xref: /linux/fs/btrfs/super.c (revision be48bcf004f9d0c9207ff21d0edb3b42f253829e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	int compress_level;
88 	refcount_t refs;
89 };
90 
91 static void btrfs_emit_options(struct btrfs_fs_info *info,
92 			       struct btrfs_fs_context *old);
93 
94 enum {
95 	Opt_acl,
96 	Opt_clear_cache,
97 	Opt_commit_interval,
98 	Opt_compress,
99 	Opt_compress_force,
100 	Opt_compress_force_type,
101 	Opt_compress_type,
102 	Opt_degraded,
103 	Opt_device,
104 	Opt_fatal_errors,
105 	Opt_flushoncommit,
106 	Opt_max_inline,
107 	Opt_barrier,
108 	Opt_datacow,
109 	Opt_datasum,
110 	Opt_defrag,
111 	Opt_discard,
112 	Opt_discard_mode,
113 	Opt_ratio,
114 	Opt_rescan_uuid_tree,
115 	Opt_skip_balance,
116 	Opt_space_cache,
117 	Opt_space_cache_version,
118 	Opt_ssd,
119 	Opt_ssd_spread,
120 	Opt_subvol,
121 	Opt_subvol_empty,
122 	Opt_subvolid,
123 	Opt_thread_pool,
124 	Opt_treelog,
125 	Opt_user_subvol_rm_allowed,
126 	Opt_norecovery,
127 
128 	/* Rescue options */
129 	Opt_rescue,
130 	Opt_usebackuproot,
131 
132 	/* Debugging options */
133 	Opt_enospc_debug,
134 #ifdef CONFIG_BTRFS_DEBUG
135 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
136 #endif
137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
138 	Opt_ref_verify,
139 #endif
140 	Opt_err,
141 };
142 
143 enum {
144 	Opt_fatal_errors_panic,
145 	Opt_fatal_errors_bug,
146 };
147 
148 static const struct constant_table btrfs_parameter_fatal_errors[] = {
149 	{ "panic", Opt_fatal_errors_panic },
150 	{ "bug", Opt_fatal_errors_bug },
151 	{}
152 };
153 
154 enum {
155 	Opt_discard_sync,
156 	Opt_discard_async,
157 };
158 
159 static const struct constant_table btrfs_parameter_discard[] = {
160 	{ "sync", Opt_discard_sync },
161 	{ "async", Opt_discard_async },
162 	{}
163 };
164 
165 enum {
166 	Opt_space_cache_v1,
167 	Opt_space_cache_v2,
168 };
169 
170 static const struct constant_table btrfs_parameter_space_cache[] = {
171 	{ "v1", Opt_space_cache_v1 },
172 	{ "v2", Opt_space_cache_v2 },
173 	{}
174 };
175 
176 enum {
177 	Opt_rescue_usebackuproot,
178 	Opt_rescue_nologreplay,
179 	Opt_rescue_ignorebadroots,
180 	Opt_rescue_ignoredatacsums,
181 	Opt_rescue_ignoremetacsums,
182 	Opt_rescue_ignoresuperflags,
183 	Opt_rescue_parameter_all,
184 };
185 
186 static const struct constant_table btrfs_parameter_rescue[] = {
187 	{ "usebackuproot", Opt_rescue_usebackuproot },
188 	{ "nologreplay", Opt_rescue_nologreplay },
189 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
190 	{ "ibadroots", Opt_rescue_ignorebadroots },
191 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
192 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
193 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
194 	{ "idatacsums", Opt_rescue_ignoredatacsums },
195 	{ "imetacsums", Opt_rescue_ignoremetacsums},
196 	{ "isuperflags", Opt_rescue_ignoresuperflags},
197 	{ "all", Opt_rescue_parameter_all },
198 	{}
199 };
200 
201 #ifdef CONFIG_BTRFS_DEBUG
202 enum {
203 	Opt_fragment_parameter_data,
204 	Opt_fragment_parameter_metadata,
205 	Opt_fragment_parameter_all,
206 };
207 
208 static const struct constant_table btrfs_parameter_fragment[] = {
209 	{ "data", Opt_fragment_parameter_data },
210 	{ "metadata", Opt_fragment_parameter_metadata },
211 	{ "all", Opt_fragment_parameter_all },
212 	{}
213 };
214 #endif
215 
216 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
217 	fsparam_flag_no("acl", Opt_acl),
218 	fsparam_flag_no("autodefrag", Opt_defrag),
219 	fsparam_flag_no("barrier", Opt_barrier),
220 	fsparam_flag("clear_cache", Opt_clear_cache),
221 	fsparam_u32("commit", Opt_commit_interval),
222 	fsparam_flag("compress", Opt_compress),
223 	fsparam_string("compress", Opt_compress_type),
224 	fsparam_flag("compress-force", Opt_compress_force),
225 	fsparam_string("compress-force", Opt_compress_force_type),
226 	fsparam_flag_no("datacow", Opt_datacow),
227 	fsparam_flag_no("datasum", Opt_datasum),
228 	fsparam_flag("degraded", Opt_degraded),
229 	fsparam_string("device", Opt_device),
230 	fsparam_flag_no("discard", Opt_discard),
231 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
232 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
233 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
234 	fsparam_string("max_inline", Opt_max_inline),
235 	fsparam_u32("metadata_ratio", Opt_ratio),
236 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
237 	fsparam_flag("skip_balance", Opt_skip_balance),
