xref: /linux/drivers/net/ethernet/smsc/smc91x.c (revision dbf8fe85a16a33d6b6bd01f2bc606fc017771465)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * smc91x.c
4  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5  *
6  * Copyright (C) 1996 by Erik Stahlman
7  * Copyright (C) 2001 Standard Microsystems Corporation
8  *	Developed by Simple Network Magic Corporation
9  * Copyright (C) 2003 Monta Vista Software, Inc.
10  *	Unified SMC91x driver by Nicolas Pitre
11  *
12  * Arguments:
13  * 	io	= for the base address
14  *	irq	= for the IRQ
15  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
16  *
17  * original author:
18  * 	Erik Stahlman <erik@vt.edu>
19  *
20  * hardware multicast code:
21  *    Peter Cammaert <pc@denkart.be>
22  *
23  * contributors:
24  * 	Daris A Nevil <dnevil@snmc.com>
25  *      Nicolas Pitre <nico@fluxnic.net>
26  *	Russell King <rmk@arm.linux.org.uk>
27  *
28  * History:
29  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
30  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
31  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
32  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
33  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
34  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
35  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
36  *                                more bus abstraction, big cleanup, etc.
37  *   29/09/03  Russell King       - add driver model support
38  *                                - ethtool support
39  *                                - convert to use generic MII interface
40  *                                - add link up/down notification
41  *                                - don't try to handle full negotiation in
42  *                                  smc_phy_configure
43  *                                - clean up (and fix stack overrun) in PHY
44  *                                  MII read/write functions
45  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
46  */
47 static const char version[] =
48 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49 
50 /* Debugging level */
51 #ifndef SMC_DEBUG
52 #define SMC_DEBUG		0
53 #endif
54 
55 
56 #include <linux/module.h>
57 #include <linux/kernel.h>
58 #include <linux/sched.h>
59 #include <linux/delay.h>
60 #include <linux/gpio/consumer.h>
61 #include <linux/interrupt.h>
62 #include <linux/irq.h>
63 #include <linux/errno.h>
64 #include <linux/ioport.h>
65 #include <linux/crc32.h>
66 #include <linux/platform_device.h>
67 #include <linux/spinlock.h>
68 #include <linux/ethtool.h>
69 #include <linux/mii.h>
70 #include <linux/workqueue.h>
71 #include <linux/of.h>
72 #include <linux/of_device.h>
73 
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 
78 #include <asm/io.h>
79 
80 #include "smc91x.h"
81 
82 #if defined(CONFIG_ASSABET_NEPONSET)
83 #include <mach/assabet.h>
84 #include <mach/neponset.h>
85 #endif
86 
87 #ifndef SMC_NOWAIT
88 # define SMC_NOWAIT		0
89 #endif
90 static int nowait = SMC_NOWAIT;
91 module_param(nowait, int, 0400);
92 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93 
94 /*
95  * Transmit timeout, default 5 seconds.
96  */
97 static int watchdog = 1000;
98 module_param(watchdog, int, 0400);
99 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100 
101 MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver");
102 MODULE_LICENSE("GPL");
103 MODULE_ALIAS("platform:smc91x");
104 
105 /*
106  * The internal workings of the driver.  If you are changing anything
107  * here with the SMC stuff, you should have the datasheet and know
108  * what you are doing.
109  */
110 #define CARDNAME "smc91x"
111 
112 /*
113  * Use power-down feature of the chip
114  */
115 #define POWER_DOWN		1
116 
117 /*
118  * Wait time for memory to be free.  This probably shouldn't be
119  * tuned that much, as waiting for this means nothing else happens
120  * in the system
121  */
122 #define MEMORY_WAIT_TIME	16
123 
124 /*
125  * The maximum number of processing loops allowed for each call to the
126  * IRQ handler.
127  */
128 #define MAX_IRQ_LOOPS		8
129 
130 /*
131  * This selects whether TX packets are sent one by one to the SMC91x internal
132  * memory and throttled until transmission completes.  This may prevent
133  * RX overruns a litle by keeping much of the memory free for RX packets
134  * but to the expense of reduced TX throughput and increased IRQ overhead.
135  * Note this is not a cure for a too slow data bus or too high IRQ latency.
136  */
137 #define THROTTLE_TX_PKTS	0
138 
139 /*
140  * The MII clock high/low times.  2x this number gives the MII clock period
141  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
142  */
143 #define MII_DELAY		1
144 
145 #define DBG(n, dev, fmt, ...)					\
146 	do {							\
147 		if (SMC_DEBUG >= (n))				\
148 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
149 	} while (0)
150 
151 #define PRINTK(dev, fmt, ...)					\
152 	do {							\
153 		if (SMC_DEBUG > 0)				\
154 			netdev_info(dev, fmt, ##__VA_ARGS__);	\
155 		else						\
156 			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
157 	} while (0)
158 
159 #if SMC_DEBUG > 3
PRINT_PKT(u_char * buf,int length)160 static void PRINT_PKT(u_char *buf, int length)
161 {
162 	int i;
163 	int remainder;
164 	int lines;
165 
166 	lines = length / 16;
167 	remainder = length % 16;
168 
169 	for (i = 0; i < lines ; i ++) {
170 		int cur;
171 		printk(KERN_DEBUG);
172 		for (cur = 0; cur < 8; cur++) {
173 			u_char a, b;
174 			a = *buf++;
175 			b = *buf++;
176 			pr_cont("%02x%02x ", a, b);
177 		}
178 		pr_cont("\n");
179 	}
180 	printk(KERN_DEBUG);
181 	for (i = 0; i < remainder/2 ; i++) {
182 		u_char a, b;
183 		a = *buf++;
184 		b = *buf++;
185 		pr_cont("%02x%02x ", a, b);
186 	}
187 	pr_cont("\n");
188 }
189 #else
PRINT_PKT(u_char * buf,int length)190 static inline void PRINT_PKT(u_char *buf, int length) { }
191 #endif
192 
193 
194 /* this enables an interrupt in the interrupt mask register */
195 #define SMC_ENABLE_INT(lp, x) do {					\
196 	unsigned char mask;						\
197 	unsigned long smc_enable_flags;					\
198 	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
199 	mask = SMC_GET_INT_MASK(lp);					\
200 	mask |= (x);							\
201 	SMC_SET_INT_MASK(lp, mask);					\
202 	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
203 } while (0)
204 
205 /* this disables an interrupt from the interrupt mask register */
206 #define SMC_DISABLE_INT(lp, x) do {					\
207 	unsigned char mask;						\
208 	unsigned long smc_disable_flags;				\
209 	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
210 	mask = SMC_GET_INT_MASK(lp);					\
211 	mask &= ~(x);							\
212 	SMC_SET_INT_MASK(lp, mask);					\
213 	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
214 } while (0)
215 
216 /*
217  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
218  * if at all, but let's avoid deadlocking the system if the hardware
219  * decides to go south.
220  */
221 #define SMC_WAIT_MMU_BUSY(lp) do {					\
222 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
223 		unsigned long timeout = jiffies + 2;			\
224 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
225 			if (time_after(jiffies, timeout)) {		\
226 				netdev_dbg(dev, "timeout %s line %d\n",	\
227 					   __FILE__, __LINE__);		\
228 				break;					\
229 			}						\
230 			cpu_relax();					\
231 		}							\
232 	}								\
233 } while (0)
234 
235 
236 /*
237  * this does a soft reset on the device
238  */
smc_reset(struct net_device * dev)239 static void smc_reset(struct net_device *dev)
240 {
241 	struct smc_local *lp = netdev_priv(dev);
242 	void __iomem *ioaddr = lp->base;
243 	unsigned int ctl, cfg;
244 	struct sk_buff *pending_skb;
245 
246 	DBG(2, dev, "%s\n", __func__);
247 
248 	/* Disable all interrupts, block TX tasklet */
249 	spin_lock_irq(&lp->lock);
250 	SMC_SELECT_BANK(lp, 2);
251 	SMC_SET_INT_MASK(lp, 0);
252 	pending_skb = lp->pending_tx_skb;
253 	lp->pending_tx_skb = NULL;
254 	spin_unlock_irq(&lp->lock);
255 
256 	/* free any pending tx skb */
257 	if (pending_skb) {
258 		dev_kfree_skb(pending_skb);
259 		dev->stats.tx_errors++;
260 		dev->stats.tx_aborted_errors++;
261 	}
262 
263 	/*
264 	 * This resets the registers mostly to defaults, but doesn't
265 	 * affect EEPROM.  That seems unnecessary
266 	 */
267 	SMC_SELECT_BANK(lp, 0);
268 	SMC_SET_RCR(lp, RCR_SOFTRST);
269 
270 	/*
271 	 * Setup the Configuration Register
272 	 * This is necessary because the CONFIG_REG is not affected
273 	 * by a soft reset
274 	 */
275 	SMC_SELECT_BANK(lp, 1);
276 
277 	cfg = CONFIG_DEFAULT;
278 
279 	/*
280 	 * Setup for fast accesses if requested.  If the card/system
281 	 * can't handle it then there will be no recovery except for
282 	 * a hard reset or power cycle
283 	 */
284 	if (lp->cfg.flags & SMC91X_NOWAIT)
285 		cfg |= CONFIG_NO_WAIT;
286 
287 	/*
288 	 * Release from possible power-down state
289 	 * Configuration register is not affected by Soft Reset
290 	 */
291 	cfg |= CONFIG_EPH_POWER_EN;
292 
293 	SMC_SET_CONFIG(lp, cfg);
294 
295 	/* this should pause enough for the chip to be happy */
296 	/*
297 	 * elaborate?  What does the chip _need_? --jgarzik
298 	 *
299 	 * This seems to be undocumented, but something the original
300 	 * driver(s) have always done.  Suspect undocumented timing
301 	 * info/determined empirically. --rmk
302 	 */
303 	udelay(1);
304 
305 	/* Disable transmit and receive functionality */
306 	SMC_SELECT_BANK(lp, 0);
307 	SMC_SET_RCR(lp, RCR_CLEAR);
308 	SMC_SET_TCR(lp, TCR_CLEAR);
309 
310 	SMC_SELECT_BANK(lp, 1);
311 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312 
313 	/*
314 	 * Set the control register to automatically release successfully
315 	 * transmitted packets, to make the best use out of our limited
316 	 * memory
317 	 */
318 	if(!THROTTLE_TX_PKTS)
319 		ctl |= CTL_AUTO_RELEASE;
320 	else
321 		ctl &= ~CTL_AUTO_RELEASE;
322 	SMC_SET_CTL(lp, ctl);
323 
324 	/* Reset the MMU */
325 	SMC_SELECT_BANK(lp, 2);
326 	SMC_SET_MMU_CMD(lp, MC_RESET);
327 	SMC_WAIT_MMU_BUSY(lp);
328 }
329 
330 /*
331  * Enable Interrupts, Receive, and Transmit
332  */
smc_enable(struct net_device * dev)333 static void smc_enable(struct net_device *dev)
334 {
335 	struct smc_local *lp = netdev_priv(dev);
336 	void __iomem *ioaddr = lp->base;
337 	int mask;
338 
339 	DBG(2, dev, "%s\n", __func__);
340 
341 	/* see the header file for options in TCR/RCR DEFAULT */
342 	SMC_SELECT_BANK(lp, 0);
343 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
344 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
345 
346 	SMC_SELECT_BANK(lp, 1);
347 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348 
349 	/* now, enable interrupts */
350 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351 	if (lp->version >= (CHIP_91100 << 4))
352 		mask |= IM_MDINT;
353 	SMC_SELECT_BANK(lp, 2);
354 	SMC_SET_INT_MASK(lp, mask);
355 
356 	/*
357 	 * From this point the register bank must _NOT_ be switched away
358 	 * to something else than bank 2 without proper locking against
359 	 * races with any tasklet or interrupt handlers until smc_shutdown()
360 	 * or smc_reset() is called.
