xref: /linux/arch/s390/kernel/smp.c (revision bc46b7cbc58c4cb562b6a45a1fbc7b8e7b23df58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17 
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20 
21 #include <linux/cpufeature.h>
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/access-regs.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/machine.h>
43 #include <asm/ctlreg.h>
44 #include <asm/pfault.h>
45 #include <asm/diag.h>
46 #include <asm/facility.h>
47 #include <asm/fpu.h>
48 #include <asm/ipl.h>
49 #include <asm/setup.h>
50 #include <asm/irq.h>
51 #include <asm/tlbflush.h>
52 #include <asm/vtimer.h>
53 #include <asm/abs_lowcore.h>
54 #include <asm/sclp.h>
55 #include <asm/debug.h>
56 #include <asm/os_info.h>
57 #include <asm/sigp.h>
58 #include <asm/idle.h>
59 #include <asm/nmi.h>
60 #include <asm/stacktrace.h>
61 #include <asm/topology.h>
62 #include <asm/vdso.h>
63 #include <asm/maccess.h>
64 #include "entry.h"
65 
66 enum {
67 	ec_schedule = 0,
68 	ec_call_function_single,
69 	ec_stop_cpu,
70 	ec_mcck_pending,
71 	ec_irq_work,
72 };
73 
74 enum {
75 	CPU_STATE_STANDBY,
76 	CPU_STATE_CONFIGURED,
77 };
78 
79 static u8 boot_core_type;
80 DEFINE_PER_CPU(struct pcpu, pcpu_devices);
81 /*
82  * Pointer to the pcpu area of the boot CPU. This is required when a restart
83  * interrupt is triggered on an offline CPU. For that case accessing percpu
84  * data with the common primitives does not work, since the percpu offset is
85  * stored in a non existent lowcore.
86  */
87 static struct pcpu *ipl_pcpu;
88 
89 unsigned int smp_cpu_mt_shift;
90 EXPORT_SYMBOL(smp_cpu_mt_shift);
91 
92 unsigned int smp_cpu_mtid;
93 EXPORT_SYMBOL(smp_cpu_mtid);
94 
95 #ifdef CONFIG_CRASH_DUMP
96 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97 #endif
98 
99 static unsigned int smp_max_threads __initdata = -1U;
100 cpumask_t cpu_setup_mask;
101 
early_smt(char * s)102 static int __init early_smt(char *s)
103 {
104 	get_option(&s, &smp_max_threads);
105 	return 0;
106 }
107 early_param("smt", early_smt);
108 
109 /*
110  * The smp_cpu_state_mutex must be held when changing the state or polarization
111  * member of a pcpu data structure within the pcpu_devices array.
112  */
113 DEFINE_MUTEX(smp_cpu_state_mutex);
114 
115 /*
116  * Signal processor helper functions.
117  */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)118 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
119 {
120 	int cc;
121 
122 	while (1) {
123 		cc = __pcpu_sigp(addr, order, parm, NULL);
124 		if (cc != SIGP_CC_BUSY)
125 			return cc;
126 		cpu_relax();
127 	}
128 }
129 
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)130 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
131 {
132 	int cc, retry;
133 
134 	for (retry = 0; ; retry++) {
135 		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
136 		if (cc != SIGP_CC_BUSY)
137 			break;
138 		if (retry >= 3)
139 			udelay(10);
140 	}
141 	return cc;
142 }
143 
pcpu_stopped(struct pcpu * pcpu)144 static inline int pcpu_stopped(struct pcpu *pcpu)
145 {
146 	u32 status;
147 
148 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
149 			0, &status) != SIGP_CC_STATUS_STORED)
150 		return 0;
151 	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
152 }
153 
pcpu_running(struct pcpu * pcpu)154 static inline int pcpu_running(struct pcpu *pcpu)
155 {
156 	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
157 			0, NULL) != SIGP_CC_STATUS_STORED)
158 		return 1;
159 	/* Status stored condition code is equivalent to cpu not running. */
160 	return 0;
161 }
162 
163 /*
164  * Find struct pcpu by cpu address.
