1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 static const struct ctl_table module_sysctl_table[] = {
133 {
134 .procname = "modprobe",
135 .data = &modprobe_path,
136 .maxlen = KMOD_PATH_LEN,
137 .mode = 0644,
138 .proc_handler = proc_dostring,
139 },
140 {
141 .procname = "modules_disabled",
142 .data = &modules_disabled,
143 .maxlen = sizeof(int),
144 .mode = 0644,
145 /* only handle a transition from default "0" to "1" */
146 .proc_handler = proc_dointvec_minmax,
147 .extra1 = SYSCTL_ONE,
148 .extra2 = SYSCTL_ONE,
149 },
150 };
151
init_module_sysctl(void)152 static int __init init_module_sysctl(void)
153 {
154 register_sysctl_init("kernel", module_sysctl_table);
155 return 0;
156 }
157
158 subsys_initcall(init_module_sysctl);
159
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164
register_module_notifier(struct notifier_block * nb)165 int register_module_notifier(struct notifier_block *nb)
166 {
167 return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170
unregister_module_notifier(struct notifier_block * nb)171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176
177 /*
178 * We require a truly strong try_module_get(): 0 means success.
179 * Otherwise an error is returned due to ongoing or failed
180 * initialization etc.
181 */
strong_try_module_get(struct module * mod)182 static inline int strong_try_module_get(struct module *mod)
183 {
184 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 if (mod && mod->state == MODULE_STATE_COMING)
186 return -EBUSY;
187 if (try_module_get(mod))
188 return 0;
189 else
190 return -ENOENT;
191 }
192
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 enum lockdep_ok lockdep_ok)
195 {
196 add_taint(flag, lockdep_ok);
197 set_bit(flag, &mod->taints);
198 }
199
200 /*
201 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202 */
mod_strncmp(const char * str_a,const char * str_b,size_t n)203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 for (int i = 0; i < n; i++) {
206 char a = str_a[i];
207 char b = str_b[i];
208 int d;
209
210 if (a == '-') a = '_';
211 if (b == '-') b = '_';
212
213 d = a - b;
214 if (d)
215 return d;
216
217 if (!a)
218 break;
219 }
220
221 return 0;
222 }
223
224 /*
225 * A thread that wants to hold a reference to a module only while it
226 * is running can call this to safely exit.
227 */
__module_put_and_kthread_exit(struct module * mod,long code)228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 module_put(mod);
231 kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234
235 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 unsigned int i;
239
240 for (i = 1; i < info->hdr->e_shnum; i++) {
241 Elf_Shdr *shdr = &info->sechdrs[i];
242 /* Alloc bit cleared means "ignore it." */
243 if ((shdr->sh_flags & SHF_ALLOC)
244 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 return i;
246 }
247 return 0;
248 }
249
250 /**
251 * find_any_unique_sec() - Find a unique section index by name
252 * @info: Load info for the module to scan
253 * @name: Name of the section we're looking for
254 *
255 * Locates a unique section by name. Ignores SHF_ALLOC.
256 *
257 * Return: Section index if found uniquely, zero if absent, negative count
258 * of total instances if multiple were found.
259 */
find_any_unique_sec(const struct load_info * info,const char * name)260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 unsigned int idx;
263 unsigned int count = 0;
264 int i;
265
266 for (i = 1; i < info->hdr->e_shnum; i++) {
267 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 name) == 0) {
269 count++;
270 idx = i;
271 }
272 }
273 if (count == 1) {
274 return idx;
275 } else if (count == 0) {
276 return 0;
277 } else {
278 return -count;
279 }
280 }
281
282 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 /* Section 0 has sh_addr 0. */
286 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288
289 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)290 static void *section_objs(const struct load_info *info,
291 const char *name,
292 size_t object_size,
293 unsigned int *num)
294 {
295 unsigned int sec = find_sec(info, name);
296
297 /* Section 0 has sh_addr 0 and sh_size 0. */
298 *num = info->sechdrs[sec].sh_size / object_size;
299 return (void *)info->sechdrs[sec].sh_addr;
300 }
301
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 unsigned int i;
306
307 for (i = 1; i < info->hdr->e_shnum; i++) {
308 Elf_Shdr *shdr = &info->sechdrs[i];
309 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 return i;
311 }
312 return 0;
313 }
314
315 /*
316 * Find a module section, or NULL. Fill in number of "objects" in section.
317 * Ignores SHF_ALLOC flag.
318 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 const char *name,
321 size_t object_size,
322 unsigned int *num)
323 {
324 unsigned int sec = find_any_sec(info, name);
325
326 /* Section 0 has sh_addr 0 and sh_size 0. */
327 *num = info->sechdrs[sec].sh_size / object_size;
328 return (void *)info->sechdrs[sec].sh_addr;
329 }
330
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336
kernel_symbol_name(const struct kernel_symbol * sym)337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 return offset_to_ptr(&sym->name_offset);
341 #else
342 return sym->name;
343 #endif
344 }
345
kernel_symbol_namespace(const struct kernel_symbol * sym)346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 if (!sym->namespace_offset)
350 return NULL;
351 return offset_to_ptr(&sym->namespace_offset);
352 #else
353 return sym->namespace;
354 #endif
355 }
356
cmp_name(const void * name,const void * sym)357 int cmp_name(const void *name, const void *sym)
358 {
359 return strcmp(name, kernel_symbol_name(sym));
360 }
361
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 struct module *owner,
364 struct find_symbol_arg *fsa)
365 {
366 struct kernel_symbol *sym;
367
368 if (!fsa->gplok && syms->license == GPL_ONLY)
369 return false;
370
371 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 sizeof(struct kernel_symbol), cmp_name);
373 if (!sym)
374 return false;
375
376 fsa->owner = owner;
377 fsa->crc = symversion(syms->crcs, sym - syms->start);
378 fsa->sym = sym;
379 fsa->license = syms->license;
380
381 return true;
382 }
383
384 /*
385 * Find an exported symbol and return it, along with, (optional) crc and
386 * (optional) module which owns it. Needs RCU or module_mutex.
387 */
find_symbol(struct find_symbol_arg * fsa)388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 static const struct symsearch arr[] = {
391 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 NOT_GPL_ONLY },
393 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 __start___kcrctab_gpl,
395 GPL_ONLY },
396 };
397 struct module *mod;
398 unsigned int i;
399
400 for (i = 0; i < ARRAY_SIZE(arr); i++)
401 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 return true;
403
404 list_for_each_entry_rcu(mod, &modules, list,
405 lockdep_is_held(&module_mutex)) {
406 struct symsearch arr[] = {
407 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 NOT_GPL_ONLY },
409 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 mod->gpl_crcs,
411 GPL_ONLY },
412 };
413
414 if (mod->state == MODULE_STATE_UNFORMED)
415 continue;
416
417 for (i = 0; i < ARRAY_SIZE(arr); i++)
418 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 return true;
420 }
421
422 pr_debug("Failed to find symbol %s\n", fsa->name);
423 return false;
424 }
425
426 /*
427 * Search for module by name: must hold module_mutex (or RCU for read-only
428 * access).
429 */
find_module_all(const char * name,size_t len,bool even_unformed)430 struct module *find_module_all(const char *name, size_t len,
431 bool even_unformed)
432 {
433 struct module *mod;
434
435 list_for_each_entry_rcu(mod, &modules, list,
436 lockdep_is_held(&module_mutex)) {
437 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 continue;
439 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 return mod;
441 }
442 return NULL;
443 }
444
find_module(const char * name)445 struct module *find_module(const char *name)
446 {
447 return find_module_all(name, strlen(name), false);
448 }
449
450 #ifdef CONFIG_SMP
451
mod_percpu(struct module * mod)452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 return mod->percpu;
455 }
456
percpu_modalloc(struct module * mod,struct load_info * info)457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 unsigned long align = pcpusec->sh_addralign;
461
462 if (!pcpusec->sh_size)
463 return 0;
464
465 if (align > PAGE_SIZE) {
466 pr_warn("%s: per-cpu alignment %li > %li\n",
467 mod->name, align, PAGE_SIZE);
468 align = PAGE_SIZE;
469 }
470
471 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 if (!mod->percpu) {
473 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 mod->name, (unsigned long)pcpusec->sh_size);
475 return -ENOMEM;
476 }
477 mod->percpu_size = pcpusec->sh_size;
478 return 0;
479 }
480
percpu_modfree(struct module * mod)481 static void percpu_modfree(struct module *mod)
482 {
483 free_percpu(mod->percpu);
484 }
485
find_pcpusec(struct load_info * info)486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 return find_sec(info, ".data..percpu");
489 }
490
percpu_modcopy(struct module * mod,const void * from,unsigned long size)491 static void percpu_modcopy(struct module *mod,
492 const void *from, unsigned long size)
493 {
494 int cpu;
495
496 for_each_possible_cpu(cpu)
497 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 struct module *mod;
503 unsigned int cpu;
504
505 guard(rcu)();
506 list_for_each_entry_rcu(mod, &modules, list) {
507 if (mod->state == MODULE_STATE_UNFORMED)
508 continue;
509 if (!mod->percpu_size)
510 continue;
511 for_each_possible_cpu(cpu) {
512 void *start = per_cpu_ptr(mod->percpu, cpu);
513 void *va = (void *)addr;
514
515 if (va >= start && va < start + mod->percpu_size) {
516 if (can_addr) {
517 *can_addr = (unsigned long) (va - start);
518 *can_addr += (unsigned long)
519 per_cpu_ptr(mod->percpu,
520 get_boot_cpu_id());
521 }
522 return true;
523 }
524 }
525 }
526 return false;
527 }
528
529 /**
530 * is_module_percpu_address() - test whether address is from module static percpu
531 * @addr: address to test
532 *
533 * Test whether @addr belongs to module static percpu area.
534 *
535 * Return: %true if @addr is from module static percpu area
536 */
is_module_percpu_address(unsigned long addr)537 bool is_module_percpu_address(unsigned long addr)
538 {
539 return __is_module_percpu_address(addr, NULL);
540 }
541
542 #else /* ... !CONFIG_SMP */
543
mod_percpu(struct module * mod)544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 return NULL;
547 }
percpu_modalloc(struct module * mod,struct load_info * info)548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 return -ENOMEM;
553 return 0;
554 }
percpu_modfree(struct module * mod)555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
find_pcpusec(struct load_info * info)558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 return 0;
561 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)562 static inline void percpu_modcopy(struct module *mod,
563 const void *from, unsigned long size)
564 {
565 /* pcpusec should be 0, and size of that section should be 0. */
566 BUG_ON(size != 0);
567 }
is_module_percpu_address(unsigned long addr)568 bool is_module_percpu_address(unsigned long addr)
569 {
570 return false;
571 }
572
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 return false;
576 }
577
578 #endif /* CONFIG_SMP */
579
580 #define MODINFO_ATTR(field) \
581 static void setup_modinfo_##field(struct module *mod, const char *s) \
582 { \
583 mod->field = kstrdup(s, GFP_KERNEL); \
584 } \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 struct module_kobject *mk, char *buffer) \
587 { \
588 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
589 } \
590 static int modinfo_##field##_exists(struct module *mod) \
591 { \
592 return mod->field != NULL; \
593 } \
594 static void free_modinfo_##field(struct module *mod) \
595 { \
596 kfree(mod->field); \
597 mod->field = NULL; \
598 } \
599 static const struct module_attribute modinfo_##field = { \
600 .attr = { .name = __stringify(field), .mode = 0444 }, \
601 .show = show_modinfo_##field, \
602 .setup = setup_modinfo_##field, \
603 .test = modinfo_##field##_exists, \
604 .free = free_modinfo_##field, \
605 };
606
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609
610 static struct {
611 char name[MODULE_NAME_LEN];
612 char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614
615 #ifdef CONFIG_MODULE_UNLOAD
616
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE 1
621
622 /* Init the unload section of the module. */
module_unload_init(struct module * mod)623 static int module_unload_init(struct module *mod)
624 {
625 /*
626 * Initialize reference counter to MODULE_REF_BASE.
627 * refcnt == 0 means module is going.
628 */
629 atomic_set(&mod->refcnt, MODULE_REF_BASE);
630
631 INIT_LIST_HEAD(&mod->source_list);
632 INIT_LIST_HEAD(&mod->target_list);
633
634 /* Hold reference count during initialization. */
635 atomic_inc(&mod->refcnt);
636
637 return 0;
638 }
639
640 /* Does a already use b? */
already_uses(struct module * a,struct module * b)641 static int already_uses(struct module *a, struct module *b)
642 {
643 struct module_use *use;
644
645 list_for_each_entry(use, &b->source_list, source_list) {
646 if (use->source == a)
647 return 1;
648 }
649 pr_debug("%s does not use %s!\n", a->name, b->name);
650 return 0;
651 }
652
653 /*
654 * Module a uses b
655 * - we add 'a' as a "source", 'b' as a "target" of module use
656 * - the module_use is added to the list of 'b' sources (so
657 * 'b' can walk the list to see who sourced them), and of 'a'
658 * targets (so 'a' can see what modules it targets).
