xref: /linux/fs/ecryptfs/main.c (revision 7879d7aff0ffd969fcb1a59e3f87ebb353e47b7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2003 Erez Zadok
6  * Copyright (C) 2001-2003 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Tyler Hicks <code@tyhicks.com>
11  */
12 
13 #include <linux/dcache.h>
14 #include <linux/file.h>
15 #include <linux/module.h>
16 #include <linux/namei.h>
17 #include <linux/skbuff.h>
18 #include <linux/pagemap.h>
19 #include <linux/key.h>
20 #include <linux/fs_context.h>
21 #include <linux/fs_parser.h>
22 #include <linux/fs_stack.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/magic.h>
26 #include "ecryptfs_kernel.h"
27 
28 /*
29  * Module parameter that defines the ecryptfs_verbosity level.
30  */
31 int ecryptfs_verbosity = 0;
32 
33 module_param(ecryptfs_verbosity, int, 0);
34 MODULE_PARM_DESC(ecryptfs_verbosity,
35 		 "Initial verbosity level (0 or 1; defaults to "
36 		 "0, which is Quiet)");
37 
38 /*
39  * Module parameter that defines the number of message buffer elements
40  */
41 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
42 
43 module_param(ecryptfs_message_buf_len, uint, 0);
44 MODULE_PARM_DESC(ecryptfs_message_buf_len,
45 		 "Number of message buffer elements");
46 
47 /*
48  * Module parameter that defines the maximum guaranteed amount of time to wait
49  * for a response from ecryptfsd.  The actual sleep time will be, more than
50  * likely, a small amount greater than this specified value, but only less if
51  * the message successfully arrives.
52  */
53 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
54 
55 module_param(ecryptfs_message_wait_timeout, long, 0);
56 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
57 		 "Maximum number of seconds that an operation will "
58 		 "sleep while waiting for a message response from "
59 		 "userspace");
60 
61 /*
62  * Module parameter that is an estimate of the maximum number of users
63  * that will be concurrently using eCryptfs. Set this to the right
64  * value to balance performance and memory use.
65  */
66 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
67 
68 module_param(ecryptfs_number_of_users, uint, 0);
69 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
70 		 "concurrent users of eCryptfs");
71 
__ecryptfs_printk(const char * fmt,...)72 void __ecryptfs_printk(const char *fmt, ...)
73 {
74 	va_list args;
75 	va_start(args, fmt);
76 	if (fmt[1] == '7') { /* KERN_DEBUG */
77 		if (ecryptfs_verbosity >= 1)
78 			vprintk(fmt, args);
79 	} else
80 		vprintk(fmt, args);
81 	va_end(args);
82 }
83 
84 /*
85  * ecryptfs_init_lower_file
86  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
87  *                   the lower dentry and the lower mount set
88  *
89  * eCryptfs only ever keeps a single open file for every lower
90  * inode. All I/O operations to the lower inode occur through that
91  * file. When the first eCryptfs dentry that interposes with the first
92  * lower dentry for that inode is created, this function creates the
93  * lower file struct and associates it with the eCryptfs
94  * inode. When all eCryptfs files associated with the inode are released, the
95  * file is closed.
96  *
97  * The lower file will be opened with read/write permissions, if
98  * possible. Otherwise, it is opened read-only.
99  *
100  * This function does nothing if a lower file is already
101  * associated with the eCryptfs inode.
