12846 m.userspace_addr = hva;
12847 m.memory_size = size;
12848 r = kvm_set_internal_memslot(kvm, &m);
12849 if (r < 0)
12850 return ERR_PTR_USR(r);
12851 }
12852
12853 if (!size)
12854 vm_munmap(hva, old_npages * PAGE_SIZE);
12855
12856 return (void __user *)hva;
12857 }
12858 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12859
kvm_arch_pre_destroy_vm(struct kvm * kvm)12860 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12861 {
12862 kvm_mmu_pre_destroy_vm(kvm);
12863 }
12864
kvm_arch_destroy_vm(struct kvm * kvm)12865 void kvm_arch_destroy_vm(struct kvm *kvm)
12866 {
12867 if (current->mm == kvm->mm) {
12868 /*
12869 * Free memory regions allocated on behalf of userspace,
12870 * unless the memory map has changed due to process exit
12871 * or fd copying.
12872 */
12873 mutex_lock(&kvm->slots_lock);
12874 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12875 0, 0);
12876 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12877 0, 0);
12878 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12879 mutex_unlock(&kvm->slots_lock);
12880 }
12881 kvm_unload_vcpu_mmus(kvm);
12882 kvm_destroy_vcpus(kvm);
12883 kvm_x86_call(vm_destroy)(kvm);
12884 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12885 kvm_pic_destroy(kvm);
12886 kvm_ioapic_destroy(kvm);
12887 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12888 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12889 kvm_mmu_uninit_vm(kvm);
12890 kvm_page_track_cleanup(kvm);
12891 kvm_xen_destroy_vm(kvm);
12892 kvm_hv_destroy_vm(kvm);
12893 }
12894
memslot_rmap_free(struct kvm_memory_slot * slot)12895 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12896 {
12897 int i;
12898
12899 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12900 vfree(slot->arch.rmap[i]);
12901 slot->arch.rmap[i] = NULL;
12902 }
12903 }
12904
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12905 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12906 {
12907 int i;
12908
12909 memslot_rmap_free(slot);
12910
12911 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12912 vfree(slot->arch.lpage_info[i - 1]);
12913 slot->arch.lpage_info[i - 1] = NULL;
12914 }
12915
12916 kvm_page_track_free_memslot(slot);
12917 }
12918
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12919 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12920 {
12921 const int sz = sizeof(*slot->arch.rmap[0]);
12922 int i;
12923
12924 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12925 int level = i + 1;
12926 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12927
12928 if (slot->arch.rmap[i])
12929 continue;
12930
12931 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12932 if (!slot->arch.rmap[i]) {
12933 memslot_rmap_free(slot);
12934 return -ENOMEM;
12935 }
12936 }
12937
12938 return 0;
12939 }
12940
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12941 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12942 struct kvm_memory_slot *slot)
12943 {
12944 unsigned long npages = slot->npages;
12945 int i, r;
12946
12947 /*
12948 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12949 * old arrays will be freed by kvm_set_memory_region() if installing
12950 * the new memslot is successful.
12951 */
12952 memset(&slot->arch, 0, sizeof(slot->arch));
12953
12954 if (kvm_memslots_have_rmaps(kvm)) {
12955 r = memslot_rmap_alloc(slot, npages);
12956 if (r)
12957 return r;
12958 }
12959
12960 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12961 struct kvm_lpage_info *linfo;
12962 unsigned long ugfn;
12963 int lpages;
12964 int level = i + 1;
12965
12966 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12967
12968 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12969 if (!linfo)
12970 goto out_free;
12971
12972 slot->arch.lpage_info[i - 1] = linfo;
12973
12974 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12975 linfo[0].disallow_lpage = 1;
12976 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12977 linfo[lpages - 1].disallow_lpage = 1;
12978 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12979 /*
12980 * If the gfn and userspace address are not aligned wrt each
12981 * other, disable large page support for this slot.