659 */
add_module_usage(struct module * a,struct module * b)660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 struct module_use *use;
663
664 pr_debug("Allocating new usage for %s.\n", a->name);
665 use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 if (!use)
667 return -ENOMEM;
668
669 use->source = a;
670 use->target = b;
671 list_add(&use->source_list, &b->source_list);
672 list_add(&use->target_list, &a->target_list);
673 return 0;
674 }
675
676 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)677 static int ref_module(struct module *a, struct module *b)
678 {
679 int err;
680
681 if (b == NULL || already_uses(a, b))
682 return 0;
683
684 /* If module isn't available, we fail. */
685 err = strong_try_module_get(b);
686 if (err)
687 return err;
688
689 err = add_module_usage(a, b);
690 if (err) {
691 module_put(b);
692 return err;
693 }
694 return 0;
695 }
696
697 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)698 static void module_unload_free(struct module *mod)
699 {
700 struct module_use *use, *tmp;
701
702 mutex_lock(&module_mutex);
703 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 struct module *i = use->target;
705 pr_debug("%s unusing %s\n", mod->name, i->name);
706 module_put(i);
707 list_del(&use->source_list);
708 list_del(&use->target_list);
709 kfree(use);
710 }
711 mutex_unlock(&module_mutex);
712 }
713
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)715 static inline int try_force_unload(unsigned int flags)
716 {
717 int ret = (flags & O_TRUNC);
718 if (ret)
719 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 return ret;
721 }
722 #else
try_force_unload(unsigned int flags)723 static inline int try_force_unload(unsigned int flags)
724 {
725 return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728
729 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)730 static int try_release_module_ref(struct module *mod)
731 {
732 int ret;
733
734 /* Try to decrement refcnt which we set at loading */
735 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 BUG_ON(ret < 0);
737 if (ret)
738 /* Someone can put this right now, recover with checking */
739 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740
741 return ret;
742 }
743
try_stop_module(struct module * mod,int flags,int * forced)744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 /* If it's not unused, quit unless we're forcing. */
747 if (try_release_module_ref(mod) != 0) {
748 *forced = try_force_unload(flags);
749 if (!(*forced))
750 return -EWOULDBLOCK;
751 }
752
753 /* Mark it as dying. */
754 mod->state = MODULE_STATE_GOING;
755
756 return 0;
757 }
758
759 /**
760 * module_refcount() - return the refcount or -1 if unloading
761 * @mod: the module we're checking
762 *
763 * Return:
764 * -1 if the module is in the process of unloading
765 * otherwise the number of references in the kernel to the module
766 */
module_refcount(struct module * mod)767 int module_refcount(struct module *mod)
768 {
769 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 unsigned int, flags)
778 {
779 struct module *mod;
780 char name[MODULE_NAME_LEN];
781 char buf[MODULE_FLAGS_BUF_SIZE];
782 int ret, len, forced = 0;
783
784 if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 return -EPERM;
786
787 len = strncpy_from_user(name, name_user, MODULE_NAME_LEN);
788 if (len == 0 || len == MODULE_NAME_LEN)
789 return -ENOENT;
790 if (len < 0)
791 return len;
792
793 audit_log_kern_module(name);
794
795 if (mutex_lock_interruptible(&module_mutex) != 0)
796 return -EINTR;
797
798 mod = find_module(name);
799 if (!mod) {
800 ret = -ENOENT;
801 goto out;
802 }
803
804 if (!list_empty(&mod->source_list)) {
805 /* Other modules depend on us: get rid of them first. */
806 ret = -EWOULDBLOCK;
807 goto out;
808 }
809
810 /* Doing init or already dying? */
811 if (mod->state != MODULE_STATE_LIVE) {
812 /* FIXME: if (force), slam module count damn the torpedoes */
813 pr_debug("%s already dying\n", mod->name);
814 ret = -EBUSY;
815 goto out;
816 }
817
818 /* If it has an init func, it must have an exit func to unload */
819 if (mod->init && !mod->exit) {
820 forced = try_force_unload(flags);
821 if (!forced) {
822 /* This module can't be removed */
823 ret = -EBUSY;
824 goto out;
825 }
826 }
827
828 ret = try_stop_module(mod, flags, &forced);
829 if (ret != 0)
830 goto out;
831
832 mutex_unlock(&module_mutex);
833 /* Final destruction now no one is using it. */
834 if (mod->exit != NULL)
835 mod->exit();
836 blocking_notifier_call_chain(&module_notify_list,
837 MODULE_STATE_GOING, mod);
838 klp_module_going(mod);
839 ftrace_release_mod(mod);
840
841 async_synchronize_full();
842
843 /* Store the name and taints of the last unloaded module for diagnostic purposes */
844 strscpy(last_unloaded_module.name, mod->name);
845 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
846
847 free_module(mod);
848 /* someone could wait for the module in add_unformed_module() */
849 wake_up_all(&module_wq);
850 return 0;
851 out:
852 mutex_unlock(&module_mutex);
853 return ret;
854 }
855
__symbol_put(const char * symbol)856 void __symbol_put(const char *symbol)
857 {
858 struct find_symbol_arg fsa = {
859 .name = symbol,
860 .gplok = true,
861 };
862
863 guard(rcu)();
864 BUG_ON(!find_symbol(&fsa));
865 module_put(fsa.owner);
866 }
867 EXPORT_SYMBOL(__symbol_put);
868
869 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)870 void symbol_put_addr(void *addr)
871 {
872 struct module *modaddr;
873 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
874
875 if (core_kernel_text(a))
876 return;
877
878 /*
879 * Even though we hold a reference on the module; we still need to
880 * RCU read section in order to safely traverse the data structure.
881 */
882 guard(rcu)();
883 modaddr = __module_text_address(a);
884 BUG_ON(!modaddr);
885 module_put(modaddr);
886 }
887 EXPORT_SYMBOL_GPL(symbol_put_addr);
888
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)889 static ssize_t show_refcnt(const struct module_attribute *mattr,
890 struct module_kobject *mk, char *buffer)
891 {
892 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
893 }
894
895 static const struct module_attribute modinfo_refcnt =
896 __ATTR(refcnt, 0444, show_refcnt, NULL);
897
__module_get(struct module * module)898 void __module_get(struct module *module)
899 {
900 if (module) {
901 atomic_inc(&module->refcnt);
902 trace_module_get(module, _RET_IP_);
903 }
904 }
905 EXPORT_SYMBOL(__module_get);
906
try_module_get(struct module * module)907 bool try_module_get(struct module *module)
908 {
909 bool ret = true;
910
911 if (module) {
912 /* Note: here, we can fail to get a reference */
913 if (likely(module_is_live(module) &&
914 atomic_inc_not_zero(&module->refcnt) != 0))
915 trace_module_get(module, _RET_IP_);
916 else
917 ret = false;
918 }
919 return ret;
920 }
921 EXPORT_SYMBOL(try_module_get);
922
module_put(struct module * module)923 void module_put(struct module *module)
924 {
925 int ret;
926
927 if (module) {
928 ret = atomic_dec_if_positive(&module->refcnt);
929 WARN_ON(ret < 0); /* Failed to put refcount */
930 trace_module_put(module, _RET_IP_);
931 }
932 }
933 EXPORT_SYMBOL(module_put);
934
935 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)936 static inline void module_unload_free(struct module *mod)
937 {
938 }
939
ref_module(struct module * a,struct module * b)940 static int ref_module(struct module *a, struct module *b)
941 {
942 return strong_try_module_get(b);
943 }
944
module_unload_init(struct module * mod)945 static inline int module_unload_init(struct module *mod)
946 {
947 return 0;
948 }
949 #endif /* CONFIG_MODULE_UNLOAD */
950
module_flags_taint(unsigned long taints,char * buf)951 size_t module_flags_taint(unsigned long taints, char *buf)
952 {
953 size_t l = 0;
954 int i;
955
956 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
957 if (taint_flags[i].module && test_bit(i, &taints))
958 buf[l++] = taint_flags[i].c_true;
959 }
960
961 return l;
962 }
963
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)964 static ssize_t show_initstate(const struct module_attribute *mattr,
965 struct module_kobject *mk, char *buffer)
966 {
967 const char *state = "unknown";
968
969 switch (mk->mod->state) {
970 case MODULE_STATE_LIVE:
971 state = "live";
972 break;
973 case MODULE_STATE_COMING:
974 state = "coming";
975 break;
976 case MODULE_STATE_GOING:
977 state = "going";
978 break;
979 default:
980 BUG();
981 }
982 return sprintf(buffer, "%s\n", state);
983 }
984
985 static const struct module_attribute modinfo_initstate =
986 __ATTR(initstate, 0444, show_initstate, NULL);
987
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)988 static ssize_t store_uevent(const struct module_attribute *mattr,
989 struct module_kobject *mk,
990 const char *buffer, size_t count)
991 {
992 int rc;
993
994 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
995 return rc ? rc : count;
996 }
997
998 const struct module_attribute module_uevent =
999 __ATTR(uevent, 0200, NULL, store_uevent);
1000
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_coresize(const struct module_attribute *mattr,
1002 struct module_kobject *mk, char *buffer)
1003 {
1004 unsigned int size = mk->mod->mem[MOD_TEXT].size;
1005
1006 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1007 for_class_mod_mem_type(type, core_data)
1008 size += mk->mod->mem[type].size;
1009 }
1010 return sprintf(buffer, "%u\n", size);
1011 }
1012
1013 static const struct module_attribute modinfo_coresize =
1014 __ATTR(coresize, 0444, show_coresize, NULL);
1015
1016 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1017 static ssize_t show_datasize(const struct module_attribute *mattr,
1018 struct module_kobject *mk, char *buffer)
1019 {
1020 unsigned int size = 0;
1021
1022 for_class_mod_mem_type(type, core_data)
1023 size += mk->mod->mem[type].size;
1024 return sprintf(buffer, "%u\n", size);
1025 }
1026
1027 static const struct module_attribute modinfo_datasize =
1028 __ATTR(datasize, 0444, show_datasize, NULL);
1029 #endif
1030
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1031 static ssize_t show_initsize(const struct module_attribute *mattr,
1032 struct module_kobject *mk, char *buffer)
1033 {
1034 unsigned int size = 0;
1035
1036 for_class_mod_mem_type(type, init)
1037 size += mk->mod->mem[type].size;
1038 return sprintf(buffer, "%u\n", size);
1039 }
1040
1041 static const struct module_attribute modinfo_initsize =
1042 __ATTR(initsize, 0444, show_initsize, NULL);
1043
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1044 static ssize_t show_taint(const struct module_attribute *mattr,
1045 struct module_kobject *mk, char *buffer)
1046 {
1047 size_t l;
1048
1049 l = module_flags_taint(mk->mod->taints, buffer);
1050 buffer[l++] = '\n';
1051 return l;
1052 }
1053
1054 static const struct module_attribute modinfo_taint =
1055 __ATTR(taint, 0444, show_taint, NULL);
1056
1057 const struct module_attribute *const modinfo_attrs[] = {
1058 &module_uevent,
1059 &modinfo_version,
1060 &modinfo_srcversion,
1061 &modinfo_initstate,
1062 &modinfo_coresize,
1063 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1064 &modinfo_datasize,
1065 #endif
1066 &modinfo_initsize,
1067 &modinfo_taint,
1068 #ifdef CONFIG_MODULE_UNLOAD
1069 &modinfo_refcnt,
1070 #endif
1071 NULL,
1072 };
1073
1074 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1075
1076 static const char vermagic[] = VERMAGIC_STRING;
1077
try_to_force_load(struct module * mod,const char * reason)1078 int try_to_force_load(struct module *mod, const char *reason)
1079 {
1080 #ifdef CONFIG_MODULE_FORCE_LOAD
1081 if (!test_taint(TAINT_FORCED_MODULE))
1082 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1083 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1084 return 0;
1085 #else
1086 return -ENOEXEC;
1087 #endif
1088 }
1089
1090 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1091 char *module_next_tag_pair(char *string, unsigned long *secsize)
1092 {
1093 /* Skip non-zero chars */
1094 while (string[0]) {
1095 string++;
1096 if ((*secsize)-- <= 1)
1097 return NULL;
1098 }
1099
1100 /* Skip any zero padding. */
1101 while (!string[0]) {
1102 string++;
1103 if ((*secsize)-- <= 1)
1104 return NULL;
1105 }
1106 return string;
1107 }
1108
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1109 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1110 char *prev)
1111 {
1112 char *p;
1113 unsigned int taglen = strlen(tag);
1114 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1115 unsigned long size = infosec->sh_size;
1116
1117 /*
1118 * get_modinfo() calls made before rewrite_section_headers()
1119 * must use sh_offset, as sh_addr isn't set!
1120 */
1121 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1122
1123 if (prev) {
1124 size -= prev - modinfo;
1125 modinfo = module_next_tag_pair(prev, &size);
1126 }
1127
1128 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1129 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1130 return p + taglen + 1;
1131 }
1132 return NULL;
1133 }
1134
get_modinfo(const struct load_info * info,const char * tag)1135 static char *get_modinfo(const struct load_info *info, const char *tag)
1136 {
1137 return get_next_modinfo(info, tag, NULL);
1138 }
1139
1140 /**
1141 * verify_module_namespace() - does @modname have access to this symbol's @namespace
1142 * @namespace: export symbol namespace
1143 * @modname: module name
1144 *
1145 * If @namespace is prefixed with "module:" to indicate it is a module namespace
1146 * then test if @modname matches any of the comma separated patterns.
1147 *
1148 * The patterns only support tail-glob.
1149 */
verify_module_namespace(const char * namespace,const char * modname)1150 static bool verify_module_namespace(const char *namespace, const char *modname)
1151 {
1152 size_t len, modlen = strlen(modname);
1153 const char *prefix = "module:";
1154 const char *sep;
1155 bool glob;
1156
1157 if (!strstarts(namespace, prefix))
1158 return false;
1159
1160 for (namespace += strlen(prefix); *namespace; namespace = sep) {
1161 sep = strchrnul(namespace, ',');
1162 len = sep - namespace;
1163
1164 glob = false;
1165 if (sep[-1] == '*') {
1166 len--;
1167 glob = true;
1168 }
1169
1170 if (*sep)
1171 sep++;
1172
1173 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1180 static int verify_namespace_is_imported(const struct load_info *info,
1181 const struct kernel_symbol *sym,
1182 struct module *mod)
1183 {
1184 const char *namespace;
1185 char *imported_namespace;
1186
1187 namespace = kernel_symbol_namespace(sym);
1188 if (namespace && namespace[0]) {
1189
1190 if (verify_module_namespace(namespace, mod->name))
1191 return 0;
1192
1193 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1194 if (strcmp(namespace, imported_namespace) == 0)
1195 return 0;
1196 }
1197 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1198 pr_warn(
1199 #else
1200 pr_err(
1201 #endif
1202 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1203 mod->name, kernel_symbol_name(sym), namespace);
1204 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1205 return -EINVAL;
1206 #endif
1207 }
1208 return 0;
1209 }
1210
inherit_taint(struct module * mod,struct module * owner,const char * name)1211 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1212 {
1213 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1214 return true;
1215
1216 if (mod->using_gplonly_symbols) {
1217 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1218 mod->name, name, owner->name);
1219 return false;
1220 }
1221
1222 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1223 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1224 mod->name, name, owner->name);
1225 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1226 }
1227 return true;
1228 }
1229
1230 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1231 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1232 const struct load_info *info,
1233 const char *name,
1234 char ownername[])
1235 {
1236 struct find_symbol_arg fsa = {
1237 .name = name,
1238 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1239 .warn = true,
1240 };
1241 int err;
1242
1243 /*
1244 * The module_mutex should not be a heavily contended lock;
1245 * if we get the occasional sleep here, we'll go an extra iteration
1246 * in the wait_event_interruptible(), which is harmless.