102  *
103  * Returns zero on success; non-zero otherwise
104  */
ecryptfs_init_lower_file(struct dentry * dentry,struct file ** lower_file)105 static int ecryptfs_init_lower_file(struct dentry *dentry,
106 				    struct file **lower_file)
107 {
108 	const struct cred *cred = current_cred();
109 	const struct path *path = ecryptfs_dentry_to_lower_path(dentry);
110 	int rc;
111 
112 	rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
113 				      cred);
114 	if (rc) {
115 		printk(KERN_ERR "Error opening lower file "
116 		       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
117 		       "rc = [%d]\n", path->dentry, path->mnt, rc);
118 		(*lower_file) = NULL;
119 	}
120 	return rc;
121 }
122 
ecryptfs_get_lower_file(struct dentry * dentry,struct inode * inode)123 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
124 {
125 	struct ecryptfs_inode_info *inode_info;
126 	int count, rc = 0;
127 
128 	inode_info = ecryptfs_inode_to_private(inode);
129 	mutex_lock(&inode_info->lower_file_mutex);
130 	count = atomic_inc_return(&inode_info->lower_file_count);
131 	if (WARN_ON_ONCE(count < 1))
132 		rc = -EINVAL;
133 	else if (count == 1) {
134 		rc = ecryptfs_init_lower_file(dentry,
135 					      &inode_info->lower_file);
136 		if (rc)
137 			atomic_set(&inode_info->lower_file_count, 0);
138 	}
139 	mutex_unlock(&inode_info->lower_file_mutex);
140 	return rc;
141 }
142 
ecryptfs_put_lower_file(struct inode * inode)143 void ecryptfs_put_lower_file(struct inode *inode)
144 {
145 	struct ecryptfs_inode_info *inode_info;
146 
147 	inode_info = ecryptfs_inode_to_private(inode);
148 	if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
149 				      &inode_info->lower_file_mutex)) {
150 		filemap_write_and_wait(inode->i_mapping);
151 		fput(inode_info->lower_file);
152 		inode_info->lower_file = NULL;
153 		mutex_unlock(&inode_info->lower_file_mutex);
154 	}
155 }
156 
157 enum {
158 	Opt_sig, Opt_ecryptfs_sig, Opt_cipher, Opt_ecryptfs_cipher,
159 	Opt_ecryptfs_key_bytes, Opt_passthrough, Opt_xattr_metadata,
160 	Opt_encrypted_view, Opt_fnek_sig, Opt_fn_cipher,
161 	Opt_fn_cipher_key_bytes, Opt_unlink_sigs, Opt_mount_auth_tok_only,
162 	Opt_check_dev_ruid
163 };
164 
165 static const struct fs_parameter_spec ecryptfs_fs_param_spec[] = {
166 	fsparam_string	("sig",			    Opt_sig),
167 	fsparam_string	("ecryptfs_sig",	    Opt_ecryptfs_sig),
168 	fsparam_string	("cipher",		    Opt_cipher),
169 	fsparam_string	("ecryptfs_cipher",	    Opt_ecryptfs_cipher),
170 	fsparam_u32	("ecryptfs_key_bytes",	    Opt_ecryptfs_key_bytes),
171 	fsparam_flag	("ecryptfs_passthrough",    Opt_passthrough),
172 	fsparam_flag	("ecryptfs_xattr_metadata", Opt_xattr_metadata),
173 	fsparam_flag	("ecryptfs_encrypted_view", Opt_encrypted_view),
174 	fsparam_string	("ecryptfs_fnek_sig",	    Opt_fnek_sig),
175 	fsparam_string	("ecryptfs_fn_cipher",	    Opt_fn_cipher),
176 	fsparam_u32	("ecryptfs_fn_key_bytes",   Opt_fn_cipher_key_bytes),
177 	fsparam_flag	("ecryptfs_unlink_sigs",    Opt_unlink_sigs),
178 	fsparam_flag	("ecryptfs_mount_auth_tok_only", Opt_mount_auth_tok_only),
179 	fsparam_flag	("ecryptfs_check_dev_ruid", Opt_check_dev_ruid),
180 	{}
181 };
182 
ecryptfs_init_global_auth_toks(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)183 static int ecryptfs_init_global_auth_toks(
184 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
185 {
186 	struct ecryptfs_global_auth_tok *global_auth_tok;
187 	struct ecryptfs_auth_tok *auth_tok;
188 	int rc = 0;
189 
190 	list_for_each_entry(global_auth_tok,
191 			    &mount_crypt_stat->global_auth_tok_list,
192 			    mount_crypt_stat_list) {
193 		rc = ecryptfs_keyring_auth_tok_for_sig(
194 			&global_auth_tok->global_auth_tok_key, &auth_tok,
195 			global_auth_tok->sig);
196 		if (rc) {
197 			printk(KERN_ERR "Could not find valid key in user "
198 			       "session keyring for sig specified in mount "
199 			       "option: [%s]\n", global_auth_tok->sig);
200 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
