1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <linux/rseq.h>
50 #include <asm/param.h>
51 #include <asm/page.h>
52
53 #ifndef ELF_COMPAT
54 #define ELF_COMPAT 0
55 #endif
56
57 #ifndef user_long_t
58 #define user_long_t long
59 #endif
60 #ifndef user_siginfo_t
61 #define user_siginfo_t siginfo_t
62 #endif
63
64 /* That's for binfmt_elf_fdpic to deal with */
65 #ifndef elf_check_fdpic
66 #define elf_check_fdpic(ex) false
67 #endif
68
69 static int load_elf_binary(struct linux_binprm *bprm);
70
71 #ifdef CONFIG_USELIB
72 static int load_elf_library(struct file *);
73 #else
74 #define load_elf_library NULL
75 #endif
76
77 /*
78 * If we don't support core dumping, then supply a NULL so we
79 * don't even try.
80 */
81 #ifdef CONFIG_ELF_CORE
82 static int elf_core_dump(struct coredump_params *cprm);
83 #else
84 #define elf_core_dump NULL
85 #endif
86
87 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
88 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
89 #else
90 #define ELF_MIN_ALIGN PAGE_SIZE
91 #endif
92
93 #ifndef ELF_CORE_EFLAGS
94 #define ELF_CORE_EFLAGS 0
95 #endif
96
97 #define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100
101 static struct linux_binfmt elf_format = {
102 .module = THIS_MODULE,
103 .load_binary = load_elf_binary,
104 .load_shlib = load_elf_library,
105 #ifdef CONFIG_COREDUMP
106 .core_dump = elf_core_dump,
107 .min_coredump = ELF_EXEC_PAGESIZE,
108 #endif
109 };
110
111 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112
113 /*
114 * We need to explicitly zero any trailing portion of the page that follows
115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116 * memory will contain the junk from the file that should not be present.
117 */
padzero(unsigned long address)118 static int padzero(unsigned long address)
119 {
120 unsigned long nbyte;
121
122 nbyte = ELF_PAGEOFFSET(address);
123 if (nbyte) {
124 nbyte = ELF_MIN_ALIGN - nbyte;
125 if (clear_user((void __user *)address, nbyte))
126 return -EFAULT;
127 }
128 return 0;
129 }
130
131 /* Let's use some macros to make this stack manipulation a little clearer */
132 #ifdef CONFIG_STACK_GROWSUP
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134 #define STACK_ROUND(sp, items) \
135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ \
137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
138 old_sp; })
139 #else
140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141 #define STACK_ROUND(sp, items) \
142 (((unsigned long) (sp - items)) &~ 15UL)
143 #define STACK_ALLOC(sp, len) (sp -= len)
144 #endif
145
146 #ifndef ELF_BASE_PLATFORM
147 /*
148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150 * will be copied to the user stack in the same manner as AT_PLATFORM.
151 */
152 #define ELF_BASE_PLATFORM NULL
153 #endif
154
155 static int
create_elf_tables(struct linux_binprm * bprm,const struct elfhdr * exec,unsigned long interp_load_addr,unsigned long e_entry,unsigned long phdr_addr)156 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157 unsigned long interp_load_addr,
158 unsigned long e_entry, unsigned long phdr_addr)
159 {
160 struct mm_struct *mm = current->mm;
161 unsigned long p = bprm->p;
162 int argc = bprm->argc;
163 int envc = bprm->envc;
164 elf_addr_t __user *sp;
165 elf_addr_t __user *u_platform;
166 elf_addr_t __user *u_base_platform;
167 elf_addr_t __user *u_rand_bytes;
168 const char *k_platform = ELF_PLATFORM;
169 const char *k_base_platform = ELF_BASE_PLATFORM;
170 unsigned char k_rand_bytes[16];
171 int items;
172 elf_addr_t *elf_info;
173 elf_addr_t flags = 0;
174 int ei_index;
175 const struct cred *cred = current_cred();
176 struct vm_area_struct *vma;
177
178 /*
179 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180 * evictions by the processes running on the same package. One
181 * thing we can do is to shuffle the initial stack for them.
182 */
183
184 p = arch_align_stack(p);
185
186 /*
187 * If this architecture has a platform capability string, copy it
188 * to userspace. In some cases (Sparc), this info is impossible
189 * for userspace to get any other way, in others (i386) it is
190 * merely difficult.
191 */
192 u_platform = NULL;
193 if (k_platform) {
194 size_t len = strlen(k_platform) + 1;
195
196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 if (copy_to_user(u_platform, k_platform, len))
198 return -EFAULT;
199 }
200
201 /*
202 * If this architecture has a "base" platform capability
203 * string, copy it to userspace.
204 */
205 u_base_platform = NULL;
206 if (k_base_platform) {
207 size_t len = strlen(k_base_platform) + 1;
208
209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210 if (copy_to_user(u_base_platform, k_base_platform, len))
211 return -EFAULT;
212 }
213
214 /*
215 * Generate 16 random bytes for userspace PRNG seeding.
216 */
217 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
218 u_rand_bytes = (elf_addr_t __user *)
219 STACK_ALLOC(p, sizeof(k_rand_bytes));
220 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
221 return -EFAULT;
222
223 /* Create the ELF interpreter info */
224 elf_info = (elf_addr_t *)mm->saved_auxv;
225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226 #define NEW_AUX_ENT(id, val) \
227 do { \
228 *elf_info++ = id; \
229 *elf_info++ = val; \
230 } while (0)
231
232 #ifdef ARCH_DLINFO
233 /*
234 * ARCH_DLINFO must come first so PPC can do its special alignment of
235 * AUXV.
236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237 * ARCH_DLINFO changes
238 */
239 ARCH_DLINFO;
240 #endif
241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244 NEW_AUX_ENT(AT_PHDR, phdr_addr);
245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247 NEW_AUX_ENT(AT_BASE, interp_load_addr);
248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249 flags |= AT_FLAGS_PRESERVE_ARGV0;
250 NEW_AUX_ENT(AT_FLAGS, flags);
251 NEW_AUX_ENT(AT_ENTRY, e_entry);
252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
258 #ifdef ELF_HWCAP2
259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
260 #endif
261 #ifdef ELF_HWCAP3
262 NEW_AUX_ENT(AT_HWCAP3, ELF_HWCAP3);
263 #endif
264 #ifdef ELF_HWCAP4
265 NEW_AUX_ENT(AT_HWCAP4, ELF_HWCAP4);
266 #endif
267 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
268 if (k_platform) {
269 NEW_AUX_ENT(AT_PLATFORM,
270 (elf_addr_t)(unsigned long)u_platform);
271 }
272 if (k_base_platform) {
273 NEW_AUX_ENT(AT_BASE_PLATFORM,
274 (elf_addr_t)(unsigned long)u_base_platform);
275 }
276 if (bprm->have_execfd) {
277 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
278 }
279 #ifdef CONFIG_RSEQ
280 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
281 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
282 #endif
283 #undef NEW_AUX_ENT
284 /* AT_NULL is zero; clear the rest too */
285 memset(elf_info, 0, (char *)mm->saved_auxv +
286 sizeof(mm->saved_auxv) - (char *)elf_info);
287
288 /* And advance past the AT_NULL entry. */
289 elf_info += 2;
290
291 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
292 sp = STACK_ADD(p, ei_index);
293
294 items = (argc + 1) + (envc + 1) + 1;
295 bprm->p = STACK_ROUND(sp, items);
296
297 /* Point sp at the lowest address on the stack */
298 #ifdef CONFIG_STACK_GROWSUP
299 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
300 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
301 #else
302 sp = (elf_addr_t __user *)bprm->p;
303 #endif
304
305
306 /*
307 * Grow the stack manually; some architectures have a limit on how
308 * far ahead a user-space access may be in order to grow the stack.