238 	fsparam_flag_no("space_cache", Opt_space_cache),
239 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
240 	fsparam_flag_no("ssd", Opt_ssd),
241 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
242 	fsparam_string("subvol", Opt_subvol),
243 	fsparam_flag("subvol=", Opt_subvol_empty),
244 	fsparam_u64("subvolid", Opt_subvolid),
245 	fsparam_u32("thread_pool", Opt_thread_pool),
246 	fsparam_flag_no("treelog", Opt_treelog),
247 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
248 
249 	/* Rescue options. */
250 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
251 	/* Deprecated, with alias rescue=usebackuproot */
252 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 	/* For compatibility only, alias for "rescue=nologreplay". */
254 	fsparam_flag("norecovery", Opt_norecovery),
255 
256 	/* Debugging options. */
257 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 	fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 	{}
265 };
266 
btrfs_match_compress_type(const char * string,const char * type,bool may_have_level)267 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level)
268 {
269 	const int len = strlen(type);
270 
271 	return (strncmp(string, type, len) == 0) &&
272 		((may_have_level && string[len] == ':') || string[len] == '\0');
273 }
274 
btrfs_parse_compress(struct btrfs_fs_context * ctx,const struct fs_parameter * param,int opt)275 static int btrfs_parse_compress(struct btrfs_fs_context *ctx,
276 				const struct fs_parameter *param, int opt)
277 {
278 	const char *string = param->string;
279 
280 	/*
281 	 * Provide the same semantics as older kernels that don't use fs
282 	 * context, specifying the "compress" option clears "force-compress"
283 	 * without the need to pass "compress-force=[no|none]" before
284 	 * specifying "compress".
285 	 */
286 	if (opt != Opt_compress_force && opt != Opt_compress_force_type)
287 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
288 
289 	if (opt == Opt_compress || opt == Opt_compress_force) {
290 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
291 		ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
292 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
293 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
294 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
295 	} else if (btrfs_match_compress_type(string, "zlib", true)) {
296 		ctx->compress_type = BTRFS_COMPRESS_ZLIB;
297 		ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
298 							       string + 4);
299 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
300 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
301 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
302 	} else if (btrfs_match_compress_type(string, "lzo", false)) {
303 		ctx->compress_type = BTRFS_COMPRESS_LZO;
304 		ctx->compress_level = 0;
305 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
306 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
307 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
308 	} else if (btrfs_match_compress_type(string, "zstd", true)) {
309 		ctx->compress_type = BTRFS_COMPRESS_ZSTD;
310 		ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
311 							       string + 4);
312 		btrfs_set_opt(ctx->mount_opt, COMPRESS);
313 		btrfs_clear_opt(ctx->mount_opt, NODATACOW);
314 		btrfs_clear_opt(ctx->mount_opt, NODATASUM);
315 	} else if (btrfs_match_compress_type(string, "no", false) ||
316 		   btrfs_match_compress_type(string, "none", false)) {
317 		ctx->compress_level = 0;
318 		ctx->compress_type = 0;
319 		btrfs_clear_opt(ctx->mount_opt, COMPRESS);
320 		btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
321 	} else {
322 		btrfs_err(NULL, "unrecognized compression value %s", string);
323 		return -EINVAL;
324 	}
325 	return 0;
326 }
327 
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)328 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
329 {
330 	struct btrfs_fs_context *ctx = fc->fs_private;
331 	struct fs_parse_result result;
332 	int opt;
333 
334 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
335 	if (opt < 0)
336 		return opt;
337 
338 	switch (opt) {
339 	case Opt_degraded:
340 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
341 		break;
342 	case Opt_subvol_empty:
343 		/*
344 		 * This exists because we used to allow it on accident, so we're
345 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
346 		 * empty subvol= again").