1247 */
1248 sched_annotate_sleep();
1249 mutex_lock(&module_mutex);
1250 if (!find_symbol(&fsa))
1251 goto unlock;
1252
1253 if (fsa.license == GPL_ONLY)
1254 mod->using_gplonly_symbols = true;
1255
1256 if (!inherit_taint(mod, fsa.owner, name)) {
1257 fsa.sym = NULL;
1258 goto getname;
1259 }
1260
1261 if (!check_version(info, name, mod, fsa.crc)) {
1262 fsa.sym = ERR_PTR(-EINVAL);
1263 goto getname;
1264 }
1265
1266 err = verify_namespace_is_imported(info, fsa.sym, mod);
1267 if (err) {
1268 fsa.sym = ERR_PTR(err);
1269 goto getname;
1270 }
1271
1272 err = ref_module(mod, fsa.owner);
1273 if (err) {
1274 fsa.sym = ERR_PTR(err);
1275 goto getname;
1276 }
1277
1278 getname:
1279 /* We must make copy under the lock if we failed to get ref. */
1280 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1281 unlock:
1282 mutex_unlock(&module_mutex);
1283 return fsa.sym;
1284 }
1285
1286 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1287 resolve_symbol_wait(struct module *mod,
1288 const struct load_info *info,
1289 const char *name)
1290 {
1291 const struct kernel_symbol *ksym;
1292 char owner[MODULE_NAME_LEN];
1293
1294 if (wait_event_interruptible_timeout(module_wq,
1295 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1296 || PTR_ERR(ksym) != -EBUSY,
1297 30 * HZ) <= 0) {
1298 pr_warn("%s: gave up waiting for init of module %s.\n",
1299 mod->name, owner);
1300 }
1301 return ksym;
1302 }
1303
module_arch_cleanup(struct module * mod)1304 void __weak module_arch_cleanup(struct module *mod)
1305 {
1306 }
1307
module_arch_freeing_init(struct module * mod)1308 void __weak module_arch_freeing_init(struct module *mod)
1309 {
1310 }
1311
module_memory_alloc(struct module * mod,enum mod_mem_type type)1312 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1313 {
1314 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1315 enum execmem_type execmem_type;
1316 void *ptr;
1317
1318 mod->mem[type].size = size;
1319
1320 if (mod_mem_type_is_data(type))
1321 execmem_type = EXECMEM_MODULE_DATA;
1322 else
1323 execmem_type = EXECMEM_MODULE_TEXT;
1324
1325 ptr = execmem_alloc_rw(execmem_type, size);
1326 if (!ptr)
1327 return -ENOMEM;
1328
1329 mod->mem[type].is_rox = execmem_is_rox(execmem_type);
1330
1331 /*
1332 * The pointer to these blocks of memory are stored on the module
1333 * structure and we keep that around so long as the module is
1334 * around. We only free that memory when we unload the module.
1335 * Just mark them as not being a leak then. The .init* ELF
1336 * sections *do* get freed after boot so we *could* treat them
1337 * slightly differently with kmemleak_ignore() and only grey
1338 * them out as they work as typical memory allocations which
1339 * *do* eventually get freed, but let's just keep things simple
1340 * and avoid *any* false positives.
1341 */
1342 if (!mod->mem[type].is_rox)
1343 kmemleak_not_leak(ptr);
1344
1345 memset(ptr, 0, size);
1346 mod->mem[type].base = ptr;
1347
1348 return 0;
1349 }
1350
module_memory_restore_rox(struct module * mod)1351 static void module_memory_restore_rox(struct module *mod)
1352 {
1353 for_class_mod_mem_type(type, text) {
1354 struct module_memory *mem = &mod->mem[type];
1355
1356 if (mem->is_rox)
1357 execmem_restore_rox(mem->base, mem->size);
1358 }
1359 }
1360
module_memory_free(struct module * mod,enum mod_mem_type type)1361 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1362 {
1363 struct module_memory *mem = &mod->mem[type];
1364
1365 execmem_free(mem->base);
1366 }
1367
free_mod_mem(struct module * mod)1368 static void free_mod_mem(struct module *mod)
1369 {
1370 for_each_mod_mem_type(type) {
1371 struct module_memory *mod_mem = &mod->mem[type];
1372
1373 if (type == MOD_DATA)
1374 continue;
1375
1376 /* Free lock-classes; relies on the preceding sync_rcu(). */
1377 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1378 if (mod_mem->size)
1379 module_memory_free(mod, type);
1380 }
1381
1382 /* MOD_DATA hosts mod, so free it at last */
1383 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1384 module_memory_free(mod, MOD_DATA);
1385 }
1386
1387 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1388 static void free_module(struct module *mod)
1389 {
1390 trace_module_free(mod);
1391
1392 codetag_unload_module(mod);
1393
1394 mod_sysfs_teardown(mod);
1395
1396 /*
1397 * We leave it in list to prevent duplicate loads, but make sure
1398 * that noone uses it while it's being deconstructed.
1399 */
1400 mutex_lock(&module_mutex);
1401 mod->state = MODULE_STATE_UNFORMED;
1402 mutex_unlock(&module_mutex);
1403
1404 /* Arch-specific cleanup. */
1405 module_arch_cleanup(mod);
1406
1407 /* Module unload stuff */
1408 module_unload_free(mod);
1409
1410 /* Free any allocated parameters. */
1411 destroy_params(mod->kp, mod->num_kp);
1412
1413 if (is_livepatch_module(mod))
1414 free_module_elf(mod);
1415
1416 /* Now we can delete it from the lists */
1417 mutex_lock(&module_mutex);
1418 /* Unlink carefully: kallsyms could be walking list. */
1419 list_del_rcu(&mod->list);
1420 mod_tree_remove(mod);
1421 /* Remove this module from bug list, this uses list_del_rcu */
1422 module_bug_cleanup(mod);
1423 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1424 synchronize_rcu();
1425 if (try_add_tainted_module(mod))
1426 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1427 mod->name);
1428 mutex_unlock(&module_mutex);
1429
1430 /* This may be empty, but that's OK */
1431 module_arch_freeing_init(mod);
1432 kfree(mod->args);
1433 percpu_modfree(mod);
1434
1435 free_mod_mem(mod);
1436 }
1437
__symbol_get(const char * symbol)1438 void *__symbol_get(const char *symbol)
1439 {
1440 struct find_symbol_arg fsa = {
1441 .name = symbol,
1442 .gplok = true,
1443 .warn = true,
1444 };
1445
1446 scoped_guard(rcu) {
1447 if (!find_symbol(&fsa))
1448 return NULL;
1449 if (fsa.license != GPL_ONLY) {
1450 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1451 symbol);
1452 return NULL;
1453 }
1454 if (strong_try_module_get(fsa.owner))
1455 return NULL;
1456 }
1457 return (void *)kernel_symbol_value(fsa.sym);
1458 }
1459 EXPORT_SYMBOL_GPL(__symbol_get);
1460
1461 /*
1462 * Ensure that an exported symbol [global namespace] does not already exist
1463 * in the kernel or in some other module's exported symbol table.
1464 *
1465 * You must hold the module_mutex.
1466 */
verify_exported_symbols(struct module * mod)1467 static int verify_exported_symbols(struct module *mod)
1468 {
1469 unsigned int i;
1470 const struct kernel_symbol *s;
1471 struct {
1472 const struct kernel_symbol *sym;
1473 unsigned int num;
1474 } arr[] = {
1475 { mod->syms, mod->num_syms },
1476 { mod->gpl_syms, mod->num_gpl_syms },
1477 };
1478
1479 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1480 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1481 struct find_symbol_arg fsa = {
1482 .name = kernel_symbol_name(s),
1483 .gplok = true,
1484 };
1485 if (find_symbol(&fsa)) {
1486 pr_err("%s: exports duplicate symbol %s"
1487 " (owned by %s)\n",
1488 mod->name, kernel_symbol_name(s),
1489 module_name(fsa.owner));
1490 return -ENOEXEC;
1491 }
1492 }
1493 }
1494 return 0;
1495 }
1496
ignore_undef_symbol(Elf_Half emachine,const char * name)1497 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1498 {
1499 /*
1500 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1501 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1502 * i386 has a similar problem but may not deserve a fix.
1503 *
1504 * If we ever have to ignore many symbols, consider refactoring the code to
1505 * only warn if referenced by a relocation.
1506 */
1507 if (emachine == EM_386 || emachine == EM_X86_64)
1508 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1509 return false;
1510 }
1511
1512 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1513 static int simplify_symbols(struct module *mod, const struct load_info *info)
1514 {
1515 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1516 Elf_Sym *sym = (void *)symsec->sh_addr;
1517 unsigned long secbase;
1518 unsigned int i;
1519 int ret = 0;
1520 const struct kernel_symbol *ksym;
1521
1522 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1523 const char *name = info->strtab + sym[i].st_name;
1524
1525 switch (sym[i].st_shndx) {
1526 case SHN_COMMON:
1527 /* Ignore common symbols */
1528 if (!strncmp(name, "__gnu_lto", 9))
1529 break;
1530
1531 /*
1532 * We compiled with -fno-common. These are not
1533 * supposed to happen.
1534 */
1535 pr_debug("Common symbol: %s\n", name);
1536 pr_warn("%s: please compile with -fno-common\n",
1537 mod->name);
1538 ret = -ENOEXEC;
1539 break;
1540
1541 case SHN_ABS:
1542 /* Don't need to do anything */
1543 pr_debug("Absolute symbol: 0x%08lx %s\n",
1544 (long)sym[i].st_value, name);
1545 break;
1546
1547 case SHN_LIVEPATCH:
1548 /* Livepatch symbols are resolved by livepatch */
1549 break;
1550
1551 case SHN_UNDEF:
1552 ksym = resolve_symbol_wait(mod, info, name);
1553 /* Ok if resolved. */
1554 if (ksym && !IS_ERR(ksym)) {
1555 sym[i].st_value = kernel_symbol_value(ksym);
1556 break;
1557 }
1558
1559 /* Ok if weak or ignored. */
1560 if (!ksym &&
1561 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1562 ignore_undef_symbol(info->hdr->e_machine, name)))
1563 break;
1564
1565 ret = PTR_ERR(ksym) ?: -ENOENT;
1566 pr_warn("%s: Unknown symbol %s (err %d)\n",
1567 mod->name, name, ret);
1568 break;
1569
1570 default:
1571 /* Divert to percpu allocation if a percpu var. */
1572 if (sym[i].st_shndx == info->index.pcpu)
1573 secbase = (unsigned long)mod_percpu(mod);
1574 else
1575 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1576 sym[i].st_value += secbase;
1577 break;
1578 }
1579 }
1580
1581 return ret;
1582 }
1583
apply_relocations(struct module * mod,const struct load_info * info)1584 static int apply_relocations(struct module *mod, const struct load_info *info)
1585 {
1586 unsigned int i;
1587 int err = 0;
1588
1589 /* Now do relocations. */
1590 for (i = 1; i < info->hdr->e_shnum; i++) {
1591 unsigned int infosec = info->sechdrs[i].sh_info;
1592
1593 /* Not a valid relocation section? */
1594 if (infosec >= info->hdr->e_shnum)
1595 continue;
1596
1597 /*
1598 * Don't bother with non-allocated sections.
1599 * An exception is the percpu section, which has separate allocations
1600 * for individual CPUs. We relocate the percpu section in the initial
1601 * ELF template and subsequently copy it to the per-CPU destinations.