309 */
310 if (mmap_write_lock_killable(mm))
311 return -EINTR;
312 vma = find_extend_vma_locked(mm, bprm->p);
313 mmap_write_unlock(mm);
314 if (!vma)
315 return -EFAULT;
316
317 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
318 if (put_user(argc, sp++))
319 return -EFAULT;
320
321 /* Populate list of argv pointers back to argv strings. */
322 p = mm->arg_end = mm->arg_start;
323 while (argc-- > 0) {
324 size_t len;
325 if (put_user((elf_addr_t)p, sp++))
326 return -EFAULT;
327 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
328 if (!len || len > MAX_ARG_STRLEN)
329 return -EINVAL;
330 p += len;
331 }
332 if (put_user(0, sp++))
333 return -EFAULT;
334 mm->arg_end = p;
335
336 /* Populate list of envp pointers back to envp strings. */
337 mm->env_end = mm->env_start = p;
338 while (envc-- > 0) {
339 size_t len;
340 if (put_user((elf_addr_t)p, sp++))
341 return -EFAULT;
342 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
343 if (!len || len > MAX_ARG_STRLEN)
344 return -EINVAL;
345 p += len;
346 }
347 if (put_user(0, sp++))
348 return -EFAULT;
349 mm->env_end = p;
350
351 /* Put the elf_info on the stack in the right place. */
352 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
353 return -EFAULT;
354 return 0;
355 }
356
357 /*
358 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
359 * into memory at "addr". (Note that p_filesz is rounded up to the
360 * next page, so any extra bytes from the file must be wiped.)
361 */
elf_map(struct file * filep,unsigned long addr,const struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)362 static unsigned long elf_map(struct file *filep, unsigned long addr,
363 const struct elf_phdr *eppnt, int prot, int type,
364 unsigned long total_size)
365 {
366 unsigned long map_addr;
367 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
368 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
369 addr = ELF_PAGESTART(addr);
370 size = ELF_PAGEALIGN(size);
371
372 /* mmap() will return -EINVAL if given a zero size, but a
373 * segment with zero filesize is perfectly valid */
374 if (!size)
375 return addr;
376
377 /*
378 * total_size is the size of the ELF (interpreter) image.
379 * The _first_ mmap needs to know the full size, otherwise
380 * randomization might put this image into an overlapping
381 * position with the ELF binary image. (since size < total_size)
382 * So we first map the 'big' image - and unmap the remainder at
383 * the end. (which unmap is needed for ELF images with holes.)
384 */
385 if (total_size) {
386 total_size = ELF_PAGEALIGN(total_size);
387 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
388 if (!BAD_ADDR(map_addr))
389 vm_munmap(map_addr+size, total_size-size);
390 } else
391 map_addr = vm_mmap(filep, addr, size, prot, type, off);
392
393 if ((type & MAP_FIXED_NOREPLACE) &&
394 PTR_ERR((void *)map_addr) == -EEXIST)
395 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
396 task_pid_nr(current), current->comm, (void *)addr);
397
398 return(map_addr);
399 }
400
401 /*
402 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
403 * into memory at "addr". Memory from "p_filesz" through "p_memsz"
404 * rounded up to the next page is zeroed.
405 */
elf_load(struct file * filep,unsigned long addr,const struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)406 static unsigned long elf_load(struct file *filep, unsigned long addr,
407 const struct elf_phdr *eppnt, int prot, int type,
408 unsigned long total_size)
409 {
410 unsigned long zero_start, zero_end;
411 unsigned long map_addr;
412
413 if (eppnt->p_filesz) {
414 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
415 if (BAD_ADDR(map_addr))
416 return map_addr;
417 if (eppnt->p_memsz > eppnt->p_filesz) {
418 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
419 eppnt->p_filesz;
420 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
421 eppnt->p_memsz;
422
423 /*
424 * Zero the end of the last mapped page but ignore
425 * any errors if the segment isn't writable.
426 */
427 if (padzero(zero_start) && (prot & PROT_WRITE))
428 return -EFAULT;
429 }
430 } else {
431 map_addr = zero_start = ELF_PAGESTART(addr);
432 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
433 eppnt->p_memsz;
434 }
435 if (eppnt->p_memsz > eppnt->p_filesz) {
436 /*
437 * Map the last of the segment.
438 * If the header is requesting these pages to be
439 * executable, honour that (ppc32 needs this).
440 */
441 int error;
442
443 zero_start = ELF_PAGEALIGN(zero_start);
444 zero_end = ELF_PAGEALIGN(zero_end);
445
446 error = vm_brk_flags(zero_start, zero_end - zero_start,
447 prot & PROT_EXEC ? VM_EXEC : 0);
448 if (error)
449 map_addr = error;
450 }
451 return map_addr;
452 }
453
454
total_mapping_size(const struct elf_phdr * phdr,int nr)455 static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
456 {
457 elf_addr_t min_addr = -1;
458 elf_addr_t max_addr = 0;
459 bool pt_load = false;
460 int i;
461
462 for (i = 0; i < nr; i++) {
463 if (phdr[i].p_type == PT_LOAD) {
464 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
465 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
466 pt_load = true;
467 }
468 }
469 return pt_load ? (max_addr - min_addr) : 0;
470 }
471
elf_read(struct file * file,void * buf,size_t len,loff_t pos)472 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
473 {
474 ssize_t rv;
475
476 rv = kernel_read(file, buf, len, &pos);
477 if (unlikely(rv != len)) {
478 return (rv < 0) ? rv : -EIO;
479 }
480 return 0;
481 }
482
maximum_alignment(struct elf_phdr * cmds,int nr)483 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
484 {
485 unsigned long alignment = 0;
486 int i;
487
488 for (i = 0; i < nr; i++) {
489 if (cmds[i].p_type == PT_LOAD) {
490 unsigned long p_align = cmds[i].p_align;
491
492 /* skip non-power of two alignments as invalid */
493 if (!is_power_of_2(p_align))
494 continue;
495 alignment = max(alignment, p_align);
496 }
497 }
498
499 /* ensure we align to at least one page */
500 return ELF_PAGEALIGN(alignment);
501 }
502
503 /**
504 * load_elf_phdrs() - load ELF program headers
505 * @elf_ex: ELF header of the binary whose program headers should be loaded
506 * @elf_file: the opened ELF binary file
507 *
508 * Loads ELF program headers from the binary file elf_file, which has the ELF
509 * header pointed to by elf_ex, into a newly allocated array. The caller is
510 * responsible for freeing the allocated data. Returns NULL upon failure.
511 */
load_elf_phdrs(const struct elfhdr * elf_ex,struct file * elf_file)512 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
513 struct file *elf_file)
514 {
515 struct elf_phdr *elf_phdata = NULL;
516 int retval = -1;
517 unsigned int size;
518
519 /*
520 * If the size of this structure has changed, then punt, since
521 * we will be doing the wrong thing.
522 */
523 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
524 goto out;
525
526 /* Sanity check the number of program headers... */
527 /* ...and their total size. */
528 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
529 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
530 goto out;
531
532 elf_phdata = kmalloc(size, GFP_KERNEL);
533 if (!elf_phdata)
534 goto out;
535
536 /* Read in the program headers */
537 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
538
539 out:
540 if (retval) {
541 kfree(elf_phdata);
542 elf_phdata = NULL;
543 }
544 return elf_phdata;
545 }
546
547 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
548
549 /**
550 * struct arch_elf_state - arch-specific ELF loading state
551 *
552 * This structure is used to preserve architecture specific data during
553 * the loading of an ELF file, throughout the checking of architecture
554 * specific ELF headers & through to the point where the ELF load is
555 * known to be proceeding (ie. SET_PERSONALITY).
556 *
557 * This implementation is a dummy for architectures which require no
558 * specific state.
559 */
560 struct arch_elf_state {
561 };
562
563 #define INIT_ARCH_ELF_STATE {}
564
565 /**
566 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
567 * @ehdr: The main ELF header
568 * @phdr: The program header to check
569 * @elf: The open ELF file
570 * @is_interp: True if the phdr is from the interpreter of the ELF being
571 * loaded, else false.
572 * @state: Architecture-specific state preserved throughout the process
573 * of loading the ELF.
574 *
575 * Inspects the program header phdr to validate its correctness and/or
576 * suitability for the system. Called once per ELF program header in the
577 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
578 * interpreter.
579 *
580 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
581 * with that return code.
582 */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)583 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
584 struct elf_phdr *phdr,
585 struct file *elf, bool is_interp,
586 struct arch_elf_state *state)
587 {
588 /* Dummy implementation, always proceed */
589 return 0;
590 }
591
592 /**
593 * arch_check_elf() - check an ELF executable
594 * @ehdr: The main ELF header
595 * @has_interp: True if the ELF has an interpreter, else false.