165  */
pcpu_find_address(const struct cpumask * mask,u16 address)166 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
167 {
168 	int cpu;
169 
170 	for_each_cpu(cpu, mask)
171 		if (per_cpu(pcpu_devices, cpu).address == address)
172 			return &per_cpu(pcpu_devices, cpu);
173 	return NULL;
174 }
175 
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)176 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
177 {
178 	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
179 		return;
180 	pcpu->ec_clk = get_tod_clock_fast();
181 	pcpu_sigp_retry(pcpu, SIGP_EXTERNAL_CALL, 0);
182 }
183 
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)184 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
185 {
186 	unsigned long async_stack, nodat_stack, mcck_stack;
187 	struct lowcore *lc;
188 
189 	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
190 	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
191 	async_stack = stack_alloc();
192 	mcck_stack = stack_alloc();
193 	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
194 		goto out;
195 	memcpy(lc, get_lowcore(), 512);
196 	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
197 	lc->async_stack = async_stack + STACK_INIT_OFFSET;
198 	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
199 	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
200 	lc->cpu_nr = cpu;
201 	lc->spinlock_lockval = arch_spin_lockval(cpu);
202 	lc->spinlock_index = 0;
203 	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
204 	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
205 	lc->preempt_count = PREEMPT_DISABLED;
206 	if (nmi_alloc_mcesa(&lc->mcesad))
207 		goto out;
208 	if (abs_lowcore_map(cpu, lc, true))
209 		goto out_mcesa;
210 	lowcore_ptr[cpu] = lc;
211 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
212 	return 0;
213 
214 out_mcesa:
215 	nmi_free_mcesa(&lc->mcesad);
216 out:
217 	stack_free(mcck_stack);
218 	stack_free(async_stack);
219 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
220 	free_pages((unsigned long) lc, LC_ORDER);
221 	return -ENOMEM;
222 }
223 
pcpu_free_lowcore(struct pcpu * pcpu,int cpu)224 static void pcpu_free_lowcore(struct pcpu *pcpu, int cpu)
225 {
226 	unsigned long async_stack, nodat_stack, mcck_stack;
227 	struct lowcore *lc;
228 
229 	lc = lowcore_ptr[cpu];
230 	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
231 	async_stack = lc->async_stack - STACK_INIT_OFFSET;
232 	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
233 	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
234 	lowcore_ptr[cpu] = NULL;
235 	abs_lowcore_unmap(cpu);
236 	nmi_free_mcesa(&lc->mcesad);
237 	stack_free(async_stack);
238 	stack_free(mcck_stack);
239 	free_pages(nodat_stack, THREAD_SIZE_ORDER);
240 	free_pages((unsigned long) lc, LC_ORDER);
241 }
242 
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)243 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
244 {
245 	struct lowcore *lc, *abs_lc;
246 
247 	lc = lowcore_ptr[cpu];
248 	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
249 	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
250 	lc->cpu_nr = cpu;
251 	lc->pcpu = (unsigned long)pcpu;
252 	lc->restart_flags = RESTART_FLAG_CTLREGS;
253 	lc->spinlock_lockval = arch_spin_lockval(cpu);
254 	lc->spinlock_index = 0;
255 	lc->percpu_offset = __per_cpu_offset[cpu];
256 	lc->kernel_asce = get_lowcore()->kernel_asce;
257 	lc->user_asce = s390_invalid_asce;
258 	lc->user_timer = lc->system_timer =
259 		lc->steal_timer = lc->avg_steal_timer = 0;
260 	abs_lc = get_abs_lowcore();
261 	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
262 	put_abs_lowcore(abs_lc);
263 	lc->cregs_save_area[1] = lc->user_asce;
264 	lc->cregs_save_area[7] = lc->user_asce;
265 	save_access_regs((unsigned int *) lc->access_regs_save_area);
266 	arch_spin_lock_setup(cpu);
267 }
268 
pcpu_attach_task(int cpu,struct task_struct * tsk)269 static void pcpu_attach_task(int cpu, struct task_struct *tsk)
270 {
271 	struct lowcore *lc;
272 
273 	lc = lowcore_ptr[cpu];
274 	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
275 	lc->current_task = (unsigned long)tsk;
276 	lc->lpp = LPP_MAGIC;
277 	lc->current_pid = tsk->pid;
278 	lc->user_timer = tsk->thread.user_timer;
279 	lc->guest_timer = tsk->thread.guest_timer;
280 	lc->system_timer = tsk->thread.system_timer;
281 	lc->hardirq_timer = tsk->thread.hardirq_timer;
282 	lc->softirq_timer = tsk->thread.softirq_timer;
283 	lc->steal_timer = 0;
284 }
285 
pcpu_start_fn(int cpu,void (* func)(void *),void * data)286 static void pcpu_start_fn(int cpu, void (*func)(void *), void *data)
287 {
288 	struct lowcore *lc;
289 
290 	lc = lowcore_ptr[cpu];
291 	lc->restart_stack = lc->kernel_stack;
292 	lc->restart_fn = (unsigned long) func;
293 	lc->restart_data = (unsigned long) data;
294 	lc->restart_source = -1U;
295 	pcpu_sigp_retry(per_cpu_ptr(&pcpu_devices, cpu), SIGP_RESTART, 0);
296 }
297 
298 typedef void (pcpu_delegate_fn)(void *);
299 
300 /*
301  * Call function via PSW restart on pcpu and stop the current cpu.