361 	 */
362 }
363 
364 /*
365  * this puts the device in an inactive state
366  */
smc_shutdown(struct net_device * dev)367 static void smc_shutdown(struct net_device *dev)
368 {
369 	struct smc_local *lp = netdev_priv(dev);
370 	void __iomem *ioaddr = lp->base;
371 	struct sk_buff *pending_skb;
372 
373 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
374 
375 	/* no more interrupts for me */
376 	spin_lock_irq(&lp->lock);
377 	SMC_SELECT_BANK(lp, 2);
378 	SMC_SET_INT_MASK(lp, 0);
379 	pending_skb = lp->pending_tx_skb;
380 	lp->pending_tx_skb = NULL;
381 	spin_unlock_irq(&lp->lock);
382 	dev_kfree_skb(pending_skb);
383 
384 	/* and tell the card to stay away from that nasty outside world */
385 	SMC_SELECT_BANK(lp, 0);
386 	SMC_SET_RCR(lp, RCR_CLEAR);
387 	SMC_SET_TCR(lp, TCR_CLEAR);
388 
389 #ifdef POWER_DOWN
390 	/* finally, shut the chip down */
391 	SMC_SELECT_BANK(lp, 1);
392 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
393 #endif
394 }
395 
396 /*
397  * This is the procedure to handle the receipt of a packet.
398  */
smc_rcv(struct net_device * dev)399 static inline void  smc_rcv(struct net_device *dev)
400 {
401 	struct smc_local *lp = netdev_priv(dev);
402 	void __iomem *ioaddr = lp->base;
403 	unsigned int packet_number, status, packet_len;
404 
405 	DBG(3, dev, "%s\n", __func__);
406 
407 	packet_number = SMC_GET_RXFIFO(lp);
408 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
409 		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
410 		return;
411 	}
412 
413 	/* read from start of packet */
414 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
415 
416 	/* First two words are status and packet length */
417 	SMC_GET_PKT_HDR(lp, status, packet_len);
418 	packet_len &= 0x07ff;  /* mask off top bits */
419 	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
420 	    packet_number, status, packet_len, packet_len);
421 
422 	back:
423 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
424 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
425 			/* accept VLAN packets */
426 			status &= ~RS_TOOLONG;
427 			goto back;
428 		}
429 		if (packet_len < 6) {
430 			/* bloody hardware */
431 			netdev_err(dev, "fubar (rxlen %u status %x\n",
432 				   packet_len, status);
433 			status |= RS_TOOSHORT;
434 		}
435 		SMC_WAIT_MMU_BUSY(lp);
436 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
437 		dev->stats.rx_errors++;
438 		if (status & RS_ALGNERR)
439 			dev->stats.rx_frame_errors++;
440 		if (status & (RS_TOOSHORT | RS_TOOLONG))
441 			dev->stats.rx_length_errors++;
442 		if (status & RS_BADCRC)
443 			dev->stats.rx_crc_errors++;
444 	} else {
445 		struct sk_buff *skb;
446 		unsigned char *data;
447 		unsigned int data_len;
448 
449 		/* set multicast stats */
450 		if (status & RS_MULTICAST)
451 			dev->stats.multicast++;
452 
453 		/*
454 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
455 		 * We want skb_reserve(2) and the final ctrl word
456 		 * (2 bytes, possibly containing the payload odd byte).
457 		 * Furthermore, we add 2 bytes to allow rounding up to
458 		 * multiple of 4 bytes on 32 bit buses.
459 		 * Hence packet_len - 6 + 2 + 2 + 2.
460 		 */
461 		skb = netdev_alloc_skb(dev, packet_len);
462 		if (unlikely(skb == NULL)) {
463 			SMC_WAIT_MMU_BUSY(lp);
464 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
465 			dev->stats.rx_dropped++;
466 			return;
467 		}
468 
469 		/* Align IP header to 32 bits */
470 		skb_reserve(skb, 2);
471 
472 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
473 		if (lp->version == 0x90)
474 			status |= RS_ODDFRAME;
475 
476 		/*
477 		 * If odd length: packet_len - 5,
478 		 * otherwise packet_len - 6.
479 		 * With the trailing ctrl byte it's packet_len - 4.
480 		 */
481 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
482 		data = skb_put(skb, data_len);
483 		SMC_PULL_DATA(lp, data, packet_len - 4);
484 
485 		SMC_WAIT_MMU_BUSY(lp);
486 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
487 
488 		PRINT_PKT(data, packet_len - 4);
489 
490 		skb->protocol = eth_type_trans(skb, dev);
491 		netif_rx(skb);
492 		dev->stats.rx_packets++;
493 		dev->stats.rx_bytes += data_len;
494 	}
495 }
496 
497 #ifdef CONFIG_SMP
498 /*
499  * On SMP we have the following problem:
500  *
501  * 	A = smc_hardware_send_pkt()
502  * 	B = smc_hard_start_xmit()
503  * 	C = smc_interrupt()
504  *
505  * A and B can never be executed simultaneously.  However, at least on UP,
506  * it is possible (and even desirable) for C to interrupt execution of
507  * A or B in order to have better RX reliability and avoid overruns.
508  * C, just like A and B, must have exclusive access to the chip and
509  * each of them must lock against any other concurrent access.
510  * Unfortunately this is not possible to have C suspend execution of A or
511  * B taking place on another CPU. On UP this is no an issue since A and B
512  * are run from softirq context and C from hard IRQ context, and there is
513  * no other CPU where concurrent access can happen.
514  * If ever there is a way to force at least B and C to always be executed
515  * on the same CPU then we could use read/write locks to protect against
516  * any other concurrent access and C would always interrupt B. But life
517  * isn't that easy in a SMP world...
518  */
519 #define smc_special_trylock(lock, flags)	spin_trylock_irqsave(lock, flags)
520 #define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
521 #define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
522 #else
523 #define smc_special_trylock(lock, flags)	((void)flags, true)
524 #define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
525 #define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
526 #endif
527 
528 /*
529  * This is called to actually send a packet to the chip.
530  */
smc_hardware_send_pkt(struct tasklet_struct * t)531 static void smc_hardware_send_pkt(struct tasklet_struct *t)
532 {
533 	struct smc_local *lp = from_tasklet(lp, t, tx_task);
534 	struct net_device *dev = lp->dev;
535 	void __iomem *ioaddr = lp->base;
536 	struct sk_buff *skb;
537 	unsigned int packet_no, len;
538 	unsigned char *buf;
539 	unsigned long flags;
540 
541 	DBG(3, dev, "%s\n", __func__);
542 
543 	if (!smc_special_trylock(&lp->lock, flags)) {
544 		netif_stop_queue(dev);
545 		tasklet_schedule(&lp->tx_task);
546 		return;
547 	}
548 
549 	skb = lp->pending_tx_skb;
550 	if (unlikely(!skb)) {
551 		smc_special_unlock(&lp->lock, flags);
552 		return;
553 	}
554 	lp->pending_tx_skb = NULL;
555 
556 	packet_no = SMC_GET_AR(lp);
557 	if (unlikely(packet_no & AR_FAILED)) {
558 		netdev_err(dev, "Memory allocation failed.\n");
559 		dev->stats.tx_errors++;
560 		dev->stats.tx_fifo_errors++;
561 		smc_special_unlock(&lp->lock, flags);
562 		goto done;
563 	}
564 
565 	/* point to the beginning of the packet */
566 	SMC_SET_PN(lp, packet_no);
567 	SMC_SET_PTR(lp, PTR_AUTOINC);
568 
569 	buf = skb->data;
570 	len = skb->len;
571 	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
572 	    packet_no, len, len, buf);
573 	PRINT_PKT(buf, len);
574 
575 	/*
576 	 * Send the packet length (+6 for status words, length, and ctl.
577 	 * The card will pad to 64 bytes with zeroes if packet is too small.
578 	 */
579 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
580 
581 	/* send the actual data */
582 	SMC_PUSH_DATA(lp, buf, len & ~1);
583 
584 	/* Send final ctl word with the last byte if there is one */
585 	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
586 		 DATA_REG(lp));
587 
588 	/*
589 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
590 	 * have the effect of having at most one packet queued for TX
591 	 * in the chip's memory at all time.
592 	 *
593 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
594 	 * when memory allocation (MC_ALLOC) does not succeed right away.
595 	 */
596 	if (THROTTLE_TX_PKTS)
597 		netif_stop_queue(dev);
598 
599 	/* queue the packet for TX */
600 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
601 	smc_special_unlock(&lp->lock, flags);
602 
603 	netif_trans_update(dev);
604 	dev->stats.tx_packets++;
605 	dev->stats.tx_bytes += len;
606 
607 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
608 
609 done:	if (!THROTTLE_TX_PKTS)
610 		netif_wake_queue(dev);
611 
612 	dev_consume_skb_any(skb);
613 }
614 
615 /*
616  * Since I am not sure if I will have enough room in the chip's ram
617  * to store the packet, I call this routine which either sends it
618  * now, or set the card to generates an interrupt when ready
619  * for the packet.