347 		 */
348 		break;
349 	case Opt_subvol:
350 		kfree(ctx->subvol_name);
351 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
352 		if (!ctx->subvol_name)
353 			return -ENOMEM;
354 		break;
355 	case Opt_subvolid:
356 		ctx->subvol_objectid = result.uint_64;
357 
358 		/* subvolid=0 means give me the original fs_tree. */
359 		if (!ctx->subvol_objectid)
360 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
361 		break;
362 	case Opt_device: {
363 		struct btrfs_device *device;
364 
365 		mutex_lock(&uuid_mutex);
366 		device = btrfs_scan_one_device(param->string, false);
367 		mutex_unlock(&uuid_mutex);
368 		if (IS_ERR(device))
369 			return PTR_ERR(device);
370 		break;
371 	}
372 	case Opt_datasum:
373 		if (result.negated) {
374 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
375 		} else {
376 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
377 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
378 		}
379 		break;
380 	case Opt_datacow:
381 		if (result.negated) {
382 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
383 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
384 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
385 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
386 		} else {
387 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
388 		}
389 		break;
390 	case Opt_compress_force:
391 	case Opt_compress_force_type:
392 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
393 		fallthrough;
394 	case Opt_compress:
395 	case Opt_compress_type:
396 		if (btrfs_parse_compress(ctx, param, opt))
397 			return -EINVAL;
398 		break;
399 	case Opt_ssd:
400 		if (result.negated) {
401 			btrfs_set_opt(ctx->mount_opt, NOSSD);
402 			btrfs_clear_opt(ctx->mount_opt, SSD);
403 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
404 		} else {
405 			btrfs_set_opt(ctx->mount_opt, SSD);
406 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
407 		}
408 		break;
409 	case Opt_ssd_spread:
410 		if (result.negated) {
411 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
412 		} else {
413 			btrfs_set_opt(ctx->mount_opt, SSD);
414 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
415 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
416 		}
417 		break;
418 	case Opt_barrier:
419 		if (result.negated)
420 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
421 		else
422 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
423 		break;
424 	case Opt_thread_pool:
425 		if (result.uint_32 == 0) {
426 			btrfs_err(NULL, "invalid value 0 for thread_pool");
427 			return -EINVAL;
428 		}
429 		ctx->thread_pool_size = result.uint_32;
430 		break;
431 	case Opt_max_inline:
432 		ctx->max_inline = memparse(param->string, NULL);
433 		break;
434 	case Opt_acl:
435 		if (result.negated) {
436 			fc->sb_flags &= ~SB_POSIXACL;
437 		} else {
438 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
439 			fc->sb_flags |= SB_POSIXACL;
440 #else
441 			btrfs_err(NULL, "support for ACL not compiled in");
442 			return -EINVAL;
443 #endif
444 		}
445 		/*
446 		 * VFS limits the ability to toggle ACL on and off via remount,
447 		 * despite every file system allowing this.  This seems to be
448 		 * an oversight since we all do, but it'll fail if we're
449 		 * remounting.  So don't set the mask here, we'll check it in
450 		 * btrfs_reconfigure and do the toggling ourselves.
451 		 */
452 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
453 			fc->sb_flags_mask |= SB_POSIXACL;
454 		break;
455 	case Opt_treelog:
456 		if (result.negated)
457 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
458 		else
459 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
460 		break;
461 	case Opt_norecovery:
462 		btrfs_info(NULL,
463 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
464 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
465 		break;
466 	case Opt_flushoncommit:
467 		if (result.negated)
468 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
469 		else
470 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
471 		break;
472 	case Opt_ratio:
473 		ctx->metadata_ratio = result.uint_32;
474 		break;
475 	case Opt_discard:
476 		if (result.negated) {
477 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
478 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
480 		} else {
481 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
482 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
483 		}
484 		break;
485 	case Opt_discard_mode:
486 		switch (result.uint_32) {
487 		case Opt_discard_sync:
488 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
489 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
490 			break;
491 		case Opt_discard_async:
492 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
493 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
494 			break;
495 		default:
496 			btrfs_err(NULL, "unrecognized discard mode value %s",
497 				  param->key);
498 			return -EINVAL;
499 		}
500 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
501 		break;
502 	case Opt_space_cache:
503 		if (result.negated) {
504 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
505 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
506 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
507 		} else {
508 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
509 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
510 		}
511 		break;
512 	case Opt_space_cache_version:
513 		switch (result.uint_32) {
514 		case Opt_space_cache_v1:
515 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
516 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 			break;
518 		case Opt_space_cache_v2:
519 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
520 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
521 			break;
522 		default:
523 			btrfs_err(NULL, "unrecognized space_cache value %s",
524 				  param->key);
525 			return -EINVAL;
526 		}
527 		break;
528 	case Opt_rescan_uuid_tree:
529 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
530 		break;
531 	case Opt_clear_cache:
532 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
533 		break;
534 	case Opt_user_subvol_rm_allowed:
535 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
536 		break;
537 	case Opt_enospc_debug:
538 		if (result.negated)
539 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
540 		else
541 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
542 		break;
543 	case Opt_defrag:
544 		if (result.negated)
545 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
546 		else
547 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
548 		break;
549 	case Opt_usebackuproot:
550 		btrfs_warn(NULL,
551 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
552 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
553 
554 		/* If we're loading the backup roots we can't trust the space cache. */
555 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
556 		break;
557 	case Opt_skip_balance:
558 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
559 		break;