302  */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)303 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
304 {
305 	func(data);	/* should not return */
306 }
307 
pcpu_delegate(struct pcpu * pcpu,int cpu,pcpu_delegate_fn * func,void * data,unsigned long stack)308 static void pcpu_delegate(struct pcpu *pcpu, int cpu,
309 			  pcpu_delegate_fn *func,
310 			  void *data, unsigned long stack)
311 {
312 	struct lowcore *lc, *abs_lc;
313 	unsigned int source_cpu;
314 
315 	lc = lowcore_ptr[cpu];
316 	source_cpu = stap();
317 
318 	if (pcpu->address == source_cpu) {
319 		call_on_stack(2, stack, void, __pcpu_delegate,
320 			      pcpu_delegate_fn *, func, void *, data);
321 	}
322 	/* Stop target cpu (if func returns this stops the current cpu). */
323 	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
324 	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
325 	/* Restart func on the target cpu and stop the current cpu. */
326 	if (lc) {
327 		lc->restart_stack = stack;
328 		lc->restart_fn = (unsigned long)func;
329 		lc->restart_data = (unsigned long)data;
330 		lc->restart_source = source_cpu;
331 	} else {
332 		abs_lc = get_abs_lowcore();
333 		abs_lc->restart_stack = stack;
334 		abs_lc->restart_fn = (unsigned long)func;
335 		abs_lc->restart_data = (unsigned long)data;
336 		abs_lc->restart_source = source_cpu;
337 		put_abs_lowcore(abs_lc);
338 	}
339 	asm volatile(
340 		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
341 		"	brc	2,0b	# busy, try again\n"
342 		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
343 		"	brc	2,1b	# busy, try again\n"
344 		: : "d" (pcpu->address), "d" (source_cpu),
345 		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
346 		: "0", "1", "cc");
347 	for (;;) ;
348 }
349 
350 /*
351  * Enable additional logical cpus for multi-threading.
352  */
pcpu_set_smt(unsigned int mtid)353 static int pcpu_set_smt(unsigned int mtid)
354 {
355 	int cc;
356 
357 	if (smp_cpu_mtid == mtid)
358 		return 0;
359 	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
360 	if (cc == 0) {
361 		smp_cpu_mtid = mtid;
362 		smp_cpu_mt_shift = 0;
363 		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
364 			smp_cpu_mt_shift++;
365 		per_cpu(pcpu_devices, 0).address = stap();
366 	}
367 	return cc;
368 }
369 
370 /*
371  * Call function on the ipl CPU.
372  */
smp_call_ipl_cpu(void (* func)(void *),void * data)373 void smp_call_ipl_cpu(void (*func)(void *), void *data)
374 {
375 	struct lowcore *lc = lowcore_ptr[0];
376 
377 	if (ipl_pcpu->address == stap())
378 		lc = get_lowcore();
379 
380 	pcpu_delegate(ipl_pcpu, 0, func, data, lc->nodat_stack);
381 }
382 
smp_find_processor_id(u16 address)383 int smp_find_processor_id(u16 address)
384 {
385 	int cpu;
386 
387 	for_each_present_cpu(cpu)
388 		if (per_cpu(pcpu_devices, cpu).address == address)
389 			return cpu;
390 	return -1;
391 }
392 
schedule_mcck_handler(void)393 void schedule_mcck_handler(void)
394 {
395 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_mcck_pending);
396 }
397 
arch_vcpu_is_preempted(int cpu)398 bool notrace arch_vcpu_is_preempted(int cpu)
399 {
400 	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
401 		return false;
402 	if (pcpu_running(per_cpu_ptr(&pcpu_devices, cpu)))
403 		return false;
404 	return true;
405 }
406 EXPORT_SYMBOL(arch_vcpu_is_preempted);
407 
smp_yield_cpu(int cpu)408 void notrace smp_yield_cpu(int cpu)
409 {
410 	if (!machine_has_diag9c())
411 		return;
412 	diag_stat_inc_norecursion(DIAG_STAT_X09C);
413 	asm volatile("diag %0,0,0x9c"
414 		     : : "d" (per_cpu(pcpu_devices, cpu).address));
415 }
416 EXPORT_SYMBOL_GPL(smp_yield_cpu);
417 
418 /*
419  * Send cpus emergency shutdown signal. This gives the cpus the
420  * opportunity to complete outstanding interrupts.
421  */
smp_emergency_stop(void)422 void notrace smp_emergency_stop(void)
423 {
424 	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
425 	static cpumask_t cpumask;
426 	u64 end;
427 	int cpu;
428 
429 	arch_spin_lock(&lock);
430 	cpumask_copy(&cpumask, cpu_online_mask);
431 	cpumask_clear_cpu(smp_processor_id(), &cpumask);
432 
433 	end = get_tod_clock_monotonic() + (1000000UL << 12);
434 	for_each_cpu(cpu, &cpumask) {
435 		struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
436 		set_bit(ec_stop_cpu, &pcpu->ec_mask);
437 		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
438 				   0, NULL) == SIGP_CC_BUSY &&
439 		       get_tod_clock_monotonic() < end)
440 			cpu_relax();
441 	}
442 	while (get_tod_clock_monotonic() < end) {
443 		for_each_cpu(cpu, &cpumask)
444 			if (pcpu_stopped(per_cpu_ptr(&pcpu_devices, cpu)))
445 				cpumask_clear_cpu(cpu, &cpumask);
446 		if (cpumask_empty(&cpumask))
447 			break;
448 		cpu_relax();
449 	}
450 	arch_spin_unlock(&lock);
451 }
452 NOKPROBE_SYMBOL(smp_emergency_stop);
453 
454 /*
455  * Stop all cpus but the current one.
