xref: /linux/arch/x86/kvm/x86.c (revision a382b06d297e78ed7ac67afd0d8e8690406ac4ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/kvm_host.h>
21 #include "irq.h"
22 #include "ioapic.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "kvm_emulate.h"
28 #include "mmu/page_track.h"
29 #include "x86.h"
30 #include "cpuid.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 #include "lapic.h"
34 #include "xen.h"
35 #include "smm.h"
36 
37 #include <linux/clocksource.h>
38 #include <linux/interrupt.h>
39 #include <linux/kvm.h>
40 #include <linux/fs.h>
41 #include <linux/vmalloc.h>
42 #include <linux/export.h>
43 #include <linux/moduleparam.h>
44 #include <linux/mman.h>
45 #include <linux/highmem.h>
46 #include <linux/iommu.h>
47 #include <linux/cpufreq.h>
48 #include <linux/user-return-notifier.h>
49 #include <linux/srcu.h>
50 #include <linux/slab.h>
51 #include <linux/perf_event.h>
52 #include <linux/uaccess.h>
53 #include <linux/hash.h>
54 #include <linux/pci.h>
55 #include <linux/timekeeper_internal.h>
56 #include <linux/pvclock_gtod.h>
57 #include <linux/kvm_irqfd.h>
58 #include <linux/irqbypass.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/mem_encrypt.h>
62 #include <linux/entry-kvm.h>
63 #include <linux/suspend.h>
64 #include <linux/smp.h>
65 
66 #include <trace/events/ipi.h>
67 #include <trace/events/kvm.h>
68 
69 #include <asm/debugreg.h>
70 #include <asm/msr.h>
71 #include <asm/desc.h>
72 #include <asm/mce.h>
73 #include <asm/pkru.h>
74 #include <linux/kernel_stat.h>
75 #include <asm/fpu/api.h>
76 #include <asm/fpu/xcr.h>
77 #include <asm/fpu/xstate.h>
78 #include <asm/pvclock.h>
79 #include <asm/div64.h>
80 #include <asm/irq_remapping.h>
81 #include <asm/mshyperv.h>
82 #include <asm/hypervisor.h>
83 #include <asm/tlbflush.h>
84 #include <asm/intel_pt.h>
85 #include <asm/emulate_prefix.h>
86 #include <asm/sgx.h>
87 #include <clocksource/hyperv_timer.h>
88 
89 #define CREATE_TRACE_POINTS
90 #include "trace.h"
91 
92 #define MAX_IO_MSRS 256
93 #define KVM_MAX_MCE_BANKS 32
94 
95 /*
96  * Note, kvm_caps fields should *never* have default values, all fields must be
97  * recomputed from scratch during vendor module load, e.g. to account for a
98  * vendor module being reloaded with different module parameters.
99  */
100 struct kvm_caps kvm_caps __read_mostly;
101 EXPORT_SYMBOL_GPL(kvm_caps);
102 
103 struct kvm_host_values kvm_host __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_host);
105 
106 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
107 
108 #define emul_to_vcpu(ctxt) \
109 	((struct kvm_vcpu *)(ctxt)->vcpu)
110 
111 /* EFER defaults:
112  * - enable syscall per default because its emulated by KVM
113  * - enable LME and LMA per default on 64 bit KVM
114  */
115 #ifdef CONFIG_X86_64
116 static
117 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
118 #else
119 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
120 #endif
121 
122 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
123 
124 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
125 
126 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
127                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
128 
129 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
130 static void process_nmi(struct kvm_vcpu *vcpu);
131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
132 static void store_regs(struct kvm_vcpu *vcpu);
133 static int sync_regs(struct kvm_vcpu *vcpu);
134 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
135 
136 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
137 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
138 
139 static DEFINE_MUTEX(vendor_module_lock);
140 struct kvm_x86_ops kvm_x86_ops __read_mostly;
141 
142 #define KVM_X86_OP(func)					     \
143 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
144 				*(((struct kvm_x86_ops *)0)->func));
145 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
146 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
147 #include <asm/kvm-x86-ops.h>
148 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
149 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
150 
151 static bool __read_mostly ignore_msrs = 0;
152 module_param(ignore_msrs, bool, 0644);
153 
154 bool __read_mostly report_ignored_msrs = true;
155 module_param(report_ignored_msrs, bool, 0644);
156 EXPORT_SYMBOL_GPL(report_ignored_msrs);
157 
158 unsigned int min_timer_period_us = 200;
159 module_param(min_timer_period_us, uint, 0644);
160 
161 static bool __read_mostly kvmclock_periodic_sync = true;
162 module_param(kvmclock_periodic_sync, bool, 0444);
163 
164 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
165 static u32 __read_mostly tsc_tolerance_ppm = 250;
166 module_param(tsc_tolerance_ppm, uint, 0644);
167 
168 static bool __read_mostly vector_hashing = true;
169 module_param(vector_hashing, bool, 0444);
170 
171 bool __read_mostly enable_vmware_backdoor = false;
172 module_param(enable_vmware_backdoor, bool, 0444);
173 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
174 
175 /*
176  * Flags to manipulate forced emulation behavior (any non-zero value will
177  * enable forced emulation).
178  */
179 #define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
180 static int __read_mostly force_emulation_prefix;
181 module_param(force_emulation_prefix, int, 0644);
182 
183 int __read_mostly pi_inject_timer = -1;
184 module_param(pi_inject_timer, bint, 0644);
185 
186 /* Enable/disable PMU virtualization */
187 bool __read_mostly enable_pmu = true;
188 EXPORT_SYMBOL_GPL(enable_pmu);
189 module_param(enable_pmu, bool, 0444);
190 
191 bool __read_mostly eager_page_split = true;
192 module_param(eager_page_split, bool, 0644);
193 
194 /* Enable/disable SMT_RSB bug mitigation */
195 static bool __read_mostly mitigate_smt_rsb;
196 module_param(mitigate_smt_rsb, bool, 0444);
197 
198 /*
199  * Restoring the host value for MSRs that are only consumed when running in
200  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
201  * returns to userspace, i.e. the kernel can run with the guest's value.
202  */
203 #define KVM_MAX_NR_USER_RETURN_MSRS 16
204 
205 struct kvm_user_return_msrs {
206 	struct user_return_notifier urn;
207 	bool registered;
208 	struct kvm_user_return_msr_values {
209 		u64 host;
210 		u64 curr;
211 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
212 };
213 
214 u32 __read_mostly kvm_nr_uret_msrs;
215 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
216 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
217 static struct kvm_user_return_msrs __percpu *user_return_msrs;
218 
219 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
220 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
221 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
222 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
223 
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226 
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229 
230 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
231 	KVM_GENERIC_VM_STATS(),
232 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
233 	STATS_DESC_COUNTER(VM, mmu_pte_write),
234 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
235 	STATS_DESC_COUNTER(VM, mmu_flooded),
236 	STATS_DESC_COUNTER(VM, mmu_recycled),
237 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
238 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
239 	STATS_DESC_ICOUNTER(VM, pages_4k),
240 	STATS_DESC_ICOUNTER(VM, pages_2m),
241 	STATS_DESC_ICOUNTER(VM, pages_1g),
242 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
243 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
244 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
245 };
246 
247 const struct kvm_stats_header kvm_vm_stats_header = {
248 	.name_size = KVM_STATS_NAME_SIZE,
249 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
250 	.id_offset = sizeof(struct kvm_stats_header),
251 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
252 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
253 		       sizeof(kvm_vm_stats_desc),
254 };
255 
256 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
257 	KVM_GENERIC_VCPU_STATS(),
258 	STATS_DESC_COUNTER(VCPU, pf_taken),
259 	STATS_DESC_COUNTER(VCPU, pf_fixed),
260 	STATS_DESC_COUNTER(VCPU, pf_emulate),
261 	STATS_DESC_COUNTER(VCPU, pf_spurious),
262 	STATS_DESC_COUNTER(VCPU, pf_fast),
263 	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
264 	STATS_DESC_COUNTER(VCPU, pf_guest),
265 	STATS_DESC_COUNTER(VCPU, tlb_flush),
266 	STATS_DESC_COUNTER(VCPU, invlpg),
267 	STATS_DESC_COUNTER(VCPU, exits),
268 	STATS_DESC_COUNTER(VCPU, io_exits),
269 	STATS_DESC_COUNTER(VCPU, mmio_exits),
270 	STATS_DESC_COUNTER(VCPU, signal_exits),
271 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
272 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
273 	STATS_DESC_COUNTER(VCPU, l1d_flush),
274 	STATS_DESC_COUNTER(VCPU, halt_exits),
275 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
276 	STATS_DESC_COUNTER(VCPU, irq_exits),
277 	STATS_DESC_COUNTER(VCPU, host_state_reload),
278 	STATS_DESC_COUNTER(VCPU, fpu_reload),
279 	STATS_DESC_COUNTER(VCPU, insn_emulation),
280 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
281 	STATS_DESC_COUNTER(VCPU, hypercalls),
282 	STATS_DESC_COUNTER(VCPU, irq_injections),
283 	STATS_DESC_COUNTER(VCPU, nmi_injections),
284 	STATS_DESC_COUNTER(VCPU, req_event),
285 	STATS_DESC_COUNTER(VCPU, nested_run),
286 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
287 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
288 	STATS_DESC_COUNTER(VCPU, preemption_reported),
289 	STATS_DESC_COUNTER(VCPU, preemption_other),
290 	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
291 	STATS_DESC_COUNTER(VCPU, notify_window_exits),
292 };
293 
294 const struct kvm_stats_header kvm_vcpu_stats_header = {
295 	.name_size = KVM_STATS_NAME_SIZE,
296 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
297 	.id_offset = sizeof(struct kvm_stats_header),
298 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
299 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
300 		       sizeof(kvm_vcpu_stats_desc),
301 };
302 
303 static struct kmem_cache *x86_emulator_cache;
304 
305 /*
306  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
307  * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
308  * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
309  * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
310  * MSRs that KVM emulates without strictly requiring host support.
311  * msr_based_features holds MSRs that enumerate features, i.e. are effectively
312  * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
313  * msrs_to_save and emulated_msrs.
314  */
315 
316 static const u32 msrs_to_save_base[] = {
317 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
318 	MSR_STAR,
319 #ifdef CONFIG_X86_64
320 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
321 #endif
322 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
323 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
324 	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
325 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
326 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
327 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
328 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
329 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
330 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
331 	MSR_IA32_UMWAIT_CONTROL,
332 
333 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
334 };
335 
336 static const u32 msrs_to_save_pmu[] = {
337 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
338 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
339 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
340 	MSR_CORE_PERF_GLOBAL_CTRL,
341 	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
342 
343 	/* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */
344 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
345 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
346 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
347 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
348 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
349 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
350 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
351 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
352 
353 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
354 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
355 
356 	/* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */
357 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
358 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
359 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
360 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
361 
362 	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
363 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
364 	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
365 };
366 
367 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
368 			ARRAY_SIZE(msrs_to_save_pmu)];
369 static unsigned num_msrs_to_save;
370 
371 static const u32 emulated_msrs_all[] = {
372 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
373 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
374 
375 #ifdef CONFIG_KVM_HYPERV
376 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
377 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
378 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
379 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
380 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
381 	HV_X64_MSR_RESET,
382 	HV_X64_MSR_VP_INDEX,
383 	HV_X64_MSR_VP_RUNTIME,
384 	HV_X64_MSR_SCONTROL,
385 	HV_X64_MSR_STIMER0_CONFIG,
386 	HV_X64_MSR_VP_ASSIST_PAGE,
387 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
388 	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
389 	HV_X64_MSR_SYNDBG_OPTIONS,
390 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
391 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
392 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
393 #endif
394 
395 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
396 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
397 
398 	MSR_IA32_TSC_ADJUST,
399 	MSR_IA32_TSC_DEADLINE,
400 	MSR_IA32_ARCH_CAPABILITIES,
401 	MSR_IA32_PERF_CAPABILITIES,
402 	MSR_IA32_MISC_ENABLE,
403 	MSR_IA32_MCG_STATUS,
404 	MSR_IA32_MCG_CTL,
405 	MSR_IA32_MCG_EXT_CTL,
406 	MSR_IA32_SMBASE,
407 	MSR_SMI_COUNT,
408 	MSR_PLATFORM_INFO,
409 	MSR_MISC_FEATURES_ENABLES,
410 	MSR_AMD64_VIRT_SPEC_CTRL,
411 	MSR_AMD64_TSC_RATIO,
412 	MSR_IA32_POWER_CTL,
413 	MSR_IA32_UCODE_REV,
414 
415 	/*
416 	 * KVM always supports the "true" VMX control MSRs, even if the host
417 	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
418 	 * doesn't strictly require them to exist in the host (ignoring that
419 	 * KVM would refuse to load in the first place if the core set of MSRs
420 	 * aren't supported).
421 	 */
422 	MSR_IA32_VMX_BASIC,
423 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
424 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
425 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
426 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
427 	MSR_IA32_VMX_MISC,
428 	MSR_IA32_VMX_CR0_FIXED0,
429 	MSR_IA32_VMX_CR4_FIXED0,
430 	MSR_IA32_VMX_VMCS_ENUM,
431 	MSR_IA32_VMX_PROCBASED_CTLS2,
432 	MSR_IA32_VMX_EPT_VPID_CAP,
433 	MSR_IA32_VMX_VMFUNC,
434 
435 	MSR_K7_HWCR,
436 	MSR_KVM_POLL_CONTROL,
437 };
438 
439 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
440 static unsigned num_emulated_msrs;
441 
442 /*
443  * List of MSRs that control the existence of MSR-based features, i.e. MSRs
444  * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
445  * feature MSRs, but are handled separately to allow expedited lookups.
446  */
447 static const u32 msr_based_features_all_except_vmx[] = {
448 	MSR_AMD64_DE_CFG,
449 	MSR_IA32_UCODE_REV,
450 	MSR_IA32_ARCH_CAPABILITIES,
451 	MSR_IA32_PERF_CAPABILITIES,
452 	MSR_PLATFORM_INFO,
453 };
454 
455 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
456 			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
457 static unsigned int num_msr_based_features;
458 
459 /*
460  * All feature MSRs except uCode revID, which tracks the currently loaded uCode
461  * patch, are immutable once the vCPU model is defined.
462  */
kvm_is_immutable_feature_msr(u32 msr)463 static bool kvm_is_immutable_feature_msr(u32 msr)
464 {
465 	int i;
466 
467 	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
468 		return true;
469 
470 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
471 		if (msr == msr_based_features_all_except_vmx[i])
472 			return msr != MSR_IA32_UCODE_REV;
473 	}
474 
475 	return false;
476 }
477 
kvm_is_advertised_msr(u32 msr_index)478 static bool kvm_is_advertised_msr(u32 msr_index)
479 {
480 	unsigned int i;
481 
482 	for (i = 0; i < num_msrs_to_save; i++) {
483 		if (msrs_to_save[i] == msr_index)
484 			return true;
485 	}
486 
487 	for (i = 0; i < num_emulated_msrs; i++) {
488 		if (emulated_msrs[i] == msr_index)
489 			return true;
490 	}
491 
492 	return false;
493 }
494 
495 typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data,
496 			    bool host_initiated);
497 
kvm_do_msr_access(struct kvm_vcpu * vcpu,u32 msr,u64 * data,bool host_initiated,enum kvm_msr_access rw,msr_access_t msr_access_fn)498 static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr,
499 					     u64 *data, bool host_initiated,
500 					     enum kvm_msr_access rw,
501 					     msr_access_t msr_access_fn)
502 {
503 	const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr";
504 	int ret;
505 
506 	BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W);
507 
508 	/*
509 	 * Zero the data on read failures to avoid leaking stack data to the
510 	 * guest and/or userspace, e.g. if the failure is ignored below.
511 	 */
512 	ret = msr_access_fn(vcpu, msr, data, host_initiated);
513 	if (ret && rw == MSR_TYPE_R)
514 		*data = 0;
515 
516 	if (ret != KVM_MSR_RET_UNSUPPORTED)
517 		return ret;
518 
519 	/*
520 	 * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM
521 	 * advertises to userspace, even if an MSR isn't fully supported.
522 	 * Simply check that @data is '0', which covers both the write '0' case
523 	 * and all reads (in which case @data is zeroed on failure; see above).
524 	 */
525 	if (host_initiated && !*data && kvm_is_advertised_msr(msr))
526 		return 0;
527 
528 	if (!ignore_msrs) {
529 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
530 				      op, msr, *data);
531 		return ret;
532 	}
533 
534 	if (report_ignored_msrs)
535 		kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data);
536 
537 	return 0;
538 }
539 
kvm_alloc_emulator_cache(void)540 static struct kmem_cache *kvm_alloc_emulator_cache(void)
541 {
542 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
543 	unsigned int size = sizeof(struct x86_emulate_ctxt);
544 
545 	return kmem_cache_create_usercopy("x86_emulator", size,
546 					  __alignof__(struct x86_emulate_ctxt),
547 					  SLAB_ACCOUNT, useroffset,
548 					  size - useroffset, NULL);
549 }
550 
551 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
552 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)553 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
554 {
555 	int i;
556 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
557 		vcpu->arch.apf.gfns[i] = ~0;
558 }
559 
kvm_on_user_return(struct user_return_notifier * urn)560 static void kvm_on_user_return(struct user_return_notifier *urn)
561 {
562 	unsigned slot;
563 	struct kvm_user_return_msrs *msrs
564 		= container_of(urn, struct kvm_user_return_msrs, urn);
565 	struct kvm_user_return_msr_values *values;
566 	unsigned long flags;
567 
568 	/*
569 	 * Disabling irqs at this point since the following code could be
570 	 * interrupted and executed through kvm_arch_disable_virtualization_cpu()
571 	 */
572 	local_irq_save(flags);
573 	if (msrs->registered) {
574 		msrs->registered = false;
575 		user_return_notifier_unregister(urn);
576 	}
577 	local_irq_restore(flags);
578 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
579 		values = &msrs->values[slot];
580 		if (values->host != values->curr) {
581 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
582 			values->curr = values->host;
583 		}
584 	}
585 }
586 
kvm_probe_user_return_msr(u32 msr)587 static int kvm_probe_user_return_msr(u32 msr)
588 {
589 	u64 val;
590 	int ret;
591 
592 	preempt_disable();
593 	ret = rdmsrl_safe(msr, &val);
594 	if (ret)
595 		goto out;
596 	ret = wrmsrl_safe(msr, val);
597 out:
598 	preempt_enable();
599 	return ret;
600 }
601 
kvm_add_user_return_msr(u32 msr)602 int kvm_add_user_return_msr(u32 msr)
603 {
604 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
605 
606 	if (kvm_probe_user_return_msr(msr))
607 		return -1;
608 
609 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
610 	return kvm_nr_uret_msrs++;
611 }
612 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
613 
kvm_find_user_return_msr(u32 msr)614 int kvm_find_user_return_msr(u32 msr)
615 {
616 	int i;
617 
618 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
619 		if (kvm_uret_msrs_list[i] == msr)
620 			return i;
621 	}
622 	return -1;
623 }
624 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
625 
kvm_user_return_msr_cpu_online(void)626 static void kvm_user_return_msr_cpu_online(void)
627 {
628 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
629 	u64 value;
630 	int i;
631 
632 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
633 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
634 		msrs->values[i].host = value;
635 		msrs->values[i].curr = value;
636 	}
637 }
638 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)639 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
640 {
641 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
642 	int err;
643 
644 	value = (value & mask) | (msrs->values[slot].host & ~mask);
645 	if (value == msrs->values[slot].curr)
646 		return 0;
647 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
648 	if (err)
649 		return 1;
650 
651 	msrs->values[slot].curr = value;
652 	if (!msrs->registered) {
653 		msrs->urn.on_user_return = kvm_on_user_return;
654 		user_return_notifier_register(&msrs->urn);
655 		msrs->registered = true;
656 	}
657 	return 0;
658 }
659 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
660 
drop_user_return_notifiers(void)661 static void drop_user_return_notifiers(void)
662 {
663 	struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs);
664 
665 	if (msrs->registered)
666 		kvm_on_user_return(&msrs->urn);
667 }
668 
669 /*
670  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
671  *
672  * Hardware virtualization extension instructions may fault if a reboot turns
673  * off virtualization while processes are running.  Usually after catching the
674  * fault we just panic; during reboot instead the instruction is ignored.
675  */
kvm_spurious_fault(void)676 noinstr void kvm_spurious_fault(void)
677 {
678 	/* Fault while not rebooting.  We want the trace. */
679 	BUG_ON(!kvm_rebooting);
680 }
681 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
682 
683 #define EXCPT_BENIGN		0
684 #define EXCPT_CONTRIBUTORY	1
685 #define EXCPT_PF		2
686 
exception_class(int vector)687 static int exception_class(int vector)
688 {
689 	switch (vector) {
690 	case PF_VECTOR:
691 		return EXCPT_PF;
692 	case DE_VECTOR:
693 	case TS_VECTOR:
694 	case NP_VECTOR:
695 	case SS_VECTOR:
696 	case GP_VECTOR:
697 		return EXCPT_CONTRIBUTORY;
698 	default:
699 		break;
700 	}
701 	return EXCPT_BENIGN;
702 }
703 
704 #define EXCPT_FAULT		0
705 #define EXCPT_TRAP		1
706 #define EXCPT_ABORT		2
707 #define EXCPT_INTERRUPT		3
708 #define EXCPT_DB		4
709 
exception_type(int vector)710 static int exception_type(int vector)
711 {
712 	unsigned int mask;
713 
714 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
715 		return EXCPT_INTERRUPT;
716 
717 	mask = 1 << vector;
718 
719 	/*
720 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
721 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
722 	 */
723 	if (mask & (1 << DB_VECTOR))
724 		return EXCPT_DB;
725 
726 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
727 		return EXCPT_TRAP;
728 
729 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
730 		return EXCPT_ABORT;
731 
732 	/* Reserved exceptions will result in fault */
733 	return EXCPT_FAULT;
734 }
735 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)736 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
737 				   struct kvm_queued_exception *ex)
738 {
739 	if (!ex->has_payload)
740 		return;
741 
742 	switch (ex->vector) {
743 	case DB_VECTOR:
744 		/*
745 		 * "Certain debug exceptions may clear bit 0-3.  The
746 		 * remaining contents of the DR6 register are never
747 		 * cleared by the processor".
748 		 */
749 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
750 		/*
751 		 * In order to reflect the #DB exception payload in guest
752 		 * dr6, three components need to be considered: active low
753 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
754 		 * DR6_BS and DR6_BT)
755 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
756 		 * In the target guest dr6:
757 		 * FIXED_1 bits should always be set.
758 		 * Active low bits should be cleared if 1-setting in payload.
759 		 * Active high bits should be set if 1-setting in payload.
760 		 *
761 		 * Note, the payload is compatible with the pending debug
762 		 * exceptions/exit qualification under VMX, that active_low bits
763 		 * are active high in payload.
764 		 * So they need to be flipped for DR6.
765 		 */
766 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
767 		vcpu->arch.dr6 |= ex->payload;
768 		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
769 
770 		/*
771 		 * The #DB payload is defined as compatible with the 'pending
772 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
773 		 * defined in the 'pending debug exceptions' field (enabled
774 		 * breakpoint), it is reserved and must be zero in DR6.
775 		 */
776 		vcpu->arch.dr6 &= ~BIT(12);
777 		break;
778 	case PF_VECTOR:
779 		vcpu->arch.cr2 = ex->payload;
780 		break;
781 	}
782 
783 	ex->has_payload = false;
784 	ex->payload = 0;
785 }
786 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
787 
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)788 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
789 				       bool has_error_code, u32 error_code,
790 				       bool has_payload, unsigned long payload)
791 {
792 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
793 
794 	ex->vector = vector;
795 	ex->injected = false;
796 	ex->pending = true;
797 	ex->has_error_code = has_error_code;
798 	ex->error_code = error_code;
799 	ex->has_payload = has_payload;
800 	ex->payload = payload;
801 }
802 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)803 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
804 		unsigned nr, bool has_error, u32 error_code,
805 	        bool has_payload, unsigned long payload, bool reinject)
806 {
807 	u32 prev_nr;
808 	int class1, class2;
809 
810 	kvm_make_request(KVM_REQ_EVENT, vcpu);
811 
812 	/*
813 	 * If the exception is destined for L2 and isn't being reinjected,
814 	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
815 	 * previously injected exception is not checked because it was checked
816 	 * when it was original queued, and re-checking is incorrect if _L1_
817 	 * injected the exception, in which case it's exempt from interception.
818 	 */
819 	if (!reinject && is_guest_mode(vcpu) &&
820 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
821 		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
822 					   has_payload, payload);
823 		return;
824 	}
825 
826 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
827 	queue:
828 		if (reinject) {
829 			/*
830 			 * On VM-Entry, an exception can be pending if and only
831 			 * if event injection was blocked by nested_run_pending.
832 			 * In that case, however, vcpu_enter_guest() requests an
833 			 * immediate exit, and the guest shouldn't proceed far
834 			 * enough to need reinjection.
835 			 */
836 			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
837 			vcpu->arch.exception.injected = true;
838 			if (WARN_ON_ONCE(has_payload)) {
839 				/*
840 				 * A reinjected event has already
841 				 * delivered its payload.
842 				 */
843 				has_payload = false;
844 				payload = 0;
845 			}
846 		} else {
847 			vcpu->arch.exception.pending = true;
848 			vcpu->arch.exception.injected = false;
849 		}
850 		vcpu->arch.exception.has_error_code = has_error;
851 		vcpu->arch.exception.vector = nr;
852 		vcpu->arch.exception.error_code = error_code;
853 		vcpu->arch.exception.has_payload = has_payload;
854 		vcpu->arch.exception.payload = payload;
855 		if (!is_guest_mode(vcpu))
856 			kvm_deliver_exception_payload(vcpu,
857 						      &vcpu->arch.exception);
858 		return;
859 	}
860 
861 	/* to check exception */
862 	prev_nr = vcpu->arch.exception.vector;
863 	if (prev_nr == DF_VECTOR) {
864 		/* triple fault -> shutdown */
865 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
866 		return;
867 	}
868 	class1 = exception_class(prev_nr);
869 	class2 = exception_class(nr);
870 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
871 	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
872 		/*
873 		 * Synthesize #DF.  Clear the previously injected or pending
874 		 * exception so as not to incorrectly trigger shutdown.
875 		 */
876 		vcpu->arch.exception.injected = false;
877 		vcpu->arch.exception.pending = false;
878 
879 		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
880 	} else {
881 		/* replace previous exception with a new one in a hope
882 		   that instruction re-execution will regenerate lost
883 		   exception */
884 		goto queue;
885 	}
886 }
887 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)888 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
889 {
890 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
891 }
892 EXPORT_SYMBOL_GPL(kvm_queue_exception);
893 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)894 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
895 {
896 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
897 }
898 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
899 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)900 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
901 			   unsigned long payload)
902 {
903 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
904 }
905 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
906 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)907 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
908 				    u32 error_code, unsigned long payload)
909 {
910 	kvm_multiple_exception(vcpu, nr, true, error_code,
911 			       true, payload, false);
912 }
913 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)914 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
915 {
916 	if (err)
917 		kvm_inject_gp(vcpu, 0);
918 	else
919 		return kvm_skip_emulated_instruction(vcpu);
920 
921 	return 1;
922 }
923 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
924 
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)925 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
926 {
927 	if (err) {
928 		kvm_inject_gp(vcpu, 0);
929 		return 1;
930 	}
931 
932 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
933 				       EMULTYPE_COMPLETE_USER_EXIT);
934 }
935 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)936 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
937 {
938 	++vcpu->stat.pf_guest;
939 
940 	/*
941 	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
942 	 * whether or not L1 wants to intercept "regular" #PF.
943 	 */
944 	if (is_guest_mode(vcpu) && fault->async_page_fault)
945 		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
946 					   true, fault->error_code,
947 					   true, fault->address);
948 	else
949 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
950 					fault->address);
951 }
952 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)953 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
954 				    struct x86_exception *fault)
955 {
956 	struct kvm_mmu *fault_mmu;
957 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
958 
959 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
960 					       vcpu->arch.walk_mmu;
961 
962 	/*
963 	 * Invalidate the TLB entry for the faulting address, if it exists,
964 	 * else the access will fault indefinitely (and to emulate hardware).
965 	 */
966 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
967 	    !(fault->error_code & PFERR_RSVD_MASK))
968 		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
969 					KVM_MMU_ROOT_CURRENT);
970 
971 	fault_mmu->inject_page_fault(vcpu, fault);
972 }
973 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
974 
kvm_inject_nmi(struct kvm_vcpu * vcpu)975 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
976 {
977 	atomic_inc(&vcpu->arch.nmi_queued);
978 	kvm_make_request(KVM_REQ_NMI, vcpu);
979 }
980 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)981 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
982 {
983 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
984 }
985 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
986 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)987 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
988 {
989 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
990 }
991 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
992 
993 /*
994  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
995  * a #GP and return false.
996  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)997 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
998 {
999 	if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl)
1000 		return true;
1001 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1002 	return false;
1003 }
1004 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)1005 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
1006 {
1007 	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
1008 		return true;
1009 
1010 	kvm_queue_exception(vcpu, UD_VECTOR);
1011 	return false;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_require_dr);
1014 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)1015 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
1016 {
1017 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
1018 }
1019 
1020 /*
1021  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
1022  */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)1023 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
1024 {
1025 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
1026 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
1027 	gpa_t real_gpa;
1028 	int i;
1029 	int ret;
1030 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
1031 
1032 	/*
1033 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
1034 	 * to an L1 GPA.
1035 	 */
1036 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
1037 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
1038 	if (real_gpa == INVALID_GPA)
1039 		return 0;
1040 
1041 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
1042 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
1043 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
1044 	if (ret < 0)
1045 		return 0;
1046 
1047 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
1048 		if ((pdpte[i] & PT_PRESENT_MASK) &&
1049 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
1050 			return 0;
1051 		}
1052 	}
1053 
1054 	/*
1055 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
1056 	 * Shadow page roots need to be reconstructed instead.
1057 	 */
1058 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
1059 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
1060 
1061 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
1062 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
1063 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
1064 	vcpu->arch.pdptrs_from_userspace = false;
1065 
1066 	return 1;
1067 }
1068 EXPORT_SYMBOL_GPL(load_pdptrs);
1069 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1070 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1071 {
1072 #ifdef CONFIG_X86_64
1073 	if (cr0 & 0xffffffff00000000UL)
1074 		return false;
1075 #endif
1076 
1077 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
1078 		return false;
1079 
1080 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
1081 		return false;
1082 
1083 	return kvm_x86_call(is_valid_cr0)(vcpu, cr0);
1084 }
1085 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)1086 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
1087 {
1088 	/*
1089 	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
1090 	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
1091 	 * as there are no permission bits to emulate.  If TDP is enabled, the
1092 	 * MMU's metadata needs to be updated, e.g. so that emulating guest
1093 	 * translations does the right thing, but there's no need to unload the
1094 	 * root as CR0.WP doesn't affect SPTEs.
1095 	 */
1096 	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
1097 		if (!(cr0 & X86_CR0_PG))
1098 			return;
1099 
1100 		if (tdp_enabled) {
1101 			kvm_init_mmu(vcpu);
1102 			return;
1103 		}
1104 	}
1105 
1106 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
1107 		kvm_clear_async_pf_completion_queue(vcpu);
1108 		kvm_async_pf_hash_reset(vcpu);
1109 
1110 		/*
1111 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
1112 		 * perspective.
1113 		 */
1114 		if (!(cr0 & X86_CR0_PG))
1115 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1116 	}
1117 
1118 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
1119 		kvm_mmu_reset_context(vcpu);
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
1122 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1123 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1124 {
1125 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
1126 
1127 	if (!kvm_is_valid_cr0(vcpu, cr0))
1128 		return 1;
1129 
1130 	cr0 |= X86_CR0_ET;
1131 
1132 	/* Write to CR0 reserved bits are ignored, even on Intel. */
1133 	cr0 &= ~CR0_RESERVED_BITS;
1134 
1135 #ifdef CONFIG_X86_64
1136 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
1137 	    (cr0 & X86_CR0_PG)) {
1138 		int cs_db, cs_l;
1139 
1140 		if (!is_pae(vcpu))
1141 			return 1;
1142 		kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
1143 		if (cs_l)
1144 			return 1;
1145 	}
1146 #endif
1147 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
1148 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
1149 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1150 		return 1;
1151 
1152 	if (!(cr0 & X86_CR0_PG) &&
1153 	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1154 		return 1;
1155 
1156 	kvm_x86_call(set_cr0)(vcpu, cr0);
1157 
1158 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(kvm_set_cr0);
1163 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)1164 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1165 {
1166 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_lmsw);
1169 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)1170 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1171 {
1172 	if (vcpu->arch.guest_state_protected)
1173 		return;
1174 
1175 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1176 
1177 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1178 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1179 
1180 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1181 		    vcpu->arch.ia32_xss != kvm_host.xss)
1182 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1183 	}
1184 
1185 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1186 	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1187 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1188 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1189 		wrpkru(vcpu->arch.pkru);
1190 }
1191 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1192 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1193 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1194 {
1195 	if (vcpu->arch.guest_state_protected)
1196 		return;
1197 
1198 	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1199 	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1200 	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1201 		vcpu->arch.pkru = rdpkru();
1202 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1203 			wrpkru(vcpu->arch.host_pkru);
1204 	}
1205 
1206 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1207 
1208 		if (vcpu->arch.xcr0 != kvm_host.xcr0)
1209 			xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1210 
1211 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) &&
1212 		    vcpu->arch.ia32_xss != kvm_host.xss)
1213 			wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1214 	}
1215 
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1218 
1219 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1220 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1221 {
1222 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1223 }
1224 #endif
1225 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1226 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1227 {
1228 	u64 xcr0 = xcr;
1229 	u64 old_xcr0 = vcpu->arch.xcr0;
1230 	u64 valid_bits;
1231 
1232 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1233 	if (index != XCR_XFEATURE_ENABLED_MASK)
1234 		return 1;
1235 	if (!(xcr0 & XFEATURE_MASK_FP))
1236 		return 1;
1237 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1238 		return 1;
1239 
1240 	/*
1241 	 * Do not allow the guest to set bits that we do not support
1242 	 * saving.  However, xcr0 bit 0 is always set, even if the
1243 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1244 	 */
1245 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1246 	if (xcr0 & ~valid_bits)
1247 		return 1;
1248 
1249 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1250 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1251 		return 1;
1252 
1253 	if (xcr0 & XFEATURE_MASK_AVX512) {
1254 		if (!(xcr0 & XFEATURE_MASK_YMM))
1255 			return 1;
1256 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1257 			return 1;
1258 	}
1259 
1260 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1261 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1262 		return 1;
1263 
1264 	vcpu->arch.xcr0 = xcr0;
1265 
1266 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1267 		kvm_update_cpuid_runtime(vcpu);
1268 	return 0;
1269 }
1270 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1271 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1272 {
1273 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1274 	if (kvm_x86_call(get_cpl)(vcpu) != 0 ||
1275 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1276 		kvm_inject_gp(vcpu, 0);
1277 		return 1;
1278 	}
1279 
1280 	return kvm_skip_emulated_instruction(vcpu);
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1283 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1284 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1285 {
1286 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1287 	       kvm_x86_call(is_valid_cr4)(vcpu, cr4);
1288 }
1289 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1290 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1291 {
1292 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1293 		kvm_mmu_reset_context(vcpu);
1294 
1295 	/*
1296 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1297 	 * according to the SDM; however, stale prev_roots could be reused
1298 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1299 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1300 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1301 	 * so fall through.
1302 	 */
1303 	if (!tdp_enabled &&
1304 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1305 		kvm_mmu_unload(vcpu);
1306 
1307 	/*
1308 	 * The TLB has to be flushed for all PCIDs if any of the following
1309 	 * (architecturally required) changes happen:
1310 	 * - CR4.PCIDE is changed from 1 to 0
1311 	 * - CR4.PGE is toggled
1312 	 *
1313 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1314 	 */
1315 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1316 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1317 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1318 
1319 	/*
1320 	 * The TLB has to be flushed for the current PCID if any of the
1321 	 * following (architecturally required) changes happen:
1322 	 * - CR4.SMEP is changed from 0 to 1
1323 	 * - CR4.PAE is toggled
1324 	 */
1325 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1326 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1327 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1328 
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1331 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1332 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1333 {
1334 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1335 
1336 	if (!kvm_is_valid_cr4(vcpu, cr4))
1337 		return 1;
1338 
1339 	if (is_long_mode(vcpu)) {
1340 		if (!(cr4 & X86_CR4_PAE))
1341 			return 1;
1342 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1343 			return 1;
1344 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1345 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1346 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1347 		return 1;
1348 
1349 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1350 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1351 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1352 			return 1;
1353 	}
1354 
1355 	kvm_x86_call(set_cr4)(vcpu, cr4);
1356 
1357 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1358 
1359 	return 0;
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1362 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1363 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1364 {
1365 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1366 	unsigned long roots_to_free = 0;
1367 	int i;
1368 
1369 	/*
1370 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1371 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1372 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1373 	 * the invalidation, but the guest's TLB entries need to be flushed as
1374 	 * the CPU may have cached entries in its TLB for the target PCID.
1375 	 */
1376 	if (unlikely(tdp_enabled)) {
1377 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1378 		return;
1379 	}
1380 
1381 	/*
1382 	 * If neither the current CR3 nor any of the prev_roots use the given
1383 	 * PCID, then nothing needs to be done here because a resync will
1384 	 * happen anyway before switching to any other CR3.
1385 	 */
1386 	if (kvm_get_active_pcid(vcpu) == pcid) {
1387 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1388 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1389 	}
1390 
1391 	/*
1392 	 * If PCID is disabled, there is no need to free prev_roots even if the
1393 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1394 	 * with PCIDE=0.
1395 	 */
1396 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1397 		return;
1398 
1399 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1400 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1401 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1402 
1403 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1404 }
1405 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1406 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1407 {
1408 	bool skip_tlb_flush = false;
1409 	unsigned long pcid = 0;
1410 #ifdef CONFIG_X86_64
1411 	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1412 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1413 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1414 		pcid = cr3 & X86_CR3_PCID_MASK;
1415 	}
1416 #endif
1417 
1418 	/* PDPTRs are always reloaded for PAE paging. */
1419 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1420 		goto handle_tlb_flush;
1421 
1422 	/*
1423 	 * Do not condition the GPA check on long mode, this helper is used to
1424 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1425 	 * the current vCPU mode is accurate.
1426 	 */
1427 	if (!kvm_vcpu_is_legal_cr3(vcpu, cr3))
1428 		return 1;
1429 
1430 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1431 		return 1;
1432 
1433 	if (cr3 != kvm_read_cr3(vcpu))
1434 		kvm_mmu_new_pgd(vcpu, cr3);
1435 
1436 	vcpu->arch.cr3 = cr3;
1437 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1438 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1439 
1440 handle_tlb_flush:
1441 	/*
1442 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1443 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1444 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1445 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1446 	 * i.e. only PCID=0 can be relevant.
1447 	 */
1448 	if (!skip_tlb_flush)
1449 		kvm_invalidate_pcid(vcpu, pcid);
1450 
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1454 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1455 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1456 {
1457 	if (cr8 & CR8_RESERVED_BITS)
1458 		return 1;
1459 	if (lapic_in_kernel(vcpu))
1460 		kvm_lapic_set_tpr(vcpu, cr8);
1461 	else
1462 		vcpu->arch.cr8 = cr8;
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1466 
kvm_get_cr8(struct kvm_vcpu * vcpu)1467 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1468 {
1469 	if (lapic_in_kernel(vcpu))
1470 		return kvm_lapic_get_cr8(vcpu);
1471 	else
1472 		return vcpu->arch.cr8;
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1475 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1476 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1477 {
1478 	int i;
1479 
1480 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1481 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1482 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1483 	}
1484 }
1485 
kvm_update_dr7(struct kvm_vcpu * vcpu)1486 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1487 {
1488 	unsigned long dr7;
1489 
1490 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1491 		dr7 = vcpu->arch.guest_debug_dr7;
1492 	else
1493 		dr7 = vcpu->arch.dr7;
1494 	kvm_x86_call(set_dr7)(vcpu, dr7);
1495 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1496 	if (dr7 & DR7_BP_EN_MASK)
1497 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1500 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1501 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1502 {
1503 	u64 fixed = DR6_FIXED_1;
1504 
1505 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))
1506 		fixed |= DR6_RTM;
1507 
1508 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1509 		fixed |= DR6_BUS_LOCK;
1510 	return fixed;
1511 }
1512 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1513 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1514 {
1515 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1516 
1517 	switch (dr) {
1518 	case 0 ... 3:
1519 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1520 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1521 			vcpu->arch.eff_db[dr] = val;
1522 		break;
1523 	case 4:
1524 	case 6:
1525 		if (!kvm_dr6_valid(val))
1526 			return 1; /* #GP */
1527 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1528 		break;
1529 	case 5:
1530 	default: /* 7 */
1531 		if (!kvm_dr7_valid(val))
1532 			return 1; /* #GP */
1533 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1534 		kvm_update_dr7(vcpu);
1535 		break;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_set_dr);
1541 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr)1542 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr)
1543 {
1544 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1545 
1546 	switch (dr) {
1547 	case 0 ... 3:
1548 		return vcpu->arch.db[array_index_nospec(dr, size)];
1549 	case 4:
1550 	case 6:
1551 		return vcpu->arch.dr6;
1552 	case 5:
1553 	default: /* 7 */
1554 		return vcpu->arch.dr7;
1555 	}
1556 }
1557 EXPORT_SYMBOL_GPL(kvm_get_dr);
1558 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1559 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1560 {
1561 	u32 ecx = kvm_rcx_read(vcpu);
1562 	u64 data;
1563 
1564 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1565 		kvm_inject_gp(vcpu, 0);
1566 		return 1;
1567 	}
1568 
1569 	kvm_rax_write(vcpu, (u32)data);
1570 	kvm_rdx_write(vcpu, data >> 32);
1571 	return kvm_skip_emulated_instruction(vcpu);
1572 }
1573 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1574 
1575 /*
1576  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1577  * does not yet virtualize. These include:
1578  *   10 - MISC_PACKAGE_CTRLS
1579  *   11 - ENERGY_FILTERING_CTL
1580  *   12 - DOITM
1581  *   18 - FB_CLEAR_CTRL
1582  *   21 - XAPIC_DISABLE_STATUS
1583  *   23 - OVERCLOCKING_STATUS
1584  */
1585 
1586 #define KVM_SUPPORTED_ARCH_CAP \
1587 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1588 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1589 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1590 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1591 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1592 	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO)
1593 
kvm_get_arch_capabilities(void)1594 static u64 kvm_get_arch_capabilities(void)
1595 {
1596 	u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1597 
1598 	/*
1599 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1600 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1601 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1602 	 * L1 guests, so it need not worry about its own (L2) guests.
1603 	 */
1604 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1605 
1606 	/*
1607 	 * If we're doing cache flushes (either "always" or "cond")
1608 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1609 	 * If an outer hypervisor is doing the cache flush for us
1610 	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1611 	 * capability to the guest too, and if EPT is disabled we're not
1612 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1613 	 * require a nested hypervisor to do a flush of its own.
1614 	 */
1615 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1616 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1617 
1618 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1619 		data |= ARCH_CAP_RDCL_NO;
1620 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1621 		data |= ARCH_CAP_SSB_NO;
1622 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1623 		data |= ARCH_CAP_MDS_NO;
1624 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1625 		data |= ARCH_CAP_RFDS_NO;
1626 
1627 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1628 		/*
1629 		 * If RTM=0 because the kernel has disabled TSX, the host might
1630 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1631 		 * and therefore knows that there cannot be TAA) but keep
1632 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1633 		 * and we want to allow migrating those guests to tsx=off hosts.
1634 		 */
1635 		data &= ~ARCH_CAP_TAA_NO;
1636 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1637 		data |= ARCH_CAP_TAA_NO;
1638 	} else {
1639 		/*
1640 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1641 		 * host so the guest can choose between disabling TSX or
1642 		 * using VERW to clear CPU buffers.
1643 		 */
1644 	}
1645 
1646 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1647 		data |= ARCH_CAP_GDS_NO;
1648 
1649 	return data;
1650 }
1651 
kvm_get_feature_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1652 static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1653 			       bool host_initiated)
1654 {
1655 	WARN_ON_ONCE(!host_initiated);
1656 
1657 	switch (index) {
1658 	case MSR_IA32_ARCH_CAPABILITIES:
1659 		*data = kvm_get_arch_capabilities();
1660 		break;
1661 	case MSR_IA32_PERF_CAPABILITIES:
1662 		*data = kvm_caps.supported_perf_cap;
1663 		break;
1664 	case MSR_PLATFORM_INFO:
1665 		*data = MSR_PLATFORM_INFO_CPUID_FAULT;
1666 		break;
1667 	case MSR_IA32_UCODE_REV:
1668 		rdmsrl_safe(index, data);
1669 		break;
1670 	default:
1671 		return kvm_x86_call(get_feature_msr)(index, data);
1672 	}
1673 	return 0;
1674 }
1675 
do_get_feature_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1676 static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1677 {
1678 	return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R,
1679 				 kvm_get_feature_msr);
1680 }
1681 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1682 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1683 {
1684 	if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS))
1685 		return false;
1686 
1687 	if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT))
1688 		return false;
1689 
1690 	if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM))
1691 		return false;
1692 
1693 	if (efer & (EFER_LME | EFER_LMA) &&
1694 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
1695 		return false;
1696 
1697 	if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX))
1698 		return false;
1699 
1700 	return true;
1701 
1702 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1703 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1704 {
1705 	if (efer & efer_reserved_bits)
1706 		return false;
1707 
1708 	return __kvm_valid_efer(vcpu, efer);
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1711 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1712 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1713 {
1714 	u64 old_efer = vcpu->arch.efer;
1715 	u64 efer = msr_info->data;
1716 	int r;
1717 
1718 	if (efer & efer_reserved_bits)
1719 		return 1;
1720 
1721 	if (!msr_info->host_initiated) {
1722 		if (!__kvm_valid_efer(vcpu, efer))
1723 			return 1;
1724 
1725 		if (is_paging(vcpu) &&
1726 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1727 			return 1;
1728 	}
1729 
1730 	efer &= ~EFER_LMA;
1731 	efer |= vcpu->arch.efer & EFER_LMA;
1732 
1733 	r = kvm_x86_call(set_efer)(vcpu, efer);
1734 	if (r) {
1735 		WARN_ON(r > 0);
1736 		return r;
1737 	}
1738 
1739 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1740 		kvm_mmu_reset_context(vcpu);
1741 
1742 	if (!static_cpu_has(X86_FEATURE_XSAVES) &&
1743 	    (efer & EFER_SVME))
1744 		kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1745 
1746 	return 0;
1747 }
1748 
kvm_enable_efer_bits(u64 mask)1749 void kvm_enable_efer_bits(u64 mask)
1750 {
1751        efer_reserved_bits &= ~mask;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1754 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1756 {
1757 	struct kvm_x86_msr_filter *msr_filter;
1758 	struct msr_bitmap_range *ranges;
1759 	struct kvm *kvm = vcpu->kvm;
1760 	bool allowed;
1761 	int idx;
1762 	u32 i;
1763 
1764 	/* x2APIC MSRs do not support filtering. */
1765 	if (index >= 0x800 && index <= 0x8ff)
1766 		return true;
1767 
1768 	idx = srcu_read_lock(&kvm->srcu);
1769 
1770 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1771 	if (!msr_filter) {
1772 		allowed = true;
1773 		goto out;
1774 	}
1775 
1776 	allowed = msr_filter->default_allow;
1777 	ranges = msr_filter->ranges;
1778 
1779 	for (i = 0; i < msr_filter->count; i++) {
1780 		u32 start = ranges[i].base;
1781 		u32 end = start + ranges[i].nmsrs;
1782 		u32 flags = ranges[i].flags;
1783 		unsigned long *bitmap = ranges[i].bitmap;
1784 
1785 		if ((index >= start) && (index < end) && (flags & type)) {
1786 			allowed = test_bit(index - start, bitmap);
1787 			break;
1788 		}
1789 	}
1790 
1791 out:
1792 	srcu_read_unlock(&kvm->srcu, idx);
1793 
1794 	return allowed;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1797 
1798 /*
1799  * Write @data into the MSR specified by @index.  Select MSR specific fault
1800  * checks are bypassed if @host_initiated is %true.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1805 			 bool host_initiated)
1806 {
1807 	struct msr_data msr;
1808 
1809 	switch (index) {
1810 	case MSR_FS_BASE:
1811 	case MSR_GS_BASE:
1812 	case MSR_KERNEL_GS_BASE:
1813 	case MSR_CSTAR:
1814 	case MSR_LSTAR:
1815 		if (is_noncanonical_msr_address(data, vcpu))
1816 			return 1;
1817 		break;
1818 	case MSR_IA32_SYSENTER_EIP:
1819 	case MSR_IA32_SYSENTER_ESP:
1820 		/*
1821 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1822 		 * non-canonical address is written on Intel but not on
1823 		 * AMD (which ignores the top 32-bits, because it does
1824 		 * not implement 64-bit SYSENTER).
1825 		 *
1826 		 * 64-bit code should hence be able to write a non-canonical
1827 		 * value on AMD.  Making the address canonical ensures that
1828 		 * vmentry does not fail on Intel after writing a non-canonical
1829 		 * value, and that something deterministic happens if the guest
1830 		 * invokes 64-bit SYSENTER.
1831 		 */
1832 		data = __canonical_address(data, max_host_virt_addr_bits());
1833 		break;
1834 	case MSR_TSC_AUX:
1835 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1836 			return 1;
1837 
1838 		if (!host_initiated &&
1839 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1840 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1841 			return 1;
1842 
1843 		/*
1844 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1845 		 * incomplete and conflicting architectural behavior.  Current
1846 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1847 		 * reserved and always read as zeros.  Enforce Intel's reserved
1848 		 * bits check if the guest CPU is Intel compatible, otherwise
1849 		 * clear the bits.  This ensures cross-vendor migration will
1850 		 * provide consistent behavior for the guest.
1851 		 */
1852 		if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0)
1853 			return 1;
1854 
1855 		data = (u32)data;
1856 		break;
1857 	}
1858 
1859 	msr.data = data;
1860 	msr.index = index;
1861 	msr.host_initiated = host_initiated;
1862 
1863 	return kvm_x86_call(set_msr)(vcpu, &msr);
1864 }
1865 
_kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1866 static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1867 			bool host_initiated)
1868 {
1869 	return __kvm_set_msr(vcpu, index, *data, host_initiated);
1870 }
1871 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1872 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1873 				     u32 index, u64 data, bool host_initiated)
1874 {
1875 	return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W,
1876 				 _kvm_set_msr);
1877 }
1878 
1879 /*
1880  * Read the MSR specified by @index into @data.  Select MSR specific fault
1881  * checks are bypassed if @host_initiated is %true.
1882  * Returns 0 on success, non-0 otherwise.
1883  * Assumes vcpu_load() was already called.