201 			goto out;
202 		} else {
203 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
204 			up_write(&(global_auth_tok->global_auth_tok_key)->sem);
205 		}
206 	}
207 out:
208 	return rc;
209 }
210 
ecryptfs_init_mount_crypt_stat(struct ecryptfs_mount_crypt_stat * mount_crypt_stat)211 static void ecryptfs_init_mount_crypt_stat(
212 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
213 {
214 	memset((void *)mount_crypt_stat, 0,
215 	       sizeof(struct ecryptfs_mount_crypt_stat));
216 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
217 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
218 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
219 }
220 
221 struct ecryptfs_fs_context {
222 	/* Mount option status trackers */
223 	bool check_ruid;
224 	bool sig_set;
225 	bool cipher_name_set;
226 	bool cipher_key_bytes_set;
227 	bool fn_cipher_name_set;
228 	bool fn_cipher_key_bytes_set;
229 };
230 
231 /**
232  * ecryptfs_parse_param
233  * @fc: The ecryptfs filesystem context
234  * @param: The mount parameter to parse
235  *
236  * The signature of the key to use must be the description of a key
237  * already in the keyring. Mounting will fail if the key can not be
238  * found.
239  *
240  * Returns zero on success; non-zero on error
241  */
ecryptfs_parse_param(struct fs_context * fc,struct fs_parameter * param)242 static int ecryptfs_parse_param(
243 	struct fs_context *fc,
244 	struct fs_parameter *param)
245 {
246 	int rc;
247 	int opt;
248 	struct fs_parse_result result;
249 	struct ecryptfs_fs_context *ctx = fc->fs_private;
250 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
251 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
252 		&sbi->mount_crypt_stat;
253 
254 	opt = fs_parse(fc, ecryptfs_fs_param_spec, param, &result);
255 	if (opt < 0)
256 		return opt;
257 
258 	switch (opt) {
259 	case Opt_sig:
260 	case Opt_ecryptfs_sig:
261 		rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
262 						  param->string, 0);
263 		if (rc) {
264 			printk(KERN_ERR "Error attempting to register "
265 			       "global sig; rc = [%d]\n", rc);
266 			return rc;
267 		}
268 		ctx->sig_set = 1;
269 		break;
270 	case Opt_cipher:
271 	case Opt_ecryptfs_cipher:
272 		strscpy(mount_crypt_stat->global_default_cipher_name,
273 			param->string);
274 		ctx->cipher_name_set = 1;
275 		break;
276 	case Opt_ecryptfs_key_bytes:
277 		mount_crypt_stat->global_default_cipher_key_size =
278 			result.uint_32;
279 		ctx->cipher_key_bytes_set = 1;
280 		break;
281 	case Opt_passthrough:
282 		mount_crypt_stat->flags |=
283 			ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
284 		break;
285 	case Opt_xattr_metadata:
286 		mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
287 		break;
288 	case Opt_encrypted_view:
289 		mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
290 		mount_crypt_stat->flags |= ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
291 		break;
292 	case Opt_fnek_sig:
293 		strscpy(mount_crypt_stat->global_default_fnek_sig,
294 			param->string);
295 		rc = ecryptfs_add_global_auth_tok(
296 			mount_crypt_stat,
297 			mount_crypt_stat->global_default_fnek_sig,
298 			ECRYPTFS_AUTH_TOK_FNEK);
299 		if (rc) {
300 			printk(KERN_ERR "Error attempting to register "
301 			       "global fnek sig [%s]; rc = [%d]\n",
302 			       mount_crypt_stat->global_default_fnek_sig, rc);
303 			return rc;
304 		}
305 		mount_crypt_stat->flags |=
306 			(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
307 			 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
308 		break;
309 	case Opt_fn_cipher:
310 		strscpy(mount_crypt_stat->global_default_fn_cipher_name,
311 			param->string);
312 		ctx->fn_cipher_name_set = 1;
313 		break;
314 	case Opt_fn_cipher_key_bytes:
315 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
316 			result.uint_32;
317 		ctx->fn_cipher_key_bytes_set = 1;
318 		break;
319 	case Opt_unlink_sigs:
320 		mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