456  */
smp_send_stop(void)457 void smp_send_stop(void)
458 {
459 	struct pcpu *pcpu;
460 	int cpu;
461 
462 	/* Disable all interrupts/machine checks */
463 	__load_psw_mask(PSW_KERNEL_BITS);
464 	trace_hardirqs_off();
465 
466 	debug_set_critical();
467 
468 	if (oops_in_progress)
469 		smp_emergency_stop();
470 
471 	/* stop all processors */
472 	for_each_online_cpu(cpu) {
473 		if (cpu == smp_processor_id())
474 			continue;
475 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
476 		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
477 		while (!pcpu_stopped(pcpu))
478 			cpu_relax();
479 	}
480 }
481 
482 /*
483  * This is the main routine where commands issued by other
484  * cpus are handled.
485  */
smp_handle_ext_call(void)486 static void smp_handle_ext_call(void)
487 {
488 	unsigned long bits;
489 
490 	/* handle bit signal external calls */
491 	bits = this_cpu_xchg(pcpu_devices.ec_mask, 0);
492 	if (test_bit(ec_stop_cpu, &bits))
493 		smp_stop_cpu();
494 	if (test_bit(ec_schedule, &bits))
495 		scheduler_ipi();
496 	if (test_bit(ec_call_function_single, &bits))
497 		generic_smp_call_function_single_interrupt();
498 	if (test_bit(ec_mcck_pending, &bits))
499 		s390_handle_mcck();
500 	if (test_bit(ec_irq_work, &bits))
501 		irq_work_run();
502 }
503 
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)504 static void do_ext_call_interrupt(struct ext_code ext_code,
505 				  unsigned int param32, unsigned long param64)
506 {
507 	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
508 	smp_handle_ext_call();
509 }
510 
arch_send_call_function_ipi_mask(const struct cpumask * mask)511 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
512 {
513 	int cpu;
514 
515 	for_each_cpu(cpu, mask)
516 		pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
517 }
518 
arch_send_call_function_single_ipi(int cpu)519 void arch_send_call_function_single_ipi(int cpu)
520 {
521 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_call_function_single);
522 }
523 
524 /*
525  * this function sends a 'reschedule' IPI to another CPU.
526  * it goes straight through and wastes no time serializing
527  * anything. Worst case is that we lose a reschedule ...
528  */
arch_smp_send_reschedule(int cpu)529 void arch_smp_send_reschedule(int cpu)
530 {
531 	pcpu_ec_call(per_cpu_ptr(&pcpu_devices, cpu), ec_schedule);
532 }
533 
534 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)535 void arch_irq_work_raise(void)
536 {
537 	pcpu_ec_call(this_cpu_ptr(&pcpu_devices), ec_irq_work);
538 }
539 #endif
540 
541 #ifdef CONFIG_CRASH_DUMP
542 
smp_store_status(int cpu)543 int smp_store_status(int cpu)
544 {
545 	struct lowcore *lc;
546 	struct pcpu *pcpu;
547 	unsigned long pa;
548 
549 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
550 	lc = lowcore_ptr[cpu];
551 	pa = __pa(&lc->floating_pt_save_area);
552 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
553 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
554 		return -EIO;
555 	if (!cpu_has_vx() && !cpu_has_gs())
556 		return 0;
557 	pa = lc->mcesad & MCESA_ORIGIN_MASK;
558 	if (cpu_has_gs())
559 		pa |= lc->mcesad & MCESA_LC_MASK;
560 	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
561 			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
562 		return -EIO;
563 	return 0;
564 }
565 
566 /*
567  * Collect CPU state of the previous, crashed system.
568  * There are three cases:
569  * 1) standard zfcp/nvme dump
570  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
571  *    The state for all CPUs except the boot CPU needs to be collected
572  *    with sigp stop-and-store-status. The boot CPU state is located in
573  *    the absolute lowcore of the memory stored in the HSA. The zcore code
574  *    will copy the boot CPU state from the HSA.
575  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
576  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
577  *    The state for all CPUs except the boot CPU needs to be collected
578  *    with sigp stop-and-store-status. The firmware or the boot-loader
579  *    stored the registers of the boot CPU in the absolute lowcore in the
580  *    memory of the old system.
581  * 3) kdump or stand-alone kdump for DASD
582  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == false
583  *    The state for all CPUs except the boot CPU needs to be collected
584  *    with sigp stop-and-store-status. The kexec code or the boot-loader
585  *    stored the registers of the boot CPU in the memory of the old system.
586  *
587  * Note that the legacy kdump mode where the old kernel stored the CPU states
588  * does no longer exist: setup_arch() explicitly deactivates the elfcorehdr=
589  * kernel parameter. The is_kdump_kernel() implementation on s390 is independent
590  * of the elfcorehdr= parameter.