1884  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1885 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1886 		  bool host_initiated)
1887 {
1888 	struct msr_data msr;
1889 	int ret;
1890 
1891 	switch (index) {
1892 	case MSR_TSC_AUX:
1893 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1894 			return 1;
1895 
1896 		if (!host_initiated &&
1897 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
1898 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID))
1899 			return 1;
1900 		break;
1901 	}
1902 
1903 	msr.index = index;
1904 	msr.host_initiated = host_initiated;
1905 
1906 	ret = kvm_x86_call(get_msr)(vcpu, &msr);
1907 	if (!ret)
1908 		*data = msr.data;
1909 	return ret;
1910 }
1911 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1912 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1913 				     u32 index, u64 *data, bool host_initiated)
1914 {
1915 	return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R,
1916 				 __kvm_get_msr);
1917 }
1918 
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1919 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1920 {
1921 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1922 		return KVM_MSR_RET_FILTERED;
1923 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1924 }
1925 EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter);
1926 
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1927 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1928 {
1929 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1930 		return KVM_MSR_RET_FILTERED;
1931 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter);
1934 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1935 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1936 {
1937 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1938 }
1939 EXPORT_SYMBOL_GPL(kvm_get_msr);
1940 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1941 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1942 {
1943 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1944 }
1945 EXPORT_SYMBOL_GPL(kvm_set_msr);
1946 
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1947 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1948 {
1949 	if (!vcpu->run->msr.error) {
1950 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1951 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1952 	}
1953 }
1954 
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1955 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1956 {
1957 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1958 }
1959 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1960 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1961 {
1962 	complete_userspace_rdmsr(vcpu);
1963 	return complete_emulated_msr_access(vcpu);
1964 }
1965 
complete_fast_msr_access(struct kvm_vcpu * vcpu)1966 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1967 {
1968 	return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1969 }
1970 
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1971 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1972 {
1973 	complete_userspace_rdmsr(vcpu);
1974 	return complete_fast_msr_access(vcpu);
1975 }
1976 
kvm_msr_reason(int r)1977 static u64 kvm_msr_reason(int r)
1978 {
1979 	switch (r) {
1980 	case KVM_MSR_RET_UNSUPPORTED:
1981 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1982 	case KVM_MSR_RET_FILTERED:
1983 		return KVM_MSR_EXIT_REASON_FILTER;
1984 	default:
1985 		return KVM_MSR_EXIT_REASON_INVAL;
1986 	}
1987 }
1988 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1989 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1990 			      u32 exit_reason, u64 data,
1991 			      int (*completion)(struct kvm_vcpu *vcpu),
1992 			      int r)
1993 {
1994 	u64 msr_reason = kvm_msr_reason(r);
1995 
1996 	/* Check if the user wanted to know about this MSR fault */
1997 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1998 		return 0;
1999 
2000 	vcpu->run->exit_reason = exit_reason;
2001 	vcpu->run->msr.error = 0;
2002 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2003 	vcpu->run->msr.reason = msr_reason;
2004 	vcpu->run->msr.index = index;
2005 	vcpu->run->msr.data = data;
2006 	vcpu->arch.complete_userspace_io = completion;
2007 
2008 	return 1;
2009 }
2010 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2011 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2012 {
2013 	u32 ecx = kvm_rcx_read(vcpu);
2014 	u64 data;
2015 	int r;
2016 
2017 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2018 
2019 	if (!r) {
2020 		trace_kvm_msr_read(ecx, data);
2021 
2022 		kvm_rax_write(vcpu, data & -1u);
2023 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2024 	} else {
2025 		/* MSR read failed? See if we should ask user space */
2026 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2027 				       complete_fast_rdmsr, r))
2028 			return 0;
2029 		trace_kvm_msr_read_ex(ecx);
2030 	}
2031 
2032 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2035 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2036 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2037 {
2038 	u32 ecx = kvm_rcx_read(vcpu);
2039 	u64 data = kvm_read_edx_eax(vcpu);
2040 	int r;
2041 
2042 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2043 
2044 	if (!r) {
2045 		trace_kvm_msr_write(ecx, data);
2046 	} else {
2047 		/* MSR write failed? See if we should ask user space */
2048 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2049 				       complete_fast_msr_access, r))
2050 			return 0;
2051 		/* Signal all other negative errors to userspace */
2052 		if (r < 0)
2053 			return r;
2054 		trace_kvm_msr_write_ex(ecx, data);
2055 	}
2056 
2057 	return kvm_x86_call(complete_emulated_msr)(vcpu, r);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2060 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2061 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2062 {
2063 	return kvm_skip_emulated_instruction(vcpu);
2064 }
2065 
kvm_emulate_invd(struct kvm_vcpu * vcpu)2066 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2067 {
2068 	/* Treat an INVD instruction as a NOP and just skip it. */
2069 	return kvm_emulate_as_nop(vcpu);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2072 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2073 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2074 {
2075 	kvm_queue_exception(vcpu, UD_VECTOR);
2076 	return 1;
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2079 
2080 
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2081 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2082 {
2083 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2084 	    !guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT))
2085 		return kvm_handle_invalid_op(vcpu);
2086 
2087 	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2088 	return kvm_emulate_as_nop(vcpu);
2089 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2090 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2091 {
2092 	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2095 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2096 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2097 {
2098 	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2101 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2102 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2103 {
2104 	xfer_to_guest_mode_prepare();
2105 
2106 	return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE ||
2107 	       kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending();
2108 }
2109 
2110 /*
2111  * The fast path for frequent and performance sensitive wrmsr emulation,
2112  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2113  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2114  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2115  * other cases which must be called after interrupts are enabled on the host.
2116  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2117 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2118 {
2119 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2120 		return 1;
2121 
2122 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2123 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2124 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2125 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2126 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2127 
2128 	return 1;
2129 }
2130 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2131 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2132 {
2133 	if (!kvm_can_use_hv_timer(vcpu))
2134 		return 1;
2135 
2136 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2137 	return 0;
2138 }
2139 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2140 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2141 {
2142 	u32 msr = kvm_rcx_read(vcpu);
2143 	u64 data;
2144 	fastpath_t ret;
2145 	bool handled;
2146 
2147 	kvm_vcpu_srcu_read_lock(vcpu);
2148 
2149 	switch (msr) {
2150 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2151 		data = kvm_read_edx_eax(vcpu);
2152 		handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
2153 		break;
2154 	case MSR_IA32_TSC_DEADLINE:
2155 		data = kvm_read_edx_eax(vcpu);
2156 		handled = !handle_fastpath_set_tscdeadline(vcpu, data);
2157 		break;
2158 	default:
2159 		handled = false;
2160 		break;
2161 	}
2162 
2163 	if (handled) {
2164 		if (!kvm_skip_emulated_instruction(vcpu))
2165 			ret = EXIT_FASTPATH_EXIT_USERSPACE;
2166 		else
2167 			ret = EXIT_FASTPATH_REENTER_GUEST;
2168 		trace_kvm_msr_write(msr, data);
2169 	} else {
2170 		ret = EXIT_FASTPATH_NONE;
2171 	}
2172 
2173 	kvm_vcpu_srcu_read_unlock(vcpu);
2174 
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2178 
2179 /*
2180  * Adapt set_msr() to msr_io()'s calling convention
2181  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2182 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2183 {
2184 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2185 }
2186 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2187 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2188 {
2189 	u64 val;
2190 
2191 	/*
2192 	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2193 	 * not support modifying the guest vCPU model on the fly, e.g. changing
2194 	 * the nVMX capabilities while L2 is running is nonsensical.  Allow
2195 	 * writes of the same value, e.g. to allow userspace to blindly stuff
2196 	 * all MSRs when emulating RESET.
2197 	 */
2198 	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) &&
2199 	    (do_get_msr(vcpu, index, &val) || *data != val))
2200 		return -EINVAL;
2201 
2202 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2203 }
2204 
2205 #ifdef CONFIG_X86_64
2206 struct pvclock_clock {
2207 	int vclock_mode;
2208 	u64 cycle_last;
2209 	u64 mask;
2210 	u32 mult;
2211 	u32 shift;
2212 	u64 base_cycles;
2213 	u64 offset;
2214 };
2215 
2216 struct pvclock_gtod_data {
2217 	seqcount_t	seq;
2218 
2219 	struct pvclock_clock clock; /* extract of a clocksource struct */
2220 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2221 
2222 	ktime_t		offs_boot;
2223 	u64		wall_time_sec;
2224 };
2225 
2226 static struct pvclock_gtod_data pvclock_gtod_data;
2227 
update_pvclock_gtod(struct timekeeper * tk)2228 static void update_pvclock_gtod(struct timekeeper *tk)
2229 {
2230 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2231 
2232 	write_seqcount_begin(&vdata->seq);
2233 
2234 	/* copy pvclock gtod data */
2235 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2236 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2237 	vdata->clock.mask		= tk->tkr_mono.mask;
2238 	vdata->clock.mult		= tk->tkr_mono.mult;
2239 	vdata->clock.shift		= tk->tkr_mono.shift;
2240 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2241 	vdata->clock.offset		= tk->tkr_mono.base;
2242 
2243 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2244 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2245 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2246 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2247 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2248 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2249 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2250 
2251 	vdata->wall_time_sec            = tk->xtime_sec;
2252 
2253 	vdata->offs_boot		= tk->offs_boot;
2254 
2255 	write_seqcount_end(&vdata->seq);
2256 }
2257 
get_kvmclock_base_ns(void)2258 static s64 get_kvmclock_base_ns(void)
2259 {
2260 	/* Count up from boot time, but with the frequency of the raw clock.  */
2261 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2262 }
2263 #else
get_kvmclock_base_ns(void)2264 static s64 get_kvmclock_base_ns(void)
2265 {
2266 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2267 	return ktime_get_boottime_ns();
2268 }
2269 #endif
2270 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2271 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2272 {
2273 	int version;
2274 	int r;
2275 	struct pvclock_wall_clock wc;
2276 	u32 wc_sec_hi;
2277 	u64 wall_nsec;
2278 
2279 	if (!wall_clock)
2280 		return;
2281 
2282 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2283 	if (r)
2284 		return;
2285 
2286 	if (version & 1)
2287 		++version;  /* first time write, random junk */
2288 
2289 	++version;
2290 
2291 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2292 		return;
2293 
2294 	wall_nsec = kvm_get_wall_clock_epoch(kvm);
2295 
2296 	wc.nsec = do_div(wall_nsec, NSEC_PER_SEC);
2297 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2298 	wc.version = version;
2299 
2300 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2301 
2302 	if (sec_hi_ofs) {
2303 		wc_sec_hi = wall_nsec >> 32;
2304 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2305 				&wc_sec_hi, sizeof(wc_sec_hi));
2306 	}
2307 
2308 	version++;
2309 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2310 }
2311 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2312 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2313 				  bool old_msr, bool host_initiated)
2314 {
2315 	struct kvm_arch *ka = &vcpu->kvm->arch;
2316 
2317 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2318 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2319 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2320 
2321 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2322 	}
2323 
2324 	vcpu->arch.time = system_time;
2325 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2326 
2327 	/* we verify if the enable bit is set... */
2328 	if (system_time & 1)
2329 		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2330 				 sizeof(struct pvclock_vcpu_time_info));
2331 	else
2332 		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2333 
2334 	return;
2335 }
2336 
div_frac(uint32_t dividend,uint32_t divisor)2337 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2338 {
2339 	do_shl32_div32(dividend, divisor);
2340 	return dividend;
2341 }
2342 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2343 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2344 			       s8 *pshift, u32 *pmultiplier)
2345 {
2346 	uint64_t scaled64;
2347 	int32_t  shift = 0;
2348 	uint64_t tps64;
2349 	uint32_t tps32;
2350 
2351 	tps64 = base_hz;
2352 	scaled64 = scaled_hz;
2353 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2354 		tps64 >>= 1;
2355 		shift--;
2356 	}
2357 
2358 	tps32 = (uint32_t)tps64;
2359 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2360 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2361 			scaled64 >>= 1;
2362 		else
2363 			tps32 <<= 1;
2364 		shift++;
2365 	}
2366 
2367 	*pshift = shift;
2368 	*pmultiplier = div_frac(scaled64, tps32);
2369 }
2370 
2371 #ifdef CONFIG_X86_64
2372 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2373 #endif
2374 
2375 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2376 static unsigned long max_tsc_khz;
2377 
adjust_tsc_khz(u32 khz,s32 ppm)2378 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2379 {
2380 	u64 v = (u64)khz * (1000000 + ppm);
2381 	do_div(v, 1000000);
2382 	return v;
2383 }
2384 
2385 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2386 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2387 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2388 {
2389 	u64 ratio;
2390 
2391 	/* Guest TSC same frequency as host TSC? */
2392 	if (!scale) {
2393 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2394 		return 0;
2395 	}
2396 
2397 	/* TSC scaling supported? */
2398 	if (!kvm_caps.has_tsc_control) {
2399 		if (user_tsc_khz > tsc_khz) {
2400 			vcpu->arch.tsc_catchup = 1;
2401 			vcpu->arch.tsc_always_catchup = 1;
2402 			return 0;
2403 		} else {
2404 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2405 			return -1;
2406 		}
2407 	}
2408 
2409 	/* TSC scaling required  - calculate ratio */
2410 	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2411 				user_tsc_khz, tsc_khz);
2412 
2413 	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2414 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2415 			            user_tsc_khz);
2416 		return -1;
2417 	}
2418 
2419 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2420 	return 0;
2421 }
2422 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2423 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2424 {
2425 	u32 thresh_lo, thresh_hi;
2426 	int use_scaling = 0;
2427 
2428 	/* tsc_khz can be zero if TSC calibration fails */
2429 	if (user_tsc_khz == 0) {
2430 		/* set tsc_scaling_ratio to a safe value */
2431 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2432 		return -1;
2433 	}
2434 
2435 	/* Compute a scale to convert nanoseconds in TSC cycles */
2436 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2437 			   &vcpu->arch.virtual_tsc_shift,
2438 			   &vcpu->arch.virtual_tsc_mult);
2439 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2440 
2441 	/*
2442 	 * Compute the variation in TSC rate which is acceptable
2443 	 * within the range of tolerance and decide if the
2444 	 * rate being applied is within that bounds of the hardware
2445 	 * rate.  If so, no scaling or compensation need be done.
2446 	 */
2447 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2448 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2449 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2450 		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2451 			 user_tsc_khz, thresh_lo, thresh_hi);
2452 		use_scaling = 1;
2453 	}
2454 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2455 }
2456 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2457 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2458 {
2459 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2460 				      vcpu->arch.virtual_tsc_mult,
2461 				      vcpu->arch.virtual_tsc_shift);
2462 	tsc += vcpu->arch.this_tsc_write;
2463 	return tsc;
2464 }
2465 
2466 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2467 static inline bool gtod_is_based_on_tsc(int mode)
2468 {
2469 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2470 }
2471 #endif
2472 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu,bool new_generation)2473 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation)
2474 {
2475 #ifdef CONFIG_X86_64
2476 	struct kvm_arch *ka = &vcpu->kvm->arch;
2477 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2478 
2479 	/*
2480 	 * To use the masterclock, the host clocksource must be based on TSC
2481 	 * and all vCPUs must have matching TSCs.  Note, the count for matching
2482 	 * vCPUs doesn't include the reference vCPU, hence "+1".
2483 	 */
2484 	bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 ==
2485 				 atomic_read(&vcpu->kvm->online_vcpus)) &&
2486 				gtod_is_based_on_tsc(gtod->clock.vclock_mode);
2487 
2488 	/*
2489 	 * Request a masterclock update if the masterclock needs to be toggled
2490 	 * on/off, or when starting a new generation and the masterclock is
2491 	 * enabled (compute_guest_tsc() requires the masterclock snapshot to be
2492 	 * taken _after_ the new generation is created).
2493 	 */
2494 	if ((ka->use_master_clock && new_generation) ||
2495 	    (ka->use_master_clock != use_master_clock))
2496 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2497 
2498 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2499 			    atomic_read(&vcpu->kvm->online_vcpus),
2500 		            ka->use_master_clock, gtod->clock.vclock_mode);
2501 #endif
2502 }
2503 
2504 /*
2505  * Multiply tsc by a fixed point number represented by ratio.
2506  *
2507  * The most significant 64-N bits (mult) of ratio represent the
2508  * integral part of the fixed point number; the remaining N bits
2509  * (frac) represent the fractional part, ie. ratio represents a fixed
2510  * point number (mult + frac * 2^(-N)).
2511  *
2512  * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2513  */
__scale_tsc(u64 ratio,u64 tsc)2514 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2515 {
2516 	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2517 }
2518 
kvm_scale_tsc(u64 tsc,u64 ratio)2519 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2520 {
2521 	u64 _tsc = tsc;
2522 
2523 	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2524 		_tsc = __scale_tsc(ratio, tsc);
2525 
2526 	return _tsc;
2527 }
2528 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2529 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2530 {
2531 	u64 tsc;
2532 
2533 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2534 
2535 	return target_tsc - tsc;
2536 }
2537 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2538 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2539 {
2540 	return vcpu->arch.l1_tsc_offset +
2541 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2542 }
2543 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2544 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2545 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2546 {
2547 	u64 nested_offset;
2548 
2549 	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2550 		nested_offset = l1_offset;
2551 	else
2552 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2553 						kvm_caps.tsc_scaling_ratio_frac_bits);
2554 
2555 	nested_offset += l2_offset;
2556 	return nested_offset;
2557 }
2558 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2559 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2560 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2561 {
2562 	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2563 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2564 				       kvm_caps.tsc_scaling_ratio_frac_bits);
2565 
2566 	return l1_multiplier;
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2569 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2570 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2571 {
2572 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2573 				   vcpu->arch.l1_tsc_offset,
2574 				   l1_offset);
2575 
2576 	vcpu->arch.l1_tsc_offset = l1_offset;
2577 
2578 	/*
2579 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2580 	 * according to the spec this should set L1's TSC (as opposed to
2581 	 * setting L1's offset for L2).
2582 	 */
2583 	if (is_guest_mode(vcpu))
2584 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2585 			l1_offset,
2586 			kvm_x86_call(get_l2_tsc_offset)(vcpu),
2587 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2588 	else
2589 		vcpu->arch.tsc_offset = l1_offset;
2590 
2591 	kvm_x86_call(write_tsc_offset)(vcpu);
2592 }
2593 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2594 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2595 {
2596 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2597 
2598 	/* Userspace is changing the multiplier while L2 is active */
2599 	if (is_guest_mode(vcpu))
2600 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2601 			l1_multiplier,
2602 			kvm_x86_call(get_l2_tsc_multiplier)(vcpu));
2603 	else
2604 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2605 
2606 	if (kvm_caps.has_tsc_control)
2607 		kvm_x86_call(write_tsc_multiplier)(vcpu);
2608 }
2609 
kvm_check_tsc_unstable(void)2610 static inline bool kvm_check_tsc_unstable(void)
2611 {
2612 #ifdef CONFIG_X86_64
2613 	/*
2614 	 * TSC is marked unstable when we're running on Hyper-V,
2615 	 * 'TSC page' clocksource is good.
2616 	 */
2617 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2618 		return false;
2619 #endif
2620 	return check_tsc_unstable();
2621 }
2622 
2623 /*
2624  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2625  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2626  * participates in.
2627  */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2628 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2629 				  u64 ns, bool matched)
2630 {
2631 	struct kvm *kvm = vcpu->kvm;
2632 
2633 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2634 
2635 	/*
2636 	 * We also track th most recent recorded KHZ, write and time to
2637 	 * allow the matching interval to be extended at each write.
2638 	 */
2639 	kvm->arch.last_tsc_nsec = ns;
2640 	kvm->arch.last_tsc_write = tsc;
2641 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2642 	kvm->arch.last_tsc_offset = offset;
2643 
2644 	vcpu->arch.last_guest_tsc = tsc;
2645 
2646 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2647 
2648 	if (!matched) {
2649 		/*
2650 		 * We split periods of matched TSC writes into generations.
2651 		 * For each generation, we track the original measured
2652 		 * nanosecond time, offset, and write, so if TSCs are in
2653 		 * sync, we can match exact offset, and if not, we can match
2654 		 * exact software computation in compute_guest_tsc()
2655 		 *
2656 		 * These values are tracked in kvm->arch.cur_xxx variables.
2657 		 */
2658 		kvm->arch.cur_tsc_generation++;
2659 		kvm->arch.cur_tsc_nsec = ns;
2660 		kvm->arch.cur_tsc_write = tsc;
2661 		kvm->arch.cur_tsc_offset = offset;
2662 		kvm->arch.nr_vcpus_matched_tsc = 0;
2663 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2664 		kvm->arch.nr_vcpus_matched_tsc++;
2665 	}
2666 
2667 	/* Keep track of which generation this VCPU has synchronized to */
2668 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2669 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2670 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2671 
2672 	kvm_track_tsc_matching(vcpu, !matched);
2673 }
2674 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 * user_value)2675 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value)
2676 {
2677 	u64 data = user_value ? *user_value : 0;
2678 	struct kvm *kvm = vcpu->kvm;
2679 	u64 offset, ns, elapsed;
2680 	unsigned long flags;
2681 	bool matched = false;
2682 	bool synchronizing = false;
2683 
2684 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2685 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2686 	ns = get_kvmclock_base_ns();
2687 	elapsed = ns - kvm->arch.last_tsc_nsec;
2688 
2689 	if (vcpu->arch.virtual_tsc_khz) {
2690 		if (data == 0) {
2691 			/*
2692 			 * Force synchronization when creating a vCPU, or when
2693 			 * userspace explicitly writes a zero value.
2694 			 */
2695 			synchronizing = true;
2696 		} else if (kvm->arch.user_set_tsc) {
2697 			u64 tsc_exp = kvm->arch.last_tsc_write +
2698 						nsec_to_cycles(vcpu, elapsed);
2699 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2700 			/*
2701 			 * Here lies UAPI baggage: when a user-initiated TSC write has
2702 			 * a small delta (1 second) of virtual cycle time against the
2703 			 * previously set vCPU, we assume that they were intended to be
2704 			 * in sync and the delta was only due to the racy nature of the
2705 			 * legacy API.
2706 			 *
2707 			 * This trick falls down when restoring a guest which genuinely
2708 			 * has been running for less time than the 1 second of imprecision
2709 			 * which we allow for in the legacy API. In this case, the first
2710 			 * value written by userspace (on any vCPU) should not be subject
2711 			 * to this 'correction' to make it sync up with values that only
2712 			 * come from the kernel's default vCPU creation. Make the 1-second
2713 			 * slop hack only trigger if the user_set_tsc flag is already set.
2714 			 */
2715 			synchronizing = data < tsc_exp + tsc_hz &&
2716 					data + tsc_hz > tsc_exp;
2717 		}
2718 	}
2719 
2720 	if (user_value)
2721 		kvm->arch.user_set_tsc = true;
2722 
2723 	/*
2724 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2725 	 * TSC, we add elapsed time in this computation.  We could let the
2726 	 * compensation code attempt to catch up if we fall behind, but
2727 	 * it's better to try to match offsets from the beginning.
2728          */
2729 	if (synchronizing &&
2730 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2731 		if (!kvm_check_tsc_unstable()) {
2732 			offset = kvm->arch.cur_tsc_offset;
2733 		} else {
2734 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2735 			data += delta;
2736 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2737 		}
2738 		matched = true;
2739 	}
2740 
2741 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2742 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2743 }
2744 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2745 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2746 					   s64 adjustment)
2747 {
2748 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2749 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2750 }
2751 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2752 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2753 {
2754 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2755 		WARN_ON(adjustment < 0);
2756 	adjustment = kvm_scale_tsc((u64) adjustment,
2757 				   vcpu->arch.l1_tsc_scaling_ratio);
2758 	adjust_tsc_offset_guest(vcpu, adjustment);
2759 }
2760 
2761 #ifdef CONFIG_X86_64
2762 
read_tsc(void)2763 static u64 read_tsc(void)
2764 {
2765 	u64 ret = (u64)rdtsc_ordered();
2766 	u64 last = pvclock_gtod_data.clock.cycle_last;
2767 
2768 	if (likely(ret >= last))
2769 		return ret;
2770 
2771 	/*
2772 	 * GCC likes to generate cmov here, but this branch is extremely
2773 	 * predictable (it's just a function of time and the likely is
2774 	 * very likely) and there's a data dependence, so force GCC
2775 	 * to generate a branch instead.  I don't barrier() because
2776 	 * we don't actually need a barrier, and if this function
2777 	 * ever gets inlined it will generate worse code.
2778 	 */
2779 	asm volatile ("");
2780 	return last;
2781 }
2782 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2783 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2784 			  int *mode)
2785 {
2786 	u64 tsc_pg_val;
2787 	long v;
2788 
2789 	switch (clock->vclock_mode) {
2790 	case VDSO_CLOCKMODE_HVCLOCK:
2791 		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2792 					 tsc_timestamp, &tsc_pg_val)) {
2793 			/* TSC page valid */
2794 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2795 			v = (tsc_pg_val - clock->cycle_last) &
2796 				clock->mask;
2797 		} else {
2798 			/* TSC page invalid */
2799 			*mode = VDSO_CLOCKMODE_NONE;
2800 		}
2801 		break;
2802 	case VDSO_CLOCKMODE_TSC:
2803 		*mode = VDSO_CLOCKMODE_TSC;
2804 		*tsc_timestamp = read_tsc();
2805 		v = (*tsc_timestamp - clock->cycle_last) &
2806 			clock->mask;
2807 		break;
2808 	default:
2809 		*mode = VDSO_CLOCKMODE_NONE;
2810 	}
2811 
2812 	if (*mode == VDSO_CLOCKMODE_NONE)
2813 		*tsc_timestamp = v = 0;
2814 
2815 	return v * clock->mult;
2816 }
2817 
2818 /*
2819  * As with get_kvmclock_base_ns(), this counts from boot time, at the
2820  * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot).
2821  */
do_kvmclock_base(s64 * t,u64 * tsc_timestamp)2822 static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp)
2823 {
2824 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2825 	unsigned long seq;
2826 	int mode;
2827 	u64 ns;
2828 
2829 	do {
2830 		seq = read_seqcount_begin(&gtod->seq);
2831 		ns = gtod->raw_clock.base_cycles;
2832 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2833 		ns >>= gtod->raw_clock.shift;
2834 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2835 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2836 	*t = ns;
2837 
2838 	return mode;
2839 }
2840 
2841 /*
2842  * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with
2843  * no boot time offset.
2844  */
do_monotonic(s64 * t,u64 * tsc_timestamp)2845 static int do_monotonic(s64 *t, u64 *tsc_timestamp)
2846 {
2847 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2848 	unsigned long seq;
2849 	int mode;
2850 	u64 ns;
2851 
2852 	do {
2853 		seq = read_seqcount_begin(&gtod->seq);
2854 		ns = gtod->clock.base_cycles;
2855 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2856 		ns >>= gtod->clock.shift;
2857 		ns += ktime_to_ns(gtod->clock.offset);
2858 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2859 	*t = ns;
2860 
2861 	return mode;
2862 }
2863 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2864 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2865 {
2866 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2867 	unsigned long seq;
2868 	int mode;
2869 	u64 ns;
2870 
2871 	do {
2872 		seq = read_seqcount_begin(&gtod->seq);
2873 		ts->tv_sec = gtod->wall_time_sec;
2874 		ns = gtod->clock.base_cycles;
2875 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2876 		ns >>= gtod->clock.shift;
2877 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2878 
2879 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2880 	ts->tv_nsec = ns;
2881 
2882 	return mode;
2883 }
2884 
2885 /*
2886  * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and
2887  * reports the TSC value from which it do so. Returns true if host is
2888  * using TSC based clocksource.
2889  */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2890 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2891 {
2892 	/* checked again under seqlock below */
2893 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2894 		return false;
2895 
2896 	return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns,
2897 						     tsc_timestamp));
2898 }
2899 
2900 /*
2901  * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did
2902  * so. Returns true if host is using TSC based clocksource.
2903  */
kvm_get_monotonic_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2904 bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2905 {
2906 	/* checked again under seqlock below */
2907 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2908 		return false;
2909 
2910 	return gtod_is_based_on_tsc(do_monotonic(kernel_ns,
2911 						 tsc_timestamp));
2912 }
2913 
2914 /*
2915  * Calculates CLOCK_REALTIME and reports the TSC value from which it did
2916  * so. Returns true if host is using TSC based clocksource.
2917  *
2918  * DO NOT USE this for anything related to migration. You want CLOCK_TAI
2919  * for that.
2920  */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2921 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2922 					   u64 *tsc_timestamp)
2923 {
2924 	/* checked again under seqlock below */
2925 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2926 		return false;
2927 
2928 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2929 }
2930 #endif
2931 
2932 /*
2933  *
2934  * Assuming a stable TSC across physical CPUS, and a stable TSC
2935  * across virtual CPUs, the following condition is possible.
2936  * Each numbered line represents an event visible to both
2937  * CPUs at the next numbered event.
2938  *
2939  * "timespecX" represents host monotonic time. "tscX" represents
2940  * RDTSC value.
2941  *
2942  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2943  *
2944  * 1.  read timespec0,tsc0
2945  * 2.					| timespec1 = timespec0 + N
2946  * 					| tsc1 = tsc0 + M
2947  * 3. transition to guest		| transition to guest
2948  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2949  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2950  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2951  *
2952  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2953  *
2954  * 	- ret0 < ret1
2955  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2956  *		...
2957  *	- 0 < N - M => M < N
2958  *
2959  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2960  * always the case (the difference between two distinct xtime instances
2961  * might be smaller then the difference between corresponding TSC reads,
2962  * when updating guest vcpus pvclock areas).
2963  *
2964  * To avoid that problem, do not allow visibility of distinct
2965  * system_timestamp/tsc_timestamp values simultaneously: use a master
2966  * copy of host monotonic time values. Update that master copy
2967  * in lockstep.
2968  *
2969  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2970  *
2971  */
2972 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2973 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2974 {
2975 #ifdef CONFIG_X86_64
2976 	struct kvm_arch *ka = &kvm->arch;
2977 	int vclock_mode;
2978 	bool host_tsc_clocksource, vcpus_matched;
2979 
2980 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2981 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2982 			atomic_read(&kvm->online_vcpus));
2983 
2984 	/*
2985 	 * If the host uses TSC clock, then passthrough TSC as stable
2986 	 * to the guest.
2987 	 */
2988 	host_tsc_clocksource = kvm_get_time_and_clockread(
2989 					&ka->master_kernel_ns,
2990 					&ka->master_cycle_now);
2991 
2992 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2993 				&& !ka->backwards_tsc_observed
2994 				&& !ka->boot_vcpu_runs_old_kvmclock;
2995 
2996 	if (ka->use_master_clock)
2997 		atomic_set(&kvm_guest_has_master_clock, 1);
2998 
2999 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
3000 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
3001 					vcpus_matched);
3002 #endif
3003 }
3004 
kvm_make_mclock_inprogress_request(struct kvm * kvm)3005 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
3006 {
3007 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
3008 }
3009 
__kvm_start_pvclock_update(struct kvm * kvm)3010 static void __kvm_start_pvclock_update(struct kvm *kvm)
3011 {
3012 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
3013 	write_seqcount_begin(&kvm->arch.pvclock_sc);
3014 }
3015 
kvm_start_pvclock_update(struct kvm * kvm)3016 static void kvm_start_pvclock_update(struct kvm *kvm)
3017 {
3018 	kvm_make_mclock_inprogress_request(kvm);
3019 
3020 	/* no guest entries from this point */
3021 	__kvm_start_pvclock_update(kvm);
3022 }
3023 
kvm_end_pvclock_update(struct kvm * kvm)3024 static void kvm_end_pvclock_update(struct kvm *kvm)
3025 {
3026 	struct kvm_arch *ka = &kvm->arch;
3027 	struct kvm_vcpu *vcpu;
3028 	unsigned long i;
3029 
3030 	write_seqcount_end(&ka->pvclock_sc);
3031 	raw_spin_unlock_irq(&ka->tsc_write_lock);
3032 	kvm_for_each_vcpu(i, vcpu, kvm)
3033 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3034 
3035 	/* guest entries allowed */
3036 	kvm_for_each_vcpu(i, vcpu, kvm)
3037 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3038 }
3039 
kvm_update_masterclock(struct kvm * kvm)3040 static void kvm_update_masterclock(struct kvm *kvm)
3041 {
3042 	kvm_hv_request_tsc_page_update(kvm);
3043 	kvm_start_pvclock_update(kvm);
3044 	pvclock_update_vm_gtod_copy(kvm);
3045 	kvm_end_pvclock_update(kvm);
3046 }
3047 
3048 /*
3049  * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3050  * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3051  * can change during boot even if the TSC is constant, as it's possible for KVM
3052  * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3053  * notification when calibration completes, but practically speaking calibration
3054  * will complete before userspace is alive enough to create VMs.
3055  */
get_cpu_tsc_khz(void)3056 static unsigned long get_cpu_tsc_khz(void)
3057 {
3058 	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3059 		return tsc_khz;
3060 	else
3061 		return __this_cpu_read(cpu_tsc_khz);
3062 }
3063 
3064 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3065 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3066 {
3067 	struct kvm_arch *ka = &kvm->arch;
3068 	struct pvclock_vcpu_time_info hv_clock;
3069 
3070 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3071 	get_cpu();
3072 
3073 	data->flags = 0;
3074 	if (ka->use_master_clock &&
3075 	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3076 #ifdef CONFIG_X86_64
3077 		struct timespec64 ts;
3078 
3079 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3080 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3081 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3082 		} else
3083 #endif
3084 		data->host_tsc = rdtsc();
3085 
3086 		data->flags |= KVM_CLOCK_TSC_STABLE;
3087 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3088 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3089 		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3090 				   &hv_clock.tsc_shift,
3091 				   &hv_clock.tsc_to_system_mul);
3092 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3093 	} else {
3094 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3095 	}
3096 
3097 	put_cpu();
3098 }
3099 
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3100 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3101 {
3102 	struct kvm_arch *ka = &kvm->arch;
3103 	unsigned seq;
3104 
3105 	do {
3106 		seq = read_seqcount_begin(&ka->pvclock_sc);
3107 		__get_kvmclock(kvm, data);
3108 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3109 }
3110 
get_kvmclock_ns(struct kvm * kvm)3111 u64 get_kvmclock_ns(struct kvm *kvm)
3112 {
3113 	struct kvm_clock_data data;
3114 
3115 	get_kvmclock(kvm, &data);
3116 	return data.clock;
3117 }
3118 
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset,bool force_tsc_unstable)3119 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3120 				    struct gfn_to_pfn_cache *gpc,
3121 				    unsigned int offset,
3122 				    bool force_tsc_unstable)
3123 {
3124 	struct kvm_vcpu_arch *vcpu = &v->arch;
3125 	struct pvclock_vcpu_time_info *guest_hv_clock;
3126 	unsigned long flags;
3127 
3128 	read_lock_irqsave(&gpc->lock, flags);
3129 	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3130 		read_unlock_irqrestore(&gpc->lock, flags);
3131 
3132 		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3133 			return;
3134 
3135 		read_lock_irqsave(&gpc->lock, flags);
3136 	}
3137 
3138 	guest_hv_clock = (void *)(gpc->khva + offset);
3139 
3140 	/*
3141 	 * This VCPU is paused, but it's legal for a guest to read another
3142 	 * VCPU's kvmclock, so we really have to follow the specification where
3143 	 * it says that version is odd if data is being modified, and even after
3144 	 * it is consistent.
3145 	 */
3146 
3147 	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3148 	smp_wmb();
3149 
3150 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3151 	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3152 
3153 	if (vcpu->pvclock_set_guest_stopped_request) {
3154 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3155 		vcpu->pvclock_set_guest_stopped_request = false;
3156 	}
3157 
3158 	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3159 
3160 	if (force_tsc_unstable)
3161 		guest_hv_clock->flags &= ~PVCLOCK_TSC_STABLE_BIT;
3162 
3163 	smp_wmb();
3164 
3165 	guest_hv_clock->version = ++vcpu->hv_clock.version;
3166 
3167 	kvm_gpc_mark_dirty_in_slot(gpc);
3168 	read_unlock_irqrestore(&gpc->lock, flags);
3169 
3170 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3171 }
3172 
kvm_guest_time_update(struct kvm_vcpu * v)3173 static int kvm_guest_time_update(struct kvm_vcpu *v)
3174 {
3175 	unsigned long flags, tgt_tsc_khz;
3176 	unsigned seq;
3177 	struct kvm_vcpu_arch *vcpu = &v->arch;
3178 	struct kvm_arch *ka = &v->kvm->arch;
3179 	s64 kernel_ns;
3180 	u64 tsc_timestamp, host_tsc;
3181 	u8 pvclock_flags;
3182 	bool use_master_clock;
3183 #ifdef CONFIG_KVM_XEN
3184 	/*
3185 	 * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless
3186 	 * explicitly told to use TSC as its clocksource Xen will not set this bit.
3187 	 * This default behaviour led to bugs in some guest kernels which cause
3188 	 * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags.
3189 	 */
3190 	bool xen_pvclock_tsc_unstable =
3191 		ka->xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE;
3192 #endif
3193 
3194 	kernel_ns = 0;
3195 	host_tsc = 0;
3196 
3197 	/*
3198 	 * If the host uses TSC clock, then passthrough TSC as stable
3199 	 * to the guest.
3200 	 */
3201 	do {
3202 		seq = read_seqcount_begin(&ka->pvclock_sc);
3203 		use_master_clock = ka->use_master_clock;
3204 		if (use_master_clock) {
3205 			host_tsc = ka->master_cycle_now;
3206 			kernel_ns = ka->master_kernel_ns;
3207 		}
3208 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3209 
3210 	/* Keep irq disabled to prevent changes to the clock */
3211 	local_irq_save(flags);
3212 	tgt_tsc_khz = get_cpu_tsc_khz();
3213 	if (unlikely(tgt_tsc_khz == 0)) {
3214 		local_irq_restore(flags);
3215 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3216 		return 1;
3217 	}
3218 	if (!use_master_clock) {
3219 		host_tsc = rdtsc();
3220 		kernel_ns = get_kvmclock_base_ns();
3221 	}
3222 
3223 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3224 
3225 	/*
3226 	 * We may have to catch up the TSC to match elapsed wall clock
3227 	 * time for two reasons, even if kvmclock is used.
3228 	 *   1) CPU could have been running below the maximum TSC rate
3229 	 *   2) Broken TSC compensation resets the base at each VCPU
3230 	 *      entry to avoid unknown leaps of TSC even when running
3231 	 *      again on the same CPU.  This may cause apparent elapsed
3232 	 *      time to disappear, and the guest to stand still or run
3233 	 *	very slowly.
3234 	 */
3235 	if (vcpu->tsc_catchup) {
3236 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3237 		if (tsc > tsc_timestamp) {
3238 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3239 			tsc_timestamp = tsc;
3240 		}
3241 	}
3242 
3243 	local_irq_restore(flags);
3244 
3245 	/* With all the info we got, fill in the values */
3246 
3247 	if (kvm_caps.has_tsc_control)
3248 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3249 					    v->arch.l1_tsc_scaling_ratio);
3250 
3251 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3252 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3253 				   &vcpu->hv_clock.tsc_shift,
3254 				   &vcpu->hv_clock.tsc_to_system_mul);
3255 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3256 		kvm_xen_update_tsc_info(v);
3257 	}
3258 
3259 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3260 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3261 	vcpu->last_guest_tsc = tsc_timestamp;
3262 
3263 	/* If the host uses TSC clocksource, then it is stable */
3264 	pvclock_flags = 0;
3265 	if (use_master_clock)
3266 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3267 
3268 	vcpu->hv_clock.flags = pvclock_flags;
3269 
3270 	if (vcpu->pv_time.active)
3271 		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0, false);
3272 #ifdef CONFIG_KVM_XEN
3273 	if (vcpu->xen.vcpu_info_cache.active)
3274 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3275 					offsetof(struct compat_vcpu_info, time),
3276 					xen_pvclock_tsc_unstable);
3277 	if (vcpu->xen.vcpu_time_info_cache.active)
3278 		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0,
3279 					xen_pvclock_tsc_unstable);
3280 #endif
3281 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3282 	return 0;
3283 }
3284 
3285 /*
3286  * The pvclock_wall_clock ABI tells the guest the wall clock time at
3287  * which it started (i.e. its epoch, when its kvmclock was zero).
3288  *
3289  * In fact those clocks are subtly different; wall clock frequency is
3290  * adjusted by NTP and has leap seconds, while the kvmclock is a
3291  * simple function of the TSC without any such adjustment.
3292  *
3293  * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between
3294  * that and kvmclock, but even that would be subject to change over
3295  * time.
3296  *
3297  * Attempt to calculate the epoch at a given moment using the *same*
3298  * TSC reading via kvm_get_walltime_and_clockread() to obtain both
3299  * wallclock and kvmclock times, and subtracting one from the other.
3300  *
3301  * Fall back to using their values at slightly different moments by
3302  * calling ktime_get_real_ns() and get_kvmclock_ns() separately.
3303  */
kvm_get_wall_clock_epoch(struct kvm * kvm)3304 uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm)
3305 {
3306 #ifdef CONFIG_X86_64
3307 	struct pvclock_vcpu_time_info hv_clock;
3308 	struct kvm_arch *ka = &kvm->arch;
3309 	unsigned long seq, local_tsc_khz;
3310 	struct timespec64 ts;
3311 	uint64_t host_tsc;
3312 
3313 	do {
3314 		seq = read_seqcount_begin(&ka->pvclock_sc);
3315 
3316 		local_tsc_khz = 0;
3317 		if (!ka->use_master_clock)
3318 			break;
3319 
3320 		/*
3321 		 * The TSC read and the call to get_cpu_tsc_khz() must happen
3322 		 * on the same CPU.
3323 		 */
3324 		get_cpu();
3325 
3326 		local_tsc_khz = get_cpu_tsc_khz();
3327 
3328 		if (local_tsc_khz &&
3329 		    !kvm_get_walltime_and_clockread(&ts, &host_tsc))
3330 			local_tsc_khz = 0; /* Fall back to old method */
3331 
3332 		put_cpu();
3333 
3334 		/*
3335 		 * These values must be snapshotted within the seqcount loop.
3336 		 * After that, it's just mathematics which can happen on any
3337 		 * CPU at any time.
3338 		 */
3339 		hv_clock.tsc_timestamp = ka->master_cycle_now;
3340 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3341 
3342 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3343 
3344 	/*
3345 	 * If the conditions were right, and obtaining the wallclock+TSC was
3346 	 * successful, calculate the KVM clock at the corresponding time and
3347 	 * subtract one from the other to get the guest's epoch in nanoseconds
3348 	 * since 1970-01-01.
3349 	 */
3350 	if (local_tsc_khz) {
3351 		kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC,
3352 				   &hv_clock.tsc_shift,
3353 				   &hv_clock.tsc_to_system_mul);
3354 		return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec -
3355 			__pvclock_read_cycles(&hv_clock, host_tsc);
3356 	}
3357 #endif
3358 	return ktime_get_real_ns() - get_kvmclock_ns(kvm);
3359 }
3360 
3361 /*
3362  * kvmclock updates which are isolated to a given vcpu, such as
3363  * vcpu->cpu migration, should not allow system_timestamp from
3364  * the rest of the vcpus to remain static. Otherwise ntp frequency
3365  * correction applies to one vcpu's system_timestamp but not
3366  * the others.
3367  *
3368  * So in those cases, request a kvmclock update for all vcpus.
3369  * We need to rate-limit these requests though, as they can
3370  * considerably slow guests that have a large number of vcpus.
3371  * The time for a remote vcpu to update its kvmclock is bound
3372  * by the delay we use to rate-limit the updates.
3373  */
3374 
3375 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3376 
kvmclock_update_fn(struct work_struct * work)3377 static void kvmclock_update_fn(struct work_struct *work)
3378 {
3379 	unsigned long i;
3380 	struct delayed_work *dwork = to_delayed_work(work);
3381 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3382 					   kvmclock_update_work);
3383 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3384 	struct kvm_vcpu *vcpu;
3385 
3386 	kvm_for_each_vcpu(i, vcpu, kvm) {
3387 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3388 		kvm_vcpu_kick(vcpu);
3389 	}
3390 }
3391 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3392 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3393 {
3394 	struct kvm *kvm = v->kvm;
3395 
3396 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3397 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3398 					KVMCLOCK_UPDATE_DELAY);
3399 }
3400 
3401 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3402 
kvmclock_sync_fn(struct work_struct * work)3403 static void kvmclock_sync_fn(struct work_struct *work)
3404 {
3405 	struct delayed_work *dwork = to_delayed_work(work);
3406 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3407 					   kvmclock_sync_work);
3408 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3409 
3410 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3411 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3412 					KVMCLOCK_SYNC_PERIOD);
3413 }
3414 
3415 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3416 static bool is_mci_control_msr(u32 msr)
3417 {
3418 	return (msr & 3) == 0;
3419 }
is_mci_status_msr(u32 msr)3420 static bool is_mci_status_msr(u32 msr)
3421 {
3422 	return (msr & 3) == 1;
3423 }
3424 
3425 /*
3426  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3427  */
can_set_mci_status(struct kvm_vcpu * vcpu)3428 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3429 {
3430 	/* McStatusWrEn enabled? */
3431 	if (guest_cpuid_is_amd_compatible(vcpu))
3432 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3433 
3434 	return false;
3435 }
3436 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3437 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3438 {
3439 	u64 mcg_cap = vcpu->arch.mcg_cap;
3440 	unsigned bank_num = mcg_cap & 0xff;
3441 	u32 msr = msr_info->index;
3442 	u64 data = msr_info->data;
3443 	u32 offset, last_msr;
3444 
3445 	switch (msr) {
3446 	case MSR_IA32_MCG_STATUS:
3447 		vcpu->arch.mcg_status = data;
3448 		break;
3449 	case MSR_IA32_MCG_CTL:
3450 		if (!(mcg_cap & MCG_CTL_P) &&
3451 		    (data || !msr_info->host_initiated))
3452 			return 1;
3453 		if (data != 0 && data != ~(u64)0)
3454 			return 1;
3455 		vcpu->arch.mcg_ctl = data;
3456 		break;
3457 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3458 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3459 		if (msr > last_msr)
3460 			return 1;
3461 
3462 		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3463 			return 1;
3464 		/* An attempt to write a 1 to a reserved bit raises #GP */
3465 		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3466 			return 1;
3467 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3468 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3469 		vcpu->arch.mci_ctl2_banks[offset] = data;
3470 		break;
3471 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3472 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3473 		if (msr > last_msr)
3474 			return 1;
3475 
3476 		/*
3477 		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3478 		 * values are architecturally undefined.  But, some Linux
3479 		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3480 		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3481 		 * other bits in order to avoid an uncaught #GP in the guest.
3482 		 *
3483 		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3484 		 * single-bit ECC data errors.
3485 		 */
3486 		if (is_mci_control_msr(msr) &&
3487 		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3488 			return 1;
3489 
3490 		/*
3491 		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3492 		 * AMD-based CPUs allow non-zero values, but if and only if
3493 		 * HWCR[McStatusWrEn] is set.
3494 		 */
3495 		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3496 		    data != 0 && !can_set_mci_status(vcpu))
3497 			return 1;
3498 
3499 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3500 					    last_msr + 1 - MSR_IA32_MC0_CTL);
3501 		vcpu->arch.mce_banks[offset] = data;
3502 		break;
3503 	default:
3504 		return 1;
3505 	}
3506 	return 0;
3507 }
3508 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3509 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3510 {
3511 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3512 
3513 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3514 }
3515 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3517 {
3518 	gpa_t gpa = data & ~0x3f;
3519 
3520 	/* Bits 4:5 are reserved, Should be zero */
3521 	if (data & 0x30)
3522 		return 1;
3523 
3524 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3525 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3526 		return 1;
3527 
3528 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3529 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3530 		return 1;
3531 
3532 	if (!lapic_in_kernel(vcpu))
3533 		return data ? 1 : 0;
3534 
3535 	vcpu->arch.apf.msr_en_val = data;
3536 
3537 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3538 		kvm_clear_async_pf_completion_queue(vcpu);
3539 		kvm_async_pf_hash_reset(vcpu);
3540 		return 0;
3541 	}
3542 
3543 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3544 					sizeof(u64)))
3545 		return 1;
3546 
3547 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3548 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3549 
3550 	kvm_async_pf_wakeup_all(vcpu);
3551 
3552 	return 0;
3553 }
3554 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3555 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3556 {
3557 	/* Bits 8-63 are reserved */
3558 	if (data >> 8)
3559 		return 1;
3560 
3561 	if (!lapic_in_kernel(vcpu))
3562 		return 1;
3563 
3564 	vcpu->arch.apf.msr_int_val = data;
3565 
3566 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3567 
3568 	return 0;
3569 }
3570 
kvmclock_reset(struct kvm_vcpu * vcpu)3571 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3572 {
3573 	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3574 	vcpu->arch.time = 0;
3575 }
3576 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3577 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3578 {
3579 	++vcpu->stat.tlb_flush;
3580 	kvm_x86_call(flush_tlb_all)(vcpu);
3581 
3582 	/* Flushing all ASIDs flushes the current ASID... */
3583 	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3584 }
3585 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3586 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3587 {
3588 	++vcpu->stat.tlb_flush;
3589 
3590 	if (!tdp_enabled) {
3591 		/*
3592 		 * A TLB flush on behalf of the guest is equivalent to
3593 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3594 		 * a forced sync of the shadow page tables.  Ensure all the
3595 		 * roots are synced and the guest TLB in hardware is clean.
3596 		 */
3597 		kvm_mmu_sync_roots(vcpu);
3598 		kvm_mmu_sync_prev_roots(vcpu);
3599 	}
3600 
3601 	kvm_x86_call(flush_tlb_guest)(vcpu);
3602 
3603 	/*
3604 	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3605 	 * grained flushing.
3606 	 */
3607 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3608 }
3609 
3610 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3611 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3612 {
3613 	++vcpu->stat.tlb_flush;
3614 	kvm_x86_call(flush_tlb_current)(vcpu);
3615 }
3616 
3617 /*
3618  * Service "local" TLB flush requests, which are specific to the current MMU
3619  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3620  * TLB flushes that are targeted at an MMU context also need to be serviced
3621  * prior before nested VM-Enter/VM-Exit.
3622  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3623 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3624 {
3625 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3626 		kvm_vcpu_flush_tlb_current(vcpu);
3627 
3628 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3629 		kvm_vcpu_flush_tlb_guest(vcpu);
3630 }
3631 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3632 
record_steal_time(struct kvm_vcpu * vcpu)3633 static void record_steal_time(struct kvm_vcpu *vcpu)
3634 {
3635 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3636 	struct kvm_steal_time __user *st;
3637 	struct kvm_memslots *slots;
3638 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3639 	u64 steal;
3640 	u32 version;
3641 
3642 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3643 		kvm_xen_runstate_set_running(vcpu);
3644 		return;
3645 	}
3646 
3647 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3648 		return;
3649 
3650 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3651 		return;
3652 
3653 	slots = kvm_memslots(vcpu->kvm);
3654 
3655 	if (unlikely(slots->generation != ghc->generation ||
3656 		     gpa != ghc->gpa ||
3657 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3658 		/* We rely on the fact that it fits in a single page. */
3659 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3660 
3661 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3662 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3663 			return;
3664 	}
3665 
3666 	st = (struct kvm_steal_time __user *)ghc->hva;
3667 	/*
3668 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3669 	 * expensive IPIs.