1602 */
1603 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1604 (!infosec || infosec != info->index.pcpu))
1605 continue;
1606
1607 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1608 err = klp_apply_section_relocs(mod, info->sechdrs,
1609 info->secstrings,
1610 info->strtab,
1611 info->index.sym, i,
1612 NULL);
1613 else if (info->sechdrs[i].sh_type == SHT_REL)
1614 err = apply_relocate(info->sechdrs, info->strtab,
1615 info->index.sym, i, mod);
1616 else if (info->sechdrs[i].sh_type == SHT_RELA)
1617 err = apply_relocate_add(info->sechdrs, info->strtab,
1618 info->index.sym, i, mod);
1619 if (err < 0)
1620 break;
1621 }
1622 return err;
1623 }
1624
1625 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1626 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1627 unsigned int section)
1628 {
1629 /* default implementation just returns zero */
1630 return 0;
1631 }
1632
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1633 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1634 Elf_Shdr *sechdr, unsigned int section)
1635 {
1636 long offset;
1637 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1638
1639 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1640 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1641 mod->mem[type].size = offset + sechdr->sh_size;
1642
1643 WARN_ON_ONCE(offset & mask);
1644 return offset | mask;
1645 }
1646
module_init_layout_section(const char * sname)1647 bool module_init_layout_section(const char *sname)
1648 {
1649 #ifndef CONFIG_MODULE_UNLOAD
1650 if (module_exit_section(sname))
1651 return true;
1652 #endif
1653 return module_init_section(sname);
1654 }
1655
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1656 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1657 {
1658 unsigned int m, i;
1659
1660 /*
1661 * { Mask of required section header flags,
1662 * Mask of excluded section header flags }
1663 */
1664 static const unsigned long masks[][2] = {
1665 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1666 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1667 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1668 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1669 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1670 };
1671 static const int core_m_to_mem_type[] = {
1672 MOD_TEXT,
1673 MOD_RODATA,
1674 MOD_RO_AFTER_INIT,
1675 MOD_DATA,
1676 MOD_DATA,
1677 };
1678 static const int init_m_to_mem_type[] = {
1679 MOD_INIT_TEXT,
1680 MOD_INIT_RODATA,
1681 MOD_INVALID,
1682 MOD_INIT_DATA,
1683 MOD_INIT_DATA,
1684 };
1685
1686 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1687 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1688
1689 for (i = 0; i < info->hdr->e_shnum; ++i) {
1690 Elf_Shdr *s = &info->sechdrs[i];
1691 const char *sname = info->secstrings + s->sh_name;
1692
1693 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1694 || (s->sh_flags & masks[m][1])
1695 || s->sh_entsize != ~0UL
1696 || is_init != module_init_layout_section(sname))
1697 continue;
1698
1699 if (WARN_ON_ONCE(type == MOD_INVALID))
1700 continue;
1701
1702 /*
1703 * Do not allocate codetag memory as we load it into
1704 * preallocated contiguous memory.
1705 */
1706 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1707 /*
1708 * s->sh_entsize won't be used but populate the
1709 * type field to avoid confusion.
1710 */
1711 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1712 << SH_ENTSIZE_TYPE_SHIFT;
1713 continue;
1714 }
1715
1716 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1717 pr_debug("\t%s\n", sname);
1718 }
1719 }
1720 }
1721
1722 /*
1723 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1724 * might -- code, read-only data, read-write data, small data. Tally
1725 * sizes, and place the offsets into sh_entsize fields: high bit means it
1726 * belongs in init.
1727 */
layout_sections(struct module * mod,struct load_info * info)1728 static void layout_sections(struct module *mod, struct load_info *info)
1729 {
1730 unsigned int i;
1731
1732 for (i = 0; i < info->hdr->e_shnum; i++)
1733 info->sechdrs[i].sh_entsize = ~0UL;
1734
1735 pr_debug("Core section allocation order for %s:\n", mod->name);
1736 __layout_sections(mod, info, false);
1737
1738 pr_debug("Init section allocation order for %s:\n", mod->name);
1739 __layout_sections(mod, info, true);
1740 }
1741
module_license_taint_check(struct module * mod,const char * license)1742 static void module_license_taint_check(struct module *mod, const char *license)
1743 {
1744 if (!license)
1745 license = "unspecified";
1746
1747 if (!license_is_gpl_compatible(license)) {
1748 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1749 pr_warn("%s: module license '%s' taints kernel.\n",
1750 mod->name, license);
1751 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1752 LOCKDEP_NOW_UNRELIABLE);
1753 }
1754 }
1755
setup_modinfo(struct module * mod,struct load_info * info)1756 static int setup_modinfo(struct module *mod, struct load_info *info)
1757 {
1758 const struct module_attribute *attr;
1759 char *imported_namespace;
1760 int i;
1761
1762 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1763 if (attr->setup)
1764 attr->setup(mod, get_modinfo(info, attr->attr.name));
1765 }
1766
1767 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1768 /*
1769 * 'module:' prefixed namespaces are implicit, disallow
1770 * explicit imports.
1771 */
1772 if (strstarts(imported_namespace, "module:")) {
1773 pr_err("%s: module tries to import module namespace: %s\n",
1774 mod->name, imported_namespace);
1775 return -EPERM;
1776 }
1777 }
1778
1779 return 0;
1780 }
1781
free_modinfo(struct module * mod)1782 static void free_modinfo(struct module *mod)
1783 {
1784 const struct module_attribute *attr;
1785 int i;
1786
1787 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1788 if (attr->free)
1789 attr->free(mod);
1790 }
1791 }
1792
module_init_section(const char * name)1793 bool __weak module_init_section(const char *name)
1794 {
1795 return strstarts(name, ".init");
1796 }
1797
module_exit_section(const char * name)1798 bool __weak module_exit_section(const char *name)
1799 {
1800 return strstarts(name, ".exit");
1801 }
1802
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1803 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1804 {
1805 #if defined(CONFIG_64BIT)
1806 unsigned long long secend;
1807 #else
1808 unsigned long secend;
1809 #endif
1810
1811 /*
1812 * Check for both overflow and offset/size being
1813 * too large.
1814 */
1815 secend = shdr->sh_offset + shdr->sh_size;
1816 if (secend < shdr->sh_offset || secend > info->len)
1817 return -ENOEXEC;
1818
1819 return 0;
1820 }
1821
1822 /**
1823 * elf_validity_ehdr() - Checks an ELF header for module validity
1824 * @info: Load info containing the ELF header to check
1825 *
1826 * Checks whether an ELF header could belong to a valid module. Checks:
1827 *
1828 * * ELF header is within the data the user provided
1829 * * ELF magic is present
1830 * * It is relocatable (not final linked, not core file, etc.)
1831 * * The header's machine type matches what the architecture expects.
1832 * * Optional arch-specific hook for other properties
1833 * - module_elf_check_arch() is currently only used by PPC to check
1834 * ELF ABI version, but may be used by others in the future.
1835 *
1836 * Return: %0 if valid, %-ENOEXEC on failure.
1837 */
elf_validity_ehdr(const struct load_info * info)1838 static int elf_validity_ehdr(const struct load_info *info)
1839 {
1840 if (info->len < sizeof(*(info->hdr))) {
1841 pr_err("Invalid ELF header len %lu\n", info->len);
1842 return -ENOEXEC;
1843 }
1844 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1845 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1846 return -ENOEXEC;
1847 }
1848 if (info->hdr->e_type != ET_REL) {
1849 pr_err("Invalid ELF header type: %u != %u\n",
1850 info->hdr->e_type, ET_REL);
1851 return -ENOEXEC;
1852 }
1853 if (!elf_check_arch(info->hdr)) {
1854 pr_err("Invalid architecture in ELF header: %u\n",
1855 info->hdr->e_machine);
1856 return -ENOEXEC;
1857 }
1858 if (!module_elf_check_arch(info->hdr)) {
1859 pr_err("Invalid module architecture in ELF header: %u\n",
1860 info->hdr->e_machine);
1861 return -ENOEXEC;
1862 }
1863 return 0;
1864 }
1865
1866 /**
1867 * elf_validity_cache_sechdrs() - Cache section headers if valid
1868 * @info: Load info to compute section headers from
1869 *
1870 * Checks:
1871 *
1872 * * ELF header is valid (see elf_validity_ehdr())
1873 * * Section headers are the size we expect
1874 * * Section array fits in the user provided data
1875 * * Section index 0 is NULL
1876 * * Section contents are inbounds
1877 *
1878 * Then updates @info with a &load_info->sechdrs pointer if valid.
1879 *
1880 * Return: %0 if valid, negative error code if validation failed.
1881 */
elf_validity_cache_sechdrs(struct load_info * info)1882 static int elf_validity_cache_sechdrs(struct load_info *info)
1883 {
1884 Elf_Shdr *sechdrs;
1885 Elf_Shdr *shdr;
1886 int i;
1887 int err;
1888
1889 err = elf_validity_ehdr(info);
1890 if (err < 0)
1891 return err;
1892
1893 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1894 pr_err("Invalid ELF section header size\n");
1895 return -ENOEXEC;
1896 }
1897
1898 /*
1899 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1900 * known and small. So e_shnum * sizeof(Elf_Shdr)
1901 * will not overflow unsigned long on any platform.
1902 */
1903 if (info->hdr->e_shoff >= info->len
1904 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1905 info->len - info->hdr->e_shoff)) {
1906 pr_err("Invalid ELF section header overflow\n");
1907 return -ENOEXEC;
1908 }
1909
1910 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1911
1912 /*
1913 * The code assumes that section 0 has a length of zero and
1914 * an addr of zero, so check for it.
1915 */
1916 if (sechdrs[0].sh_type != SHT_NULL
1917 || sechdrs[0].sh_size != 0
1918 || sechdrs[0].sh_addr != 0) {
1919 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1920 sechdrs[0].sh_type);
1921 return -ENOEXEC;
1922 }
1923
1924 /* Validate contents are inbounds */
1925 for (i = 1; i < info->hdr->e_shnum; i++) {
1926 shdr = &sechdrs[i];
1927 switch (shdr->sh_type) {
1928 case SHT_NULL:
1929 case SHT_NOBITS:
1930 /* No contents, offset/size don't mean anything */
1931 continue;
1932 default:
1933 err = validate_section_offset(info, shdr);
1934 if (err < 0) {
1935 pr_err("Invalid ELF section in module (section %u type %u)\n",
1936 i, shdr->sh_type);
1937 return err;
1938 }
1939 }
1940 }
1941
1942 info->sechdrs = sechdrs;
1943
1944 return 0;
1945 }
1946
1947 /**
1948 * elf_validity_cache_secstrings() - Caches section names if valid
1949 * @info: Load info to cache section names from. Must have valid sechdrs.
1950 *
1951 * Specifically checks:
1952 *
1953 * * Section name table index is inbounds of section headers
1954 * * Section name table is not empty
1955 * * Section name table is NUL terminated
1956 * * All section name offsets are inbounds of the section
1957 *
1958 * Then updates @info with a &load_info->secstrings pointer if valid.
1959 *
1960 * Return: %0 if valid, negative error code if validation failed.
1961 */
elf_validity_cache_secstrings(struct load_info * info)1962 static int elf_validity_cache_secstrings(struct load_info *info)
1963 {
1964 Elf_Shdr *strhdr, *shdr;
1965 char *secstrings;
1966 int i;
1967
1968 /*
1969 * Verify if the section name table index is valid.
1970 */
1971 if (info->hdr->e_shstrndx == SHN_UNDEF
1972 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1973 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1974 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1975 info->hdr->e_shnum);
1976 return -ENOEXEC;
1977 }
1978
1979 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1980
1981 /*
1982 * The section name table must be NUL-terminated, as required
1983 * by the spec. This makes strcmp and pr_* calls that access
1984 * strings in the section safe.
1985 */
1986 secstrings = (void *)info->hdr + strhdr->sh_offset;
1987 if (strhdr->sh_size == 0) {
1988 pr_err("empty section name table\n");
1989 return -ENOEXEC;
1990 }
1991 if (secstrings[strhdr->sh_size - 1] != '\0') {
1992 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1993 return -ENOEXEC;
1994 }
1995
1996 for (i = 0; i < info->hdr->e_shnum; i++) {
1997 shdr = &info->sechdrs[i];
1998 /* SHT_NULL means sh_name has an undefined value */
1999 if (shdr->sh_type == SHT_NULL)
2000 continue;
2001 if (shdr->sh_name >= strhdr->sh_size) {
2002 pr_err("Invalid ELF section name in module (section %u type %u)\n",
2003 i, shdr->sh_type);
2004 return -ENOEXEC;
2005 }
2006 }
2007
2008 info->secstrings = secstrings;
2009 return 0;
2010 }
2011
2012 /**
2013 * elf_validity_cache_index_info() - Validate and cache modinfo section
2014 * @info: Load info to populate the modinfo index on.
2015 * Must have &load_info->sechdrs and &load_info->secstrings populated
2016 *
2017 * Checks that if there is a .modinfo section, it is unique.
2018 * Then, it caches its index in &load_info->index.info.
2019 * Finally, it tries to populate the name to improve error messages.
2020 *
2021 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2022 */
elf_validity_cache_index_info(struct load_info * info)2023 static int elf_validity_cache_index_info(struct load_info *info)
2024 {
2025 int info_idx;
2026
2027 info_idx = find_any_unique_sec(info, ".modinfo");
2028
2029 if (info_idx == 0)
2030 /* Early return, no .modinfo */
2031 return 0;
2032
2033 if (info_idx < 0) {
2034 pr_err("Only one .modinfo section must exist.\n");
2035 return -ENOEXEC;
2036 }
2037
2038 info->index.info = info_idx;
2039 /* Try to find a name early so we can log errors with a module name */
2040 info->name = get_modinfo(info, "name");
2041
2042 return 0;
2043 }
2044
2045 /**
2046 * elf_validity_cache_index_mod() - Validates and caches this_module section
2047 * @info: Load info to cache this_module on.
2048 * Must have &load_info->sechdrs and &load_info->secstrings populated
2049 *
2050 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2051 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2052 * to &__this_module properly. The kernel's modpost declares it on each
2053 * modules's *.mod.c file. If the struct module of the kernel changes a full
2054 * kernel rebuild is required.
2055 *
2056 * We have a few expectations for this special section, this function
2057 * validates all this for us:
2058 *
2059 * * The section has contents
2060 * * The section is unique
2061 * * We expect the kernel to always have to allocate it: SHF_ALLOC
2062 * * The section size must match the kernel's run time's struct module
2063 * size
2064 *
2065 * If all checks pass, the index will be cached in &load_info->index.mod
2066 *
2067 * Return: %0 on validation success, %-ENOEXEC on failure
2068 */
elf_validity_cache_index_mod(struct load_info * info)2069 static int elf_validity_cache_index_mod(struct load_info *info)
2070 {
2071 Elf_Shdr *shdr;
2072 int mod_idx;
2073
2074 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2075 if (mod_idx <= 0) {
2076 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2077 info->name ?: "(missing .modinfo section or name field)");
2078 return -ENOEXEC;
2079 }
2080
2081 shdr = &info->sechdrs[mod_idx];
2082
2083 if (shdr->sh_type == SHT_NOBITS) {
2084 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2085 info->name ?: "(missing .modinfo section or name field)");
2086 return -ENOEXEC;
2087 }
2088
2089 if (!(shdr->sh_flags & SHF_ALLOC)) {
2090 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2091 info->name ?: "(missing .modinfo section or name field)");
2092 return -ENOEXEC;
2093 }
2094
2095 if (shdr->sh_size != sizeof(struct module)) {
2096 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2097 info->name ?: "(missing .modinfo section or name field)");
2098 return -ENOEXEC;
2099 }
2100
2101 info->index.mod = mod_idx;
2102
2103 return 0;
2104 }
2105
2106 /**
2107 * elf_validity_cache_index_sym() - Validate and cache symtab index
2108 * @info: Load info to cache symtab index in.