591  */
dump_available(void)592 static bool dump_available(void)
593 {
594 	return oldmem_data.start || is_ipl_type_dump();
595 }
596 
smp_save_dump_ipl_cpu(void)597 void __init smp_save_dump_ipl_cpu(void)
598 {
599 	struct save_area *sa;
600 	void *regs;
601 
602 	if (!dump_available())
603 		return;
604 	sa = save_area_alloc(true);
605 	regs = memblock_alloc_or_panic(512, 8);
606 	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
607 	save_area_add_regs(sa, regs);
608 	memblock_free(regs, 512);
609 	if (cpu_has_vx())
610 		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
611 }
612 
smp_save_dump_secondary_cpus(void)613 void __init smp_save_dump_secondary_cpus(void)
614 {
615 	int addr, boot_cpu_addr, max_cpu_addr;
616 	struct save_area *sa;
617 	void *page;
618 
619 	if (!dump_available())
620 		return;
621 	/* Allocate a page as dumping area for the store status sigps */
622 	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
623 	if (!page)
624 		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
625 		      PAGE_SIZE, 1UL << 31);
626 
627 	/* Set multi-threading state to the previous system. */
628 	pcpu_set_smt(sclp.mtid_prev);
629 	boot_cpu_addr = stap();
630 	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
631 	for (addr = 0; addr <= max_cpu_addr; addr++) {
632 		if (addr == boot_cpu_addr)
633 			continue;
634 		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
635 		    SIGP_CC_NOT_OPERATIONAL)
636 			continue;
637 		sa = save_area_alloc(false);
638 		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
639 		save_area_add_regs(sa, page);
640 		if (cpu_has_vx()) {
641 			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
642 			save_area_add_vxrs(sa, page);
643 		}
644 	}
645 	memblock_free(page, PAGE_SIZE);
646 	diag_amode31_ops.diag308_reset();
647 	pcpu_set_smt(0);
648 }
649 #endif /* CONFIG_CRASH_DUMP */
650 
smp_cpu_set_polarization(int cpu,int val)651 void smp_cpu_set_polarization(int cpu, int val)
652 {
653 	per_cpu(pcpu_devices, cpu).polarization = val;
654 }
655 
smp_cpu_get_polarization(int cpu)656 int smp_cpu_get_polarization(int cpu)
657 {
658 	return per_cpu(pcpu_devices, cpu).polarization;
659 }
660 
smp_cpu_set_capacity(int cpu,unsigned long val)661 void smp_cpu_set_capacity(int cpu, unsigned long val)
662 {
663 	per_cpu(pcpu_devices, cpu).capacity = val;
664 }
665 
smp_cpu_get_capacity(int cpu)666 unsigned long smp_cpu_get_capacity(int cpu)
667 {
668 	return per_cpu(pcpu_devices, cpu).capacity;
669 }
670 
smp_set_core_capacity(int cpu,unsigned long val)671 void smp_set_core_capacity(int cpu, unsigned long val)
672 {
673 	int i;
674 
675 	cpu = smp_get_base_cpu(cpu);
676 	for (i = cpu; (i <= cpu + smp_cpu_mtid) && (i < nr_cpu_ids); i++)
677 		smp_cpu_set_capacity(i, val);
678 }
679 
smp_cpu_get_cpu_address(int cpu)680 int smp_cpu_get_cpu_address(int cpu)
681 {
682 	return per_cpu(pcpu_devices, cpu).address;
683 }
684 
smp_get_core_info(struct sclp_core_info * info,int early)685 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
686 {
687 	static int use_sigp_detection;
688 	int address;
689 
690 	if (use_sigp_detection || sclp_get_core_info(info, early)) {
691 		use_sigp_detection = 1;
692 		for (address = 0;
693 		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
694 		     address += (1U << smp_cpu_mt_shift)) {
695 			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
696 			    SIGP_CC_NOT_OPERATIONAL)
697 				continue;
698 			info->core[info->configured].core_id =
699 				address >> smp_cpu_mt_shift;
700 			info->configured++;
701 		}
702 		info->combined = info->configured;
703 	}
704 }
705 
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)706 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
707 			bool configured, bool early)
708 {
709 	struct pcpu *pcpu;
710 	int cpu, nr, i;
711 	u16 address;
712 
713 	nr = 0;
714 	if (sclp.has_core_type && core->type != boot_core_type)
715 		return nr;
716 	cpu = cpumask_first(avail);
717 	address = core->core_id << smp_cpu_mt_shift;
718 	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
719 		if (pcpu_find_address(cpu_present_mask, address + i))
720 			continue;
721 		pcpu = per_cpu_ptr(&pcpu_devices, cpu);
722 		pcpu->address = address + i;
723 		if (configured)
724 			pcpu->state = CPU_STATE_CONFIGURED;
725 		else
726 			pcpu->state = CPU_STATE_STANDBY;
727 		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
728 		smp_cpu_set_capacity(cpu, CPU_CAPACITY_HIGH);
729 		set_cpu_present(cpu, true);
730 		if (!early && arch_register_cpu(cpu))
731 			set_cpu_present(cpu, false);
732 		else
733 			nr++;
734 		cpumask_clear_cpu(cpu, avail);
735 		cpu = cpumask_next(cpu, avail);
736 	}
737 	return nr;
738 }
739 
__smp_rescan_cpus(struct sclp_core_info * info,bool early)740 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
741 {
742 	struct sclp_core_entry *core;
743 	static cpumask_t avail;
744 	bool configured;
745 	u16 core_id;
746 	int nr, i;
747 
748 	cpus_read_lock();
749 	mutex_lock(&smp_cpu_state_mutex);
750 	nr = 0;
751 	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
752 	/*
753 	 * Add IPL core first (which got logical CPU number 0) to make sure
754 	 * that all SMT threads get subsequent logical CPU numbers.