3670 	 */
3671 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3672 		u8 st_preempted = 0;
3673 		int err = -EFAULT;
3674 
3675 		if (!user_access_begin(st, sizeof(*st)))
3676 			return;
3677 
3678 		asm volatile("1: xchgb %0, %2\n"
3679 			     "xor %1, %1\n"
3680 			     "2:\n"
3681 			     _ASM_EXTABLE_UA(1b, 2b)
3682 			     : "+q" (st_preempted),
3683 			       "+&r" (err),
3684 			       "+m" (st->preempted));
3685 		if (err)
3686 			goto out;
3687 
3688 		user_access_end();
3689 
3690 		vcpu->arch.st.preempted = 0;
3691 
3692 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3693 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3694 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3695 			kvm_vcpu_flush_tlb_guest(vcpu);
3696 
3697 		if (!user_access_begin(st, sizeof(*st)))
3698 			goto dirty;
3699 	} else {
3700 		if (!user_access_begin(st, sizeof(*st)))
3701 			return;
3702 
3703 		unsafe_put_user(0, &st->preempted, out);
3704 		vcpu->arch.st.preempted = 0;
3705 	}
3706 
3707 	unsafe_get_user(version, &st->version, out);
3708 	if (version & 1)
3709 		version += 1;  /* first time write, random junk */
3710 
3711 	version += 1;
3712 	unsafe_put_user(version, &st->version, out);
3713 
3714 	smp_wmb();
3715 
3716 	unsafe_get_user(steal, &st->steal, out);
3717 	steal += current->sched_info.run_delay -
3718 		vcpu->arch.st.last_steal;
3719 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3720 	unsafe_put_user(steal, &st->steal, out);
3721 
3722 	version += 1;
3723 	unsafe_put_user(version, &st->version, out);
3724 
3725  out:
3726 	user_access_end();
3727  dirty:
3728 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3729 }
3730 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3731 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3732 {
3733 	u32 msr = msr_info->index;
3734 	u64 data = msr_info->data;
3735 
3736 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3737 		return kvm_xen_write_hypercall_page(vcpu, data);
3738 
3739 	switch (msr) {
3740 	case MSR_AMD64_NB_CFG:
3741 	case MSR_IA32_UCODE_WRITE:
3742 	case MSR_VM_HSAVE_PA:
3743 	case MSR_AMD64_PATCH_LOADER:
3744 	case MSR_AMD64_BU_CFG2:
3745 	case MSR_AMD64_DC_CFG:
3746 	case MSR_AMD64_TW_CFG:
3747 	case MSR_F15H_EX_CFG:
3748 		break;
3749 
3750 	case MSR_IA32_UCODE_REV:
3751 		if (msr_info->host_initiated)
3752 			vcpu->arch.microcode_version = data;
3753 		break;
3754 	case MSR_IA32_ARCH_CAPABILITIES:
3755 		if (!msr_info->host_initiated ||
3756 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3757 			return KVM_MSR_RET_UNSUPPORTED;
3758 		vcpu->arch.arch_capabilities = data;
3759 		break;
3760 	case MSR_IA32_PERF_CAPABILITIES:
3761 		if (!msr_info->host_initiated ||
3762 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
3763 			return KVM_MSR_RET_UNSUPPORTED;
3764 
3765 		if (data & ~kvm_caps.supported_perf_cap)
3766 			return 1;
3767 
3768 		/*
3769 		 * Note, this is not just a performance optimization!  KVM
3770 		 * disallows changing feature MSRs after the vCPU has run; PMU
3771 		 * refresh will bug the VM if called after the vCPU has run.
3772 		 */
3773 		if (vcpu->arch.perf_capabilities == data)
3774 			break;
3775 
3776 		vcpu->arch.perf_capabilities = data;
3777 		kvm_pmu_refresh(vcpu);
3778 		break;
3779 	case MSR_IA32_PRED_CMD: {
3780 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
3781 
3782 		if (!msr_info->host_initiated) {
3783 			if ((!guest_has_pred_cmd_msr(vcpu)))
3784 				return 1;
3785 
3786 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
3787 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB))
3788 				reserved_bits |= PRED_CMD_IBPB;
3789 
3790 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB))
3791 				reserved_bits |= PRED_CMD_SBPB;
3792 		}
3793 
3794 		if (!boot_cpu_has(X86_FEATURE_IBPB))
3795 			reserved_bits |= PRED_CMD_IBPB;
3796 
3797 		if (!boot_cpu_has(X86_FEATURE_SBPB))
3798 			reserved_bits |= PRED_CMD_SBPB;
3799 
3800 		if (data & reserved_bits)
3801 			return 1;
3802 
3803 		if (!data)
3804 			break;
3805 
3806 		wrmsrl(MSR_IA32_PRED_CMD, data);
3807 		break;
3808 	}
3809 	case MSR_IA32_FLUSH_CMD:
3810 		if (!msr_info->host_initiated &&
3811 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D))
3812 			return 1;
3813 
3814 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3815 			return 1;
3816 		if (!data)
3817 			break;
3818 
3819 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3820 		break;
3821 	case MSR_EFER:
3822 		return set_efer(vcpu, msr_info);
3823 	case MSR_K7_HWCR:
3824 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3825 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3826 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3827 
3828 		/*
3829 		 * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2
3830 		 * through at least v6.6 whine if TscFreqSel is clear,
3831 		 * depending on F/M/S.
3832 		 */
3833 		if (data & ~(BIT_ULL(18) | BIT_ULL(24))) {
3834 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3835 			return 1;
3836 		}
3837 		vcpu->arch.msr_hwcr = data;
3838 		break;
3839 	case MSR_FAM10H_MMIO_CONF_BASE:
3840 		if (data != 0) {
3841 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3842 			return 1;
3843 		}
3844 		break;
3845 	case MSR_IA32_CR_PAT:
3846 		if (!kvm_pat_valid(data))
3847 			return 1;
3848 
3849 		vcpu->arch.pat = data;
3850 		break;
3851 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3852 	case MSR_MTRRdefType:
3853 		return kvm_mtrr_set_msr(vcpu, msr, data);
3854 	case MSR_IA32_APICBASE:
3855 		return kvm_apic_set_base(vcpu, data, msr_info->host_initiated);
3856 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3857 		return kvm_x2apic_msr_write(vcpu, msr, data);
3858 	case MSR_IA32_TSC_DEADLINE:
3859 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3860 		break;
3861 	case MSR_IA32_TSC_ADJUST:
3862 		if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3863 			if (!msr_info->host_initiated) {
3864 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3865 				adjust_tsc_offset_guest(vcpu, adj);
3866 				/* Before back to guest, tsc_timestamp must be adjusted
3867 				 * as well, otherwise guest's percpu pvclock time could jump.
3868 				 */
3869 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3870 			}
3871 			vcpu->arch.ia32_tsc_adjust_msr = data;
3872 		}
3873 		break;
3874 	case MSR_IA32_MISC_ENABLE: {
3875 		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3876 
3877 		if (!msr_info->host_initiated) {
3878 			/* RO bits */
3879 			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3880 				return 1;
3881 
3882 			/* R bits, i.e. writes are ignored, but don't fault. */
3883 			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3884 			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3885 		}
3886 
3887 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3888 		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3889 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3))
3890 				return 1;
3891 			vcpu->arch.ia32_misc_enable_msr = data;
3892 			kvm_update_cpuid_runtime(vcpu);
3893 		} else {
3894 			vcpu->arch.ia32_misc_enable_msr = data;
3895 		}
3896 		break;
3897 	}
3898 	case MSR_IA32_SMBASE:
3899 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3900 			return 1;
3901 		vcpu->arch.smbase = data;
3902 		break;
3903 	case MSR_IA32_POWER_CTL:
3904 		vcpu->arch.msr_ia32_power_ctl = data;
3905 		break;
3906 	case MSR_IA32_TSC:
3907 		if (msr_info->host_initiated) {
3908 			kvm_synchronize_tsc(vcpu, &data);
3909 		} else {
3910 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3911 			adjust_tsc_offset_guest(vcpu, adj);
3912 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3913 		}
3914 		break;
3915 	case MSR_IA32_XSS:
3916 		if (!msr_info->host_initiated &&
3917 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3918 			return 1;
3919 		/*
3920 		 * KVM supports exposing PT to the guest, but does not support
3921 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3922 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3923 		 */
3924 		if (data & ~kvm_caps.supported_xss)
3925 			return 1;
3926 		vcpu->arch.ia32_xss = data;
3927 		kvm_update_cpuid_runtime(vcpu);
3928 		break;
3929 	case MSR_SMI_COUNT:
3930 		if (!msr_info->host_initiated)
3931 			return 1;
3932 		vcpu->arch.smi_count = data;
3933 		break;
3934 	case MSR_KVM_WALL_CLOCK_NEW:
3935 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3936 			return 1;
3937 
3938 		vcpu->kvm->arch.wall_clock = data;
3939 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3940 		break;
3941 	case MSR_KVM_WALL_CLOCK:
3942 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3943 			return 1;
3944 
3945 		vcpu->kvm->arch.wall_clock = data;
3946 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3947 		break;
3948 	case MSR_KVM_SYSTEM_TIME_NEW:
3949 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3950 			return 1;
3951 
3952 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3953 		break;
3954 	case MSR_KVM_SYSTEM_TIME:
3955 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3956 			return 1;
3957 
3958 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3959 		break;
3960 	case MSR_KVM_ASYNC_PF_EN:
3961 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3962 			return 1;
3963 
3964 		if (kvm_pv_enable_async_pf(vcpu, data))
3965 			return 1;
3966 		break;
3967 	case MSR_KVM_ASYNC_PF_INT:
3968 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3969 			return 1;
3970 
3971 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3972 			return 1;
3973 		break;
3974 	case MSR_KVM_ASYNC_PF_ACK:
3975 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3976 			return 1;
3977 		if (data & 0x1) {
3978 			vcpu->arch.apf.pageready_pending = false;
3979 			kvm_check_async_pf_completion(vcpu);
3980 		}
3981 		break;
3982 	case MSR_KVM_STEAL_TIME:
3983 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3984 			return 1;
3985 
3986 		if (unlikely(!sched_info_on()))
3987 			return 1;
3988 
3989 		if (data & KVM_STEAL_RESERVED_MASK)
3990 			return 1;
3991 
3992 		vcpu->arch.st.msr_val = data;
3993 
3994 		if (!(data & KVM_MSR_ENABLED))
3995 			break;
3996 
3997 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3998 
3999 		break;
4000 	case MSR_KVM_PV_EOI_EN:
4001 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4002 			return 1;
4003 
4004 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
4005 			return 1;
4006 		break;
4007 
4008 	case MSR_KVM_POLL_CONTROL:
4009 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4010 			return 1;
4011 
4012 		/* only enable bit supported */
4013 		if (data & (-1ULL << 1))
4014 			return 1;
4015 
4016 		vcpu->arch.msr_kvm_poll_control = data;
4017 		break;
4018 
4019 	case MSR_IA32_MCG_CTL:
4020 	case MSR_IA32_MCG_STATUS:
4021 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4022 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4023 		return set_msr_mce(vcpu, msr_info);
4024 
4025 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4026 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4027 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4028 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4029 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4030 			return kvm_pmu_set_msr(vcpu, msr_info);
4031 
4032 		if (data)
4033 			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4034 		break;
4035 	case MSR_K7_CLK_CTL:
4036 		/*
4037 		 * Ignore all writes to this no longer documented MSR.
4038 		 * Writes are only relevant for old K7 processors,
4039 		 * all pre-dating SVM, but a recommended workaround from
4040 		 * AMD for these chips. It is possible to specify the
4041 		 * affected processor models on the command line, hence
4042 		 * the need to ignore the workaround.
4043 		 */
4044 		break;
4045 #ifdef CONFIG_KVM_HYPERV
4046 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4047 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4048 	case HV_X64_MSR_SYNDBG_OPTIONS:
4049 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4050 	case HV_X64_MSR_CRASH_CTL:
4051 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4052 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4053 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4054 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4055 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4056 		return kvm_hv_set_msr_common(vcpu, msr, data,
4057 					     msr_info->host_initiated);
4058 #endif
4059 	case MSR_IA32_BBL_CR_CTL3:
4060 		/* Drop writes to this legacy MSR -- see rdmsr
4061 		 * counterpart for further detail.
4062 		 */
4063 		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
4064 		break;
4065 	case MSR_AMD64_OSVW_ID_LENGTH:
4066 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4067 			return 1;
4068 		vcpu->arch.osvw.length = data;
4069 		break;
4070 	case MSR_AMD64_OSVW_STATUS:
4071 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4072 			return 1;
4073 		vcpu->arch.osvw.status = data;
4074 		break;
4075 	case MSR_PLATFORM_INFO:
4076 		if (!msr_info->host_initiated)
4077 			return 1;
4078 		vcpu->arch.msr_platform_info = data;
4079 		break;
4080 	case MSR_MISC_FEATURES_ENABLES:
4081 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
4082 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
4083 		     !supports_cpuid_fault(vcpu)))
4084 			return 1;
4085 		vcpu->arch.msr_misc_features_enables = data;
4086 		break;
4087 #ifdef CONFIG_X86_64
4088 	case MSR_IA32_XFD:
4089 		if (!msr_info->host_initiated &&
4090 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4091 			return 1;
4092 
4093 		if (data & ~kvm_guest_supported_xfd(vcpu))
4094 			return 1;
4095 
4096 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
4097 		break;
4098 	case MSR_IA32_XFD_ERR:
4099 		if (!msr_info->host_initiated &&
4100 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4101 			return 1;
4102 
4103 		if (data & ~kvm_guest_supported_xfd(vcpu))
4104 			return 1;
4105 
4106 		vcpu->arch.guest_fpu.xfd_err = data;
4107 		break;
4108 #endif
4109 	default:
4110 		if (kvm_pmu_is_valid_msr(vcpu, msr))
4111 			return kvm_pmu_set_msr(vcpu, msr_info);
4112 
4113 		return KVM_MSR_RET_UNSUPPORTED;
4114 	}
4115 	return 0;
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4118 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)4119 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4120 {
4121 	u64 data;
4122 	u64 mcg_cap = vcpu->arch.mcg_cap;
4123 	unsigned bank_num = mcg_cap & 0xff;
4124 	u32 offset, last_msr;
4125 
4126 	switch (msr) {
4127 	case MSR_IA32_P5_MC_ADDR:
4128 	case MSR_IA32_P5_MC_TYPE:
4129 		data = 0;
4130 		break;
4131 	case MSR_IA32_MCG_CAP:
4132 		data = vcpu->arch.mcg_cap;
4133 		break;
4134 	case MSR_IA32_MCG_CTL:
4135 		if (!(mcg_cap & MCG_CTL_P) && !host)
4136 			return 1;
4137 		data = vcpu->arch.mcg_ctl;
4138 		break;
4139 	case MSR_IA32_MCG_STATUS:
4140 		data = vcpu->arch.mcg_status;
4141 		break;
4142 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4143 		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4144 		if (msr > last_msr)
4145 			return 1;
4146 
4147 		if (!(mcg_cap & MCG_CMCI_P) && !host)
4148 			return 1;
4149 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4150 					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4151 		data = vcpu->arch.mci_ctl2_banks[offset];
4152 		break;
4153 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4154 		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4155 		if (msr > last_msr)
4156 			return 1;
4157 
4158 		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4159 					    last_msr + 1 - MSR_IA32_MC0_CTL);
4160 		data = vcpu->arch.mce_banks[offset];
4161 		break;
4162 	default:
4163 		return 1;
4164 	}
4165 	*pdata = data;
4166 	return 0;
4167 }
4168 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4169 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4170 {
4171 	switch (msr_info->index) {
4172 	case MSR_IA32_PLATFORM_ID:
4173 	case MSR_IA32_EBL_CR_POWERON:
4174 	case MSR_IA32_LASTBRANCHFROMIP:
4175 	case MSR_IA32_LASTBRANCHTOIP:
4176 	case MSR_IA32_LASTINTFROMIP:
4177 	case MSR_IA32_LASTINTTOIP:
4178 	case MSR_AMD64_SYSCFG:
4179 	case MSR_K8_TSEG_ADDR:
4180 	case MSR_K8_TSEG_MASK:
4181 	case MSR_VM_HSAVE_PA:
4182 	case MSR_K8_INT_PENDING_MSG:
4183 	case MSR_AMD64_NB_CFG:
4184 	case MSR_FAM10H_MMIO_CONF_BASE:
4185 	case MSR_AMD64_BU_CFG2:
4186 	case MSR_IA32_PERF_CTL:
4187 	case MSR_AMD64_DC_CFG:
4188 	case MSR_AMD64_TW_CFG:
4189 	case MSR_F15H_EX_CFG:
4190 	/*
4191 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4192 	 * limit) MSRs. Just return 0, as we do not want to expose the host
4193 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4194 	 * so for existing CPU-specific MSRs.
4195 	 */
4196 	case MSR_RAPL_POWER_UNIT:
4197 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4198 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4199 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4200 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4201 		msr_info->data = 0;
4202 		break;
4203 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4204 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4205 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4206 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4207 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4208 			return kvm_pmu_get_msr(vcpu, msr_info);
4209 		msr_info->data = 0;
4210 		break;
4211 	case MSR_IA32_UCODE_REV:
4212 		msr_info->data = vcpu->arch.microcode_version;
4213 		break;
4214 	case MSR_IA32_ARCH_CAPABILITIES:
4215 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4216 			return KVM_MSR_RET_UNSUPPORTED;
4217 		msr_info->data = vcpu->arch.arch_capabilities;
4218 		break;
4219 	case MSR_IA32_PERF_CAPABILITIES:
4220 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM))
4221 			return KVM_MSR_RET_UNSUPPORTED;
4222 		msr_info->data = vcpu->arch.perf_capabilities;
4223 		break;
4224 	case MSR_IA32_POWER_CTL:
4225 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4226 		break;
4227 	case MSR_IA32_TSC: {
4228 		/*
4229 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4230 		 * even when not intercepted. AMD manual doesn't explicitly
4231 		 * state this but appears to behave the same.
4232 		 *
4233 		 * On userspace reads and writes, however, we unconditionally
4234 		 * return L1's TSC value to ensure backwards-compatible
4235 		 * behavior for migration.
4236 		 */
4237 		u64 offset, ratio;
4238 
4239 		if (msr_info->host_initiated) {
4240 			offset = vcpu->arch.l1_tsc_offset;
4241 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4242 		} else {
4243 			offset = vcpu->arch.tsc_offset;
4244 			ratio = vcpu->arch.tsc_scaling_ratio;
4245 		}
4246 
4247 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4248 		break;
4249 	}
4250 	case MSR_IA32_CR_PAT:
4251 		msr_info->data = vcpu->arch.pat;
4252 		break;
4253 	case MSR_MTRRcap:
4254 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4255 	case MSR_MTRRdefType:
4256 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4257 	case 0xcd: /* fsb frequency */
4258 		msr_info->data = 3;
4259 		break;
4260 		/*
4261 		 * MSR_EBC_FREQUENCY_ID
4262 		 * Conservative value valid for even the basic CPU models.
4263 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4264 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4265 		 * and 266MHz for model 3, or 4. Set Core Clock
4266 		 * Frequency to System Bus Frequency Ratio to 1 (bits
4267 		 * 31:24) even though these are only valid for CPU
4268 		 * models > 2, however guests may end up dividing or
4269 		 * multiplying by zero otherwise.
4270 		 */
4271 	case MSR_EBC_FREQUENCY_ID:
4272 		msr_info->data = 1 << 24;
4273 		break;
4274 	case MSR_IA32_APICBASE:
4275 		msr_info->data = vcpu->arch.apic_base;
4276 		break;
4277 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4278 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4279 	case MSR_IA32_TSC_DEADLINE:
4280 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4281 		break;
4282 	case MSR_IA32_TSC_ADJUST:
4283 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4284 		break;
4285 	case MSR_IA32_MISC_ENABLE:
4286 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4287 		break;
4288 	case MSR_IA32_SMBASE:
4289 		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4290 			return 1;
4291 		msr_info->data = vcpu->arch.smbase;
4292 		break;
4293 	case MSR_SMI_COUNT:
4294 		msr_info->data = vcpu->arch.smi_count;
4295 		break;
4296 	case MSR_IA32_PERF_STATUS:
4297 		/* TSC increment by tick */
4298 		msr_info->data = 1000ULL;
4299 		/* CPU multiplier */
4300 		msr_info->data |= (((uint64_t)4ULL) << 40);
4301 		break;
4302 	case MSR_EFER:
4303 		msr_info->data = vcpu->arch.efer;
4304 		break;
4305 	case MSR_KVM_WALL_CLOCK:
4306 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4307 			return 1;
4308 
4309 		msr_info->data = vcpu->kvm->arch.wall_clock;
4310 		break;
4311 	case MSR_KVM_WALL_CLOCK_NEW:
4312 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4313 			return 1;
4314 
4315 		msr_info->data = vcpu->kvm->arch.wall_clock;
4316 		break;
4317 	case MSR_KVM_SYSTEM_TIME:
4318 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4319 			return 1;
4320 
4321 		msr_info->data = vcpu->arch.time;
4322 		break;
4323 	case MSR_KVM_SYSTEM_TIME_NEW:
4324 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4325 			return 1;
4326 
4327 		msr_info->data = vcpu->arch.time;
4328 		break;
4329 	case MSR_KVM_ASYNC_PF_EN:
4330 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4331 			return 1;
4332 
4333 		msr_info->data = vcpu->arch.apf.msr_en_val;
4334 		break;
4335 	case MSR_KVM_ASYNC_PF_INT:
4336 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4337 			return 1;
4338 
4339 		msr_info->data = vcpu->arch.apf.msr_int_val;
4340 		break;
4341 	case MSR_KVM_ASYNC_PF_ACK:
4342 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4343 			return 1;
4344 
4345 		msr_info->data = 0;
4346 		break;
4347 	case MSR_KVM_STEAL_TIME:
4348 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4349 			return 1;
4350 
4351 		msr_info->data = vcpu->arch.st.msr_val;
4352 		break;
4353 	case MSR_KVM_PV_EOI_EN:
4354 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4355 			return 1;
4356 
4357 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4358 		break;
4359 	case MSR_KVM_POLL_CONTROL:
4360 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4361 			return 1;
4362 
4363 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4364 		break;
4365 	case MSR_IA32_P5_MC_ADDR:
4366 	case MSR_IA32_P5_MC_TYPE:
4367 	case MSR_IA32_MCG_CAP:
4368 	case MSR_IA32_MCG_CTL:
4369 	case MSR_IA32_MCG_STATUS:
4370 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4371 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4372 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4373 				   msr_info->host_initiated);
4374 	case MSR_IA32_XSS:
4375 		if (!msr_info->host_initiated &&
4376 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4377 			return 1;
4378 		msr_info->data = vcpu->arch.ia32_xss;
4379 		break;
4380 	case MSR_K7_CLK_CTL:
4381 		/*
4382 		 * Provide expected ramp-up count for K7. All other
4383 		 * are set to zero, indicating minimum divisors for
4384 		 * every field.
4385 		 *
4386 		 * This prevents guest kernels on AMD host with CPU
4387 		 * type 6, model 8 and higher from exploding due to
4388 		 * the rdmsr failing.
4389 		 */
4390 		msr_info->data = 0x20000000;
4391 		break;
4392 #ifdef CONFIG_KVM_HYPERV
4393 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4394 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4395 	case HV_X64_MSR_SYNDBG_OPTIONS:
4396 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4397 	case HV_X64_MSR_CRASH_CTL:
4398 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4399 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4400 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4401 	case HV_X64_MSR_TSC_EMULATION_STATUS:
4402 	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4403 		return kvm_hv_get_msr_common(vcpu,
4404 					     msr_info->index, &msr_info->data,
4405 					     msr_info->host_initiated);
4406 #endif
4407 	case MSR_IA32_BBL_CR_CTL3:
4408 		/* This legacy MSR exists but isn't fully documented in current
4409 		 * silicon.  It is however accessed by winxp in very narrow
4410 		 * scenarios where it sets bit #19, itself documented as
4411 		 * a "reserved" bit.  Best effort attempt to source coherent
4412 		 * read data here should the balance of the register be
4413 		 * interpreted by the guest:
4414 		 *
4415 		 * L2 cache control register 3: 64GB range, 256KB size,
4416 		 * enabled, latency 0x1, configured
4417 		 */
4418 		msr_info->data = 0xbe702111;
4419 		break;
4420 	case MSR_AMD64_OSVW_ID_LENGTH:
4421 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4422 			return 1;
4423 		msr_info->data = vcpu->arch.osvw.length;
4424 		break;
4425 	case MSR_AMD64_OSVW_STATUS:
4426 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW))
4427 			return 1;
4428 		msr_info->data = vcpu->arch.osvw.status;
4429 		break;
4430 	case MSR_PLATFORM_INFO:
4431 		if (!msr_info->host_initiated &&
4432 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4433 			return 1;
4434 		msr_info->data = vcpu->arch.msr_platform_info;
4435 		break;
4436 	case MSR_MISC_FEATURES_ENABLES:
4437 		msr_info->data = vcpu->arch.msr_misc_features_enables;
4438 		break;
4439 	case MSR_K7_HWCR:
4440 		msr_info->data = vcpu->arch.msr_hwcr;
4441 		break;
4442 #ifdef CONFIG_X86_64
4443 	case MSR_IA32_XFD:
4444 		if (!msr_info->host_initiated &&
4445 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4446 			return 1;
4447 
4448 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4449 		break;
4450 	case MSR_IA32_XFD_ERR:
4451 		if (!msr_info->host_initiated &&
4452 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD))
4453 			return 1;
4454 
4455 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4456 		break;
4457 #endif
4458 	default:
4459 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4460 			return kvm_pmu_get_msr(vcpu, msr_info);
4461 
4462 		return KVM_MSR_RET_UNSUPPORTED;
4463 	}
4464 	return 0;
4465 }
4466 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4467 
4468 /*
4469  * Read or write a bunch of msrs. All parameters are kernel addresses.
4470  *
4471  * @return number of msrs set successfully.
4472  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4473 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4474 		    struct kvm_msr_entry *entries,
4475 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4476 				  unsigned index, u64 *data))
4477 {
4478 	int i;
4479 
4480 	for (i = 0; i < msrs->nmsrs; ++i)
4481 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4482 			break;
4483 
4484 	return i;
4485 }
4486 
4487 /*
4488  * Read or write a bunch of msrs. Parameters are user addresses.
4489  *
4490  * @return number of msrs set successfully.
4491  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4492 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4493 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4494 				unsigned index, u64 *data),
4495 		  int writeback)
4496 {
4497 	struct kvm_msrs msrs;
4498 	struct kvm_msr_entry *entries;
4499 	unsigned size;
4500 	int r;
4501 
4502 	r = -EFAULT;
4503 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4504 		goto out;
4505 
4506 	r = -E2BIG;
4507 	if (msrs.nmsrs >= MAX_IO_MSRS)
4508 		goto out;
4509 
4510 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4511 	entries = memdup_user(user_msrs->entries, size);
4512 	if (IS_ERR(entries)) {
4513 		r = PTR_ERR(entries);
4514 		goto out;
4515 	}
4516 
4517 	r = __msr_io(vcpu, &msrs, entries, do_msr);
4518 
4519 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4520 		r = -EFAULT;
4521 
4522 	kfree(entries);
4523 out:
4524 	return r;
4525 }
4526 
kvm_can_mwait_in_guest(void)4527 static inline bool kvm_can_mwait_in_guest(void)
4528 {
4529 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4530 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4531 		boot_cpu_has(X86_FEATURE_ARAT);
4532 }
4533 
kvm_get_allowed_disable_exits(void)4534 static u64 kvm_get_allowed_disable_exits(void)
4535 {
4536 	u64 r = KVM_X86_DISABLE_EXITS_PAUSE;
4537 
4538 	if (!mitigate_smt_rsb) {
4539 		r |= KVM_X86_DISABLE_EXITS_HLT |
4540 			KVM_X86_DISABLE_EXITS_CSTATE;
4541 
4542 		if (kvm_can_mwait_in_guest())
4543 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
4544 	}
4545 	return r;
4546 }
4547 
4548 #ifdef CONFIG_KVM_HYPERV
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4549 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4550 					    struct kvm_cpuid2 __user *cpuid_arg)
4551 {
4552 	struct kvm_cpuid2 cpuid;
4553 	int r;
4554 
4555 	r = -EFAULT;
4556 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4557 		return r;
4558 
4559 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4560 	if (r)
4561 		return r;
4562 
4563 	r = -EFAULT;
4564 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4565 		return r;
4566 
4567 	return 0;
4568 }
4569 #endif
4570 
kvm_is_vm_type_supported(unsigned long type)4571 static bool kvm_is_vm_type_supported(unsigned long type)
4572 {
4573 	return type < 32 && (kvm_caps.supported_vm_types & BIT(type));
4574 }
4575 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4576 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4577 {
4578 	int r = 0;
4579 
4580 	switch (ext) {
4581 	case KVM_CAP_IRQCHIP:
4582 	case KVM_CAP_HLT:
4583 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4584 	case KVM_CAP_SET_TSS_ADDR:
4585 	case KVM_CAP_EXT_CPUID:
4586 	case KVM_CAP_EXT_EMUL_CPUID:
4587 	case KVM_CAP_CLOCKSOURCE:
4588 	case KVM_CAP_PIT:
4589 	case KVM_CAP_NOP_IO_DELAY:
4590 	case KVM_CAP_MP_STATE:
4591 	case KVM_CAP_SYNC_MMU:
4592 	case KVM_CAP_USER_NMI:
4593 	case KVM_CAP_REINJECT_CONTROL:
4594 	case KVM_CAP_IRQ_INJECT_STATUS:
4595 	case KVM_CAP_IOEVENTFD:
4596 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4597 	case KVM_CAP_PIT2:
4598 	case KVM_CAP_PIT_STATE2:
4599 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4600 	case KVM_CAP_VCPU_EVENTS:
4601 #ifdef CONFIG_KVM_HYPERV
4602 	case KVM_CAP_HYPERV:
4603 	case KVM_CAP_HYPERV_VAPIC:
4604 	case KVM_CAP_HYPERV_SPIN:
4605 	case KVM_CAP_HYPERV_TIME:
4606 	case KVM_CAP_HYPERV_SYNIC:
4607 	case KVM_CAP_HYPERV_SYNIC2:
4608 	case KVM_CAP_HYPERV_VP_INDEX:
4609 	case KVM_CAP_HYPERV_EVENTFD:
4610 	case KVM_CAP_HYPERV_TLBFLUSH:
4611 	case KVM_CAP_HYPERV_SEND_IPI:
4612 	case KVM_CAP_HYPERV_CPUID:
4613 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4614 	case KVM_CAP_SYS_HYPERV_CPUID:
4615 #endif
4616 	case KVM_CAP_PCI_SEGMENT:
4617 	case KVM_CAP_DEBUGREGS:
4618 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4619 	case KVM_CAP_XSAVE:
4620 	case KVM_CAP_ASYNC_PF:
4621 	case KVM_CAP_ASYNC_PF_INT:
4622 	case KVM_CAP_GET_TSC_KHZ:
4623 	case KVM_CAP_KVMCLOCK_CTRL:
4624 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4625 	case KVM_CAP_TSC_DEADLINE_TIMER:
4626 	case KVM_CAP_DISABLE_QUIRKS:
4627 	case KVM_CAP_SET_BOOT_CPU_ID:
4628  	case KVM_CAP_SPLIT_IRQCHIP:
4629 	case KVM_CAP_IMMEDIATE_EXIT:
4630 	case KVM_CAP_PMU_EVENT_FILTER:
4631 	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4632 	case KVM_CAP_GET_MSR_FEATURES:
4633 	case KVM_CAP_MSR_PLATFORM_INFO:
4634 	case KVM_CAP_EXCEPTION_PAYLOAD:
4635 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4636 	case KVM_CAP_SET_GUEST_DEBUG:
4637 	case KVM_CAP_LAST_CPU:
4638 	case KVM_CAP_X86_USER_SPACE_MSR:
4639 	case KVM_CAP_X86_MSR_FILTER:
4640 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4641 #ifdef CONFIG_X86_SGX_KVM
4642 	case KVM_CAP_SGX_ATTRIBUTE:
4643 #endif
4644 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4645 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4646 	case KVM_CAP_SREGS2:
4647 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4648 	case KVM_CAP_VCPU_ATTRIBUTES:
4649 	case KVM_CAP_SYS_ATTRIBUTES:
4650 	case KVM_CAP_VAPIC:
4651 	case KVM_CAP_ENABLE_CAP:
4652 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4653 	case KVM_CAP_IRQFD_RESAMPLE:
4654 	case KVM_CAP_MEMORY_FAULT_INFO:
4655 	case KVM_CAP_X86_GUEST_MODE:
4656 		r = 1;
4657 		break;
4658 	case KVM_CAP_PRE_FAULT_MEMORY:
4659 		r = tdp_enabled;
4660 		break;
4661 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS:
4662 		r = APIC_BUS_CYCLE_NS_DEFAULT;
4663 		break;
4664 	case KVM_CAP_EXIT_HYPERCALL:
4665 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4666 		break;
4667 	case KVM_CAP_SET_GUEST_DEBUG2:
4668 		return KVM_GUESTDBG_VALID_MASK;
4669 #ifdef CONFIG_KVM_XEN
4670 	case KVM_CAP_XEN_HVM:
4671 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4672 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4673 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4674 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4675 		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND |
4676 		    KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE |
4677 		    KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA;
4678 		if (sched_info_on())
4679 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4680 			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4681 		break;
4682 #endif
4683 	case KVM_CAP_SYNC_REGS:
4684 		r = KVM_SYNC_X86_VALID_FIELDS;
4685 		break;
4686 	case KVM_CAP_ADJUST_CLOCK:
4687 		r = KVM_CLOCK_VALID_FLAGS;
4688 		break;
4689 	case KVM_CAP_X86_DISABLE_EXITS:
4690 		r = kvm_get_allowed_disable_exits();
4691 		break;
4692 	case KVM_CAP_X86_SMM:
4693 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4694 			break;
4695 
4696 		/* SMBASE is usually relocated above 1M on modern chipsets,
4697 		 * and SMM handlers might indeed rely on 4G segment limits,
4698 		 * so do not report SMM to be available if real mode is
4699 		 * emulated via vm86 mode.  Still, do not go to great lengths
4700 		 * to avoid userspace's usage of the feature, because it is a
4701 		 * fringe case that is not enabled except via specific settings
4702 		 * of the module parameters.
4703 		 */
4704 		r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4705 		break;
4706 	case KVM_CAP_NR_VCPUS:
4707 		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4708 		break;
4709 	case KVM_CAP_MAX_VCPUS:
4710 		r = KVM_MAX_VCPUS;
4711 		break;
4712 	case KVM_CAP_MAX_VCPU_ID:
4713 		r = KVM_MAX_VCPU_IDS;
4714 		break;
4715 	case KVM_CAP_PV_MMU:	/* obsolete */
4716 		r = 0;
4717 		break;
4718 	case KVM_CAP_MCE:
4719 		r = KVM_MAX_MCE_BANKS;
4720 		break;
4721 	case KVM_CAP_XCRS:
4722 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4723 		break;
4724 	case KVM_CAP_TSC_CONTROL:
4725 	case KVM_CAP_VM_TSC_CONTROL:
4726 		r = kvm_caps.has_tsc_control;
4727 		break;
4728 	case KVM_CAP_X2APIC_API:
4729 		r = KVM_X2APIC_API_VALID_FLAGS;
4730 		break;
4731 	case KVM_CAP_NESTED_STATE:
4732 		r = kvm_x86_ops.nested_ops->get_state ?
4733 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4734 		break;
4735 #ifdef CONFIG_KVM_HYPERV
4736 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4737 		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4738 		break;
4739 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4740 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4741 		break;
4742 #endif
4743 	case KVM_CAP_SMALLER_MAXPHYADDR:
4744 		r = (int) allow_smaller_maxphyaddr;
4745 		break;
4746 	case KVM_CAP_STEAL_TIME:
4747 		r = sched_info_on();
4748 		break;
4749 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4750 		if (kvm_caps.has_bus_lock_exit)
4751 			r = KVM_BUS_LOCK_DETECTION_OFF |
4752 			    KVM_BUS_LOCK_DETECTION_EXIT;
4753 		else
4754 			r = 0;
4755 		break;
4756 	case KVM_CAP_XSAVE2: {
4757 		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4758 		if (r < sizeof(struct kvm_xsave))
4759 			r = sizeof(struct kvm_xsave);
4760 		break;
4761 	}
4762 	case KVM_CAP_PMU_CAPABILITY:
4763 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4764 		break;
4765 	case KVM_CAP_DISABLE_QUIRKS2:
4766 		r = KVM_X86_VALID_QUIRKS;
4767 		break;
4768 	case KVM_CAP_X86_NOTIFY_VMEXIT:
4769 		r = kvm_caps.has_notify_vmexit;
4770 		break;
4771 	case KVM_CAP_VM_TYPES:
4772 		r = kvm_caps.supported_vm_types;
4773 		break;
4774 	case KVM_CAP_READONLY_MEM:
4775 		r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1;
4776 		break;
4777 	default:
4778 		break;
4779 	}
4780 	return r;
4781 }
4782 
__kvm_x86_dev_get_attr(struct kvm_device_attr * attr,u64 * val)4783 static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val)
4784 {
4785 	if (attr->group) {
4786 		if (kvm_x86_ops.dev_get_attr)
4787 			return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val);
4788 		return -ENXIO;
4789 	}
4790 
4791 	switch (attr->attr) {
4792 	case KVM_X86_XCOMP_GUEST_SUPP:
4793 		*val = kvm_caps.supported_xcr0;
4794 		return 0;
4795 	default:
4796 		return -ENXIO;
4797 	}
4798 }
4799 
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4800 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4801 {
4802 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
4803 	int r;
4804 	u64 val;
4805 
4806 	r = __kvm_x86_dev_get_attr(attr, &val);
4807 	if (r < 0)
4808 		return r;
4809 
4810 	if (put_user(val, uaddr))
4811 		return -EFAULT;
4812 
4813 	return 0;
4814 }
4815 
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4816 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4817 {
4818 	u64 val;
4819 
4820 	return __kvm_x86_dev_get_attr(attr, &val);
4821 }
4822 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4823 long kvm_arch_dev_ioctl(struct file *filp,
4824 			unsigned int ioctl, unsigned long arg)
4825 {
4826 	void __user *argp = (void __user *)arg;
4827 	long r;
4828 
4829 	switch (ioctl) {
4830 	case KVM_GET_MSR_INDEX_LIST: {
4831 		struct kvm_msr_list __user *user_msr_list = argp;
4832 		struct kvm_msr_list msr_list;
4833 		unsigned n;
4834 
4835 		r = -EFAULT;
4836 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4837 			goto out;
4838 		n = msr_list.nmsrs;
4839 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4840 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4841 			goto out;
4842 		r = -E2BIG;
4843 		if (n < msr_list.nmsrs)
4844 			goto out;
4845 		r = -EFAULT;
4846 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4847 				 num_msrs_to_save * sizeof(u32)))
4848 			goto out;
4849 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4850 				 &emulated_msrs,
4851 				 num_emulated_msrs * sizeof(u32)))
4852 			goto out;
4853 		r = 0;
4854 		break;
4855 	}
4856 	case KVM_GET_SUPPORTED_CPUID:
4857 	case KVM_GET_EMULATED_CPUID: {
4858 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4859 		struct kvm_cpuid2 cpuid;
4860 
4861 		r = -EFAULT;
4862 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4863 			goto out;
4864 
4865 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4866 					    ioctl);
4867 		if (r)
4868 			goto out;
4869 
4870 		r = -EFAULT;
4871 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4872 			goto out;
4873 		r = 0;
4874 		break;
4875 	}
4876 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4877 		r = -EFAULT;
4878 		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4879 				 sizeof(kvm_caps.supported_mce_cap)))
4880 			goto out;
4881 		r = 0;
4882 		break;
4883 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4884 		struct kvm_msr_list __user *user_msr_list = argp;
4885 		struct kvm_msr_list msr_list;
4886 		unsigned int n;
4887 
4888 		r = -EFAULT;
4889 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4890 			goto out;
4891 		n = msr_list.nmsrs;
4892 		msr_list.nmsrs = num_msr_based_features;
4893 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4894 			goto out;
4895 		r = -E2BIG;
4896 		if (n < msr_list.nmsrs)
4897 			goto out;
4898 		r = -EFAULT;
4899 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4900 				 num_msr_based_features * sizeof(u32)))
4901 			goto out;
4902 		r = 0;
4903 		break;
4904 	}
4905 	case KVM_GET_MSRS:
4906 		r = msr_io(NULL, argp, do_get_feature_msr, 1);
4907 		break;
4908 #ifdef CONFIG_KVM_HYPERV
4909 	case KVM_GET_SUPPORTED_HV_CPUID:
4910 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4911 		break;
4912 #endif
4913 	case KVM_GET_DEVICE_ATTR: {
4914 		struct kvm_device_attr attr;
4915 		r = -EFAULT;
4916 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4917 			break;
4918 		r = kvm_x86_dev_get_attr(&attr);
4919 		break;
4920 	}
4921 	case KVM_HAS_DEVICE_ATTR: {
4922 		struct kvm_device_attr attr;
4923 		r = -EFAULT;
4924 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4925 			break;
4926 		r = kvm_x86_dev_has_attr(&attr);
4927 		break;
4928 	}
4929 	default:
4930 		r = -EINVAL;
4931 		break;
4932 	}
4933 out:
4934 	return r;
4935 }
4936 
wbinvd_ipi(void * garbage)4937 static void wbinvd_ipi(void *garbage)
4938 {
4939 	wbinvd();
4940 }
4941 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4942 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4943 {
4944 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4945 }
4946 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4947 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4948 {
4949 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
4950 
4951 	vcpu->arch.l1tf_flush_l1d = true;
4952 
4953 	if (vcpu->scheduled_out && pmu->version && pmu->event_count) {
4954 		pmu->need_cleanup = true;
4955 		kvm_make_request(KVM_REQ_PMU, vcpu);
4956 	}
4957 
4958 	/* Address WBINVD may be executed by guest */
4959 	if (need_emulate_wbinvd(vcpu)) {
4960 		if (kvm_x86_call(has_wbinvd_exit)())
4961 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4962 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4963 			smp_call_function_single(vcpu->cpu,
4964 					wbinvd_ipi, NULL, 1);
4965 	}
4966 
4967 	kvm_x86_call(vcpu_load)(vcpu, cpu);
4968 
4969 	/* Save host pkru register if supported */
4970 	vcpu->arch.host_pkru = read_pkru();
4971 
4972 	/* Apply any externally detected TSC adjustments (due to suspend) */
4973 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4974 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4975 		vcpu->arch.tsc_offset_adjustment = 0;
4976 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4977 	}
4978 
4979 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4980 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4981 				rdtsc() - vcpu->arch.last_host_tsc;
4982 		if (tsc_delta < 0)
4983 			mark_tsc_unstable("KVM discovered backwards TSC");
4984 
4985 		if (kvm_check_tsc_unstable()) {
4986 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4987 						vcpu->arch.last_guest_tsc);
4988 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4989 			vcpu->arch.tsc_catchup = 1;
4990 		}
4991 
4992 		if (kvm_lapic_hv_timer_in_use(vcpu))
4993 			kvm_lapic_restart_hv_timer(vcpu);
4994 
4995 		/*
4996 		 * On a host with synchronized TSC, there is no need to update
4997 		 * kvmclock on vcpu->cpu migration
4998 		 */
4999 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
5000 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
5001 		if (vcpu->cpu != cpu)
5002 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
5003 		vcpu->cpu = cpu;
5004 	}
5005 
5006 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
5007 }
5008 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)5009 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
5010 {
5011 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
5012 	struct kvm_steal_time __user *st;
5013 	struct kvm_memslots *slots;
5014 	static const u8 preempted = KVM_VCPU_PREEMPTED;
5015 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
5016 
5017 	/*
5018 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
5019 	 * an instruction boundary and will not trigger guest emulation of any
5020 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
5021 	 * when this is true, for example allowing the vCPU to be marked
5022 	 * preempted if and only if the VM-Exit was due to a host interrupt.
5023 	 */
5024 	if (!vcpu->arch.at_instruction_boundary) {
5025 		vcpu->stat.preemption_other++;
5026 		return;
5027 	}
5028 
5029 	vcpu->stat.preemption_reported++;
5030 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
5031 		return;
5032 
5033 	if (vcpu->arch.st.preempted)
5034 		return;
5035 
5036 	/* This happens on process exit */
5037 	if (unlikely(current->mm != vcpu->kvm->mm))
5038 		return;
5039 
5040 	slots = kvm_memslots(vcpu->kvm);
5041 
5042 	if (unlikely(slots->generation != ghc->generation ||
5043 		     gpa != ghc->gpa ||
5044 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
5045 		return;
5046 
5047 	st = (struct kvm_steal_time __user *)ghc->hva;
5048 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
5049 
5050 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
5051 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
5052 
5053 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
5054 }
5055 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)5056 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
5057 {
5058 	int idx;
5059 
5060 	if (vcpu->preempted) {
5061 		/*
5062 		 * Assume protected guests are in-kernel.  Inefficient yielding
5063 		 * due to false positives is preferable to never yielding due
5064 		 * to false negatives.
5065 		 */
5066 		vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected ||
5067 						 !kvm_x86_call(get_cpl_no_cache)(vcpu);
5068 
5069 		/*
5070 		 * Take the srcu lock as memslots will be accessed to check the gfn
5071 		 * cache generation against the memslots generation.
5072 		 */
5073 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5074 		if (kvm_xen_msr_enabled(vcpu->kvm))
5075 			kvm_xen_runstate_set_preempted(vcpu);
5076 		else
5077 			kvm_steal_time_set_preempted(vcpu);
5078 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5079 	}
5080 
5081 	kvm_x86_call(vcpu_put)(vcpu);
5082 	vcpu->arch.last_host_tsc = rdtsc();
5083 }
5084 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5085 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
5086 				    struct kvm_lapic_state *s)
5087 {
5088 	kvm_x86_call(sync_pir_to_irr)(vcpu);
5089 
5090 	return kvm_apic_get_state(vcpu, s);
5091 }
5092 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)5093 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
5094 				    struct kvm_lapic_state *s)
5095 {
5096 	int r;
5097 
5098 	r = kvm_apic_set_state(vcpu, s);
5099 	if (r)
5100 		return r;
5101 	update_cr8_intercept(vcpu);
5102 
5103 	return 0;
5104 }
5105 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)5106 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
5107 {
5108 	/*
5109 	 * We can accept userspace's request for interrupt injection
5110 	 * as long as we have a place to store the interrupt number.
5111 	 * The actual injection will happen when the CPU is able to
5112 	 * deliver the interrupt.
5113 	 */
5114 	if (kvm_cpu_has_extint(vcpu))
5115 		return false;
5116 
5117 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
5118 	return (!lapic_in_kernel(vcpu) ||
5119 		kvm_apic_accept_pic_intr(vcpu));
5120 }
5121 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)5122 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
5123 {
5124 	/*
5125 	 * Do not cause an interrupt window exit if an exception
5126 	 * is pending or an event needs reinjection; userspace
5127 	 * might want to inject the interrupt manually using KVM_SET_REGS
5128 	 * or KVM_SET_SREGS.  For that to work, we must be at an
5129 	 * instruction boundary and with no events half-injected.
5130 	 */
5131 	return (kvm_arch_interrupt_allowed(vcpu) &&
5132 		kvm_cpu_accept_dm_intr(vcpu) &&
5133 		!kvm_event_needs_reinjection(vcpu) &&
5134 		!kvm_is_exception_pending(vcpu));
5135 }
5136 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)5137 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
5138 				    struct kvm_interrupt *irq)
5139 {
5140 	if (irq->irq >= KVM_NR_INTERRUPTS)
5141 		return -EINVAL;
5142 
5143 	if (!irqchip_in_kernel(vcpu->kvm)) {
5144 		kvm_queue_interrupt(vcpu, irq->irq, false);
5145 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5146 		return 0;
5147 	}
5148 
5149 	/*
5150 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
5151 	 * fail for in-kernel 8259.
5152 	 */
5153 	if (pic_in_kernel(vcpu->kvm))
5154 		return -ENXIO;
5155 
5156 	if (vcpu->arch.pending_external_vector != -1)
5157 		return -EEXIST;
5158 
5159 	vcpu->arch.pending_external_vector = irq->irq;
5160 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5161 	return 0;
5162 }
5163 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)5164 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5165 {
5166 	kvm_inject_nmi(vcpu);
5167 
5168 	return 0;
5169 }
5170 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)5171 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5172 					   struct kvm_tpr_access_ctl *tac)
5173 {
5174 	if (tac->flags)
5175 		return -EINVAL;
5176 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5177 	return 0;
5178 }
5179 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)5180 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5181 					u64 mcg_cap)
5182 {
5183 	int r;
5184 	unsigned bank_num = mcg_cap & 0xff, bank;
5185 
5186 	r = -EINVAL;
5187 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5188 		goto out;
5189 	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5190 		goto out;
5191 	r = 0;
5192 	vcpu->arch.mcg_cap = mcg_cap;
5193 	/* Init IA32_MCG_CTL to all 1s */
5194 	if (mcg_cap & MCG_CTL_P)
5195 		vcpu->arch.mcg_ctl = ~(u64)0;
5196 	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5197 	for (bank = 0; bank < bank_num; bank++) {
5198 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5199 		if (mcg_cap & MCG_CMCI_P)
5200 			vcpu->arch.mci_ctl2_banks[bank] = 0;
5201 	}
5202 
5203 	kvm_apic_after_set_mcg_cap(vcpu);
5204 
5205 	kvm_x86_call(setup_mce)(vcpu);
5206 out:
5207 	return r;
5208 }
5209 
5210 /*
5211  * Validate this is an UCNA (uncorrectable no action) error by checking the
5212  * MCG_STATUS and MCi_STATUS registers:
5213  * - none of the bits for Machine Check Exceptions are set
5214  * - both the VAL (valid) and UC (uncorrectable) bits are set
5215  * MCI_STATUS_PCC - Processor Context Corrupted
5216  * MCI_STATUS_S - Signaled as a Machine Check Exception
5217  * MCI_STATUS_AR - Software recoverable Action Required
5218  */
is_ucna(struct kvm_x86_mce * mce)5219 static bool is_ucna(struct kvm_x86_mce *mce)
5220 {
5221 	return	!mce->mcg_status &&
5222 		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5223 		(mce->status & MCI_STATUS_VAL) &&
5224 		(mce->status & MCI_STATUS_UC);
5225 }
5226 
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)5227 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5228 {
5229 	u64 mcg_cap = vcpu->arch.mcg_cap;
5230 
5231 	banks[1] = mce->status;
5232 	banks[2] = mce->addr;
5233 	banks[3] = mce->misc;
5234 	vcpu->arch.mcg_status = mce->mcg_status;
5235 
5236 	if (!(mcg_cap & MCG_CMCI_P) ||
5237 	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5238 		return 0;
5239 
5240 	if (lapic_in_kernel(vcpu))
5241 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5242 
5243 	return 0;
5244 }
5245 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)5246 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5247 				      struct kvm_x86_mce *mce)
5248 {
5249 	u64 mcg_cap = vcpu->arch.mcg_cap;
5250 	unsigned bank_num = mcg_cap & 0xff;
5251 	u64 *banks = vcpu->arch.mce_banks;
5252 
5253 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5254 		return -EINVAL;
5255 
5256 	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5257 
5258 	if (is_ucna(mce))
5259 		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5260 
5261 	/*
5262 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5263 	 * reporting is disabled
5264 	 */
5265 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5266 	    vcpu->arch.mcg_ctl != ~(u64)0)
5267 		return 0;
5268 	/*
5269 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5270 	 * reporting is disabled for the bank
5271 	 */
5272 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5273 		return 0;
5274 	if (mce->status & MCI_STATUS_UC) {
5275 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5276 		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5277 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5278 			return 0;
5279 		}
5280 		if (banks[1] & MCI_STATUS_VAL)
5281 			mce->status |= MCI_STATUS_OVER;
5282 		banks[2] = mce->addr;
5283 		banks[3] = mce->misc;
5284 		vcpu->arch.mcg_status = mce->mcg_status;
5285 		banks[1] = mce->status;
5286 		kvm_queue_exception(vcpu, MC_VECTOR);
5287 	} else if (!(banks[1] & MCI_STATUS_VAL)
5288 		   || !(banks[1] & MCI_STATUS_UC)) {
5289 		if (banks[1] & MCI_STATUS_VAL)
5290 			mce->status |= MCI_STATUS_OVER;
5291 		banks[2] = mce->addr;
5292 		banks[3] = mce->misc;
5293 		banks[1] = mce->status;
5294 	} else
5295 		banks[1] |= MCI_STATUS_OVER;
5296 	return 0;
5297 }
5298 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5299 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5300 					       struct kvm_vcpu_events *events)
5301 {
5302 	struct kvm_queued_exception *ex;
5303 
5304 	process_nmi(vcpu);
5305 
5306 #ifdef CONFIG_KVM_SMM
5307 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5308 		process_smi(vcpu);
5309 #endif
5310 
5311 	/*
5312 	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5313 	 * the only time there can be two queued exceptions is if there's a
5314 	 * non-exiting _injected_ exception, and a pending exiting exception.