560 	case Opt_fatal_errors:
561 		switch (result.uint_32) {
562 		case Opt_fatal_errors_panic:
563 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
564 			break;
565 		case Opt_fatal_errors_bug:
566 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
567 			break;
568 		default:
569 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
570 				  param->key);
571 			return -EINVAL;
572 		}
573 		break;
574 	case Opt_commit_interval:
575 		ctx->commit_interval = result.uint_32;
576 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
577 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
578 				   ctx->commit_interval);
579 		}
580 		if (ctx->commit_interval == 0)
581 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
582 		break;
583 	case Opt_rescue:
584 		switch (result.uint_32) {
585 		case Opt_rescue_usebackuproot:
586 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
587 			break;
588 		case Opt_rescue_nologreplay:
589 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
590 			break;
591 		case Opt_rescue_ignorebadroots:
592 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
593 			break;
594 		case Opt_rescue_ignoredatacsums:
595 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
596 			break;
597 		case Opt_rescue_ignoremetacsums:
598 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
599 			break;
600 		case Opt_rescue_ignoresuperflags:
601 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
602 			break;
603 		case Opt_rescue_parameter_all:
604 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
605 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
606 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
607 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
608 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
609 			break;
610 		default:
611 			btrfs_info(NULL, "unrecognized rescue option '%s'",
612 				   param->key);
613 			return -EINVAL;
614 		}
615 		break;
616 #ifdef CONFIG_BTRFS_DEBUG
617 	case Opt_fragment:
618 		switch (result.uint_32) {
619 		case Opt_fragment_parameter_all:
620 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
621 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
622 			break;
623 		case Opt_fragment_parameter_metadata:
624 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
625 			break;
626 		case Opt_fragment_parameter_data:
627 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
628 			break;
629 		default:
630 			btrfs_info(NULL, "unrecognized fragment option '%s'",
631 				   param->key);
632 			return -EINVAL;
633 		}
634 		break;
635 #endif
636 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
637 	case Opt_ref_verify:
638 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
639 		break;
640 #endif
641 	default:
642 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
643 		return -EINVAL;
644 	}
645 
646 	return 0;
647 }
648 
649 /*
650  * Some options only have meaning at mount time and shouldn't persist across
651  * remounts, or be displayed. Clear these at the end of mount and remount code
652  * paths.
653  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)654 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
655 {
656 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
657 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
658 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
659 }
660 
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)661 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
662 			    unsigned long long mount_opt, unsigned long long opt,
663 			    const char *opt_name)
664 {
665 	if (mount_opt & opt) {
666 		btrfs_err(fs_info, "%s must be used with ro mount option",
667 			  opt_name);
668 		return true;
669 	}
670 	return false;
671 }
672 
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)673 bool btrfs_check_options(const struct btrfs_fs_info *info,
674 			 unsigned long long *mount_opt,
675 			 unsigned long flags)
676 {
677 	bool ret = true;
678 
679 	if (!(flags & SB_RDONLY) &&
680 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
681 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
682 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
683 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
684 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
685 		ret = false;
686 
687 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
688 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
689 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
690 		btrfs_err(info, "cannot disable free-space-tree");
691 		ret = false;
692 	}
693 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
694 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
695 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
696 		ret = false;
697 	}
698 
699 	if (btrfs_check_mountopts_zoned(info, mount_opt))
700 		ret = false;
701 
702 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
703 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
704 			btrfs_warn(info,
705 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
706 		}
707 	}
708 
709 	return ret;
710 }
711 
712 /*
713  * This is subtle, we only call this during open_ctree().  We need to pre-load
714  * the mount options with the on-disk settings.  Before the new mount API took
715  * effect we would do this on mount and remount.  With the new mount API we'll
716  * only do this on the initial mount.
717  *
718  * This isn't a change in behavior, because we're using the current state of the
719  * file system to set the current mount options.  If you mounted with special
720  * options to disable these features and then remounted we wouldn't revert the
721  * settings, because mounting without these features cleared the on-disk
722  * settings, so this being called on re-mount is not needed.
723  */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)724 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
725 {
726 	if (fs_info->sectorsize < PAGE_SIZE) {
727 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
728 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
729 			btrfs_info(fs_info,
730 				   "forcing free space tree for sector size %u with page size %lu",
731 				   fs_info->sectorsize, PAGE_SIZE);
732 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
733 		}
734 	}
735 
736 	/*
737 	 * At this point our mount options are populated, so we only mess with
738 	 * these settings if we don't have any settings already.
739 	 */
740 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
741 		return;
742 
743 	if (btrfs_is_zoned(fs_info) &&
744 	    btrfs_free_space_cache_v1_active(fs_info)) {
745 		btrfs_info(fs_info, "zoned: clearing existing space cache");
746 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
747 		return;
748 	}
749 
750 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
751 		return;
752 
753 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
754 		return;
755 
756 	/*
757 	 * At this point we don't have explicit options set by the user, set
758 	 * them ourselves based on the state of the file system.