2109 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2110 *
2111 * Checks that there is exactly one symbol table, then caches its index in
2112 * &load_info->index.sym.
2113 *
2114 * Return: %0 if valid, %-ENOEXEC on failure.
2115 */
elf_validity_cache_index_sym(struct load_info * info)2116 static int elf_validity_cache_index_sym(struct load_info *info)
2117 {
2118 unsigned int sym_idx;
2119 unsigned int num_sym_secs = 0;
2120 int i;
2121
2122 for (i = 1; i < info->hdr->e_shnum; i++) {
2123 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2124 num_sym_secs++;
2125 sym_idx = i;
2126 }
2127 }
2128
2129 if (num_sym_secs != 1) {
2130 pr_warn("%s: module has no symbols (stripped?)\n",
2131 info->name ?: "(missing .modinfo section or name field)");
2132 return -ENOEXEC;
2133 }
2134
2135 info->index.sym = sym_idx;
2136
2137 return 0;
2138 }
2139
2140 /**
2141 * elf_validity_cache_index_str() - Validate and cache strtab index
2142 * @info: Load info to cache strtab index in.
2143 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2144 * Must have &load_info->index.sym populated.
2145 *
2146 * Looks at the symbol table's associated string table, makes sure it is
2147 * in-bounds, and caches it.
2148 *
2149 * Return: %0 if valid, %-ENOEXEC on failure.
2150 */
elf_validity_cache_index_str(struct load_info * info)2151 static int elf_validity_cache_index_str(struct load_info *info)
2152 {
2153 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2154
2155 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2156 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2157 str_idx, str_idx, info->hdr->e_shnum);
2158 return -ENOEXEC;
2159 }
2160
2161 info->index.str = str_idx;
2162 return 0;
2163 }
2164
2165 /**
2166 * elf_validity_cache_index_versions() - Validate and cache version indices
2167 * @info: Load info to cache version indices in.
2168 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2169 * @flags: Load flags, relevant to suppress version loading, see
2170 * uapi/linux/module.h
2171 *
2172 * If we're ignoring modversions based on @flags, zero all version indices
2173 * and return validity. Othewrise check:
2174 *
2175 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2176 * * There is a name present for every crc
2177 *
2178 * Then populate:
2179 *
2180 * * &load_info->index.vers
2181 * * &load_info->index.vers_ext_crc
2182 * * &load_info->index.vers_ext_names
2183 *
2184 * if present.
2185 *
2186 * Return: %0 if valid, %-ENOEXEC on failure.
2187 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2188 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2189 {
2190 unsigned int vers_ext_crc;
2191 unsigned int vers_ext_name;
2192 size_t crc_count;
2193 size_t remaining_len;
2194 size_t name_size;
2195 char *name;
2196
2197 /* If modversions were suppressed, pretend we didn't find any */
2198 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2199 info->index.vers = 0;
2200 info->index.vers_ext_crc = 0;
2201 info->index.vers_ext_name = 0;
2202 return 0;
2203 }
2204
2205 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2206 vers_ext_name = find_sec(info, "__version_ext_names");
2207
2208 /* If we have one field, we must have the other */
2209 if (!!vers_ext_crc != !!vers_ext_name) {
2210 pr_err("extended version crc+name presence does not match");
2211 return -ENOEXEC;
2212 }
2213
2214 /*
2215 * If we have extended version information, we should have the same
2216 * number of entries in every section.
2217 */
2218 if (vers_ext_crc) {
2219 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2220 name = (void *)info->hdr +
2221 info->sechdrs[vers_ext_name].sh_offset;
2222 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2223
2224 while (crc_count--) {
2225 name_size = strnlen(name, remaining_len) + 1;
2226 if (name_size > remaining_len) {
2227 pr_err("more extended version crcs than names");
2228 return -ENOEXEC;
2229 }
2230 remaining_len -= name_size;
2231 name += name_size;
2232 }
2233 }
2234
2235 info->index.vers = find_sec(info, "__versions");
2236 info->index.vers_ext_crc = vers_ext_crc;
2237 info->index.vers_ext_name = vers_ext_name;
2238 return 0;
2239 }
2240
2241 /**
2242 * elf_validity_cache_index() - Resolve, validate, cache section indices
2243 * @info: Load info to read from and update.
2244 * &load_info->sechdrs and &load_info->secstrings must be populated.
2245 * @flags: Load flags, relevant to suppress version loading, see
2246 * uapi/linux/module.h
2247 *
2248 * Populates &load_info->index, validating as it goes.
2249 * See child functions for per-field validation:
2250 *
2251 * * elf_validity_cache_index_info()
2252 * * elf_validity_cache_index_mod()
2253 * * elf_validity_cache_index_sym()
2254 * * elf_validity_cache_index_str()
2255 * * elf_validity_cache_index_versions()
2256 *
2257 * If CONFIG_SMP is enabled, load the percpu section by name with no
2258 * validation.
2259 *
2260 * Return: 0 on success, negative error code if an index failed validation.
2261 */
elf_validity_cache_index(struct load_info * info,int flags)2262 static int elf_validity_cache_index(struct load_info *info, int flags)
2263 {
2264 int err;
2265
2266 err = elf_validity_cache_index_info(info);
2267 if (err < 0)
2268 return err;
2269 err = elf_validity_cache_index_mod(info);
2270 if (err < 0)
2271 return err;
2272 err = elf_validity_cache_index_sym(info);
2273 if (err < 0)
2274 return err;
2275 err = elf_validity_cache_index_str(info);
2276 if (err < 0)
2277 return err;
2278 err = elf_validity_cache_index_versions(info, flags);
2279 if (err < 0)
2280 return err;
2281
2282 info->index.pcpu = find_pcpusec(info);
2283
2284 return 0;
2285 }
2286
2287 /**
2288 * elf_validity_cache_strtab() - Validate and cache symbol string table
2289 * @info: Load info to read from and update.
2290 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2291 * Must have &load_info->index populated.
2292 *
2293 * Checks:
2294 *
2295 * * The string table is not empty.
2296 * * The string table starts and ends with NUL (required by ELF spec).
2297 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2298 * string table.
2299 *
2300 * And caches the pointer as &load_info->strtab in @info.
2301 *
2302 * Return: 0 on success, negative error code if a check failed.
2303 */
elf_validity_cache_strtab(struct load_info * info)2304 static int elf_validity_cache_strtab(struct load_info *info)
2305 {
2306 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2307 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2308 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2309 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2310 int i;
2311
2312 if (str_shdr->sh_size == 0) {
2313 pr_err("empty symbol string table\n");
2314 return -ENOEXEC;
2315 }
2316 if (strtab[0] != '\0') {
2317 pr_err("symbol string table missing leading NUL\n");
2318 return -ENOEXEC;
2319 }
2320 if (strtab[str_shdr->sh_size - 1] != '\0') {
2321 pr_err("symbol string table isn't NUL terminated\n");
2322 return -ENOEXEC;
2323 }
2324
2325 /*
2326 * Now that we know strtab is correctly structured, check symbol
2327 * starts are inbounds before they're used later.
2328 */
2329 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2330 if (syms[i].st_name >= str_shdr->sh_size) {
2331 pr_err("symbol name out of bounds in string table");
2332 return -ENOEXEC;
2333 }
2334 }
2335
2336 info->strtab = strtab;
2337 return 0;
2338 }
2339
2340 /*
2341 * Check userspace passed ELF module against our expectations, and cache
2342 * useful variables for further processing as we go.
2343 *
2344 * This does basic validity checks against section offsets and sizes, the
2345 * section name string table, and the indices used for it (sh_name).
2346 *
2347 * As a last step, since we're already checking the ELF sections we cache
2348 * useful variables which will be used later for our convenience:
2349 *
2350 * o pointers to section headers
2351 * o cache the modinfo symbol section
2352 * o cache the string symbol section
2353 * o cache the module section
2354 *
2355 * As a last step we set info->mod to the temporary copy of the module in
2356 * info->hdr. The final one will be allocated in move_module(). Any
2357 * modifications we make to our copy of the module will be carried over
2358 * to the final minted module.
2359 */
elf_validity_cache_copy(struct load_info * info,int flags)2360 static int elf_validity_cache_copy(struct load_info *info, int flags)
2361 {
2362 int err;
2363
2364 err = elf_validity_cache_sechdrs(info);
2365 if (err < 0)
2366 return err;
2367 err = elf_validity_cache_secstrings(info);
2368 if (err < 0)
2369 return err;
2370 err = elf_validity_cache_index(info, flags);
2371 if (err < 0)
2372 return err;
2373 err = elf_validity_cache_strtab(info);
2374 if (err < 0)
2375 return err;
2376
2377 /* This is temporary: point mod into copy of data. */
2378 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2379
2380 /*
2381 * If we didn't load the .modinfo 'name' field earlier, fall back to
2382 * on-disk struct mod 'name' field.
2383 */
2384 if (!info->name)
2385 info->name = info->mod->name;
2386
2387 return 0;
2388 }
2389
2390 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2391
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2392 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2393 {
2394 do {
2395 unsigned long n = min(len, COPY_CHUNK_SIZE);
2396
2397 if (copy_from_user(dst, usrc, n) != 0)
2398 return -EFAULT;
2399 cond_resched();
2400 dst += n;
2401 usrc += n;
2402 len -= n;
2403 } while (len);
2404 return 0;
2405 }
2406
check_modinfo_livepatch(struct module * mod,struct load_info * info)2407 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2408 {
2409 if (!get_modinfo(info, "livepatch"))
2410 /* Nothing more to do */
2411 return 0;
2412
2413 if (set_livepatch_module(mod))
2414 return 0;
2415
2416 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2417 mod->name);
2418 return -ENOEXEC;
2419 }
2420
check_modinfo_retpoline(struct module * mod,struct load_info * info)2421 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2422 {
2423 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2424 return;
2425
2426 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2427 mod->name);
2428 }
2429
2430 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2431 static int copy_module_from_user(const void __user *umod, unsigned long len,
2432 struct load_info *info)
2433 {
2434 int err;
2435
2436 info->len = len;
2437 if (info->len < sizeof(*(info->hdr)))
2438 return -ENOEXEC;
2439
2440 err = security_kernel_load_data(LOADING_MODULE, true);
2441 if (err)
2442 return err;
2443
2444 /* Suck in entire file: we'll want most of it. */
2445 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2446 if (!info->hdr)
2447 return -ENOMEM;
2448
2449 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2450 err = -EFAULT;
2451 goto out;
2452 }
2453
2454 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2455 LOADING_MODULE, "init_module");
2456 out:
2457 if (err)
2458 vfree(info->hdr);
2459
2460 return err;
2461 }
2462
free_copy(struct load_info * info,int flags)2463 static void free_copy(struct load_info *info, int flags)
2464 {
2465 if (flags & MODULE_INIT_COMPRESSED_FILE)
2466 module_decompress_cleanup(info);
2467 else
2468 vfree(info->hdr);
2469 }
2470
rewrite_section_headers(struct load_info * info,int flags)2471 static int rewrite_section_headers(struct load_info *info, int flags)
2472 {
2473 unsigned int i;
2474
2475 /* This should always be true, but let's be sure. */
2476 info->sechdrs[0].sh_addr = 0;
2477
2478 for (i = 1; i < info->hdr->e_shnum; i++) {
2479 Elf_Shdr *shdr = &info->sechdrs[i];
2480
2481 /*
2482 * Mark all sections sh_addr with their address in the
2483 * temporary image.
2484 */
2485 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2486
2487 }
2488
2489 /* Track but don't keep modinfo and version sections. */
2490 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2491 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2492 ~(unsigned long)SHF_ALLOC;
2493 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2494 ~(unsigned long)SHF_ALLOC;
2495 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2496
2497 return 0;
2498 }
2499
2500 static const char *const module_license_offenders[] = {
2501 /* driverloader was caught wrongly pretending to be under GPL */
2502 "driverloader",
2503
2504 /* lve claims to be GPL but upstream won't provide source */
2505 "lve",
2506 };
2507
2508 /*
2509 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2510 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2511 {
2512 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2513 size_t i;
2514
2515 if (!get_modinfo(info, "intree")) {
2516 if (!test_taint(TAINT_OOT_MODULE))
2517 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2518 mod->name);
2519 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2520 }
2521
2522 check_modinfo_retpoline(mod, info);
2523
2524 if (get_modinfo(info, "staging")) {
2525 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2526 pr_warn("%s: module is from the staging directory, the quality "
2527 "is unknown, you have been warned.\n", mod->name);
2528 }
2529
2530 if (is_livepatch_module(mod)) {
2531 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2532 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2533 mod->name);
2534 }
2535
2536 module_license_taint_check(mod, get_modinfo(info, "license"));
2537
2538 if (get_modinfo(info, "test")) {
2539 if (!test_taint(TAINT_TEST))
2540 pr_warn("%s: loading test module taints kernel.\n",
2541 mod->name);
2542 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2543 }
2544 #ifdef CONFIG_MODULE_SIG
2545 mod->sig_ok = info->sig_ok;
2546 if (!mod->sig_ok) {
2547 pr_notice_once("%s: module verification failed: signature "
2548 "and/or required key missing - tainting "
2549 "kernel\n", mod->name);
2550 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2551 }
2552 #endif
2553
2554 /*
2555 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2556 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2557 * using GPL-only symbols it needs.