12982 */
12983 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12984 unsigned long j;
12985
12986 for (j = 0; j < lpages; ++j)
12987 linfo[j].disallow_lpage = 1;
12988 }
12989 }
12990
12991 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12992 kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12993 #endif
12994
12995 if (kvm_page_track_create_memslot(kvm, slot, npages))
12996 goto out_free;
12997
12998 return 0;
12999
13000 out_free:
13001 memslot_rmap_free(slot);
13002
13003 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13004 vfree(slot->arch.lpage_info[i - 1]);
13005 slot->arch.lpage_info[i - 1] = NULL;
13006 }
13007 return -ENOMEM;
13008 }
13009
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13010 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13011 {
13012 struct kvm_vcpu *vcpu;
13013 unsigned long i;
13014
13015 /*
13016 * memslots->generation has been incremented.
13017 * mmio generation may have reached its maximum value.
13018 */
13019 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13020
13021 /* Force re-initialization of steal_time cache */
13022 kvm_for_each_vcpu(i, vcpu, kvm)
13023 kvm_vcpu_kick(vcpu);
13024 }
13025
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13026 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13027 const struct kvm_memory_slot *old,
13028 struct kvm_memory_slot *new,
13029 enum kvm_mr_change change)
13030 {
13031 /*
13032 * KVM doesn't support moving memslots when there are external page
13033 * trackers attached to the VM, i.e. if KVMGT is in use.
13034 */
13035 if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13036 return -EINVAL;
13037
13038 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13039 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13040 return -EINVAL;
13041
13042 if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13043 return -EINVAL;
13044
13045 return kvm_alloc_memslot_metadata(kvm, new);
13046 }
13047
13048 if (change == KVM_MR_FLAGS_ONLY)
13049 memcpy(&new->arch, &old->arch, sizeof(old->arch));
13050 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13051 return -EIO;
13052
13053 return 0;
13054 }
13055
13056
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13057 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13058 {
13059 int nr_slots;
13060
13061 if (!kvm_x86_ops.cpu_dirty_log_size)
13062 return;
13063
13064 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13065 if ((enable && nr_slots == 1) || !nr_slots)
13066 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13067 }
13068
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13069 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13070 struct kvm_memory_slot *old,
13071 const struct kvm_memory_slot *new,
13072 enum kvm_mr_change change)
13073 {
13074 u32 old_flags = old ? old->flags : 0;
13075 u32 new_flags = new ? new->flags : 0;
13076 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13077
13078 /*
13079 * Update CPU dirty logging if dirty logging is being toggled. This
13080 * applies to all operations.
13081 */
13082 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13083 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13084
13085 /*
13086 * Nothing more to do for RO slots (which can't be dirtied and can't be
13087 * made writable) or CREATE/MOVE/DELETE of a slot.
13088 *
13089 * For a memslot with dirty logging disabled:
13090 * CREATE: No dirty mappings will already exist.
13091 * MOVE/DELETE: The old mappings will already have been cleaned up by
13092 * kvm_arch_flush_shadow_memslot()
13093 *
13094 * For a memslot with dirty logging enabled:
13095 * CREATE: No shadow pages exist, thus nothing to write-protect
13096 * and no dirty bits to clear.
13097 * MOVE/DELETE: The old mappings will already have been cleaned up by
13098 * kvm_arch_flush_shadow_memslot().
13099 */
13100 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13101 return;
13102
13103 /*
13104 * READONLY and non-flags changes were filtered out above, and the only
13105 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13106 * logging isn't being toggled on or off.
13107 */
13108 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13109 return;
13110
13111 if (!log_dirty_pages) {
13112 /*
13113 * Recover huge page mappings in the slot now that dirty logging
13114 * is disabled, i.e. now that KVM does not have to track guest
13115 * writes at 4KiB granularity.
13116 *
13117 * Dirty logging might be disabled by userspace if an ongoing VM
13118 * live migration is cancelled and the VM must continue running
13119 * on the source.
13120 */
13121 kvm_mmu_recover_huge_pages(kvm, new);
13122 } else {
13123 /*
13124 * Initially-all-set does not require write protecting any page,
13125 * because they're all assumed to be dirty.