596 * @interp_ehdr: The interpreter's ELF header
597 * @state: Architecture-specific state preserved throughout the process
598 * of loading the ELF.
599 *
600 * Provides a final opportunity for architecture code to reject the loading
601 * of the ELF & cause an exec syscall to return an error. This is called after
602 * all program headers to be checked by arch_elf_pt_proc have been.
603 *
604 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
605 * with that return code.
606 */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)607 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
608 struct elfhdr *interp_ehdr,
609 struct arch_elf_state *state)
610 {
611 /* Dummy implementation, always proceed */
612 return 0;
613 }
614
615 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
616
make_prot(u32 p_flags,struct arch_elf_state * arch_state,bool has_interp,bool is_interp)617 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
618 bool has_interp, bool is_interp)
619 {
620 int prot = 0;
621
622 if (p_flags & PF_R)
623 prot |= PROT_READ;
624 if (p_flags & PF_W)
625 prot |= PROT_WRITE;
626 if (p_flags & PF_X)
627 prot |= PROT_EXEC;
628
629 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
630 }
631
632 /* This is much more generalized than the library routine read function,
633 so we keep this separate. Technically the library read function
634 is only provided so that we can read a.out libraries that have
635 an ELF header */
636
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long no_base,struct elf_phdr * interp_elf_phdata,struct arch_elf_state * arch_state)637 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
638 struct file *interpreter,
639 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
640 struct arch_elf_state *arch_state)
641 {
642 struct elf_phdr *eppnt;
643 unsigned long load_addr = 0;
644 int load_addr_set = 0;
645 unsigned long error = ~0UL;
646 unsigned long total_size;
647 int i;
648
649 /* First of all, some simple consistency checks */
650 if (interp_elf_ex->e_type != ET_EXEC &&
651 interp_elf_ex->e_type != ET_DYN)
652 goto out;
653 if (!elf_check_arch(interp_elf_ex) ||
654 elf_check_fdpic(interp_elf_ex))
655 goto out;
656 if (!interpreter->f_op->mmap)
657 goto out;
658
659 total_size = total_mapping_size(interp_elf_phdata,
660 interp_elf_ex->e_phnum);
661 if (!total_size) {
662 error = -EINVAL;
663 goto out;
664 }
665
666 eppnt = interp_elf_phdata;
667 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
668 if (eppnt->p_type == PT_LOAD) {
669 int elf_type = MAP_PRIVATE;
670 int elf_prot = make_prot(eppnt->p_flags, arch_state,
671 true, true);
672 unsigned long vaddr = 0;
673 unsigned long k, map_addr;
674
675 vaddr = eppnt->p_vaddr;
676 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
677 elf_type |= MAP_FIXED;
678 else if (no_base && interp_elf_ex->e_type == ET_DYN)
679 load_addr = -vaddr;
680
681 map_addr = elf_load(interpreter, load_addr + vaddr,
682 eppnt, elf_prot, elf_type, total_size);
683 total_size = 0;
684 error = map_addr;
685 if (BAD_ADDR(map_addr))
686 goto out;
687
688 if (!load_addr_set &&
689 interp_elf_ex->e_type == ET_DYN) {
690 load_addr = map_addr - ELF_PAGESTART(vaddr);
691 load_addr_set = 1;
692 }
693
694 /*
695 * Check to see if the section's size will overflow the
696 * allowed task size. Note that p_filesz must always be
697 * <= p_memsize so it's only necessary to check p_memsz.
698 */
699 k = load_addr + eppnt->p_vaddr;
700 if (BAD_ADDR(k) ||
701 eppnt->p_filesz > eppnt->p_memsz ||
702 eppnt->p_memsz > TASK_SIZE ||
703 TASK_SIZE - eppnt->p_memsz < k) {
704 error = -ENOMEM;
705 goto out;
706 }
707 }
708 }
709
710 error = load_addr;
711 out:
712 return error;
713 }
714
715 /*
716 * These are the functions used to load ELF style executables and shared
717 * libraries. There is no binary dependent code anywhere else.
718 */
719
parse_elf_property(const char * data,size_t * off,size_t datasz,struct arch_elf_state * arch,bool have_prev_type,u32 * prev_type)720 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
721 struct arch_elf_state *arch,
722 bool have_prev_type, u32 *prev_type)
723 {
724 size_t o, step;
725 const struct gnu_property *pr;
726 int ret;
727
728 if (*off == datasz)
729 return -ENOENT;
730
731 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
732 return -EIO;
733 o = *off;
734 datasz -= *off;
735
736 if (datasz < sizeof(*pr))
737 return -ENOEXEC;
738 pr = (const struct gnu_property *)(data + o);
739 o += sizeof(*pr);
740 datasz -= sizeof(*pr);
741
742 if (pr->pr_datasz > datasz)
743 return -ENOEXEC;
744
745 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
746 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
747 if (step > datasz)
748 return -ENOEXEC;
749
750 /* Properties are supposed to be unique and sorted on pr_type: */
751 if (have_prev_type && pr->pr_type <= *prev_type)
752 return -ENOEXEC;
753 *prev_type = pr->pr_type;
754
755 ret = arch_parse_elf_property(pr->pr_type, data + o,
756 pr->pr_datasz, ELF_COMPAT, arch);
757 if (ret)
758 return ret;
759
760 *off = o + step;
761 return 0;
762 }
763
764 #define NOTE_DATA_SZ SZ_1K
765 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
766 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
767
parse_elf_properties(struct file * f,const struct elf_phdr * phdr,struct arch_elf_state * arch)768 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
769 struct arch_elf_state *arch)
770 {
771 union {
772 struct elf_note nhdr;
773 char data[NOTE_DATA_SZ];
774 } note;
775 loff_t pos;
776 ssize_t n;
777 size_t off, datasz;
778 int ret;
779 bool have_prev_type;
780 u32 prev_type;
781
782 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
783 return 0;
784
785 /* load_elf_binary() shouldn't call us unless this is true... */
786 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
787 return -ENOEXEC;
788
789 /* If the properties are crazy large, that's too bad (for now): */
790 if (phdr->p_filesz > sizeof(note))
791 return -ENOEXEC;
792
793 pos = phdr->p_offset;
794 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
795
796 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
797 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
798 return -EIO;
799
800 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
801 note.nhdr.n_namesz != NOTE_NAME_SZ ||
802 strncmp(note.data + sizeof(note.nhdr),
803 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
804 return -ENOEXEC;
805
806 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
807 ELF_GNU_PROPERTY_ALIGN);
808 if (off > n)
809 return -ENOEXEC;
810
811 if (note.nhdr.n_descsz > n - off)
812 return -ENOEXEC;
813 datasz = off + note.nhdr.n_descsz;
814
815 have_prev_type = false;
816 do {
817 ret = parse_elf_property(note.data, &off, datasz, arch,
818 have_prev_type, &prev_type);
819 have_prev_type = true;
820 } while (!ret);
821
822 return ret == -ENOENT ? 0 : ret;
823 }
824
load_elf_binary(struct linux_binprm * bprm)825 static int load_elf_binary(struct linux_binprm *bprm)
826 {
827 struct file *interpreter = NULL; /* to shut gcc up */
828 unsigned long load_bias = 0, phdr_addr = 0;
829 int first_pt_load = 1;
830 unsigned long error;
831 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
832 struct elf_phdr *elf_property_phdata = NULL;
833 unsigned long elf_brk;
834 int retval, i;
835 unsigned long elf_entry;
836 unsigned long e_entry;
837 unsigned long interp_load_addr = 0;
838 unsigned long start_code, end_code, start_data, end_data;
839 unsigned long reloc_func_desc __maybe_unused = 0;
840 int executable_stack = EXSTACK_DEFAULT;
841 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
842 struct elfhdr *interp_elf_ex = NULL;
843 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
844 struct mm_struct *mm;
845 struct pt_regs *regs;
846
847 retval = -ENOEXEC;
848 /* First of all, some simple consistency checks */
849 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
850 goto out;
851
852 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
853 goto out;
854 if (!elf_check_arch(elf_ex))
855 goto out;
856 if (elf_check_fdpic(elf_ex))
857 goto out;
858 if (!bprm->file->f_op->mmap)
859 goto out;
860
861 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
862 if (!elf_phdata)
863 goto out;
864
865 elf_ppnt = elf_phdata;
866 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
867 char *elf_interpreter;
868
869 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
870 elf_property_phdata = elf_ppnt;
871 continue;
872 }
873
874 if (elf_ppnt->p_type != PT_INTERP)
875 continue;
876
877 /*
878 * This is the program interpreter used for shared libraries -
879 * for now assume that this is an a.out format binary.