5315 	 * In that case, ignore the VM-Exiting exception as it's an extension
5316 	 * of the injected exception.
5317 	 */
5318 	if (vcpu->arch.exception_vmexit.pending &&
5319 	    !vcpu->arch.exception.pending &&
5320 	    !vcpu->arch.exception.injected)
5321 		ex = &vcpu->arch.exception_vmexit;
5322 	else
5323 		ex = &vcpu->arch.exception;
5324 
5325 	/*
5326 	 * In guest mode, payload delivery should be deferred if the exception
5327 	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5328 	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5329 	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5330 	 * propagate the payload and so it cannot be safely deferred.  Deliver
5331 	 * the payload if the capability hasn't been requested.
5332 	 */
5333 	if (!vcpu->kvm->arch.exception_payload_enabled &&
5334 	    ex->pending && ex->has_payload)
5335 		kvm_deliver_exception_payload(vcpu, ex);
5336 
5337 	memset(events, 0, sizeof(*events));
5338 
5339 	/*
5340 	 * The API doesn't provide the instruction length for software
5341 	 * exceptions, so don't report them. As long as the guest RIP
5342 	 * isn't advanced, we should expect to encounter the exception
5343 	 * again.
5344 	 */
5345 	if (!kvm_exception_is_soft(ex->vector)) {
5346 		events->exception.injected = ex->injected;
5347 		events->exception.pending = ex->pending;
5348 		/*
5349 		 * For ABI compatibility, deliberately conflate
5350 		 * pending and injected exceptions when
5351 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5352 		 */
5353 		if (!vcpu->kvm->arch.exception_payload_enabled)
5354 			events->exception.injected |= ex->pending;
5355 	}
5356 	events->exception.nr = ex->vector;
5357 	events->exception.has_error_code = ex->has_error_code;
5358 	events->exception.error_code = ex->error_code;
5359 	events->exception_has_payload = ex->has_payload;
5360 	events->exception_payload = ex->payload;
5361 
5362 	events->interrupt.injected =
5363 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5364 	events->interrupt.nr = vcpu->arch.interrupt.nr;
5365 	events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
5366 
5367 	events->nmi.injected = vcpu->arch.nmi_injected;
5368 	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5369 	events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu);
5370 
5371 	/* events->sipi_vector is never valid when reporting to user space */
5372 
5373 #ifdef CONFIG_KVM_SMM
5374 	events->smi.smm = is_smm(vcpu);
5375 	events->smi.pending = vcpu->arch.smi_pending;
5376 	events->smi.smm_inside_nmi =
5377 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5378 #endif
5379 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5380 
5381 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5382 			 | KVM_VCPUEVENT_VALID_SHADOW
5383 			 | KVM_VCPUEVENT_VALID_SMM);
5384 	if (vcpu->kvm->arch.exception_payload_enabled)
5385 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5386 	if (vcpu->kvm->arch.triple_fault_event) {
5387 		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5388 		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5389 	}
5390 }
5391 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5392 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5393 					      struct kvm_vcpu_events *events)
5394 {
5395 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5396 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5397 			      | KVM_VCPUEVENT_VALID_SHADOW
5398 			      | KVM_VCPUEVENT_VALID_SMM
5399 			      | KVM_VCPUEVENT_VALID_PAYLOAD
5400 			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5401 		return -EINVAL;
5402 
5403 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5404 		if (!vcpu->kvm->arch.exception_payload_enabled)
5405 			return -EINVAL;
5406 		if (events->exception.pending)
5407 			events->exception.injected = 0;
5408 		else
5409 			events->exception_has_payload = 0;
5410 	} else {
5411 		events->exception.pending = 0;
5412 		events->exception_has_payload = 0;
5413 	}
5414 
5415 	if ((events->exception.injected || events->exception.pending) &&
5416 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5417 		return -EINVAL;
5418 
5419 	/* INITs are latched while in SMM */
5420 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5421 	    (events->smi.smm || events->smi.pending) &&
5422 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5423 		return -EINVAL;
5424 
5425 	process_nmi(vcpu);
5426 
5427 	/*
5428 	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5429 	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5430 	 * pending exceptions, already-injected exceptions are not subject to
5431 	 * intercpetion.  Note, userspace that conflates pending and injected
5432 	 * is hosed, and will incorrectly convert an injected exception into a
5433 	 * pending exception, which in turn may cause a spurious VM-Exit.
5434 	 */
5435 	vcpu->arch.exception_from_userspace = events->exception.pending;
5436 
5437 	vcpu->arch.exception_vmexit.pending = false;
5438 
5439 	vcpu->arch.exception.injected = events->exception.injected;
5440 	vcpu->arch.exception.pending = events->exception.pending;
5441 	vcpu->arch.exception.vector = events->exception.nr;
5442 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5443 	vcpu->arch.exception.error_code = events->exception.error_code;
5444 	vcpu->arch.exception.has_payload = events->exception_has_payload;
5445 	vcpu->arch.exception.payload = events->exception_payload;
5446 
5447 	vcpu->arch.interrupt.injected = events->interrupt.injected;
5448 	vcpu->arch.interrupt.nr = events->interrupt.nr;
5449 	vcpu->arch.interrupt.soft = events->interrupt.soft;
5450 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5451 		kvm_x86_call(set_interrupt_shadow)(vcpu,
5452 						   events->interrupt.shadow);
5453 
5454 	vcpu->arch.nmi_injected = events->nmi.injected;
5455 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5456 		vcpu->arch.nmi_pending = 0;
5457 		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5458 		if (events->nmi.pending)
5459 			kvm_make_request(KVM_REQ_NMI, vcpu);
5460 	}
5461 	kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked);
5462 
5463 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5464 	    lapic_in_kernel(vcpu))
5465 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5466 
5467 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5468 #ifdef CONFIG_KVM_SMM
5469 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5470 			kvm_leave_nested(vcpu);
5471 			kvm_smm_changed(vcpu, events->smi.smm);
5472 		}
5473 
5474 		vcpu->arch.smi_pending = events->smi.pending;
5475 
5476 		if (events->smi.smm) {
5477 			if (events->smi.smm_inside_nmi)
5478 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5479 			else
5480 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5481 		}
5482 
5483 #else
5484 		if (events->smi.smm || events->smi.pending ||
5485 		    events->smi.smm_inside_nmi)
5486 			return -EINVAL;
5487 #endif
5488 
5489 		if (lapic_in_kernel(vcpu)) {
5490 			if (events->smi.latched_init)
5491 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5492 			else
5493 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5494 		}
5495 	}
5496 
5497 	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5498 		if (!vcpu->kvm->arch.triple_fault_event)
5499 			return -EINVAL;
5500 		if (events->triple_fault.pending)
5501 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5502 		else
5503 			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5504 	}
5505 
5506 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5507 
5508 	return 0;
5509 }
5510 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5511 static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5512 					    struct kvm_debugregs *dbgregs)
5513 {
5514 	unsigned int i;
5515 
5516 	if (vcpu->kvm->arch.has_protected_state &&
5517 	    vcpu->arch.guest_state_protected)
5518 		return -EINVAL;
5519 
5520 	memset(dbgregs, 0, sizeof(*dbgregs));
5521 
5522 	BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db));
5523 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5524 		dbgregs->db[i] = vcpu->arch.db[i];
5525 
5526 	dbgregs->dr6 = vcpu->arch.dr6;
5527 	dbgregs->dr7 = vcpu->arch.dr7;
5528 	return 0;
5529 }
5530 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5531 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5532 					    struct kvm_debugregs *dbgregs)
5533 {
5534 	unsigned int i;
5535 
5536 	if (vcpu->kvm->arch.has_protected_state &&
5537 	    vcpu->arch.guest_state_protected)
5538 		return -EINVAL;
5539 
5540 	if (dbgregs->flags)
5541 		return -EINVAL;
5542 
5543 	if (!kvm_dr6_valid(dbgregs->dr6))
5544 		return -EINVAL;
5545 	if (!kvm_dr7_valid(dbgregs->dr7))
5546 		return -EINVAL;
5547 
5548 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++)
5549 		vcpu->arch.db[i] = dbgregs->db[i];
5550 
5551 	kvm_update_dr0123(vcpu);
5552 	vcpu->arch.dr6 = dbgregs->dr6;
5553 	vcpu->arch.dr7 = dbgregs->dr7;
5554 	kvm_update_dr7(vcpu);
5555 
5556 	return 0;
5557 }
5558 
5559 
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5560 static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5561 					 u8 *state, unsigned int size)
5562 {
5563 	/*
5564 	 * Only copy state for features that are enabled for the guest.  The
5565 	 * state itself isn't problematic, but setting bits in the header for
5566 	 * features that are supported in *this* host but not exposed to the
5567 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5568 	 * compatible host without the features that are NOT exposed to the
5569 	 * guest.
5570 	 *
5571 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5572 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5573 	 * supported by the host.
5574 	 */
5575 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5576 			     XFEATURE_MASK_FPSSE;
5577 
5578 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5579 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5580 
5581 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5582 				       supported_xcr0, vcpu->arch.pkru);
5583 	return 0;
5584 }
5585 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5586 static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5587 					struct kvm_xsave *guest_xsave)
5588 {
5589 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5590 					     sizeof(guest_xsave->region));
5591 }
5592 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5593 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5594 					struct kvm_xsave *guest_xsave)
5595 {
5596 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5597 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
5598 
5599 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5600 					      guest_xsave->region,
5601 					      kvm_caps.supported_xcr0,
5602 					      &vcpu->arch.pkru);
5603 }
5604 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5605 static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5606 				       struct kvm_xcrs *guest_xcrs)
5607 {
5608 	if (vcpu->kvm->arch.has_protected_state &&
5609 	    vcpu->arch.guest_state_protected)
5610 		return -EINVAL;
5611 
5612 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5613 		guest_xcrs->nr_xcrs = 0;
5614 		return 0;
5615 	}
5616 
5617 	guest_xcrs->nr_xcrs = 1;
5618 	guest_xcrs->flags = 0;
5619 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5620 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5621 	return 0;
5622 }
5623 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5624 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5625 				       struct kvm_xcrs *guest_xcrs)
5626 {
5627 	int i, r = 0;
5628 
5629 	if (vcpu->kvm->arch.has_protected_state &&
5630 	    vcpu->arch.guest_state_protected)
5631 		return -EINVAL;
5632 
5633 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5634 		return -EINVAL;
5635 
5636 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5637 		return -EINVAL;
5638 
5639 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5640 		/* Only support XCR0 currently */
5641 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5642 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5643 				guest_xcrs->xcrs[i].value);
5644 			break;
5645 		}
5646 	if (r)
5647 		r = -EINVAL;
5648 	return r;
5649 }
5650 
5651 /*
5652  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5653  * stopped by the hypervisor.  This function will be called from the host only.
5654  * EINVAL is returned when the host attempts to set the flag for a guest that
5655  * does not support pv clocks.
5656  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5657 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5658 {
5659 	if (!vcpu->arch.pv_time.active)
5660 		return -EINVAL;
5661 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5662 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5663 	return 0;
5664 }
5665 
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5666 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5667 				 struct kvm_device_attr *attr)
5668 {
5669 	int r;
5670 
5671 	switch (attr->attr) {
5672 	case KVM_VCPU_TSC_OFFSET:
5673 		r = 0;
5674 		break;
5675 	default:
5676 		r = -ENXIO;
5677 	}
5678 
5679 	return r;
5680 }
5681 
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5682 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5683 				 struct kvm_device_attr *attr)
5684 {
5685 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5686 	int r;
5687 
5688 	switch (attr->attr) {
5689 	case KVM_VCPU_TSC_OFFSET:
5690 		r = -EFAULT;
5691 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5692 			break;
5693 		r = 0;
5694 		break;
5695 	default:
5696 		r = -ENXIO;
5697 	}
5698 
5699 	return r;
5700 }
5701 
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5702 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5703 				 struct kvm_device_attr *attr)
5704 {
5705 	u64 __user *uaddr = u64_to_user_ptr(attr->addr);
5706 	struct kvm *kvm = vcpu->kvm;
5707 	int r;
5708 
5709 	switch (attr->attr) {
5710 	case KVM_VCPU_TSC_OFFSET: {
5711 		u64 offset, tsc, ns;
5712 		unsigned long flags;
5713 		bool matched;
5714 
5715 		r = -EFAULT;
5716 		if (get_user(offset, uaddr))
5717 			break;
5718 
5719 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5720 
5721 		matched = (vcpu->arch.virtual_tsc_khz &&
5722 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5723 			   kvm->arch.last_tsc_offset == offset);
5724 
5725 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5726 		ns = get_kvmclock_base_ns();
5727 
5728 		kvm->arch.user_set_tsc = true;
5729 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5730 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5731 
5732 		r = 0;
5733 		break;
5734 	}
5735 	default:
5736 		r = -ENXIO;
5737 	}
5738 
5739 	return r;
5740 }
5741 
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5742 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5743 				      unsigned int ioctl,
5744 				      void __user *argp)
5745 {
5746 	struct kvm_device_attr attr;
5747 	int r;
5748 
5749 	if (copy_from_user(&attr, argp, sizeof(attr)))
5750 		return -EFAULT;
5751 
5752 	if (attr.group != KVM_VCPU_TSC_CTRL)
5753 		return -ENXIO;
5754 
5755 	switch (ioctl) {
5756 	case KVM_HAS_DEVICE_ATTR:
5757 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5758 		break;
5759 	case KVM_GET_DEVICE_ATTR:
5760 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5761 		break;
5762 	case KVM_SET_DEVICE_ATTR:
5763 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5764 		break;
5765 	}
5766 
5767 	return r;
5768 }
5769 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5770 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5771 				     struct kvm_enable_cap *cap)
5772 {
5773 	if (cap->flags)
5774 		return -EINVAL;
5775 
5776 	switch (cap->cap) {
5777 #ifdef CONFIG_KVM_HYPERV
5778 	case KVM_CAP_HYPERV_SYNIC2:
5779 		if (cap->args[0])
5780 			return -EINVAL;
5781 		fallthrough;
5782 
5783 	case KVM_CAP_HYPERV_SYNIC:
5784 		if (!irqchip_in_kernel(vcpu->kvm))
5785 			return -EINVAL;
5786 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5787 					     KVM_CAP_HYPERV_SYNIC2);
5788 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5789 		{
5790 			int r;
5791 			uint16_t vmcs_version;
5792 			void __user *user_ptr;
5793 
5794 			if (!kvm_x86_ops.nested_ops->enable_evmcs)
5795 				return -ENOTTY;
5796 			r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5797 			if (!r) {
5798 				user_ptr = (void __user *)(uintptr_t)cap->args[0];
5799 				if (copy_to_user(user_ptr, &vmcs_version,
5800 						 sizeof(vmcs_version)))
5801 					r = -EFAULT;
5802 			}
5803 			return r;
5804 		}
5805 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5806 		if (!kvm_x86_ops.enable_l2_tlb_flush)
5807 			return -ENOTTY;
5808 
5809 		return kvm_x86_call(enable_l2_tlb_flush)(vcpu);
5810 
5811 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5812 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5813 #endif
5814 
5815 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5816 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5817 		return 0;
5818 	default:
5819 		return -EINVAL;
5820 	}
5821 }
5822 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5823 long kvm_arch_vcpu_ioctl(struct file *filp,
5824 			 unsigned int ioctl, unsigned long arg)
5825 {
5826 	struct kvm_vcpu *vcpu = filp->private_data;
5827 	void __user *argp = (void __user *)arg;
5828 	int r;
5829 	union {
5830 		struct kvm_sregs2 *sregs2;
5831 		struct kvm_lapic_state *lapic;
5832 		struct kvm_xsave *xsave;
5833 		struct kvm_xcrs *xcrs;
5834 		void *buffer;
5835 	} u;
5836 
5837 	vcpu_load(vcpu);
5838 
5839 	u.buffer = NULL;
5840 	switch (ioctl) {
5841 	case KVM_GET_LAPIC: {
5842 		r = -EINVAL;
5843 		if (!lapic_in_kernel(vcpu))
5844 			goto out;
5845 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
5846 
5847 		r = -ENOMEM;
5848 		if (!u.lapic)
5849 			goto out;
5850 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5851 		if (r)
5852 			goto out;
5853 		r = -EFAULT;
5854 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5855 			goto out;
5856 		r = 0;
5857 		break;
5858 	}
5859 	case KVM_SET_LAPIC: {
5860 		r = -EINVAL;
5861 		if (!lapic_in_kernel(vcpu))
5862 			goto out;
5863 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5864 		if (IS_ERR(u.lapic)) {
5865 			r = PTR_ERR(u.lapic);
5866 			goto out_nofree;
5867 		}
5868 
5869 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5870 		break;
5871 	}
5872 	case KVM_INTERRUPT: {
5873 		struct kvm_interrupt irq;
5874 
5875 		r = -EFAULT;
5876 		if (copy_from_user(&irq, argp, sizeof(irq)))
5877 			goto out;
5878 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5879 		break;
5880 	}
5881 	case KVM_NMI: {
5882 		r = kvm_vcpu_ioctl_nmi(vcpu);
5883 		break;
5884 	}
5885 	case KVM_SMI: {
5886 		r = kvm_inject_smi(vcpu);
5887 		break;
5888 	}
5889 	case KVM_SET_CPUID: {
5890 		struct kvm_cpuid __user *cpuid_arg = argp;
5891 		struct kvm_cpuid cpuid;
5892 
5893 		r = -EFAULT;
5894 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5895 			goto out;
5896 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5897 		break;
5898 	}
5899 	case KVM_SET_CPUID2: {
5900 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5901 		struct kvm_cpuid2 cpuid;
5902 
5903 		r = -EFAULT;
5904 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5905 			goto out;
5906 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5907 					      cpuid_arg->entries);
5908 		break;
5909 	}
5910 	case KVM_GET_CPUID2: {
5911 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5912 		struct kvm_cpuid2 cpuid;
5913 
5914 		r = -EFAULT;
5915 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5916 			goto out;
5917 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5918 					      cpuid_arg->entries);
5919 		if (r)
5920 			goto out;
5921 		r = -EFAULT;
5922 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5923 			goto out;
5924 		r = 0;
5925 		break;
5926 	}
5927 	case KVM_GET_MSRS: {
5928 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5929 		r = msr_io(vcpu, argp, do_get_msr, 1);
5930 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5931 		break;
5932 	}
5933 	case KVM_SET_MSRS: {
5934 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5935 		r = msr_io(vcpu, argp, do_set_msr, 0);
5936 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5937 		break;
5938 	}
5939 	case KVM_TPR_ACCESS_REPORTING: {
5940 		struct kvm_tpr_access_ctl tac;
5941 
5942 		r = -EFAULT;
5943 		if (copy_from_user(&tac, argp, sizeof(tac)))
5944 			goto out;
5945 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5946 		if (r)
5947 			goto out;
5948 		r = -EFAULT;
5949 		if (copy_to_user(argp, &tac, sizeof(tac)))
5950 			goto out;
5951 		r = 0;
5952 		break;
5953 	};
5954 	case KVM_SET_VAPIC_ADDR: {
5955 		struct kvm_vapic_addr va;
5956 		int idx;
5957 
5958 		r = -EINVAL;
5959 		if (!lapic_in_kernel(vcpu))
5960 			goto out;
5961 		r = -EFAULT;
5962 		if (copy_from_user(&va, argp, sizeof(va)))
5963 			goto out;
5964 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5965 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5966 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5967 		break;
5968 	}
5969 	case KVM_X86_SETUP_MCE: {
5970 		u64 mcg_cap;
5971 
5972 		r = -EFAULT;
5973 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5974 			goto out;
5975 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5976 		break;
5977 	}
5978 	case KVM_X86_SET_MCE: {
5979 		struct kvm_x86_mce mce;
5980 
5981 		r = -EFAULT;
5982 		if (copy_from_user(&mce, argp, sizeof(mce)))
5983 			goto out;
5984 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5985 		break;
5986 	}
5987 	case KVM_GET_VCPU_EVENTS: {
5988 		struct kvm_vcpu_events events;
5989 
5990 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5991 
5992 		r = -EFAULT;
5993 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5994 			break;
5995 		r = 0;
5996 		break;
5997 	}
5998 	case KVM_SET_VCPU_EVENTS: {
5999 		struct kvm_vcpu_events events;
6000 
6001 		r = -EFAULT;
6002 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
6003 			break;
6004 
6005 		kvm_vcpu_srcu_read_lock(vcpu);
6006 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
6007 		kvm_vcpu_srcu_read_unlock(vcpu);
6008 		break;
6009 	}
6010 	case KVM_GET_DEBUGREGS: {
6011 		struct kvm_debugregs dbgregs;
6012 
6013 		r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
6014 		if (r < 0)
6015 			break;
6016 
6017 		r = -EFAULT;
6018 		if (copy_to_user(argp, &dbgregs,
6019 				 sizeof(struct kvm_debugregs)))
6020 			break;
6021 		r = 0;
6022 		break;
6023 	}
6024 	case KVM_SET_DEBUGREGS: {
6025 		struct kvm_debugregs dbgregs;
6026 
6027 		r = -EFAULT;
6028 		if (copy_from_user(&dbgregs, argp,
6029 				   sizeof(struct kvm_debugregs)))
6030 			break;
6031 
6032 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
6033 		break;
6034 	}
6035 	case KVM_GET_XSAVE: {
6036 		r = -EINVAL;
6037 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
6038 			break;
6039 
6040 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
6041 		r = -ENOMEM;
6042 		if (!u.xsave)
6043 			break;
6044 
6045 		r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
6046 		if (r < 0)
6047 			break;
6048 
6049 		r = -EFAULT;
6050 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
6051 			break;
6052 		r = 0;
6053 		break;
6054 	}
6055 	case KVM_SET_XSAVE: {
6056 		int size = vcpu->arch.guest_fpu.uabi_size;
6057 
6058 		u.xsave = memdup_user(argp, size);
6059 		if (IS_ERR(u.xsave)) {
6060 			r = PTR_ERR(u.xsave);
6061 			goto out_nofree;
6062 		}
6063 
6064 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
6065 		break;
6066 	}
6067 
6068 	case KVM_GET_XSAVE2: {
6069 		int size = vcpu->arch.guest_fpu.uabi_size;
6070 
6071 		u.xsave = kzalloc(size, GFP_KERNEL);
6072 		r = -ENOMEM;
6073 		if (!u.xsave)
6074 			break;
6075 
6076 		r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
6077 		if (r < 0)
6078 			break;
6079 
6080 		r = -EFAULT;
6081 		if (copy_to_user(argp, u.xsave, size))
6082 			break;
6083 
6084 		r = 0;
6085 		break;
6086 	}
6087 
6088 	case KVM_GET_XCRS: {
6089 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
6090 		r = -ENOMEM;
6091 		if (!u.xcrs)
6092 			break;
6093 
6094 		r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
6095 		if (r < 0)
6096 			break;
6097 
6098 		r = -EFAULT;
6099 		if (copy_to_user(argp, u.xcrs,
6100 				 sizeof(struct kvm_xcrs)))
6101 			break;
6102 		r = 0;
6103 		break;
6104 	}
6105 	case KVM_SET_XCRS: {
6106 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
6107 		if (IS_ERR(u.xcrs)) {
6108 			r = PTR_ERR(u.xcrs);
6109 			goto out_nofree;
6110 		}
6111 
6112 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
6113 		break;
6114 	}
6115 	case KVM_SET_TSC_KHZ: {
6116 		u32 user_tsc_khz;
6117 
6118 		r = -EINVAL;
6119 		user_tsc_khz = (u32)arg;
6120 
6121 		if (kvm_caps.has_tsc_control &&
6122 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6123 			goto out;
6124 
6125 		if (user_tsc_khz == 0)
6126 			user_tsc_khz = tsc_khz;
6127 
6128 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
6129 			r = 0;
6130 
6131 		goto out;
6132 	}
6133 	case KVM_GET_TSC_KHZ: {
6134 		r = vcpu->arch.virtual_tsc_khz;
6135 		goto out;
6136 	}
6137 	case KVM_KVMCLOCK_CTRL: {
6138 		r = kvm_set_guest_paused(vcpu);
6139 		goto out;
6140 	}
6141 	case KVM_ENABLE_CAP: {
6142 		struct kvm_enable_cap cap;
6143 
6144 		r = -EFAULT;
6145 		if (copy_from_user(&cap, argp, sizeof(cap)))
6146 			goto out;
6147 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
6148 		break;
6149 	}
6150 	case KVM_GET_NESTED_STATE: {
6151 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6152 		u32 user_data_size;
6153 
6154 		r = -EINVAL;
6155 		if (!kvm_x86_ops.nested_ops->get_state)
6156 			break;
6157 
6158 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
6159 		r = -EFAULT;
6160 		if (get_user(user_data_size, &user_kvm_nested_state->size))
6161 			break;
6162 
6163 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
6164 						     user_data_size);
6165 		if (r < 0)
6166 			break;
6167 
6168 		if (r > user_data_size) {
6169 			if (put_user(r, &user_kvm_nested_state->size))
6170 				r = -EFAULT;
6171 			else
6172 				r = -E2BIG;
6173 			break;
6174 		}
6175 
6176 		r = 0;
6177 		break;
6178 	}
6179 	case KVM_SET_NESTED_STATE: {
6180 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
6181 		struct kvm_nested_state kvm_state;
6182 		int idx;
6183 
6184 		r = -EINVAL;
6185 		if (!kvm_x86_ops.nested_ops->set_state)
6186 			break;
6187 
6188 		r = -EFAULT;
6189 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6190 			break;
6191 
6192 		r = -EINVAL;
6193 		if (kvm_state.size < sizeof(kvm_state))
6194 			break;
6195 
6196 		if (kvm_state.flags &
6197 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6198 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6199 		      | KVM_STATE_NESTED_GIF_SET))
6200 			break;
6201 
6202 		/* nested_run_pending implies guest_mode.  */
6203 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6204 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6205 			break;
6206 
6207 		idx = srcu_read_lock(&vcpu->kvm->srcu);
6208 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6209 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6210 		break;
6211 	}
6212 #ifdef CONFIG_KVM_HYPERV
6213 	case KVM_GET_SUPPORTED_HV_CPUID:
6214 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6215 		break;
6216 #endif
6217 #ifdef CONFIG_KVM_XEN
6218 	case KVM_XEN_VCPU_GET_ATTR: {
6219 		struct kvm_xen_vcpu_attr xva;
6220 
6221 		r = -EFAULT;
6222 		if (copy_from_user(&xva, argp, sizeof(xva)))
6223 			goto out;
6224 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6225 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6226 			r = -EFAULT;
6227 		break;
6228 	}
6229 	case KVM_XEN_VCPU_SET_ATTR: {
6230 		struct kvm_xen_vcpu_attr xva;
6231 
6232 		r = -EFAULT;
6233 		if (copy_from_user(&xva, argp, sizeof(xva)))
6234 			goto out;
6235 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6236 		break;
6237 	}
6238 #endif
6239 	case KVM_GET_SREGS2: {
6240 		r = -EINVAL;
6241 		if (vcpu->kvm->arch.has_protected_state &&
6242 		    vcpu->arch.guest_state_protected)
6243 			goto out;
6244 
6245 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6246 		r = -ENOMEM;
6247 		if (!u.sregs2)
6248 			goto out;
6249 		__get_sregs2(vcpu, u.sregs2);
6250 		r = -EFAULT;
6251 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6252 			goto out;
6253 		r = 0;
6254 		break;
6255 	}
6256 	case KVM_SET_SREGS2: {
6257 		r = -EINVAL;
6258 		if (vcpu->kvm->arch.has_protected_state &&
6259 		    vcpu->arch.guest_state_protected)
6260 			goto out;
6261 
6262 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6263 		if (IS_ERR(u.sregs2)) {
6264 			r = PTR_ERR(u.sregs2);
6265 			u.sregs2 = NULL;
6266 			goto out;
6267 		}
6268 		r = __set_sregs2(vcpu, u.sregs2);
6269 		break;
6270 	}
6271 	case KVM_HAS_DEVICE_ATTR:
6272 	case KVM_GET_DEVICE_ATTR:
6273 	case KVM_SET_DEVICE_ATTR:
6274 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6275 		break;
6276 	default:
6277 		r = -EINVAL;
6278 	}
6279 out:
6280 	kfree(u.buffer);
6281 out_nofree:
6282 	vcpu_put(vcpu);
6283 	return r;
6284 }
6285 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)6286 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6287 {
6288 	return VM_FAULT_SIGBUS;
6289 }
6290 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)6291 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6292 {
6293 	int ret;
6294 
6295 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6296 		return -EINVAL;
6297 	ret = kvm_x86_call(set_tss_addr)(kvm, addr);
6298 	return ret;
6299 }
6300 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)6301 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6302 					      u64 ident_addr)
6303 {
6304 	return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr);
6305 }
6306 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)6307 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6308 					 unsigned long kvm_nr_mmu_pages)
6309 {
6310 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6311 		return -EINVAL;
6312 
6313 	mutex_lock(&kvm->slots_lock);
6314 
6315 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6316 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6317 
6318 	mutex_unlock(&kvm->slots_lock);
6319 	return 0;
6320 }
6321 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6322 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6323 {
6324 	struct kvm_pic *pic = kvm->arch.vpic;
6325 	int r;
6326 
6327 	r = 0;
6328 	switch (chip->chip_id) {
6329 	case KVM_IRQCHIP_PIC_MASTER:
6330 		memcpy(&chip->chip.pic, &pic->pics[0],
6331 			sizeof(struct kvm_pic_state));
6332 		break;
6333 	case KVM_IRQCHIP_PIC_SLAVE:
6334 		memcpy(&chip->chip.pic, &pic->pics[1],
6335 			sizeof(struct kvm_pic_state));
6336 		break;
6337 	case KVM_IRQCHIP_IOAPIC:
6338 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6339 		break;
6340 	default:
6341 		r = -EINVAL;
6342 		break;
6343 	}
6344 	return r;
6345 }
6346 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6347 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6348 {
6349 	struct kvm_pic *pic = kvm->arch.vpic;
6350 	int r;
6351 
6352 	r = 0;
6353 	switch (chip->chip_id) {
6354 	case KVM_IRQCHIP_PIC_MASTER:
6355 		spin_lock(&pic->lock);
6356 		memcpy(&pic->pics[0], &chip->chip.pic,
6357 			sizeof(struct kvm_pic_state));
6358 		spin_unlock(&pic->lock);
6359 		break;
6360 	case KVM_IRQCHIP_PIC_SLAVE:
6361 		spin_lock(&pic->lock);
6362 		memcpy(&pic->pics[1], &chip->chip.pic,
6363 			sizeof(struct kvm_pic_state));
6364 		spin_unlock(&pic->lock);
6365 		break;
6366 	case KVM_IRQCHIP_IOAPIC:
6367 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6368 		break;
6369 	default:
6370 		r = -EINVAL;
6371 		break;
6372 	}
6373 	kvm_pic_update_irq(pic);
6374 	return r;
6375 }
6376 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6377 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6378 {
6379 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6380 
6381 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6382 
6383 	mutex_lock(&kps->lock);
6384 	memcpy(ps, &kps->channels, sizeof(*ps));
6385 	mutex_unlock(&kps->lock);
6386 	return 0;
6387 }
6388 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6389 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6390 {
6391 	int i;
6392 	struct kvm_pit *pit = kvm->arch.vpit;
6393 
6394 	mutex_lock(&pit->pit_state.lock);
6395 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6396 	for (i = 0; i < 3; i++)
6397 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6398 	mutex_unlock(&pit->pit_state.lock);
6399 	return 0;
6400 }
6401 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6402 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6403 {
6404 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6405 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6406 		sizeof(ps->channels));
6407 	ps->flags = kvm->arch.vpit->pit_state.flags;
6408 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6409 	memset(&ps->reserved, 0, sizeof(ps->reserved));
6410 	return 0;
6411 }
6412 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6413 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6414 {
6415 	int start = 0;
6416 	int i;
6417 	u32 prev_legacy, cur_legacy;
6418 	struct kvm_pit *pit = kvm->arch.vpit;
6419 
6420 	mutex_lock(&pit->pit_state.lock);
6421 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6422 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6423 	if (!prev_legacy && cur_legacy)
6424 		start = 1;
6425 	memcpy(&pit->pit_state.channels, &ps->channels,
6426 	       sizeof(pit->pit_state.channels));
6427 	pit->pit_state.flags = ps->flags;
6428 	for (i = 0; i < 3; i++)
6429 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6430 				   start && i == 0);
6431 	mutex_unlock(&pit->pit_state.lock);
6432 	return 0;
6433 }
6434 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6435 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6436 				 struct kvm_reinject_control *control)
6437 {
6438 	struct kvm_pit *pit = kvm->arch.vpit;
6439 
6440 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6441 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6442 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6443 	 */
6444 	mutex_lock(&pit->pit_state.lock);
6445 	kvm_pit_set_reinject(pit, control->pit_reinject);
6446 	mutex_unlock(&pit->pit_state.lock);
6447 
6448 	return 0;
6449 }
6450 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6451 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6452 {
6453 
6454 	/*
6455 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6456 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6457 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6458 	 * VM-Exit.
6459 	 */
6460 	struct kvm_vcpu *vcpu;
6461 	unsigned long i;
6462 
6463 	if (!kvm_x86_ops.cpu_dirty_log_size)
6464 		return;
6465 
6466 	kvm_for_each_vcpu(i, vcpu, kvm)
6467 		kvm_vcpu_kick(vcpu);
6468 }
6469 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6470 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6471 			bool line_status)
6472 {
6473 	if (!irqchip_in_kernel(kvm))
6474 		return -ENXIO;
6475 
6476 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6477 					irq_event->irq, irq_event->level,
6478 					line_status);
6479 	return 0;
6480 }
6481 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6482 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6483 			    struct kvm_enable_cap *cap)
6484 {
6485 	int r;
6486 
6487 	if (cap->flags)
6488 		return -EINVAL;
6489 
6490 	switch (cap->cap) {
6491 	case KVM_CAP_DISABLE_QUIRKS2:
6492 		r = -EINVAL;
6493 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6494 			break;
6495 		fallthrough;
6496 	case KVM_CAP_DISABLE_QUIRKS:
6497 		kvm->arch.disabled_quirks = cap->args[0];
6498 		r = 0;
6499 		break;
6500 	case KVM_CAP_SPLIT_IRQCHIP: {
6501 		mutex_lock(&kvm->lock);
6502 		r = -EINVAL;
6503 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6504 			goto split_irqchip_unlock;
6505 		r = -EEXIST;
6506 		if (irqchip_in_kernel(kvm))
6507 			goto split_irqchip_unlock;
6508 		if (kvm->created_vcpus)
6509 			goto split_irqchip_unlock;
6510 		/* Pairs with irqchip_in_kernel. */
6511 		smp_wmb();
6512 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6513 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6514 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6515 		r = 0;
6516 split_irqchip_unlock:
6517 		mutex_unlock(&kvm->lock);
6518 		break;
6519 	}
6520 	case KVM_CAP_X2APIC_API:
6521 		r = -EINVAL;
6522 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6523 			break;
6524 
6525 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6526 			kvm->arch.x2apic_format = true;
6527 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6528 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6529 
6530 		r = 0;
6531 		break;
6532 	case KVM_CAP_X86_DISABLE_EXITS:
6533 		r = -EINVAL;
6534 		if (cap->args[0] & ~kvm_get_allowed_disable_exits())
6535 			break;
6536 
6537 		mutex_lock(&kvm->lock);
6538 		if (kvm->created_vcpus)
6539 			goto disable_exits_unlock;
6540 
6541 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6542 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6543 
6544 		if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) &&
6545 		    cpu_smt_possible() &&
6546 		    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6547 			pr_warn_once(SMT_RSB_MSG);
6548 
6549 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6550 			kvm->arch.pause_in_guest = true;
6551 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT)
6552 			kvm->arch.mwait_in_guest = true;
6553 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6554 			kvm->arch.hlt_in_guest = true;
6555 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6556 			kvm->arch.cstate_in_guest = true;
6557 		r = 0;
6558 disable_exits_unlock:
6559 		mutex_unlock(&kvm->lock);
6560 		break;
6561 	case KVM_CAP_MSR_PLATFORM_INFO:
6562 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6563 		r = 0;
6564 		break;
6565 	case KVM_CAP_EXCEPTION_PAYLOAD:
6566 		kvm->arch.exception_payload_enabled = cap->args[0];
6567 		r = 0;
6568 		break;
6569 	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6570 		kvm->arch.triple_fault_event = cap->args[0];
6571 		r = 0;
6572 		break;
6573 	case KVM_CAP_X86_USER_SPACE_MSR:
6574 		r = -EINVAL;
6575 		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6576 			break;
6577 		kvm->arch.user_space_msr_mask = cap->args[0];
6578 		r = 0;
6579 		break;
6580 	case KVM_CAP_X86_BUS_LOCK_EXIT:
6581 		r = -EINVAL;
6582 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6583 			break;
6584 
6585 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6586 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6587 			break;
6588 
6589 		if (kvm_caps.has_bus_lock_exit &&
6590 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6591 			kvm->arch.bus_lock_detection_enabled = true;
6592 		r = 0;
6593 		break;
6594 #ifdef CONFIG_X86_SGX_KVM
6595 	case KVM_CAP_SGX_ATTRIBUTE: {
6596 		unsigned long allowed_attributes = 0;
6597 
6598 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6599 		if (r)
6600 			break;
6601 
6602 		/* KVM only supports the PROVISIONKEY privileged attribute. */
6603 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6604 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6605 			kvm->arch.sgx_provisioning_allowed = true;
6606 		else
6607 			r = -EINVAL;
6608 		break;
6609 	}
6610 #endif
6611 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6612 		r = -EINVAL;
6613 		if (!kvm_x86_ops.vm_copy_enc_context_from)
6614 			break;
6615 
6616 		r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]);
6617 		break;
6618 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6619 		r = -EINVAL;
6620 		if (!kvm_x86_ops.vm_move_enc_context_from)
6621 			break;
6622 
6623 		r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]);
6624 		break;
6625 	case KVM_CAP_EXIT_HYPERCALL:
6626 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6627 			r = -EINVAL;
6628 			break;
6629 		}
6630 		kvm->arch.hypercall_exit_enabled = cap->args[0];
6631 		r = 0;
6632 		break;
6633 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6634 		r = -EINVAL;
6635 		if (cap->args[0] & ~1)
6636 			break;
6637 		kvm->arch.exit_on_emulation_error = cap->args[0];
6638 		r = 0;
6639 		break;
6640 	case KVM_CAP_PMU_CAPABILITY:
6641 		r = -EINVAL;
6642 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6643 			break;
6644 
6645 		mutex_lock(&kvm->lock);
6646 		if (!kvm->created_vcpus) {
6647 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6648 			r = 0;
6649 		}
6650 		mutex_unlock(&kvm->lock);
6651 		break;
6652 	case KVM_CAP_MAX_VCPU_ID:
6653 		r = -EINVAL;
6654 		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6655 			break;
6656 
6657 		mutex_lock(&kvm->lock);
6658 		if (kvm->arch.bsp_vcpu_id > cap->args[0]) {
6659 			;
6660 		} else if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6661 			r = 0;
6662 		} else if (!kvm->arch.max_vcpu_ids) {
6663 			kvm->arch.max_vcpu_ids = cap->args[0];
6664 			r = 0;
6665 		}
6666 		mutex_unlock(&kvm->lock);
6667 		break;
6668 	case KVM_CAP_X86_NOTIFY_VMEXIT:
6669 		r = -EINVAL;
6670 		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6671 			break;
6672 		if (!kvm_caps.has_notify_vmexit)
6673 			break;
6674 		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6675 			break;
6676 		mutex_lock(&kvm->lock);
6677 		if (!kvm->created_vcpus) {
6678 			kvm->arch.notify_window = cap->args[0] >> 32;
6679 			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6680 			r = 0;
6681 		}
6682 		mutex_unlock(&kvm->lock);
6683 		break;
6684 	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6685 		r = -EINVAL;
6686 
6687 		/*
6688 		 * Since the risk of disabling NX hugepages is a guest crashing
6689 		 * the system, ensure the userspace process has permission to
6690 		 * reboot the system.
6691 		 *
6692 		 * Note that unlike the reboot() syscall, the process must have
6693 		 * this capability in the root namespace because exposing
6694 		 * /dev/kvm into a container does not limit the scope of the
6695 		 * iTLB multihit bug to that container. In other words,
6696 		 * this must use capable(), not ns_capable().
6697 		 */
6698 		if (!capable(CAP_SYS_BOOT)) {
6699 			r = -EPERM;
6700 			break;
6701 		}
6702 
6703 		if (cap->args[0])
6704 			break;
6705 
6706 		mutex_lock(&kvm->lock);
6707 		if (!kvm->created_vcpus) {
6708 			kvm->arch.disable_nx_huge_pages = true;
6709 			r = 0;
6710 		}
6711 		mutex_unlock(&kvm->lock);
6712 		break;
6713 	case KVM_CAP_X86_APIC_BUS_CYCLES_NS: {
6714 		u64 bus_cycle_ns = cap->args[0];
6715 		u64 unused;
6716 
6717 		/*
6718 		 * Guard against overflow in tmict_to_ns(). 128 is the highest
6719 		 * divide value that can be programmed in APIC_TDCR.
6720 		 */
6721 		r = -EINVAL;
6722 		if (!bus_cycle_ns ||
6723 		    check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused))
6724 			break;
6725 
6726 		r = 0;
6727 		mutex_lock(&kvm->lock);
6728 		if (!irqchip_in_kernel(kvm))
6729 			r = -ENXIO;
6730 		else if (kvm->created_vcpus)
6731 			r = -EINVAL;
6732 		else
6733 			kvm->arch.apic_bus_cycle_ns = bus_cycle_ns;
6734 		mutex_unlock(&kvm->lock);
6735 		break;
6736 	}
6737 	default:
6738 		r = -EINVAL;
6739 		break;
6740 	}
6741 	return r;
6742 }
6743 
kvm_alloc_msr_filter(bool default_allow)6744 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6745 {
6746 	struct kvm_x86_msr_filter *msr_filter;
6747 
6748 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6749 	if (!msr_filter)
6750 		return NULL;
6751 
6752 	msr_filter->default_allow = default_allow;
6753 	return msr_filter;
6754 }
6755 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6756 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6757 {
6758 	u32 i;
6759 
6760 	if (!msr_filter)
6761 		return;
6762 
6763 	for (i = 0; i < msr_filter->count; i++)
6764 		kfree(msr_filter->ranges[i].bitmap);
6765 
6766 	kfree(msr_filter);
6767 }
6768 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6769 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6770 			      struct kvm_msr_filter_range *user_range)
6771 {
6772 	unsigned long *bitmap;
6773 	size_t bitmap_size;
6774 
6775 	if (!user_range->nmsrs)
6776 		return 0;
6777 
6778 	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6779 		return -EINVAL;
6780 
6781 	if (!user_range->flags)
6782 		return -EINVAL;
6783 
6784 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6785 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6786 		return -EINVAL;
6787 
6788 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6789 	if (IS_ERR(bitmap))
6790 		return PTR_ERR(bitmap);
6791 
6792 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6793 		.flags = user_range->flags,
6794 		.base = user_range->base,
6795 		.nmsrs = user_range->nmsrs,
6796 		.bitmap = bitmap,
6797 	};
6798 
6799 	msr_filter->count++;
6800 	return 0;
6801 }
6802 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6803 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6804 				       struct kvm_msr_filter *filter)
6805 {
6806 	struct kvm_x86_msr_filter *new_filter, *old_filter;
6807 	bool default_allow;
6808 	bool empty = true;
6809 	int r;
6810 	u32 i;
6811 
6812 	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6813 		return -EINVAL;
6814 
6815 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6816 		empty &= !filter->ranges[i].nmsrs;
6817 
6818 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6819 	if (empty && !default_allow)
6820 		return -EINVAL;
6821 
6822 	new_filter = kvm_alloc_msr_filter(default_allow);
6823 	if (!new_filter)
6824 		return -ENOMEM;
6825 
6826 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6827 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6828 		if (r) {
6829 			kvm_free_msr_filter(new_filter);
6830 			return r;
6831 		}
6832 	}
6833 
6834 	mutex_lock(&kvm->lock);
6835 	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6836 					 mutex_is_locked(&kvm->lock));
6837 	mutex_unlock(&kvm->lock);
6838 	synchronize_srcu(&kvm->srcu);
6839 
6840 	kvm_free_msr_filter(old_filter);
6841 
6842 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6843 
6844 	return 0;
6845 }
6846 
6847 #ifdef CONFIG_KVM_COMPAT
6848 /* for KVM_X86_SET_MSR_FILTER */
6849 struct kvm_msr_filter_range_compat {
6850 	__u32 flags;
6851 	__u32 nmsrs;
6852 	__u32 base;
6853 	__u32 bitmap;
6854 };
6855 
6856 struct kvm_msr_filter_compat {
6857 	__u32 flags;
6858 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6859 };
6860 
6861 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6862 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6863 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6864 			      unsigned long arg)
6865 {
6866 	void __user *argp = (void __user *)arg;
6867 	struct kvm *kvm = filp->private_data;
6868 	long r = -ENOTTY;
6869 
6870 	switch (ioctl) {
6871 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6872 		struct kvm_msr_filter __user *user_msr_filter = argp;
6873 		struct kvm_msr_filter_compat filter_compat;
6874 		struct kvm_msr_filter filter;
6875 		int i;
6876 
6877 		if (copy_from_user(&filter_compat, user_msr_filter,
6878 				   sizeof(filter_compat)))
6879 			return -EFAULT;
6880 
6881 		filter.flags = filter_compat.flags;
6882 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6883 			struct kvm_msr_filter_range_compat *cr;
6884 
6885 			cr = &filter_compat.ranges[i];
6886 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6887 				.flags = cr->flags,
6888 				.nmsrs = cr->nmsrs,
6889 				.base = cr->base,
6890 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6891 			};
6892 		}
6893 
6894 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6895 		break;
6896 	}
6897 	}
6898 
6899 	return r;
6900 }
6901 #endif
6902 
6903 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6904 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6905 {
6906 	struct kvm_vcpu *vcpu;
6907 	unsigned long i;
6908 	int ret = 0;
6909 
6910 	mutex_lock(&kvm->lock);
6911 	kvm_for_each_vcpu(i, vcpu, kvm) {
6912 		if (!vcpu->arch.pv_time.active)
6913 			continue;
6914 
6915 		ret = kvm_set_guest_paused(vcpu);
6916 		if (ret) {
6917 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6918 				vcpu->vcpu_id, ret);
6919 			break;
6920 		}
6921 	}
6922 	mutex_unlock(&kvm->lock);
6923 
6924 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6925 }
6926 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6927 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6928 {
6929 	switch (state) {
6930 	case PM_HIBERNATION_PREPARE:
6931 	case PM_SUSPEND_PREPARE:
6932 		return kvm_arch_suspend_notifier(kvm);
6933 	}
6934 
6935 	return NOTIFY_DONE;
6936 }
6937 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6938 
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6939 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6940 {
6941 	struct kvm_clock_data data = { 0 };
6942 
6943 	get_kvmclock(kvm, &data);
6944 	if (copy_to_user(argp, &data, sizeof(data)))
6945 		return -EFAULT;
6946 
6947 	return 0;
6948 }
6949 
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6950 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6951 {
6952 	struct kvm_arch *ka = &kvm->arch;
6953 	struct kvm_clock_data data;
6954 	u64 now_raw_ns;
6955 
6956 	if (copy_from_user(&data, argp, sizeof(data)))
6957 		return -EFAULT;
6958 
6959 	/*
6960 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6961 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6962 	 */
6963 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6964 		return -EINVAL;
6965 
6966 	kvm_hv_request_tsc_page_update(kvm);
6967 	kvm_start_pvclock_update(kvm);
6968 	pvclock_update_vm_gtod_copy(kvm);
6969 
6970 	/*
6971 	 * This pairs with kvm_guest_time_update(): when masterclock is
6972 	 * in use, we use master_kernel_ns + kvmclock_offset to set
6973 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6974 	 * is slightly ahead) here we risk going negative on unsigned
6975 	 * 'system_time' when 'data.clock' is very small.
6976 	 */
6977 	if (data.flags & KVM_CLOCK_REALTIME) {
6978 		u64 now_real_ns = ktime_get_real_ns();
6979 
6980 		/*
6981 		 * Avoid stepping the kvmclock backwards.
6982 		 */
6983 		if (now_real_ns > data.realtime)
6984 			data.clock += now_real_ns - data.realtime;
6985 	}
6986 
6987 	if (ka->use_master_clock)
6988 		now_raw_ns = ka->master_kernel_ns;
6989 	else
6990 		now_raw_ns = get_kvmclock_base_ns();
6991 	ka->kvmclock_offset = data.clock - now_raw_ns;
6992 	kvm_end_pvclock_update(kvm);
6993 	return 0;
6994 }
6995 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6996 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6997 {
6998 	struct kvm *kvm = filp->private_data;
6999 	void __user *argp = (void __user *)arg;
7000 	int r = -ENOTTY;
7001 	/*
7002 	 * This union makes it completely explicit to gcc-3.x
7003 	 * that these two variables' stack usage should be
7004 	 * combined, not added together.