759 	 */
760 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
761 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
762 	else if (btrfs_free_space_cache_v1_active(fs_info))
763 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
764 }
765 
set_device_specific_options(struct btrfs_fs_info * fs_info)766 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
767 {
768 	if (!btrfs_test_opt(fs_info, NOSSD) &&
769 	    !fs_info->fs_devices->rotating)
770 		btrfs_set_opt(fs_info->mount_opt, SSD);
771 
772 	/*
773 	 * For devices supporting discard turn on discard=async automatically,
774 	 * unless it's already set or disabled. This could be turned off by
775 	 * nodiscard for the same mount.
776 	 *
777 	 * The zoned mode piggy backs on the discard functionality for
778 	 * resetting a zone. There is no reason to delay the zone reset as it is
779 	 * fast enough. So, do not enable async discard for zoned mode.
780 	 */
781 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
782 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
783 	      btrfs_test_opt(fs_info, NODISCARD)) &&
784 	    fs_info->fs_devices->discardable &&
785 	    !btrfs_is_zoned(fs_info))
786 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
787 }
788 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)789 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
790 					  u64 subvol_objectid)
791 {
792 	struct btrfs_root *root = fs_info->tree_root;
793 	struct btrfs_root *fs_root = NULL;
794 	struct btrfs_root_ref *root_ref;
795 	struct btrfs_inode_ref *inode_ref;
796 	struct btrfs_key key;
797 	struct btrfs_path *path = NULL;
798 	char *name = NULL, *ptr;
799 	u64 dirid;
800 	int len;
801 	int ret;
802 
803 	path = btrfs_alloc_path();
804 	if (!path) {
805 		ret = -ENOMEM;
806 		goto err;
807 	}
808 
809 	name = kmalloc(PATH_MAX, GFP_KERNEL);
810 	if (!name) {
811 		ret = -ENOMEM;
812 		goto err;
813 	}
814 	ptr = name + PATH_MAX - 1;
815 	ptr[0] = '\0';
816 
817 	/*
818 	 * Walk up the subvolume trees in the tree of tree roots by root
819 	 * backrefs until we hit the top-level subvolume.
820 	 */
821 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
822 		key.objectid = subvol_objectid;
823 		key.type = BTRFS_ROOT_BACKREF_KEY;
824 		key.offset = (u64)-1;
825 
826 		ret = btrfs_search_backwards(root, &key, path);
827 		if (ret < 0) {
828 			goto err;
829 		} else if (ret > 0) {
830 			ret = -ENOENT;
831 			goto err;
832 		}
833 
834 		subvol_objectid = key.offset;
835 
836 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
837 					  struct btrfs_root_ref);
838 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
839 		ptr -= len + 1;
840 		if (ptr < name) {
841 			ret = -ENAMETOOLONG;
842 			goto err;
843 		}
844 		read_extent_buffer(path->nodes[0], ptr + 1,
845 				   (unsigned long)(root_ref + 1), len);
846 		ptr[0] = '/';
847 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
848 		btrfs_release_path(path);
849 
850 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
851 		if (IS_ERR(fs_root)) {
852 			ret = PTR_ERR(fs_root);
853 			fs_root = NULL;
854 			goto err;
855 		}
856 
857 		/*
858 		 * Walk up the filesystem tree by inode refs until we hit the
859 		 * root directory.
860 		 */
861 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
862 			key.objectid = dirid;
863 			key.type = BTRFS_INODE_REF_KEY;
864 			key.offset = (u64)-1;
865 
866 			ret = btrfs_search_backwards(fs_root, &key, path);
867 			if (ret < 0) {
868 				goto err;
869 			} else if (ret > 0) {
870 				ret = -ENOENT;
871 				goto err;
872 			}
873 
874 			dirid = key.offset;
875 
876 			inode_ref = btrfs_item_ptr(path->nodes[0],
877 						   path->slots[0],
878 						   struct btrfs_inode_ref);
879 			len = btrfs_inode_ref_name_len(path->nodes[0],
880 						       inode_ref);
881 			ptr -= len + 1;
882 			if (ptr < name) {
883 				ret = -ENAMETOOLONG;
884 				goto err;
885 			}
886 			read_extent_buffer(path->nodes[0], ptr + 1,
887 					   (unsigned long)(inode_ref + 1), len);
888 			ptr[0] = '/';
889 			btrfs_release_path(path);
890 		}
891 		btrfs_put_root(fs_root);
892 		fs_root = NULL;
893 	}
894 
895 	btrfs_free_path(path);
896 	if (ptr == name + PATH_MAX - 1) {
897 		name[0] = '/';
898 		name[1] = '\0';
899 	} else {
900 		memmove(name, ptr, name + PATH_MAX - ptr);
901 	}
902 	return name;
903 
904 err:
905 	btrfs_put_root(fs_root);
906 	btrfs_free_path(path);
907 	kfree(name);
908 	return ERR_PTR(ret);
909 }
910 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)911 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
912 {
913 	struct btrfs_root *root = fs_info->tree_root;
914 	struct btrfs_dir_item *di;
915 	struct btrfs_path *path;
916 	struct btrfs_key location;
917 	struct fscrypt_str name = FSTR_INIT("default", 7);
918 	u64 dir_id;
919 
920 	path = btrfs_alloc_path();
921 	if (!path)
922 		return -ENOMEM;
923 
924 	/*
925 	 * Find the "default" dir item which points to the root item that we
926 	 * will mount by default if we haven't been given a specific subvolume
927 	 * to mount.