620  */
621 static netdev_tx_t
smc_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)622 smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
623 {
624 	struct smc_local *lp = netdev_priv(dev);
625 	void __iomem *ioaddr = lp->base;
626 	unsigned int numPages, poll_count, status;
627 	unsigned long flags;
628 
629 	DBG(3, dev, "%s\n", __func__);
630 
631 	BUG_ON(lp->pending_tx_skb != NULL);
632 
633 	/*
634 	 * The MMU wants the number of pages to be the number of 256 bytes
635 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
636 	 *
637 	 * The 91C111 ignores the size bits, but earlier models don't.
638 	 *
639 	 * Pkt size for allocating is data length +6 (for additional status
640 	 * words, length and ctl)
641 	 *
642 	 * If odd size then last byte is included in ctl word.
643 	 */
644 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
645 	if (unlikely(numPages > 7)) {
646 		netdev_warn(dev, "Far too big packet error.\n");
647 		dev->stats.tx_errors++;
648 		dev->stats.tx_dropped++;
649 		dev_kfree_skb_any(skb);
650 		return NETDEV_TX_OK;
651 	}
652 
653 	smc_special_lock(&lp->lock, flags);
654 
655 	/* now, try to allocate the memory */
656 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
657 
658 	/*
659 	 * Poll the chip for a short amount of time in case the
660 	 * allocation succeeds quickly.
661 	 */
662 	poll_count = MEMORY_WAIT_TIME;
663 	do {
664 		status = SMC_GET_INT(lp);
665 		if (status & IM_ALLOC_INT) {
666 			SMC_ACK_INT(lp, IM_ALLOC_INT);
667 			break;
668 		}
669 	} while (--poll_count);
670 
671 	smc_special_unlock(&lp->lock, flags);
672 
673 	lp->pending_tx_skb = skb;
674 	if (!poll_count) {
675 		/* oh well, wait until the chip finds memory later */
676 		netif_stop_queue(dev);
677 		DBG(2, dev, "TX memory allocation deferred.\n");
678 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
679 	} else {
680 		/*
681 		 * Allocation succeeded: push packet to the chip's own memory
682 		 * immediately.
683 		 */
684 		smc_hardware_send_pkt(&lp->tx_task);
685 	}
686 
687 	return NETDEV_TX_OK;
688 }
689 
690 /*
691  * This handles a TX interrupt, which is only called when:
692  * - a TX error occurred, or
693  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
694  */
smc_tx(struct net_device * dev)695 static void smc_tx(struct net_device *dev)
696 {
697 	struct smc_local *lp = netdev_priv(dev);
698 	void __iomem *ioaddr = lp->base;
699 	unsigned int saved_packet, packet_no, tx_status;
700 	unsigned int pkt_len __always_unused;
701 
702 	DBG(3, dev, "%s\n", __func__);
703 
704 	/* If the TX FIFO is empty then nothing to do */
705 	packet_no = SMC_GET_TXFIFO(lp);
706 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
707 		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
708 		return;
709 	}
710 
711 	/* select packet to read from */
712 	saved_packet = SMC_GET_PN(lp);
713 	SMC_SET_PN(lp, packet_no);
714 
715 	/* read the first word (status word) from this packet */
716 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
717 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
718 	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
719 	    tx_status, packet_no);
720 
721 	if (!(tx_status & ES_TX_SUC))
722 		dev->stats.tx_errors++;
723 
724 	if (tx_status & ES_LOSTCARR)
725 		dev->stats.tx_carrier_errors++;
726 
727 	if (tx_status & (ES_LATCOL | ES_16COL)) {
728 		PRINTK(dev, "%s occurred on last xmit\n",
729 		       (tx_status & ES_LATCOL) ?
730 			"late collision" : "too many collisions");
731 		dev->stats.tx_window_errors++;
732 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
733 			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
734 		}
735 	}
736 
737 	/* kill the packet */
738 	SMC_WAIT_MMU_BUSY(lp);
739 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
740 
741 	/* Don't restore Packet Number Reg until busy bit is cleared */
742 	SMC_WAIT_MMU_BUSY(lp);
743 	SMC_SET_PN(lp, saved_packet);
744 
745 	/* re-enable transmit */
746 	SMC_SELECT_BANK(lp, 0);
747 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
748 	SMC_SELECT_BANK(lp, 2);
749 }
750 
751 
752 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
753 
smc_mii_out(struct net_device * dev,unsigned int val,int bits)754 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
755 {
756 	struct smc_local *lp = netdev_priv(dev);
757 	void __iomem *ioaddr = lp->base;
758 	unsigned int mii_reg, mask;
759 
760 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
761 	mii_reg |= MII_MDOE;
762 
763 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
764 		if (val & mask)
765 			mii_reg |= MII_MDO;
766 		else
767 			mii_reg &= ~MII_MDO;
768 
769 		SMC_SET_MII(lp, mii_reg);
770 		udelay(MII_DELAY);
771 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
772 		udelay(MII_DELAY);
773 	}
774 }
775 
smc_mii_in(struct net_device * dev,int bits)776 static unsigned int smc_mii_in(struct net_device *dev, int bits)
777 {
778 	struct smc_local *lp = netdev_priv(dev);
779 	void __iomem *ioaddr = lp->base;
780 	unsigned int mii_reg, mask, val;
781 
782 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
783 	SMC_SET_MII(lp, mii_reg);
784 
785 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
786 		if (SMC_GET_MII(lp) & MII_MDI)
787 			val |= mask;
788 
789 		SMC_SET_MII(lp, mii_reg);
790 		udelay(MII_DELAY);
791 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
792 		udelay(MII_DELAY);
793 	}
794 
795 	return val;
796 }
797 
798 /*
799  * Reads a register from the MII Management serial interface
800  */
smc_phy_read(struct net_device * dev,int phyaddr,int phyreg)801 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
802 {
803 	struct smc_local *lp = netdev_priv(dev);
804 	void __iomem *ioaddr = lp->base;
805 	unsigned int phydata;
806 
807 	SMC_SELECT_BANK(lp, 3);
808 
809 	/* Idle - 32 ones */
810 	smc_mii_out(dev, 0xffffffff, 32);
811 
812 	/* Start code (01) + read (10) + phyaddr + phyreg */
813 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
814 
815 	/* Turnaround (2bits) + phydata */
816 	phydata = smc_mii_in(dev, 18);
817 
818 	/* Return to idle state */
819 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
820 
821 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
822 	    __func__, phyaddr, phyreg, phydata);
823 
824 	SMC_SELECT_BANK(lp, 2);
825 	return phydata;
826 }
827 
828 /*
829  * Writes a register to the MII Management serial interface
830  */
smc_phy_write(struct net_device * dev,int phyaddr,int phyreg,int phydata)831 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
832 			  int phydata)
833 {
834 	struct smc_local *lp = netdev_priv(dev);
835 	void __iomem *ioaddr = lp->base;
836 
837 	SMC_SELECT_BANK(lp, 3);
838 
839 	/* Idle - 32 ones */
840 	smc_mii_out(dev, 0xffffffff, 32);
841 
842 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
843 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
844 
845 	/* Return to idle state */
846 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
847 
848 	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
849 	    __func__, phyaddr, phyreg, phydata);
850 
851 	SMC_SELECT_BANK(lp, 2);
852 }
853 
854 /*
855  * Finds and reports the PHY address
856  */
smc_phy_detect(struct net_device * dev)857 static void smc_phy_detect(struct net_device *dev)
858 {
859 	struct smc_local *lp = netdev_priv(dev);
860 	int phyaddr;
861 
862 	DBG(2, dev, "%s\n", __func__);
863 
864 	lp->phy_type = 0;
865 
866 	/*
867 	 * Scan all 32 PHY addresses if necessary, starting at
868 	 * PHY#1 to PHY#31, and then PHY#0 last.
869 	 */
870 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
871 		unsigned int id1, id2;
872 
873 		/* Read the PHY identifiers */
874 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
875 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
876 
877 		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
878 		    id1, id2);
879 
880 		/* Make sure it is a valid identifier */
881 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
882 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
883 			/* Save the PHY's address */
884 			lp->mii.phy_id = phyaddr & 31;
885 			lp->phy_type = id1 << 16 | id2;
886 			break;
887 		}
888 	}
889 }
890 
891 /*
892  * Sets the PHY to a configuration as determined by the user
893  */
smc_phy_fixed(struct net_device * dev)894 static int smc_phy_fixed(struct net_device *dev)
895 {
896 	struct smc_local *lp = netdev_priv(dev);
897 	void __iomem *ioaddr = lp->base;
898 	int phyaddr = lp->mii.phy_id;
899 	int bmcr, cfg1;
900 
901 	DBG(3, dev, "%s\n", __func__);
902 
903 	/* Enter Link Disable state */
904 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
905 	cfg1 |= PHY_CFG1_LNKDIS;
906 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
907 
908 	/*
909 	 * Set our fixed capabilities
910 	 * Disable auto-negotiation
911 	 */
912 	bmcr = 0;
913 
914 	if (lp->ctl_rfduplx)
915 		bmcr |= BMCR_FULLDPLX;
916 
917 	if (lp->ctl_rspeed == 100)
918 		bmcr |= BMCR_SPEED100;
919 
920 	/* Write our capabilities to the phy control register */
921 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
922 
923 	/* Re-Configure the Receive/Phy Control register */
924 	SMC_SELECT_BANK(lp, 0);
925 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
926 	SMC_SELECT_BANK(lp, 2);
927 
928 	return 1;
929 }
930 
931 /**
932  * smc_phy_reset - reset the phy
933  * @dev: net device
934  * @phy: phy address
935  *
936  * Issue a software reset for the specified PHY and
937  * wait up to 100ms for the reset to complete.  We should
938  * not access the PHY for 50ms after issuing the reset.
939  *
940  * The time to wait appears to be dependent on the PHY.
941  *
942  * Must be called with lp->lock locked.
943  */
smc_phy_reset(struct net_device * dev,int phy)944 static int smc_phy_reset(struct net_device *dev, int phy)
945 {
946 	struct smc_local *lp = netdev_priv(dev);
947 	unsigned int bmcr;
948 	int timeout;
949 
950 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
951 
952 	for (timeout = 2; timeout; timeout--) {
953 		spin_unlock_irq(&lp->lock);
954 		msleep(50);
955 		spin_lock_irq(&lp->lock);
956 
957 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
958 		if (!(bmcr & BMCR_RESET))
959 			break;
960 	}
961 
962 	return bmcr & BMCR_RESET;
963 }
964 
965 /**
966  * smc_phy_powerdown - powerdown phy
967  * @dev: net device
968  *
969  * Power down the specified PHY
970  */
smc_phy_powerdown(struct net_device * dev)971 static void smc_phy_powerdown(struct net_device *dev)
972 {
973 	struct smc_local *lp = netdev_priv(dev);
974 	unsigned int bmcr;
975 	int phy = lp->mii.phy_id;
976 
977 	if (lp->phy_type == 0)
978 		return;
979 
980 	/* We need to ensure that no calls to smc_phy_configure are
981 	   pending.