7005 	 */
7006 	union {
7007 		struct kvm_pit_state ps;
7008 		struct kvm_pit_state2 ps2;
7009 		struct kvm_pit_config pit_config;
7010 	} u;
7011 
7012 	switch (ioctl) {
7013 	case KVM_SET_TSS_ADDR:
7014 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
7015 		break;
7016 	case KVM_SET_IDENTITY_MAP_ADDR: {
7017 		u64 ident_addr;
7018 
7019 		mutex_lock(&kvm->lock);
7020 		r = -EINVAL;
7021 		if (kvm->created_vcpus)
7022 			goto set_identity_unlock;
7023 		r = -EFAULT;
7024 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
7025 			goto set_identity_unlock;
7026 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
7027 set_identity_unlock:
7028 		mutex_unlock(&kvm->lock);
7029 		break;
7030 	}
7031 	case KVM_SET_NR_MMU_PAGES:
7032 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
7033 		break;
7034 	case KVM_CREATE_IRQCHIP: {
7035 		mutex_lock(&kvm->lock);
7036 
7037 		r = -EEXIST;
7038 		if (irqchip_in_kernel(kvm))
7039 			goto create_irqchip_unlock;
7040 
7041 		r = -EINVAL;
7042 		if (kvm->created_vcpus)
7043 			goto create_irqchip_unlock;
7044 
7045 		r = kvm_pic_init(kvm);
7046 		if (r)
7047 			goto create_irqchip_unlock;
7048 
7049 		r = kvm_ioapic_init(kvm);
7050 		if (r) {
7051 			kvm_pic_destroy(kvm);
7052 			goto create_irqchip_unlock;
7053 		}
7054 
7055 		r = kvm_setup_default_irq_routing(kvm);
7056 		if (r) {
7057 			kvm_ioapic_destroy(kvm);
7058 			kvm_pic_destroy(kvm);
7059 			goto create_irqchip_unlock;
7060 		}
7061 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
7062 		smp_wmb();
7063 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
7064 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
7065 	create_irqchip_unlock:
7066 		mutex_unlock(&kvm->lock);
7067 		break;
7068 	}
7069 	case KVM_CREATE_PIT:
7070 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
7071 		goto create_pit;
7072 	case KVM_CREATE_PIT2:
7073 		r = -EFAULT;
7074 		if (copy_from_user(&u.pit_config, argp,
7075 				   sizeof(struct kvm_pit_config)))
7076 			goto out;
7077 	create_pit:
7078 		mutex_lock(&kvm->lock);
7079 		r = -EEXIST;
7080 		if (kvm->arch.vpit)
7081 			goto create_pit_unlock;
7082 		r = -ENOENT;
7083 		if (!pic_in_kernel(kvm))
7084 			goto create_pit_unlock;
7085 		r = -ENOMEM;
7086 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7087 		if (kvm->arch.vpit)
7088 			r = 0;
7089 	create_pit_unlock:
7090 		mutex_unlock(&kvm->lock);
7091 		break;
7092 	case KVM_GET_IRQCHIP: {
7093 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7094 		struct kvm_irqchip *chip;
7095 
7096 		chip = memdup_user(argp, sizeof(*chip));
7097 		if (IS_ERR(chip)) {
7098 			r = PTR_ERR(chip);
7099 			goto out;
7100 		}
7101 
7102 		r = -ENXIO;
7103 		if (!irqchip_kernel(kvm))
7104 			goto get_irqchip_out;
7105 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
7106 		if (r)
7107 			goto get_irqchip_out;
7108 		r = -EFAULT;
7109 		if (copy_to_user(argp, chip, sizeof(*chip)))
7110 			goto get_irqchip_out;
7111 		r = 0;
7112 	get_irqchip_out:
7113 		kfree(chip);
7114 		break;
7115 	}
7116 	case KVM_SET_IRQCHIP: {
7117 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
7118 		struct kvm_irqchip *chip;
7119 
7120 		chip = memdup_user(argp, sizeof(*chip));
7121 		if (IS_ERR(chip)) {
7122 			r = PTR_ERR(chip);
7123 			goto out;
7124 		}
7125 
7126 		r = -ENXIO;
7127 		if (!irqchip_kernel(kvm))
7128 			goto set_irqchip_out;
7129 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
7130 	set_irqchip_out:
7131 		kfree(chip);
7132 		break;
7133 	}
7134 	case KVM_GET_PIT: {
7135 		r = -EFAULT;
7136 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
7137 			goto out;
7138 		r = -ENXIO;
7139 		if (!kvm->arch.vpit)
7140 			goto out;
7141 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
7142 		if (r)
7143 			goto out;
7144 		r = -EFAULT;
7145 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
7146 			goto out;
7147 		r = 0;
7148 		break;
7149 	}
7150 	case KVM_SET_PIT: {
7151 		r = -EFAULT;
7152 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
7153 			goto out;
7154 		mutex_lock(&kvm->lock);
7155 		r = -ENXIO;
7156 		if (!kvm->arch.vpit)
7157 			goto set_pit_out;
7158 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7159 set_pit_out:
7160 		mutex_unlock(&kvm->lock);
7161 		break;
7162 	}
7163 	case KVM_GET_PIT2: {
7164 		r = -ENXIO;
7165 		if (!kvm->arch.vpit)
7166 			goto out;
7167 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
7168 		if (r)
7169 			goto out;
7170 		r = -EFAULT;
7171 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
7172 			goto out;
7173 		r = 0;
7174 		break;
7175 	}
7176 	case KVM_SET_PIT2: {
7177 		r = -EFAULT;
7178 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
7179 			goto out;
7180 		mutex_lock(&kvm->lock);
7181 		r = -ENXIO;
7182 		if (!kvm->arch.vpit)
7183 			goto set_pit2_out;
7184 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7185 set_pit2_out:
7186 		mutex_unlock(&kvm->lock);
7187 		break;
7188 	}
7189 	case KVM_REINJECT_CONTROL: {
7190 		struct kvm_reinject_control control;
7191 		r =  -EFAULT;
7192 		if (copy_from_user(&control, argp, sizeof(control)))
7193 			goto out;
7194 		r = -ENXIO;
7195 		if (!kvm->arch.vpit)
7196 			goto out;
7197 		r = kvm_vm_ioctl_reinject(kvm, &control);
7198 		break;
7199 	}
7200 	case KVM_SET_BOOT_CPU_ID:
7201 		r = 0;
7202 		mutex_lock(&kvm->lock);
7203 		if (kvm->created_vcpus)
7204 			r = -EBUSY;
7205 		else if (arg > KVM_MAX_VCPU_IDS ||
7206 			 (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids))
7207 			r = -EINVAL;
7208 		else
7209 			kvm->arch.bsp_vcpu_id = arg;
7210 		mutex_unlock(&kvm->lock);
7211 		break;
7212 #ifdef CONFIG_KVM_XEN
7213 	case KVM_XEN_HVM_CONFIG: {
7214 		struct kvm_xen_hvm_config xhc;
7215 		r = -EFAULT;
7216 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
7217 			goto out;
7218 		r = kvm_xen_hvm_config(kvm, &xhc);
7219 		break;
7220 	}
7221 	case KVM_XEN_HVM_GET_ATTR: {
7222 		struct kvm_xen_hvm_attr xha;
7223 
7224 		r = -EFAULT;
7225 		if (copy_from_user(&xha, argp, sizeof(xha)))
7226 			goto out;
7227 		r = kvm_xen_hvm_get_attr(kvm, &xha);
7228 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7229 			r = -EFAULT;
7230 		break;
7231 	}
7232 	case KVM_XEN_HVM_SET_ATTR: {
7233 		struct kvm_xen_hvm_attr xha;
7234 
7235 		r = -EFAULT;
7236 		if (copy_from_user(&xha, argp, sizeof(xha)))
7237 			goto out;
7238 		r = kvm_xen_hvm_set_attr(kvm, &xha);
7239 		break;
7240 	}
7241 	case KVM_XEN_HVM_EVTCHN_SEND: {
7242 		struct kvm_irq_routing_xen_evtchn uxe;
7243 
7244 		r = -EFAULT;
7245 		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7246 			goto out;
7247 		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7248 		break;
7249 	}
7250 #endif
7251 	case KVM_SET_CLOCK:
7252 		r = kvm_vm_ioctl_set_clock(kvm, argp);
7253 		break;
7254 	case KVM_GET_CLOCK:
7255 		r = kvm_vm_ioctl_get_clock(kvm, argp);
7256 		break;
7257 	case KVM_SET_TSC_KHZ: {
7258 		u32 user_tsc_khz;
7259 
7260 		r = -EINVAL;
7261 		user_tsc_khz = (u32)arg;
7262 
7263 		if (kvm_caps.has_tsc_control &&
7264 		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7265 			goto out;
7266 
7267 		if (user_tsc_khz == 0)
7268 			user_tsc_khz = tsc_khz;
7269 
7270 		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7271 		r = 0;
7272 
7273 		goto out;
7274 	}
7275 	case KVM_GET_TSC_KHZ: {
7276 		r = READ_ONCE(kvm->arch.default_tsc_khz);
7277 		goto out;
7278 	}
7279 	case KVM_MEMORY_ENCRYPT_OP: {
7280 		r = -ENOTTY;
7281 		if (!kvm_x86_ops.mem_enc_ioctl)
7282 			goto out;
7283 
7284 		r = kvm_x86_call(mem_enc_ioctl)(kvm, argp);
7285 		break;
7286 	}
7287 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7288 		struct kvm_enc_region region;
7289 
7290 		r = -EFAULT;
7291 		if (copy_from_user(&region, argp, sizeof(region)))
7292 			goto out;
7293 
7294 		r = -ENOTTY;
7295 		if (!kvm_x86_ops.mem_enc_register_region)
7296 			goto out;
7297 
7298 		r = kvm_x86_call(mem_enc_register_region)(kvm, &region);
7299 		break;
7300 	}
7301 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7302 		struct kvm_enc_region region;
7303 
7304 		r = -EFAULT;
7305 		if (copy_from_user(&region, argp, sizeof(region)))
7306 			goto out;
7307 
7308 		r = -ENOTTY;
7309 		if (!kvm_x86_ops.mem_enc_unregister_region)
7310 			goto out;
7311 
7312 		r = kvm_x86_call(mem_enc_unregister_region)(kvm, &region);
7313 		break;
7314 	}
7315 #ifdef CONFIG_KVM_HYPERV
7316 	case KVM_HYPERV_EVENTFD: {
7317 		struct kvm_hyperv_eventfd hvevfd;
7318 
7319 		r = -EFAULT;
7320 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7321 			goto out;
7322 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7323 		break;
7324 	}
7325 #endif
7326 	case KVM_SET_PMU_EVENT_FILTER:
7327 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7328 		break;
7329 	case KVM_X86_SET_MSR_FILTER: {
7330 		struct kvm_msr_filter __user *user_msr_filter = argp;
7331 		struct kvm_msr_filter filter;
7332 
7333 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7334 			return -EFAULT;
7335 
7336 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7337 		break;
7338 	}
7339 	default:
7340 		r = -ENOTTY;
7341 	}
7342 out:
7343 	return r;
7344 }
7345 
kvm_probe_feature_msr(u32 msr_index)7346 static void kvm_probe_feature_msr(u32 msr_index)
7347 {
7348 	u64 data;
7349 
7350 	if (kvm_get_feature_msr(NULL, msr_index, &data, true))
7351 		return;
7352 
7353 	msr_based_features[num_msr_based_features++] = msr_index;
7354 }
7355 
kvm_probe_msr_to_save(u32 msr_index)7356 static void kvm_probe_msr_to_save(u32 msr_index)
7357 {
7358 	u32 dummy[2];
7359 
7360 	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7361 		return;
7362 
7363 	/*
7364 	 * Even MSRs that are valid in the host may not be exposed to guests in
7365 	 * some cases.
7366 	 */
7367 	switch (msr_index) {
7368 	case MSR_IA32_BNDCFGS:
7369 		if (!kvm_mpx_supported())
7370 			return;
7371 		break;
7372 	case MSR_TSC_AUX:
7373 		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7374 		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7375 			return;
7376 		break;
7377 	case MSR_IA32_UMWAIT_CONTROL:
7378 		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7379 			return;
7380 		break;
7381 	case MSR_IA32_RTIT_CTL:
7382 	case MSR_IA32_RTIT_STATUS:
7383 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7384 			return;
7385 		break;
7386 	case MSR_IA32_RTIT_CR3_MATCH:
7387 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7388 		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7389 			return;
7390 		break;
7391 	case MSR_IA32_RTIT_OUTPUT_BASE:
7392 	case MSR_IA32_RTIT_OUTPUT_MASK:
7393 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7394 		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7395 		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7396 			return;
7397 		break;
7398 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7399 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7400 		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7401 		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7402 			return;
7403 		break;
7404 	case MSR_ARCH_PERFMON_PERFCTR0 ...
7405 	     MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1:
7406 		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7407 		    kvm_pmu_cap.num_counters_gp)
7408 			return;
7409 		break;
7410 	case MSR_ARCH_PERFMON_EVENTSEL0 ...
7411 	     MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1:
7412 		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7413 		    kvm_pmu_cap.num_counters_gp)
7414 			return;
7415 		break;
7416 	case MSR_ARCH_PERFMON_FIXED_CTR0 ...
7417 	     MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1:
7418 		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7419 		    kvm_pmu_cap.num_counters_fixed)
7420 			return;
7421 		break;
7422 	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7423 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7424 	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7425 		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7426 			return;
7427 		break;
7428 	case MSR_IA32_XFD:
7429 	case MSR_IA32_XFD_ERR:
7430 		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7431 			return;
7432 		break;
7433 	case MSR_IA32_TSX_CTRL:
7434 		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7435 			return;
7436 		break;
7437 	default:
7438 		break;
7439 	}
7440 
7441 	msrs_to_save[num_msrs_to_save++] = msr_index;
7442 }
7443 
kvm_init_msr_lists(void)7444 static void kvm_init_msr_lists(void)
7445 {
7446 	unsigned i;
7447 
7448 	BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3,
7449 			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7450 
7451 	num_msrs_to_save = 0;
7452 	num_emulated_msrs = 0;
7453 	num_msr_based_features = 0;
7454 
7455 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7456 		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7457 
7458 	if (enable_pmu) {
7459 		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7460 			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7461 	}
7462 
7463 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7464 		if (!kvm_x86_call(has_emulated_msr)(NULL,
7465 						    emulated_msrs_all[i]))
7466 			continue;
7467 
7468 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7469 	}
7470 
7471 	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7472 		kvm_probe_feature_msr(i);
7473 
7474 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7475 		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7476 }
7477 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7478 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7479 			   const void *v)
7480 {
7481 	int handled = 0;
7482 	int n;
7483 
7484 	do {
7485 		n = min(len, 8);
7486 		if (!(lapic_in_kernel(vcpu) &&
7487 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7488 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7489 			break;
7490 		handled += n;
7491 		addr += n;
7492 		len -= n;
7493 		v += n;
7494 	} while (len);
7495 
7496 	return handled;
7497 }
7498 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7499 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7500 {
7501 	int handled = 0;
7502 	int n;
7503 
7504 	do {
7505 		n = min(len, 8);
7506 		if (!(lapic_in_kernel(vcpu) &&
7507 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7508 					 addr, n, v))
7509 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7510 			break;
7511 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7512 		handled += n;
7513 		addr += n;
7514 		len -= n;
7515 		v += n;
7516 	} while (len);
7517 
7518 	return handled;
7519 }
7520 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7521 void kvm_set_segment(struct kvm_vcpu *vcpu,
7522 		     struct kvm_segment *var, int seg)
7523 {
7524 	kvm_x86_call(set_segment)(vcpu, var, seg);
7525 }
7526 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7527 void kvm_get_segment(struct kvm_vcpu *vcpu,
7528 		     struct kvm_segment *var, int seg)
7529 {
7530 	kvm_x86_call(get_segment)(vcpu, var, seg);
7531 }
7532 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7533 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7534 			   struct x86_exception *exception)
7535 {
7536 	struct kvm_mmu *mmu = vcpu->arch.mmu;
7537 	gpa_t t_gpa;
7538 
7539 	BUG_ON(!mmu_is_nested(vcpu));
7540 
7541 	/* NPT walks are always user-walks */
7542 	access |= PFERR_USER_MASK;
7543 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7544 
7545 	return t_gpa;
7546 }
7547 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7548 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7549 			      struct x86_exception *exception)
7550 {
7551 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7552 
7553 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7554 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7555 }
7556 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7557 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7558 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7559 			       struct x86_exception *exception)
7560 {
7561 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7562 
7563 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7564 	access |= PFERR_WRITE_MASK;
7565 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7566 }
7567 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7568 
7569 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7570 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7571 				struct x86_exception *exception)
7572 {
7573 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7574 
7575 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7576 }
7577 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7578 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7579 				      struct kvm_vcpu *vcpu, u64 access,
7580 				      struct x86_exception *exception)
7581 {
7582 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7583 	void *data = val;
7584 	int r = X86EMUL_CONTINUE;
7585 
7586 	while (bytes) {
7587 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7588 		unsigned offset = addr & (PAGE_SIZE-1);
7589 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7590 		int ret;
7591 
7592 		if (gpa == INVALID_GPA)
7593 			return X86EMUL_PROPAGATE_FAULT;
7594 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7595 					       offset, toread);
7596 		if (ret < 0) {
7597 			r = X86EMUL_IO_NEEDED;
7598 			goto out;
7599 		}
7600 
7601 		bytes -= toread;
7602 		data += toread;
7603 		addr += toread;
7604 	}
7605 out:
7606 	return r;
7607 }
7608 
7609 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7610 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7611 				gva_t addr, void *val, unsigned int bytes,
7612 				struct x86_exception *exception)
7613 {
7614 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7615 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7616 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7617 	unsigned offset;
7618 	int ret;
7619 
7620 	/* Inline kvm_read_guest_virt_helper for speed.  */
7621 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7622 				    exception);
7623 	if (unlikely(gpa == INVALID_GPA))
7624 		return X86EMUL_PROPAGATE_FAULT;
7625 
7626 	offset = addr & (PAGE_SIZE-1);
7627 	if (WARN_ON(offset + bytes > PAGE_SIZE))
7628 		bytes = (unsigned)PAGE_SIZE - offset;
7629 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7630 				       offset, bytes);
7631 	if (unlikely(ret < 0))
7632 		return X86EMUL_IO_NEEDED;
7633 
7634 	return X86EMUL_CONTINUE;
7635 }
7636 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7637 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7638 			       gva_t addr, void *val, unsigned int bytes,
7639 			       struct x86_exception *exception)
7640 {
7641 	u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7642 
7643 	/*
7644 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7645 	 * is returned, but our callers are not ready for that and they blindly
7646 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7647 	 * uninitialized kernel stack memory into cr2 and error code.
7648 	 */
7649 	memset(exception, 0, sizeof(*exception));
7650 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7651 					  exception);
7652 }
7653 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7654 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7655 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7656 			     gva_t addr, void *val, unsigned int bytes,
7657 			     struct x86_exception *exception, bool system)
7658 {
7659 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7660 	u64 access = 0;
7661 
7662 	if (system)
7663 		access |= PFERR_IMPLICIT_ACCESS;
7664 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7665 		access |= PFERR_USER_MASK;
7666 
7667 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7668 }
7669 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7670 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7671 				      struct kvm_vcpu *vcpu, u64 access,
7672 				      struct x86_exception *exception)
7673 {
7674 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7675 	void *data = val;
7676 	int r = X86EMUL_CONTINUE;
7677 
7678 	while (bytes) {
7679 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7680 		unsigned offset = addr & (PAGE_SIZE-1);
7681 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7682 		int ret;
7683 
7684 		if (gpa == INVALID_GPA)
7685 			return X86EMUL_PROPAGATE_FAULT;
7686 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7687 		if (ret < 0) {
7688 			r = X86EMUL_IO_NEEDED;
7689 			goto out;
7690 		}
7691 
7692 		bytes -= towrite;
7693 		data += towrite;
7694 		addr += towrite;
7695 	}
7696 out:
7697 	return r;
7698 }
7699 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7700 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7701 			      unsigned int bytes, struct x86_exception *exception,
7702 			      bool system)
7703 {
7704 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7705 	u64 access = PFERR_WRITE_MASK;
7706 
7707 	if (system)
7708 		access |= PFERR_IMPLICIT_ACCESS;
7709 	else if (kvm_x86_call(get_cpl)(vcpu) == 3)
7710 		access |= PFERR_USER_MASK;
7711 
7712 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7713 					   access, exception);
7714 }
7715 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7716 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7717 				unsigned int bytes, struct x86_exception *exception)
7718 {
7719 	/* kvm_write_guest_virt_system can pull in tons of pages. */
7720 	vcpu->arch.l1tf_flush_l1d = true;
7721 
7722 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7723 					   PFERR_WRITE_MASK, exception);
7724 }
7725 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7726 
kvm_check_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7727 static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7728 				  void *insn, int insn_len)
7729 {
7730 	return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type,
7731 						       insn, insn_len);
7732 }
7733 
handle_ud(struct kvm_vcpu * vcpu)7734 int handle_ud(struct kvm_vcpu *vcpu)
7735 {
7736 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7737 	int fep_flags = READ_ONCE(force_emulation_prefix);
7738 	int emul_type = EMULTYPE_TRAP_UD;
7739 	char sig[5]; /* ud2; .ascii "kvm" */
7740 	struct x86_exception e;
7741 	int r;
7742 
7743 	r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0);
7744 	if (r != X86EMUL_CONTINUE)
7745 		return 1;
7746 
7747 	if (fep_flags &&
7748 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7749 				sig, sizeof(sig), &e) == 0 &&
7750 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7751 		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7752 			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7753 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7754 		emul_type = EMULTYPE_TRAP_UD_FORCED;
7755 	}
7756 
7757 	return kvm_emulate_instruction(vcpu, emul_type);
7758 }
7759 EXPORT_SYMBOL_GPL(handle_ud);
7760 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7761 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7762 			    gpa_t gpa, bool write)
7763 {
7764 	/* For APIC access vmexit */
7765 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7766 		return 1;
7767 
7768 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7769 		trace_vcpu_match_mmio(gva, gpa, write, true);
7770 		return 1;
7771 	}
7772 
7773 	return 0;
7774 }
7775 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7776 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7777 				gpa_t *gpa, struct x86_exception *exception,
7778 				bool write)
7779 {
7780 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7781 	u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7782 		     | (write ? PFERR_WRITE_MASK : 0);
7783 
7784 	/*
7785 	 * currently PKRU is only applied to ept enabled guest so
7786 	 * there is no pkey in EPT page table for L1 guest or EPT
7787 	 * shadow page table for L2 guest.
7788 	 */
7789 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7790 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7791 			      vcpu->arch.mmio_access, 0, access))) {
7792 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7793 					(gva & (PAGE_SIZE - 1));
7794 		trace_vcpu_match_mmio(gva, *gpa, write, false);
7795 		return 1;
7796 	}
7797 
7798 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7799 
7800 	if (*gpa == INVALID_GPA)
7801 		return -1;
7802 
7803 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7804 }
7805 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7806 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7807 			const void *val, int bytes)
7808 {
7809 	int ret;
7810 
7811 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7812 	if (ret < 0)
7813 		return 0;
7814 	kvm_page_track_write(vcpu, gpa, val, bytes);
7815 	return 1;
7816 }
7817 
7818 struct read_write_emulator_ops {
7819 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7820 				  int bytes);
7821 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7822 				  void *val, int bytes);
7823 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7824 			       int bytes, void *val);
7825 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7826 				    void *val, int bytes);
7827 	bool write;
7828 };
7829 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7830 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7831 {
7832 	if (vcpu->mmio_read_completed) {
7833 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7834 			       vcpu->mmio_fragments[0].gpa, val);
7835 		vcpu->mmio_read_completed = 0;
7836 		return 1;
7837 	}
7838 
7839 	return 0;
7840 }
7841 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7842 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7843 			void *val, int bytes)
7844 {
7845 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7846 }
7847 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7848 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7849 			 void *val, int bytes)
7850 {
7851 	return emulator_write_phys(vcpu, gpa, val, bytes);
7852 }
7853 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7854 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7855 {
7856 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7857 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7858 }
7859 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7860 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7861 			  void *val, int bytes)
7862 {
7863 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7864 	return X86EMUL_IO_NEEDED;
7865 }
7866 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7867 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7868 			   void *val, int bytes)
7869 {
7870 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7871 
7872 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7873 	return X86EMUL_CONTINUE;
7874 }
7875 
7876 static const struct read_write_emulator_ops read_emultor = {
7877 	.read_write_prepare = read_prepare,
7878 	.read_write_emulate = read_emulate,
7879 	.read_write_mmio = vcpu_mmio_read,
7880 	.read_write_exit_mmio = read_exit_mmio,
7881 };
7882 
7883 static const struct read_write_emulator_ops write_emultor = {
7884 	.read_write_emulate = write_emulate,
7885 	.read_write_mmio = write_mmio,
7886 	.read_write_exit_mmio = write_exit_mmio,
7887 	.write = true,
7888 };
7889 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7890 static int emulator_read_write_onepage(unsigned long addr, void *val,
7891 				       unsigned int bytes,
7892 				       struct x86_exception *exception,
7893 				       struct kvm_vcpu *vcpu,
7894 				       const struct read_write_emulator_ops *ops)
7895 {
7896 	gpa_t gpa;
7897 	int handled, ret;
7898 	bool write = ops->write;
7899 	struct kvm_mmio_fragment *frag;
7900 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7901 
7902 	/*
7903 	 * If the exit was due to a NPF we may already have a GPA.
7904 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7905 	 * Note, this cannot be used on string operations since string
7906 	 * operation using rep will only have the initial GPA from the NPF
7907 	 * occurred.
7908 	 */
7909 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7910 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7911 		gpa = ctxt->gpa_val;
7912 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7913 	} else {
7914 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7915 		if (ret < 0)
7916 			return X86EMUL_PROPAGATE_FAULT;
7917 	}
7918 
7919 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7920 		return X86EMUL_CONTINUE;
7921 
7922 	/*
7923 	 * Is this MMIO handled locally?
7924 	 */
7925 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7926 	if (handled == bytes)
7927 		return X86EMUL_CONTINUE;
7928 
7929 	gpa += handled;
7930 	bytes -= handled;
7931 	val += handled;
7932 
7933 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7934 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7935 	frag->gpa = gpa;
7936 	frag->data = val;
7937 	frag->len = bytes;
7938 	return X86EMUL_CONTINUE;
7939 }
7940 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7941 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7942 			unsigned long addr,
7943 			void *val, unsigned int bytes,
7944 			struct x86_exception *exception,
7945 			const struct read_write_emulator_ops *ops)
7946 {
7947 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7948 	gpa_t gpa;
7949 	int rc;
7950 
7951 	if (ops->read_write_prepare &&
7952 		  ops->read_write_prepare(vcpu, val, bytes))
7953 		return X86EMUL_CONTINUE;
7954 
7955 	vcpu->mmio_nr_fragments = 0;
7956 
7957 	/* Crossing a page boundary? */
7958 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7959 		int now;
7960 
7961 		now = -addr & ~PAGE_MASK;
7962 		rc = emulator_read_write_onepage(addr, val, now, exception,
7963 						 vcpu, ops);
7964 
7965 		if (rc != X86EMUL_CONTINUE)
7966 			return rc;
7967 		addr += now;
7968 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7969 			addr = (u32)addr;
7970 		val += now;
7971 		bytes -= now;
7972 	}
7973 
7974 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7975 					 vcpu, ops);
7976 	if (rc != X86EMUL_CONTINUE)
7977 		return rc;
7978 
7979 	if (!vcpu->mmio_nr_fragments)
7980 		return rc;
7981 
7982 	gpa = vcpu->mmio_fragments[0].gpa;
7983 
7984 	vcpu->mmio_needed = 1;
7985 	vcpu->mmio_cur_fragment = 0;
7986 
7987 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7988 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7989 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7990 	vcpu->run->mmio.phys_addr = gpa;
7991 
7992 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7993 }
7994 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7995 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7996 				  unsigned long addr,
7997 				  void *val,
7998 				  unsigned int bytes,
7999 				  struct x86_exception *exception)
8000 {
8001 	return emulator_read_write(ctxt, addr, val, bytes,
8002 				   exception, &read_emultor);
8003 }
8004 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)8005 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
8006 			    unsigned long addr,
8007 			    const void *val,
8008 			    unsigned int bytes,
8009 			    struct x86_exception *exception)
8010 {
8011 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
8012 				   exception, &write_emultor);
8013 }
8014 
8015 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
8016 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
8017 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)8018 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
8019 				     unsigned long addr,
8020 				     const void *old,
8021 				     const void *new,
8022 				     unsigned int bytes,
8023 				     struct x86_exception *exception)
8024 {
8025 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8026 	u64 page_line_mask;
8027 	unsigned long hva;
8028 	gpa_t gpa;
8029 	int r;
8030 
8031 	/* guests cmpxchg8b have to be emulated atomically */
8032 	if (bytes > 8 || (bytes & (bytes - 1)))
8033 		goto emul_write;
8034 
8035 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
8036 
8037 	if (gpa == INVALID_GPA ||
8038 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
8039 		goto emul_write;
8040 
8041 	/*
8042 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
8043 	 * enabled in the host and the access splits a cache line.
8044 	 */
8045 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
8046 		page_line_mask = ~(cache_line_size() - 1);
8047 	else
8048 		page_line_mask = PAGE_MASK;
8049 
8050 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
8051 		goto emul_write;
8052 
8053 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
8054 	if (kvm_is_error_hva(hva))
8055 		goto emul_write;
8056 
8057 	hva += offset_in_page(gpa);
8058 
8059 	switch (bytes) {
8060 	case 1:
8061 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
8062 		break;
8063 	case 2:
8064 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
8065 		break;
8066 	case 4:
8067 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
8068 		break;
8069 	case 8:
8070 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
8071 		break;
8072 	default:
8073 		BUG();
8074 	}
8075 
8076 	if (r < 0)
8077 		return X86EMUL_UNHANDLEABLE;
8078 
8079 	/*
8080 	 * Mark the page dirty _before_ checking whether or not the CMPXCHG was
8081 	 * successful, as the old value is written back on failure.  Note, for
8082 	 * live migration, this is unnecessarily conservative as CMPXCHG writes
8083 	 * back the original value and the access is atomic, but KVM's ABI is
8084 	 * that all writes are dirty logged, regardless of the value written.
8085 	 */
8086 	kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa));
8087 
8088 	if (r)
8089 		return X86EMUL_CMPXCHG_FAILED;
8090 
8091 	kvm_page_track_write(vcpu, gpa, new, bytes);
8092 
8093 	return X86EMUL_CONTINUE;
8094 
8095 emul_write:
8096 	pr_warn_once("emulating exchange as write\n");
8097 
8098 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
8099 }
8100 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)8101 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
8102 			       unsigned short port, void *data,
8103 			       unsigned int count, bool in)
8104 {
8105 	unsigned i;
8106 	int r;
8107 
8108 	WARN_ON_ONCE(vcpu->arch.pio.count);
8109 	for (i = 0; i < count; i++) {
8110 		if (in)
8111 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
8112 		else
8113 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
8114 
8115 		if (r) {
8116 			if (i == 0)
8117 				goto userspace_io;
8118 
8119 			/*
8120 			 * Userspace must have unregistered the device while PIO
8121 			 * was running.  Drop writes / read as 0.
8122 			 */
8123 			if (in)
8124 				memset(data, 0, size * (count - i));
8125 			break;
8126 		}
8127 
8128 		data += size;
8129 	}
8130 	return 1;
8131 
8132 userspace_io:
8133 	vcpu->arch.pio.port = port;
8134 	vcpu->arch.pio.in = in;
8135 	vcpu->arch.pio.count = count;
8136 	vcpu->arch.pio.size = size;
8137 
8138 	if (in)
8139 		memset(vcpu->arch.pio_data, 0, size * count);
8140 	else
8141 		memcpy(vcpu->arch.pio_data, data, size * count);
8142 
8143 	vcpu->run->exit_reason = KVM_EXIT_IO;
8144 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
8145 	vcpu->run->io.size = size;
8146 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
8147 	vcpu->run->io.count = count;
8148 	vcpu->run->io.port = port;
8149 	return 0;
8150 }
8151 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)8152 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
8153       			   unsigned short port, void *val, unsigned int count)
8154 {
8155 	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
8156 	if (r)
8157 		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
8158 
8159 	return r;
8160 }
8161 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)8162 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
8163 {
8164 	int size = vcpu->arch.pio.size;
8165 	unsigned int count = vcpu->arch.pio.count;
8166 	memcpy(val, vcpu->arch.pio_data, size * count);
8167 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
8168 	vcpu->arch.pio.count = 0;
8169 }
8170 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)8171 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
8172 				    int size, unsigned short port, void *val,
8173 				    unsigned int count)
8174 {
8175 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8176 	if (vcpu->arch.pio.count) {
8177 		/*
8178 		 * Complete a previous iteration that required userspace I/O.
8179 		 * Note, @count isn't guaranteed to match pio.count as userspace
8180 		 * can modify ECX before rerunning the vCPU.  Ignore any such
8181 		 * shenanigans as KVM doesn't support modifying the rep count,
8182 		 * and the emulator ensures @count doesn't overflow the buffer.
8183 		 */
8184 		complete_emulator_pio_in(vcpu, val);
8185 		return 1;
8186 	}
8187 
8188 	return emulator_pio_in(vcpu, size, port, val, count);
8189 }
8190 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)8191 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
8192 			    unsigned short port, const void *val,
8193 			    unsigned int count)
8194 {
8195 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
8196 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
8197 }
8198 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)8199 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
8200 				     int size, unsigned short port,
8201 				     const void *val, unsigned int count)
8202 {
8203 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
8204 }
8205 
get_segment_base(struct kvm_vcpu * vcpu,int seg)8206 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
8207 {
8208 	return kvm_x86_call(get_segment_base)(vcpu, seg);
8209 }
8210 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)8211 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
8212 {
8213 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
8214 }
8215 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)8216 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
8217 {
8218 	if (!need_emulate_wbinvd(vcpu))
8219 		return X86EMUL_CONTINUE;
8220 
8221 	if (kvm_x86_call(has_wbinvd_exit)()) {
8222 		int cpu = get_cpu();
8223 
8224 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
8225 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
8226 				wbinvd_ipi, NULL, 1);
8227 		put_cpu();
8228 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
8229 	} else
8230 		wbinvd();
8231 	return X86EMUL_CONTINUE;
8232 }
8233 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)8234 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
8235 {
8236 	kvm_emulate_wbinvd_noskip(vcpu);
8237 	return kvm_skip_emulated_instruction(vcpu);
8238 }
8239 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
8240 
8241 
8242 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)8243 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
8244 {
8245 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8246 }
8247 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr)8248 static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr)
8249 {
8250 	return kvm_get_dr(emul_to_vcpu(ctxt), dr);
8251 }
8252 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)8253 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8254 			   unsigned long value)
8255 {
8256 
8257 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8258 }
8259 
mk_cr_64(u64 curr_cr,u32 new_val)8260 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8261 {
8262 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8263 }
8264 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)8265 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8266 {
8267 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8268 	unsigned long value;
8269 
8270 	switch (cr) {
8271 	case 0:
8272 		value = kvm_read_cr0(vcpu);
8273 		break;
8274 	case 2:
8275 		value = vcpu->arch.cr2;
8276 		break;
8277 	case 3:
8278 		value = kvm_read_cr3(vcpu);
8279 		break;
8280 	case 4:
8281 		value = kvm_read_cr4(vcpu);
8282 		break;
8283 	case 8:
8284 		value = kvm_get_cr8(vcpu);
8285 		break;
8286 	default:
8287 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8288 		return 0;
8289 	}
8290 
8291 	return value;
8292 }
8293 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)8294 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8295 {
8296 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8297 	int res = 0;
8298 
8299 	switch (cr) {
8300 	case 0:
8301 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8302 		break;
8303 	case 2:
8304 		vcpu->arch.cr2 = val;
8305 		break;
8306 	case 3:
8307 		res = kvm_set_cr3(vcpu, val);
8308 		break;
8309 	case 4:
8310 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8311 		break;
8312 	case 8:
8313 		res = kvm_set_cr8(vcpu, val);
8314 		break;
8315 	default:
8316 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8317 		res = -1;
8318 	}
8319 
8320 	return res;
8321 }
8322 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)8323 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8324 {
8325 	return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt));
8326 }
8327 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8328 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8329 {
8330 	kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt);
8331 }
8332 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8333 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8334 {
8335 	kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt);
8336 }
8337 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8338 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8339 {
8340 	kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt);
8341 }
8342 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)8343 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8344 {
8345 	kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt);
8346 }
8347 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)8348 static unsigned long emulator_get_cached_segment_base(
8349 	struct x86_emulate_ctxt *ctxt, int seg)
8350 {
8351 	return get_segment_base(emul_to_vcpu(ctxt), seg);
8352 }
8353 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)8354 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8355 				 struct desc_struct *desc, u32 *base3,
8356 				 int seg)
8357 {
8358 	struct kvm_segment var;
8359 
8360 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8361 	*selector = var.selector;
8362 
8363 	if (var.unusable) {
8364 		memset(desc, 0, sizeof(*desc));
8365 		if (base3)
8366 			*base3 = 0;
8367 		return false;
8368 	}
8369 
8370 	if (var.g)
8371 		var.limit >>= 12;
8372 	set_desc_limit(desc, var.limit);
8373 	set_desc_base(desc, (unsigned long)var.base);
8374 #ifdef CONFIG_X86_64
8375 	if (base3)
8376 		*base3 = var.base >> 32;
8377 #endif
8378 	desc->type = var.type;
8379 	desc->s = var.s;
8380 	desc->dpl = var.dpl;
8381 	desc->p = var.present;
8382 	desc->avl = var.avl;
8383 	desc->l = var.l;
8384 	desc->d = var.db;
8385 	desc->g = var.g;
8386 
8387 	return true;
8388 }
8389 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8390 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8391 				 struct desc_struct *desc, u32 base3,
8392 				 int seg)
8393 {
8394 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8395 	struct kvm_segment var;
8396 
8397 	var.selector = selector;
8398 	var.base = get_desc_base(desc);
8399 #ifdef CONFIG_X86_64
8400 	var.base |= ((u64)base3) << 32;
8401 #endif
8402 	var.limit = get_desc_limit(desc);
8403 	if (desc->g)
8404 		var.limit = (var.limit << 12) | 0xfff;
8405 	var.type = desc->type;
8406 	var.dpl = desc->dpl;
8407 	var.db = desc->d;
8408 	var.s = desc->s;
8409 	var.l = desc->l;
8410 	var.g = desc->g;
8411 	var.avl = desc->avl;
8412 	var.present = desc->p;
8413 	var.unusable = !var.present;
8414 	var.padding = 0;
8415 
8416 	kvm_set_segment(vcpu, &var, seg);
8417 	return;
8418 }
8419 
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8420 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8421 					u32 msr_index, u64 *pdata)
8422 {
8423 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8424 	int r;
8425 
8426 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8427 	if (r < 0)
8428 		return X86EMUL_UNHANDLEABLE;
8429 
8430 	if (r) {
8431 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8432 				       complete_emulated_rdmsr, r))
8433 			return X86EMUL_IO_NEEDED;
8434 
8435 		trace_kvm_msr_read_ex(msr_index);
8436 		return X86EMUL_PROPAGATE_FAULT;
8437 	}
8438 
8439 	trace_kvm_msr_read(msr_index, *pdata);
8440 	return X86EMUL_CONTINUE;
8441 }
8442 
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8443 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8444 					u32 msr_index, u64 data)
8445 {
8446 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8447 	int r;
8448 
8449 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8450 	if (r < 0)
8451 		return X86EMUL_UNHANDLEABLE;
8452 
8453 	if (r) {
8454 		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8455 				       complete_emulated_msr_access, r))
8456 			return X86EMUL_IO_NEEDED;
8457 
8458 		trace_kvm_msr_write_ex(msr_index, data);
8459 		return X86EMUL_PROPAGATE_FAULT;
8460 	}
8461 
8462 	trace_kvm_msr_write(msr_index, data);
8463 	return X86EMUL_CONTINUE;
8464 }
8465 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8466 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8467 			    u32 msr_index, u64 *pdata)
8468 {
8469 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8470 }
8471 
emulator_check_rdpmc_early(struct x86_emulate_ctxt * ctxt,u32 pmc)8472 static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc)
8473 {
8474 	return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc);
8475 }
8476 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8477 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8478 			     u32 pmc, u64 *pdata)
8479 {
8480 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8481 }
8482 
emulator_halt(struct x86_emulate_ctxt * ctxt)8483 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8484 {
8485 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8486 }
8487 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8488 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8489 			      struct x86_instruction_info *info,
8490 			      enum x86_intercept_stage stage)
8491 {
8492 	return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage,
8493 					     &ctxt->exception);
8494 }
8495 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8496 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8497 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8498 			      bool exact_only)
8499 {
8500 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8501 }
8502 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8503 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8504 {
8505 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8506 }
8507 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8508 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8509 {
8510 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8511 }
8512 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8513 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8514 {
8515 	return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8516 }
8517 
emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt * ctxt)8518 static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt)
8519 {
8520 	return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt));
8521 }
8522 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8523 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8524 {
8525 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8526 }
8527 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8528 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8529 {
8530 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8531 }
8532 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8533 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8534 {
8535 	kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8536 }
8537 
emulator_is_smm(struct x86_emulate_ctxt * ctxt)8538 static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8539 {
8540 	return is_smm(emul_to_vcpu(ctxt));
8541 }
8542 
emulator_is_guest_mode(struct x86_emulate_ctxt * ctxt)8543 static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8544 {
8545 	return is_guest_mode(emul_to_vcpu(ctxt));
8546 }
8547 
8548 #ifndef CONFIG_KVM_SMM
emulator_leave_smm(struct x86_emulate_ctxt * ctxt)8549 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8550 {
8551 	WARN_ON_ONCE(1);
8552 	return X86EMUL_UNHANDLEABLE;
8553 }
8554 #endif
8555 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8556 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8557 {
8558 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8559 }
8560 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8561 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8562 {
8563 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8564 }
8565 
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8566 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8567 {
8568 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8569 
8570 	if (!kvm->vm_bugged)
8571 		kvm_vm_bugged(kvm);
8572 }
8573 
emulator_get_untagged_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8574 static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt,
8575 					gva_t addr, unsigned int flags)
8576 {
8577 	if (!kvm_x86_ops.get_untagged_addr)
8578 		return addr;
8579 
8580 	return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt),
8581 					       addr, flags);
8582 }
8583 
emulator_is_canonical_addr(struct x86_emulate_ctxt * ctxt,gva_t addr,unsigned int flags)8584 static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt,
8585 				       gva_t addr, unsigned int flags)
8586 {
8587 	return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags);
8588 }
8589 
8590 static const struct x86_emulate_ops emulate_ops = {
8591 	.vm_bugged           = emulator_vm_bugged,
8592 	.read_gpr            = emulator_read_gpr,
8593 	.write_gpr           = emulator_write_gpr,
8594 	.read_std            = emulator_read_std,
8595 	.write_std           = emulator_write_std,
8596 	.fetch               = kvm_fetch_guest_virt,
8597 	.read_emulated       = emulator_read_emulated,
8598 	.write_emulated      = emulator_write_emulated,
8599 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8600 	.invlpg              = emulator_invlpg,
8601 	.pio_in_emulated     = emulator_pio_in_emulated,
8602 	.pio_out_emulated    = emulator_pio_out_emulated,
8603 	.get_segment         = emulator_get_segment,
8604 	.set_segment         = emulator_set_segment,
8605 	.get_cached_segment_base = emulator_get_cached_segment_base,
8606 	.get_gdt             = emulator_get_gdt,
8607 	.get_idt	     = emulator_get_idt,
8608 	.set_gdt             = emulator_set_gdt,
8609 	.set_idt	     = emulator_set_idt,
8610 	.get_cr              = emulator_get_cr,
8611 	.set_cr              = emulator_set_cr,
8612 	.cpl                 = emulator_get_cpl,
8613 	.get_dr              = emulator_get_dr,
8614 	.set_dr              = emulator_set_dr,
8615 	.set_msr_with_filter = emulator_set_msr_with_filter,
8616 	.get_msr_with_filter = emulator_get_msr_with_filter,
8617 	.get_msr             = emulator_get_msr,
8618 	.check_rdpmc_early   = emulator_check_rdpmc_early,
8619 	.read_pmc            = emulator_read_pmc,
8620 	.halt                = emulator_halt,
8621 	.wbinvd              = emulator_wbinvd,
8622 	.fix_hypercall       = emulator_fix_hypercall,
8623 	.intercept           = emulator_intercept,
8624 	.get_cpuid           = emulator_get_cpuid,
8625 	.guest_has_movbe     = emulator_guest_has_movbe,
8626 	.guest_has_fxsr      = emulator_guest_has_fxsr,
8627 	.guest_has_rdpid     = emulator_guest_has_rdpid,
8628 	.guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible,
8629 	.set_nmi_mask        = emulator_set_nmi_mask,
8630 	.is_smm              = emulator_is_smm,
8631 	.is_guest_mode       = emulator_is_guest_mode,
8632 	.leave_smm           = emulator_leave_smm,
8633 	.triple_fault        = emulator_triple_fault,
8634 	.set_xcr             = emulator_set_xcr,
8635 	.get_untagged_addr   = emulator_get_untagged_addr,
8636 	.is_canonical_addr   = emulator_is_canonical_addr,
8637 };
8638 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8639 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8640 {
8641 	u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu);
8642 	/*
8643 	 * an sti; sti; sequence only disable interrupts for the first
8644 	 * instruction. So, if the last instruction, be it emulated or
8645 	 * not, left the system with the INT_STI flag enabled, it
8646 	 * means that the last instruction is an sti. We should not
8647 	 * leave the flag on in this case. The same goes for mov ss
8648 	 */
8649 	if (int_shadow & mask)
8650 		mask = 0;
8651 	if (unlikely(int_shadow || mask)) {
8652 		kvm_x86_call(set_interrupt_shadow)(vcpu, mask);
8653 		if (!mask)
8654 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8655 	}
8656 }
8657 
inject_emulated_exception(struct kvm_vcpu * vcpu)8658 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8659 {
8660 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8661 
8662 	if (ctxt->exception.vector == PF_VECTOR)
8663 		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8664 	else if (ctxt->exception.error_code_valid)
8665 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8666 				      ctxt->exception.error_code);
8667 	else
8668 		kvm_queue_exception(vcpu, ctxt->exception.vector);
8669 }
8670 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8671 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8672 {
8673 	struct x86_emulate_ctxt *ctxt;
8674 
8675 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8676 	if (!ctxt) {
8677 		pr_err("failed to allocate vcpu's emulator\n");
8678 		return NULL;
8679 	}
8680 
8681 	ctxt->vcpu = vcpu;
8682 	ctxt->ops = &emulate_ops;
8683 	vcpu->arch.emulate_ctxt = ctxt;
8684 
8685 	return ctxt;
8686 }
8687 
init_emulate_ctxt(struct kvm_vcpu * vcpu)8688 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8689 {
8690 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8691 	int cs_db, cs_l;
8692 
8693 	kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8694 
8695 	ctxt->gpa_available = false;
8696 	ctxt->eflags = kvm_get_rflags(vcpu);
8697 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8698 
8699 	ctxt->eip = kvm_rip_read(vcpu);
8700 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8701 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8702 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8703 		     cs_db				? X86EMUL_MODE_PROT32 :
8704 							  X86EMUL_MODE_PROT16;
8705 	ctxt->interruptibility = 0;
8706 	ctxt->have_exception = false;
8707 	ctxt->exception.vector = -1;
8708 	ctxt->perm_ok = false;
8709 
8710 	init_decode_cache(ctxt);
8711 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8712 }
8713 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8714 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8715 {
8716 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8717 	int ret;
8718 
8719 	init_emulate_ctxt(vcpu);
8720 
8721 	ctxt->op_bytes = 2;
8722 	ctxt->ad_bytes = 2;
8723 	ctxt->_eip = ctxt->eip + inc_eip;
8724 	ret = emulate_int_real(ctxt, irq);
8725 
8726 	if (ret != X86EMUL_CONTINUE) {
8727 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8728 	} else {
8729 		ctxt->eip = ctxt->_eip;
8730 		kvm_rip_write(vcpu, ctxt->eip);
8731 		kvm_set_rflags(vcpu, ctxt->eflags);
8732 	}
8733 }
8734 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8735 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8736 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8737 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8738 {
8739 	struct kvm_run *run = vcpu->run;
8740 	u64 info[5];
8741 	u8 info_start;
8742 
8743 	/*
8744 	 * Zero the whole array used to retrieve the exit info, as casting to
8745 	 * u32 for select entries will leave some chunks uninitialized.
8746 	 */
8747 	memset(&info, 0, sizeof(info));
8748 
8749 	kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2],
8750 				    (u32 *)&info[3], (u32 *)&info[4]);
8751 
8752 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8753 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8754 
8755 	/*
8756 	 * There's currently space for 13 entries, but 5 are used for the exit
8757 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8758 	 * when expanding kvm_run.emulation_failure in the future.
8759 	 */
8760 	if (WARN_ON_ONCE(ndata > 4))
8761 		ndata = 4;
8762 
8763 	/* Always include the flags as a 'data' entry. */
8764 	info_start = 1;
8765 	run->emulation_failure.flags = 0;
8766 
8767 	if (insn_size) {
8768 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8769 			      sizeof(run->emulation_failure.insn_bytes) != 16));
8770 		info_start += 2;
8771 		run->emulation_failure.flags |=
8772 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8773 		run->emulation_failure.insn_size = insn_size;
8774 		memset(run->emulation_failure.insn_bytes, 0x90,
8775 		       sizeof(run->emulation_failure.insn_bytes));
8776 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8777 	}
8778 
8779 	memcpy(&run->internal.data[info_start], info, sizeof(info));
8780 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8781 	       ndata * sizeof(data[0]));
8782 
8783 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8784 }
8785 
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8786 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8787 {
8788 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8789 
8790 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8791 				       ctxt->fetch.end - ctxt->fetch.data);
8792 }
8793 
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8794 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8795 					  u8 ndata)
8796 {
8797 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8798 }
8799 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8800 
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8801 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8802 {
8803 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8804 }
8805 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8806 
kvm_prepare_event_vectoring_exit(struct kvm_vcpu * vcpu,gpa_t gpa)8807 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa)
8808 {
8809 	u32 reason, intr_info, error_code;
8810 	struct kvm_run *run = vcpu->run;
8811 	u64 info1, info2;
8812 	int ndata = 0;
8813 
8814 	kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2,
8815 				    &intr_info, &error_code);
8816 
8817 	run->internal.data[ndata++] = info2;
8818 	run->internal.data[ndata++] = reason;
8819 	run->internal.data[ndata++] = info1;
8820 	run->internal.data[ndata++] = gpa;
8821 	run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
8822 
8823 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8824 	run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8825 	run->internal.ndata = ndata;
8826 }
8827 EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit);
8828 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8829 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8830 {
8831 	struct kvm *kvm = vcpu->kvm;
8832 
8833 	++vcpu->stat.insn_emulation_fail;
8834 	trace_kvm_emulate_insn_failed(vcpu);
8835 
8836 	if (emulation_type & EMULTYPE_VMWARE_GP) {
8837 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8838 		return 1;
8839 	}
8840 
8841 	if (kvm->arch.exit_on_emulation_error ||
8842 	    (emulation_type & EMULTYPE_SKIP)) {
8843 		prepare_emulation_ctxt_failure_exit(vcpu);
8844 		return 0;
8845 	}
8846 
8847 	kvm_queue_exception(vcpu, UD_VECTOR);
8848 
8849 	if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) {
8850 		prepare_emulation_ctxt_failure_exit(vcpu);
8851 		return 0;
8852 	}
8853 
8854 	return 1;
8855 }
8856 
kvm_unprotect_and_retry_on_failure(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type)8857 static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu,
8858 					       gpa_t cr2_or_gpa,
8859 					       int emulation_type)
8860 {
8861 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8862 		return false;
8863 
8864 	/*
8865 	 * If the failed instruction faulted on an access to page tables that
8866 	 * are used to translate any part of the instruction, KVM can't resolve
8867 	 * the issue by unprotecting the gfn, as zapping the shadow page will
8868 	 * result in the instruction taking a !PRESENT page fault and thus put
8869 	 * the vCPU into an infinite loop of page faults.  E.g. KVM will create
8870 	 * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and
8871 	 * then zap the SPTE to unprotect the gfn, and then do it all over
8872 	 * again.  Report the error to userspace.
8873 	 */
8874 	if (emulation_type & EMULTYPE_WRITE_PF_TO_SP)
8875 		return false;
8876 
8877 	/*
8878 	 * If emulation may have been triggered by a write to a shadowed page
8879 	 * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the
8880 	 * guest to let the CPU re-execute the instruction in the hope that the
8881 	 * CPU can cleanly execute the instruction that KVM failed to emulate.
8882 	 */
8883 	__kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true);
8884 
8885 	/*
8886 	 * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible
8887 	 * all SPTEs were already zapped by a different task.  The alternative
8888 	 * is to report the error to userspace and likely terminate the guest,
8889 	 * and the last_retry_{eip,addr} checks will prevent retrying the page
8890 	 * fault indefinitely, i.e. there's nothing to lose by retrying.
8891 	 */
8892 	return true;
8893 }
8894 
8895 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8896 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8897 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8898 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8899 				unsigned long *db)
8900 {
8901 	u32 dr6 = 0;
8902 	int i;
8903 	u32 enable, rwlen;
8904 
8905 	enable = dr7;
8906 	rwlen = dr7 >> 16;
8907 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8908 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8909 			dr6 |= (1 << i);
8910 	return dr6;
8911 }
8912 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8913 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8914 {
8915 	struct kvm_run *kvm_run = vcpu->run;
8916 
8917 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8918 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8919 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8920 		kvm_run->debug.arch.exception = DB_VECTOR;
8921 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8922 		return 0;
8923 	}
8924 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8925 	return 1;
8926 }
8927 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8928 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8929 {
8930 	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
8931 	int r;
8932 
8933 	r = kvm_x86_call(skip_emulated_instruction)(vcpu);
8934 	if (unlikely(!r))
8935 		return 0;
8936 
8937 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
8938 
8939 	/*
8940 	 * rflags is the old, "raw" value of the flags.  The new value has
8941 	 * not been saved yet.
8942 	 *
8943 	 * This is correct even for TF set by the guest, because "the
8944 	 * processor will not generate this exception after the instruction
8945 	 * that sets the TF flag".