880 */
881 retval = -ENOEXEC;
882 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
883 goto out_free_ph;
884
885 retval = -ENOMEM;
886 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
887 if (!elf_interpreter)
888 goto out_free_ph;
889
890 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
891 elf_ppnt->p_offset);
892 if (retval < 0)
893 goto out_free_interp;
894 /* make sure path is NULL terminated */
895 retval = -ENOEXEC;
896 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
897 goto out_free_interp;
898
899 interpreter = open_exec(elf_interpreter);
900 kfree(elf_interpreter);
901 retval = PTR_ERR(interpreter);
902 if (IS_ERR(interpreter))
903 goto out_free_ph;
904
905 /*
906 * If the binary is not readable then enforce mm->dumpable = 0
907 * regardless of the interpreter's permissions.
908 */
909 would_dump(bprm, interpreter);
910
911 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
912 if (!interp_elf_ex) {
913 retval = -ENOMEM;
914 goto out_free_file;
915 }
916
917 /* Get the exec headers */
918 retval = elf_read(interpreter, interp_elf_ex,
919 sizeof(*interp_elf_ex), 0);
920 if (retval < 0)
921 goto out_free_dentry;
922
923 break;
924
925 out_free_interp:
926 kfree(elf_interpreter);
927 goto out_free_ph;
928 }
929
930 elf_ppnt = elf_phdata;
931 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
932 switch (elf_ppnt->p_type) {
933 case PT_GNU_STACK:
934 if (elf_ppnt->p_flags & PF_X)
935 executable_stack = EXSTACK_ENABLE_X;
936 else
937 executable_stack = EXSTACK_DISABLE_X;
938 break;
939
940 case PT_LOPROC ... PT_HIPROC:
941 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
942 bprm->file, false,
943 &arch_state);
944 if (retval)
945 goto out_free_dentry;
946 break;
947 }
948
949 /* Some simple consistency checks for the interpreter */
950 if (interpreter) {
951 retval = -ELIBBAD;
952 /* Not an ELF interpreter */
953 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
954 goto out_free_dentry;
955 /* Verify the interpreter has a valid arch */
956 if (!elf_check_arch(interp_elf_ex) ||
957 elf_check_fdpic(interp_elf_ex))
958 goto out_free_dentry;
959
960 /* Load the interpreter program headers */
961 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
962 interpreter);
963 if (!interp_elf_phdata)
964 goto out_free_dentry;
965
966 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
967 elf_property_phdata = NULL;
968 elf_ppnt = interp_elf_phdata;
969 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
970 switch (elf_ppnt->p_type) {
971 case PT_GNU_PROPERTY:
972 elf_property_phdata = elf_ppnt;
973 break;
974
975 case PT_LOPROC ... PT_HIPROC:
976 retval = arch_elf_pt_proc(interp_elf_ex,
977 elf_ppnt, interpreter,
978 true, &arch_state);
979 if (retval)
980 goto out_free_dentry;
981 break;
982 }
983 }
984
985 retval = parse_elf_properties(interpreter ?: bprm->file,
986 elf_property_phdata, &arch_state);
987 if (retval)
988 goto out_free_dentry;
989
990 /*
991 * Allow arch code to reject the ELF at this point, whilst it's
992 * still possible to return an error to the code that invoked
993 * the exec syscall.
994 */
995 retval = arch_check_elf(elf_ex,
996 !!interpreter, interp_elf_ex,
997 &arch_state);
998 if (retval)
999 goto out_free_dentry;
1000
1001 /* Flush all traces of the currently running executable */
1002 retval = begin_new_exec(bprm);
1003 if (retval)
1004 goto out_free_dentry;
1005
1006 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1007 may depend on the personality. */
1008 SET_PERSONALITY2(*elf_ex, &arch_state);
1009 if (elf_read_implies_exec(*elf_ex, executable_stack))
1010 current->personality |= READ_IMPLIES_EXEC;
1011
1012 const int snapshot_randomize_va_space = READ_ONCE(randomize_va_space);
1013 if (!(current->personality & ADDR_NO_RANDOMIZE) && snapshot_randomize_va_space)
1014 current->flags |= PF_RANDOMIZE;
1015
1016 setup_new_exec(bprm);
1017
1018 /* Do this so that we can load the interpreter, if need be. We will
1019 change some of these later */
1020 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1021 executable_stack);
1022 if (retval < 0)
1023 goto out_free_dentry;
1024
1025 elf_brk = 0;
1026
1027 start_code = ~0UL;
1028 end_code = 0;
1029 start_data = 0;
1030 end_data = 0;
1031
1032 /* Now we do a little grungy work by mmapping the ELF image into
1033 the correct location in memory. */
1034 for(i = 0, elf_ppnt = elf_phdata;
1035 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1036 int elf_prot, elf_flags;
1037 unsigned long k, vaddr;
1038 unsigned long total_size = 0;
1039 unsigned long alignment;
1040
1041 if (elf_ppnt->p_type != PT_LOAD)
1042 continue;
1043
1044 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1045 !!interpreter, false);
1046
1047 elf_flags = MAP_PRIVATE;
1048
1049 vaddr = elf_ppnt->p_vaddr;
1050 /*
1051 * The first time through the loop, first_pt_load is true:
1052 * layout will be calculated. Once set, use MAP_FIXED since
1053 * we know we've already safely mapped the entire region with
1054 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1055 */
1056 if (!first_pt_load) {
1057 elf_flags |= MAP_FIXED;
1058 } else if (elf_ex->e_type == ET_EXEC) {
1059 /*
1060 * This logic is run once for the first LOAD Program
1061 * Header for ET_EXEC binaries. No special handling
1062 * is needed.
1063 */
1064 elf_flags |= MAP_FIXED_NOREPLACE;
1065 } else if (elf_ex->e_type == ET_DYN) {
1066 /*
1067 * This logic is run once for the first LOAD Program
1068 * Header for ET_DYN binaries to calculate the
1069 * randomization (load_bias) for all the LOAD
1070 * Program Headers.
1071 */
1072
1073 /*
1074 * Calculate the entire size of the ELF mapping
1075 * (total_size), used for the initial mapping,
1076 * due to load_addr_set which is set to true later
1077 * once the initial mapping is performed.
1078 *
1079 * Note that this is only sensible when the LOAD
1080 * segments are contiguous (or overlapping). If
1081 * used for LOADs that are far apart, this would
1082 * cause the holes between LOADs to be mapped,
1083 * running the risk of having the mapping fail,
1084 * as it would be larger than the ELF file itself.
1085 *
1086 * As a result, only ET_DYN does this, since
1087 * some ET_EXEC (e.g. ia64) may have large virtual
1088 * memory holes between LOADs.
1089 *
1090 */
1091 total_size = total_mapping_size(elf_phdata,
1092 elf_ex->e_phnum);
1093 if (!total_size) {
1094 retval = -EINVAL;
1095 goto out_free_dentry;
1096 }
1097
1098 /* Calculate any requested alignment. */
1099 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1100
1101 /*
1102 * There are effectively two types of ET_DYN
1103 * binaries: programs (i.e. PIE: ET_DYN with PT_INTERP)
1104 * and loaders (ET_DYN without PT_INTERP, since they
1105 * _are_ the ELF interpreter). The loaders must
1106 * be loaded away from programs since the program
1107 * may otherwise collide with the loader (especially
1108 * for ET_EXEC which does not have a randomized
1109 * position). For example to handle invocations of
1110 * "./ld.so someprog" to test out a new version of
1111 * the loader, the subsequent program that the
1112 * loader loads must avoid the loader itself, so
1113 * they cannot share the same load range. Sufficient
1114 * room for the brk must be allocated with the
1115 * loader as well, since brk must be available with
1116 * the loader.