982 	*/
983 	cancel_work_sync(&lp->phy_configure);
984 
985 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
986 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
987 }
988 
989 /**
990  * smc_phy_check_media - check the media status and adjust TCR
991  * @dev: net device
992  * @init: set true for initialisation
993  *
994  * Select duplex mode depending on negotiation state.  This
995  * also updates our carrier state.
996  */
smc_phy_check_media(struct net_device * dev,int init)997 static void smc_phy_check_media(struct net_device *dev, int init)
998 {
999 	struct smc_local *lp = netdev_priv(dev);
1000 	void __iomem *ioaddr = lp->base;
1001 
1002 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1003 		/* duplex state has changed */
1004 		if (lp->mii.full_duplex) {
1005 			lp->tcr_cur_mode |= TCR_SWFDUP;
1006 		} else {
1007 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1008 		}
1009 
1010 		SMC_SELECT_BANK(lp, 0);
1011 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1012 	}
1013 }
1014 
1015 /*
1016  * Configures the specified PHY through the MII management interface
1017  * using Autonegotiation.
1018  * Calls smc_phy_fixed() if the user has requested a certain config.
1019  * If RPC ANEG bit is set, the media selection is dependent purely on
1020  * the selection by the MII (either in the MII BMCR reg or the result
1021  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1022  * is controlled by the RPC SPEED and RPC DPLX bits.
1023  */
smc_phy_configure(struct work_struct * work)1024 static void smc_phy_configure(struct work_struct *work)
1025 {
1026 	struct smc_local *lp =
1027 		container_of(work, struct smc_local, phy_configure);
1028 	struct net_device *dev = lp->dev;
1029 	void __iomem *ioaddr = lp->base;
1030 	int phyaddr = lp->mii.phy_id;
1031 	int my_phy_caps; /* My PHY capabilities */
1032 	int my_ad_caps; /* My Advertised capabilities */
1033 
1034 	DBG(3, dev, "smc_program_phy()\n");
1035 
1036 	spin_lock_irq(&lp->lock);
1037 
1038 	/*
1039 	 * We should not be called if phy_type is zero.
1040 	 */
1041 	if (lp->phy_type == 0)
1042 		goto smc_phy_configure_exit;
1043 
1044 	if (smc_phy_reset(dev, phyaddr)) {
1045 		netdev_info(dev, "PHY reset timed out\n");
1046 		goto smc_phy_configure_exit;
1047 	}
1048 
1049 	/*
1050 	 * Enable PHY Interrupts (for register 18)
1051 	 * Interrupts listed here are disabled
1052 	 */
1053 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1054 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1055 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1056 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1057 
1058 	/* Configure the Receive/Phy Control register */
1059 	SMC_SELECT_BANK(lp, 0);
1060 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1061 
1062 	/* If the user requested no auto neg, then go set his request */
1063 	if (lp->mii.force_media) {
1064 		smc_phy_fixed(dev);
1065 		goto smc_phy_configure_exit;
1066 	}
1067 
1068 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1069 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1070 
1071 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1072 		netdev_info(dev, "Auto negotiation NOT supported\n");
1073 		smc_phy_fixed(dev);
1074 		goto smc_phy_configure_exit;
1075 	}
1076 
1077 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1078 
1079 	if (my_phy_caps & BMSR_100BASE4)
1080 		my_ad_caps |= ADVERTISE_100BASE4;
1081 	if (my_phy_caps & BMSR_100FULL)
1082 		my_ad_caps |= ADVERTISE_100FULL;
1083 	if (my_phy_caps & BMSR_100HALF)
1084 		my_ad_caps |= ADVERTISE_100HALF;
1085 	if (my_phy_caps & BMSR_10FULL)
1086 		my_ad_caps |= ADVERTISE_10FULL;
1087 	if (my_phy_caps & BMSR_10HALF)
1088 		my_ad_caps |= ADVERTISE_10HALF;
1089 
1090 	/* Disable capabilities not selected by our user */
1091 	if (lp->ctl_rspeed != 100)
1092 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1093 
1094 	if (!lp->ctl_rfduplx)
1095 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1096 
1097 	/* Update our Auto-Neg Advertisement Register */
1098 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1099 	lp->mii.advertising = my_ad_caps;
1100 
1101 	/*
1102 	 * Read the register back.  Without this, it appears that when
1103 	 * auto-negotiation is restarted, sometimes it isn't ready and
1104 	 * the link does not come up.
1105 	 */
1106 	smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1107 
1108 	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1109 	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1110 
1111 	/* Restart auto-negotiation process in order to advertise my caps */
1112 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1113 
1114 	smc_phy_check_media(dev, 1);
1115 
1116 smc_phy_configure_exit:
1117 	SMC_SELECT_BANK(lp, 2);
1118 	spin_unlock_irq(&lp->lock);
1119 }
1120 
1121 /*
1122  * smc_phy_interrupt
1123  *
1124  * Purpose:  Handle interrupts relating to PHY register 18. This is
1125  *  called from the "hard" interrupt handler under our private spinlock.
1126  */
smc_phy_interrupt(struct net_device * dev)1127 static void smc_phy_interrupt(struct net_device *dev)
1128 {
1129 	struct smc_local *lp = netdev_priv(dev);
1130 	int phyaddr = lp->mii.phy_id;
1131 	int phy18;
1132 
1133 	DBG(2, dev, "%s\n", __func__);
1134 
1135 	if (lp->phy_type == 0)
1136 		return;
1137 
1138 	for(;;) {
1139 		smc_phy_check_media(dev, 0);
1140 
1141 		/* Read PHY Register 18, Status Output */
1142 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1143 		if ((phy18 & PHY_INT_INT) == 0)
1144 			break;
1145 	}
1146 }
1147 
1148 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1149 
smc_10bt_check_media(struct net_device * dev,int init)1150 static void smc_10bt_check_media(struct net_device *dev, int init)
1151 {
1152 	struct smc_local *lp = netdev_priv(dev);
1153 	void __iomem *ioaddr = lp->base;
1154 	unsigned int old_carrier, new_carrier;
1155 
1156 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1157 
1158 	SMC_SELECT_BANK(lp, 0);
1159 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1160 	SMC_SELECT_BANK(lp, 2);
1161 
1162 	if (init || (old_carrier != new_carrier)) {
1163 		if (!new_carrier) {
1164 			netif_carrier_off(dev);
1165 		} else {
1166 			netif_carrier_on(dev);
1167 		}
1168 		if (netif_msg_link(lp))
1169 			netdev_info(dev, "link %s\n",
1170 				    new_carrier ? "up" : "down");
1171 	}
1172 }
1173 
smc_eph_interrupt(struct net_device * dev)1174 static void smc_eph_interrupt(struct net_device *dev)
1175 {
1176 	struct smc_local *lp = netdev_priv(dev);
1177 	void __iomem *ioaddr = lp->base;
1178 	unsigned int ctl;
1179 
1180 	smc_10bt_check_media(dev, 0);
1181 
1182 	SMC_SELECT_BANK(lp, 1);
1183 	ctl = SMC_GET_CTL(lp);
1184 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1185 	SMC_SET_CTL(lp, ctl);
1186 	SMC_SELECT_BANK(lp, 2);
1187 }
1188 
1189 /*
1190  * This is the main routine of the driver, to handle the device when
1191  * it needs some attention.
1192  */
smc_interrupt(int irq,void * dev_id)1193 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1194 {
1195 	struct net_device *dev = dev_id;
1196 	struct smc_local *lp = netdev_priv(dev);
1197 	void __iomem *ioaddr = lp->base;
1198 	int status, mask, timeout, card_stats;
1199 	int saved_pointer;
1200 
1201 	DBG(3, dev, "%s\n", __func__);
1202 
1203 	spin_lock(&lp->lock);
1204 
1205 	/* A preamble may be used when there is a potential race
1206 	 * between the interruptible transmit functions and this
1207 	 * ISR. */
1208 	SMC_INTERRUPT_PREAMBLE;
1209 
1210 	saved_pointer = SMC_GET_PTR(lp);
1211 	mask = SMC_GET_INT_MASK(lp);
1212 	SMC_SET_INT_MASK(lp, 0);
1213 
1214 	/* set a timeout value, so I don't stay here forever */
1215 	timeout = MAX_IRQ_LOOPS;
1216 
1217 	do {
1218 		status = SMC_GET_INT(lp);
1219 
1220 		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1221 		    status, mask,
1222 		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1223 		       meminfo = SMC_GET_MIR(lp);
1224 		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1225 		    SMC_GET_FIFO(lp));
1226 
1227 		status &= mask;
1228 		if (!status)
1229 			break;
1230 
1231 		if (status & IM_TX_INT) {
1232 			/* do this before RX as it will free memory quickly */
1233 			DBG(3, dev, "TX int\n");
1234 			smc_tx(dev);
1235 			SMC_ACK_INT(lp, IM_TX_INT);
1236 			if (THROTTLE_TX_PKTS)
1237 				netif_wake_queue(dev);
1238 		} else if (status & IM_RCV_INT) {
1239 			DBG(3, dev, "RX irq\n");
1240 			smc_rcv(dev);
1241 		} else if (status & IM_ALLOC_INT) {
1242 			DBG(3, dev, "Allocation irq\n");
1243 			tasklet_hi_schedule(&lp->tx_task);
1244 			mask &= ~IM_ALLOC_INT;
1245 		} else if (status & IM_TX_EMPTY_INT) {
1246 			DBG(3, dev, "TX empty\n");
1247 			mask &= ~IM_TX_EMPTY_INT;
1248 
1249 			/* update stats */
1250 			SMC_SELECT_BANK(lp, 0);
1251 			card_stats = SMC_GET_COUNTER(lp);
1252 			SMC_SELECT_BANK(lp, 2);
1253 
1254 			/* single collisions */
1255 			dev->stats.collisions += card_stats & 0xF;
1256 			card_stats >>= 4;
1257 
1258 			/* multiple collisions */
1259 			dev->stats.collisions += card_stats & 0xF;
1260 		} else if (status & IM_RX_OVRN_INT) {
1261 			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1262 			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1263 			       eph_st = SMC_GET_EPH_STATUS(lp);
1264 			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1265 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1266 			dev->stats.rx_errors++;
1267 			dev->stats.rx_fifo_errors++;
1268 		} else if (status & IM_EPH_INT) {
1269 			smc_eph_interrupt(dev);
1270 		} else if (status & IM_MDINT) {
1271 			SMC_ACK_INT(lp, IM_MDINT);
1272 			smc_phy_interrupt(dev);
1273 		} else if (status & IM_ERCV_INT) {
1274 			SMC_ACK_INT(lp, IM_ERCV_INT);
1275 			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1276 		}
1277 	} while (--timeout);
1278 
1279 	/* restore register states */
1280 	SMC_SET_PTR(lp, saved_pointer);
1281 	SMC_SET_INT_MASK(lp, mask);
1282 	spin_unlock(&lp->lock);
1283 
1284 #ifndef CONFIG_NET_POLL_CONTROLLER
1285 	if (timeout == MAX_IRQ_LOOPS)
1286 		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1287 		       mask);
1288 #endif
1289 	DBG(3, dev, "Interrupt done (%d loops)\n",
1290 	    MAX_IRQ_LOOPS - timeout);
1291 
1292 	/*
1293 	 * We return IRQ_HANDLED unconditionally here even if there was
1294 	 * nothing to do.  There is a possibility that a packet might
1295 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1296 	 * but just before the CPU acknowledges the IRQ.