2558 */
2559 if (strcmp(mod->name, "ndiswrapper") == 0)
2560 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2561
2562 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2563 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2564 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2565 LOCKDEP_NOW_UNRELIABLE);
2566 }
2567
2568 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2569 pr_warn("%s: module license taints kernel.\n", mod->name);
2570
2571 }
2572
check_modinfo(struct module * mod,struct load_info * info,int flags)2573 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2574 {
2575 const char *modmagic = get_modinfo(info, "vermagic");
2576 int err;
2577
2578 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2579 modmagic = NULL;
2580
2581 /* This is allowed: modprobe --force will invalidate it. */
2582 if (!modmagic) {
2583 err = try_to_force_load(mod, "bad vermagic");
2584 if (err)
2585 return err;
2586 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2587 pr_err("%s: version magic '%s' should be '%s'\n",
2588 info->name, modmagic, vermagic);
2589 return -ENOEXEC;
2590 }
2591
2592 err = check_modinfo_livepatch(mod, info);
2593 if (err)
2594 return err;
2595
2596 return 0;
2597 }
2598
find_module_sections(struct module * mod,struct load_info * info)2599 static int find_module_sections(struct module *mod, struct load_info *info)
2600 {
2601 mod->kp = section_objs(info, "__param",
2602 sizeof(*mod->kp), &mod->num_kp);
2603 mod->syms = section_objs(info, "__ksymtab",
2604 sizeof(*mod->syms), &mod->num_syms);
2605 mod->crcs = section_addr(info, "__kcrctab");
2606 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2607 sizeof(*mod->gpl_syms),
2608 &mod->num_gpl_syms);
2609 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2610
2611 #ifdef CONFIG_CONSTRUCTORS
2612 mod->ctors = section_objs(info, ".ctors",
2613 sizeof(*mod->ctors), &mod->num_ctors);
2614 if (!mod->ctors)
2615 mod->ctors = section_objs(info, ".init_array",
2616 sizeof(*mod->ctors), &mod->num_ctors);
2617 else if (find_sec(info, ".init_array")) {
2618 /*
2619 * This shouldn't happen with same compiler and binutils
2620 * building all parts of the module.
2621 */
2622 pr_warn("%s: has both .ctors and .init_array.\n",
2623 mod->name);
2624 return -EINVAL;
2625 }
2626 #endif
2627
2628 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2629 &mod->noinstr_text_size);
2630
2631 #ifdef CONFIG_TRACEPOINTS
2632 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2633 sizeof(*mod->tracepoints_ptrs),
2634 &mod->num_tracepoints);
2635 #endif
2636 #ifdef CONFIG_TREE_SRCU
2637 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2638 sizeof(*mod->srcu_struct_ptrs),
2639 &mod->num_srcu_structs);
2640 #endif
2641 #ifdef CONFIG_BPF_EVENTS
2642 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2643 sizeof(*mod->bpf_raw_events),
2644 &mod->num_bpf_raw_events);
2645 #endif
2646 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2647 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2648 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2649 &mod->btf_base_data_size);
2650 #endif
2651 #ifdef CONFIG_JUMP_LABEL
2652 mod->jump_entries = section_objs(info, "__jump_table",
2653 sizeof(*mod->jump_entries),
2654 &mod->num_jump_entries);
2655 #endif
2656 #ifdef CONFIG_EVENT_TRACING
2657 mod->trace_events = section_objs(info, "_ftrace_events",
2658 sizeof(*mod->trace_events),
2659 &mod->num_trace_events);
2660 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2661 sizeof(*mod->trace_evals),
2662 &mod->num_trace_evals);
2663 #endif
2664 #ifdef CONFIG_TRACING
2665 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2666 sizeof(*mod->trace_bprintk_fmt_start),
2667 &mod->num_trace_bprintk_fmt);
2668 #endif
2669 #ifdef CONFIG_DYNAMIC_FTRACE
2670 /* sechdrs[0].sh_size is always zero */
2671 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2672 sizeof(*mod->ftrace_callsites),
2673 &mod->num_ftrace_callsites);
2674 #endif
2675 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2676 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2677 sizeof(*mod->ei_funcs),
2678 &mod->num_ei_funcs);
2679 #endif
2680 #ifdef CONFIG_KPROBES
2681 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2682 &mod->kprobes_text_size);
2683 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2684 sizeof(unsigned long),
2685 &mod->num_kprobe_blacklist);
2686 #endif
2687 #ifdef CONFIG_PRINTK_INDEX
2688 mod->printk_index_start = section_objs(info, ".printk_index",
2689 sizeof(*mod->printk_index_start),
2690 &mod->printk_index_size);
2691 #endif
2692 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2693 mod->static_call_sites = section_objs(info, ".static_call_sites",
2694 sizeof(*mod->static_call_sites),
2695 &mod->num_static_call_sites);
2696 #endif
2697 #if IS_ENABLED(CONFIG_KUNIT)
2698 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2699 sizeof(*mod->kunit_suites),
2700 &mod->num_kunit_suites);
2701 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2702 sizeof(*mod->kunit_init_suites),
2703 &mod->num_kunit_init_suites);
2704 #endif
2705
2706 mod->extable = section_objs(info, "__ex_table",
2707 sizeof(*mod->extable), &mod->num_exentries);
2708
2709 if (section_addr(info, "__obsparm"))
2710 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2711
2712 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2713 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2714 sizeof(*mod->dyndbg_info.descs),
2715 &mod->dyndbg_info.num_descs);
2716 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2717 sizeof(*mod->dyndbg_info.classes),
2718 &mod->dyndbg_info.num_classes);
2719 #endif
2720
2721 return 0;
2722 }
2723
move_module(struct module * mod,struct load_info * info)2724 static int move_module(struct module *mod, struct load_info *info)
2725 {
2726 int i, ret;
2727 enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2728 bool codetag_section_found = false;
2729
2730 for_each_mod_mem_type(type) {
2731 if (!mod->mem[type].size) {
2732 mod->mem[type].base = NULL;
2733 continue;
2734 }
2735
2736 ret = module_memory_alloc(mod, type);
2737 if (ret) {
2738 t = type;
2739 goto out_err;
2740 }
2741 }
2742
2743 /* Transfer each section which specifies SHF_ALLOC */
2744 pr_debug("Final section addresses for %s:\n", mod->name);
2745 for (i = 0; i < info->hdr->e_shnum; i++) {
2746 void *dest;
2747 Elf_Shdr *shdr = &info->sechdrs[i];
2748 const char *sname;
2749
2750 if (!(shdr->sh_flags & SHF_ALLOC))
2751 continue;
2752
2753 sname = info->secstrings + shdr->sh_name;
2754 /*
2755 * Load codetag sections separately as they might still be used
2756 * after module unload.
2757 */
2758 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2759 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2760 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2761 if (WARN_ON(!dest)) {
2762 ret = -EINVAL;
2763 goto out_err;
2764 }
2765 if (IS_ERR(dest)) {
2766 ret = PTR_ERR(dest);
2767 goto out_err;
2768 }
2769 codetag_section_found = true;
2770 } else {
2771 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2772 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2773
2774 dest = mod->mem[type].base + offset;
2775 }
2776
2777 if (shdr->sh_type != SHT_NOBITS) {
2778 /*
2779 * Our ELF checker already validated this, but let's
2780 * be pedantic and make the goal clearer. We actually
2781 * end up copying over all modifications made to the
2782 * userspace copy of the entire struct module.
2783 */
2784 if (i == info->index.mod &&
2785 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2786 ret = -ENOEXEC;
2787 goto out_err;
2788 }
2789 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2790 }
2791 /*
2792 * Update the userspace copy's ELF section address to point to
2793 * our newly allocated memory as a pure convenience so that
2794 * users of info can keep taking advantage and using the newly
2795 * minted official memory area.
2796 */
2797 shdr->sh_addr = (unsigned long)dest;
2798 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2799 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2800 }
2801
2802 return 0;
2803 out_err:
2804 module_memory_restore_rox(mod);
2805 while (t--)
2806 module_memory_free(mod, t);
2807 if (codetag_section_found)
2808 codetag_free_module_sections(mod);
2809
2810 return ret;
2811 }
2812
check_export_symbol_versions(struct module * mod)2813 static int check_export_symbol_versions(struct module *mod)
2814 {
2815 #ifdef CONFIG_MODVERSIONS
2816 if ((mod->num_syms && !mod->crcs) ||
2817 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2818 return try_to_force_load(mod,
2819 "no versions for exported symbols");
2820 }
2821 #endif
2822 return 0;
2823 }
2824
flush_module_icache(const struct module * mod)2825 static void flush_module_icache(const struct module *mod)
2826 {
2827 /*
2828 * Flush the instruction cache, since we've played with text.
2829 * Do it before processing of module parameters, so the module
2830 * can provide parameter accessor functions of its own.
2831 */
2832 for_each_mod_mem_type(type) {
2833 const struct module_memory *mod_mem = &mod->mem[type];
2834
2835 if (mod_mem->size) {
2836 flush_icache_range((unsigned long)mod_mem->base,
2837 (unsigned long)mod_mem->base + mod_mem->size);
2838 }
2839 }
2840 }
2841
module_elf_check_arch(Elf_Ehdr * hdr)2842 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2843 {
2844 return true;
2845 }
2846
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2847 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2848 Elf_Shdr *sechdrs,
2849 char *secstrings,
2850 struct module *mod)
2851 {
2852 return 0;
2853 }
2854
2855 /* module_blacklist is a comma-separated list of module names */
2856 static char *module_blacklist;
blacklisted(const char * module_name)2857 static bool blacklisted(const char *module_name)
2858 {
2859 const char *p;
2860 size_t len;
2861
2862 if (!module_blacklist)
2863 return false;
2864
2865 for (p = module_blacklist; *p; p += len) {
2866 len = strcspn(p, ",");
2867 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2868 return true;
2869 if (p[len] == ',')
2870 len++;
2871 }
2872 return false;
2873 }
2874 core_param(module_blacklist, module_blacklist, charp, 0400);
2875
layout_and_allocate(struct load_info * info,int flags)2876 static struct module *layout_and_allocate(struct load_info *info, int flags)
2877 {
2878 struct module *mod;
2879 int err;
2880
2881 /* Allow arches to frob section contents and sizes. */
2882 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2883 info->secstrings, info->mod);
2884 if (err < 0)
2885 return ERR_PTR(err);
2886
2887 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2888 info->secstrings, info->mod);
2889 if (err < 0)
2890 return ERR_PTR(err);
2891
2892 /* We will do a special allocation for per-cpu sections later. */
2893 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2894
2895 /*
2896 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2897 * put them in the right place.
2898 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2899 */
2900 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2901
2902 /*
2903 * Determine total sizes, and put offsets in sh_entsize. For now
2904 * this is done generically; there doesn't appear to be any
2905 * special cases for the architectures.
2906 */
2907 layout_sections(info->mod, info);
2908 layout_symtab(info->mod, info);
2909
2910 /* Allocate and move to the final place */
2911 err = move_module(info->mod, info);
2912 if (err)
2913 return ERR_PTR(err);
2914
2915 /* Module has been copied to its final place now: return it. */
2916 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2917 kmemleak_load_module(mod, info);
2918 codetag_module_replaced(info->mod, mod);
2919
2920 return mod;
2921 }
2922
2923 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2924 static void module_deallocate(struct module *mod, struct load_info *info)
2925 {
2926 percpu_modfree(mod);
2927 module_arch_freeing_init(mod);
2928 codetag_free_module_sections(mod);
2929
2930 free_mod_mem(mod);
2931 }
2932
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2933 int __weak module_finalize(const Elf_Ehdr *hdr,
2934 const Elf_Shdr *sechdrs,
2935 struct module *me)
2936 {
2937 return 0;
2938 }
2939
post_relocation(struct module * mod,const struct load_info * info)2940 static int post_relocation(struct module *mod, const struct load_info *info)
2941 {
2942 /* Sort exception table now relocations are done. */
2943 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2944
2945 /* Copy relocated percpu area over. */
2946 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2947 info->sechdrs[info->index.pcpu].sh_size);
2948
2949 /* Setup kallsyms-specific fields. */
2950 add_kallsyms(mod, info);
2951
2952 /* Arch-specific module finalizing. */
2953 return module_finalize(info->hdr, info->sechdrs, mod);
2954 }
2955
2956 /* Call module constructors. */
do_mod_ctors(struct module * mod)2957 static void do_mod_ctors(struct module *mod)
2958 {
2959 #ifdef CONFIG_CONSTRUCTORS
2960 unsigned long i;
2961
2962 for (i = 0; i < mod->num_ctors; i++)
2963 mod->ctors[i]();
2964 #endif
2965 }
2966
2967 /* For freeing module_init on success, in case kallsyms traversing */
2968 struct mod_initfree {
2969 struct llist_node node;
2970 void *init_text;
2971 void *init_data;
2972 void *init_rodata;
2973 };
2974
do_free_init(struct work_struct * w)2975 static void do_free_init(struct work_struct *w)
2976 {
2977 struct llist_node *pos, *n, *list;
2978 struct mod_initfree *initfree;
2979
2980 list = llist_del_all(&init_free_list);
2981
2982 synchronize_rcu();
2983
2984 llist_for_each_safe(pos, n, list) {
2985 initfree = container_of(pos, struct mod_initfree, node);
2986 execmem_free(initfree->init_text);
2987 execmem_free(initfree->init_data);
2988 execmem_free(initfree->init_rodata);
2989 kfree(initfree);
2990 }
2991 }
2992
flush_module_init_free_work(void)2993 void flush_module_init_free_work(void)
2994 {
2995 flush_work(&init_free_wq);
2996 }
2997
2998 #undef MODULE_PARAM_PREFIX
2999 #define MODULE_PARAM_PREFIX "module."
3000 /* Default value for module->async_probe_requested */
3001 static bool async_probe;
3002 module_param(async_probe, bool, 0644);
3003
3004 /*
3005 * This is where the real work happens.