13126 */
13127 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13128 return;
13129
13130 if (READ_ONCE(eager_page_split))
13131 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13132
13133 if (kvm_x86_ops.cpu_dirty_log_size) {
13134 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13135 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13136 } else {
13137 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13138 }
13139
13140 /*
13141 * Unconditionally flush the TLBs after enabling dirty logging.
13142 * A flush is almost always going to be necessary (see below),
13143 * and unconditionally flushing allows the helpers to omit
13144 * the subtly complex checks when removing write access.
13145 *
13146 * Do the flush outside of mmu_lock to reduce the amount of
13147 * time mmu_lock is held. Flushing after dropping mmu_lock is
13148 * safe as KVM only needs to guarantee the slot is fully
13149 * write-protected before returning to userspace, i.e. before
13150 * userspace can consume the dirty status.
13151 *
13152 * Flushing outside of mmu_lock requires KVM to be careful when
13153 * making decisions based on writable status of an SPTE, e.g. a
13154 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13155 *
13156 * Specifically, KVM also write-protects guest page tables to
13157 * monitor changes when using shadow paging, and must guarantee
13158 * no CPUs can write to those page before mmu_lock is dropped.
13159 * Because CPUs may have stale TLB entries at this point, a
13160 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13161 *
13162 * KVM also allows making SPTES writable outside of mmu_lock,
13163 * e.g. to allow dirty logging without taking mmu_lock.
13164 *
13165 * To handle these scenarios, KVM uses a separate software-only
13166 * bit (MMU-writable) to track if a SPTE is !writable due to
13167 * a guest page table being write-protected (KVM clears the
13168 * MMU-writable flag when write-protecting for shadow paging).
13169 *
13170 * The use of MMU-writable is also the primary motivation for
13171 * the unconditional flush. Because KVM must guarantee that a
13172 * CPU doesn't contain stale, writable TLB entries for a
13173 * !MMU-writable SPTE, KVM must flush if it encounters any
13174 * MMU-writable SPTE regardless of whether the actual hardware
13175 * writable bit was set. I.e. KVM is almost guaranteed to need
13176 * to flush, while unconditionally flushing allows the "remove
13177 * write access" helpers to ignore MMU-writable entirely.
13178 *
13179 * See is_writable_pte() for more details (the case involving
13180 * access-tracked SPTEs is particularly relevant).
13181 */
13182 kvm_flush_remote_tlbs_memslot(kvm, new);
13183 }
13184 }
13185
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13186 void kvm_arch_commit_memory_region(struct kvm *kvm,
13187 struct kvm_memory_slot *old,
13188 const struct kvm_memory_slot *new,
13189 enum kvm_mr_change change)
13190 {
13191 if (change == KVM_MR_DELETE)
13192 kvm_page_track_delete_slot(kvm, old);
13193
13194 if (!kvm->arch.n_requested_mmu_pages &&
13195 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13196 unsigned long nr_mmu_pages;
13197
13198 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13199 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13200 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13201 }
13202
13203 kvm_mmu_slot_apply_flags(kvm, old, new, change);
13204
13205 /* Free the arrays associated with the old memslot. */
13206 if (change == KVM_MR_MOVE)
13207 kvm_arch_free_memslot(kvm, old);
13208 }
13209
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13210 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13211 {
13212 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13213
13214 if (vcpu->arch.guest_state_protected)
13215 return true;
13216
13217 return kvm_x86_call(get_cpl)(vcpu) == 0;
13218 }
13219
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13220 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13221 {
13222 WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13223
13224 if (vcpu->arch.guest_state_protected)
13225 return 0;
13226
13227 return kvm_rip_read(vcpu);
13228 }
13229
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13230 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13231 {
13232 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13233 }
13234
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13235 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13236 {
13237 return kvm_x86_call(interrupt_allowed)(vcpu, false);
13238 }
13239
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13240 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13241 {
13242 /* Can't read the RIP when guest state is protected, just return 0 */
13243 if (vcpu->arch.guest_state_protected)
13244 return 0;
13245
13246 if (is_64_bit_mode(vcpu))
13247 return kvm_rip_read(vcpu);
13248 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13249 kvm_rip_read(vcpu));
13250 }
13251 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13252
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13253 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13254 {
13255 return kvm_get_linear_rip(vcpu) == linear_rip;
13256 }