928 	 */
929 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
930 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
931 	if (IS_ERR(di)) {
932 		btrfs_free_path(path);
933 		return PTR_ERR(di);
934 	}
935 	if (!di) {
936 		/*
937 		 * Ok the default dir item isn't there.  This is weird since
938 		 * it's always been there, but don't freak out, just try and
939 		 * mount the top-level subvolume.
940 		 */
941 		btrfs_free_path(path);
942 		*objectid = BTRFS_FS_TREE_OBJECTID;
943 		return 0;
944 	}
945 
946 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
947 	btrfs_free_path(path);
948 	*objectid = location.objectid;
949 	return 0;
950 }
951 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)952 static int btrfs_fill_super(struct super_block *sb,
953 			    struct btrfs_fs_devices *fs_devices)
954 {
955 	struct btrfs_inode *inode;
956 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
957 	int ret;
958 
959 	sb->s_maxbytes = MAX_LFS_FILESIZE;
960 	sb->s_magic = BTRFS_SUPER_MAGIC;
961 	sb->s_op = &btrfs_super_ops;
962 	set_default_d_op(sb, &btrfs_dentry_operations);
963 	sb->s_export_op = &btrfs_export_ops;
964 #ifdef CONFIG_FS_VERITY
965 	sb->s_vop = &btrfs_verityops;
966 #endif
967 	sb->s_xattr = btrfs_xattr_handlers;
968 	sb->s_time_gran = 1;
969 	sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
970 
971 	ret = super_setup_bdi(sb);
972 	if (ret) {
973 		btrfs_err(fs_info, "super_setup_bdi failed");
974 		return ret;
975 	}
976 
977 	ret = open_ctree(sb, fs_devices);
978 	if (ret) {
979 		btrfs_err(fs_info, "open_ctree failed: %d", ret);
980 		return ret;
981 	}
982 
983 	btrfs_emit_options(fs_info, NULL);
984 
985 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
986 	if (IS_ERR(inode)) {
987 		ret = PTR_ERR(inode);
988 		btrfs_handle_fs_error(fs_info, ret, NULL);
989 		goto fail_close;
990 	}
991 
992 	sb->s_root = d_make_root(&inode->vfs_inode);
993 	if (!sb->s_root) {
994 		ret = -ENOMEM;
995 		goto fail_close;
996 	}
997 
998 	sb->s_flags |= SB_ACTIVE;
999 	return 0;
1000 
1001 fail_close:
1002 	close_ctree(fs_info);
1003 	return ret;
1004 }
1005 
btrfs_sync_fs(struct super_block * sb,int wait)1006 int btrfs_sync_fs(struct super_block *sb, int wait)
1007 {
1008 	struct btrfs_trans_handle *trans;
1009 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1010 	struct btrfs_root *root = fs_info->tree_root;
1011 
1012 	trace_btrfs_sync_fs(fs_info, wait);
1013 
1014 	if (!wait) {
1015 		filemap_flush(fs_info->btree_inode->i_mapping);
1016 		return 0;
1017 	}
1018 
1019 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1020 
1021 	trans = btrfs_attach_transaction_barrier(root);
1022 	if (IS_ERR(trans)) {
1023 		/* no transaction, don't bother */
1024 		if (PTR_ERR(trans) == -ENOENT) {
1025 			/*
1026 			 * Exit unless we have some pending changes
1027 			 * that need to go through commit
1028 			 */
1029 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1030 				      &fs_info->flags))
1031 				return 0;
1032 			/*
1033 			 * A non-blocking test if the fs is frozen. We must not
1034 			 * start a new transaction here otherwise a deadlock
1035 			 * happens. The pending operations are delayed to the
1036 			 * next commit after thawing.