1117 *
1118 * Therefore, programs are loaded offset from
1119 * ELF_ET_DYN_BASE and loaders are loaded into the
1120 * independently randomized mmap region (0 load_bias
1121 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1122 */
1123 if (interpreter) {
1124 /* On ET_DYN with PT_INTERP, we do the ASLR. */
1125 load_bias = ELF_ET_DYN_BASE;
1126 if (current->flags & PF_RANDOMIZE)
1127 load_bias += arch_mmap_rnd();
1128 /* Adjust alignment as requested. */
1129 if (alignment)
1130 load_bias &= ~(alignment - 1);
1131 elf_flags |= MAP_FIXED_NOREPLACE;
1132 } else {
1133 /*
1134 * For ET_DYN without PT_INTERP, we rely on
1135 * the architectures's (potentially ASLR) mmap
1136 * base address (via a load_bias of 0).
1137 *
1138 * When a large alignment is requested, we
1139 * must do the allocation at address "0" right
1140 * now to discover where things will load so
1141 * that we can adjust the resulting alignment.
1142 * In this case (load_bias != 0), we can use
1143 * MAP_FIXED_NOREPLACE to make sure the mapping
1144 * doesn't collide with anything.
1145 */
1146 if (alignment > ELF_MIN_ALIGN) {
1147 load_bias = elf_load(bprm->file, 0, elf_ppnt,
1148 elf_prot, elf_flags, total_size);
1149 if (BAD_ADDR(load_bias)) {
1150 retval = IS_ERR_VALUE(load_bias) ?
1151 PTR_ERR((void*)load_bias) : -EINVAL;
1152 goto out_free_dentry;
1153 }
1154 vm_munmap(load_bias, total_size);
1155 /* Adjust alignment as requested. */
1156 if (alignment)
1157 load_bias &= ~(alignment - 1);
1158 elf_flags |= MAP_FIXED_NOREPLACE;
1159 } else
1160 load_bias = 0;
1161 }
1162
1163 /*
1164 * Since load_bias is used for all subsequent loading
1165 * calculations, we must lower it by the first vaddr
1166 * so that the remaining calculations based on the
1167 * ELF vaddrs will be correctly offset. The result
1168 * is then page aligned.
1169 */
1170 load_bias = ELF_PAGESTART(load_bias - vaddr);
1171 }
1172
1173 error = elf_load(bprm->file, load_bias + vaddr, elf_ppnt,
1174 elf_prot, elf_flags, total_size);
1175 if (BAD_ADDR(error)) {
1176 retval = IS_ERR_VALUE(error) ?
1177 PTR_ERR((void*)error) : -EINVAL;
1178 goto out_free_dentry;
1179 }
1180
1181 if (first_pt_load) {
1182 first_pt_load = 0;
1183 if (elf_ex->e_type == ET_DYN) {
1184 load_bias += error -
1185 ELF_PAGESTART(load_bias + vaddr);
1186 reloc_func_desc = load_bias;
1187 }
1188 }
1189
1190 /*
1191 * Figure out which segment in the file contains the Program
1192 * Header table, and map to the associated memory address.
1193 */
1194 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1195 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1196 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1197 elf_ppnt->p_vaddr;
1198 }
1199
1200 k = elf_ppnt->p_vaddr;
1201 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1202 start_code = k;
1203 if (start_data < k)
1204 start_data = k;
1205
1206 /*
1207 * Check to see if the section's size will overflow the
1208 * allowed task size. Note that p_filesz must always be
1209 * <= p_memsz so it is only necessary to check p_memsz.
1210 */
1211 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1212 elf_ppnt->p_memsz > TASK_SIZE ||
1213 TASK_SIZE - elf_ppnt->p_memsz < k) {
1214 /* set_brk can never work. Avoid overflows. */
1215 retval = -EINVAL;
1216 goto out_free_dentry;
1217 }
1218
1219 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1220
1221 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1222 end_code = k;
1223 if (end_data < k)
1224 end_data = k;
1225 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1226 if (k > elf_brk)
1227 elf_brk = k;
1228 }
1229
1230 e_entry = elf_ex->e_entry + load_bias;
1231 phdr_addr += load_bias;
1232 elf_brk += load_bias;
1233 start_code += load_bias;
1234 end_code += load_bias;
1235 start_data += load_bias;
1236 end_data += load_bias;
1237
1238 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1239
1240 if (interpreter) {
1241 elf_entry = load_elf_interp(interp_elf_ex,
1242 interpreter,
1243 load_bias, interp_elf_phdata,
1244 &arch_state);
1245 if (!IS_ERR_VALUE(elf_entry)) {
1246 /*
1247 * load_elf_interp() returns relocation
1248 * adjustment
1249 */
1250 interp_load_addr = elf_entry;
1251 elf_entry += interp_elf_ex->e_entry;
1252 }
1253 if (BAD_ADDR(elf_entry)) {
1254 retval = IS_ERR_VALUE(elf_entry) ?
1255 (int)elf_entry : -EINVAL;
1256 goto out_free_dentry;
1257 }
1258 reloc_func_desc = interp_load_addr;
1259
1260 exe_file_allow_write_access(interpreter);
1261 fput(interpreter);
1262
1263 kfree(interp_elf_ex);
1264 kfree(interp_elf_phdata);
1265 } else {
1266 elf_entry = e_entry;
1267 if (BAD_ADDR(elf_entry)) {
1268 retval = -EINVAL;
1269 goto out_free_dentry;
1270 }
1271 }
1272
1273 kfree(elf_phdata);
1274
1275 set_binfmt(&elf_format);
1276
1277 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1278 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1279 if (retval < 0)
1280 goto out;
1281 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1282
1283 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1284 e_entry, phdr_addr);
1285 if (retval < 0)
1286 goto out;
1287
1288 mm = current->mm;
1289 mm->end_code = end_code;
1290 mm->start_code = start_code;
1291 mm->start_data = start_data;
1292 mm->end_data = end_data;
1293 mm->start_stack = bprm->p;
1294
1295 if ((current->flags & PF_RANDOMIZE) && (snapshot_randomize_va_space > 1)) {
1296 /*
1297 * For architectures with ELF randomization, when executing
1298 * a loader directly (i.e. no interpreter listed in ELF
1299 * headers), move the brk area out of the mmap region
1300 * (since it grows up, and may collide early with the stack
1301 * growing down), and into the unused ELF_ET_DYN_BASE region.
1302 */
1303 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1304 elf_ex->e_type == ET_DYN && !interpreter) {
1305 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1306 } else {
1307 /* Otherwise leave a gap between .bss and brk. */
1308 mm->brk = mm->start_brk = mm->brk + PAGE_SIZE;
1309 }
1310
1311 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1312 #ifdef compat_brk_randomized
1313 current->brk_randomized = 1;
1314 #endif
1315 }
1316
1317 if (current->personality & MMAP_PAGE_ZERO) {
1318 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1319 and some applications "depend" upon this behavior.
1320 Since we do not have the power to recompile these, we
1321 emulate the SVr4 behavior. Sigh. */
1322 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1323 MAP_FIXED | MAP_PRIVATE, 0);
1324
1325 retval = do_mseal(0, PAGE_SIZE, 0);
1326 if (retval)
1327 pr_warn_ratelimited("pid=%d, couldn't seal address 0, ret=%d.\n",
1328 task_pid_nr(current), retval);
1329 }
1330
1331 regs = current_pt_regs();
1332 #ifdef ELF_PLAT_INIT
1333 /*
1334 * The ABI may specify that certain registers be set up in special
1335 * ways (on i386 %edx is the address of a DT_FINI function, for
1336 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1337 * that the e_entry field is the address of the function descriptor
1338 * for the startup routine, rather than the address of the startup
1339 * routine itself. This macro performs whatever initialization to
1340 * the regs structure is required as well as any relocations to the
1341 * function descriptor entries when executing dynamically links apps.