13257 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13258
kvm_get_rflags(struct kvm_vcpu * vcpu)13259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13260 {
13261 unsigned long rflags;
13262
13263 rflags = kvm_x86_call(get_rflags)(vcpu);
13264 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13265 rflags &= ~X86_EFLAGS_TF;
13266 return rflags;
13267 }
13268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13269
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13270 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13271 {
13272 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13273 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13274 rflags |= X86_EFLAGS_TF;
13275 kvm_x86_call(set_rflags)(vcpu, rflags);
13276 }
13277
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13278 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13279 {
13280 __kvm_set_rflags(vcpu, rflags);
13281 kvm_make_request(KVM_REQ_EVENT, vcpu);
13282 }
13283 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13284
kvm_async_pf_hash_fn(gfn_t gfn)13285 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13286 {
13287 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13288
13289 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13290 }
13291
kvm_async_pf_next_probe(u32 key)13292 static inline u32 kvm_async_pf_next_probe(u32 key)
13293 {
13294 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13295 }
13296
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13297 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13298 {
13299 u32 key = kvm_async_pf_hash_fn(gfn);
13300
13301 while (vcpu->arch.apf.gfns[key] != ~0)
13302 key = kvm_async_pf_next_probe(key);
13303
13304 vcpu->arch.apf.gfns[key] = gfn;
13305 }
13306
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13307 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13308 {
13309 int i;
13310 u32 key = kvm_async_pf_hash_fn(gfn);
13311
13312 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13313 (vcpu->arch.apf.gfns[key] != gfn &&
13314 vcpu->arch.apf.gfns[key] != ~0); i++)
13315 key = kvm_async_pf_next_probe(key);
13316
13317 return key;
13318 }
13319
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13320 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13321 {
13322 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13323 }
13324
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13325 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13326 {
13327 u32 i, j, k;
13328
13329 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13330
13331 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13332 return;
13333
13334 while (true) {
13335 vcpu->arch.apf.gfns[i] = ~0;
13336 do {
13337 j = kvm_async_pf_next_probe(j);
13338 if (vcpu->arch.apf.gfns[j] == ~0)
13339 return;
13340 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13341 /*
13342 * k lies cyclically in ]i,j]
13343 * | i.k.j |
13344 * |....j i.k.| or |.k..j i...|
13345 */
13346 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13347 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13348 i = j;
13349 }
13350 }
13351
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13352 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13353 {
13354 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13355
13356 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13357 sizeof(reason));
13358 }
13359
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13360 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13361 {
13362 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13363
13364 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13365 &token, offset, sizeof(token));
13366 }
13367
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13368 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13369 {
13370 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13371 u32 val;
13372
13373 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13374 &val, offset, sizeof(val)))
13375 return false;
13376
13377 return !val;
13378 }
13379
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13380 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13381 {
13382
13383 if (!kvm_pv_async_pf_enabled(vcpu))
13384 return false;
13385
13386 if (vcpu->arch.apf.send_user_only &&
13387 kvm_x86_call(get_cpl)(vcpu) == 0)
13388 return false;
13389
13390 if (is_guest_mode(vcpu)) {
13391 /*
13392 * L1 needs to opt into the special #PF vmexits that are
13393 * used to deliver async page faults.
13394 */
13395 return vcpu->arch.apf.delivery_as_pf_vmexit;
13396 } else {
13397 /*
13398 * Play it safe in case the guest temporarily disables paging.
13399 * The real mode IDT in particular is unlikely to have a #PF
13400 * exception setup.
13401 */
13402 return is_paging(vcpu);
13403 }
13404 }
13405
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13406 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13407 {
13408 if (unlikely(!lapic_in_kernel(vcpu) ||
13409 kvm_event_needs_reinjection(vcpu) ||
13410 kvm_is_exception_pending(vcpu)))
13411 return false;
13412
13413 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13414 return false;
13415
13416 /*
13417 * If interrupts are off we cannot even use an artificial
13418 * halt state.