1297 	 * Better take an unneeded IRQ in some occasions than complexifying
1298 	 * the code for all cases.
1299 	 */
1300 	return IRQ_HANDLED;
1301 }
1302 
1303 #ifdef CONFIG_NET_POLL_CONTROLLER
1304 /*
1305  * Polling receive - used by netconsole and other diagnostic tools
1306  * to allow network i/o with interrupts disabled.
1307  */
smc_poll_controller(struct net_device * dev)1308 static void smc_poll_controller(struct net_device *dev)
1309 {
1310 	disable_irq(dev->irq);
1311 	smc_interrupt(dev->irq, dev);
1312 	enable_irq(dev->irq);
1313 }
1314 #endif
1315 
1316 /* Our watchdog timed out. Called by the networking layer */
smc_timeout(struct net_device * dev,unsigned int txqueue)1317 static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1318 {
1319 	struct smc_local *lp = netdev_priv(dev);
1320 	void __iomem *ioaddr = lp->base;
1321 	int status, mask, eph_st, meminfo, fifo;
1322 
1323 	DBG(2, dev, "%s\n", __func__);
1324 
1325 	spin_lock_irq(&lp->lock);
1326 	status = SMC_GET_INT(lp);
1327 	mask = SMC_GET_INT_MASK(lp);
1328 	fifo = SMC_GET_FIFO(lp);
1329 	SMC_SELECT_BANK(lp, 0);
1330 	eph_st = SMC_GET_EPH_STATUS(lp);
1331 	meminfo = SMC_GET_MIR(lp);
1332 	SMC_SELECT_BANK(lp, 2);
1333 	spin_unlock_irq(&lp->lock);
1334 	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1335 	       status, mask, meminfo, fifo, eph_st);
1336 
1337 	smc_reset(dev);
1338 	smc_enable(dev);
1339 
1340 	/*
1341 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1342 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1343 	 * which calls schedule().  Hence we use a work queue.
1344 	 */
1345 	if (lp->phy_type != 0)
1346 		schedule_work(&lp->phy_configure);
1347 
1348 	/* We can accept TX packets again */
1349 	netif_trans_update(dev); /* prevent tx timeout */
1350 	netif_wake_queue(dev);
1351 }
1352 
1353 /*
1354  * This routine will, depending on the values passed to it,
1355  * either make it accept multicast packets, go into
1356  * promiscuous mode (for TCPDUMP and cousins) or accept
1357  * a select set of multicast packets
1358  */
smc_set_multicast_list(struct net_device * dev)1359 static void smc_set_multicast_list(struct net_device *dev)
1360 {
1361 	struct smc_local *lp = netdev_priv(dev);
1362 	void __iomem *ioaddr = lp->base;
1363 	unsigned char multicast_table[8];
1364 	int update_multicast = 0;
1365 
1366 	DBG(2, dev, "%s\n", __func__);
1367 
1368 	if (dev->flags & IFF_PROMISC) {
1369 		DBG(2, dev, "RCR_PRMS\n");
1370 		lp->rcr_cur_mode |= RCR_PRMS;
1371 	}
1372 
1373 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1374    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1375    when promiscuous mode is turned on.
1376 */
1377 
1378 	/*
1379 	 * Here, I am setting this to accept all multicast packets.
1380 	 * I don't need to zero the multicast table, because the flag is
1381 	 * checked before the table is
1382 	 */
1383 	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1384 		DBG(2, dev, "RCR_ALMUL\n");
1385 		lp->rcr_cur_mode |= RCR_ALMUL;
1386 	}
1387 
1388 	/*
1389 	 * This sets the internal hardware table to filter out unwanted
1390 	 * multicast packets before they take up memory.
1391 	 *
1392 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1393 	 * address are the offset into the table.  If that bit is 1, then the
1394 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1395 	 *
1396 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1397 	 * the number of the 8 bit register, while the low 3 bits are the bit
1398 	 * within that register.
1399 	 */
1400 	else if (!netdev_mc_empty(dev)) {
1401 		struct netdev_hw_addr *ha;
1402 
1403 		/* table for flipping the order of 3 bits */
1404 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1405 
1406 		/* start with a table of all zeros: reject all */
1407 		memset(multicast_table, 0, sizeof(multicast_table));
1408 
1409 		netdev_for_each_mc_addr(ha, dev) {
1410 			int position;
1411 
1412 			/* only use the low order bits */
1413 			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1414 
1415 			/* do some messy swapping to put the bit in the right spot */
1416 			multicast_table[invert3[position&7]] |=
1417 				(1<<invert3[(position>>3)&7]);
1418 		}
1419 
1420 		/* be sure I get rid of flags I might have set */
1421 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1422 
1423 		/* now, the table can be loaded into the chipset */
1424 		update_multicast = 1;
1425 	} else  {
1426 		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1427 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1428 
1429 		/*
1430 		 * since I'm disabling all multicast entirely, I need to
1431 		 * clear the multicast list
1432 		 */
1433 		memset(multicast_table, 0, sizeof(multicast_table));
1434 		update_multicast = 1;
1435 	}
1436 
1437 	spin_lock_irq(&lp->lock);
1438 	SMC_SELECT_BANK(lp, 0);
1439 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1440 	if (update_multicast) {
1441 		SMC_SELECT_BANK(lp, 3);
1442 		SMC_SET_MCAST(lp, multicast_table);
1443 	}
1444 	SMC_SELECT_BANK(lp, 2);
1445 	spin_unlock_irq(&lp->lock);
1446 }
1447 
1448 
1449 /*
1450  * Open and Initialize the board
1451  *
1452  * Set up everything, reset the card, etc..
1453  */
1454 static int
smc_open(struct net_device * dev)1455 smc_open(struct net_device *dev)
1456 {
1457 	struct smc_local *lp = netdev_priv(dev);
1458 
1459 	DBG(2, dev, "%s\n", __func__);
1460 
1461 	/* Setup the default Register Modes */
1462 	lp->tcr_cur_mode = TCR_DEFAULT;
1463 	lp->rcr_cur_mode = RCR_DEFAULT;
1464 	lp->rpc_cur_mode = RPC_DEFAULT |
1465 				lp->cfg.leda << RPC_LSXA_SHFT |
1466 				lp->cfg.ledb << RPC_LSXB_SHFT;
1467 
1468 	/*
1469 	 * If we are not using a MII interface, we need to
1470 	 * monitor our own carrier signal to detect faults.