1342 */
1343 ELF_PLAT_INIT(regs, reloc_func_desc);
1344 #endif
1345
1346 finalize_exec(bprm);
1347 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1348 retval = 0;
1349 out:
1350 return retval;
1351
1352 /* error cleanup */
1353 out_free_dentry:
1354 kfree(interp_elf_ex);
1355 kfree(interp_elf_phdata);
1356 out_free_file:
1357 exe_file_allow_write_access(interpreter);
1358 if (interpreter)
1359 fput(interpreter);
1360 out_free_ph:
1361 kfree(elf_phdata);
1362 goto out;
1363 }
1364
1365 #ifdef CONFIG_USELIB
1366 /* This is really simpleminded and specialized - we are loading an
1367 a.out library that is given an ELF header. */
load_elf_library(struct file * file)1368 static int load_elf_library(struct file *file)
1369 {
1370 struct elf_phdr *elf_phdata;
1371 struct elf_phdr *eppnt;
1372 int retval, error, i, j;
1373 struct elfhdr elf_ex;
1374
1375 error = -ENOEXEC;
1376 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1377 if (retval < 0)
1378 goto out;
1379
1380 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1381 goto out;
1382
1383 /* First of all, some simple consistency checks */
1384 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1385 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1386 goto out;
1387 if (elf_check_fdpic(&elf_ex))
1388 goto out;
1389
1390 /* Now read in all of the header information */
1391
1392 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1393 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1394
1395 error = -ENOMEM;
1396 elf_phdata = kmalloc(j, GFP_KERNEL);
1397 if (!elf_phdata)
1398 goto out;
1399
1400 eppnt = elf_phdata;
1401 error = -ENOEXEC;
1402 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1403 if (retval < 0)
1404 goto out_free_ph;
1405
1406 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1407 if ((eppnt + i)->p_type == PT_LOAD)
1408 j++;
1409 if (j != 1)
1410 goto out_free_ph;
1411
1412 while (eppnt->p_type != PT_LOAD)
1413 eppnt++;
1414
1415 /* Now use mmap to map the library into memory. */
1416 error = elf_load(file, ELF_PAGESTART(eppnt->p_vaddr),
1417 eppnt,
1418 PROT_READ | PROT_WRITE | PROT_EXEC,
1419 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1420 0);
1421
1422 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1423 goto out_free_ph;
1424
1425 error = 0;
1426
1427 out_free_ph:
1428 kfree(elf_phdata);
1429 out:
1430 return error;
1431 }
1432 #endif /* #ifdef CONFIG_USELIB */
1433
1434 #ifdef CONFIG_ELF_CORE
1435 /*
1436 * ELF core dumper
1437 *
1438 * Modelled on fs/exec.c:aout_core_dump()
1439 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1440 */
1441
1442 /* An ELF note in memory */
1443 struct memelfnote
1444 {
1445 const char *name;
1446 int type;
1447 unsigned int datasz;
1448 void *data;
1449 };
1450
notesize(struct memelfnote * en)1451 static int notesize(struct memelfnote *en)
1452 {
1453 int sz;
1454
1455 sz = sizeof(struct elf_note);
1456 sz += roundup(strlen(en->name) + 1, 4);
1457 sz += roundup(en->datasz, 4);
1458
1459 return sz;
1460 }
1461
writenote(struct memelfnote * men,struct coredump_params * cprm)1462 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1463 {
1464 struct elf_note en;
1465 en.n_namesz = strlen(men->name) + 1;
1466 en.n_descsz = men->datasz;
1467 en.n_type = men->type;
1468
1469 return dump_emit(cprm, &en, sizeof(en)) &&
1470 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1471 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1472 }
1473
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1474 static void fill_elf_header(struct elfhdr *elf, int segs,
1475 u16 machine, u32 flags)
1476 {
1477 memset(elf, 0, sizeof(*elf));
1478
1479 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1480 elf->e_ident[EI_CLASS] = ELF_CLASS;
1481 elf->e_ident[EI_DATA] = ELF_DATA;
1482 elf->e_ident[EI_VERSION] = EV_CURRENT;
1483 elf->e_ident[EI_OSABI] = ELF_OSABI;
1484
1485 elf->e_type = ET_CORE;
1486 elf->e_machine = machine;
1487 elf->e_version = EV_CURRENT;
1488 elf->e_phoff = sizeof(struct elfhdr);
1489 elf->e_flags = flags;
1490 elf->e_ehsize = sizeof(struct elfhdr);
1491 elf->e_phentsize = sizeof(struct elf_phdr);
1492 elf->e_phnum = segs;
1493 }
1494
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1495 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1496 {
1497 phdr->p_type = PT_NOTE;
1498 phdr->p_offset = offset;
1499 phdr->p_vaddr = 0;
1500 phdr->p_paddr = 0;
1501 phdr->p_filesz = sz;
1502 phdr->p_memsz = 0;
1503 phdr->p_flags = 0;
1504 phdr->p_align = 4;
1505 }
1506
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1507 static void fill_note(struct memelfnote *note, const char *name, int type,
1508 unsigned int sz, void *data)
1509 {
1510 note->name = name;
1511 note->type = type;
1512 note->datasz = sz;
1513 note->data = data;
1514 }
1515
1516 /*
1517 * fill up all the fields in prstatus from the given task struct, except
1518 * registers which need to be filled up separately.
1519 */
fill_prstatus(struct elf_prstatus_common * prstatus,struct task_struct * p,long signr)1520 static void fill_prstatus(struct elf_prstatus_common *prstatus,
1521 struct task_struct *p, long signr)
1522 {
1523 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1524 prstatus->pr_sigpend = p->pending.signal.sig[0];
1525 prstatus->pr_sighold = p->blocked.sig[0];
1526 rcu_read_lock();
1527 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1528 rcu_read_unlock();
1529 prstatus->pr_pid = task_pid_vnr(p);
1530 prstatus->pr_pgrp = task_pgrp_vnr(p);
1531 prstatus->pr_sid = task_session_vnr(p);
1532 if (thread_group_leader(p)) {
1533 struct task_cputime cputime;
1534
1535 /*
1536 * This is the record for the group leader. It shows the
1537 * group-wide total, not its individual thread total.
1538 */
1539 thread_group_cputime(p, &cputime);
1540 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1541 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1542 } else {
1543 u64 utime, stime;
1544
1545 task_cputime(p, &utime, &stime);
1546 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1547 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1548 }
1549
1550 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1551 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1552 }
1553
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1554 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1555 struct mm_struct *mm)
1556 {
1557 const struct cred *cred;
1558 unsigned int i, len;
1559 unsigned int state;
1560
1561 /* first copy the parameters from user space */
1562 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1563
1564 len = mm->arg_end - mm->arg_start;
1565 if (len >= ELF_PRARGSZ)
1566 len = ELF_PRARGSZ-1;
1567 if (copy_from_user(&psinfo->pr_psargs,
1568 (const char __user *)mm->arg_start, len))
1569 return -EFAULT;
1570 for(i = 0; i < len; i++)
1571 if (psinfo->pr_psargs[i] == 0)
1572 psinfo->pr_psargs[i] = ' ';
1573 psinfo->pr_psargs[len] = 0;
1574
1575 rcu_read_lock();
1576 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1577 rcu_read_unlock();
1578 psinfo->pr_pid = task_pid_vnr(p);
1579 psinfo->pr_pgrp = task_pgrp_vnr(p);
1580 psinfo->pr_sid = task_session_vnr(p);
1581
1582 state = READ_ONCE(p->__state);
1583 i = state ? ffz(~state) + 1 : 0;
1584 psinfo->pr_state = i;
1585 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1586 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1587 psinfo->pr_nice = task_nice(p);
1588 psinfo->pr_flag = p->flags;
1589 rcu_read_lock();
1590 cred = __task_cred(p);
1591 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1592 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1593 rcu_read_unlock();
1594 get_task_comm(psinfo->pr_fname, p);
1595
1596 return 0;
1597 }
1598
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1599 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1600 {
1601 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1602 int i = 0;
1603 do
1604 i += 2;
1605 while (auxv[i - 2] != AT_NULL);
1606 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1607 }
1608
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const kernel_siginfo_t * siginfo)1609 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1610 const kernel_siginfo_t *siginfo)
1611 {
1612 copy_siginfo_to_external(csigdata, siginfo);
1613 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1614 }
1615
1616 /*
1617 * Format of NT_FILE note:
1618 *
1619 * long count -- how many files are mapped
1620 * long page_size -- units for file_ofs
1621 * array of [COUNT] elements of
1622 * long start
1623 * long end
1624 * long file_ofs
1625 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1626 */
fill_files_note(struct memelfnote * note,struct coredump_params * cprm)1627 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1628 {
1629 unsigned count, size, names_ofs, remaining, n;
1630 user_long_t *data;
1631 user_long_t *start_end_ofs;
1632 char *name_base, *name_curpos;
1633 int i;
1634
1635 /* *Estimated* file count and total data size needed */
1636 count = cprm->vma_count;
1637 if (count > UINT_MAX / 64)
1638 return -EINVAL;
1639 size = count * 64;
1640
1641 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1642 alloc:
1643 /* paranoia check */
1644 if (size >= core_file_note_size_limit) {
1645 pr_warn_once("coredump Note size too large: %u (does kernel.core_file_note_size_limit sysctl need adjustment?\n",
1646 size);
1647 return -EINVAL;
1648 }
1649 size = round_up(size, PAGE_SIZE);
1650 /*
1651 * "size" can be 0 here legitimately.