13419 */
13420 return kvm_arch_interrupt_allowed(vcpu);
13421 }
13422
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13423 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13424 struct kvm_async_pf *work)
13425 {
13426 struct x86_exception fault;
13427
13428 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13429 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13430
13431 if (kvm_can_deliver_async_pf(vcpu) &&
13432 !apf_put_user_notpresent(vcpu)) {
13433 fault.vector = PF_VECTOR;
13434 fault.error_code_valid = true;
13435 fault.error_code = 0;
13436 fault.nested_page_fault = false;
13437 fault.address = work->arch.token;
13438 fault.async_page_fault = true;
13439 kvm_inject_page_fault(vcpu, &fault);
13440 return true;
13441 } else {
13442 /*
13443 * It is not possible to deliver a paravirtualized asynchronous
13444 * page fault, but putting the guest in an artificial halt state
13445 * can be beneficial nevertheless: if an interrupt arrives, we
13446 * can deliver it timely and perhaps the guest will schedule
13447 * another process. When the instruction that triggered a page
13448 * fault is retried, hopefully the page will be ready in the host.
13449 */
13450 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13451 return false;
13452 }
13453 }
13454
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13455 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13456 struct kvm_async_pf *work)
13457 {
13458 struct kvm_lapic_irq irq = {
13459 .delivery_mode = APIC_DM_FIXED,
13460 .vector = vcpu->arch.apf.vec
13461 };
13462
13463 if (work->wakeup_all)
13464 work->arch.token = ~0; /* broadcast wakeup */
13465 else
13466 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13467 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13468
13469 if ((work->wakeup_all || work->notpresent_injected) &&
13470 kvm_pv_async_pf_enabled(vcpu) &&
13471 !apf_put_user_ready(vcpu, work->arch.token)) {
13472 vcpu->arch.apf.pageready_pending = true;
13473 kvm_apic_set_irq(vcpu, &irq, NULL);
13474 }
13475
13476 vcpu->arch.apf.halted = false;
13477 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13478 }
13479
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13480 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13481 {
13482 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13483 if (!vcpu->arch.apf.pageready_pending)
13484 kvm_vcpu_kick(vcpu);
13485 }
13486
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13487 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13488 {
13489 if (!kvm_pv_async_pf_enabled(vcpu))
13490 return true;
13491 else
13492 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13493 }
13494
kvm_arch_start_assignment(struct kvm * kvm)13495 void kvm_arch_start_assignment(struct kvm *kvm)
13496 {
13497 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13498 kvm_x86_call(pi_start_assignment)(kvm);
13499 }
13500 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13501
kvm_arch_end_assignment(struct kvm * kvm)13502 void kvm_arch_end_assignment(struct kvm *kvm)
13503 {
13504 atomic_dec(&kvm->arch.assigned_device_count);
13505 }
13506 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13507
kvm_arch_has_assigned_device(struct kvm * kvm)13508 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13509 {
13510 return raw_atomic_read(&kvm->arch.assigned_device_count);
13511 }
13512 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13513
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13514 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13515 {
13516 /*
13517 * Non-coherent DMA assignment and de-assignment may affect whether or
13518 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13519 * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first
13520 * (or last) non-coherent device is (un)registered to so that new SPTEs
13521 * with the correct "ignore guest PAT" setting are created.