3006 *
3007 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3008 * helper command 'lx-symbols'.
3009 */
do_init_module(struct module * mod)3010 static noinline int do_init_module(struct module *mod)
3011 {
3012 int ret = 0;
3013 struct mod_initfree *freeinit;
3014 #if defined(CONFIG_MODULE_STATS)
3015 unsigned int text_size = 0, total_size = 0;
3016
3017 for_each_mod_mem_type(type) {
3018 const struct module_memory *mod_mem = &mod->mem[type];
3019 if (mod_mem->size) {
3020 total_size += mod_mem->size;
3021 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3022 text_size += mod_mem->size;
3023 }
3024 }
3025 #endif
3026
3027 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3028 if (!freeinit) {
3029 ret = -ENOMEM;
3030 goto fail;
3031 }
3032 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3033 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3034 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3035
3036 do_mod_ctors(mod);
3037 /* Start the module */
3038 if (mod->init != NULL)
3039 ret = do_one_initcall(mod->init);
3040 if (ret < 0) {
3041 goto fail_free_freeinit;
3042 }
3043 if (ret > 0) {
3044 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3045 "follow 0/-E convention\n"
3046 "%s: loading module anyway...\n",
3047 __func__, mod->name, ret, __func__);
3048 dump_stack();
3049 }
3050
3051 /* Now it's a first class citizen! */
3052 mod->state = MODULE_STATE_LIVE;
3053 blocking_notifier_call_chain(&module_notify_list,
3054 MODULE_STATE_LIVE, mod);
3055
3056 /* Delay uevent until module has finished its init routine */
3057 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3058
3059 /*
3060 * We need to finish all async code before the module init sequence
3061 * is done. This has potential to deadlock if synchronous module
3062 * loading is requested from async (which is not allowed!).
3063 *
3064 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3065 * request_module() from async workers") for more details.
3066 */
3067 if (!mod->async_probe_requested)
3068 async_synchronize_full();
3069
3070 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3071 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3072 mutex_lock(&module_mutex);
3073 /* Drop initial reference. */
3074 module_put(mod);
3075 trim_init_extable(mod);
3076 #ifdef CONFIG_KALLSYMS
3077 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3078 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3079 #endif
3080 ret = module_enable_rodata_ro_after_init(mod);
3081 if (ret)
3082 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3083 "ro_after_init data might still be writable\n",
3084 mod->name, ret);
3085
3086 mod_tree_remove_init(mod);
3087 module_arch_freeing_init(mod);
3088 for_class_mod_mem_type(type, init) {
3089 mod->mem[type].base = NULL;
3090 mod->mem[type].size = 0;
3091 }
3092
3093 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3094 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3095 mod->btf_data = NULL;
3096 mod->btf_base_data = NULL;
3097 #endif
3098 /*
3099 * We want to free module_init, but be aware that kallsyms may be
3100 * walking this within an RCU read section. In all the failure paths, we
3101 * call synchronize_rcu(), but we don't want to slow down the success
3102 * path. execmem_free() cannot be called in an interrupt, so do the
3103 * work and call synchronize_rcu() in a work queue.
3104 *
3105 * Note that execmem_alloc() on most architectures creates W+X page
3106 * mappings which won't be cleaned up until do_free_init() runs. Any
3107 * code such as mark_rodata_ro() which depends on those mappings to
3108 * be cleaned up needs to sync with the queued work by invoking
3109 * flush_module_init_free_work().
3110 */
3111 if (llist_add(&freeinit->node, &init_free_list))
3112 schedule_work(&init_free_wq);
3113
3114 mutex_unlock(&module_mutex);
3115 wake_up_all(&module_wq);
3116
3117 mod_stat_add_long(text_size, &total_text_size);
3118 mod_stat_add_long(total_size, &total_mod_size);
3119
3120 mod_stat_inc(&modcount);
3121
3122 return 0;
3123
3124 fail_free_freeinit:
3125 kfree(freeinit);
3126 fail:
3127 /* Try to protect us from buggy refcounters. */
3128 mod->state = MODULE_STATE_GOING;
3129 synchronize_rcu();
3130 module_put(mod);
3131 blocking_notifier_call_chain(&module_notify_list,
3132 MODULE_STATE_GOING, mod);
3133 klp_module_going(mod);
3134 ftrace_release_mod(mod);
3135 free_module(mod);
3136 wake_up_all(&module_wq);
3137
3138 return ret;
3139 }
3140
may_init_module(void)3141 static int may_init_module(void)
3142 {
3143 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3144 return -EPERM;
3145
3146 return 0;
3147 }
3148
3149 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3150 static bool finished_loading(const char *name)
3151 {
3152 struct module *mod;
3153 bool ret;
3154
3155 /*
3156 * The module_mutex should not be a heavily contended lock;
3157 * if we get the occasional sleep here, we'll go an extra iteration
3158 * in the wait_event_interruptible(), which is harmless.
3159 */
3160 sched_annotate_sleep();
3161 mutex_lock(&module_mutex);
3162 mod = find_module_all(name, strlen(name), true);
3163 ret = !mod || mod->state == MODULE_STATE_LIVE
3164 || mod->state == MODULE_STATE_GOING;
3165 mutex_unlock(&module_mutex);
3166
3167 return ret;
3168 }
3169
3170 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3171 static int module_patient_check_exists(const char *name,
3172 enum fail_dup_mod_reason reason)
3173 {
3174 struct module *old;
3175 int err = 0;
3176
3177 old = find_module_all(name, strlen(name), true);
3178 if (old == NULL)
3179 return 0;
3180
3181 if (old->state == MODULE_STATE_COMING ||
3182 old->state == MODULE_STATE_UNFORMED) {
3183 /* Wait in case it fails to load. */
3184 mutex_unlock(&module_mutex);
3185 err = wait_event_interruptible(module_wq,
3186 finished_loading(name));
3187 mutex_lock(&module_mutex);
3188 if (err)
3189 return err;
3190
3191 /* The module might have gone in the meantime. */
3192 old = find_module_all(name, strlen(name), true);
3193 }
3194
3195 if (try_add_failed_module(name, reason))
3196 pr_warn("Could not add fail-tracking for module: %s\n", name);
3197
3198 /*
3199 * We are here only when the same module was being loaded. Do
3200 * not try to load it again right now. It prevents long delays
3201 * caused by serialized module load failures. It might happen
3202 * when more devices of the same type trigger load of
3203 * a particular module.
3204 */
3205 if (old && old->state == MODULE_STATE_LIVE)
3206 return -EEXIST;
3207 return -EBUSY;
3208 }
3209
3210 /*
3211 * We try to place it in the list now to make sure it's unique before
3212 * we dedicate too many resources. In particular, temporary percpu
3213 * memory exhaustion.
3214 */
add_unformed_module(struct module * mod)3215 static int add_unformed_module(struct module *mod)
3216 {
3217 int err;
3218
3219 mod->state = MODULE_STATE_UNFORMED;
3220
3221 mutex_lock(&module_mutex);
3222 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3223 if (err)
3224 goto out;
3225
3226 mod_update_bounds(mod);
3227 list_add_rcu(&mod->list, &modules);
3228 mod_tree_insert(mod);
3229 err = 0;
3230
3231 out:
3232 mutex_unlock(&module_mutex);
3233 return err;
3234 }
3235
complete_formation(struct module * mod,struct load_info * info)3236 static int complete_formation(struct module *mod, struct load_info *info)
3237 {
3238 int err;
3239
3240 mutex_lock(&module_mutex);
3241
3242 /* Find duplicate symbols (must be called under lock). */
3243 err = verify_exported_symbols(mod);
3244 if (err < 0)
3245 goto out;
3246
3247 /* These rely on module_mutex for list integrity. */
3248 module_bug_finalize(info->hdr, info->sechdrs, mod);
3249 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3250
3251 err = module_enable_rodata_ro(mod);
3252 if (err)
3253 goto out_strict_rwx;
3254 err = module_enable_data_nx(mod);
3255 if (err)
3256 goto out_strict_rwx;
3257 err = module_enable_text_rox(mod);
3258 if (err)
3259 goto out_strict_rwx;
3260
3261 /*
3262 * Mark state as coming so strong_try_module_get() ignores us,
3263 * but kallsyms etc. can see us.
3264 */
3265 mod->state = MODULE_STATE_COMING;
3266 mutex_unlock(&module_mutex);
3267
3268 return 0;
3269
3270 out_strict_rwx:
3271 module_bug_cleanup(mod);
3272 out:
3273 mutex_unlock(&module_mutex);
3274 return err;
3275 }
3276
prepare_coming_module(struct module * mod)3277 static int prepare_coming_module(struct module *mod)
3278 {
3279 int err;
3280
3281 ftrace_module_enable(mod);
3282 err = klp_module_coming(mod);
3283 if (err)
3284 return err;
3285
3286 err = blocking_notifier_call_chain_robust(&module_notify_list,
3287 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3288 err = notifier_to_errno(err);
3289 if (err)
3290 klp_module_going(mod);
3291
3292 return err;
3293 }
3294
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3295 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3296 void *arg)
3297 {
3298 struct module *mod = arg;
3299 int ret;
3300
3301 if (strcmp(param, "async_probe") == 0) {
3302 if (kstrtobool(val, &mod->async_probe_requested))
3303 mod->async_probe_requested = true;
3304 return 0;
3305 }
3306
3307 /* Check for magic 'dyndbg' arg */
3308 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3309 if (ret != 0)
3310 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3311 return 0;
3312 }
3313
3314 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3315 static int early_mod_check(struct load_info *info, int flags)
3316 {
3317 int err;
3318
3319 /*
3320 * Now that we know we have the correct module name, check
3321 * if it's blacklisted.
3322 */
3323 if (blacklisted(info->name)) {
3324 pr_err("Module %s is blacklisted\n", info->name);
3325 return -EPERM;
3326 }
3327
3328 err = rewrite_section_headers(info, flags);
3329 if (err)
3330 return err;
3331
3332 /* Check module struct version now, before we try to use module. */
3333 if (!check_modstruct_version(info, info->mod))
3334 return -ENOEXEC;
3335
3336 err = check_modinfo(info->mod, info, flags);
3337 if (err)
3338 return err;
3339
3340 mutex_lock(&module_mutex);
3341 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3342 mutex_unlock(&module_mutex);
3343
3344 return err;
3345 }
3346
3347 /*
3348 * Allocate and load the module: note that size of section 0 is always
3349 * zero, and we rely on this for optional sections.
3350 */
load_module(struct load_info * info,const char __user * uargs,int flags)3351 static int load_module(struct load_info *info, const char __user *uargs,
3352 int flags)
3353 {
3354 struct module *mod;
3355 bool module_allocated = false;
3356 long err = 0;
3357 char *after_dashes;
3358
3359 /*
3360 * Do the signature check (if any) first. All that
3361 * the signature check needs is info->len, it does
3362 * not need any of the section info. That can be
3363 * set up later. This will minimize the chances
3364 * of a corrupt module causing problems before
3365 * we even get to the signature check.
3366 *
3367 * The check will also adjust info->len by stripping
3368 * off the sig length at the end of the module, making
3369 * checks against info->len more correct.
3370 */
3371 err = module_sig_check(info, flags);
3372 if (err)
3373 goto free_copy;
3374
3375 /*
3376 * Do basic sanity checks against the ELF header and
3377 * sections. Cache useful sections and set the
3378 * info->mod to the userspace passed struct module.
3379 */
3380 err = elf_validity_cache_copy(info, flags);
3381 if (err)
3382 goto free_copy;
3383
3384 err = early_mod_check(info, flags);
3385 if (err)
3386 goto free_copy;
3387
3388 /* Figure out module layout, and allocate all the memory. */
3389 mod = layout_and_allocate(info, flags);
3390 if (IS_ERR(mod)) {
3391 err = PTR_ERR(mod);
3392 goto free_copy;
3393 }
3394
3395 module_allocated = true;
3396
3397 audit_log_kern_module(info->name);
3398
3399 /* Reserve our place in the list. */
3400 err = add_unformed_module(mod);
3401 if (err)
3402 goto free_module;
3403
3404 /*
3405 * We are tainting your kernel if your module gets into
3406 * the modules linked list somehow.
3407 */
3408 module_augment_kernel_taints(mod, info);
3409
3410 /* To avoid stressing percpu allocator, do this once we're unique. */
3411 err = percpu_modalloc(mod, info);
3412 if (err)
3413 goto unlink_mod;
3414
3415 /* Now module is in final location, initialize linked lists, etc. */
3416 err = module_unload_init(mod);
3417 if (err)
3418 goto unlink_mod;
3419
3420 init_param_lock(mod);
3421
3422 /*
3423 * Now we've got everything in the final locations, we can
3424 * find optional sections.