8946 	 */
8947 	if (unlikely(rflags & X86_EFLAGS_TF))
8948 		r = kvm_vcpu_do_singlestep(vcpu);
8949 	return r;
8950 }
8951 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8952 
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8953 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8954 {
8955 	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8956 		return true;
8957 
8958 	/*
8959 	 * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is
8960 	 * active, but AMD compatible CPUs do not.
8961 	 */
8962 	if (!guest_cpuid_is_intel_compatible(vcpu))
8963 		return false;
8964 
8965 	return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS;
8966 }
8967 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8968 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8969 					   int emulation_type, int *r)
8970 {
8971 	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8972 
8973 	/*
8974 	 * Do not check for code breakpoints if hardware has already done the
8975 	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8976 	 * the instruction has passed all exception checks, and all intercepted
8977 	 * exceptions that trigger emulation have lower priority than code
8978 	 * breakpoints, i.e. the fact that the intercepted exception occurred
8979 	 * means any code breakpoints have already been serviced.
8980 	 *
8981 	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8982 	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8983 	 * the instruction being emulated.  The intent of forced emulation is
8984 	 * to behave as if KVM intercepted the instruction without an exception
8985 	 * and without a prefix.
8986 	 */
8987 	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8988 			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8989 		return false;
8990 
8991 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8992 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8993 		struct kvm_run *kvm_run = vcpu->run;
8994 		unsigned long eip = kvm_get_linear_rip(vcpu);
8995 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8996 					   vcpu->arch.guest_debug_dr7,
8997 					   vcpu->arch.eff_db);
8998 
8999 		if (dr6 != 0) {
9000 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
9001 			kvm_run->debug.arch.pc = eip;
9002 			kvm_run->debug.arch.exception = DB_VECTOR;
9003 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
9004 			*r = 0;
9005 			return true;
9006 		}
9007 	}
9008 
9009 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
9010 	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
9011 		unsigned long eip = kvm_get_linear_rip(vcpu);
9012 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
9013 					   vcpu->arch.dr7,
9014 					   vcpu->arch.db);
9015 
9016 		if (dr6 != 0) {
9017 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
9018 			*r = 1;
9019 			return true;
9020 		}
9021 	}
9022 
9023 	return false;
9024 }
9025 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)9026 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
9027 {
9028 	switch (ctxt->opcode_len) {
9029 	case 1:
9030 		switch (ctxt->b) {
9031 		case 0xe4:	/* IN */
9032 		case 0xe5:
9033 		case 0xec:
9034 		case 0xed:
9035 		case 0xe6:	/* OUT */
9036 		case 0xe7:
9037 		case 0xee:
9038 		case 0xef:
9039 		case 0x6c:	/* INS */
9040 		case 0x6d:
9041 		case 0x6e:	/* OUTS */
9042 		case 0x6f:
9043 			return true;
9044 		}
9045 		break;
9046 	case 2:
9047 		switch (ctxt->b) {
9048 		case 0x33:	/* RDPMC */
9049 			return true;
9050 		}
9051 		break;
9052 	}
9053 
9054 	return false;
9055 }
9056 
9057 /*
9058  * Decode an instruction for emulation.  The caller is responsible for handling
9059  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
9060  * (and wrong) when emulating on an intercepted fault-like exception[*], as
9061  * code breakpoints have higher priority and thus have already been done by
9062  * hardware.
9063  *
9064  * [*] Except #MC, which is higher priority, but KVM should never emulate in
9065  *     response to a machine check.
9066  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)9067 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
9068 				    void *insn, int insn_len)
9069 {
9070 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9071 	int r;
9072 
9073 	init_emulate_ctxt(vcpu);
9074 
9075 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
9076 
9077 	trace_kvm_emulate_insn_start(vcpu);
9078 	++vcpu->stat.insn_emulation;
9079 
9080 	return r;
9081 }
9082 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
9083 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)9084 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
9085 			    int emulation_type, void *insn, int insn_len)
9086 {
9087 	int r;
9088 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
9089 	bool writeback = true;
9090 
9091 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9092 	    (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
9093 	     WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))))
9094 		emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF;
9095 
9096 	r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len);
9097 	if (r != X86EMUL_CONTINUE) {
9098 		if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT)
9099 			return 1;
9100 
9101 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9102 						       emulation_type))
9103 			return 1;
9104 
9105 		if (r == X86EMUL_UNHANDLEABLE_VECTORING) {
9106 			kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa);
9107 			return 0;
9108 		}
9109 
9110 		WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE);
9111 		return handle_emulation_failure(vcpu, emulation_type);
9112 	}
9113 
9114 	vcpu->arch.l1tf_flush_l1d = true;
9115 
9116 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
9117 		kvm_clear_exception_queue(vcpu);
9118 
9119 		/*
9120 		 * Return immediately if RIP hits a code breakpoint, such #DBs
9121 		 * are fault-like and are higher priority than any faults on
9122 		 * the code fetch itself.
9123 		 */
9124 		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
9125 			return r;
9126 
9127 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
9128 						    insn, insn_len);
9129 		if (r != EMULATION_OK)  {
9130 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
9131 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
9132 				kvm_queue_exception(vcpu, UD_VECTOR);
9133 				return 1;
9134 			}
9135 			if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9136 							       emulation_type))
9137 				return 1;
9138 
9139 			if (ctxt->have_exception &&
9140 			    !(emulation_type & EMULTYPE_SKIP)) {
9141 				/*
9142 				 * #UD should result in just EMULATION_FAILED, and trap-like
9143 				 * exception should not be encountered during decode.
9144 				 */
9145 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
9146 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
9147 				inject_emulated_exception(vcpu);
9148 				return 1;
9149 			}
9150 			return handle_emulation_failure(vcpu, emulation_type);
9151 		}
9152 	}
9153 
9154 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
9155 	    !is_vmware_backdoor_opcode(ctxt)) {
9156 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
9157 		return 1;
9158 	}
9159 
9160 	/*
9161 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
9162 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
9163 	 * The caller is responsible for updating interruptibility state and
9164 	 * injecting single-step #DBs.
9165 	 */
9166 	if (emulation_type & EMULTYPE_SKIP) {
9167 		if (ctxt->mode != X86EMUL_MODE_PROT64)
9168 			ctxt->eip = (u32)ctxt->_eip;
9169 		else
9170 			ctxt->eip = ctxt->_eip;
9171 
9172 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
9173 			r = 1;
9174 			goto writeback;
9175 		}
9176 
9177 		kvm_rip_write(vcpu, ctxt->eip);
9178 		if (ctxt->eflags & X86_EFLAGS_RF)
9179 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
9180 		return 1;
9181 	}
9182 
9183 	/*
9184 	 * If emulation was caused by a write-protection #PF on a non-page_table
9185 	 * writing instruction, try to unprotect the gfn, i.e. zap shadow pages,
9186 	 * and retry the instruction, as the vCPU is likely no longer using the
9187 	 * gfn as a page table.
9188 	 */
9189 	if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) &&
9190 	    !x86_page_table_writing_insn(ctxt) &&
9191 	    kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa))
9192 		return 1;
9193 
9194 	/* this is needed for vmware backdoor interface to work since it
9195 	   changes registers values  during IO operation */
9196 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
9197 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
9198 		emulator_invalidate_register_cache(ctxt);
9199 	}
9200 
9201 restart:
9202 	if (emulation_type & EMULTYPE_PF) {
9203 		/* Save the faulting GPA (cr2) in the address field */
9204 		ctxt->exception.address = cr2_or_gpa;
9205 
9206 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
9207 		if (vcpu->arch.mmu->root_role.direct) {
9208 			ctxt->gpa_available = true;
9209 			ctxt->gpa_val = cr2_or_gpa;
9210 		}
9211 	} else {
9212 		/* Sanitize the address out of an abundance of paranoia. */
9213 		ctxt->exception.address = 0;
9214 	}
9215 
9216 	r = x86_emulate_insn(ctxt);
9217 
9218 	if (r == EMULATION_INTERCEPTED)
9219 		return 1;
9220 
9221 	if (r == EMULATION_FAILED) {
9222 		if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa,
9223 						       emulation_type))
9224 			return 1;
9225 
9226 		return handle_emulation_failure(vcpu, emulation_type);
9227 	}
9228 
9229 	if (ctxt->have_exception) {
9230 		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9231 		vcpu->mmio_needed = false;
9232 		r = 1;
9233 		inject_emulated_exception(vcpu);
9234 	} else if (vcpu->arch.pio.count) {
9235 		if (!vcpu->arch.pio.in) {
9236 			/* FIXME: return into emulator if single-stepping.  */
9237 			vcpu->arch.pio.count = 0;
9238 		} else {
9239 			writeback = false;
9240 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9241 		}
9242 		r = 0;
9243 	} else if (vcpu->mmio_needed) {
9244 		++vcpu->stat.mmio_exits;
9245 
9246 		if (!vcpu->mmio_is_write)
9247 			writeback = false;
9248 		r = 0;
9249 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9250 	} else if (vcpu->arch.complete_userspace_io) {
9251 		writeback = false;
9252 		r = 0;
9253 	} else if (r == EMULATION_RESTART)
9254 		goto restart;
9255 	else
9256 		r = 1;
9257 
9258 writeback:
9259 	if (writeback) {
9260 		unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
9261 		toggle_interruptibility(vcpu, ctxt->interruptibility);
9262 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9263 
9264 		/*
9265 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9266 		 * only supports code breakpoints and general detect #DB, both
9267 		 * of which are fault-like.
9268 		 */
9269 		if (!ctxt->have_exception ||
9270 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9271 			kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED);
9272 			if (ctxt->is_branch)
9273 				kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
9274 			kvm_rip_write(vcpu, ctxt->eip);
9275 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9276 				r = kvm_vcpu_do_singlestep(vcpu);
9277 			kvm_x86_call(update_emulated_instruction)(vcpu);
9278 			__kvm_set_rflags(vcpu, ctxt->eflags);
9279 		}
9280 
9281 		/*
9282 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9283 		 * do nothing, and it will be requested again as soon as
9284 		 * the shadow expires.  But we still need to check here,
9285 		 * because POPF has no interrupt shadow.
9286 		 */
9287 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9288 			kvm_make_request(KVM_REQ_EVENT, vcpu);
9289 	} else
9290 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9291 
9292 	return r;
9293 }
9294 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)9295 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9296 {
9297 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9298 }
9299 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9300 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)9301 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9302 					void *insn, int insn_len)
9303 {
9304 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9305 }
9306 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9307 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9308 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9309 {
9310 	vcpu->arch.pio.count = 0;
9311 	return 1;
9312 }
9313 
complete_fast_pio_out(struct kvm_vcpu * vcpu)9314 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9315 {
9316 	vcpu->arch.pio.count = 0;
9317 
9318 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9319 		return 1;
9320 
9321 	return kvm_skip_emulated_instruction(vcpu);
9322 }
9323 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9324 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9325 			    unsigned short port)
9326 {
9327 	unsigned long val = kvm_rax_read(vcpu);
9328 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9329 
9330 	if (ret)
9331 		return ret;
9332 
9333 	/*
9334 	 * Workaround userspace that relies on old KVM behavior of %rip being
9335 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9336 	 */
9337 	if (port == 0x7e &&
9338 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9339 		vcpu->arch.complete_userspace_io =
9340 			complete_fast_pio_out_port_0x7e;
9341 		kvm_skip_emulated_instruction(vcpu);
9342 	} else {
9343 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9344 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9345 	}
9346 	return 0;
9347 }
9348 
complete_fast_pio_in(struct kvm_vcpu * vcpu)9349 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9350 {
9351 	unsigned long val;
9352 
9353 	/* We should only ever be called with arch.pio.count equal to 1 */
9354 	BUG_ON(vcpu->arch.pio.count != 1);
9355 
9356 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9357 		vcpu->arch.pio.count = 0;
9358 		return 1;
9359 	}
9360 
9361 	/* For size less than 4 we merge, else we zero extend */
9362 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9363 
9364 	complete_emulator_pio_in(vcpu, &val);
9365 	kvm_rax_write(vcpu, val);
9366 
9367 	return kvm_skip_emulated_instruction(vcpu);
9368 }
9369 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9370 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9371 			   unsigned short port)
9372 {
9373 	unsigned long val;
9374 	int ret;
9375 
9376 	/* For size less than 4 we merge, else we zero extend */
9377 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9378 
9379 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9380 	if (ret) {
9381 		kvm_rax_write(vcpu, val);
9382 		return ret;
9383 	}
9384 
9385 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9386 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9387 
9388 	return 0;
9389 }
9390 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9391 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9392 {
9393 	int ret;
9394 
9395 	if (in)
9396 		ret = kvm_fast_pio_in(vcpu, size, port);
9397 	else
9398 		ret = kvm_fast_pio_out(vcpu, size, port);
9399 	return ret && kvm_skip_emulated_instruction(vcpu);
9400 }
9401 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9402 
kvmclock_cpu_down_prep(unsigned int cpu)9403 static int kvmclock_cpu_down_prep(unsigned int cpu)
9404 {
9405 	__this_cpu_write(cpu_tsc_khz, 0);
9406 	return 0;
9407 }
9408 
tsc_khz_changed(void * data)9409 static void tsc_khz_changed(void *data)
9410 {
9411 	struct cpufreq_freqs *freq = data;
9412 	unsigned long khz;
9413 
9414 	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9415 
9416 	if (data)
9417 		khz = freq->new;
9418 	else
9419 		khz = cpufreq_quick_get(raw_smp_processor_id());
9420 	if (!khz)
9421 		khz = tsc_khz;
9422 	__this_cpu_write(cpu_tsc_khz, khz);
9423 }
9424 
9425 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9426 static void kvm_hyperv_tsc_notifier(void)
9427 {
9428 	struct kvm *kvm;
9429 	int cpu;
9430 
9431 	mutex_lock(&kvm_lock);
9432 	list_for_each_entry(kvm, &vm_list, vm_list)
9433 		kvm_make_mclock_inprogress_request(kvm);
9434 
9435 	/* no guest entries from this point */
9436 	hyperv_stop_tsc_emulation();
9437 
9438 	/* TSC frequency always matches when on Hyper-V */
9439 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9440 		for_each_present_cpu(cpu)
9441 			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9442 	}
9443 	kvm_caps.max_guest_tsc_khz = tsc_khz;
9444 
9445 	list_for_each_entry(kvm, &vm_list, vm_list) {
9446 		__kvm_start_pvclock_update(kvm);
9447 		pvclock_update_vm_gtod_copy(kvm);
9448 		kvm_end_pvclock_update(kvm);
9449 	}
9450 
9451 	mutex_unlock(&kvm_lock);
9452 }
9453 #endif
9454 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9455 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9456 {
9457 	struct kvm *kvm;
9458 	struct kvm_vcpu *vcpu;
9459 	int send_ipi = 0;
9460 	unsigned long i;
9461 
9462 	/*
9463 	 * We allow guests to temporarily run on slowing clocks,
9464 	 * provided we notify them after, or to run on accelerating
9465 	 * clocks, provided we notify them before.  Thus time never
9466 	 * goes backwards.
9467 	 *
9468 	 * However, we have a problem.  We can't atomically update
9469 	 * the frequency of a given CPU from this function; it is
9470 	 * merely a notifier, which can be called from any CPU.
9471 	 * Changing the TSC frequency at arbitrary points in time
9472 	 * requires a recomputation of local variables related to
9473 	 * the TSC for each VCPU.  We must flag these local variables
9474 	 * to be updated and be sure the update takes place with the
9475 	 * new frequency before any guests proceed.
9476 	 *
9477 	 * Unfortunately, the combination of hotplug CPU and frequency
9478 	 * change creates an intractable locking scenario; the order
9479 	 * of when these callouts happen is undefined with respect to
9480 	 * CPU hotplug, and they can race with each other.  As such,
9481 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9482 	 * undefined; you can actually have a CPU frequency change take
9483 	 * place in between the computation of X and the setting of the
9484 	 * variable.  To protect against this problem, all updates of
9485 	 * the per_cpu tsc_khz variable are done in an interrupt
9486 	 * protected IPI, and all callers wishing to update the value
9487 	 * must wait for a synchronous IPI to complete (which is trivial
9488 	 * if the caller is on the CPU already).  This establishes the
9489 	 * necessary total order on variable updates.
9490 	 *
9491 	 * Note that because a guest time update may take place
9492 	 * anytime after the setting of the VCPU's request bit, the
9493 	 * correct TSC value must be set before the request.  However,
9494 	 * to ensure the update actually makes it to any guest which
9495 	 * starts running in hardware virtualization between the set
9496 	 * and the acquisition of the spinlock, we must also ping the
9497 	 * CPU after setting the request bit.
9498 	 *
9499 	 */
9500 
9501 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9502 
9503 	mutex_lock(&kvm_lock);
9504 	list_for_each_entry(kvm, &vm_list, vm_list) {
9505 		kvm_for_each_vcpu(i, vcpu, kvm) {
9506 			if (vcpu->cpu != cpu)
9507 				continue;
9508 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9509 			if (vcpu->cpu != raw_smp_processor_id())
9510 				send_ipi = 1;
9511 		}
9512 	}
9513 	mutex_unlock(&kvm_lock);
9514 
9515 	if (freq->old < freq->new && send_ipi) {
9516 		/*
9517 		 * We upscale the frequency.  Must make the guest
9518 		 * doesn't see old kvmclock values while running with
9519 		 * the new frequency, otherwise we risk the guest sees
9520 		 * time go backwards.
9521 		 *
9522 		 * In case we update the frequency for another cpu
9523 		 * (which might be in guest context) send an interrupt
9524 		 * to kick the cpu out of guest context.  Next time
9525 		 * guest context is entered kvmclock will be updated,
9526 		 * so the guest will not see stale values.
9527 		 */
9528 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9529 	}
9530 }
9531 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9532 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9533 				     void *data)
9534 {
9535 	struct cpufreq_freqs *freq = data;
9536 	int cpu;
9537 
9538 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9539 		return 0;
9540 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9541 		return 0;
9542 
9543 	for_each_cpu(cpu, freq->policy->cpus)
9544 		__kvmclock_cpufreq_notifier(freq, cpu);
9545 
9546 	return 0;
9547 }
9548 
9549 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9550 	.notifier_call  = kvmclock_cpufreq_notifier
9551 };
9552 
kvmclock_cpu_online(unsigned int cpu)9553 static int kvmclock_cpu_online(unsigned int cpu)
9554 {
9555 	tsc_khz_changed(NULL);
9556 	return 0;
9557 }
9558 
kvm_timer_init(void)9559 static void kvm_timer_init(void)
9560 {
9561 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9562 		max_tsc_khz = tsc_khz;
9563 
9564 		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9565 			struct cpufreq_policy *policy;
9566 			int cpu;
9567 
9568 			cpu = get_cpu();
9569 			policy = cpufreq_cpu_get(cpu);
9570 			if (policy) {
9571 				if (policy->cpuinfo.max_freq)
9572 					max_tsc_khz = policy->cpuinfo.max_freq;
9573 				cpufreq_cpu_put(policy);
9574 			}
9575 			put_cpu();
9576 		}
9577 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9578 					  CPUFREQ_TRANSITION_NOTIFIER);
9579 
9580 		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9581 				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9582 	}
9583 }
9584 
9585 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9586 static void pvclock_gtod_update_fn(struct work_struct *work)
9587 {
9588 	struct kvm *kvm;
9589 	struct kvm_vcpu *vcpu;
9590 	unsigned long i;
9591 
9592 	mutex_lock(&kvm_lock);
9593 	list_for_each_entry(kvm, &vm_list, vm_list)
9594 		kvm_for_each_vcpu(i, vcpu, kvm)
9595 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9596 	atomic_set(&kvm_guest_has_master_clock, 0);
9597 	mutex_unlock(&kvm_lock);
9598 }
9599 
9600 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9601 
9602 /*
9603  * Indirection to move queue_work() out of the tk_core.seq write held
9604  * region to prevent possible deadlocks against time accessors which
9605  * are invoked with work related locks held.
9606  */
pvclock_irq_work_fn(struct irq_work * w)9607 static void pvclock_irq_work_fn(struct irq_work *w)
9608 {
9609 	queue_work(system_long_wq, &pvclock_gtod_work);
9610 }
9611 
9612 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9613 
9614 /*
9615  * Notification about pvclock gtod data update.
9616  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9617 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9618 			       void *priv)
9619 {
9620 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9621 	struct timekeeper *tk = priv;
9622 
9623 	update_pvclock_gtod(tk);
9624 
9625 	/*
9626 	 * Disable master clock if host does not trust, or does not use,
9627 	 * TSC based clocksource. Delegate queue_work() to irq_work as
9628 	 * this is invoked with tk_core.seq write held.
9629 	 */
9630 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9631 	    atomic_read(&kvm_guest_has_master_clock) != 0)
9632 		irq_work_queue(&pvclock_irq_work);
9633 	return 0;
9634 }
9635 
9636 static struct notifier_block pvclock_gtod_notifier = {
9637 	.notifier_call = pvclock_gtod_notify,
9638 };
9639 #endif
9640 
kvm_ops_update(struct kvm_x86_init_ops * ops)9641 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9642 {
9643 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9644 
9645 #define __KVM_X86_OP(func) \
9646 	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9647 #define KVM_X86_OP(func) \
9648 	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9649 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9650 #define KVM_X86_OP_OPTIONAL_RET0(func) \
9651 	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9652 					   (void *)__static_call_return0);
9653 #include <asm/kvm-x86-ops.h>
9654 #undef __KVM_X86_OP
9655 
9656 	kvm_pmu_ops_update(ops->pmu_ops);
9657 }
9658 
kvm_x86_check_processor_compatibility(void)9659 static int kvm_x86_check_processor_compatibility(void)
9660 {
9661 	int cpu = smp_processor_id();
9662 	struct cpuinfo_x86 *c = &cpu_data(cpu);
9663 
9664 	/*
9665 	 * Compatibility checks are done when loading KVM and when enabling
9666 	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9667 	 * compatible, i.e. KVM should never perform a compatibility check on
9668 	 * an offline CPU.
9669 	 */
9670 	WARN_ON(!cpu_online(cpu));
9671 
9672 	if (__cr4_reserved_bits(cpu_has, c) !=
9673 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9674 		return -EIO;
9675 
9676 	return kvm_x86_call(check_processor_compatibility)();
9677 }
9678 
kvm_x86_check_cpu_compat(void * ret)9679 static void kvm_x86_check_cpu_compat(void *ret)
9680 {
9681 	*(int *)ret = kvm_x86_check_processor_compatibility();
9682 }
9683 
kvm_x86_vendor_init(struct kvm_x86_init_ops * ops)9684 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9685 {
9686 	u64 host_pat;
9687 	int r, cpu;
9688 
9689 	guard(mutex)(&vendor_module_lock);
9690 
9691 	if (kvm_x86_ops.enable_virtualization_cpu) {
9692 		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9693 		return -EEXIST;
9694 	}
9695 
9696 	/*
9697 	 * KVM explicitly assumes that the guest has an FPU and
9698 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9699 	 * vCPU's FPU state as a fxregs_state struct.
9700 	 */
9701 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9702 		pr_err("inadequate fpu\n");
9703 		return -EOPNOTSUPP;
9704 	}
9705 
9706 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9707 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9708 		return -EOPNOTSUPP;
9709 	}
9710 
9711 	/*
9712 	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9713 	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9714 	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9715 	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9716 	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9717 	 */
9718 	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9719 	    (host_pat & GENMASK(2, 0)) != 6) {
9720 		pr_err("host PAT[0] is not WB\n");
9721 		return -EIO;
9722 	}
9723 
9724 	memset(&kvm_caps, 0, sizeof(kvm_caps));
9725 
9726 	x86_emulator_cache = kvm_alloc_emulator_cache();
9727 	if (!x86_emulator_cache) {
9728 		pr_err("failed to allocate cache for x86 emulator\n");
9729 		return -ENOMEM;
9730 	}
9731 
9732 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9733 	if (!user_return_msrs) {
9734 		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9735 		r = -ENOMEM;
9736 		goto out_free_x86_emulator_cache;
9737 	}
9738 	kvm_nr_uret_msrs = 0;
9739 
9740 	r = kvm_mmu_vendor_module_init();
9741 	if (r)
9742 		goto out_free_percpu;
9743 
9744 	kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM);
9745 	kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P;
9746 
9747 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9748 		kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9749 		kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0;
9750 	}
9751 
9752 	rdmsrl_safe(MSR_EFER, &kvm_host.efer);
9753 
9754 	if (boot_cpu_has(X86_FEATURE_XSAVES))
9755 		rdmsrl(MSR_IA32_XSS, kvm_host.xss);
9756 
9757 	kvm_init_pmu_capability(ops->pmu_ops);
9758 
9759 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9760 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities);
9761 
9762 	r = ops->hardware_setup();
9763 	if (r != 0)
9764 		goto out_mmu_exit;
9765 
9766 	kvm_ops_update(ops);
9767 
9768 	for_each_online_cpu(cpu) {
9769 		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9770 		if (r < 0)
9771 			goto out_unwind_ops;
9772 	}
9773 
9774 	/*
9775 	 * Point of no return!  DO NOT add error paths below this point unless
9776 	 * absolutely necessary, as most operations from this point forward
9777 	 * require unwinding.
9778 	 */
9779 	kvm_timer_init();
9780 
9781 	if (pi_inject_timer == -1)
9782 		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9783 #ifdef CONFIG_X86_64
9784 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9785 
9786 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9787 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9788 #endif
9789 
9790 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9791 
9792 	if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled)
9793 		kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM);
9794 
9795 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9796 		kvm_caps.supported_xss = 0;
9797 
9798 	if (kvm_caps.has_tsc_control) {
9799 		/*
9800 		 * Make sure the user can only configure tsc_khz values that
9801 		 * fit into a signed integer.
9802 		 * A min value is not calculated because it will always
9803 		 * be 1 on all machines.
9804 		 */
9805 		u64 max = min(0x7fffffffULL,
9806 			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9807 		kvm_caps.max_guest_tsc_khz = max;
9808 	}
9809 	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9810 	kvm_init_msr_lists();
9811 	return 0;
9812 
9813 out_unwind_ops:
9814 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9815 	kvm_x86_call(hardware_unsetup)();
9816 out_mmu_exit:
9817 	kvm_mmu_vendor_module_exit();
9818 out_free_percpu:
9819 	free_percpu(user_return_msrs);
9820 out_free_x86_emulator_cache:
9821 	kmem_cache_destroy(x86_emulator_cache);
9822 	return r;
9823 }
9824 EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9825 
kvm_x86_vendor_exit(void)9826 void kvm_x86_vendor_exit(void)
9827 {
9828 	kvm_unregister_perf_callbacks();
9829 
9830 #ifdef CONFIG_X86_64
9831 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9832 		clear_hv_tscchange_cb();
9833 #endif
9834 	kvm_lapic_exit();
9835 
9836 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9837 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9838 					    CPUFREQ_TRANSITION_NOTIFIER);
9839 		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9840 	}
9841 #ifdef CONFIG_X86_64
9842 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9843 	irq_work_sync(&pvclock_irq_work);
9844 	cancel_work_sync(&pvclock_gtod_work);
9845 #endif
9846 	kvm_x86_call(hardware_unsetup)();
9847 	kvm_mmu_vendor_module_exit();
9848 	free_percpu(user_return_msrs);
9849 	kmem_cache_destroy(x86_emulator_cache);
9850 #ifdef CONFIG_KVM_XEN
9851 	static_key_deferred_flush(&kvm_xen_enabled);
9852 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9853 #endif
9854 	mutex_lock(&vendor_module_lock);
9855 	kvm_x86_ops.enable_virtualization_cpu = NULL;
9856 	mutex_unlock(&vendor_module_lock);
9857 }
9858 EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9859 
9860 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9861 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9862 			        unsigned long clock_type)
9863 {
9864 	struct kvm_clock_pairing clock_pairing;
9865 	struct timespec64 ts;
9866 	u64 cycle;
9867 	int ret;
9868 
9869 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9870 		return -KVM_EOPNOTSUPP;
9871 
9872 	/*
9873 	 * When tsc is in permanent catchup mode guests won't be able to use
9874 	 * pvclock_read_retry loop to get consistent view of pvclock
9875 	 */
9876 	if (vcpu->arch.tsc_always_catchup)
9877 		return -KVM_EOPNOTSUPP;
9878 
9879 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9880 		return -KVM_EOPNOTSUPP;
9881 
9882 	clock_pairing.sec = ts.tv_sec;
9883 	clock_pairing.nsec = ts.tv_nsec;
9884 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9885 	clock_pairing.flags = 0;
9886 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9887 
9888 	ret = 0;
9889 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9890 			    sizeof(struct kvm_clock_pairing)))
9891 		ret = -KVM_EFAULT;
9892 
9893 	return ret;
9894 }
9895 #endif
9896 
9897 /*
9898  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9899  *
9900  * @apicid - apicid of vcpu to be kicked.
9901  */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9902 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9903 {
9904 	/*
9905 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9906 	 * common code, e.g. for tracing. Defer initialization to the compiler.
9907 	 */
9908 	struct kvm_lapic_irq lapic_irq = {
9909 		.delivery_mode = APIC_DM_REMRD,
9910 		.dest_mode = APIC_DEST_PHYSICAL,
9911 		.shorthand = APIC_DEST_NOSHORT,
9912 		.dest_id = apicid,
9913 	};
9914 
9915 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9916 }
9917 
kvm_apicv_activated(struct kvm * kvm)9918 bool kvm_apicv_activated(struct kvm *kvm)
9919 {
9920 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9921 }
9922 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9923 
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9924 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9925 {
9926 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9927 	ulong vcpu_reasons =
9928 			kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu);
9929 
9930 	return (vm_reasons | vcpu_reasons) == 0;
9931 }
9932 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9933 
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9934 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9935 				       enum kvm_apicv_inhibit reason, bool set)
9936 {
9937 	const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS };
9938 
9939 	BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS);
9940 
9941 	if (set)
9942 		__set_bit(reason, inhibits);
9943 	else
9944 		__clear_bit(reason, inhibits);
9945 
9946 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9947 }
9948 
kvm_apicv_init(struct kvm * kvm)9949 static void kvm_apicv_init(struct kvm *kvm)
9950 {
9951 	enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT :
9952 						       APICV_INHIBIT_REASON_DISABLED;
9953 
9954 	set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true);
9955 
9956 	init_rwsem(&kvm->arch.apicv_update_lock);
9957 }
9958 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9959 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9960 {
9961 	struct kvm_vcpu *target = NULL;
9962 	struct kvm_apic_map *map;
9963 
9964 	vcpu->stat.directed_yield_attempted++;
9965 
9966 	if (single_task_running())
9967 		goto no_yield;
9968 
9969 	rcu_read_lock();
9970 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9971 
9972 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9973 		target = map->phys_map[dest_id]->vcpu;
9974 
9975 	rcu_read_unlock();
9976 
9977 	if (!target || !READ_ONCE(target->ready))
9978 		goto no_yield;
9979 
9980 	/* Ignore requests to yield to self */
9981 	if (vcpu == target)
9982 		goto no_yield;
9983 
9984 	if (kvm_vcpu_yield_to(target) <= 0)
9985 		goto no_yield;
9986 
9987 	vcpu->stat.directed_yield_successful++;
9988 
9989 no_yield:
9990 	return;
9991 }
9992 
complete_hypercall_exit(struct kvm_vcpu * vcpu)9993 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9994 {
9995 	u64 ret = vcpu->run->hypercall.ret;
9996 
9997 	if (!is_64_bit_hypercall(vcpu))
9998 		ret = (u32)ret;
9999 	kvm_rax_write(vcpu, ret);
10000 	return kvm_skip_emulated_instruction(vcpu);
10001 }
10002 
____kvm_emulate_hypercall(struct kvm_vcpu * vcpu,unsigned long nr,unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,int op_64_bit,int cpl,int (* complete_hypercall)(struct kvm_vcpu *))10003 int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
10004 			      unsigned long a0, unsigned long a1,
10005 			      unsigned long a2, unsigned long a3,
10006 			      int op_64_bit, int cpl,
10007 			      int (*complete_hypercall)(struct kvm_vcpu *))
10008 {
10009 	unsigned long ret;
10010 
10011 	++vcpu->stat.hypercalls;
10012 
10013 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
10014 
10015 	if (!op_64_bit) {
10016 		nr &= 0xFFFFFFFF;
10017 		a0 &= 0xFFFFFFFF;
10018 		a1 &= 0xFFFFFFFF;
10019 		a2 &= 0xFFFFFFFF;
10020 		a3 &= 0xFFFFFFFF;
10021 	}
10022 
10023 	if (cpl) {
10024 		ret = -KVM_EPERM;
10025 		goto out;
10026 	}
10027 
10028 	ret = -KVM_ENOSYS;
10029 
10030 	switch (nr) {
10031 	case KVM_HC_VAPIC_POLL_IRQ:
10032 		ret = 0;
10033 		break;
10034 	case KVM_HC_KICK_CPU:
10035 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
10036 			break;
10037 
10038 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
10039 		kvm_sched_yield(vcpu, a1);
10040 		ret = 0;
10041 		break;
10042 #ifdef CONFIG_X86_64
10043 	case KVM_HC_CLOCK_PAIRING:
10044 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
10045 		break;
10046 #endif
10047 	case KVM_HC_SEND_IPI:
10048 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
10049 			break;
10050 
10051 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
10052 		break;
10053 	case KVM_HC_SCHED_YIELD:
10054 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
10055 			break;
10056 
10057 		kvm_sched_yield(vcpu, a0);
10058 		ret = 0;
10059 		break;
10060 	case KVM_HC_MAP_GPA_RANGE: {
10061 		u64 gpa = a0, npages = a1, attrs = a2;
10062 
10063 		ret = -KVM_ENOSYS;
10064 		if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE))
10065 			break;
10066 
10067 		if (!PAGE_ALIGNED(gpa) || !npages ||
10068 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
10069 			ret = -KVM_EINVAL;
10070 			break;
10071 		}
10072 
10073 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
10074 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
10075 		/*
10076 		 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
10077 		 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
10078 		 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
10079 		 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
10080 		 */
10081 		vcpu->run->hypercall.ret = 0;
10082 		vcpu->run->hypercall.args[0]  = gpa;
10083 		vcpu->run->hypercall.args[1]  = npages;
10084 		vcpu->run->hypercall.args[2]  = attrs;
10085 		vcpu->run->hypercall.flags    = 0;
10086 		if (op_64_bit)
10087 			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
10088 
10089 		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
10090 		vcpu->arch.complete_userspace_io = complete_hypercall;
10091 		return 0;
10092 	}
10093 	default:
10094 		ret = -KVM_ENOSYS;
10095 		break;
10096 	}
10097 
10098 out:
10099 	vcpu->run->hypercall.ret = ret;
10100 	return 1;
10101 }
10102 EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall);
10103 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)10104 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
10105 {
10106 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
10107 		return kvm_xen_hypercall(vcpu);
10108 
10109 	if (kvm_hv_hypercall_enabled(vcpu))
10110 		return kvm_hv_hypercall(vcpu);
10111 
10112 	return __kvm_emulate_hypercall(vcpu, rax, rbx, rcx, rdx, rsi,
10113 				       is_64_bit_hypercall(vcpu),
10114 				       kvm_x86_call(get_cpl)(vcpu),
10115 				       complete_hypercall_exit);
10116 }
10117 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
10118 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)10119 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
10120 {
10121 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
10122 	char instruction[3];
10123 	unsigned long rip = kvm_rip_read(vcpu);
10124 
10125 	/*
10126 	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
10127 	 * the pieces.
10128 	 */
10129 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
10130 		ctxt->exception.error_code_valid = false;
10131 		ctxt->exception.vector = UD_VECTOR;
10132 		ctxt->have_exception = true;
10133 		return X86EMUL_PROPAGATE_FAULT;
10134 	}
10135 
10136 	kvm_x86_call(patch_hypercall)(vcpu, instruction);
10137 
10138 	return emulator_write_emulated(ctxt, rip, instruction, 3,
10139 		&ctxt->exception);
10140 }
10141 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)10142 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
10143 {
10144 	return vcpu->run->request_interrupt_window &&
10145 		likely(!pic_in_kernel(vcpu->kvm));
10146 }
10147 
10148 /* Called within kvm->srcu read side.  */
post_kvm_run_save(struct kvm_vcpu * vcpu)10149 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
10150 {
10151 	struct kvm_run *kvm_run = vcpu->run;
10152 
10153 	kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu);
10154 	kvm_run->cr8 = kvm_get_cr8(vcpu);
10155 	kvm_run->apic_base = vcpu->arch.apic_base;
10156 
10157 	kvm_run->ready_for_interrupt_injection =
10158 		pic_in_kernel(vcpu->kvm) ||
10159 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
10160 
10161 	if (is_smm(vcpu))
10162 		kvm_run->flags |= KVM_RUN_X86_SMM;
10163 	if (is_guest_mode(vcpu))
10164 		kvm_run->flags |= KVM_RUN_X86_GUEST_MODE;
10165 }
10166 
update_cr8_intercept(struct kvm_vcpu * vcpu)10167 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
10168 {
10169 	int max_irr, tpr;
10170 
10171 	if (!kvm_x86_ops.update_cr8_intercept)
10172 		return;
10173 
10174 	if (!lapic_in_kernel(vcpu))
10175 		return;
10176 
10177 	if (vcpu->arch.apic->apicv_active)
10178 		return;
10179 
10180 	if (!vcpu->arch.apic->vapic_addr)
10181 		max_irr = kvm_lapic_find_highest_irr(vcpu);
10182 	else
10183 		max_irr = -1;
10184 
10185 	if (max_irr != -1)
10186 		max_irr >>= 4;
10187 
10188 	tpr = kvm_lapic_get_cr8(vcpu);
10189 
10190 	kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr);
10191 }
10192 
10193 
kvm_check_nested_events(struct kvm_vcpu * vcpu)10194 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10195 {
10196 	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10197 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10198 		return 1;
10199 	}
10200 
10201 	return kvm_x86_ops.nested_ops->check_events(vcpu);
10202 }
10203 
kvm_inject_exception(struct kvm_vcpu * vcpu)10204 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10205 {
10206 	/*
10207 	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10208 	 * exceptions don't report error codes.  The presence of an error code
10209 	 * is carried with the exception and only stripped when the exception
10210 	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10211 	 * report an error code despite the CPU being in Real Mode.
10212 	 */
10213 	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10214 
10215 	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10216 				vcpu->arch.exception.has_error_code,
10217 				vcpu->arch.exception.error_code,
10218 				vcpu->arch.exception.injected);
10219 
10220 	kvm_x86_call(inject_exception)(vcpu);
10221 }
10222 
10223 /*
10224  * Check for any event (interrupt or exception) that is ready to be injected,
10225  * and if there is at least one event, inject the event with the highest
10226  * priority.  This handles both "pending" events, i.e. events that have never
10227  * been injected into the guest, and "injected" events, i.e. events that were
10228  * injected as part of a previous VM-Enter, but weren't successfully delivered
10229  * and need to be re-injected.
10230  *
10231  * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10232  * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10233  * be able to inject exceptions in the "middle" of an instruction, and so must
10234  * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10235  * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10236  * boundaries is necessary and correct.
10237  *
10238  * For simplicity, KVM uses a single path to inject all events (except events
10239  * that are injected directly from L1 to L2) and doesn't explicitly track
10240  * instruction boundaries for asynchronous events.  However, because VM-Exits
10241  * that can occur during instruction execution typically result in KVM skipping
10242  * the instruction or injecting an exception, e.g. instruction and exception
10243  * intercepts, and because pending exceptions have higher priority than pending
10244  * interrupts, KVM still honors instruction boundaries in most scenarios.
10245  *
10246  * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10247  * the instruction or inject an exception, then KVM can incorrecty inject a new
10248  * asynchronous event if the event became pending after the CPU fetched the
10249  * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10250  * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10251  * injected on the restarted instruction instead of being deferred until the
10252  * instruction completes.
10253  *
10254  * In practice, this virtualization hole is unlikely to be observed by the
10255  * guest, and even less likely to cause functional problems.  To detect the
10256  * hole, the guest would have to trigger an event on a side effect of an early
10257  * phase of instruction execution, e.g. on the instruction fetch from memory.
10258  * And for it to be a functional problem, the guest would need to depend on the
10259  * ordering between that side effect, the instruction completing, _and_ the
10260  * delivery of the asynchronous event.
10261  */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)10262 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10263 				       bool *req_immediate_exit)
10264 {
10265 	bool can_inject;
10266 	int r;
10267 
10268 	/*
10269 	 * Process nested events first, as nested VM-Exit supersedes event
10270 	 * re-injection.  If there's an event queued for re-injection, it will
10271 	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10272 	 */
10273 	if (is_guest_mode(vcpu))
10274 		r = kvm_check_nested_events(vcpu);
10275 	else
10276 		r = 0;
10277 
10278 	/*
10279 	 * Re-inject exceptions and events *especially* if immediate entry+exit
10280 	 * to/from L2 is needed, as any event that has already been injected
10281 	 * into L2 needs to complete its lifecycle before injecting a new event.
10282 	 *
10283 	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10284 	 * This collision arises if an exception occurred while vectoring the
10285 	 * injected event, KVM intercepted said exception, and KVM ultimately
10286 	 * determined the fault belongs to the guest and queues the exception
10287 	 * for injection back into the guest.
10288 	 *
10289 	 * "Injected" interrupts can also collide with pending exceptions if
10290 	 * userspace ignores the "ready for injection" flag and blindly queues
10291 	 * an interrupt.  In that case, prioritizing the exception is correct,
10292 	 * as the exception "occurred" before the exit to userspace.  Trap-like
10293 	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10294 	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10295 	 * priority, they're only generated (pended) during instruction
10296 	 * execution, and interrupts are recognized at instruction boundaries.
10297 	 * Thus a pending fault-like exception means the fault occurred on the
10298 	 * *previous* instruction and must be serviced prior to recognizing any
10299 	 * new events in order to fully complete the previous instruction.
10300 	 */
10301 	if (vcpu->arch.exception.injected)
10302 		kvm_inject_exception(vcpu);
10303 	else if (kvm_is_exception_pending(vcpu))
10304 		; /* see above */
10305 	else if (vcpu->arch.nmi_injected)
10306 		kvm_x86_call(inject_nmi)(vcpu);
10307 	else if (vcpu->arch.interrupt.injected)
10308 		kvm_x86_call(inject_irq)(vcpu, true);
10309 
10310 	/*
10311 	 * Exceptions that morph to VM-Exits are handled above, and pending
10312 	 * exceptions on top of injected exceptions that do not VM-Exit should
10313 	 * either morph to #DF or, sadly, override the injected exception.
10314 	 */
10315 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10316 		     vcpu->arch.exception.pending);
10317 
10318 	/*
10319 	 * Bail if immediate entry+exit to/from the guest is needed to complete
10320 	 * nested VM-Enter or event re-injection so that a different pending
10321 	 * event can be serviced (or if KVM needs to exit to userspace).
10322 	 *
10323 	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10324 	 * VM-Exit will have cleared exceptions that were meant for L2, but
10325 	 * there may now be events that can be injected into L1.
10326 	 */
10327 	if (r < 0)
10328 		goto out;
10329 
10330 	/*
10331 	 * A pending exception VM-Exit should either result in nested VM-Exit
10332 	 * or force an immediate re-entry and exit to/from L2, and exception
10333 	 * VM-Exits cannot be injected (flag should _never_ be set).
10334 	 */
10335 	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10336 		     vcpu->arch.exception_vmexit.pending);
10337 
10338 	/*
10339 	 * New events, other than exceptions, cannot be injected if KVM needs
10340 	 * to re-inject a previous event.  See above comments on re-injecting
10341 	 * for why pending exceptions get priority.
10342 	 */
10343 	can_inject = !kvm_event_needs_reinjection(vcpu);
10344 
10345 	if (vcpu->arch.exception.pending) {
10346 		/*
10347 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10348 		 * value pushed on the stack.  Trap-like exception and all #DBs
10349 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10350 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10351 		 *
10352 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10353 		 * describe the behavior of General Detect #DBs, which are
10354 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10355 		 */
10356 		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10357 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10358 					     X86_EFLAGS_RF);
10359 
10360 		if (vcpu->arch.exception.vector == DB_VECTOR) {
10361 			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10362 			if (vcpu->arch.dr7 & DR7_GD) {
10363 				vcpu->arch.dr7 &= ~DR7_GD;
10364 				kvm_update_dr7(vcpu);
10365 			}
10366 		}
10367 
10368 		kvm_inject_exception(vcpu);
10369 
10370 		vcpu->arch.exception.pending = false;
10371 		vcpu->arch.exception.injected = true;
10372 
10373 		can_inject = false;
10374 	}
10375 
10376 	/* Don't inject interrupts if the user asked to avoid doing so */
10377 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10378 		return 0;
10379 
10380 	/*
10381 	 * Finally, inject interrupt events.  If an event cannot be injected
10382 	 * due to architectural conditions (e.g. IF=0) a window-open exit
10383 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10384 	 * and can architecturally be injected, but we cannot do it right now:
10385 	 * an interrupt could have arrived just now and we have to inject it
10386 	 * as a vmexit, or there could already an event in the queue, which is
10387 	 * indicated by can_inject.  In that case we request an immediate exit
10388 	 * in order to make progress and get back here for another iteration.
10389 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10390 	 */
10391 #ifdef CONFIG_KVM_SMM
10392 	if (vcpu->arch.smi_pending) {
10393 		r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) :
10394 				 -EBUSY;
10395 		if (r < 0)
10396 			goto out;
10397 		if (r) {
10398 			vcpu->arch.smi_pending = false;
10399 			++vcpu->arch.smi_count;
10400 			enter_smm(vcpu);
10401 			can_inject = false;
10402 		} else
10403 			kvm_x86_call(enable_smi_window)(vcpu);
10404 	}
10405 #endif
10406 
10407 	if (vcpu->arch.nmi_pending) {
10408 		r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) :
10409 				 -EBUSY;
10410 		if (r < 0)
10411 			goto out;
10412 		if (r) {
10413 			--vcpu->arch.nmi_pending;
10414 			vcpu->arch.nmi_injected = true;
10415 			kvm_x86_call(inject_nmi)(vcpu);
10416 			can_inject = false;
10417 			WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0);
10418 		}
10419 		if (vcpu->arch.nmi_pending)
10420 			kvm_x86_call(enable_nmi_window)(vcpu);
10421 	}
10422 
10423 	if (kvm_cpu_has_injectable_intr(vcpu)) {
10424 		r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) :
10425 				 -EBUSY;
10426 		if (r < 0)
10427 			goto out;
10428 		if (r) {
10429 			int irq = kvm_cpu_get_interrupt(vcpu);
10430 
10431 			if (!WARN_ON_ONCE(irq == -1)) {
10432 				kvm_queue_interrupt(vcpu, irq, false);
10433 				kvm_x86_call(inject_irq)(vcpu, false);
10434 				WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0);
10435 			}
10436 		}
10437 		if (kvm_cpu_has_injectable_intr(vcpu))
10438 			kvm_x86_call(enable_irq_window)(vcpu);
10439 	}
10440 
10441 	if (is_guest_mode(vcpu) &&
10442 	    kvm_x86_ops.nested_ops->has_events &&
10443 	    kvm_x86_ops.nested_ops->has_events(vcpu, true))
10444 		*req_immediate_exit = true;
10445 
10446 	/*
10447 	 * KVM must never queue a new exception while injecting an event; KVM
10448 	 * is done emulating and should only propagate the to-be-injected event
10449 	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10450 	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10451 	 * exception and start the cycle all over.
10452 	 *
10453 	 * Exempt triple faults as they have special handling and won't put the
10454 	 * vCPU into an infinite loop.  Triple fault can be queued when running
10455 	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10456 	 * Mode events (see kvm_inject_realmode_interrupt()).
10457 	 */
10458 	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10459 		     vcpu->arch.exception_vmexit.pending);
10460 	return 0;
10461 
10462 out:
10463 	if (r == -EBUSY) {
10464 		*req_immediate_exit = true;
10465 		r = 0;
10466 	}
10467 	return r;
10468 }
10469 
process_nmi(struct kvm_vcpu * vcpu)10470 static void process_nmi(struct kvm_vcpu *vcpu)
10471 {
10472 	unsigned int limit;
10473 
10474 	/*
10475 	 * x86 is limited to one NMI pending, but because KVM can't react to
10476 	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10477 	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10478 	 * up at the same time.  To handle this scenario, allow two NMIs to be
10479 	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10480 	 * waiting for a previous NMI injection to complete (which effectively
10481 	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10482 	 * will request an NMI window to handle the second NMI.
10483 	 */
10484 	if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10485 		limit = 1;
10486 	else
10487 		limit = 2;
10488 
10489 	/*
10490 	 * Adjust the limit to account for pending virtual NMIs, which aren't
10491 	 * tracked in vcpu->arch.nmi_pending.
10492 	 */
10493 	if (kvm_x86_call(is_vnmi_pending)(vcpu))
10494 		limit--;
10495 
10496 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10497 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10498 
10499 	if (vcpu->arch.nmi_pending &&
10500 	    (kvm_x86_call(set_vnmi_pending)(vcpu)))
10501 		vcpu->arch.nmi_pending--;
10502 
10503 	if (vcpu->arch.nmi_pending)
10504 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10505 }
10506 
10507 /* Return total number of NMIs pending injection to the VM */
kvm_get_nr_pending_nmis(struct kvm_vcpu * vcpu)10508 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10509 {
10510 	return vcpu->arch.nmi_pending +
10511 	       kvm_x86_call(is_vnmi_pending)(vcpu);
10512 }
10513 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10514 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10515 				       unsigned long *vcpu_bitmap)
10516 {
10517 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10518 }
10519 
kvm_make_scan_ioapic_request(struct kvm * kvm)10520 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10521 {
10522 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10523 }
10524 
__kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10525 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10526 {
10527 	struct kvm_lapic *apic = vcpu->arch.apic;
10528 	bool activate;
10529 
10530 	if (!lapic_in_kernel(vcpu))
10531 		return;
10532 
10533 	down_read(&vcpu->kvm->arch.apicv_update_lock);
10534 	preempt_disable();
10535 
10536 	/* Do not activate APICV when APIC is disabled */
10537 	activate = kvm_vcpu_apicv_activated(vcpu) &&
10538 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10539 
10540 	if (apic->apicv_active == activate)
10541 		goto out;
10542 
10543 	apic->apicv_active = activate;
10544 	kvm_apic_update_apicv(vcpu);
10545 	kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu);
10546 
10547 	/*
10548 	 * When APICv gets disabled, we may still have injected interrupts
10549 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10550 	 * still active when the interrupt got accepted. Make sure
10551 	 * kvm_check_and_inject_events() is called to check for that.
10552 	 */
10553 	if (!apic->apicv_active)
10554 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10555 
10556 out:
10557 	preempt_enable();
10558 	up_read(&vcpu->kvm->arch.apicv_update_lock);
10559 }
10560 EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10561 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10562 static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10563 {
10564 	if (!lapic_in_kernel(vcpu))
10565 		return;
10566 
10567 	/*
10568 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10569 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10570 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10571 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10572 	 * this case so that KVM can use the AVIC doorbell to inject interrupts
10573 	 * to running vCPUs, but KVM must not create SPTEs for the APIC base as
10574 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10575 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10576 	 * access page is sticky.
10577 	 */
10578 	if (apic_x2apic_mode(vcpu->arch.apic) &&
10579 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10580 		kvm_inhibit_apic_access_page(vcpu);
10581 
10582 	__kvm_vcpu_update_apicv(vcpu);
10583 }
10584 
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10585 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10586 				      enum kvm_apicv_inhibit reason, bool set)
10587 {
10588 	unsigned long old, new;
10589 
10590 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10591 
10592 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10593 		return;
10594 
10595 	old = new = kvm->arch.apicv_inhibit_reasons;
10596 
10597 	set_or_clear_apicv_inhibit(&new, reason, set);
10598 
10599 	if (!!old != !!new) {
10600 		/*
10601 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10602 		 * false positives in the sanity check WARN in vcpu_enter_guest().