13522 */
13523 if (kvm_mmu_may_ignore_guest_pat())
13524 kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13525 }
13526
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13527 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13528 {
13529 if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13530 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13531 }
13532 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13533
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13534 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13535 {
13536 if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13537 kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13538 }
13539 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13540
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13541 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13542 {
13543 return atomic_read(&kvm->arch.noncoherent_dma_count);
13544 }
13545 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13546
kvm_arch_has_irq_bypass(void)13547 bool kvm_arch_has_irq_bypass(void)
13548 {
13549 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13550 }
13551
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13552 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13553 struct irq_bypass_producer *prod)
13554 {
13555 struct kvm_kernel_irqfd *irqfd =
13556 container_of(cons, struct kvm_kernel_irqfd, consumer);
13557 int ret;
13558
13559 irqfd->producer = prod;
13560 kvm_arch_start_assignment(irqfd->kvm);
13561 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13562 prod->irq, irqfd->gsi, 1);
13563 if (ret)
13564 kvm_arch_end_assignment(irqfd->kvm);
13565
13566 return ret;
13567 }
13568
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13569 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13570 struct irq_bypass_producer *prod)
13571 {
13572 int ret;
13573 struct kvm_kernel_irqfd *irqfd =
13574 container_of(cons, struct kvm_kernel_irqfd, consumer);
13575
13576 WARN_ON(irqfd->producer != prod);
13577 irqfd->producer = NULL;
13578
13579 /*
13580 * When producer of consumer is unregistered, we change back to
13581 * remapped mode, so we can re-use the current implementation
13582 * when the irq is masked/disabled or the consumer side (KVM
13583 * int this case doesn't want to receive the interrupts.
13584 */
13585 ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13586 prod->irq, irqfd->gsi, 0);
13587 if (ret)
13588 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13589 " fails: %d\n", irqfd->consumer.token, ret);
13590
13591 kvm_arch_end_assignment(irqfd->kvm);
13592 }
13593
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13594 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13595 uint32_t guest_irq, bool set)
13596 {
13597 return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13598 }
13599
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13600 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13601 struct kvm_kernel_irq_routing_entry *new)
13602 {
13603 if (new->type != KVM_IRQ_ROUTING_MSI)
13604 return true;
13605
13606 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13607 }
13608
kvm_vector_hashing_enabled(void)13609 bool kvm_vector_hashing_enabled(void)
13610 {
13611 return vector_hashing;
13612 }
13613
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13614 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13615 {
13616 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13617 }
13618 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13619
13620 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13621 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13622 {
13623 return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13624 }
13625 #endif
13626
13627 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13628 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13629 {
13630 kvm_x86_call(gmem_invalidate)(start, end);
13631 }
13632 #endif
13633
kvm_spec_ctrl_test_value(u64 value)13634 int kvm_spec_ctrl_test_value(u64 value)
13635 {
13636 /*
13637 * test that setting IA32_SPEC_CTRL to given value
13638 * is allowed by the host processor
13639 */
13640
13641 u64 saved_value;
13642 unsigned long flags;
13643 int ret = 0;
13644
13645 local_irq_save(flags);
13646
13647 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13648 ret = 1;
13649 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13650 ret = 1;
13651 else
13652 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13653
13654 local_irq_restore(flags);
13655
13656 return ret;
13657 }
13658 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13659
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13660 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13661 {
13662 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13663 struct x86_exception fault;
13664 u64 access = error_code &
13665 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13666
13667 if (!(error_code & PFERR_PRESENT_MASK) ||
13668 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13669 /*
13670 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13671 * tables probably do not match the TLB. Just proceed
13672 * with the error code that the processor gave.
13673 */
13674 fault.vector = PF_VECTOR;
13675 fault.error_code_valid = true;
13676 fault.error_code = error_code;
13677 fault.nested_page_fault = false;
13678 fault.address = gva;
13679 fault.async_page_fault = false;
13680 }
13681 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13682 }
13683 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13684
13685 /*
13686 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13687 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13688 * indicates whether exit to userspace is needed.
13689 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13690 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13691 struct x86_exception *e)
13692 {
13693 if (r == X86EMUL_PROPAGATE_FAULT) {
13694 if (KVM_BUG_ON(!e, vcpu->kvm))
13695 return -EIO;
13696
13697 kvm_inject_emulated_page_fault(vcpu, e);
13698 return 1;
13699 }
13700
13701 /*
13702 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13703 * while handling a VMX instruction KVM could've handled the request
13704 * correctly by exiting to userspace and performing I/O but there
13705 * doesn't seem to be a real use-case behind such requests, just return
13706 * KVM_EXIT_INTERNAL_ERROR for now.