755 	 */
756 	if (early) {
757 		core_id = per_cpu(pcpu_devices, 0).address >> smp_cpu_mt_shift;
758 		for (i = 0; i < info->configured; i++) {
759 			core = &info->core[i];
760 			if (core->core_id == core_id) {
761 				nr += smp_add_core(core, &avail, true, early);
762 				break;
763 			}
764 		}
765 	}
766 	for (i = 0; i < info->combined; i++) {
767 		configured = i < info->configured;
768 		nr += smp_add_core(&info->core[i], &avail, configured, early);
769 	}
770 	mutex_unlock(&smp_cpu_state_mutex);
771 	cpus_read_unlock();
772 	return nr;
773 }
774 
smp_detect_cpus(void)775 void __init smp_detect_cpus(void)
776 {
777 	unsigned int cpu, mtid, c_cpus, s_cpus;
778 	struct sclp_core_info *info;
779 	u16 address;
780 
781 	/* Get CPU information */
782 	info = memblock_alloc_or_panic(sizeof(*info), 8);
783 	smp_get_core_info(info, 1);
784 	/* Find boot CPU type */
785 	if (sclp.has_core_type) {
786 		address = stap();
787 		for (cpu = 0; cpu < info->combined; cpu++)
788 			if (info->core[cpu].core_id == address) {
789 				/* The boot cpu dictates the cpu type. */
790 				boot_core_type = info->core[cpu].type;
791 				break;
792 			}
793 		if (cpu >= info->combined)
794 			panic("Could not find boot CPU type");
795 	}
796 
797 	/* Set multi-threading state for the current system */
798 	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
799 	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
800 	pcpu_set_smt(mtid);
801 	cpu_smt_set_num_threads(smp_cpu_mtid + 1, smp_cpu_mtid + 1);
802 
803 	/* Print number of CPUs */
804 	c_cpus = s_cpus = 0;
805 	for (cpu = 0; cpu < info->combined; cpu++) {
806 		if (sclp.has_core_type &&
807 		    info->core[cpu].type != boot_core_type)
808 			continue;
809 		if (cpu < info->configured)
810 			c_cpus += smp_cpu_mtid + 1;
811 		else
812 			s_cpus += smp_cpu_mtid + 1;
813 	}
814 	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
815 	memblock_free(info, sizeof(*info));
816 }
817 
818 /*
819  *	Activate a secondary processor.
820  */
smp_start_secondary(void * cpuvoid)821 static void smp_start_secondary(void *cpuvoid)
822 {
823 	struct lowcore *lc = get_lowcore();
824 	int cpu = raw_smp_processor_id();
825 
826 	lc->last_update_clock = get_tod_clock();
827 	lc->restart_stack = (unsigned long)restart_stack;
828 	lc->restart_fn = (unsigned long)do_restart;
829 	lc->restart_data = 0;
830 	lc->restart_source = -1U;
831 	lc->restart_flags = 0;
832 	restore_access_regs(lc->access_regs_save_area);
833 	cpu_init();
834 	rcutree_report_cpu_starting(cpu);
835 	init_cpu_timer();
836 	vtime_init();
837 	vdso_getcpu_init();
838 	pfault_init();
839 	cpumask_set_cpu(cpu, &cpu_setup_mask);
840 	update_cpu_masks();
841 	notify_cpu_starting(cpu);
842 	if (topology_cpu_dedicated(cpu))
843 		set_cpu_flag(CIF_DEDICATED_CPU);
844 	else
845 		clear_cpu_flag(CIF_DEDICATED_CPU);
846 	set_cpu_online(cpu, true);
847 	inc_irq_stat(CPU_RST);
848 	local_irq_enable();
849 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
850 }
851 
852 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)853 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
854 {
855 	struct pcpu *pcpu = per_cpu_ptr(&pcpu_devices, cpu);
856 	int rc;
857 
858 	if (pcpu->state != CPU_STATE_CONFIGURED)
859 		return -EIO;
860 	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
861 	    SIGP_CC_ORDER_CODE_ACCEPTED)
862 		return -EIO;
863 
864 	rc = pcpu_alloc_lowcore(pcpu, cpu);
865 	if (rc)
866 		return rc;
867 	/*
868 	 * Make sure global control register contents do not change
869 	 * until new CPU has initialized control registers.