1471 	 */
1472 	if (lp->phy_type == 0)
1473 		lp->tcr_cur_mode |= TCR_MON_CSN;
1474 
1475 	/* reset the hardware */
1476 	smc_reset(dev);
1477 	smc_enable(dev);
1478 
1479 	/* Configure the PHY, initialize the link state */
1480 	if (lp->phy_type != 0)
1481 		smc_phy_configure(&lp->phy_configure);
1482 	else {
1483 		spin_lock_irq(&lp->lock);
1484 		smc_10bt_check_media(dev, 1);
1485 		spin_unlock_irq(&lp->lock);
1486 	}
1487 
1488 	netif_start_queue(dev);
1489 	return 0;
1490 }
1491 
1492 /*
1493  * smc_close
1494  *
1495  * this makes the board clean up everything that it can
1496  * and not talk to the outside world.   Caused by
1497  * an 'ifconfig ethX down'
1498  */
smc_close(struct net_device * dev)1499 static int smc_close(struct net_device *dev)
1500 {
1501 	struct smc_local *lp = netdev_priv(dev);
1502 
1503 	DBG(2, dev, "%s\n", __func__);
1504 
1505 	netif_stop_queue(dev);
1506 	netif_carrier_off(dev);
1507 
1508 	/* clear everything */
1509 	smc_shutdown(dev);
1510 	tasklet_kill(&lp->tx_task);
1511 	smc_phy_powerdown(dev);
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Ethtool support
1517  */
1518 static int
smc_ethtool_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1519 smc_ethtool_get_link_ksettings(struct net_device *dev,
1520 			       struct ethtool_link_ksettings *cmd)
1521 {
1522 	struct smc_local *lp = netdev_priv(dev);
1523 
1524 	if (lp->phy_type != 0) {
1525 		spin_lock_irq(&lp->lock);
1526 		mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1527 		spin_unlock_irq(&lp->lock);
1528 	} else {
1529 		u32 supported = SUPPORTED_10baseT_Half |
1530 				 SUPPORTED_10baseT_Full |
1531 				 SUPPORTED_TP | SUPPORTED_AUI;
1532 
1533 		if (lp->ctl_rspeed == 10)
1534 			cmd->base.speed = SPEED_10;
1535 		else if (lp->ctl_rspeed == 100)
1536 			cmd->base.speed = SPEED_100;
1537 
1538 		cmd->base.autoneg = AUTONEG_DISABLE;
1539 		cmd->base.port = 0;
1540 		cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1541 			DUPLEX_FULL : DUPLEX_HALF;
1542 
1543 		ethtool_convert_legacy_u32_to_link_mode(
1544 			cmd->link_modes.supported, supported);
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int
smc_ethtool_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1551 smc_ethtool_set_link_ksettings(struct net_device *dev,
1552 			       const struct ethtool_link_ksettings *cmd)
1553 {
1554 	struct smc_local *lp = netdev_priv(dev);
1555 	int ret;
1556 
1557 	if (lp->phy_type != 0) {
1558 		spin_lock_irq(&lp->lock);
1559 		ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1560 		spin_unlock_irq(&lp->lock);
1561 	} else {
1562 		if (cmd->base.autoneg != AUTONEG_DISABLE ||
1563 		    cmd->base.speed != SPEED_10 ||
1564 		    (cmd->base.duplex != DUPLEX_HALF &&
1565 		     cmd->base.duplex != DUPLEX_FULL) ||
1566 		    (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1567 			return -EINVAL;
1568 
1569 		lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1570 
1571 		ret = 0;
1572 	}
1573 
1574 	return ret;
1575 }
1576 
1577 static void
smc_ethtool_getdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1578 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1579 {
1580 	strscpy(info->driver, CARDNAME, sizeof(info->driver));
1581 	strscpy(info->version, version, sizeof(info->version));
1582 	strscpy(info->bus_info, dev_name(dev->dev.parent),
1583 		sizeof(info->bus_info));
1584 }
1585 
smc_ethtool_nwayreset(struct net_device * dev)1586 static int smc_ethtool_nwayreset(struct net_device *dev)
1587 {
1588 	struct smc_local *lp = netdev_priv(dev);
1589 	int ret = -EINVAL;
1590 
1591 	if (lp->phy_type != 0) {
1592 		spin_lock_irq(&lp->lock);
1593 		ret = mii_nway_restart(&lp->mii);
1594 		spin_unlock_irq(&lp->lock);
1595 	}
1596 
1597 	return ret;
1598 }
1599 
smc_ethtool_getmsglevel(struct net_device * dev)1600 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1601 {
1602 	struct smc_local *lp = netdev_priv(dev);
1603 	return lp->msg_enable;
1604 }
1605 
smc_ethtool_setmsglevel(struct net_device * dev,u32 level)1606 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1607 {
1608 	struct smc_local *lp = netdev_priv(dev);
1609 	lp->msg_enable = level;
1610 }
1611 
smc_write_eeprom_word(struct net_device * dev,u16 addr,u16 word)1612 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1613 {
1614 	u16 ctl;
1615 	struct smc_local *lp = netdev_priv(dev);
1616 	void __iomem *ioaddr = lp->base;
1617 
1618 	spin_lock_irq(&lp->lock);
1619 	/* load word into GP register */
1620 	SMC_SELECT_BANK(lp, 1);
1621 	SMC_SET_GP(lp, word);
1622 	/* set the address to put the data in EEPROM */
1623 	SMC_SELECT_BANK(lp, 2);
1624 	SMC_SET_PTR(lp, addr);
1625 	/* tell it to write */
1626 	SMC_SELECT_BANK(lp, 1);
1627 	ctl = SMC_GET_CTL(lp);
1628 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1629 	/* wait for it to finish */
1630 	do {
1631 		udelay(1);
1632 	} while (SMC_GET_CTL(lp) & CTL_STORE);
1633 	/* clean up */
1634 	SMC_SET_CTL(lp, ctl);
1635 	SMC_SELECT_BANK(lp, 2);
1636 	spin_unlock_irq(&lp->lock);
1637 	return 0;
1638 }
1639 
smc_read_eeprom_word(struct net_device * dev,u16 addr,u16 * word)1640 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1641 {
1642 	u16 ctl;
1643 	struct smc_local *lp = netdev_priv(dev);
1644 	void __iomem *ioaddr = lp->base;
1645 
1646 	spin_lock_irq(&lp->lock);
1647 	/* set the EEPROM address to get the data from */
1648 	SMC_SELECT_BANK(lp, 2);
1649 	SMC_SET_PTR(lp, addr | PTR_READ);
1650 	/* tell it to load */
1651 	SMC_SELECT_BANK(lp, 1);
1652 	SMC_SET_GP(lp, 0xffff);	/* init to known */
1653 	ctl = SMC_GET_CTL(lp);
1654 	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1655 	/* wait for it to finish */
1656 	do {
1657 		udelay(1);
1658 	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1659 	/* read word from GP register */
1660 	*word = SMC_GET_GP(lp);
1661 	/* clean up */
1662 	SMC_SET_CTL(lp, ctl);
1663 	SMC_SELECT_BANK(lp, 2);
1664 	spin_unlock_irq(&lp->lock);
1665 	return 0;
1666 }
1667 
smc_ethtool_geteeprom_len(struct net_device * dev)1668 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1669 {
1670 	return 0x23 * 2;
1671 }
1672 
smc_ethtool_geteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1673 static int smc_ethtool_geteeprom(struct net_device *dev,
1674 		struct ethtool_eeprom *eeprom, u8 *data)
1675 {
1676 	int i;
1677 	int imax;
1678 
1679 	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1680 		eeprom->len, eeprom->offset, eeprom->offset);
1681 	imax = smc_ethtool_geteeprom_len(dev);
1682 	for (i = 0; i < eeprom->len; i += 2) {
1683 		int ret;
1684 		u16 wbuf;
1685 		int offset = i + eeprom->offset;
1686 		if (offset > imax)
1687 			break;
1688 		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1689 		if (ret != 0)
1690 			return ret;
1691 		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1692 		data[i] = (wbuf >> 8) & 0xff;
1693 		data[i+1] = wbuf & 0xff;
1694 	}
1695 	return 0;
1696 }
1697 
smc_ethtool_seteeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1698 static int smc_ethtool_seteeprom(struct net_device *dev,
1699 		struct ethtool_eeprom *eeprom, u8 *data)
1700 {
1701 	int i;
1702 	int imax;
1703 
1704 	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1705 	    eeprom->len, eeprom->offset, eeprom->offset);
1706 	imax = smc_ethtool_geteeprom_len(dev);
1707 	for (i = 0; i < eeprom->len; i += 2) {
1708 		int ret;
1709 		u16 wbuf;
1710 		int offset = i + eeprom->offset;
1711 		if (offset > imax)
1712 			break;
1713 		wbuf = (data[i] << 8) | data[i + 1];
1714 		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1715 		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1716 		if (ret != 0)
1717 			return ret;
1718 	}
1719 	return 0;
1720 }
1721 
1722 
1723 static const struct ethtool_ops smc_ethtool_ops = {
1724 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1725 
1726 	.get_msglevel	= smc_ethtool_getmsglevel,
1727 	.set_msglevel	= smc_ethtool_setmsglevel,
1728 	.nway_reset	= smc_ethtool_nwayreset,
1729 	.get_link	= ethtool_op_get_link,
1730 	.get_eeprom_len = smc_ethtool_geteeprom_len,
1731 	.get_eeprom	= smc_ethtool_geteeprom,
1732 	.set_eeprom	= smc_ethtool_seteeprom,
1733 	.get_link_ksettings	= smc_ethtool_get_link_ksettings,
1734 	.set_link_ksettings	= smc_ethtool_set_link_ksettings,
1735 };
1736 
1737 static const struct net_device_ops smc_netdev_ops = {
1738 	.ndo_open		= smc_open,
1739 	.ndo_stop		= smc_close,
1740 	.ndo_start_xmit		= smc_hard_start_xmit,
1741 	.ndo_tx_timeout		= smc_timeout,
1742 	.ndo_set_rx_mode	= smc_set_multicast_list,
1743 	.ndo_validate_addr	= eth_validate_addr,
1744 	.ndo_set_mac_address 	= eth_mac_addr,
1745 #ifdef CONFIG_NET_POLL_CONTROLLER
1746 	.ndo_poll_controller	= smc_poll_controller,
1747 #endif
1748 };
1749 
1750 /*
1751  * smc_findirq
1752  *
1753  * This routine has a simple purpose -- make the SMC chip generate an
1754  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1755  */
1756 /*
1757  * does this still work?
1758  *
1759  * I just deleted auto_irq.c, since it was never built...
1760  *   --jgarzik
1761  */
smc_findirq(struct smc_local * lp)1762 static int smc_findirq(struct smc_local *lp)
1763 {
1764 	void __iomem *ioaddr = lp->base;
1765 	int timeout = 20;
1766 	unsigned long cookie;
1767 
1768 	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1769 
1770 	cookie = probe_irq_on();
1771 
1772 	/*
1773 	 * What I try to do here is trigger an ALLOC_INT. This is done
1774 	 * by allocating a small chunk of memory, which will give an interrupt
1775 	 * when done.
1776 	 */
1777 	/* enable ALLOCation interrupts ONLY */
1778 	SMC_SELECT_BANK(lp, 2);
1779 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1780 
1781 	/*
1782 	 * Allocate 512 bytes of memory.  Note that the chip was just
1783 	 * reset so all the memory is available
1784 	 */
1785 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1786 
1787 	/*
1788 	 * Wait until positive that the interrupt has been generated
1789 	 */
1790 	do {
1791 		int int_status;
1792 		udelay(10);
1793 		int_status = SMC_GET_INT(lp);
1794 		if (int_status & IM_ALLOC_INT)
1795 			break;		/* got the interrupt */
1796 	} while (--timeout);
1797 
1798 	/*
1799 	 * there is really nothing that I can do here if timeout fails,
1800 	 * as autoirq_report will return a 0 anyway, which is what I
1801 	 * want in this case.   Plus, the clean up is needed in both
1802 	 * cases.
1803 	 */
1804 
1805 	/* and disable all interrupts again */
1806 	SMC_SET_INT_MASK(lp, 0);
1807 
1808 	/* and return what I found */
1809 	return probe_irq_off(cookie);
1810 }
1811 
1812 /*
1813  * Function: smc_probe(unsigned long ioaddr)
1814  *
1815  * Purpose:
1816  *	Tests to see if a given ioaddr points to an SMC91x chip.
1817  *	Returns a 0 on success
1818  *
1819  * Algorithm:
1820  *	(1) see if the high byte of BANK_SELECT is 0x33
1821  * 	(2) compare the ioaddr with the base register's address
1822  *	(3) see if I recognize the chip ID in the appropriate register
1823  *
1824  * Here I do typical initialization tasks.
1825  *
1826  * o  Initialize the structure if needed
1827  * o  print out my vanity message if not done so already
1828  * o  print out what type of hardware is detected
1829  * o  print out the ethernet address
1830  * o  find the IRQ
1831  * o  set up my private data
1832  * o  configure the dev structure with my subroutines
1833  * o  actually GRAB the irq.