13707 */
13708 kvm_prepare_emulation_failure_exit(vcpu);
13709
13710 return 0;
13711 }
13712 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13713
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13714 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13715 {
13716 bool pcid_enabled;
13717 struct x86_exception e;
13718 struct {
13719 u64 pcid;
13720 u64 gla;
13721 } operand;
13722 int r;
13723
13724 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13725 if (r != X86EMUL_CONTINUE)
13726 return kvm_handle_memory_failure(vcpu, r, &e);
13727
13728 if (operand.pcid >> 12 != 0) {
13729 kvm_inject_gp(vcpu, 0);
13730 return 1;
13731 }
13732
13733 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13734
13735 switch (type) {
13736 case INVPCID_TYPE_INDIV_ADDR:
13737 /*
13738 * LAM doesn't apply to addresses that are inputs to TLB
13739 * invalidation.
13740 */
13741 if ((!pcid_enabled && (operand.pcid != 0)) ||
13742 is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13743 kvm_inject_gp(vcpu, 0);
13744 return 1;
13745 }
13746 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13747 return kvm_skip_emulated_instruction(vcpu);
13748
13749 case INVPCID_TYPE_SINGLE_CTXT:
13750 if (!pcid_enabled && (operand.pcid != 0)) {
13751 kvm_inject_gp(vcpu, 0);
13752 return 1;
13753 }
13754
13755 kvm_invalidate_pcid(vcpu, operand.pcid);
13756 return kvm_skip_emulated_instruction(vcpu);
13757
13758 case INVPCID_TYPE_ALL_NON_GLOBAL:
13759 /*
13760 * Currently, KVM doesn't mark global entries in the shadow
13761 * page tables, so a non-global flush just degenerates to a
13762 * global flush. If needed, we could optimize this later by
13763 * keeping track of global entries in shadow page tables.
13764 */
13765
13766 fallthrough;
13767 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13768 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13769 return kvm_skip_emulated_instruction(vcpu);
13770
13771 default:
13772 kvm_inject_gp(vcpu, 0);
13773 return 1;
13774 }
13775 }
13776 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13777
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13778 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13779 {
13780 struct kvm_run *run = vcpu->run;
13781 struct kvm_mmio_fragment *frag;
13782 unsigned int len;
13783
13784 BUG_ON(!vcpu->mmio_needed);
13785
13786 /* Complete previous fragment */
13787 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13788 len = min(8u, frag->len);
13789 if (!vcpu->mmio_is_write)
13790 memcpy(frag->data, run->mmio.data, len);
13791
13792 if (frag->len <= 8) {
13793 /* Switch to the next fragment. */
13794 frag++;
13795 vcpu->mmio_cur_fragment++;
13796 } else {
13797 /* Go forward to the next mmio piece. */
13798 frag->data += len;
13799 frag->gpa += len;
13800 frag->len -= len;
13801 }
13802
13803 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13804 vcpu->mmio_needed = 0;
13805
13806 // VMG change, at this point, we're always done
13807 // RIP has already been advanced
13808 return 1;
13809 }
13810
13811 // More MMIO is needed
13812 run->mmio.phys_addr = frag->gpa;
13813 run->mmio.len = min(8u, frag->len);
13814 run->mmio.is_write = vcpu->mmio_is_write;
13815 if (run->mmio.is_write)
13816 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13817 run->exit_reason = KVM_EXIT_MMIO;
13818
13819 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13820
13821 return 0;
13822 }
13823
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13824 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13825 void *data)
13826 {
13827 int handled;
13828 struct kvm_mmio_fragment *frag;
13829
13830 if (!data)
13831 return -EINVAL;
13832
13833 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13834 if (handled == bytes)
13835 return 1;
13836
13837 bytes -= handled;
13838 gpa += handled;
13839 data += handled;
13840
13841 /*TODO: Check if need to increment number of frags */
13842 frag = vcpu->mmio_fragments;
13843 vcpu->mmio_nr_fragments = 1;
13844 frag->len = bytes;
13845 frag->gpa = gpa;
13846 frag->data = data;
13847
13848 vcpu->mmio_needed = 1;
13849 vcpu->mmio_cur_fragment = 0;
13850
13851 vcpu->run->mmio.phys_addr = gpa;
13852 vcpu->run->mmio.len = min(8u, frag->len);
13853 vcpu->run->mmio.is_write = 1;
13854 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13855 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13856
13857 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13858
13859 return 0;
13860 }