870 	 */
871 	system_ctlreg_lock();
872 	pcpu_prepare_secondary(pcpu, cpu);
873 	pcpu_attach_task(cpu, tidle);
874 	pcpu_start_fn(cpu, smp_start_secondary, NULL);
875 	/* Wait until cpu puts itself in the online & active maps */
876 	while (!cpu_online(cpu))
877 		cpu_relax();
878 	system_ctlreg_unlock();
879 	return 0;
880 }
881 
882 static unsigned int setup_possible_cpus __initdata;
883 
_setup_possible_cpus(char * s)884 static int __init _setup_possible_cpus(char *s)
885 {
886 	get_option(&s, &setup_possible_cpus);
887 	return 0;
888 }
889 early_param("possible_cpus", _setup_possible_cpus);
890 
__cpu_disable(void)891 int __cpu_disable(void)
892 {
893 	struct ctlreg cregs[16];
894 	int cpu;
895 
896 	/* Handle possible pending IPIs */
897 	smp_handle_ext_call();
898 	cpu = smp_processor_id();
899 	set_cpu_online(cpu, false);
900 	cpumask_clear_cpu(cpu, &cpu_setup_mask);
901 	update_cpu_masks();
902 	/* Disable pseudo page faults on this cpu. */
903 	pfault_fini();
904 	/* Disable interrupt sources via control register. */
905 	__local_ctl_store(0, 15, cregs);
906 	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
907 	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
908 	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
909 	__local_ctl_load(0, 15, cregs);
910 	clear_cpu_flag(CIF_NOHZ_DELAY);
911 	return 0;
912 }
913 
__cpu_die(unsigned int cpu)914 void __cpu_die(unsigned int cpu)
915 {
916 	struct pcpu *pcpu;
917 
918 	/* Wait until target cpu is down */
919 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
920 	while (!pcpu_stopped(pcpu))
921 		cpu_relax();
922 	pcpu_free_lowcore(pcpu, cpu);
923 	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
924 	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
925 	pcpu->flags = 0;
926 }
927 
cpu_die(void)928 void __noreturn cpu_die(void)
929 {
930 	idle_task_exit();
931 	pcpu_sigp_retry(this_cpu_ptr(&pcpu_devices), SIGP_STOP, 0);
932 	for (;;) ;
933 }
934 
smp_fill_possible_mask(void)935 void __init smp_fill_possible_mask(void)
936 {
937 	unsigned int possible, sclp_max, cpu;
938 
939 	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
940 	sclp_max = min(smp_max_threads, sclp_max);
941 	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
942 	possible = setup_possible_cpus ?: nr_cpu_ids;
943 	possible = min(possible, sclp_max);
944 	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
945 		set_cpu_possible(cpu, true);
946 }
947 
smp_prepare_cpus(unsigned int max_cpus)948 void __init smp_prepare_cpus(unsigned int max_cpus)
949 {
950 	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
951 		panic("Couldn't request external interrupt 0x1201");
952 	system_ctl_set_bit(0, 14);
953 	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
954 		panic("Couldn't request external interrupt 0x1202");
955 	system_ctl_set_bit(0, 13);
956 	smp_rescan_cpus(true);
957 }
958 
smp_prepare_boot_cpu(void)959 void __init smp_prepare_boot_cpu(void)
960 {
961 	struct lowcore *lc = get_lowcore();
962 
963 	WARN_ON(!cpu_present(0) || !cpu_online(0));
964 	lc->percpu_offset = __per_cpu_offset[0];
965 	ipl_pcpu = per_cpu_ptr(&pcpu_devices, 0);
966 	ipl_pcpu->state = CPU_STATE_CONFIGURED;
967 	lc->pcpu = (unsigned long)ipl_pcpu;
968 	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
969 	smp_cpu_set_capacity(0, CPU_CAPACITY_HIGH);
970 }
971 
smp_setup_processor_id(void)972 void __init smp_setup_processor_id(void)
973 {
974 	struct lowcore *lc = get_lowcore();
975 
976 	lc->cpu_nr = 0;
977 	per_cpu(pcpu_devices, 0).address = stap();
978 	lc->spinlock_lockval = arch_spin_lockval(0);
979 	lc->spinlock_index = 0;
980 }
981 
982 /*
983  * the frequency of the profiling timer can be changed
984  * by writing a multiplier value into /proc/profile.
985  *
986  * usually you want to run this on all CPUs ;)
987  */
setup_profiling_timer(unsigned int multiplier)988 int setup_profiling_timer(unsigned int multiplier)
989 {
990 	return 0;
991 }
992 
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)993 static ssize_t cpu_configure_show(struct device *dev,
994 				  struct device_attribute *attr, char *buf)
995 {
996 	ssize_t count;
997 
998 	mutex_lock(&smp_cpu_state_mutex);
999 	count = sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).state);
1000 	mutex_unlock(&smp_cpu_state_mutex);
1001 	return count;
1002 }
1003 
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1004 static ssize_t cpu_configure_store(struct device *dev,
1005 				   struct device_attribute *attr,
1006 				   const char *buf, size_t count)
1007 {
1008 	struct pcpu *pcpu;
1009 	int cpu, val, rc, i;
1010 	char delim;
1011 
1012 	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1013 		return -EINVAL;
1014 	if (val != 0 && val != 1)
1015 		return -EINVAL;
1016 	cpus_read_lock();
1017 	mutex_lock(&smp_cpu_state_mutex);
1018 	rc = -EBUSY;
1019 	/* disallow configuration changes of online cpus */