321 		break;
322 	case Opt_mount_auth_tok_only:
323 		mount_crypt_stat->flags |= ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
324 		break;
325 	case Opt_check_dev_ruid:
326 		ctx->check_ruid = 1;
327 		break;
328 	default:
329 		return -EINVAL;
330 	}
331 
332 	return 0;
333 }
334 
ecryptfs_validate_options(struct fs_context * fc)335 static int ecryptfs_validate_options(struct fs_context *fc)
336 {
337 	int rc = 0;
338 	u8 cipher_code;
339 	struct ecryptfs_fs_context *ctx = fc->fs_private;
340 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
341 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
342 
343 
344 	mount_crypt_stat = &sbi->mount_crypt_stat;
345 
346 	if (!ctx->sig_set) {
347 		rc = -EINVAL;
348 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
349 				"auth tok signature as a mount "
350 				"parameter; see the eCryptfs README\n");
351 		goto out;
352 	}
353 	if (!ctx->cipher_name_set) {
354 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
355 
356 		BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
357 		strcpy(mount_crypt_stat->global_default_cipher_name,
358 		       ECRYPTFS_DEFAULT_CIPHER);
359 	}
360 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
361 	    && !ctx->fn_cipher_name_set)
362 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
363 		       mount_crypt_stat->global_default_cipher_name);
364 	if (!ctx->cipher_key_bytes_set)
365 		mount_crypt_stat->global_default_cipher_key_size = 0;
366 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
367 	    && !ctx->fn_cipher_key_bytes_set)
368 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
369 			mount_crypt_stat->global_default_cipher_key_size;
370 
371 	cipher_code = ecryptfs_code_for_cipher_string(
372 		mount_crypt_stat->global_default_cipher_name,
373 		mount_crypt_stat->global_default_cipher_key_size);
374 	if (!cipher_code) {
375 		ecryptfs_printk(KERN_ERR,
376 				"eCryptfs doesn't support cipher: %s\n",
377 				mount_crypt_stat->global_default_cipher_name);
378 		rc = -EINVAL;
379 		goto out;
380 	}
381 
382 	mutex_lock(&key_tfm_list_mutex);
383 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
384 				 NULL)) {
385 		rc = ecryptfs_add_new_key_tfm(
386 			NULL, mount_crypt_stat->global_default_cipher_name,
387 			mount_crypt_stat->global_default_cipher_key_size);
388 		if (rc) {
389 			printk(KERN_ERR "Error attempting to initialize "
390 			       "cipher with name = [%s] and key size = [%td]; "
391 			       "rc = [%d]\n",
392 			       mount_crypt_stat->global_default_cipher_name,
393 			       mount_crypt_stat->global_default_cipher_key_size,
394 			       rc);
395 			rc = -EINVAL;
396 			mutex_unlock(&key_tfm_list_mutex);
397 			goto out;
398 		}
399 	}
400 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
401 	    && !ecryptfs_tfm_exists(
402 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
403 		rc = ecryptfs_add_new_key_tfm(
404 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
405 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
406 		if (rc) {
407 			printk(KERN_ERR "Error attempting to initialize "
408 			       "cipher with name = [%s] and key size = [%td]; "
409 			       "rc = [%d]\n",
410 			       mount_crypt_stat->global_default_fn_cipher_name,
411 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
412 			       rc);
413 			rc = -EINVAL;
414 			mutex_unlock(&key_tfm_list_mutex);
415 			goto out;
416 		}
417 	}
418 	mutex_unlock(&key_tfm_list_mutex);
419 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
420 	if (rc)
421 		printk(KERN_WARNING "One or more global auth toks could not "
422 		       "properly register; rc = [%d]\n", rc);
423 out:
424 	return rc;
425 }
426 
427 struct kmem_cache *ecryptfs_sb_info_cache;
428 static struct file_system_type ecryptfs_fs_type;
429 
430 /*
431  * ecryptfs_get_tree
432  * @fc: The filesystem context
433  */
ecryptfs_get_tree(struct fs_context * fc)434 static int ecryptfs_get_tree(struct fs_context *fc)