10603 		 * This task will wait for all vCPUs to ack the kick IRQ before
10604 		 * updating apicv_inhibit_reasons, and all other vCPUs will
10605 		 * block on acquiring apicv_update_lock so that vCPUs can't
10606 		 * redo vcpu_enter_guest() without seeing the new inhibit state.
10607 		 *
10608 		 * Note, holding apicv_update_lock and taking it in the read
10609 		 * side (handling the request) also prevents other vCPUs from
10610 		 * servicing the request with a stale apicv_inhibit_reasons.
10611 		 */
10612 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10613 		kvm->arch.apicv_inhibit_reasons = new;
10614 		if (new) {
10615 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10616 			int idx = srcu_read_lock(&kvm->srcu);
10617 
10618 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10619 			srcu_read_unlock(&kvm->srcu, idx);
10620 		}
10621 	} else {
10622 		kvm->arch.apicv_inhibit_reasons = new;
10623 	}
10624 }
10625 
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10626 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10627 				    enum kvm_apicv_inhibit reason, bool set)
10628 {
10629 	if (!enable_apicv)
10630 		return;
10631 
10632 	down_write(&kvm->arch.apicv_update_lock);
10633 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10634 	up_write(&kvm->arch.apicv_update_lock);
10635 }
10636 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10637 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10638 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10639 {
10640 	if (!kvm_apic_present(vcpu))
10641 		return;
10642 
10643 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10644 
10645 	kvm_x86_call(sync_pir_to_irr)(vcpu);
10646 
10647 	if (irqchip_split(vcpu->kvm))
10648 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10649 	else if (ioapic_in_kernel(vcpu->kvm))
10650 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10651 
10652 	if (is_guest_mode(vcpu))
10653 		vcpu->arch.load_eoi_exitmap_pending = true;
10654 	else
10655 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10656 }
10657 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10658 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10659 {
10660 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10661 		return;
10662 
10663 #ifdef CONFIG_KVM_HYPERV
10664 	if (to_hv_vcpu(vcpu)) {
10665 		u64 eoi_exit_bitmap[4];
10666 
10667 		bitmap_or((ulong *)eoi_exit_bitmap,
10668 			  vcpu->arch.ioapic_handled_vectors,
10669 			  to_hv_synic(vcpu)->vec_bitmap, 256);
10670 		kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10671 		return;
10672 	}
10673 #endif
10674 	kvm_x86_call(load_eoi_exitmap)(
10675 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10676 }
10677 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10678 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10679 {
10680 	kvm_x86_call(guest_memory_reclaimed)(kvm);
10681 }
10682 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10683 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10684 {
10685 	if (!lapic_in_kernel(vcpu))
10686 		return;
10687 
10688 	kvm_x86_call(set_apic_access_page_addr)(vcpu);
10689 }
10690 
10691 /*
10692  * Called within kvm->srcu read side.
10693  * Returns 1 to let vcpu_run() continue the guest execution loop without
10694  * exiting to the userspace.  Otherwise, the value will be returned to the
10695  * userspace.
10696  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10697 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10698 {
10699 	int r;
10700 	bool req_int_win =
10701 		dm_request_for_irq_injection(vcpu) &&
10702 		kvm_cpu_accept_dm_intr(vcpu);
10703 	fastpath_t exit_fastpath;
10704 
10705 	bool req_immediate_exit = false;
10706 
10707 	if (kvm_request_pending(vcpu)) {
10708 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10709 			r = -EIO;
10710 			goto out;
10711 		}
10712 
10713 		if (kvm_dirty_ring_check_request(vcpu)) {
10714 			r = 0;
10715 			goto out;
10716 		}
10717 
10718 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10719 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10720 				r = 0;
10721 				goto out;
10722 			}
10723 		}
10724 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10725 			kvm_mmu_free_obsolete_roots(vcpu);
10726 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10727 			__kvm_migrate_timers(vcpu);
10728 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10729 			kvm_update_masterclock(vcpu->kvm);
10730 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10731 			kvm_gen_kvmclock_update(vcpu);
10732 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10733 			r = kvm_guest_time_update(vcpu);
10734 			if (unlikely(r))
10735 				goto out;
10736 		}
10737 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10738 			kvm_mmu_sync_roots(vcpu);
10739 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10740 			kvm_mmu_load_pgd(vcpu);
10741 
10742 		/*
10743 		 * Note, the order matters here, as flushing "all" TLB entries
10744 		 * also flushes the "current" TLB entries, i.e. servicing the
10745 		 * flush "all" will clear any request to flush "current".
10746 		 */
10747 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10748 			kvm_vcpu_flush_tlb_all(vcpu);
10749 
10750 		kvm_service_local_tlb_flush_requests(vcpu);
10751 
10752 		/*
10753 		 * Fall back to a "full" guest flush if Hyper-V's precise
10754 		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10755 		 * the flushes are considered "remote" and not "local" because
10756 		 * the requests can be initiated from other vCPUs.
10757 		 */
10758 #ifdef CONFIG_KVM_HYPERV
10759 		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10760 		    kvm_hv_vcpu_flush_tlb(vcpu))
10761 			kvm_vcpu_flush_tlb_guest(vcpu);
10762 #endif
10763 
10764 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10765 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10766 			r = 0;
10767 			goto out;
10768 		}
10769 		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10770 			if (is_guest_mode(vcpu))
10771 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10772 
10773 			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10774 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10775 				vcpu->mmio_needed = 0;
10776 				r = 0;
10777 				goto out;
10778 			}
10779 		}
10780 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10781 			/* Page is swapped out. Do synthetic halt */
10782 			vcpu->arch.apf.halted = true;
10783 			r = 1;
10784 			goto out;
10785 		}
10786 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10787 			record_steal_time(vcpu);
10788 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10789 			kvm_pmu_handle_event(vcpu);
10790 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10791 			kvm_pmu_deliver_pmi(vcpu);
10792 #ifdef CONFIG_KVM_SMM
10793 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10794 			process_smi(vcpu);
10795 #endif
10796 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10797 			process_nmi(vcpu);
10798 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10799 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10800 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10801 				     vcpu->arch.ioapic_handled_vectors)) {
10802 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10803 				vcpu->run->eoi.vector =
10804 						vcpu->arch.pending_ioapic_eoi;
10805 				r = 0;
10806 				goto out;
10807 			}
10808 		}
10809 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10810 			vcpu_scan_ioapic(vcpu);
10811 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10812 			vcpu_load_eoi_exitmap(vcpu);
10813 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10814 			kvm_vcpu_reload_apic_access_page(vcpu);
10815 #ifdef CONFIG_KVM_HYPERV
10816 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10817 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10818 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10819 			vcpu->run->system_event.ndata = 0;
10820 			r = 0;
10821 			goto out;
10822 		}
10823 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10824 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10825 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10826 			vcpu->run->system_event.ndata = 0;
10827 			r = 0;
10828 			goto out;
10829 		}
10830 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10831 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10832 
10833 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10834 			vcpu->run->hyperv = hv_vcpu->exit;
10835 			r = 0;
10836 			goto out;
10837 		}
10838 
10839 		/*
10840 		 * KVM_REQ_HV_STIMER has to be processed after
10841 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10842 		 * depend on the guest clock being up-to-date
10843 		 */
10844 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10845 			kvm_hv_process_stimers(vcpu);
10846 #endif
10847 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10848 			kvm_vcpu_update_apicv(vcpu);
10849 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10850 			kvm_check_async_pf_completion(vcpu);
10851 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10852 			kvm_x86_call(msr_filter_changed)(vcpu);
10853 
10854 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10855 			kvm_x86_call(update_cpu_dirty_logging)(vcpu);
10856 
10857 		if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) {
10858 			kvm_vcpu_reset(vcpu, true);
10859 			if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) {
10860 				r = 1;
10861 				goto out;
10862 			}
10863 		}
10864 	}
10865 
10866 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10867 	    kvm_xen_has_interrupt(vcpu)) {
10868 		++vcpu->stat.req_event;
10869 		r = kvm_apic_accept_events(vcpu);
10870 		if (r < 0) {
10871 			r = 0;
10872 			goto out;
10873 		}
10874 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10875 			r = 1;
10876 			goto out;
10877 		}
10878 
10879 		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10880 		if (r < 0) {
10881 			r = 0;
10882 			goto out;
10883 		}
10884 		if (req_int_win)
10885 			kvm_x86_call(enable_irq_window)(vcpu);
10886 
10887 		if (kvm_lapic_enabled(vcpu)) {
10888 			update_cr8_intercept(vcpu);
10889 			kvm_lapic_sync_to_vapic(vcpu);
10890 		}
10891 	}
10892 
10893 	r = kvm_mmu_reload(vcpu);
10894 	if (unlikely(r)) {
10895 		goto cancel_injection;
10896 	}
10897 
10898 	preempt_disable();
10899 
10900 	kvm_x86_call(prepare_switch_to_guest)(vcpu);
10901 
10902 	/*
10903 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10904 	 * IPI are then delayed after guest entry, which ensures that they
10905 	 * result in virtual interrupt delivery.
10906 	 */
10907 	local_irq_disable();
10908 
10909 	/* Store vcpu->apicv_active before vcpu->mode.  */
10910 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10911 
10912 	kvm_vcpu_srcu_read_unlock(vcpu);
10913 
10914 	/*
10915 	 * 1) We should set ->mode before checking ->requests.  Please see
10916 	 * the comment in kvm_vcpu_exiting_guest_mode().
10917 	 *
10918 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10919 	 * pairs with the memory barrier implicit in pi_test_and_set_on
10920 	 * (see vmx_deliver_posted_interrupt).
10921 	 *
10922 	 * 3) This also orders the write to mode from any reads to the page
10923 	 * tables done while the VCPU is running.  Please see the comment
10924 	 * in kvm_flush_remote_tlbs.
10925 	 */
10926 	smp_mb__after_srcu_read_unlock();
10927 
10928 	/*
10929 	 * Process pending posted interrupts to handle the case where the
10930 	 * notification IRQ arrived in the host, or was never sent (because the
10931 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10932 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10933 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10934 	 */
10935 	if (kvm_lapic_enabled(vcpu))
10936 		kvm_x86_call(sync_pir_to_irr)(vcpu);
10937 
10938 	if (kvm_vcpu_exit_request(vcpu)) {
10939 		vcpu->mode = OUTSIDE_GUEST_MODE;
10940 		smp_wmb();
10941 		local_irq_enable();
10942 		preempt_enable();
10943 		kvm_vcpu_srcu_read_lock(vcpu);
10944 		r = 1;
10945 		goto cancel_injection;
10946 	}
10947 
10948 	if (req_immediate_exit)
10949 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10950 
10951 	fpregs_assert_state_consistent();
10952 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10953 		switch_fpu_return();
10954 
10955 	if (vcpu->arch.guest_fpu.xfd_err)
10956 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10957 
10958 	if (unlikely(vcpu->arch.switch_db_regs)) {
10959 		set_debugreg(0, 7);
10960 		set_debugreg(vcpu->arch.eff_db[0], 0);
10961 		set_debugreg(vcpu->arch.eff_db[1], 1);
10962 		set_debugreg(vcpu->arch.eff_db[2], 2);
10963 		set_debugreg(vcpu->arch.eff_db[3], 3);
10964 		/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
10965 		if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
10966 			kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6);
10967 	} else if (unlikely(hw_breakpoint_active())) {
10968 		set_debugreg(0, 7);
10969 	}
10970 
10971 	vcpu->arch.host_debugctl = get_debugctlmsr();
10972 
10973 	guest_timing_enter_irqoff();
10974 
10975 	for (;;) {
10976 		/*
10977 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10978 		 * update must kick and wait for all vCPUs before toggling the
10979 		 * per-VM state, and responding vCPUs must wait for the update
10980 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10981 		 */
10982 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10983 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10984 
10985 		exit_fastpath = kvm_x86_call(vcpu_run)(vcpu,
10986 						       req_immediate_exit);
10987 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10988 			break;
10989 
10990 		if (kvm_lapic_enabled(vcpu))
10991 			kvm_x86_call(sync_pir_to_irr)(vcpu);
10992 
10993 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10994 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10995 			break;
10996 		}
10997 
10998 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10999 		++vcpu->stat.exits;
11000 	}
11001 
11002 	/*
11003 	 * Do this here before restoring debug registers on the host.  And
11004 	 * since we do this before handling the vmexit, a DR access vmexit
11005 	 * can (a) read the correct value of the debug registers, (b) set
11006 	 * KVM_DEBUGREG_WONT_EXIT again.
11007 	 */
11008 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
11009 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
11010 		kvm_x86_call(sync_dirty_debug_regs)(vcpu);
11011 		kvm_update_dr0123(vcpu);
11012 		kvm_update_dr7(vcpu);
11013 	}
11014 
11015 	/*
11016 	 * If the guest has used debug registers, at least dr7
11017 	 * will be disabled while returning to the host.
11018 	 * If we don't have active breakpoints in the host, we don't
11019 	 * care about the messed up debug address registers. But if
11020 	 * we have some of them active, restore the old state.
11021 	 */
11022 	if (hw_breakpoint_active())
11023 		hw_breakpoint_restore();
11024 
11025 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
11026 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
11027 
11028 	vcpu->mode = OUTSIDE_GUEST_MODE;
11029 	smp_wmb();
11030 
11031 	/*
11032 	 * Sync xfd before calling handle_exit_irqoff() which may
11033 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
11034 	 * in #NM irqoff handler).
11035 	 */
11036 	if (vcpu->arch.xfd_no_write_intercept)
11037 		fpu_sync_guest_vmexit_xfd_state();
11038 
11039 	kvm_x86_call(handle_exit_irqoff)(vcpu);
11040 
11041 	if (vcpu->arch.guest_fpu.xfd_err)
11042 		wrmsrl(MSR_IA32_XFD_ERR, 0);
11043 
11044 	/*
11045 	 * Consume any pending interrupts, including the possible source of
11046 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
11047 	 * An instruction is required after local_irq_enable() to fully unblock
11048 	 * interrupts on processors that implement an interrupt shadow, the
11049 	 * stat.exits increment will do nicely.
11050 	 */
11051 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
11052 	local_irq_enable();
11053 	++vcpu->stat.exits;
11054 	local_irq_disable();
11055 	kvm_after_interrupt(vcpu);
11056 
11057 	/*
11058 	 * Wait until after servicing IRQs to account guest time so that any
11059 	 * ticks that occurred while running the guest are properly accounted
11060 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
11061 	 * of accounting via context tracking, but the loss of accuracy is
11062 	 * acceptable for all known use cases.
11063 	 */
11064 	guest_timing_exit_irqoff();
11065 
11066 	local_irq_enable();
11067 	preempt_enable();
11068 
11069 	kvm_vcpu_srcu_read_lock(vcpu);
11070 
11071 	/*
11072 	 * Call this to ensure WC buffers in guest are evicted after each VM
11073 	 * Exit, so that the evicted WC writes can be snooped across all cpus
11074 	 */
11075 	smp_mb__after_srcu_read_lock();
11076 
11077 	/*
11078 	 * Profile KVM exit RIPs:
11079 	 */
11080 	if (unlikely(prof_on == KVM_PROFILING)) {
11081 		unsigned long rip = kvm_rip_read(vcpu);
11082 		profile_hit(KVM_PROFILING, (void *)rip);
11083 	}
11084 
11085 	if (unlikely(vcpu->arch.tsc_always_catchup))
11086 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11087 
11088 	if (vcpu->arch.apic_attention)
11089 		kvm_lapic_sync_from_vapic(vcpu);
11090 
11091 	if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE))
11092 		return 0;
11093 
11094 	r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath);
11095 	return r;
11096 
11097 cancel_injection:
11098 	if (req_immediate_exit)
11099 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11100 	kvm_x86_call(cancel_injection)(vcpu);
11101 	if (unlikely(vcpu->arch.apic_attention))
11102 		kvm_lapic_sync_from_vapic(vcpu);
11103 out:
11104 	return r;
11105 }
11106 
kvm_vcpu_running(struct kvm_vcpu * vcpu)11107 static bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
11108 {
11109 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
11110 		!vcpu->arch.apf.halted);
11111 }
11112 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)11113 static bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11114 {
11115 	if (!list_empty_careful(&vcpu->async_pf.done))
11116 		return true;
11117 
11118 	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
11119 	    kvm_apic_init_sipi_allowed(vcpu))
11120 		return true;
11121 
11122 	if (vcpu->arch.pv.pv_unhalted)
11123 		return true;
11124 
11125 	if (kvm_is_exception_pending(vcpu))
11126 		return true;
11127 
11128 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11129 	    (vcpu->arch.nmi_pending &&
11130 	     kvm_x86_call(nmi_allowed)(vcpu, false)))
11131 		return true;
11132 
11133 #ifdef CONFIG_KVM_SMM
11134 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11135 	    (vcpu->arch.smi_pending &&
11136 	     kvm_x86_call(smi_allowed)(vcpu, false)))
11137 		return true;
11138 #endif
11139 
11140 	if (kvm_test_request(KVM_REQ_PMI, vcpu))
11141 		return true;
11142 
11143 	if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu))
11144 		return true;
11145 
11146 	if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu))
11147 		return true;
11148 
11149 	if (kvm_hv_has_stimer_pending(vcpu))
11150 		return true;
11151 
11152 	if (is_guest_mode(vcpu) &&
11153 	    kvm_x86_ops.nested_ops->has_events &&
11154 	    kvm_x86_ops.nested_ops->has_events(vcpu, false))
11155 		return true;
11156 
11157 	if (kvm_xen_has_pending_events(vcpu))
11158 		return true;
11159 
11160 	return false;
11161 }
11162 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)11163 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11164 {
11165 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11166 }
11167 
11168 /* Called within kvm->srcu read side.  */
vcpu_block(struct kvm_vcpu * vcpu)11169 static inline int vcpu_block(struct kvm_vcpu *vcpu)
11170 {
11171 	bool hv_timer;
11172 
11173 	if (!kvm_arch_vcpu_runnable(vcpu)) {
11174 		/*
11175 		 * Switch to the software timer before halt-polling/blocking as
11176 		 * the guest's timer may be a break event for the vCPU, and the
11177 		 * hypervisor timer runs only when the CPU is in guest mode.
11178 		 * Switch before halt-polling so that KVM recognizes an expired
11179 		 * timer before blocking.
11180 		 */
11181 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
11182 		if (hv_timer)
11183 			kvm_lapic_switch_to_sw_timer(vcpu);
11184 
11185 		kvm_vcpu_srcu_read_unlock(vcpu);
11186 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11187 			kvm_vcpu_halt(vcpu);
11188 		else
11189 			kvm_vcpu_block(vcpu);
11190 		kvm_vcpu_srcu_read_lock(vcpu);
11191 
11192 		if (hv_timer)
11193 			kvm_lapic_switch_to_hv_timer(vcpu);
11194 
11195 		/*
11196 		 * If the vCPU is not runnable, a signal or another host event
11197 		 * of some kind is pending; service it without changing the
11198 		 * vCPU's activity state.
11199 		 */
11200 		if (!kvm_arch_vcpu_runnable(vcpu))
11201 			return 1;
11202 	}
11203 
11204 	/*
11205 	 * Evaluate nested events before exiting the halted state.  This allows
11206 	 * the halt state to be recorded properly in the VMCS12's activity
11207 	 * state field (AMD does not have a similar field and a VM-Exit always
11208 	 * causes a spurious wakeup from HLT).
11209 	 */
11210 	if (is_guest_mode(vcpu)) {
11211 		int r = kvm_check_nested_events(vcpu);
11212 
11213 		WARN_ON_ONCE(r == -EBUSY);
11214 		if (r < 0)
11215 			return 0;
11216 	}
11217 
11218 	if (kvm_apic_accept_events(vcpu) < 0)
11219 		return 0;
11220 	switch(vcpu->arch.mp_state) {
11221 	case KVM_MP_STATE_HALTED:
11222 	case KVM_MP_STATE_AP_RESET_HOLD:
11223 		vcpu->arch.pv.pv_unhalted = false;
11224 		vcpu->arch.mp_state =
11225 			KVM_MP_STATE_RUNNABLE;
11226 		fallthrough;
11227 	case KVM_MP_STATE_RUNNABLE:
11228 		vcpu->arch.apf.halted = false;
11229 		break;
11230 	case KVM_MP_STATE_INIT_RECEIVED:
11231 		break;
11232 	default:
11233 		WARN_ON_ONCE(1);
11234 		break;
11235 	}
11236 	return 1;
11237 }
11238 
11239 /* Called within kvm->srcu read side.  */
vcpu_run(struct kvm_vcpu * vcpu)11240 static int vcpu_run(struct kvm_vcpu *vcpu)
11241 {
11242 	int r;
11243 
11244 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
11245 
11246 	for (;;) {
11247 		/*
11248 		 * If another guest vCPU requests a PV TLB flush in the middle
11249 		 * of instruction emulation, the rest of the emulation could
11250 		 * use a stale page translation. Assume that any code after
11251 		 * this point can start executing an instruction.
11252 		 */
11253 		vcpu->arch.at_instruction_boundary = false;
11254 		if (kvm_vcpu_running(vcpu)) {
11255 			r = vcpu_enter_guest(vcpu);
11256 		} else {
11257 			r = vcpu_block(vcpu);
11258 		}
11259 
11260 		if (r <= 0)
11261 			break;
11262 
11263 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
11264 		if (kvm_xen_has_pending_events(vcpu))
11265 			kvm_xen_inject_pending_events(vcpu);
11266 
11267 		if (kvm_cpu_has_pending_timer(vcpu))
11268 			kvm_inject_pending_timer_irqs(vcpu);
11269 
11270 		if (dm_request_for_irq_injection(vcpu) &&
11271 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
11272 			r = 0;
11273 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11274 			++vcpu->stat.request_irq_exits;
11275 			break;
11276 		}
11277 
11278 		if (__xfer_to_guest_mode_work_pending()) {
11279 			kvm_vcpu_srcu_read_unlock(vcpu);
11280 			r = xfer_to_guest_mode_handle_work(vcpu);
11281 			kvm_vcpu_srcu_read_lock(vcpu);
11282 			if (r)
11283 				return r;
11284 		}
11285 	}
11286 
11287 	return r;
11288 }
11289 
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)11290 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
11291 {
11292 	/*
11293 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
11294 	 * local APIC is in-kernel, the run loop will detect the non-runnable
11295 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
11296 	 * managed by userspace, in which case userspace is responsible for
11297 	 * handling wake events.
11298 	 */
11299 	++vcpu->stat.halt_exits;
11300 	if (lapic_in_kernel(vcpu)) {
11301 		if (kvm_vcpu_has_events(vcpu))
11302 			vcpu->arch.pv.pv_unhalted = false;
11303 		else
11304 			vcpu->arch.mp_state = state;
11305 		return 1;
11306 	} else {
11307 		vcpu->run->exit_reason = reason;
11308 		return 0;
11309 	}
11310 }
11311 
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)11312 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
11313 {
11314 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
11315 }
11316 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
11317 
kvm_emulate_halt(struct kvm_vcpu * vcpu)11318 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
11319 {
11320 	int ret = kvm_skip_emulated_instruction(vcpu);
11321 	/*
11322 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
11323 	 * KVM_EXIT_DEBUG here.
11324 	 */
11325 	return kvm_emulate_halt_noskip(vcpu) && ret;
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
11328 
handle_fastpath_hlt(struct kvm_vcpu * vcpu)11329 fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu)
11330 {
11331 	int ret;
11332 
11333 	kvm_vcpu_srcu_read_lock(vcpu);
11334 	ret = kvm_emulate_halt(vcpu);
11335 	kvm_vcpu_srcu_read_unlock(vcpu);
11336 
11337 	if (!ret)
11338 		return EXIT_FASTPATH_EXIT_USERSPACE;
11339 
11340 	if (kvm_vcpu_running(vcpu))
11341 		return EXIT_FASTPATH_REENTER_GUEST;
11342 
11343 	return EXIT_FASTPATH_EXIT_HANDLED;
11344 }
11345 EXPORT_SYMBOL_GPL(handle_fastpath_hlt);
11346 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)11347 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
11348 {
11349 	int ret = kvm_skip_emulated_instruction(vcpu);
11350 
11351 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
11352 					KVM_EXIT_AP_RESET_HOLD) && ret;
11353 }
11354 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
11355 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)11356 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11357 {
11358 	return kvm_vcpu_apicv_active(vcpu) &&
11359 	       kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu);
11360 }
11361 
kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu * vcpu)11362 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
11363 {
11364 	return vcpu->arch.preempted_in_kernel;
11365 }
11366 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)11367 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11368 {
11369 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11370 		return true;
11371 
11372 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11373 #ifdef CONFIG_KVM_SMM
11374 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
11375 #endif
11376 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
11377 		return true;
11378 
11379 	return kvm_arch_dy_has_pending_interrupt(vcpu);
11380 }
11381 
complete_emulated_io(struct kvm_vcpu * vcpu)11382 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11383 {
11384 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11385 }
11386 
complete_emulated_pio(struct kvm_vcpu * vcpu)11387 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11388 {
11389 	BUG_ON(!vcpu->arch.pio.count);
11390 
11391 	return complete_emulated_io(vcpu);
11392 }
11393 
11394 /*
11395  * Implements the following, as a state machine:
11396  *
11397  * read:
11398  *   for each fragment
11399  *     for each mmio piece in the fragment
11400  *       write gpa, len
11401  *       exit
11402  *       copy data
11403  *   execute insn
11404  *
11405  * write:
11406  *   for each fragment
11407  *     for each mmio piece in the fragment
11408  *       write gpa, len
11409  *       copy data
11410  *       exit
11411  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11412 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11413 {
11414 	struct kvm_run *run = vcpu->run;
11415 	struct kvm_mmio_fragment *frag;
11416 	unsigned len;
11417 
11418 	BUG_ON(!vcpu->mmio_needed);
11419 
11420 	/* Complete previous fragment */
11421 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11422 	len = min(8u, frag->len);
11423 	if (!vcpu->mmio_is_write)
11424 		memcpy(frag->data, run->mmio.data, len);
11425 
11426 	if (frag->len <= 8) {
11427 		/* Switch to the next fragment. */
11428 		frag++;
11429 		vcpu->mmio_cur_fragment++;
11430 	} else {
11431 		/* Go forward to the next mmio piece. */
11432 		frag->data += len;
11433 		frag->gpa += len;
11434 		frag->len -= len;
11435 	}
11436 
11437 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11438 		vcpu->mmio_needed = 0;
11439 
11440 		/* FIXME: return into emulator if single-stepping.  */
11441 		if (vcpu->mmio_is_write)
11442 			return 1;
11443 		vcpu->mmio_read_completed = 1;
11444 		return complete_emulated_io(vcpu);
11445 	}
11446 
11447 	run->exit_reason = KVM_EXIT_MMIO;
11448 	run->mmio.phys_addr = frag->gpa;
11449 	if (vcpu->mmio_is_write)
11450 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11451 	run->mmio.len = min(8u, frag->len);
11452 	run->mmio.is_write = vcpu->mmio_is_write;
11453 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11454 	return 0;
11455 }
11456 
11457 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11458 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11459 {
11460 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11461 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11462 	trace_kvm_fpu(1);
11463 }
11464 
11465 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11466 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11467 {
11468 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11469 	++vcpu->stat.fpu_reload;
11470 	trace_kvm_fpu(0);
11471 }
11472 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11473 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11474 {
11475 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11476 	struct kvm_run *kvm_run = vcpu->run;
11477 	int r;
11478 
11479 	r = kvm_mmu_post_init_vm(vcpu->kvm);
11480 	if (r)
11481 		return r;
11482 
11483 	vcpu_load(vcpu);
11484 	kvm_sigset_activate(vcpu);
11485 	kvm_run->flags = 0;
11486 	kvm_load_guest_fpu(vcpu);
11487 
11488 	kvm_vcpu_srcu_read_lock(vcpu);
11489 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11490 		if (!vcpu->wants_to_run) {
11491 			r = -EINTR;
11492 			goto out;
11493 		}
11494 
11495 		/*
11496 		 * Don't bother switching APIC timer emulation from the
11497 		 * hypervisor timer to the software timer, the only way for the
11498 		 * APIC timer to be active is if userspace stuffed vCPU state,
11499 		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11500 		 * will transition the vCPU out of UNINITIALIZED (without more
11501 		 * state stuffing from userspace), which will reset the local
11502 		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11503 		 * already expired).
11504 		 */
11505 		kvm_vcpu_srcu_read_unlock(vcpu);
11506 		kvm_vcpu_block(vcpu);
11507 		kvm_vcpu_srcu_read_lock(vcpu);
11508 
11509 		if (kvm_apic_accept_events(vcpu) < 0) {
11510 			r = 0;
11511 			goto out;
11512 		}
11513 		r = -EAGAIN;
11514 		if (signal_pending(current)) {
11515 			r = -EINTR;
11516 			kvm_run->exit_reason = KVM_EXIT_INTR;
11517 			++vcpu->stat.signal_exits;
11518 		}
11519 		goto out;
11520 	}
11521 
11522 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11523 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11524 		r = -EINVAL;
11525 		goto out;
11526 	}
11527 
11528 	if (kvm_run->kvm_dirty_regs) {
11529 		r = sync_regs(vcpu);
11530 		if (r != 0)
11531 			goto out;
11532 	}
11533 
11534 	/* re-sync apic's tpr */
11535 	if (!lapic_in_kernel(vcpu)) {
11536 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11537 			r = -EINVAL;
11538 			goto out;
11539 		}
11540 	}
11541 
11542 	/*
11543 	 * If userspace set a pending exception and L2 is active, convert it to
11544 	 * a pending VM-Exit if L1 wants to intercept the exception.
11545 	 */
11546 	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11547 	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11548 							ex->error_code)) {
11549 		kvm_queue_exception_vmexit(vcpu, ex->vector,
11550 					   ex->has_error_code, ex->error_code,
11551 					   ex->has_payload, ex->payload);
11552 		ex->injected = false;
11553 		ex->pending = false;
11554 	}
11555 	vcpu->arch.exception_from_userspace = false;
11556 
11557 	if (unlikely(vcpu->arch.complete_userspace_io)) {
11558 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11559 		vcpu->arch.complete_userspace_io = NULL;
11560 		r = cui(vcpu);
11561 		if (r <= 0)
11562 			goto out;
11563 	} else {
11564 		WARN_ON_ONCE(vcpu->arch.pio.count);
11565 		WARN_ON_ONCE(vcpu->mmio_needed);
11566 	}
11567 
11568 	if (!vcpu->wants_to_run) {
11569 		r = -EINTR;
11570 		goto out;
11571 	}
11572 
11573 	r = kvm_x86_call(vcpu_pre_run)(vcpu);
11574 	if (r <= 0)
11575 		goto out;
11576 
11577 	r = vcpu_run(vcpu);
11578 
11579 out:
11580 	kvm_put_guest_fpu(vcpu);
11581 	if (kvm_run->kvm_valid_regs)
11582 		store_regs(vcpu);
11583 	post_kvm_run_save(vcpu);
11584 	kvm_vcpu_srcu_read_unlock(vcpu);
11585 
11586 	kvm_sigset_deactivate(vcpu);
11587 	vcpu_put(vcpu);
11588 	return r;
11589 }
11590 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11591 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11592 {
11593 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11594 		/*
11595 		 * We are here if userspace calls get_regs() in the middle of
11596 		 * instruction emulation. Registers state needs to be copied
11597 		 * back from emulation context to vcpu. Userspace shouldn't do
11598 		 * that usually, but some bad designed PV devices (vmware
11599 		 * backdoor interface) need this to work
11600 		 */
11601 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11602 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11603 	}
11604 	regs->rax = kvm_rax_read(vcpu);
11605 	regs->rbx = kvm_rbx_read(vcpu);
11606 	regs->rcx = kvm_rcx_read(vcpu);
11607 	regs->rdx = kvm_rdx_read(vcpu);
11608 	regs->rsi = kvm_rsi_read(vcpu);
11609 	regs->rdi = kvm_rdi_read(vcpu);
11610 	regs->rsp = kvm_rsp_read(vcpu);
11611 	regs->rbp = kvm_rbp_read(vcpu);
11612 #ifdef CONFIG_X86_64
11613 	regs->r8 = kvm_r8_read(vcpu);
11614 	regs->r9 = kvm_r9_read(vcpu);
11615 	regs->r10 = kvm_r10_read(vcpu);
11616 	regs->r11 = kvm_r11_read(vcpu);
11617 	regs->r12 = kvm_r12_read(vcpu);
11618 	regs->r13 = kvm_r13_read(vcpu);
11619 	regs->r14 = kvm_r14_read(vcpu);
11620 	regs->r15 = kvm_r15_read(vcpu);
11621 #endif
11622 
11623 	regs->rip = kvm_rip_read(vcpu);
11624 	regs->rflags = kvm_get_rflags(vcpu);
11625 }
11626 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11627 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11628 {
11629 	if (vcpu->kvm->arch.has_protected_state &&
11630 	    vcpu->arch.guest_state_protected)
11631 		return -EINVAL;
11632 
11633 	vcpu_load(vcpu);
11634 	__get_regs(vcpu, regs);
11635 	vcpu_put(vcpu);
11636 	return 0;
11637 }
11638 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11639 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11640 {
11641 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11642 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11643 
11644 	kvm_rax_write(vcpu, regs->rax);
11645 	kvm_rbx_write(vcpu, regs->rbx);
11646 	kvm_rcx_write(vcpu, regs->rcx);
11647 	kvm_rdx_write(vcpu, regs->rdx);
11648 	kvm_rsi_write(vcpu, regs->rsi);
11649 	kvm_rdi_write(vcpu, regs->rdi);
11650 	kvm_rsp_write(vcpu, regs->rsp);
11651 	kvm_rbp_write(vcpu, regs->rbp);
11652 #ifdef CONFIG_X86_64
11653 	kvm_r8_write(vcpu, regs->r8);
11654 	kvm_r9_write(vcpu, regs->r9);
11655 	kvm_r10_write(vcpu, regs->r10);
11656 	kvm_r11_write(vcpu, regs->r11);
11657 	kvm_r12_write(vcpu, regs->r12);
11658 	kvm_r13_write(vcpu, regs->r13);
11659 	kvm_r14_write(vcpu, regs->r14);
11660 	kvm_r15_write(vcpu, regs->r15);
11661 #endif
11662 
11663 	kvm_rip_write(vcpu, regs->rip);
11664 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11665 
11666 	vcpu->arch.exception.pending = false;
11667 	vcpu->arch.exception_vmexit.pending = false;
11668 
11669 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11670 }
11671 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11672 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11673 {
11674 	if (vcpu->kvm->arch.has_protected_state &&
11675 	    vcpu->arch.guest_state_protected)
11676 		return -EINVAL;
11677 
11678 	vcpu_load(vcpu);
11679 	__set_regs(vcpu, regs);
11680 	vcpu_put(vcpu);
11681 	return 0;
11682 }
11683 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11684 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11685 {
11686 	struct desc_ptr dt;
11687 
11688 	if (vcpu->arch.guest_state_protected)
11689 		goto skip_protected_regs;
11690 
11691 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11692 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11693 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11694 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11695 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11696 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11697 
11698 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11699 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11700 
11701 	kvm_x86_call(get_idt)(vcpu, &dt);
11702 	sregs->idt.limit = dt.size;
11703 	sregs->idt.base = dt.address;
11704 	kvm_x86_call(get_gdt)(vcpu, &dt);
11705 	sregs->gdt.limit = dt.size;
11706 	sregs->gdt.base = dt.address;
11707 
11708 	sregs->cr2 = vcpu->arch.cr2;
11709 	sregs->cr3 = kvm_read_cr3(vcpu);
11710 
11711 skip_protected_regs:
11712 	sregs->cr0 = kvm_read_cr0(vcpu);
11713 	sregs->cr4 = kvm_read_cr4(vcpu);
11714 	sregs->cr8 = kvm_get_cr8(vcpu);
11715 	sregs->efer = vcpu->arch.efer;
11716 	sregs->apic_base = vcpu->arch.apic_base;
11717 }
11718 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11719 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11720 {
11721 	__get_sregs_common(vcpu, sregs);
11722 
11723 	if (vcpu->arch.guest_state_protected)
11724 		return;
11725 
11726 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11727 		set_bit(vcpu->arch.interrupt.nr,
11728 			(unsigned long *)sregs->interrupt_bitmap);
11729 }
11730 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11731 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11732 {
11733 	int i;
11734 
11735 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11736 
11737 	if (vcpu->arch.guest_state_protected)
11738 		return;
11739 
11740 	if (is_pae_paging(vcpu)) {
11741 		for (i = 0 ; i < 4 ; i++)
11742 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11743 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11744 	}
11745 }
11746 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11747 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11748 				  struct kvm_sregs *sregs)
11749 {
11750 	if (vcpu->kvm->arch.has_protected_state &&
11751 	    vcpu->arch.guest_state_protected)
11752 		return -EINVAL;
11753 
11754 	vcpu_load(vcpu);
11755 	__get_sregs(vcpu, sregs);
11756 	vcpu_put(vcpu);
11757 	return 0;
11758 }
11759 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11760 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11761 				    struct kvm_mp_state *mp_state)
11762 {
11763 	int r;
11764 
11765 	vcpu_load(vcpu);
11766 	if (kvm_mpx_supported())
11767 		kvm_load_guest_fpu(vcpu);
11768 
11769 	r = kvm_apic_accept_events(vcpu);
11770 	if (r < 0)
11771 		goto out;
11772 	r = 0;
11773 
11774 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11775 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11776 	    vcpu->arch.pv.pv_unhalted)
11777 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11778 	else
11779 		mp_state->mp_state = vcpu->arch.mp_state;
11780 
11781 out:
11782 	if (kvm_mpx_supported())
11783 		kvm_put_guest_fpu(vcpu);
11784 	vcpu_put(vcpu);
11785 	return r;
11786 }
11787 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11788 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11789 				    struct kvm_mp_state *mp_state)
11790 {
11791 	int ret = -EINVAL;
11792 
11793 	vcpu_load(vcpu);
11794 
11795 	switch (mp_state->mp_state) {
11796 	case KVM_MP_STATE_UNINITIALIZED:
11797 	case KVM_MP_STATE_HALTED:
11798 	case KVM_MP_STATE_AP_RESET_HOLD:
11799 	case KVM_MP_STATE_INIT_RECEIVED:
11800 	case KVM_MP_STATE_SIPI_RECEIVED:
11801 		if (!lapic_in_kernel(vcpu))
11802 			goto out;
11803 		break;
11804 
11805 	case KVM_MP_STATE_RUNNABLE:
11806 		break;
11807 
11808 	default:
11809 		goto out;
11810 	}
11811 
11812 	/*
11813 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11814 	 * forcing the guest into INIT/SIPI if those events are supposed to be
11815 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11816 	 * if an SMI is pending as well.
11817 	 */
11818 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11819 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11820 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11821 		goto out;
11822 
11823 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11824 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11825 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11826 	} else
11827 		vcpu->arch.mp_state = mp_state->mp_state;
11828 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11829 
11830 	ret = 0;
11831 out:
11832 	vcpu_put(vcpu);
11833 	return ret;
11834 }
11835 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11836 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11837 		    int reason, bool has_error_code, u32 error_code)
11838 {
11839 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11840 	int ret;
11841 
11842 	init_emulate_ctxt(vcpu);
11843 
11844 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11845 				   has_error_code, error_code);
11846 
11847 	/*
11848 	 * Report an error userspace if MMIO is needed, as KVM doesn't support
11849 	 * MMIO during a task switch (or any other complex operation).
11850 	 */
11851 	if (ret || vcpu->mmio_needed) {
11852 		vcpu->mmio_needed = false;
11853 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11854 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11855 		vcpu->run->internal.ndata = 0;
11856 		return 0;
11857 	}
11858 
11859 	kvm_rip_write(vcpu, ctxt->eip);
11860 	kvm_set_rflags(vcpu, ctxt->eflags);
11861 	return 1;
11862 }
11863 EXPORT_SYMBOL_GPL(kvm_task_switch);
11864 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11865 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11866 {
11867 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11868 		/*
11869 		 * When EFER.LME and CR0.PG are set, the processor is in
11870 		 * 64-bit mode (though maybe in a 32-bit code segment).
11871 		 * CR4.PAE and EFER.LMA must be set.
11872 		 */
11873 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11874 			return false;
11875 		if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3))
11876 			return false;
11877 	} else {
11878 		/*
11879 		 * Not in 64-bit mode: EFER.LMA is clear and the code
11880 		 * segment cannot be 64-bit.
11881 		 */
11882 		if (sregs->efer & EFER_LMA || sregs->cs.l)
11883 			return false;
11884 	}
11885 
11886 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11887 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11888 }
11889 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11890 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11891 		int *mmu_reset_needed, bool update_pdptrs)
11892 {
11893 	int idx;
11894 	struct desc_ptr dt;
11895 
11896 	if (!kvm_is_valid_sregs(vcpu, sregs))
11897 		return -EINVAL;
11898 
11899 	if (kvm_apic_set_base(vcpu, sregs->apic_base, true))
11900 		return -EINVAL;
11901 
11902 	if (vcpu->arch.guest_state_protected)
11903 		return 0;
11904 
11905 	dt.size = sregs->idt.limit;
11906 	dt.address = sregs->idt.base;
11907 	kvm_x86_call(set_idt)(vcpu, &dt);
11908 	dt.size = sregs->gdt.limit;
11909 	dt.address = sregs->gdt.base;
11910 	kvm_x86_call(set_gdt)(vcpu, &dt);
11911 
11912 	vcpu->arch.cr2 = sregs->cr2;
11913 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11914 	vcpu->arch.cr3 = sregs->cr3;
11915 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11916 	kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3);
11917 
11918 	kvm_set_cr8(vcpu, sregs->cr8);
11919 
11920 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11921 	kvm_x86_call(set_efer)(vcpu, sregs->efer);
11922 
11923 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11924 	kvm_x86_call(set_cr0)(vcpu, sregs->cr0);
11925 
11926 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11927 	kvm_x86_call(set_cr4)(vcpu, sregs->cr4);
11928 
11929 	if (update_pdptrs) {
11930 		idx = srcu_read_lock(&vcpu->kvm->srcu);
11931 		if (is_pae_paging(vcpu)) {
11932 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11933 			*mmu_reset_needed = 1;
11934 		}
11935 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11936 	}
11937 
11938 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11939 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11940 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11941 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11942 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11943 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11944 
11945 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11946 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11947 
11948 	update_cr8_intercept(vcpu);
11949 
11950 	/* Older userspace won't unhalt the vcpu on reset. */
11951 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11952 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11953 	    !is_protmode(vcpu))
11954 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11955 
11956 	return 0;
11957 }
11958 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11959 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11960 {
11961 	int pending_vec, max_bits;
11962 	int mmu_reset_needed = 0;
11963 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11964 
11965 	if (ret)
11966 		return ret;
11967 
11968 	if (mmu_reset_needed) {
11969 		kvm_mmu_reset_context(vcpu);
11970 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11971 	}
11972 
11973 	max_bits = KVM_NR_INTERRUPTS;
11974 	pending_vec = find_first_bit(
11975 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11976 
11977 	if (pending_vec < max_bits) {
11978 		kvm_queue_interrupt(vcpu, pending_vec, false);
11979 		pr_debug("Set back pending irq %d\n", pending_vec);
11980 		kvm_make_request(KVM_REQ_EVENT, vcpu);
11981 	}
11982 	return 0;
11983 }
11984 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11985 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11986 {
11987 	int mmu_reset_needed = 0;
11988 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11989 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11990 		!(sregs2->efer & EFER_LMA);
11991 	int i, ret;
11992 
11993 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11994 		return -EINVAL;
11995 
11996 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11997 		return -EINVAL;
11998 
11999 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
12000 				 &mmu_reset_needed, !valid_pdptrs);
12001 	if (ret)
12002 		return ret;
12003 
12004 	if (valid_pdptrs) {
12005 		for (i = 0; i < 4 ; i++)
12006 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
12007 
12008 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
12009 		mmu_reset_needed = 1;
12010 		vcpu->arch.pdptrs_from_userspace = true;
12011 	}
12012 	if (mmu_reset_needed) {
12013 		kvm_mmu_reset_context(vcpu);
12014 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12015 	}
12016 	return 0;
12017 }
12018 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)12019 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
12020 				  struct kvm_sregs *sregs)
12021 {
12022 	int ret;
12023 
12024 	if (vcpu->kvm->arch.has_protected_state &&
12025 	    vcpu->arch.guest_state_protected)
12026 		return -EINVAL;
12027 
12028 	vcpu_load(vcpu);
12029 	ret = __set_sregs(vcpu, sregs);
12030 	vcpu_put(vcpu);
12031 	return ret;
12032 }
12033 
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)12034 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
12035 {
12036 	bool set = false;
12037 	struct kvm_vcpu *vcpu;
12038 	unsigned long i;
12039 
12040 	if (!enable_apicv)
12041 		return;
12042 
12043 	down_write(&kvm->arch.apicv_update_lock);
12044 
12045 	kvm_for_each_vcpu(i, vcpu, kvm) {
12046 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
12047 			set = true;
12048 			break;
12049 		}
12050 	}
12051 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
12052 	up_write(&kvm->arch.apicv_update_lock);
12053 }
12054 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)12055 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
12056 					struct kvm_guest_debug *dbg)
12057 {
12058 	unsigned long rflags;
12059 	int i, r;
12060 
12061 	if (vcpu->arch.guest_state_protected)
12062 		return -EINVAL;
12063 
12064 	vcpu_load(vcpu);
12065 
12066 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
12067 		r = -EBUSY;
12068 		if (kvm_is_exception_pending(vcpu))
12069 			goto out;
12070 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
12071 			kvm_queue_exception(vcpu, DB_VECTOR);
12072 		else
12073 			kvm_queue_exception(vcpu, BP_VECTOR);
12074 	}
12075 
12076 	/*
12077 	 * Read rflags as long as potentially injected trace flags are still
12078 	 * filtered out.
12079 	 */
12080 	rflags = kvm_get_rflags(vcpu);
12081 
12082 	vcpu->guest_debug = dbg->control;
12083 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
12084 		vcpu->guest_debug = 0;
12085 
12086 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
12087 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
12088 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
12089 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
12090 	} else {
12091 		for (i = 0; i < KVM_NR_DB_REGS; i++)
12092 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
12093 	}
12094 	kvm_update_dr7(vcpu);
12095 
12096 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12097 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
12098 
12099 	/*
12100 	 * Trigger an rflags update that will inject or remove the trace
12101 	 * flags.
12102 	 */
12103 	kvm_set_rflags(vcpu, rflags);
12104 
12105 	kvm_x86_call(update_exception_bitmap)(vcpu);
12106 
12107 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
12108 
12109 	r = 0;
12110 
12111 out:
12112 	vcpu_put(vcpu);
12113 	return r;
12114 }
12115 
12116 /*
12117  * Translate a guest virtual address to a guest physical address.
12118  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)12119 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
12120 				    struct kvm_translation *tr)
12121 {
12122 	unsigned long vaddr = tr->linear_address;
12123 	gpa_t gpa;
12124 	int idx;
12125 
12126 	vcpu_load(vcpu);
12127 
12128 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12129 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
12130 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12131 	tr->physical_address = gpa;
12132 	tr->valid = gpa != INVALID_GPA;
12133 	tr->writeable = 1;
12134 	tr->usermode = 0;
12135 
12136 	vcpu_put(vcpu);
12137 	return 0;
12138 }
12139 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12140 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12141 {
12142 	struct fxregs_state *fxsave;
12143 
12144 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12145 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12146 
12147 	vcpu_load(vcpu);
12148 
12149 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12150 	memcpy(fpu->fpr, fxsave->st_space, 128);
12151 	fpu->fcw = fxsave->cwd;
12152 	fpu->fsw = fxsave->swd;
12153 	fpu->ftwx = fxsave->twd;
12154 	fpu->last_opcode = fxsave->fop;
12155 	fpu->last_ip = fxsave->rip;
12156 	fpu->last_dp = fxsave->rdp;
12157 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
12158 
12159 	vcpu_put(vcpu);
12160 	return 0;
12161 }
12162 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)12163 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
12164 {
12165 	struct fxregs_state *fxsave;
12166 
12167 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
12168 		return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0;
12169 
12170 	vcpu_load(vcpu);
12171 
12172 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
12173 
12174 	memcpy(fxsave->st_space, fpu->fpr, 128);
12175 	fxsave->cwd = fpu->fcw;
12176 	fxsave->swd = fpu->fsw;
12177 	fxsave->twd = fpu->ftwx;
12178 	fxsave->fop = fpu->last_opcode;
12179 	fxsave->rip = fpu->last_ip;
12180 	fxsave->rdp = fpu->last_dp;
12181 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
12182 
12183 	vcpu_put(vcpu);
12184 	return 0;
12185 }
12186 
store_regs(struct kvm_vcpu * vcpu)12187 static void store_regs(struct kvm_vcpu *vcpu)
12188 {
12189 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
12190 
12191 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
12192 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
12193 
12194 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
12195 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
12196 
12197 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
12198 		kvm_vcpu_ioctl_x86_get_vcpu_events(
12199 				vcpu, &vcpu->run->s.regs.events);
12200 }
12201 
sync_regs(struct kvm_vcpu * vcpu)12202 static int sync_regs(struct kvm_vcpu *vcpu)
12203 {
12204 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
12205 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
12206 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
12207 	}
12208 
12209 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
12210 		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
12211 
12212 		if (__set_sregs(vcpu, &sregs))
12213 			return -EINVAL;
12214 
12215 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
12216 	}
12217 
12218 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
12219 		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
12220 
12221 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
12222 			return -EINVAL;
12223 
12224 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
12225 	}
12226 
12227 	return 0;
12228 }
12229 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)12230 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
12231 {
12232 	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
12233 		pr_warn_once("SMP vm created on host with unstable TSC; "
12234 			     "guest TSC will not be reliable\n");
12235 
12236 	if (!kvm->arch.max_vcpu_ids)
12237 		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
12238 
12239 	if (id >= kvm->arch.max_vcpu_ids)
12240 		return -EINVAL;
12241 
12242 	return kvm_x86_call(vcpu_precreate)(kvm);
12243 }
12244 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)12245 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
12246 {
12247 	struct page *page;
12248 	int r;
12249 
12250 	vcpu->arch.last_vmentry_cpu = -1;
12251 	vcpu->arch.regs_avail = ~0;
12252 	vcpu->arch.regs_dirty = ~0;
12253 
12254 	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm);
12255 
12256 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
12257 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12258 	else
12259 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
12260 
12261 	r = kvm_mmu_create(vcpu);
12262 	if (r < 0)
12263 		return r;
12264 
12265 	r = kvm_create_lapic(vcpu);
12266 	if (r < 0)
12267 		goto fail_mmu_destroy;
12268 
12269 	r = -ENOMEM;
12270 
12271 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
12272 	if (!page)
12273 		goto fail_free_lapic;
12274 	vcpu->arch.pio_data = page_address(page);
12275 
12276 	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
12277 				       GFP_KERNEL_ACCOUNT);
12278 	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
12279 					    GFP_KERNEL_ACCOUNT);
12280 	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
12281 		goto fail_free_mce_banks;
12282 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
12283 
12284 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
12285 				GFP_KERNEL_ACCOUNT))
12286 		goto fail_free_mce_banks;
12287 
12288 	if (!alloc_emulate_ctxt(vcpu))
12289 		goto free_wbinvd_dirty_mask;
12290 
12291 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
12292 		pr_err("failed to allocate vcpu's fpu\n");
12293 		goto free_emulate_ctxt;
12294 	}
12295 
12296 	kvm_async_pf_hash_reset(vcpu);
12297 
12298 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
12299 		vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
12300 		vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
12301 		vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
12302 	}
12303 	kvm_pmu_init(vcpu);
12304 
12305 	vcpu->arch.pending_external_vector = -1;
12306 	vcpu->arch.preempted_in_kernel = false;
12307 
12308 #if IS_ENABLED(CONFIG_HYPERV)
12309 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
12310 #endif
12311 
12312 	r = kvm_x86_call(vcpu_create)(vcpu);
12313 	if (r)
12314 		goto free_guest_fpu;
12315 
12316 	kvm_xen_init_vcpu(vcpu);
12317 	vcpu_load(vcpu);
12318 	kvm_vcpu_after_set_cpuid(vcpu);
12319 	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
12320 	kvm_vcpu_reset(vcpu, false);
12321 	kvm_init_mmu(vcpu);
12322 	vcpu_put(vcpu);
12323 	return 0;
12324 
12325 free_guest_fpu:
12326 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12327 free_emulate_ctxt:
12328 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12329 free_wbinvd_dirty_mask:
12330 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12331 fail_free_mce_banks:
12332 	kfree(vcpu->arch.mce_banks);
12333 	kfree(vcpu->arch.mci_ctl2_banks);
12334 	free_page((unsigned long)vcpu->arch.pio_data);
12335 fail_free_lapic:
12336 	kvm_free_lapic(vcpu);
12337 fail_mmu_destroy:
12338 	kvm_mmu_destroy(vcpu);
12339 	return r;
12340 }
12341 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)12342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
12343 {
12344 	struct kvm *kvm = vcpu->kvm;
12345 
12346 	if (mutex_lock_killable(&vcpu->mutex))
12347 		return;
12348 	vcpu_load(vcpu);
12349 	kvm_synchronize_tsc(vcpu, NULL);
12350 	vcpu_put(vcpu);
12351 
12352 	/* poll control enabled by default */
12353 	vcpu->arch.msr_kvm_poll_control = 1;
12354 
12355 	mutex_unlock(&vcpu->mutex);
12356 
12357 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
12358 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
12359 						KVMCLOCK_SYNC_PERIOD);
12360 }
12361 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)12362 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
12363 {
12364 	int idx;
12365 
12366 	kvmclock_reset(vcpu);
12367 
12368 	kvm_x86_call(vcpu_free)(vcpu);
12369 
12370 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12371 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12372 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12373 
12374 	kvm_xen_destroy_vcpu(vcpu);
12375 	kvm_hv_vcpu_uninit(vcpu);
12376 	kvm_pmu_destroy(vcpu);
12377 	kfree(vcpu->arch.mce_banks);
12378 	kfree(vcpu->arch.mci_ctl2_banks);
12379 	kvm_free_lapic(vcpu);
12380 	idx = srcu_read_lock(&vcpu->kvm->srcu);
12381 	kvm_mmu_destroy(vcpu);
12382 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12383 	free_page((unsigned long)vcpu->arch.pio_data);
12384 	kvfree(vcpu->arch.cpuid_entries);
12385 }
12386 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)12387 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12388 {
12389 	struct kvm_cpuid_entry2 *cpuid_0x1;
12390 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12391 	unsigned long new_cr0;
12392 
12393 	/*
12394 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12395 	 * to handle side effects.  RESET emulation hits those flows and relies
12396 	 * on emulated/virtualized registers, including those that are loaded
12397 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12398 	 * to detect improper or missing initialization.