1020 	cpu = dev->id;
1021 	cpu = smp_get_base_cpu(cpu);
1022 	for (i = 0; i <= smp_cpu_mtid; i++)
1023 		if (cpu_online(cpu + i))
1024 			goto out;
1025 	pcpu = per_cpu_ptr(&pcpu_devices, cpu);
1026 	rc = 0;
1027 	switch (val) {
1028 	case 0:
1029 		if (pcpu->state != CPU_STATE_CONFIGURED)
1030 			break;
1031 		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1032 		if (rc)
1033 			break;
1034 		for (i = 0; i <= smp_cpu_mtid; i++) {
1035 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1036 				continue;
1037 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_STANDBY;
1038 			smp_cpu_set_polarization(cpu + i,
1039 						 POLARIZATION_UNKNOWN);
1040 		}
1041 		topology_expect_change();
1042 		break;
1043 	case 1:
1044 		if (pcpu->state != CPU_STATE_STANDBY)
1045 			break;
1046 		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1047 		if (rc)
1048 			break;
1049 		for (i = 0; i <= smp_cpu_mtid; i++) {
1050 			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1051 				continue;
1052 			per_cpu(pcpu_devices, cpu + i).state = CPU_STATE_CONFIGURED;
1053 			smp_cpu_set_polarization(cpu + i,
1054 						 POLARIZATION_UNKNOWN);
1055 		}
1056 		topology_expect_change();
1057 		break;
1058 	default:
1059 		break;
1060 	}
1061 out:
1062 	mutex_unlock(&smp_cpu_state_mutex);
1063 	cpus_read_unlock();
1064 	return rc ? rc : count;
1065 }
1066 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1067 
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1068 static ssize_t show_cpu_address(struct device *dev,
1069 				struct device_attribute *attr, char *buf)
1070 {
1071 	return sysfs_emit(buf, "%d\n", per_cpu(pcpu_devices, dev->id).address);
1072 }
1073 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1074 
1075 static struct attribute *cpu_common_attrs[] = {
1076 	&dev_attr_configure.attr,
1077 	&dev_attr_address.attr,
1078 	NULL,
1079 };
1080 
1081 static struct attribute_group cpu_common_attr_group = {
1082 	.attrs = cpu_common_attrs,
1083 };
1084 
1085 static struct attribute *cpu_online_attrs[] = {
1086 	&dev_attr_idle_count.attr,
1087 	&dev_attr_idle_time_us.attr,
1088 	NULL,
1089 };
1090 
1091 static struct attribute_group cpu_online_attr_group = {
1092 	.attrs = cpu_online_attrs,
1093 };
1094 
smp_cpu_online(unsigned int cpu)1095 static int smp_cpu_online(unsigned int cpu)
1096 {
1097 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1098 
1099 	return sysfs_create_group(&c->dev.kobj, &cpu_online_attr_group);
1100 }
1101 
smp_cpu_pre_down(unsigned int cpu)1102 static int smp_cpu_pre_down(unsigned int cpu)
1103 {
1104 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1105 
1106 	sysfs_remove_group(&c->dev.kobj, &cpu_online_attr_group);
1107 	return 0;
1108 }
1109 
arch_cpu_is_hotpluggable(int cpu)1110 bool arch_cpu_is_hotpluggable(int cpu)
1111 {
1112 	return !!cpu;
1113 }
1114 
arch_register_cpu(int cpu)1115 int arch_register_cpu(int cpu)
1116 {
1117 	struct cpu *c = per_cpu_ptr(&cpu_devices, cpu);
1118 	int rc;
1119 
1120 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
1121 	rc = register_cpu(c, cpu);
1122 	if (rc)
1123 		goto out;
1124 	rc = sysfs_create_group(&c->dev.kobj, &cpu_common_attr_group);
1125 	if (rc)
1126 		goto out_cpu;
1127 	rc = topology_cpu_init(c);
1128 	if (rc)
1129 		goto out_topology;
1130 	return 0;
1131 
1132 out_topology:
1133 	sysfs_remove_group(&c->dev.kobj, &cpu_common_attr_group);
1134 out_cpu:
1135 	unregister_cpu(c);
1136 out:
1137 	return rc;
1138 }
1139 
smp_rescan_cpus(bool early)1140 int __ref smp_rescan_cpus(bool early)
1141 {
1142 	struct sclp_core_info *info;
1143 	int nr;
1144 
1145 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1146 	if (!info)
1147 		return -ENOMEM;
1148 	smp_get_core_info(info, 0);
1149 	nr = __smp_rescan_cpus(info, early);
1150 	kfree(info);
1151 	if (nr)
1152 		topology_schedule_update();
1153 	return 0;
1154 }
1155 
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1156 static ssize_t __ref rescan_store(struct device *dev,
1157 				  struct device_attribute *attr,
1158 				  const char *buf,
1159 				  size_t count)
1160 {
1161 	int rc;
1162 
1163 	rc = lock_device_hotplug_sysfs();
1164 	if (rc)
1165 		return rc;
1166 	rc = smp_rescan_cpus(false);
1167 	unlock_device_hotplug();
1168 	return rc ? rc : count;
1169 }
1170 static DEVICE_ATTR_WO(rescan);
1171 
s390_smp_init(void)1172 static int __init s390_smp_init(void)
1173 {
1174 	struct device *dev_root;
1175 	int rc;
1176 
1177 	dev_root = bus_get_dev_root(&cpu_subsys);
1178 	if (dev_root) {
1179 		rc = device_create_file(dev_root, &dev_attr_rescan);
1180 		put_device(dev_root);
1181 		if (rc)
1182 			return rc;
1183 	}
1184 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1185 			       smp_cpu_online, smp_cpu_pre_down);
1186 	rc = rc <= 0 ? rc : 0;
1187 	return rc;
1188 }
1189 subsys_initcall(s390_smp_init);
1190