435 {
436 	struct super_block *s;
437 	struct ecryptfs_fs_context *ctx = fc->fs_private;
438 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
439 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
440 	struct ecryptfs_dentry_info *root_info;
441 	const char *err = "Getting sb failed";
442 	struct inode *inode;
443 	struct path path;
444 	int rc;
445 
446 	if (!fc->source) {
447 		rc = -EINVAL;
448 		err = "Device name cannot be null";
449 		goto out;
450 	}
451 
452 	mount_crypt_stat = &sbi->mount_crypt_stat;
453 	rc = ecryptfs_validate_options(fc);
454 	if (rc) {
455 		err = "Error validating options";
456 		goto out;
457 	}
458 
459 	s = sget_fc(fc, NULL, set_anon_super_fc);
460 	if (IS_ERR(s)) {
461 		rc = PTR_ERR(s);
462 		goto out;
463 	}
464 
465 	rc = super_setup_bdi(s);
466 	if (rc)
467 		goto out1;
468 
469 	ecryptfs_set_superblock_private(s, sbi);
470 
471 	/* ->kill_sb() will take care of sbi after that point */
472 	sbi = NULL;
473 	s->s_op = &ecryptfs_sops;
474 	s->s_xattr = ecryptfs_xattr_handlers;
475 	set_default_d_op(s, &ecryptfs_dops);
476 
477 	err = "Reading sb failed";
478 	rc = kern_path(fc->source, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
479 	if (rc) {
480 		ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
481 		goto out1;
482 	}
483 	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
484 		rc = -EINVAL;
485 		printk(KERN_ERR "Mount on filesystem of type "
486 			"eCryptfs explicitly disallowed due to "
487 			"known incompatibilities\n");
488 		goto out_free;
489 	}
490 
491 	if (is_idmapped_mnt(path.mnt)) {
492 		rc = -EINVAL;
493 		printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
494 		goto out_free;
495 	}
496 
497 	if (ctx->check_ruid &&
498 	    !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
499 		rc = -EPERM;
500 		printk(KERN_ERR "Mount of device (uid: %d) not owned by "
501 		       "requested user (uid: %d)\n",
502 			i_uid_read(d_inode(path.dentry)),
503 			from_kuid(&init_user_ns, current_uid()));
504 		goto out_free;
505 	}
506 
507 	ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
508 
509 	/**
510 	 * Set the POSIX ACL flag based on whether they're enabled in the lower
511 	 * mount.
512 	 */
513 	s->s_flags = fc->sb_flags & ~SB_POSIXACL;
514 	s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
515 
516 	/**
517 	 * Force a read-only eCryptfs mount when:
518 	 *   1) The lower mount is ro
519 	 *   2) The ecryptfs_encrypted_view mount option is specified
520 	 */
521 	if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
522 		s->s_flags |= SB_RDONLY;
523 
524 	s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
525 	s->s_blocksize = path.dentry->d_sb->s_blocksize;
526 	s->s_magic = ECRYPTFS_SUPER_MAGIC;
527 	s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
528 
529 	rc = -EINVAL;
530 	if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
531 		pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
532 		goto out_free;
533 	}
534 
535 	inode = ecryptfs_get_inode(d_inode(path.dentry), s);
536 	rc = PTR_ERR(inode);
537 	if (IS_ERR(inode))
538 		goto out_free;
539 
540 	s->s_root = d_make_root(inode);
541 	if (!s->s_root) {
542 		rc = -ENOMEM;
543 		goto out_free;
544 	}
545 
546 	rc = -ENOMEM;
547 	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
548 	if (!root_info)
549 		goto out_free;
550 
551 	/* ->kill_sb() will take care of root_info */
552 	ecryptfs_set_dentry_private(s->s_root, root_info);
553 	root_info->lower_path = path;
554 
555 	s->s_flags |= SB_ACTIVE;
556 	fc->root = dget(s->s_root);
557 	return 0;
558 
559 out_free:
560 	path_put(&path);
561 out1:
562 	deactivate_locked_super(s);
563 out:
564 	if (sbi)
565 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
566 
567 	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
568 	return rc;
569 }
570 
571 /**
572  * ecryptfs_kill_block_super
573  * @sb: The ecryptfs super block
574  *
575  * Used to bring the superblock down and free the private data.