3425 */
3426 err = find_module_sections(mod, info);
3427 if (err)
3428 goto free_unload;
3429
3430 err = check_export_symbol_versions(mod);
3431 if (err)
3432 goto free_unload;
3433
3434 /* Set up MODINFO_ATTR fields */
3435 err = setup_modinfo(mod, info);
3436 if (err)
3437 goto free_modinfo;
3438
3439 /* Fix up syms, so that st_value is a pointer to location. */
3440 err = simplify_symbols(mod, info);
3441 if (err < 0)
3442 goto free_modinfo;
3443
3444 err = apply_relocations(mod, info);
3445 if (err < 0)
3446 goto free_modinfo;
3447
3448 err = post_relocation(mod, info);
3449 if (err < 0)
3450 goto free_modinfo;
3451
3452 flush_module_icache(mod);
3453
3454 /* Now copy in args */
3455 mod->args = strndup_user(uargs, ~0UL >> 1);
3456 if (IS_ERR(mod->args)) {
3457 err = PTR_ERR(mod->args);
3458 goto free_arch_cleanup;
3459 }
3460
3461 init_build_id(mod, info);
3462
3463 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3464 ftrace_module_init(mod);
3465
3466 /* Finally it's fully formed, ready to start executing. */
3467 err = complete_formation(mod, info);
3468 if (err)
3469 goto ddebug_cleanup;
3470
3471 err = prepare_coming_module(mod);
3472 if (err)
3473 goto bug_cleanup;
3474
3475 mod->async_probe_requested = async_probe;
3476
3477 /* Module is ready to execute: parsing args may do that. */
3478 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3479 -32768, 32767, mod,
3480 unknown_module_param_cb);
3481 if (IS_ERR(after_dashes)) {
3482 err = PTR_ERR(after_dashes);
3483 goto coming_cleanup;
3484 } else if (after_dashes) {
3485 pr_warn("%s: parameters '%s' after `--' ignored\n",
3486 mod->name, after_dashes);
3487 }
3488
3489 /* Link in to sysfs. */
3490 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3491 if (err < 0)
3492 goto coming_cleanup;
3493
3494 if (is_livepatch_module(mod)) {
3495 err = copy_module_elf(mod, info);
3496 if (err < 0)
3497 goto sysfs_cleanup;
3498 }
3499
3500 if (codetag_load_module(mod))
3501 goto sysfs_cleanup;
3502
3503 /* Get rid of temporary copy. */
3504 free_copy(info, flags);
3505
3506 /* Done! */
3507 trace_module_load(mod);
3508
3509 return do_init_module(mod);
3510
3511 sysfs_cleanup:
3512 mod_sysfs_teardown(mod);
3513 coming_cleanup:
3514 mod->state = MODULE_STATE_GOING;
3515 destroy_params(mod->kp, mod->num_kp);
3516 blocking_notifier_call_chain(&module_notify_list,
3517 MODULE_STATE_GOING, mod);
3518 klp_module_going(mod);
3519 bug_cleanup:
3520 mod->state = MODULE_STATE_GOING;
3521 /* module_bug_cleanup needs module_mutex protection */
3522 mutex_lock(&module_mutex);
3523 module_bug_cleanup(mod);
3524 mutex_unlock(&module_mutex);
3525
3526 ddebug_cleanup:
3527 ftrace_release_mod(mod);
3528 synchronize_rcu();
3529 kfree(mod->args);
3530 free_arch_cleanup:
3531 module_arch_cleanup(mod);
3532 free_modinfo:
3533 free_modinfo(mod);
3534 free_unload:
3535 module_unload_free(mod);
3536 unlink_mod:
3537 mutex_lock(&module_mutex);
3538 /* Unlink carefully: kallsyms could be walking list. */
3539 list_del_rcu(&mod->list);
3540 mod_tree_remove(mod);
3541 wake_up_all(&module_wq);
3542 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3543 synchronize_rcu();
3544 mutex_unlock(&module_mutex);
3545 free_module:
3546 mod_stat_bump_invalid(info, flags);
3547 /* Free lock-classes; relies on the preceding sync_rcu() */
3548 for_class_mod_mem_type(type, core_data) {
3549 lockdep_free_key_range(mod->mem[type].base,
3550 mod->mem[type].size);
3551 }
3552
3553 module_memory_restore_rox(mod);
3554 module_deallocate(mod, info);
3555 free_copy:
3556 /*
3557 * The info->len is always set. We distinguish between
3558 * failures once the proper module was allocated and
3559 * before that.
3560 */
3561 if (!module_allocated) {
3562 audit_log_kern_module(info->name ? info->name : "?");
3563 mod_stat_bump_becoming(info, flags);
3564 }
3565 free_copy(info, flags);
3566 return err;
3567 }
3568
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3569 SYSCALL_DEFINE3(init_module, void __user *, umod,
3570 unsigned long, len, const char __user *, uargs)
3571 {
3572 int err;
3573 struct load_info info = { };
3574
3575 err = may_init_module();
3576 if (err)
3577 return err;
3578
3579 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3580 umod, len, uargs);
3581
3582 err = copy_module_from_user(umod, len, &info);
3583 if (err) {
3584 mod_stat_inc(&failed_kreads);
3585 mod_stat_add_long(len, &invalid_kread_bytes);
3586 return err;
3587 }
3588
3589 return load_module(&info, uargs, 0);
3590 }
3591
3592 struct idempotent {
3593 const void *cookie;
3594 struct hlist_node entry;
3595 struct completion complete;
3596 int ret;
3597 };
3598
3599 #define IDEM_HASH_BITS 8
3600 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3601 static DEFINE_SPINLOCK(idem_lock);
3602
idempotent(struct idempotent * u,const void * cookie)3603 static bool idempotent(struct idempotent *u, const void *cookie)
3604 {
3605 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3606 struct hlist_head *head = idem_hash + hash;
3607 struct idempotent *existing;
3608 bool first;
3609
3610 u->ret = -EINTR;
3611 u->cookie = cookie;
3612 init_completion(&u->complete);
3613
3614 spin_lock(&idem_lock);
3615 first = true;
3616 hlist_for_each_entry(existing, head, entry) {
3617 if (existing->cookie != cookie)
3618 continue;
3619 first = false;
3620 break;
3621 }
3622 hlist_add_head(&u->entry, idem_hash + hash);
3623 spin_unlock(&idem_lock);
3624
3625 return !first;
3626 }
3627
3628 /*
3629 * We were the first one with 'cookie' on the list, and we ended
3630 * up completing the operation. We now need to walk the list,
3631 * remove everybody - which includes ourselves - fill in the return
3632 * value, and then complete the operation.
3633 */
idempotent_complete(struct idempotent * u,int ret)3634 static int idempotent_complete(struct idempotent *u, int ret)
3635 {
3636 const void *cookie = u->cookie;
3637 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3638 struct hlist_head *head = idem_hash + hash;
3639 struct hlist_node *next;
3640 struct idempotent *pos;
3641
3642 spin_lock(&idem_lock);
3643 hlist_for_each_entry_safe(pos, next, head, entry) {
3644 if (pos->cookie != cookie)
3645 continue;
3646 hlist_del_init(&pos->entry);
3647 pos->ret = ret;
3648 complete(&pos->complete);
3649 }
3650 spin_unlock(&idem_lock);
3651 return ret;
3652 }
3653
3654 /*
3655 * Wait for the idempotent worker.
3656 *
3657 * If we get interrupted, we need to remove ourselves from the
3658 * the idempotent list, and the completion may still come in.
3659 *
3660 * The 'idem_lock' protects against the race, and 'idem.ret' was
3661 * initialized to -EINTR and is thus always the right return
3662 * value even if the idempotent work then completes between
3663 * the wait_for_completion and the cleanup.
3664 */
idempotent_wait_for_completion(struct idempotent * u)3665 static int idempotent_wait_for_completion(struct idempotent *u)
3666 {
3667 if (wait_for_completion_interruptible(&u->complete)) {
3668 spin_lock(&idem_lock);
3669 if (!hlist_unhashed(&u->entry))
3670 hlist_del(&u->entry);
3671 spin_unlock(&idem_lock);
3672 }
3673 return u->ret;
3674 }
3675
init_module_from_file(struct file * f,const char __user * uargs,int flags)3676 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3677 {
3678 struct load_info info = { };
3679 void *buf = NULL;
3680 int len;
3681
3682 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3683 if (len < 0) {
3684 mod_stat_inc(&failed_kreads);
3685 return len;
3686 }
3687
3688 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3689 int err = module_decompress(&info, buf, len);
3690 vfree(buf); /* compressed data is no longer needed */
3691 if (err) {
3692 mod_stat_inc(&failed_decompress);
3693 mod_stat_add_long(len, &invalid_decompress_bytes);
3694 return err;
3695 }
3696 } else {
3697 info.hdr = buf;
3698 info.len = len;
3699 }
3700
3701 return load_module(&info, uargs, flags);
3702 }
3703
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3704 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3705 {
3706 struct idempotent idem;
3707
3708 if (!(f->f_mode & FMODE_READ))
3709 return -EBADF;
3710
3711 /* Are we the winners of the race and get to do this? */
3712 if (!idempotent(&idem, file_inode(f))) {
3713 int ret = init_module_from_file(f, uargs, flags);
3714 return idempotent_complete(&idem, ret);
3715 }
3716
3717 /*
3718 * Somebody else won the race and is loading the module.
3719 */
3720 return idempotent_wait_for_completion(&idem);
3721 }
3722
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3723 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3724 {
3725 int err = may_init_module();
3726 if (err)
3727 return err;
3728
3729 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3730
3731 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3732 |MODULE_INIT_IGNORE_VERMAGIC
3733 |MODULE_INIT_COMPRESSED_FILE))
3734 return -EINVAL;
3735
3736 CLASS(fd, f)(fd);
3737 if (fd_empty(f))
3738 return -EBADF;
3739 return idempotent_init_module(fd_file(f), uargs, flags);
3740 }
3741
3742 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3743 char *module_flags(struct module *mod, char *buf, bool show_state)
3744 {
3745 int bx = 0;
3746
3747 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3748 if (!mod->taints && !show_state)
3749 goto out;
3750 if (mod->taints ||
3751 mod->state == MODULE_STATE_GOING ||
3752 mod->state == MODULE_STATE_COMING) {
3753 buf[bx++] = '(';
3754 bx += module_flags_taint(mod->taints, buf + bx);
3755 /* Show a - for module-is-being-unloaded */
3756 if (mod->state == MODULE_STATE_GOING && show_state)
3757 buf[bx++] = '-';
3758 /* Show a + for module-is-being-loaded */
3759 if (mod->state == MODULE_STATE_COMING && show_state)
3760 buf[bx++] = '+';
3761 buf[bx++] = ')';
3762 }
3763 out:
3764 buf[bx] = '\0';
3765
3766 return buf;
3767 }
3768
3769 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3770 const struct exception_table_entry *search_module_extables(unsigned long addr)
3771 {
3772 struct module *mod;
3773
3774 guard(rcu)();
3775 mod = __module_address(addr);
3776 if (!mod)
3777 return NULL;
3778
3779 if (!mod->num_exentries)
3780 return NULL;
3781 /*
3782 * The address passed here belongs to a module that is currently
3783 * invoked (we are running inside it). Therefore its module::refcnt
3784 * needs already be >0 to ensure that it is not removed at this stage.
3785 * All other user need to invoke this function within a RCU read
3786 * section.
3787 */
3788 return search_extable(mod->extable, mod->num_exentries, addr);
3789 }
3790
3791 /**
3792 * is_module_address() - is this address inside a module?
3793 * @addr: the address to check.
3794 *
3795 * See is_module_text_address() if you simply want to see if the address
3796 * is code (not data).
3797 */
is_module_address(unsigned long addr)3798 bool is_module_address(unsigned long addr)
3799 {
3800 guard(rcu)();
3801 return __module_address(addr) != NULL;
3802 }
3803
3804 /**
3805 * __module_address() - get the module which contains an address.
3806 * @addr: the address.
3807 *
3808 * Must be called within RCU read section or module mutex held so that
3809 * module doesn't get freed during this.
3810 */
__module_address(unsigned long addr)3811 struct module *__module_address(unsigned long addr)
3812 {
3813 struct module *mod;
3814
3815 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3816 goto lookup;
3817
3818 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3819 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3820 goto lookup;
3821 #endif
3822
3823 return NULL;
3824
3825 lookup:
3826 mod = mod_find(addr, &mod_tree);
3827 if (mod) {
3828 BUG_ON(!within_module(addr, mod));
3829 if (mod->state == MODULE_STATE_UNFORMED)
3830 mod = NULL;
3831 }
3832 return mod;
3833 }
3834
3835 /**
3836 * is_module_text_address() - is this address inside module code?
3837 * @addr: the address to check.
3838 *
3839 * See is_module_address() if you simply want to see if the address is
3840 * anywhere in a module. See kernel_text_address() for testing if an
3841 * address corresponds to kernel or module code.
3842 */
is_module_text_address(unsigned long addr)3843 bool is_module_text_address(unsigned long addr)
3844 {
3845 guard(rcu)();
3846 return __module_text_address(addr) != NULL;
3847 }
3848
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3849 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3850 {
3851 struct module *mod;
3852
3853 guard(rcu)();
3854 list_for_each_entry_rcu(mod, &modules, list) {
3855 if (mod->state == MODULE_STATE_UNFORMED)
3856 continue;
3857 if (func(mod, data))
3858 break;
3859 }
3860 }
3861
3862 /**
3863 * __module_text_address() - get the module whose code contains an address.
3864 * @addr: the address.
3865 *
3866 * Must be called within RCU read section or module mutex held so that
3867 * module doesn't get freed during this.
3868 */
__module_text_address(unsigned long addr)3869 struct module *__module_text_address(unsigned long addr)
3870 {
3871 struct module *mod = __module_address(addr);
3872 if (mod) {
3873 /* Make sure it's within the text section. */
3874 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3875 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3876 mod = NULL;
3877 }
3878 return mod;
3879 }
3880
3881 /* Don't grab lock, we're oopsing. */
print_modules(void)3882 void print_modules(void)
3883 {
3884 struct module *mod;
3885 char buf[MODULE_FLAGS_BUF_SIZE];
3886
3887 printk(KERN_DEFAULT "Modules linked in:");
3888 /* Most callers should already have preempt disabled, but make sure */
3889 guard(rcu)();
3890 list_for_each_entry_rcu(mod, &modules, list) {
3891 if (mod->state == MODULE_STATE_UNFORMED)
3892 continue;
3893 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3894 }
3895
3896 print_unloaded_tainted_modules();
3897 if (last_unloaded_module.name[0])
3898 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3899 last_unloaded_module.taints);
3900 pr_cont("\n");
3901 }
3902
3903 #ifdef CONFIG_MODULE_DEBUGFS
3904 struct dentry *mod_debugfs_root;
3905
module_debugfs_init(void)3906 static int module_debugfs_init(void)
3907 {
3908 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3909 return 0;
3910 }
3911 module_init(module_debugfs_init);
3912 #endif
3913