13861 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13862
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13863 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13864 void *data)
13865 {
13866 int handled;
13867 struct kvm_mmio_fragment *frag;
13868
13869 if (!data)
13870 return -EINVAL;
13871
13872 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13873 if (handled == bytes)
13874 return 1;
13875
13876 bytes -= handled;
13877 gpa += handled;
13878 data += handled;
13879
13880 /*TODO: Check if need to increment number of frags */
13881 frag = vcpu->mmio_fragments;
13882 vcpu->mmio_nr_fragments = 1;
13883 frag->len = bytes;
13884 frag->gpa = gpa;
13885 frag->data = data;
13886
13887 vcpu->mmio_needed = 1;
13888 vcpu->mmio_cur_fragment = 0;
13889
13890 vcpu->run->mmio.phys_addr = gpa;
13891 vcpu->run->mmio.len = min(8u, frag->len);
13892 vcpu->run->mmio.is_write = 0;
13893 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13894
13895 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13896
13897 return 0;
13898 }
13899 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13900
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13901 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13902 {
13903 vcpu->arch.sev_pio_count -= count;
13904 vcpu->arch.sev_pio_data += count * size;
13905 }
13906
13907 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13908 unsigned int port);
13909
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13910 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13911 {
13912 int size = vcpu->arch.pio.size;
13913 int port = vcpu->arch.pio.port;
13914
13915 vcpu->arch.pio.count = 0;
13916 if (vcpu->arch.sev_pio_count)
13917 return kvm_sev_es_outs(vcpu, size, port);
13918 return 1;
13919 }
13920
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13921 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13922 unsigned int port)
13923 {
13924 for (;;) {
13925 unsigned int count =
13926 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13927 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13928
13929 /* memcpy done already by emulator_pio_out. */
13930 advance_sev_es_emulated_pio(vcpu, count, size);
13931 if (!ret)
13932 break;
13933
13934 /* Emulation done by the kernel. */
13935 if (!vcpu->arch.sev_pio_count)
13936 return 1;
13937 }
13938
13939 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13940 return 0;
13941 }
13942
13943 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13944 unsigned int port);
13945
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13946 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13947 {
13948 unsigned count = vcpu->arch.pio.count;
13949 int size = vcpu->arch.pio.size;
13950 int port = vcpu->arch.pio.port;
13951
13952 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13953 advance_sev_es_emulated_pio(vcpu, count, size);
13954 if (vcpu->arch.sev_pio_count)
13955 return kvm_sev_es_ins(vcpu, size, port);
13956 return 1;
13957 }
13958
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13959 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13960 unsigned int port)
13961 {
13962 for (;;) {
13963 unsigned int count =
13964 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13965 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13966 break;
13967
13968 /* Emulation done by the kernel. */
13969 advance_sev_es_emulated_pio(vcpu, count, size);
13970 if (!vcpu->arch.sev_pio_count)
13971 return 1;
13972 }
13973
13974 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13975 return 0;
13976 }
13977
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13978 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13979 unsigned int port, void *data, unsigned int count,
13980 int in)
13981 {
13982 vcpu->arch.sev_pio_data = data;
13983 vcpu->arch.sev_pio_count = count;
13984 return in ? kvm_sev_es_ins(vcpu, size, port)
13985 : kvm_sev_es_outs(vcpu, size, port);
13986 }
13987 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13988
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14019
kvm_x86_init(void)14020 static int __init kvm_x86_init(void)
14021 {
14022 kvm_init_xstate_sizes();
14023
14024 kvm_mmu_x86_module_init();
14025 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14026 return 0;
14027 }
14028 module_init(kvm_x86_init);
14029
kvm_x86_exit(void)14030 static void __exit kvm_x86_exit(void)
14031 {
14032 WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14033 }
14034 module_exit(kvm_x86_exit);
14035