576  */
ecryptfs_kill_block_super(struct super_block * sb)577 static void ecryptfs_kill_block_super(struct super_block *sb)
578 {
579 	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
580 	kill_anon_super(sb);
581 	if (!sb_info)
582 		return;
583 	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
584 	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
585 }
586 
ecryptfs_free_fc(struct fs_context * fc)587 static void ecryptfs_free_fc(struct fs_context *fc)
588 {
589 	struct ecryptfs_fs_context *ctx = fc->fs_private;
590 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
591 
592 	kfree(ctx);
593 
594 	if (sbi) {
595 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
596 		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
597 	}
598 }
599 
600 static const struct fs_context_operations ecryptfs_context_ops = {
601 	.free		= ecryptfs_free_fc,
602 	.parse_param	= ecryptfs_parse_param,
603 	.get_tree	= ecryptfs_get_tree,
604 	.reconfigure	= NULL,
605 };
606 
ecryptfs_init_fs_context(struct fs_context * fc)607 static int ecryptfs_init_fs_context(struct fs_context *fc)
608 {
609 	struct ecryptfs_fs_context *ctx;
610 	struct ecryptfs_sb_info *sbi = NULL;
611 
612 	ctx = kzalloc(sizeof(struct ecryptfs_fs_context), GFP_KERNEL);
613 	if (!ctx)
614 		return -ENOMEM;
615 	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
616 	if (!sbi) {
617 		kfree(ctx);
618 		ctx = NULL;
619 		return -ENOMEM;
620 	}
621 
622 	ecryptfs_init_mount_crypt_stat(&sbi->mount_crypt_stat);
623 
624 	fc->fs_private = ctx;
625 	fc->s_fs_info = sbi;
626 	fc->ops = &ecryptfs_context_ops;
627 	return 0;
628 }
629 
630 static struct file_system_type ecryptfs_fs_type = {
631 	.owner = THIS_MODULE,
632 	.name = "ecryptfs",
633 	.init_fs_context = ecryptfs_init_fs_context,
634 	.parameters = ecryptfs_fs_param_spec,
635 	.kill_sb = ecryptfs_kill_block_super,
636 	.fs_flags = 0
637 };
638 MODULE_ALIAS_FS("ecryptfs");
639 
640 /*
641  * inode_info_init_once
642  *
643  * Initializes the ecryptfs_inode_info_cache when it is created
644  */
645 static void
inode_info_init_once(void * vptr)646 inode_info_init_once(void *vptr)
647 {
648 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
649 
650 	inode_init_once(&ei->vfs_inode);
651 }
652 
653 static struct ecryptfs_cache_info {
654 	struct kmem_cache **cache;
655 	const char *name;
656 	size_t size;
657 	slab_flags_t flags;
658 	void (*ctor)(void *obj);
659 } ecryptfs_cache_infos[] = {
660 	{
661 		.cache = &ecryptfs_auth_tok_list_item_cache,
662 		.name = "ecryptfs_auth_tok_list_item",
663 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
664 	},
665 	{
666 		.cache = &ecryptfs_file_info_cache,
667 		.name = "ecryptfs_file_cache",
668 		.size = sizeof(struct ecryptfs_file_info),
669 	},
670 	{
671 		.cache = &ecryptfs_dentry_info_cache,
672 		.name = "ecryptfs_dentry_info_cache",
673 		.size = sizeof(struct ecryptfs_dentry_info),
674 	},
675 	{
676 		.cache = &ecryptfs_inode_info_cache,
677 		.name = "ecryptfs_inode_cache",
678 		.size = sizeof(struct ecryptfs_inode_info),
679 		.flags = SLAB_ACCOUNT,