1037 			 */
1038 			if (sb_start_write_trylock(sb))
1039 				sb_end_write(sb);
1040 			else
1041 				return 0;
1042 			trans = btrfs_start_transaction(root, 0);
1043 		}
1044 		if (IS_ERR(trans))
1045 			return PTR_ERR(trans);
1046 	}
1047 	return btrfs_commit_transaction(trans);
1048 }
1049 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1050 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1051 {
1052 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1053 	*printed = true;
1054 }
1055 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1056 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1057 {
1058 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1059 	const char *compress_type;
1060 	const char *subvol_name;
1061 	bool printed = false;
1062 
1063 	if (btrfs_test_opt(info, DEGRADED))
1064 		seq_puts(seq, ",degraded");
1065 	if (btrfs_test_opt(info, NODATASUM))
1066 		seq_puts(seq, ",nodatasum");
1067 	if (btrfs_test_opt(info, NODATACOW))
1068 		seq_puts(seq, ",nodatacow");
1069 	if (btrfs_test_opt(info, NOBARRIER))
1070 		seq_puts(seq, ",nobarrier");
1071 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1072 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1073 	if (info->thread_pool_size !=  min_t(unsigned long,
1074 					     num_online_cpus() + 2, 8))
1075 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1076 	if (btrfs_test_opt(info, COMPRESS)) {
1077 		compress_type = btrfs_compress_type2str(info->compress_type);
1078 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1079 			seq_printf(seq, ",compress-force=%s", compress_type);
1080 		else
1081 			seq_printf(seq, ",compress=%s", compress_type);
1082 		if (info->compress_level)
1083 			seq_printf(seq, ":%d", info->compress_level);
1084 	}
1085 	if (btrfs_test_opt(info, NOSSD))
1086 		seq_puts(seq, ",nossd");
1087 	if (btrfs_test_opt(info, SSD_SPREAD))
1088 		seq_puts(seq, ",ssd_spread");
1089 	else if (btrfs_test_opt(info, SSD))
1090 		seq_puts(seq, ",ssd");
1091 	if (btrfs_test_opt(info, NOTREELOG))
1092 		seq_puts(seq, ",notreelog");
1093 	if (btrfs_test_opt(info, NOLOGREPLAY))
1094 		print_rescue_option(seq, "nologreplay", &printed);
1095 	if (btrfs_test_opt(info, USEBACKUPROOT))
1096 		print_rescue_option(seq, "usebackuproot", &printed);
1097 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1098 		print_rescue_option(seq, "ignorebadroots", &printed);
1099 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1100 		print_rescue_option(seq, "ignoredatacsums", &printed);
1101 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1102 		print_rescue_option(seq, "ignoremetacsums", &printed);
1103 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1104 		print_rescue_option(seq, "ignoresuperflags", &printed);
1105 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1106 		seq_puts(seq, ",flushoncommit");
1107 	if (btrfs_test_opt(info, DISCARD_SYNC))
1108 		seq_puts(seq, ",discard");
1109 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1110 		seq_puts(seq, ",discard=async");
1111 	if (!(info->sb->s_flags & SB_POSIXACL))
1112 		seq_puts(seq, ",noacl");
1113 	if (btrfs_free_space_cache_v1_active(info))
1114 		seq_puts(seq, ",space_cache");
1115 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1116 		seq_puts(seq, ",space_cache=v2");
1117 	else
1118 		seq_puts(seq, ",nospace_cache");
1119 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1120 		seq_puts(seq, ",rescan_uuid_tree");
1121 	if (btrfs_test_opt(info, CLEAR_CACHE))
1122 		seq_puts(seq, ",clear_cache");
1123 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1124 		seq_puts(seq, ",user_subvol_rm_allowed");
1125 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1126 		seq_puts(seq, ",enospc_debug");
1127 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1128 		seq_puts(seq, ",autodefrag");
1129 	if (btrfs_test_opt(info, SKIP_BALANCE))
1130 		seq_puts(seq, ",skip_balance");
1131 	if (info->metadata_ratio)
1132 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1133 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1134 		seq_puts(seq, ",fatal_errors=panic");
1135 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1136 		seq_printf(seq, ",commit=%u", info->commit_interval);
1137 #ifdef CONFIG_BTRFS_DEBUG
1138 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1139 		seq_puts(seq, ",fragment=data");
1140 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1141 		seq_puts(seq, ",fragment=metadata");
1142 #endif
1143 	if (btrfs_test_opt(info, REF_VERIFY))
1144 		seq_puts(seq, ",ref_verify");
1145 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1146 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1147 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1148 	if (!IS_ERR(subvol_name)) {
1149 		seq_show_option(seq, "subvol", subvol_name);
1150 		kfree(subvol_name);
1151 	}
1152 	return 0;
1153 }
1154 
1155 /*
1156  * subvolumes are identified by ino 256
1157  */
is_subvolume_inode(struct inode * inode)1158 static inline bool is_subvolume_inode(struct inode *inode)
1159 {
1160 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1161 		return true;
1162 	return false;
1163 }
1164 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1165 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1166 				   struct vfsmount *mnt)
1167 {
1168 	struct dentry *root;
1169 	int ret;
1170 
1171 	if (!subvol_name) {
1172 		if (!subvol_objectid) {
1173 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1174 							  &subvol_objectid);
1175 			if (ret) {
1176 				root = ERR_PTR(ret);
1177 				goto out;
1178 			}
1179 		}
1180 		subvol_name = btrfs_get_subvol_name_from_objectid(
1181 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1182 		if (IS_ERR(subvol_name)) {
1183 			root = ERR_CAST(subvol_name);
1184 			subvol_name = NULL;
1185 			goto out;
1186 		}
1187 
1188 	}
1189 
1190 	root = mount_subtree(mnt, subvol_name);
1191 	/* mount_subtree() drops our reference on the vfsmount. */
1192 	mnt = NULL;
1193 
1194 	if (!IS_ERR(root)) {
1195 		struct super_block *s = root->d_sb;
1196 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1197 		struct inode *root_inode = d_inode(root);
1198 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1199 
1200 		ret = 0;
1201 		if (!is_subvolume_inode(root_inode)) {
1202 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1203 			       subvol_name);
1204 			ret = -EINVAL;
1205 		}
1206 		if (subvol_objectid && root_objectid != subvol_objectid) {
1207 			/*
1208 			 * This will also catch a race condition where a
1209 			 * subvolume which was passed by ID is renamed and
1210 			 * another subvolume is renamed over the old location.