12399 	 */
12400 	WARN_ON_ONCE(!init_event &&
12401 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12402 
12403 	/*
12404 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12405 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12406 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12407 	 * bits), i.e. virtualization is disabled.
12408 	 */
12409 	if (is_guest_mode(vcpu))
12410 		kvm_leave_nested(vcpu);
12411 
12412 	kvm_lapic_reset(vcpu, init_event);
12413 
12414 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12415 	vcpu->arch.hflags = 0;
12416 
12417 	vcpu->arch.smi_pending = 0;
12418 	vcpu->arch.smi_count = 0;
12419 	atomic_set(&vcpu->arch.nmi_queued, 0);
12420 	vcpu->arch.nmi_pending = 0;
12421 	vcpu->arch.nmi_injected = false;
12422 	kvm_clear_interrupt_queue(vcpu);
12423 	kvm_clear_exception_queue(vcpu);
12424 
12425 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12426 	kvm_update_dr0123(vcpu);
12427 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12428 	vcpu->arch.dr7 = DR7_FIXED_1;
12429 	kvm_update_dr7(vcpu);
12430 
12431 	vcpu->arch.cr2 = 0;
12432 
12433 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12434 	vcpu->arch.apf.msr_en_val = 0;
12435 	vcpu->arch.apf.msr_int_val = 0;
12436 	vcpu->arch.st.msr_val = 0;
12437 
12438 	kvmclock_reset(vcpu);
12439 
12440 	kvm_clear_async_pf_completion_queue(vcpu);
12441 	kvm_async_pf_hash_reset(vcpu);
12442 	vcpu->arch.apf.halted = false;
12443 
12444 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12445 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12446 
12447 		/*
12448 		 * All paths that lead to INIT are required to load the guest's
12449 		 * FPU state (because most paths are buried in KVM_RUN).
12450 		 */
12451 		if (init_event)
12452 			kvm_put_guest_fpu(vcpu);
12453 
12454 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12455 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12456 
12457 		if (init_event)
12458 			kvm_load_guest_fpu(vcpu);
12459 	}
12460 
12461 	if (!init_event) {
12462 		vcpu->arch.smbase = 0x30000;
12463 
12464 		vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
12465 
12466 		vcpu->arch.msr_misc_features_enables = 0;
12467 		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12468 						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12469 
12470 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12471 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12472 	}
12473 
12474 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12475 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12476 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12477 
12478 	/*
12479 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12480 	 * if no CPUID match is found.  Note, it's impossible to get a match at
12481 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12482 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12483 	 * on RESET.  But, go through the motions in case that's ever remedied.
12484 	 */
12485 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12486 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12487 
12488 	kvm_x86_call(vcpu_reset)(vcpu, init_event);
12489 
12490 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12491 	kvm_rip_write(vcpu, 0xfff0);
12492 
12493 	vcpu->arch.cr3 = 0;
12494 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12495 
12496 	/*
12497 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12498 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12499 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12500 	 */
12501 	new_cr0 = X86_CR0_ET;
12502 	if (init_event)
12503 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12504 	else
12505 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12506 
12507 	kvm_x86_call(set_cr0)(vcpu, new_cr0);
12508 	kvm_x86_call(set_cr4)(vcpu, 0);
12509 	kvm_x86_call(set_efer)(vcpu, 0);
12510 	kvm_x86_call(update_exception_bitmap)(vcpu);
12511 
12512 	/*
12513 	 * On the standard CR0/CR4/EFER modification paths, there are several
12514 	 * complex conditions determining whether the MMU has to be reset and/or
12515 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12516 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12517 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12518 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12519 	 */
12520 	if (old_cr0 & X86_CR0_PG) {
12521 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12522 		kvm_mmu_reset_context(vcpu);
12523 	}
12524 
12525 	/*
12526 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12527 	 * APM states the TLBs are untouched by INIT, but it also states that
12528 	 * the TLBs are flushed on "External initialization of the processor."
12529 	 * Flush the guest TLB regardless of vendor, there is no meaningful
12530 	 * benefit in relying on the guest to flush the TLB immediately after
12531 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12532 	 * performance perspective.
12533 	 */
12534 	if (init_event)
12535 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12536 }
12537 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12538 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12539 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12540 {
12541 	struct kvm_segment cs;
12542 
12543 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12544 	cs.selector = vector << 8;
12545 	cs.base = vector << 12;
12546 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12547 	kvm_rip_write(vcpu, 0);
12548 }
12549 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12550 
kvm_arch_enable_virtualization(void)12551 void kvm_arch_enable_virtualization(void)
12552 {
12553 	cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12554 }
12555 
kvm_arch_disable_virtualization(void)12556 void kvm_arch_disable_virtualization(void)
12557 {
12558 	cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu);
12559 }
12560 
kvm_arch_enable_virtualization_cpu(void)12561 int kvm_arch_enable_virtualization_cpu(void)
12562 {
12563 	struct kvm *kvm;
12564 	struct kvm_vcpu *vcpu;
12565 	unsigned long i;
12566 	int ret;
12567 	u64 local_tsc;
12568 	u64 max_tsc = 0;
12569 	bool stable, backwards_tsc = false;
12570 
12571 	kvm_user_return_msr_cpu_online();
12572 
12573 	ret = kvm_x86_check_processor_compatibility();
12574 	if (ret)
12575 		return ret;
12576 
12577 	ret = kvm_x86_call(enable_virtualization_cpu)();
12578 	if (ret != 0)
12579 		return ret;
12580 
12581 	local_tsc = rdtsc();
12582 	stable = !kvm_check_tsc_unstable();
12583 	list_for_each_entry(kvm, &vm_list, vm_list) {
12584 		kvm_for_each_vcpu(i, vcpu, kvm) {
12585 			if (!stable && vcpu->cpu == smp_processor_id())
12586 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12587 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12588 				backwards_tsc = true;
12589 				if (vcpu->arch.last_host_tsc > max_tsc)
12590 					max_tsc = vcpu->arch.last_host_tsc;
12591 			}
12592 		}
12593 	}
12594 
12595 	/*
12596 	 * Sometimes, even reliable TSCs go backwards.  This happens on
12597 	 * platforms that reset TSC during suspend or hibernate actions, but
12598 	 * maintain synchronization.  We must compensate.  Fortunately, we can
12599 	 * detect that condition here, which happens early in CPU bringup,
12600 	 * before any KVM threads can be running.  Unfortunately, we can't
12601 	 * bring the TSCs fully up to date with real time, as we aren't yet far
12602 	 * enough into CPU bringup that we know how much real time has actually
12603 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12604 	 * variables that haven't been updated yet.
12605 	 *
12606 	 * So we simply find the maximum observed TSC above, then record the
12607 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12608 	 * the adjustment will be applied.  Note that we accumulate
12609 	 * adjustments, in case multiple suspend cycles happen before some VCPU
12610 	 * gets a chance to run again.  In the event that no KVM threads get a
12611 	 * chance to run, we will miss the entire elapsed period, as we'll have
12612 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12613 	 * loose cycle time.  This isn't too big a deal, since the loss will be
12614 	 * uniform across all VCPUs (not to mention the scenario is extremely
12615 	 * unlikely). It is possible that a second hibernate recovery happens
12616 	 * much faster than a first, causing the observed TSC here to be
12617 	 * smaller; this would require additional padding adjustment, which is
12618 	 * why we set last_host_tsc to the local tsc observed here.
12619 	 *
12620 	 * N.B. - this code below runs only on platforms with reliable TSC,
12621 	 * as that is the only way backwards_tsc is set above.  Also note
12622 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12623 	 * have the same delta_cyc adjustment applied if backwards_tsc
12624 	 * is detected.  Note further, this adjustment is only done once,
12625 	 * as we reset last_host_tsc on all VCPUs to stop this from being
12626 	 * called multiple times (one for each physical CPU bringup).
12627 	 *
12628 	 * Platforms with unreliable TSCs don't have to deal with this, they
12629 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12630 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12631 	 * guarantee that they stay in perfect synchronization.
12632 	 */
12633 	if (backwards_tsc) {
12634 		u64 delta_cyc = max_tsc - local_tsc;
12635 		list_for_each_entry(kvm, &vm_list, vm_list) {
12636 			kvm->arch.backwards_tsc_observed = true;
12637 			kvm_for_each_vcpu(i, vcpu, kvm) {
12638 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12639 				vcpu->arch.last_host_tsc = local_tsc;
12640 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12641 			}
12642 
12643 			/*
12644 			 * We have to disable TSC offset matching.. if you were
12645 			 * booting a VM while issuing an S4 host suspend....
12646 			 * you may have some problem.  Solving this issue is
12647 			 * left as an exercise to the reader.
12648 			 */
12649 			kvm->arch.last_tsc_nsec = 0;
12650 			kvm->arch.last_tsc_write = 0;
12651 		}
12652 
12653 	}
12654 	return 0;
12655 }
12656 
kvm_arch_disable_virtualization_cpu(void)12657 void kvm_arch_disable_virtualization_cpu(void)
12658 {
12659 	kvm_x86_call(disable_virtualization_cpu)();
12660 	drop_user_return_notifiers();
12661 }
12662 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12663 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12664 {
12665 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12666 }
12667 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12668 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12669 {
12670 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12671 }
12672 
kvm_arch_free_vm(struct kvm * kvm)12673 void kvm_arch_free_vm(struct kvm *kvm)
12674 {
12675 #if IS_ENABLED(CONFIG_HYPERV)
12676 	kfree(kvm->arch.hv_pa_pg);
12677 #endif
12678 	__kvm_arch_free_vm(kvm);
12679 }
12680 
12681 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12682 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12683 {
12684 	int ret;
12685 	unsigned long flags;
12686 
12687 	if (!kvm_is_vm_type_supported(type))
12688 		return -EINVAL;
12689 
12690 	kvm->arch.vm_type = type;
12691 	kvm->arch.has_private_mem =
12692 		(type == KVM_X86_SW_PROTECTED_VM);
12693 	/* Decided by the vendor code for other VM types.  */
12694 	kvm->arch.pre_fault_allowed =
12695 		type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM;
12696 
12697 	ret = kvm_page_track_init(kvm);
12698 	if (ret)
12699 		goto out;
12700 
12701 	kvm_mmu_init_vm(kvm);
12702 
12703 	ret = kvm_x86_call(vm_init)(kvm);
12704 	if (ret)
12705 		goto out_uninit_mmu;
12706 
12707 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12708 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12709 
12710 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12711 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12712 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12713 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12714 		&kvm->arch.irq_sources_bitmap);
12715 
12716 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12717 	mutex_init(&kvm->arch.apic_map_lock);
12718 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12719 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12720 
12721 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12722 	pvclock_update_vm_gtod_copy(kvm);
12723 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12724 
12725 	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12726 	kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT;
12727 	kvm->arch.guest_can_read_msr_platform_info = true;
12728 	kvm->arch.enable_pmu = enable_pmu;
12729 
12730 #if IS_ENABLED(CONFIG_HYPERV)
12731 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12732 	kvm->arch.hv_root_tdp = INVALID_PAGE;
12733 #endif
12734 
12735 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12736 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12737 
12738 	kvm_apicv_init(kvm);
12739 	kvm_hv_init_vm(kvm);
12740 	kvm_xen_init_vm(kvm);
12741 
12742 	if (ignore_msrs && !report_ignored_msrs) {
12743 		pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n"
12744 			     "a supported configuration.  Lying to the guest about the existence of MSRs\n"
12745 			     "may cause the guest operating system to hang or produce errors.  If a guest\n"
12746 			     "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n");
12747 	}
12748 
12749 	once_init(&kvm->arch.nx_once);
12750 	return 0;
12751 
12752 out_uninit_mmu:
12753 	kvm_mmu_uninit_vm(kvm);
12754 	kvm_page_track_cleanup(kvm);
12755 out:
12756 	return ret;
12757 }
12758 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12759 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12760 {
12761 	vcpu_load(vcpu);
12762 	kvm_mmu_unload(vcpu);
12763 	vcpu_put(vcpu);
12764 }
12765 
kvm_unload_vcpu_mmus(struct kvm * kvm)12766 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12767 {
12768 	unsigned long i;
12769 	struct kvm_vcpu *vcpu;
12770 
12771 	kvm_for_each_vcpu(i, vcpu, kvm) {
12772 		kvm_clear_async_pf_completion_queue(vcpu);
12773 		kvm_unload_vcpu_mmu(vcpu);
12774 	}
12775 }
12776 
kvm_arch_sync_events(struct kvm * kvm)12777 void kvm_arch_sync_events(struct kvm *kvm)
12778 {
12779 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12780 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12781 	kvm_free_pit(kvm);
12782 }
12783 
12784 /**
12785  * __x86_set_memory_region: Setup KVM internal memory slot
12786  *
12787  * @kvm: the kvm pointer to the VM.
12788  * @id: the slot ID to setup.
12789  * @gpa: the GPA to install the slot (unused when @size == 0).
12790  * @size: the size of the slot. Set to zero to uninstall a slot.
12791  *
12792  * This function helps to setup a KVM internal memory slot.  Specify
12793  * @size > 0 to install a new slot, while @size == 0 to uninstall a
12794  * slot.  The return code can be one of the following:
12795  *
12796  *   HVA:           on success (uninstall will return a bogus HVA)
12797  *   -errno:        on error
12798  *
12799  * The caller should always use IS_ERR() to check the return value
12800  * before use.  Note, the KVM internal memory slots are guaranteed to
12801  * remain valid and unchanged until the VM is destroyed, i.e., the
12802  * GPA->HVA translation will not change.  However, the HVA is a user
12803  * address, i.e. its accessibility is not guaranteed, and must be
12804  * accessed via __copy_{to,from}_user().
12805  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12806 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12807 				      u32 size)
12808 {
12809 	int i, r;
12810 	unsigned long hva, old_npages;
12811 	struct kvm_memslots *slots = kvm_memslots(kvm);
12812 	struct kvm_memory_slot *slot;
12813 
12814 	lockdep_assert_held(&kvm->slots_lock);
12815 
12816 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12817 		return ERR_PTR_USR(-EINVAL);
12818 
12819 	slot = id_to_memslot(slots, id);
12820 	if (size) {
12821 		if (slot && slot->npages)
12822 			return ERR_PTR_USR(-EEXIST);
12823 
12824 		/*
12825 		 * MAP_SHARED to prevent internal slot pages from being moved
12826 		 * by fork()/COW.
12827 		 */
12828 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12829 			      MAP_SHARED | MAP_ANONYMOUS, 0);
12830 		if (IS_ERR_VALUE(hva))
12831 			return (void __user *)hva;
12832 	} else {
12833 		if (!slot || !slot->npages)
12834 			return NULL;
12835 
12836 		old_npages = slot->npages;
12837 		hva = slot->userspace_addr;
12838 	}
12839 
12840 	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
12841 		struct kvm_userspace_memory_region2 m;
12842 
12843 		m.slot = id | (i << 16);
12844 		m.flags = 0;
12845 		m.guest_phys_addr = gpa;
12846 		m.userspace_addr = hva;
12847 		m.memory_size = size;
12848 		r = kvm_set_internal_memslot(kvm, &m);
12849 		if (r < 0)
12850 			return ERR_PTR_USR(r);
12851 	}
12852 
12853 	if (!size)
12854 		vm_munmap(hva, old_npages * PAGE_SIZE);
12855 
12856 	return (void __user *)hva;
12857 }
12858 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12859 
kvm_arch_pre_destroy_vm(struct kvm * kvm)12860 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12861 {
12862 	kvm_mmu_pre_destroy_vm(kvm);
12863 }
12864 
kvm_arch_destroy_vm(struct kvm * kvm)12865 void kvm_arch_destroy_vm(struct kvm *kvm)
12866 {
12867 	if (current->mm == kvm->mm) {
12868 		/*
12869 		 * Free memory regions allocated on behalf of userspace,
12870 		 * unless the memory map has changed due to process exit
12871 		 * or fd copying.
12872 		 */
12873 		mutex_lock(&kvm->slots_lock);
12874 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12875 					0, 0);
12876 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12877 					0, 0);
12878 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12879 		mutex_unlock(&kvm->slots_lock);
12880 	}
12881 	kvm_unload_vcpu_mmus(kvm);
12882 	kvm_destroy_vcpus(kvm);
12883 	kvm_x86_call(vm_destroy)(kvm);
12884 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12885 	kvm_pic_destroy(kvm);
12886 	kvm_ioapic_destroy(kvm);
12887 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12888 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12889 	kvm_mmu_uninit_vm(kvm);
12890 	kvm_page_track_cleanup(kvm);
12891 	kvm_xen_destroy_vm(kvm);
12892 	kvm_hv_destroy_vm(kvm);
12893 }
12894 
memslot_rmap_free(struct kvm_memory_slot * slot)12895 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12896 {
12897 	int i;
12898 
12899 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12900 		vfree(slot->arch.rmap[i]);
12901 		slot->arch.rmap[i] = NULL;
12902 	}
12903 }
12904 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12905 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12906 {
12907 	int i;
12908 
12909 	memslot_rmap_free(slot);
12910 
12911 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12912 		vfree(slot->arch.lpage_info[i - 1]);
12913 		slot->arch.lpage_info[i - 1] = NULL;
12914 	}
12915 
12916 	kvm_page_track_free_memslot(slot);
12917 }
12918 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12919 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12920 {
12921 	const int sz = sizeof(*slot->arch.rmap[0]);
12922 	int i;
12923 
12924 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12925 		int level = i + 1;
12926 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12927 
12928 		if (slot->arch.rmap[i])
12929 			continue;
12930 
12931 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12932 		if (!slot->arch.rmap[i]) {
12933 			memslot_rmap_free(slot);
12934 			return -ENOMEM;
12935 		}
12936 	}
12937 
12938 	return 0;
12939 }
12940 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12941 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12942 				      struct kvm_memory_slot *slot)
12943 {
12944 	unsigned long npages = slot->npages;
12945 	int i, r;
12946 
12947 	/*
12948 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12949 	 * old arrays will be freed by kvm_set_memory_region() if installing
12950 	 * the new memslot is successful.
12951 	 */
12952 	memset(&slot->arch, 0, sizeof(slot->arch));
12953 
12954 	if (kvm_memslots_have_rmaps(kvm)) {
12955 		r = memslot_rmap_alloc(slot, npages);
12956 		if (r)
12957 			return r;
12958 	}
12959 
12960 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12961 		struct kvm_lpage_info *linfo;
12962 		unsigned long ugfn;
12963 		int lpages;
12964 		int level = i + 1;
12965 
12966 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12967 
12968 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12969 		if (!linfo)
12970 			goto out_free;
12971 
12972 		slot->arch.lpage_info[i - 1] = linfo;
12973 
12974 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12975 			linfo[0].disallow_lpage = 1;
12976 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12977 			linfo[lpages - 1].disallow_lpage = 1;
12978 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12979 		/*
12980 		 * If the gfn and userspace address are not aligned wrt each
12981 		 * other, disable large page support for this slot.
12982 		 */
12983 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12984 			unsigned long j;
12985 
12986 			for (j = 0; j < lpages; ++j)
12987 				linfo[j].disallow_lpage = 1;
12988 		}
12989 	}
12990 
12991 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
12992 	kvm_mmu_init_memslot_memory_attributes(kvm, slot);
12993 #endif
12994 
12995 	if (kvm_page_track_create_memslot(kvm, slot, npages))
12996 		goto out_free;
12997 
12998 	return 0;
12999 
13000 out_free:
13001 	memslot_rmap_free(slot);
13002 
13003 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
13004 		vfree(slot->arch.lpage_info[i - 1]);
13005 		slot->arch.lpage_info[i - 1] = NULL;
13006 	}
13007 	return -ENOMEM;
13008 }
13009 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)13010 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13011 {
13012 	struct kvm_vcpu *vcpu;
13013 	unsigned long i;
13014 
13015 	/*
13016 	 * memslots->generation has been incremented.
13017 	 * mmio generation may have reached its maximum value.
13018 	 */
13019 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
13020 
13021 	/* Force re-initialization of steal_time cache */
13022 	kvm_for_each_vcpu(i, vcpu, kvm)
13023 		kvm_vcpu_kick(vcpu);
13024 }
13025 
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)13026 int kvm_arch_prepare_memory_region(struct kvm *kvm,
13027 				   const struct kvm_memory_slot *old,
13028 				   struct kvm_memory_slot *new,
13029 				   enum kvm_mr_change change)
13030 {
13031 	/*
13032 	 * KVM doesn't support moving memslots when there are external page
13033 	 * trackers attached to the VM, i.e. if KVMGT is in use.
13034 	 */
13035 	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
13036 		return -EINVAL;
13037 
13038 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
13039 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
13040 			return -EINVAL;
13041 
13042 		if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1))
13043 			return -EINVAL;
13044 
13045 		return kvm_alloc_memslot_metadata(kvm, new);
13046 	}
13047 
13048 	if (change == KVM_MR_FLAGS_ONLY)
13049 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
13050 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
13051 		return -EIO;
13052 
13053 	return 0;
13054 }
13055 
13056 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)13057 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
13058 {
13059 	int nr_slots;
13060 
13061 	if (!kvm_x86_ops.cpu_dirty_log_size)
13062 		return;
13063 
13064 	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
13065 	if ((enable && nr_slots == 1) || !nr_slots)
13066 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
13067 }
13068 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13069 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
13070 				     struct kvm_memory_slot *old,
13071 				     const struct kvm_memory_slot *new,
13072 				     enum kvm_mr_change change)
13073 {
13074 	u32 old_flags = old ? old->flags : 0;
13075 	u32 new_flags = new ? new->flags : 0;
13076 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
13077 
13078 	/*
13079 	 * Update CPU dirty logging if dirty logging is being toggled.  This
13080 	 * applies to all operations.
13081 	 */
13082 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
13083 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
13084 
13085 	/*
13086 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
13087 	 * made writable) or CREATE/MOVE/DELETE of a slot.
13088 	 *
13089 	 * For a memslot with dirty logging disabled:
13090 	 * CREATE:      No dirty mappings will already exist.
13091 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13092 	 *		kvm_arch_flush_shadow_memslot()
13093 	 *
13094 	 * For a memslot with dirty logging enabled:
13095 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
13096 	 *		and no dirty bits to clear.
13097 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
13098 	 *		kvm_arch_flush_shadow_memslot().
13099 	 */
13100 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
13101 		return;
13102 
13103 	/*
13104 	 * READONLY and non-flags changes were filtered out above, and the only
13105 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
13106 	 * logging isn't being toggled on or off.
13107 	 */
13108 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
13109 		return;
13110 
13111 	if (!log_dirty_pages) {
13112 		/*
13113 		 * Recover huge page mappings in the slot now that dirty logging
13114 		 * is disabled, i.e. now that KVM does not have to track guest
13115 		 * writes at 4KiB granularity.
13116 		 *
13117 		 * Dirty logging might be disabled by userspace if an ongoing VM
13118 		 * live migration is cancelled and the VM must continue running
13119 		 * on the source.
13120 		 */
13121 		kvm_mmu_recover_huge_pages(kvm, new);
13122 	} else {
13123 		/*
13124 		 * Initially-all-set does not require write protecting any page,
13125 		 * because they're all assumed to be dirty.
13126 		 */
13127 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
13128 			return;
13129 
13130 		if (READ_ONCE(eager_page_split))
13131 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
13132 
13133 		if (kvm_x86_ops.cpu_dirty_log_size) {
13134 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
13135 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
13136 		} else {
13137 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
13138 		}
13139 
13140 		/*
13141 		 * Unconditionally flush the TLBs after enabling dirty logging.
13142 		 * A flush is almost always going to be necessary (see below),
13143 		 * and unconditionally flushing allows the helpers to omit
13144 		 * the subtly complex checks when removing write access.
13145 		 *
13146 		 * Do the flush outside of mmu_lock to reduce the amount of
13147 		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
13148 		 * safe as KVM only needs to guarantee the slot is fully
13149 		 * write-protected before returning to userspace, i.e. before
13150 		 * userspace can consume the dirty status.
13151 		 *
13152 		 * Flushing outside of mmu_lock requires KVM to be careful when
13153 		 * making decisions based on writable status of an SPTE, e.g. a
13154 		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
13155 		 *
13156 		 * Specifically, KVM also write-protects guest page tables to
13157 		 * monitor changes when using shadow paging, and must guarantee
13158 		 * no CPUs can write to those page before mmu_lock is dropped.
13159 		 * Because CPUs may have stale TLB entries at this point, a
13160 		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
13161 		 *
13162 		 * KVM also allows making SPTES writable outside of mmu_lock,
13163 		 * e.g. to allow dirty logging without taking mmu_lock.
13164 		 *
13165 		 * To handle these scenarios, KVM uses a separate software-only
13166 		 * bit (MMU-writable) to track if a SPTE is !writable due to
13167 		 * a guest page table being write-protected (KVM clears the
13168 		 * MMU-writable flag when write-protecting for shadow paging).
13169 		 *
13170 		 * The use of MMU-writable is also the primary motivation for
13171 		 * the unconditional flush.  Because KVM must guarantee that a
13172 		 * CPU doesn't contain stale, writable TLB entries for a
13173 		 * !MMU-writable SPTE, KVM must flush if it encounters any
13174 		 * MMU-writable SPTE regardless of whether the actual hardware
13175 		 * writable bit was set.  I.e. KVM is almost guaranteed to need
13176 		 * to flush, while unconditionally flushing allows the "remove
13177 		 * write access" helpers to ignore MMU-writable entirely.
13178 		 *
13179 		 * See is_writable_pte() for more details (the case involving
13180 		 * access-tracked SPTEs is particularly relevant).
13181 		 */
13182 		kvm_flush_remote_tlbs_memslot(kvm, new);
13183 	}
13184 }
13185 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)13186 void kvm_arch_commit_memory_region(struct kvm *kvm,
13187 				struct kvm_memory_slot *old,
13188 				const struct kvm_memory_slot *new,
13189 				enum kvm_mr_change change)
13190 {
13191 	if (change == KVM_MR_DELETE)
13192 		kvm_page_track_delete_slot(kvm, old);
13193 
13194 	if (!kvm->arch.n_requested_mmu_pages &&
13195 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
13196 		unsigned long nr_mmu_pages;
13197 
13198 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
13199 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
13200 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
13201 	}
13202 
13203 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
13204 
13205 	/* Free the arrays associated with the old memslot. */
13206 	if (change == KVM_MR_MOVE)
13207 		kvm_arch_free_memslot(kvm, old);
13208 }
13209 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)13210 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
13211 {
13212 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13213 
13214 	if (vcpu->arch.guest_state_protected)
13215 		return true;
13216 
13217 	return kvm_x86_call(get_cpl)(vcpu) == 0;
13218 }
13219 
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)13220 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
13221 {
13222 	WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu));
13223 
13224 	if (vcpu->arch.guest_state_protected)
13225 		return 0;
13226 
13227 	return kvm_rip_read(vcpu);
13228 }
13229 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)13230 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
13231 {
13232 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
13233 }
13234 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)13235 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
13236 {
13237 	return kvm_x86_call(interrupt_allowed)(vcpu, false);
13238 }
13239 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)13240 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
13241 {
13242 	/* Can't read the RIP when guest state is protected, just return 0 */
13243 	if (vcpu->arch.guest_state_protected)
13244 		return 0;
13245 
13246 	if (is_64_bit_mode(vcpu))
13247 		return kvm_rip_read(vcpu);
13248 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
13249 		     kvm_rip_read(vcpu));
13250 }
13251 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
13252 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)13253 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13254 {
13255 	return kvm_get_linear_rip(vcpu) == linear_rip;
13256 }
13257 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13258 
kvm_get_rflags(struct kvm_vcpu * vcpu)13259 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13260 {
13261 	unsigned long rflags;
13262 
13263 	rflags = kvm_x86_call(get_rflags)(vcpu);
13264 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13265 		rflags &= ~X86_EFLAGS_TF;
13266 	return rflags;
13267 }
13268 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13269 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13270 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13271 {
13272 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13273 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13274 		rflags |= X86_EFLAGS_TF;
13275 	kvm_x86_call(set_rflags)(vcpu, rflags);
13276 }
13277 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13278 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13279 {
13280 	__kvm_set_rflags(vcpu, rflags);
13281 	kvm_make_request(KVM_REQ_EVENT, vcpu);
13282 }
13283 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13284 
kvm_async_pf_hash_fn(gfn_t gfn)13285 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13286 {
13287 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13288 
13289 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13290 }
13291 
kvm_async_pf_next_probe(u32 key)13292 static inline u32 kvm_async_pf_next_probe(u32 key)
13293 {
13294 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13295 }
13296 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13297 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13298 {
13299 	u32 key = kvm_async_pf_hash_fn(gfn);
13300 
13301 	while (vcpu->arch.apf.gfns[key] != ~0)
13302 		key = kvm_async_pf_next_probe(key);
13303 
13304 	vcpu->arch.apf.gfns[key] = gfn;
13305 }
13306 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13307 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13308 {
13309 	int i;
13310 	u32 key = kvm_async_pf_hash_fn(gfn);
13311 
13312 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13313 		     (vcpu->arch.apf.gfns[key] != gfn &&
13314 		      vcpu->arch.apf.gfns[key] != ~0); i++)
13315 		key = kvm_async_pf_next_probe(key);
13316 
13317 	return key;
13318 }
13319 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13320 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13321 {
13322 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13323 }
13324 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13325 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13326 {
13327 	u32 i, j, k;
13328 
13329 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13330 
13331 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13332 		return;
13333 
13334 	while (true) {
13335 		vcpu->arch.apf.gfns[i] = ~0;
13336 		do {
13337 			j = kvm_async_pf_next_probe(j);
13338 			if (vcpu->arch.apf.gfns[j] == ~0)
13339 				return;
13340 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13341 			/*
13342 			 * k lies cyclically in ]i,j]
13343 			 * |    i.k.j |
13344 			 * |....j i.k.| or  |.k..j i...|
13345 			 */
13346 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13347 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13348 		i = j;
13349 	}
13350 }
13351 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13352 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13353 {
13354 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13355 
13356 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13357 				      sizeof(reason));
13358 }
13359 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13360 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13361 {
13362 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13363 
13364 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13365 					     &token, offset, sizeof(token));
13366 }
13367 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13368 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13369 {
13370 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13371 	u32 val;
13372 
13373 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13374 					 &val, offset, sizeof(val)))
13375 		return false;
13376 
13377 	return !val;
13378 }
13379 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13380 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13381 {
13382 
13383 	if (!kvm_pv_async_pf_enabled(vcpu))
13384 		return false;
13385 
13386 	if (vcpu->arch.apf.send_user_only &&
13387 	    kvm_x86_call(get_cpl)(vcpu) == 0)
13388 		return false;
13389 
13390 	if (is_guest_mode(vcpu)) {
13391 		/*
13392 		 * L1 needs to opt into the special #PF vmexits that are
13393 		 * used to deliver async page faults.
13394 		 */
13395 		return vcpu->arch.apf.delivery_as_pf_vmexit;
13396 	} else {
13397 		/*
13398 		 * Play it safe in case the guest temporarily disables paging.
13399 		 * The real mode IDT in particular is unlikely to have a #PF
13400 		 * exception setup.
13401 		 */
13402 		return is_paging(vcpu);
13403 	}
13404 }
13405 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13406 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13407 {
13408 	if (unlikely(!lapic_in_kernel(vcpu) ||
13409 		     kvm_event_needs_reinjection(vcpu) ||
13410 		     kvm_is_exception_pending(vcpu)))
13411 		return false;
13412 
13413 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13414 		return false;
13415 
13416 	/*
13417 	 * If interrupts are off we cannot even use an artificial
13418 	 * halt state.
13419 	 */
13420 	return kvm_arch_interrupt_allowed(vcpu);
13421 }
13422 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13423 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13424 				     struct kvm_async_pf *work)
13425 {
13426 	struct x86_exception fault;
13427 
13428 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13429 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13430 
13431 	if (kvm_can_deliver_async_pf(vcpu) &&
13432 	    !apf_put_user_notpresent(vcpu)) {
13433 		fault.vector = PF_VECTOR;
13434 		fault.error_code_valid = true;
13435 		fault.error_code = 0;
13436 		fault.nested_page_fault = false;
13437 		fault.address = work->arch.token;
13438 		fault.async_page_fault = true;
13439 		kvm_inject_page_fault(vcpu, &fault);
13440 		return true;
13441 	} else {
13442 		/*
13443 		 * It is not possible to deliver a paravirtualized asynchronous
13444 		 * page fault, but putting the guest in an artificial halt state
13445 		 * can be beneficial nevertheless: if an interrupt arrives, we
13446 		 * can deliver it timely and perhaps the guest will schedule
13447 		 * another process.  When the instruction that triggered a page
13448 		 * fault is retried, hopefully the page will be ready in the host.
13449 		 */
13450 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13451 		return false;
13452 	}
13453 }
13454 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13455 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13456 				 struct kvm_async_pf *work)
13457 {
13458 	struct kvm_lapic_irq irq = {
13459 		.delivery_mode = APIC_DM_FIXED,
13460 		.vector = vcpu->arch.apf.vec
13461 	};
13462 
13463 	if (work->wakeup_all)
13464 		work->arch.token = ~0; /* broadcast wakeup */
13465 	else
13466 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13467 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13468 
13469 	if ((work->wakeup_all || work->notpresent_injected) &&
13470 	    kvm_pv_async_pf_enabled(vcpu) &&
13471 	    !apf_put_user_ready(vcpu, work->arch.token)) {
13472 		vcpu->arch.apf.pageready_pending = true;
13473 		kvm_apic_set_irq(vcpu, &irq, NULL);
13474 	}
13475 
13476 	vcpu->arch.apf.halted = false;
13477 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13478 }
13479 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13480 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13481 {
13482 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13483 	if (!vcpu->arch.apf.pageready_pending)
13484 		kvm_vcpu_kick(vcpu);
13485 }
13486 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13487 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13488 {
13489 	if (!kvm_pv_async_pf_enabled(vcpu))
13490 		return true;
13491 	else
13492 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13493 }
13494 
kvm_arch_start_assignment(struct kvm * kvm)13495 void kvm_arch_start_assignment(struct kvm *kvm)
13496 {
13497 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13498 		kvm_x86_call(pi_start_assignment)(kvm);
13499 }
13500 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13501 
kvm_arch_end_assignment(struct kvm * kvm)13502 void kvm_arch_end_assignment(struct kvm *kvm)
13503 {
13504 	atomic_dec(&kvm->arch.assigned_device_count);
13505 }
13506 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13507 
kvm_arch_has_assigned_device(struct kvm * kvm)13508 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13509 {
13510 	return raw_atomic_read(&kvm->arch.assigned_device_count);
13511 }
13512 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13513 
kvm_noncoherent_dma_assignment_start_or_stop(struct kvm * kvm)13514 static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm)
13515 {
13516 	/*
13517 	 * Non-coherent DMA assignment and de-assignment may affect whether or
13518 	 * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs
13519 	 * due to toggling the "ignore PAT" bit.  Zap all SPTEs when the first
13520 	 * (or last) non-coherent device is (un)registered to so that new SPTEs
13521 	 * with the correct "ignore guest PAT" setting are created.
13522 	 */
13523 	if (kvm_mmu_may_ignore_guest_pat())
13524 		kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL));
13525 }
13526 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13527 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13528 {
13529 	if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1)
13530 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13531 }
13532 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13533 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13534 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13535 {
13536 	if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count))
13537 		kvm_noncoherent_dma_assignment_start_or_stop(kvm);
13538 }
13539 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13540 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13541 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13542 {
13543 	return atomic_read(&kvm->arch.noncoherent_dma_count);
13544 }
13545 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13546 
kvm_arch_has_irq_bypass(void)13547 bool kvm_arch_has_irq_bypass(void)
13548 {
13549 	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13550 }
13551 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13552 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13553 				      struct irq_bypass_producer *prod)
13554 {
13555 	struct kvm_kernel_irqfd *irqfd =
13556 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13557 	int ret;
13558 
13559 	irqfd->producer = prod;
13560 	kvm_arch_start_assignment(irqfd->kvm);
13561 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13562 					   prod->irq, irqfd->gsi, 1);
13563 	if (ret)
13564 		kvm_arch_end_assignment(irqfd->kvm);
13565 
13566 	return ret;
13567 }
13568 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13569 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13570 				      struct irq_bypass_producer *prod)
13571 {
13572 	int ret;
13573 	struct kvm_kernel_irqfd *irqfd =
13574 		container_of(cons, struct kvm_kernel_irqfd, consumer);
13575 
13576 	WARN_ON(irqfd->producer != prod);
13577 	irqfd->producer = NULL;
13578 
13579 	/*
13580 	 * When producer of consumer is unregistered, we change back to
13581 	 * remapped mode, so we can re-use the current implementation
13582 	 * when the irq is masked/disabled or the consumer side (KVM
13583 	 * int this case doesn't want to receive the interrupts.
13584 	*/
13585 	ret = kvm_x86_call(pi_update_irte)(irqfd->kvm,
13586 					   prod->irq, irqfd->gsi, 0);
13587 	if (ret)
13588 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13589 		       " fails: %d\n", irqfd->consumer.token, ret);
13590 
13591 	kvm_arch_end_assignment(irqfd->kvm);
13592 }
13593 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13594 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13595 				   uint32_t guest_irq, bool set)
13596 {
13597 	return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set);
13598 }
13599 
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13600 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13601 				  struct kvm_kernel_irq_routing_entry *new)
13602 {
13603 	if (new->type != KVM_IRQ_ROUTING_MSI)
13604 		return true;
13605 
13606 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13607 }
13608 
kvm_vector_hashing_enabled(void)13609 bool kvm_vector_hashing_enabled(void)
13610 {
13611 	return vector_hashing;
13612 }
13613 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13614 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13615 {
13616 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13617 }
13618 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13619 
13620 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
kvm_arch_gmem_prepare(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,int max_order)13621 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order)
13622 {
13623 	return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order);
13624 }
13625 #endif
13626 
13627 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
kvm_arch_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)13628 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
13629 {
13630 	kvm_x86_call(gmem_invalidate)(start, end);
13631 }
13632 #endif
13633 
kvm_spec_ctrl_test_value(u64 value)13634 int kvm_spec_ctrl_test_value(u64 value)
13635 {
13636 	/*
13637 	 * test that setting IA32_SPEC_CTRL to given value
13638 	 * is allowed by the host processor
13639 	 */
13640 
13641 	u64 saved_value;
13642 	unsigned long flags;
13643 	int ret = 0;
13644 
13645 	local_irq_save(flags);
13646 
13647 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13648 		ret = 1;
13649 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13650 		ret = 1;
13651 	else
13652 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13653 
13654 	local_irq_restore(flags);
13655 
13656 	return ret;
13657 }
13658 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13659 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13660 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13661 {
13662 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13663 	struct x86_exception fault;
13664 	u64 access = error_code &
13665 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13666 
13667 	if (!(error_code & PFERR_PRESENT_MASK) ||
13668 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13669 		/*
13670 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13671 		 * tables probably do not match the TLB.  Just proceed
13672 		 * with the error code that the processor gave.
13673 		 */
13674 		fault.vector = PF_VECTOR;
13675 		fault.error_code_valid = true;
13676 		fault.error_code = error_code;
13677 		fault.nested_page_fault = false;
13678 		fault.address = gva;
13679 		fault.async_page_fault = false;
13680 	}
13681 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13682 }
13683 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13684 
13685 /*
13686  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13687  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13688  * indicates whether exit to userspace is needed.
13689  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13690 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13691 			      struct x86_exception *e)
13692 {
13693 	if (r == X86EMUL_PROPAGATE_FAULT) {
13694 		if (KVM_BUG_ON(!e, vcpu->kvm))
13695 			return -EIO;
13696 
13697 		kvm_inject_emulated_page_fault(vcpu, e);
13698 		return 1;
13699 	}
13700 
13701 	/*
13702 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13703 	 * while handling a VMX instruction KVM could've handled the request
13704 	 * correctly by exiting to userspace and performing I/O but there
13705 	 * doesn't seem to be a real use-case behind such requests, just return
13706 	 * KVM_EXIT_INTERNAL_ERROR for now.
13707 	 */
13708 	kvm_prepare_emulation_failure_exit(vcpu);
13709 
13710 	return 0;
13711 }
13712 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13713 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13714 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13715 {
13716 	bool pcid_enabled;
13717 	struct x86_exception e;
13718 	struct {
13719 		u64 pcid;
13720 		u64 gla;
13721 	} operand;
13722 	int r;
13723 
13724 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13725 	if (r != X86EMUL_CONTINUE)
13726 		return kvm_handle_memory_failure(vcpu, r, &e);
13727 
13728 	if (operand.pcid >> 12 != 0) {
13729 		kvm_inject_gp(vcpu, 0);
13730 		return 1;
13731 	}
13732 
13733 	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13734 
13735 	switch (type) {
13736 	case INVPCID_TYPE_INDIV_ADDR:
13737 		/*
13738 		 * LAM doesn't apply to addresses that are inputs to TLB
13739 		 * invalidation.
13740 		 */
13741 		if ((!pcid_enabled && (operand.pcid != 0)) ||
13742 		    is_noncanonical_invlpg_address(operand.gla, vcpu)) {
13743 			kvm_inject_gp(vcpu, 0);
13744 			return 1;
13745 		}
13746 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13747 		return kvm_skip_emulated_instruction(vcpu);
13748 
13749 	case INVPCID_TYPE_SINGLE_CTXT:
13750 		if (!pcid_enabled && (operand.pcid != 0)) {
13751 			kvm_inject_gp(vcpu, 0);
13752 			return 1;
13753 		}
13754 
13755 		kvm_invalidate_pcid(vcpu, operand.pcid);
13756 		return kvm_skip_emulated_instruction(vcpu);
13757 
13758 	case INVPCID_TYPE_ALL_NON_GLOBAL:
13759 		/*
13760 		 * Currently, KVM doesn't mark global entries in the shadow
13761 		 * page tables, so a non-global flush just degenerates to a
13762 		 * global flush. If needed, we could optimize this later by
13763 		 * keeping track of global entries in shadow page tables.
13764 		 */
13765 
13766 		fallthrough;
13767 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13768 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13769 		return kvm_skip_emulated_instruction(vcpu);
13770 
13771 	default:
13772 		kvm_inject_gp(vcpu, 0);
13773 		return 1;
13774 	}
13775 }
13776 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13777 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13778 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13779 {
13780 	struct kvm_run *run = vcpu->run;
13781 	struct kvm_mmio_fragment *frag;
13782 	unsigned int len;
13783 
13784 	BUG_ON(!vcpu->mmio_needed);
13785 
13786 	/* Complete previous fragment */
13787 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13788 	len = min(8u, frag->len);
13789 	if (!vcpu->mmio_is_write)
13790 		memcpy(frag->data, run->mmio.data, len);
13791 
13792 	if (frag->len <= 8) {
13793 		/* Switch to the next fragment. */
13794 		frag++;
13795 		vcpu->mmio_cur_fragment++;
13796 	} else {
13797 		/* Go forward to the next mmio piece. */
13798 		frag->data += len;
13799 		frag->gpa += len;
13800 		frag->len -= len;
13801 	}
13802 
13803 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13804 		vcpu->mmio_needed = 0;
13805 
13806 		// VMG change, at this point, we're always done
13807 		// RIP has already been advanced
13808 		return 1;
13809 	}
13810 
13811 	// More MMIO is needed
13812 	run->mmio.phys_addr = frag->gpa;
13813 	run->mmio.len = min(8u, frag->len);
13814 	run->mmio.is_write = vcpu->mmio_is_write;
13815 	if (run->mmio.is_write)
13816 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13817 	run->exit_reason = KVM_EXIT_MMIO;
13818 
13819 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13820 
13821 	return 0;
13822 }
13823 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13824 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13825 			  void *data)
13826 {
13827 	int handled;
13828 	struct kvm_mmio_fragment *frag;
13829 
13830 	if (!data)
13831 		return -EINVAL;
13832 
13833 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13834 	if (handled == bytes)
13835 		return 1;
13836 
13837 	bytes -= handled;
13838 	gpa += handled;
13839 	data += handled;
13840 
13841 	/*TODO: Check if need to increment number of frags */
13842 	frag = vcpu->mmio_fragments;
13843 	vcpu->mmio_nr_fragments = 1;
13844 	frag->len = bytes;
13845 	frag->gpa = gpa;
13846 	frag->data = data;
13847 
13848 	vcpu->mmio_needed = 1;
13849 	vcpu->mmio_cur_fragment = 0;
13850 
13851 	vcpu->run->mmio.phys_addr = gpa;
13852 	vcpu->run->mmio.len = min(8u, frag->len);
13853 	vcpu->run->mmio.is_write = 1;
13854 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13855 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13856 
13857 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13858 
13859 	return 0;
13860 }
13861 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13862 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13863 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13864 			 void *data)
13865 {
13866 	int handled;
13867 	struct kvm_mmio_fragment *frag;
13868 
13869 	if (!data)
13870 		return -EINVAL;
13871 
13872 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13873 	if (handled == bytes)
13874 		return 1;
13875 
13876 	bytes -= handled;
13877 	gpa += handled;
13878 	data += handled;
13879 
13880 	/*TODO: Check if need to increment number of frags */
13881 	frag = vcpu->mmio_fragments;
13882 	vcpu->mmio_nr_fragments = 1;
13883 	frag->len = bytes;
13884 	frag->gpa = gpa;
13885 	frag->data = data;
13886 
13887 	vcpu->mmio_needed = 1;
13888 	vcpu->mmio_cur_fragment = 0;
13889 
13890 	vcpu->run->mmio.phys_addr = gpa;
13891 	vcpu->run->mmio.len = min(8u, frag->len);
13892 	vcpu->run->mmio.is_write = 0;
13893 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13894 
13895 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13896 
13897 	return 0;
13898 }
13899 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13900 
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13901 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13902 {
13903 	vcpu->arch.sev_pio_count -= count;
13904 	vcpu->arch.sev_pio_data += count * size;
13905 }
13906 
13907 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13908 			   unsigned int port);
13909 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13910 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13911 {
13912 	int size = vcpu->arch.pio.size;
13913 	int port = vcpu->arch.pio.port;
13914 
13915 	vcpu->arch.pio.count = 0;
13916 	if (vcpu->arch.sev_pio_count)
13917 		return kvm_sev_es_outs(vcpu, size, port);
13918 	return 1;
13919 }
13920 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13921 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13922 			   unsigned int port)
13923 {
13924 	for (;;) {
13925 		unsigned int count =
13926 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13927 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13928 
13929 		/* memcpy done already by emulator_pio_out.  */
13930 		advance_sev_es_emulated_pio(vcpu, count, size);
13931 		if (!ret)
13932 			break;
13933 
13934 		/* Emulation done by the kernel.  */
13935 		if (!vcpu->arch.sev_pio_count)
13936 			return 1;
13937 	}
13938 
13939 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13940 	return 0;
13941 }
13942 
13943 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13944 			  unsigned int port);
13945 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13946 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13947 {
13948 	unsigned count = vcpu->arch.pio.count;
13949 	int size = vcpu->arch.pio.size;
13950 	int port = vcpu->arch.pio.port;
13951 
13952 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13953 	advance_sev_es_emulated_pio(vcpu, count, size);
13954 	if (vcpu->arch.sev_pio_count)
13955 		return kvm_sev_es_ins(vcpu, size, port);
13956 	return 1;
13957 }
13958 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13959 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13960 			  unsigned int port)
13961 {
13962 	for (;;) {
13963 		unsigned int count =
13964 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13965 		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13966 			break;
13967 
13968 		/* Emulation done by the kernel.  */
13969 		advance_sev_es_emulated_pio(vcpu, count, size);
13970 		if (!vcpu->arch.sev_pio_count)
13971 			return 1;
13972 	}
13973 
13974 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13975 	return 0;
13976 }
13977 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13978 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13979 			 unsigned int port, void *data,  unsigned int count,
13980 			 int in)
13981 {
13982 	vcpu->arch.sev_pio_data = data;
13983 	vcpu->arch.sev_pio_count = count;
13984 	return in ? kvm_sev_es_ins(vcpu, size, port)
13985 		  : kvm_sev_es_outs(vcpu, size, port);
13986 }
13987 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13988 
13989 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13990 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
14000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
14001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
14002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
14003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
14004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
14005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
14006 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
14007 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
14008 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
14009 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
14010 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
14011 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
14012 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
14013 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
14014 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
14015 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
14016 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
14017 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
14018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault);
14019 
kvm_x86_init(void)14020 static int __init kvm_x86_init(void)
14021 {
14022 	kvm_init_xstate_sizes();
14023 
14024 	kvm_mmu_x86_module_init();
14025 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
14026 	return 0;
14027 }
14028 module_init(kvm_x86_init);
14029 
kvm_x86_exit(void)14030 static void __exit kvm_x86_exit(void)
14031 {
14032 	WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu));
14033 }
14034 module_exit(kvm_x86_exit);
14035