1834  * o  GRAB the region
1835  */
smc_probe(struct net_device * dev,void __iomem * ioaddr,unsigned long irq_flags)1836 static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1837 		     unsigned long irq_flags)
1838 {
1839 	struct smc_local *lp = netdev_priv(dev);
1840 	int retval;
1841 	unsigned int val, revision_register;
1842 	const char *version_string;
1843 	u8 addr[ETH_ALEN];
1844 
1845 	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1846 
1847 	/* First, see if the high byte is 0x33 */
1848 	val = SMC_CURRENT_BANK(lp);
1849 	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1850 	    CARDNAME, val);
1851 	if ((val & 0xFF00) != 0x3300) {
1852 		if ((val & 0xFF) == 0x33) {
1853 			netdev_warn(dev,
1854 				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1855 				    CARDNAME, ioaddr);
1856 		}
1857 		retval = -ENODEV;
1858 		goto err_out;
1859 	}
1860 
1861 	/*
1862 	 * The above MIGHT indicate a device, but I need to write to
1863 	 * further test this.
1864 	 */
1865 	SMC_SELECT_BANK(lp, 0);
1866 	val = SMC_CURRENT_BANK(lp);
1867 	if ((val & 0xFF00) != 0x3300) {
1868 		retval = -ENODEV;
1869 		goto err_out;
1870 	}
1871 
1872 	/*
1873 	 * well, we've already written once, so hopefully another
1874 	 * time won't hurt.  This time, I need to switch the bank
1875 	 * register to bank 1, so I can access the base address
1876 	 * register
1877 	 */
1878 	SMC_SELECT_BANK(lp, 1);
1879 	val = SMC_GET_BASE(lp);
1880 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1881 	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1882 		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1883 			    CARDNAME, ioaddr, val);
1884 	}
1885 
1886 	/*
1887 	 * check if the revision register is something that I
1888 	 * recognize.  These might need to be added to later,
1889 	 * as future revisions could be added.
1890 	 */
1891 	SMC_SELECT_BANK(lp, 3);
1892 	revision_register = SMC_GET_REV(lp);
1893 	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1894 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1895 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1896 		/* I don't recognize this chip, so... */
1897 		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1898 			    CARDNAME, ioaddr, revision_register);
1899 
1900 		retval = -ENODEV;
1901 		goto err_out;
1902 	}
1903 
1904 	/* At this point I'll assume that the chip is an SMC91x. */
1905 	pr_info_once("%s\n", version);
1906 
1907 	/* fill in some of the fields */
1908 	dev->base_addr = (unsigned long)ioaddr;
1909 	lp->base = ioaddr;
1910 	lp->version = revision_register & 0xff;
1911 	spin_lock_init(&lp->lock);
1912 
1913 	/* Get the MAC address */
1914 	SMC_SELECT_BANK(lp, 1);
1915 	SMC_GET_MAC_ADDR(lp, addr);
1916 	eth_hw_addr_set(dev, addr);
1917 
1918 	/* now, reset the chip, and put it into a known state */
1919 	smc_reset(dev);
1920 
1921 	/*
1922 	 * If dev->irq is 0, then the device has to be banged on to see
1923 	 * what the IRQ is.
1924 	 *
1925 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1926 	 * a workaround is to reset the chip and try again.
1927 	 *
1928 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1929 	 * be what is requested on the command line.   I don't do that, mostly
1930 	 * because the card that I have uses a non-standard method of accessing
1931 	 * the IRQs, and because this _should_ work in most configurations.
1932 	 *
1933 	 * Specifying an IRQ is done with the assumption that the user knows
1934 	 * what (s)he is doing.  No checking is done!!!!
1935 	 */
1936 	if (dev->irq < 1) {
1937 		int trials;
1938 
1939 		trials = 3;
1940 		while (trials--) {
1941 			dev->irq = smc_findirq(lp);
1942 			if (dev->irq)
1943 				break;
1944 			/* kick the card and try again */
1945 			smc_reset(dev);
1946 		}
1947 	}
1948 	if (dev->irq == 0) {
1949 		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1950 		retval = -ENODEV;
1951 		goto err_out;
1952 	}
1953 	dev->irq = irq_canonicalize(dev->irq);
1954 
1955 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1956 	dev->netdev_ops = &smc_netdev_ops;
1957 	dev->ethtool_ops = &smc_ethtool_ops;
1958 
1959 	tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1960 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1961 	lp->dev = dev;
1962 	lp->mii.phy_id_mask = 0x1f;
1963 	lp->mii.reg_num_mask = 0x1f;
1964 	lp->mii.force_media = 0;
1965 	lp->mii.full_duplex = 0;
1966 	lp->mii.dev = dev;
1967 	lp->mii.mdio_read = smc_phy_read;
1968 	lp->mii.mdio_write = smc_phy_write;
1969 
1970 	/*
1971 	 * Locate the phy, if any.
1972 	 */
1973 	if (lp->version >= (CHIP_91100 << 4))
1974 		smc_phy_detect(dev);
1975 
1976 	/* then shut everything down to save power */
1977 	smc_shutdown(dev);
1978 	smc_phy_powerdown(dev);
1979 
1980 	/* Set default parameters */
1981 	lp->msg_enable = NETIF_MSG_LINK;
1982 	lp->ctl_rfduplx = 0;
1983 	lp->ctl_rspeed = 10;
1984 
1985 	if (lp->version >= (CHIP_91100 << 4)) {
1986 		lp->ctl_rfduplx = 1;
1987 		lp->ctl_rspeed = 100;
1988 	}
1989 
1990 	/* Grab the IRQ */
1991 	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
1992 	if (retval)
1993 		goto err_out;
1994 
1995 #ifdef CONFIG_ARCH_PXA
1996 #  ifdef SMC_USE_PXA_DMA
1997 	lp->cfg.flags |= SMC91X_USE_DMA;
1998 #  endif
1999 	if (lp->cfg.flags & SMC91X_USE_DMA) {
2000 		dma_cap_mask_t mask;
2001 
2002 		dma_cap_zero(mask);
2003 		dma_cap_set(DMA_SLAVE, mask);
2004 		lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2005 	}
2006 #endif
2007 
2008 	retval = register_netdev(dev);
2009 	if (retval == 0) {
2010 		/* now, print out the card info, in a short format.. */
2011 		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2012 			    version_string, revision_register & 0x0f,
2013 			    lp->base, dev->irq);
2014 
2015 		if (lp->dma_chan)
2016 			pr_cont(" DMA %p", lp->dma_chan);
2017 
2018 		pr_cont("%s%s\n",
2019 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2020 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2021 
2022 		if (!is_valid_ether_addr(dev->dev_addr)) {
2023 			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2024 		} else {
2025 			/* Print the Ethernet address */
2026 			netdev_info(dev, "Ethernet addr: %pM\n",
2027 				    dev->dev_addr);
2028 		}
2029 
2030 		if (lp->phy_type == 0) {
2031 			PRINTK(dev, "No PHY found\n");
2032 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2033 			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2034 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2035 			PRINTK(dev, "PHY LAN83C180\n");
2036 		}
2037 	}
2038 
2039 err_out:
2040 #ifdef CONFIG_ARCH_PXA
2041 	if (retval && lp->dma_chan)
2042 		dma_release_channel(lp->dma_chan);
2043 #endif
2044 	return retval;
2045 }
2046 
smc_enable_device(struct platform_device * pdev)2047 static int smc_enable_device(struct platform_device *pdev)
2048 {
2049 	struct net_device *ndev = platform_get_drvdata(pdev);
2050 	struct smc_local *lp = netdev_priv(ndev);
2051 	unsigned long flags;
2052 	unsigned char ecor, ecsr;
2053 	void __iomem *addr;
2054 	struct resource * res;
2055 
2056 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2057 	if (!res)
2058 		return 0;
2059 
2060 	/*
2061 	 * Map the attribute space.  This is overkill, but clean.
2062 	 */
2063 	addr = ioremap(res->start, ATTRIB_SIZE);
2064 	if (!addr)
2065 		return -ENOMEM;
2066 
2067 	/*
2068 	 * Reset the device.  We must disable IRQs around this
2069 	 * since a reset causes the IRQ line become active.
2070 	 */
2071 	local_irq_save(flags);
2072 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2073 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2074 	readb(addr + (ECOR << SMC_IO_SHIFT));
2075 
2076 	/*
2077 	 * Wait 100us for the chip to reset.
2078 	 */
2079 	udelay(100);
2080 
2081 	/*
2082 	 * The device will ignore all writes to the enable bit while
2083 	 * reset is asserted, even if the reset bit is cleared in the
2084 	 * same write.  Must clear reset first, then enable the device.
2085 	 */
2086 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2087 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2088 
2089 	/*
2090 	 * Set the appropriate byte/word mode.
2091 	 */
2092 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2093 	if (!SMC_16BIT(lp))
2094 		ecsr |= ECSR_IOIS8;
2095 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2096 	local_irq_restore(flags);
2097 
2098 	iounmap(addr);
2099 
2100 	/*
2101 	 * Wait for the chip to wake up.  We could poll the control
2102 	 * register in the main register space, but that isn't mapped
2103 	 * yet.  We know this is going to take 750us.