680 		.ctor = inode_info_init_once,
681 	},
682 	{
683 		.cache = &ecryptfs_sb_info_cache,
684 		.name = "ecryptfs_sb_cache",
685 		.size = sizeof(struct ecryptfs_sb_info),
686 	},
687 	{
688 		.cache = &ecryptfs_header_cache,
689 		.name = "ecryptfs_headers",
690 		.size = PAGE_SIZE,
691 	},
692 	{
693 		.cache = &ecryptfs_xattr_cache,
694 		.name = "ecryptfs_xattr_cache",
695 		.size = PAGE_SIZE,
696 	},
697 	{
698 		.cache = &ecryptfs_key_record_cache,
699 		.name = "ecryptfs_key_record_cache",
700 		.size = sizeof(struct ecryptfs_key_record),
701 	},
702 	{
703 		.cache = &ecryptfs_key_sig_cache,
704 		.name = "ecryptfs_key_sig_cache",
705 		.size = sizeof(struct ecryptfs_key_sig),
706 	},
707 	{
708 		.cache = &ecryptfs_global_auth_tok_cache,
709 		.name = "ecryptfs_global_auth_tok_cache",
710 		.size = sizeof(struct ecryptfs_global_auth_tok),
711 	},
712 	{
713 		.cache = &ecryptfs_key_tfm_cache,
714 		.name = "ecryptfs_key_tfm_cache",
715 		.size = sizeof(struct ecryptfs_key_tfm),
716 	},
717 };
718 
ecryptfs_free_kmem_caches(void)719 static void ecryptfs_free_kmem_caches(void)
720 {
721 	int i;
722 
723 	/*
724 	 * Make sure all delayed rcu free inodes are flushed before we
725 	 * destroy cache.
726 	 */
727 	rcu_barrier();
728 
729 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
730 		struct ecryptfs_cache_info *info;
731 
732 		info = &ecryptfs_cache_infos[i];
733 		kmem_cache_destroy(*(info->cache));
734 	}
735 }
736 
737 /**
738  * ecryptfs_init_kmem_caches
739  *
740  * Returns zero on success; non-zero otherwise
741  */
ecryptfs_init_kmem_caches(void)742 static int ecryptfs_init_kmem_caches(void)
743 {
744 	int i;
745 
746 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
747 		struct ecryptfs_cache_info *info;
748 
749 		info = &ecryptfs_cache_infos[i];
750 		*(info->cache) = kmem_cache_create(info->name, info->size, 0,
751 				SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
752 		if (!*(info->cache)) {
753 			ecryptfs_free_kmem_caches();
754 			ecryptfs_printk(KERN_WARNING, "%s: "
755 					"kmem_cache_create failed\n",
756 					info->name);
757 			return -ENOMEM;
758 		}
759 	}
760 	return 0;
761 }
762 
763 static struct kobject *ecryptfs_kobj;
764 
version_show(struct kobject * kobj,struct kobj_attribute * attr,char * buff)765 static ssize_t version_show(struct kobject *kobj,
766 			    struct kobj_attribute *attr, char *buff)
767 {
768 	return sysfs_emit(buff, "%d\n", ECRYPTFS_VERSIONING_MASK);
769 }
770 
771 static struct kobj_attribute version_attr = __ATTR_RO(version);
772 
773 static struct attribute *attributes[] = {
774 	&version_attr.attr,
775 	NULL,
776 };
777 
778 static const struct attribute_group attr_group = {
779 	.attrs = attributes,
780 };
781 
do_sysfs_registration(void)782 static int do_sysfs_registration(void)
783 {
784 	int rc;
785 
786 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
787 	if (!ecryptfs_kobj) {
788 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
789 		rc = -ENOMEM;
790 		goto out;
791 	}
792 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