1652 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1653 */
1654 data = kvmalloc(size, GFP_KERNEL);
1655 if (ZERO_OR_NULL_PTR(data))
1656 return -ENOMEM;
1657
1658 start_end_ofs = data + 2;
1659 name_base = name_curpos = ((char *)data) + names_ofs;
1660 remaining = size - names_ofs;
1661 count = 0;
1662 for (i = 0; i < cprm->vma_count; i++) {
1663 struct core_vma_metadata *m = &cprm->vma_meta[i];
1664 struct file *file;
1665 const char *filename;
1666
1667 file = m->file;
1668 if (!file)
1669 continue;
1670 filename = file_path(file, name_curpos, remaining);
1671 if (IS_ERR(filename)) {
1672 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1673 kvfree(data);
1674 size = size * 5 / 4;
1675 goto alloc;
1676 }
1677 continue;
1678 }
1679
1680 /* file_path() fills at the end, move name down */
1681 /* n = strlen(filename) + 1: */
1682 n = (name_curpos + remaining) - filename;
1683 remaining = filename - name_curpos;
1684 memmove(name_curpos, filename, n);
1685 name_curpos += n;
1686
1687 *start_end_ofs++ = m->start;
1688 *start_end_ofs++ = m->end;
1689 *start_end_ofs++ = m->pgoff;
1690 count++;
1691 }
1692
1693 /* Now we know exact count of files, can store it */
1694 data[0] = count;
1695 data[1] = PAGE_SIZE;
1696 /*
1697 * Count usually is less than mm->map_count,
1698 * we need to move filenames down.
1699 */
1700 n = cprm->vma_count - count;
1701 if (n != 0) {
1702 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1703 memmove(name_base - shift_bytes, name_base,
1704 name_curpos - name_base);
1705 name_curpos -= shift_bytes;
1706 }
1707
1708 size = name_curpos - (char *)data;
1709 fill_note(note, "CORE", NT_FILE, size, data);
1710 return 0;
1711 }
1712
1713 #include <linux/regset.h>
1714
1715 struct elf_thread_core_info {
1716 struct elf_thread_core_info *next;
1717 struct task_struct *task;
1718 struct elf_prstatus prstatus;
1719 struct memelfnote notes[];
1720 };
1721
1722 struct elf_note_info {
1723 struct elf_thread_core_info *thread;
1724 struct memelfnote psinfo;
1725 struct memelfnote signote;
1726 struct memelfnote auxv;
1727 struct memelfnote files;
1728 user_siginfo_t csigdata;
1729 size_t size;
1730 int thread_notes;
1731 };
1732
1733 #ifdef CORE_DUMP_USE_REGSET
1734 /*
1735 * When a regset has a writeback hook, we call it on each thread before
1736 * dumping user memory. On register window machines, this makes sure the
1737 * user memory backing the register data is up to date before we read it.
1738 */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1739 static void do_thread_regset_writeback(struct task_struct *task,
1740 const struct user_regset *regset)
1741 {
1742 if (regset->writeback)
1743 regset->writeback(task, regset, 1);
1744 }
1745
1746 #ifndef PRSTATUS_SIZE
1747 #define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1748 #endif
1749
1750 #ifndef SET_PR_FPVALID
1751 #define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1752 #endif
1753
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,struct elf_note_info * info)1754 static int fill_thread_core_info(struct elf_thread_core_info *t,
1755 const struct user_regset_view *view,
1756 long signr, struct elf_note_info *info)
1757 {
1758 unsigned int note_iter, view_iter;
1759
1760 /*
1761 * NT_PRSTATUS is the one special case, because the regset data
1762 * goes into the pr_reg field inside the note contents, rather
1763 * than being the whole note contents. We fill the regset in here.
1764 * We assume that regset 0 is NT_PRSTATUS.
1765 */
1766 fill_prstatus(&t->prstatus.common, t->task, signr);
1767 regset_get(t->task, &view->regsets[0],
1768 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1769
1770 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1771 PRSTATUS_SIZE, &t->prstatus);
1772 info->size += notesize(&t->notes[0]);
1773
1774 do_thread_regset_writeback(t->task, &view->regsets[0]);
1775
1776 /*
1777 * Each other regset might generate a note too. For each regset
1778 * that has no core_note_type or is inactive, skip it.
1779 */
1780 note_iter = 1;
1781 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1782 const struct user_regset *regset = &view->regsets[view_iter];
1783 int note_type = regset->core_note_type;
1784 bool is_fpreg = note_type == NT_PRFPREG;
1785 void *data;
1786 int ret;
1787
1788 do_thread_regset_writeback(t->task, regset);
1789 if (!note_type) // not for coredumps
1790 continue;
1791 if (regset->active && regset->active(t->task, regset) <= 0)
1792 continue;
1793
1794 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1795 if (ret < 0)
1796 continue;
1797
1798 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1799 break;
1800
1801 if (is_fpreg)
1802 SET_PR_FPVALID(&t->prstatus);
1803
1804 fill_note(&t->notes[note_iter], is_fpreg ? "CORE" : "LINUX",
1805 note_type, ret, data);
1806
1807 info->size += notesize(&t->notes[note_iter]);
1808 note_iter++;
1809 }
1810
1811 return 1;
1812 }
1813 #else
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,struct elf_note_info * info)1814 static int fill_thread_core_info(struct elf_thread_core_info *t,
1815 const struct user_regset_view *view,
1816 long signr, struct elf_note_info *info)
1817 {
1818 struct task_struct *p = t->task;
1819 elf_fpregset_t *fpu;
1820
1821 fill_prstatus(&t->prstatus.common, p, signr);
1822 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1823
1824 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1825 &(t->prstatus));
1826 info->size += notesize(&t->notes[0]);
1827
1828 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1829 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1830 kfree(fpu);
1831 return 1;
1832 }
1833
1834 t->prstatus.pr_fpvalid = 1;
1835 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1836 info->size += notesize(&t->notes[1]);
1837
1838 return 1;
1839 }
1840 #endif
1841
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,struct coredump_params * cprm)1842 static int fill_note_info(struct elfhdr *elf, int phdrs,
1843 struct elf_note_info *info,
1844 struct coredump_params *cprm)
1845 {
1846 struct task_struct *dump_task = current;
1847 const struct user_regset_view *view;
1848 struct elf_thread_core_info *t;
1849 struct elf_prpsinfo *psinfo;
1850 struct core_thread *ct;
1851
1852 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1853 if (!psinfo)
1854 return 0;
1855 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1856
1857 #ifdef CORE_DUMP_USE_REGSET
1858 view = task_user_regset_view(dump_task);
1859
1860 /*
1861 * Figure out how many notes we're going to need for each thread.
1862 */
1863 info->thread_notes = 0;
1864 for (int i = 0; i < view->n; ++i)
1865 if (view->regsets[i].core_note_type != 0)
1866 ++info->thread_notes;
1867
1868 /*
1869 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1870 * since it is our one special case.
1871 */
1872 if (unlikely(info->thread_notes == 0) ||
1873 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1874 WARN_ON(1);
1875 return 0;
1876 }
1877
1878 /*
1879 * Initialize the ELF file header.
1880 */
1881 fill_elf_header(elf, phdrs,
1882 view->e_machine, view->e_flags);
1883 #else
1884 view = NULL;
1885 info->thread_notes = 2;
1886 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1887 #endif
1888
1889 /*
1890 * Allocate a structure for each thread.