2104 	 */
2105 	msleep(1);
2106 
2107 	return 0;
2108 }
2109 
smc_request_attrib(struct platform_device * pdev,struct net_device * ndev)2110 static int smc_request_attrib(struct platform_device *pdev,
2111 			      struct net_device *ndev)
2112 {
2113 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2114 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2115 
2116 	if (!res)
2117 		return 0;
2118 
2119 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2120 		return -EBUSY;
2121 
2122 	return 0;
2123 }
2124 
smc_release_attrib(struct platform_device * pdev,struct net_device * ndev)2125 static void smc_release_attrib(struct platform_device *pdev,
2126 			       struct net_device *ndev)
2127 {
2128 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2129 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2130 
2131 	if (res)
2132 		release_mem_region(res->start, ATTRIB_SIZE);
2133 }
2134 
smc_request_datacs(struct platform_device * pdev,struct net_device * ndev)2135 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2136 {
2137 	if (SMC_CAN_USE_DATACS) {
2138 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2139 		struct smc_local *lp = netdev_priv(ndev);
2140 
2141 		if (!res)
2142 			return;
2143 
2144 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2145 			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2146 				    CARDNAME);
2147 			return;
2148 		}
2149 
2150 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2151 	}
2152 }
2153 
smc_release_datacs(struct platform_device * pdev,struct net_device * ndev)2154 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2155 {
2156 	if (SMC_CAN_USE_DATACS) {
2157 		struct smc_local *lp = netdev_priv(ndev);
2158 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2159 
2160 		if (lp->datacs)
2161 			iounmap(lp->datacs);
2162 
2163 		lp->datacs = NULL;
2164 
2165 		if (res)
2166 			release_mem_region(res->start, SMC_DATA_EXTENT);
2167 	}
2168 }
2169 
2170 static const struct acpi_device_id smc91x_acpi_match[] = {
2171 	{ "LNRO0003", 0 },
2172 	{ }
2173 };
2174 MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2175 
2176 #if IS_BUILTIN(CONFIG_OF)
2177 static const struct of_device_id smc91x_match[] = {
2178 	{ .compatible = "smsc,lan91c94", },
2179 	{ .compatible = "smsc,lan91c111", },
2180 	{},
2181 };
2182 MODULE_DEVICE_TABLE(of, smc91x_match);
2183 
2184 /**
2185  * try_toggle_control_gpio - configure a gpio if it exists
2186  * @dev: net device
2187  * @desc: where to store the GPIO descriptor, if it exists
2188  * @name: name of the GPIO in DT
2189  * @index: index of the GPIO in DT
2190  * @value: set the GPIO to this value
2191  * @nsdelay: delay before setting the GPIO
2192  */
try_toggle_control_gpio(struct device * dev,struct gpio_desc ** desc,const char * name,int index,int value,unsigned int nsdelay)2193 static int try_toggle_control_gpio(struct device *dev,
2194 				   struct gpio_desc **desc,
2195 				   const char *name, int index,
2196 				   int value, unsigned int nsdelay)
2197 {
2198 	struct gpio_desc *gpio;
2199 	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2200 
2201 	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2202 	if (IS_ERR(gpio))
2203 		return PTR_ERR(gpio);
2204 
2205 	if (gpio) {
2206 		if (nsdelay)
2207 			usleep_range(nsdelay, 2 * nsdelay);
2208 		gpiod_set_value_cansleep(gpio, value);
2209 	}
2210 	*desc = gpio;
2211 
2212 	return 0;
2213 }
2214 #endif
2215 
2216 /*
2217  * smc_init(void)
2218  *   Input parameters:
2219  *	dev->base_addr == 0, try to find all possible locations
2220  *	dev->base_addr > 0x1ff, this is the address to check
2221  *	dev->base_addr == <anything else>, return failure code
2222  *
2223  *   Output:
2224  *	0 --> there is a device
2225  *	anything else, error
2226  */
smc_drv_probe(struct platform_device * pdev)2227 static int smc_drv_probe(struct platform_device *pdev)
2228 {
2229 	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2230 	const struct of_device_id *match = NULL;
2231 	struct smc_local *lp;
2232 	struct net_device *ndev;
2233 	struct resource *res;
2234 	unsigned int __iomem *addr;
2235 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2236 	unsigned long irq_resflags;
2237 	int ret;
2238 
2239 	ndev = alloc_etherdev(sizeof(struct smc_local));
2240 	if (!ndev) {
2241 		ret = -ENOMEM;
2242 		goto out;
2243 	}
2244 	SET_NETDEV_DEV(ndev, &pdev->dev);
2245 
2246 	/* get configuration from platform data, only allow use of
2247 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2248 	 */
2249 
2250 	lp = netdev_priv(ndev);
2251 	lp->cfg.flags = 0;
2252 
2253 	if (pd) {
2254 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2255 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2256 
2257 		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2258 			dev_err(&pdev->dev,
2259 				"at least one of 8-bit or 16-bit access support is required.\n");
2260 			ret = -ENXIO;
2261 			goto out_free_netdev;
2262 		}
2263 	}
2264 
2265 #if IS_BUILTIN(CONFIG_OF)
2266 	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2267 	if (match) {
2268 		u32 val;
2269 
2270 		/* Optional pwrdwn GPIO configured? */
2271 		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2272 					      "power", 0, 0, 100);
2273 		if (ret)
2274 			goto out_free_netdev;
2275 
2276 		/*
2277 		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2278 		 * according to LAN91C96 datasheet page 14.
2279 		 */
2280 		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2281 					      "reset", 0, 0, 100);
2282 		if (ret)
2283 			goto out_free_netdev;
2284 
2285 		/*
2286 		 * Need to wait for optional EEPROM to load, max 750 us according
2287 		 * to LAN91C96 datasheet page 55.
2288 		 */
2289 		if (lp->reset_gpio)
2290 			usleep_range(750, 1000);
2291 
2292 		/* Combination of IO widths supported, default to 16-bit */
2293 		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2294 					      &val)) {
2295 			if (val & 1)
2296 				lp->cfg.flags |= SMC91X_USE_8BIT;
2297 			if ((val == 0) || (val & 2))
2298 				lp->cfg.flags |= SMC91X_USE_16BIT;
2299 			if (val & 4)
2300 				lp->cfg.flags |= SMC91X_USE_32BIT;
2301 		} else {
2302 			lp->cfg.flags |= SMC91X_USE_16BIT;
2303 		}
2304 		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2305 					      &val))
2306 			lp->io_shift = val;
2307 		lp->cfg.pxa_u16_align4 =
2308 			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2309 	}
2310 #endif
2311 
2312 	if (!pd && !match) {
2313 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2314 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2315 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2316 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2317 	}
2318 
2319 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2320 		lp->cfg.leda = RPC_LSA_DEFAULT;
2321 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2322 	}
2323 
2324 	ndev->dma = (unsigned char)-1;
2325 
2326 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2327 	if (!res)
2328 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2329 	if (!res) {
2330 		ret = -ENODEV;
2331 		goto out_free_netdev;
2332 	}
2333 
2334 
2335 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2336 		ret = -EBUSY;
2337 		goto out_free_netdev;
2338 	}
2339 
2340 	ndev->irq = platform_get_irq(pdev, 0);
2341 	if (ndev->irq < 0) {
2342 		ret = ndev->irq;
2343 		goto out_release_io;
2344 	}
2345 	/*
2346 	 * If this platform does not specify any special irqflags, or if
2347 	 * the resource supplies a trigger, override the irqflags with
2348 	 * the trigger flags from the resource.
2349 	 */
2350 	irq_resflags = irq_get_trigger_type(ndev->irq);
2351 	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2352 		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2353 
2354 	ret = smc_request_attrib(pdev, ndev);
2355 	if (ret)
2356 		goto out_release_io;
2357 #if defined(CONFIG_ASSABET_NEPONSET)
2358 	if (machine_is_assabet() && machine_has_neponset())
2359 		neponset_ncr_set(NCR_ENET_OSC_EN);
2360 #endif
2361 	platform_set_drvdata(pdev, ndev);
2362 	ret = smc_enable_device(pdev);
2363 	if (ret)
2364 		goto out_release_attrib;
2365 
2366 	addr = ioremap(res->start, SMC_IO_EXTENT);
2367 	if (!addr) {
2368 		ret = -ENOMEM;
2369 		goto out_release_attrib;
2370 	}
2371 
2372 #ifdef CONFIG_ARCH_PXA
2373 	{
2374 		struct smc_local *lp = netdev_priv(ndev);
2375 		lp->device = &pdev->dev;
2376 		lp->physaddr = res->start;
2377 
2378 	}
2379 #endif
2380 
2381 	ret = smc_probe(ndev, addr, irq_flags);
2382 	if (ret != 0)
2383 		goto out_iounmap;
2384 
2385 	smc_request_datacs(pdev, ndev);
2386 
2387 	return 0;
2388 
2389  out_iounmap:
2390 	iounmap(addr);
2391  out_release_attrib:
2392 	smc_release_attrib(pdev, ndev);
2393  out_release_io:
2394 	release_mem_region(res->start, SMC_IO_EXTENT);
2395  out_free_netdev:
2396 	free_netdev(ndev);
2397  out:
2398 	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2399 
2400 	return ret;
2401 }
2402 
smc_drv_remove(struct platform_device * pdev)2403 static void smc_drv_remove(struct platform_device *pdev)
2404 {
2405 	struct net_device *ndev = platform_get_drvdata(pdev);
2406 	struct smc_local *lp = netdev_priv(ndev);
2407 	struct resource *res;
2408 
2409 	unregister_netdev(ndev);
2410 
2411 	free_irq(ndev->irq, ndev);
2412 
2413 #ifdef CONFIG_ARCH_PXA
2414 	if (lp->dma_chan)
2415 		dma_release_channel(lp->dma_chan);
2416 #endif
2417 	iounmap(lp->base);
2418 
2419 	smc_release_datacs(pdev,ndev);
2420 	smc_release_attrib(pdev,ndev);
2421 
2422 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2423 	if (!res)
2424 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2425 	release_mem_region(res->start, SMC_IO_EXTENT);
2426 
2427 	free_netdev(ndev);
2428 }
2429 
smc_drv_suspend(struct device * dev)2430 static int smc_drv_suspend(struct device *dev)
2431 {
2432 	struct net_device *ndev = dev_get_drvdata(dev);
2433 
2434 	if (ndev) {
2435 		if (netif_running(ndev)) {
2436 			netif_device_detach(ndev);
2437 			smc_shutdown(ndev);
2438 			smc_phy_powerdown(ndev);
2439 		}
2440 	}
2441 	return 0;
2442 }
2443 
smc_drv_resume(struct device * dev)2444 static int smc_drv_resume(struct device *dev)
2445 {
2446 	struct platform_device *pdev = to_platform_device(dev);
2447 	struct net_device *ndev = platform_get_drvdata(pdev);
2448 
2449 	if (ndev) {
2450 		struct smc_local *lp = netdev_priv(ndev);
2451 		smc_enable_device(pdev);
2452 		if (netif_running(ndev)) {
2453 			smc_reset(ndev);
2454 			smc_enable(ndev);
2455 			if (lp->phy_type != 0)
2456 				smc_phy_configure(&lp->phy_configure);
2457 			netif_device_attach(ndev);
2458 		}
2459 	}
2460 	return 0;
2461 }
2462 
2463 static const struct dev_pm_ops smc_drv_pm_ops = {
2464 	.suspend	= smc_drv_suspend,
2465 	.resume		= smc_drv_resume,
2466 };
2467 
2468 static struct platform_driver smc_driver = {
2469 	.probe		= smc_drv_probe,
2470 	.remove		= smc_drv_remove,
2471 	.driver		= {
2472 		.name	= CARDNAME,
2473 		.pm	= &smc_drv_pm_ops,
2474 		.of_match_table   = of_match_ptr(smc91x_match),
2475 		.acpi_match_table = smc91x_acpi_match,
2476 	},
2477 };
2478 
2479 module_platform_driver(smc_driver);
2480