793 	if (rc) {
794 		printk(KERN_ERR
795 		       "Unable to create ecryptfs version attributes\n");
796 		kobject_put(ecryptfs_kobj);
797 	}
798 out:
799 	return rc;
800 }
801 
do_sysfs_unregistration(void)802 static void do_sysfs_unregistration(void)
803 {
804 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
805 	kobject_put(ecryptfs_kobj);
806 }
807 
ecryptfs_init(void)808 static int __init ecryptfs_init(void)
809 {
810 	int rc;
811 
812 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
813 		rc = -EINVAL;
814 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
815 				"larger than the host's page size, and so "
816 				"eCryptfs cannot run on this system. The "
817 				"default eCryptfs extent size is [%u] bytes; "
818 				"the page size is [%lu] bytes.\n",
819 				ECRYPTFS_DEFAULT_EXTENT_SIZE,
820 				(unsigned long)PAGE_SIZE);
821 		goto out;
822 	}
823 	rc = ecryptfs_init_kmem_caches();
824 	if (rc) {
825 		printk(KERN_ERR
826 		       "Failed to allocate one or more kmem_cache objects\n");
827 		goto out;
828 	}
829 	rc = do_sysfs_registration();
830 	if (rc) {
831 		printk(KERN_ERR "sysfs registration failed\n");
832 		goto out_free_kmem_caches;
833 	}
834 	rc = ecryptfs_init_kthread();
835 	if (rc) {
836 		printk(KERN_ERR "%s: kthread initialization failed; "
837 		       "rc = [%d]\n", __func__, rc);
838 		goto out_do_sysfs_unregistration;
839 	}
840 	rc = ecryptfs_init_messaging();
841 	if (rc) {
842 		printk(KERN_ERR "Failure occurred while attempting to "
843 				"initialize the communications channel to "
844 				"ecryptfsd\n");
845 		goto out_destroy_kthread;
846 	}
847 	rc = ecryptfs_init_crypto();
848 	if (rc) {
849 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
850 		       "rc = [%d]\n", rc);
851 		goto out_release_messaging;
852 	}
853 	rc = register_filesystem(&ecryptfs_fs_type);
854 	if (rc) {
855 		printk(KERN_ERR "Failed to register filesystem\n");
856 		goto out_destroy_crypto;
857 	}
858 	if (ecryptfs_verbosity > 0)
859 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
860 			"will be written to the syslog!\n", ecryptfs_verbosity);
861 
862 	goto out;
863 out_destroy_crypto:
864 	ecryptfs_destroy_crypto();
865 out_release_messaging:
866 	ecryptfs_release_messaging();
867 out_destroy_kthread:
868 	ecryptfs_destroy_kthread();
869 out_do_sysfs_unregistration:
870 	do_sysfs_unregistration();
871 out_free_kmem_caches:
872 	ecryptfs_free_kmem_caches();
873 out:
874 	return rc;
875 }
876 
ecryptfs_exit(void)877 static void __exit ecryptfs_exit(void)
878 {
879 	int rc;
880 
881 	rc = ecryptfs_destroy_crypto();
882 	if (rc)
883 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
884 		       "rc = [%d]\n", rc);
885 	ecryptfs_release_messaging();
886 	ecryptfs_destroy_kthread();
887 	do_sysfs_unregistration();
888 	unregister_filesystem(&ecryptfs_fs_type);
889 	ecryptfs_free_kmem_caches();
890 }
891 
892 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
893 MODULE_DESCRIPTION("eCryptfs");
894 
895 MODULE_LICENSE("GPL");
896 
897 module_init(ecryptfs_init)
898 module_exit(ecryptfs_exit)
899