1891 */
1892 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1893 notes[info->thread_notes]),
1894 GFP_KERNEL);
1895 if (unlikely(!info->thread))
1896 return 0;
1897
1898 info->thread->task = dump_task;
1899 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1900 t = kzalloc(offsetof(struct elf_thread_core_info,
1901 notes[info->thread_notes]),
1902 GFP_KERNEL);
1903 if (unlikely(!t))
1904 return 0;
1905
1906 t->task = ct->task;
1907 t->next = info->thread->next;
1908 info->thread->next = t;
1909 }
1910
1911 /*
1912 * Now fill in each thread's information.
1913 */
1914 for (t = info->thread; t != NULL; t = t->next)
1915 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, info))
1916 return 0;
1917
1918 /*
1919 * Fill in the two process-wide notes.
1920 */
1921 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1922 info->size += notesize(&info->psinfo);
1923
1924 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1925 info->size += notesize(&info->signote);
1926
1927 fill_auxv_note(&info->auxv, current->mm);
1928 info->size += notesize(&info->auxv);
1929
1930 if (fill_files_note(&info->files, cprm) == 0)
1931 info->size += notesize(&info->files);
1932
1933 return 1;
1934 }
1935
1936 /*
1937 * Write all the notes for each thread. When writing the first thread, the
1938 * process-wide notes are interleaved after the first thread-specific note.
1939 */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1940 static int write_note_info(struct elf_note_info *info,
1941 struct coredump_params *cprm)
1942 {
1943 bool first = true;
1944 struct elf_thread_core_info *t = info->thread;
1945
1946 do {
1947 int i;
1948
1949 if (!writenote(&t->notes[0], cprm))
1950 return 0;
1951
1952 if (first && !writenote(&info->psinfo, cprm))
1953 return 0;
1954 if (first && !writenote(&info->signote, cprm))
1955 return 0;
1956 if (first && !writenote(&info->auxv, cprm))
1957 return 0;
1958 if (first && info->files.data &&
1959 !writenote(&info->files, cprm))
1960 return 0;
1961
1962 for (i = 1; i < info->thread_notes; ++i)
1963 if (t->notes[i].data &&
1964 !writenote(&t->notes[i], cprm))
1965 return 0;
1966
1967 first = false;
1968 t = t->next;
1969 } while (t);
1970
1971 return 1;
1972 }
1973
free_note_info(struct elf_note_info * info)1974 static void free_note_info(struct elf_note_info *info)
1975 {
1976 struct elf_thread_core_info *threads = info->thread;
1977 while (threads) {
1978 unsigned int i;
1979 struct elf_thread_core_info *t = threads;
1980 threads = t->next;
1981 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1982 for (i = 1; i < info->thread_notes; ++i)
1983 kvfree(t->notes[i].data);
1984 kfree(t);
1985 }
1986 kfree(info->psinfo.data);
1987 kvfree(info->files.data);
1988 }
1989
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)1990 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1991 elf_addr_t e_shoff, int segs)
1992 {
1993 elf->e_shoff = e_shoff;
1994 elf->e_shentsize = sizeof(*shdr4extnum);
1995 elf->e_shnum = 1;
1996 elf->e_shstrndx = SHN_UNDEF;
1997
1998 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1999
2000 shdr4extnum->sh_type = SHT_NULL;
2001 shdr4extnum->sh_size = elf->e_shnum;
2002 shdr4extnum->sh_link = elf->e_shstrndx;
2003 shdr4extnum->sh_info = segs;
2004 }
2005
2006 /*
2007 * Actual dumper
2008 *
2009 * This is a two-pass process; first we find the offsets of the bits,
2010 * and then they are actually written out. If we run out of core limit
2011 * we just truncate.
2012 */
elf_core_dump(struct coredump_params * cprm)2013 static int elf_core_dump(struct coredump_params *cprm)
2014 {
2015 int has_dumped = 0;
2016 int segs, i;
2017 struct elfhdr elf;
2018 loff_t offset = 0, dataoff;
2019 struct elf_note_info info = { };
2020 struct elf_phdr *phdr4note = NULL;
2021 struct elf_shdr *shdr4extnum = NULL;
2022 Elf_Half e_phnum;
2023 elf_addr_t e_shoff;
2024
2025 /*
2026 * The number of segs are recored into ELF header as 16bit value.
2027 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2028 */
2029 segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
2030
2031 /* for notes section */
2032 segs++;
2033
2034 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2035 * this, kernel supports extended numbering. Have a look at
2036 * include/linux/elf.h for further information. */
2037 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2038
2039 /*
2040 * Collect all the non-memory information about the process for the
2041 * notes. This also sets up the file header.
2042 */
2043 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2044 goto end_coredump;
2045
2046 has_dumped = 1;
2047
2048 offset += sizeof(elf); /* ELF header */
2049 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2050
2051 /* Write notes phdr entry */
2052 {
2053 size_t sz = info.size;
2054
2055 /* For cell spufs and x86 xstate */
2056 sz += elf_coredump_extra_notes_size();
2057
2058 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2059 if (!phdr4note)
2060 goto end_coredump;
2061
2062 fill_elf_note_phdr(phdr4note, sz, offset);
2063 offset += sz;
2064 }
2065
2066 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2067
2068 offset += cprm->vma_data_size;
2069 offset += elf_core_extra_data_size(cprm);
2070 e_shoff = offset;
2071
2072 if (e_phnum == PN_XNUM) {
2073 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2074 if (!shdr4extnum)
2075 goto end_coredump;
2076 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2077 }
2078
2079 offset = dataoff;
2080
2081 if (!dump_emit(cprm, &elf, sizeof(elf)))
2082 goto end_coredump;
2083
2084 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2085 goto end_coredump;
2086
2087 /* Write program headers for segments dump */
2088 for (i = 0; i < cprm->vma_count; i++) {
2089 struct core_vma_metadata *meta = cprm->vma_meta + i;
2090 struct elf_phdr phdr;
2091
2092 phdr.p_type = PT_LOAD;
2093 phdr.p_offset = offset;
2094 phdr.p_vaddr = meta->start;
2095 phdr.p_paddr = 0;
2096 phdr.p_filesz = meta->dump_size;
2097 phdr.p_memsz = meta->end - meta->start;
2098 offset += phdr.p_filesz;
2099 phdr.p_flags = 0;
2100 if (meta->flags & VM_READ)
2101 phdr.p_flags |= PF_R;
2102 if (meta->flags & VM_WRITE)
2103 phdr.p_flags |= PF_W;
2104 if (meta->flags & VM_EXEC)
2105 phdr.p_flags |= PF_X;
2106 phdr.p_align = ELF_EXEC_PAGESIZE;
2107
2108 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2109 goto end_coredump;
2110 }
2111
2112 if (!elf_core_write_extra_phdrs(cprm, offset))
2113 goto end_coredump;
2114
2115 /* write out the notes section */
2116 if (!write_note_info(&info, cprm))
2117 goto end_coredump;
2118
2119 /* For cell spufs and x86 xstate */
2120 if (elf_coredump_extra_notes_write(cprm))
2121 goto end_coredump;
2122
2123 /* Align to page */
2124 dump_skip_to(cprm, dataoff);
2125
2126 for (i = 0; i < cprm->vma_count; i++) {
2127 struct core_vma_metadata *meta = cprm->vma_meta + i;
2128
2129 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2130 goto end_coredump;
2131 }
2132
2133 if (!elf_core_write_extra_data(cprm))
2134 goto end_coredump;
2135
2136 if (e_phnum == PN_XNUM) {
2137 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2138 goto end_coredump;
2139 }
2140
2141 end_coredump:
2142 free_note_info(&info);
2143 kfree(shdr4extnum);
2144 kfree(phdr4note);
2145 return has_dumped;
2146 }
2147
2148 #endif /* CONFIG_ELF_CORE */
2149
init_elf_binfmt(void)2150 static int __init init_elf_binfmt(void)
2151 {
2152 register_binfmt(&elf_format);
2153 return 0;
2154 }
2155
exit_elf_binfmt(void)2156 static void __exit exit_elf_binfmt(void)
2157 {
2158 /* Remove the COFF and ELF loaders. */
2159 unregister_binfmt(&elf_format);
2160 }
2161
2162 core_initcall(init_elf_binfmt);
2163 module_exit(exit_elf_binfmt);
2164
2165 #ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2166 #include "tests/binfmt_elf_kunit.c"
2167 #endif
2168