1211 			 */
1212 			btrfs_err(fs_info,
1213 				  "subvol '%s' does not match subvolid %llu",
1214 				  subvol_name, subvol_objectid);
1215 			ret = -EINVAL;
1216 		}
1217 		if (ret) {
1218 			dput(root);
1219 			root = ERR_PTR(ret);
1220 			deactivate_locked_super(s);
1221 		}
1222 	}
1223 
1224 out:
1225 	mntput(mnt);
1226 	kfree(subvol_name);
1227 	return root;
1228 }
1229 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1230 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1231 				     u32 new_pool_size, u32 old_pool_size)
1232 {
1233 	if (new_pool_size == old_pool_size)
1234 		return;
1235 
1236 	fs_info->thread_pool_size = new_pool_size;
1237 
1238 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1239 	       old_pool_size, new_pool_size);
1240 
1241 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1242 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1243 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1244 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1245 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1246 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1247 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1248 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1249 }
1250 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1251 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1252 				       unsigned long long old_opts, int flags)
1253 {
1254 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1255 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1256 	     (flags & SB_RDONLY))) {
1257 		/* wait for any defraggers to finish */
1258 		wait_event(fs_info->transaction_wait,
1259 			   (atomic_read(&fs_info->defrag_running) == 0));
1260 		if (flags & SB_RDONLY)
1261 			sync_filesystem(fs_info->sb);
1262 	}
1263 }
1264 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1265 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1266 					 unsigned long long old_opts)
1267 {
1268 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1269 
1270 	/*
1271 	 * We need to cleanup all defragable inodes if the autodefragment is
1272 	 * close or the filesystem is read only.
1273 	 */
1274 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1275 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1276 		btrfs_cleanup_defrag_inodes(fs_info);
1277 	}
1278 
1279 	/* If we toggled discard async */
1280 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1281 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1282 		btrfs_discard_resume(fs_info);
1283 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1284 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1285 		btrfs_discard_cleanup(fs_info);
1286 
1287 	/* If we toggled space cache */
1288 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1289 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1290 }
1291 
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1292 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1293 {
1294 	int ret;
1295 
1296 	if (BTRFS_FS_ERROR(fs_info)) {
1297 		btrfs_err(fs_info,
1298 			  "remounting read-write after error is not allowed");
1299 		return -EINVAL;
1300 	}
1301 
1302 	if (fs_info->fs_devices->rw_devices == 0)
1303 		return -EACCES;
1304 
1305 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1306 		btrfs_warn(fs_info,
1307 			   "too many missing devices, writable remount is not allowed");
1308 		return -EACCES;
1309 	}
1310 
1311 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1312 		btrfs_warn(fs_info,
1313 			   "mount required to replay tree-log, cannot remount read-write");
1314 		return -EINVAL;
1315 	}
1316 
1317 	/*
1318 	 * NOTE: when remounting with a change that does writes, don't put it
1319 	 * anywhere above this point, as we are not sure to be safe to write
1320 	 * until we pass the above checks.
1321 	 */
1322 	ret = btrfs_start_pre_rw_mount(fs_info);
1323 	if (ret)
1324 		return ret;
1325 
1326 	btrfs_clear_sb_rdonly(fs_info->sb);
1327 
1328 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1329 
1330 	/*
1331 	 * If we've gone from readonly -> read-write, we need to get our
1332 	 * sync/async discard lists in the right state.
1333 	 */
1334 	btrfs_discard_resume(fs_info);
1335 
1336 	return 0;
1337 }
1338 
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1339 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1340 {
1341 	/*
1342 	 * This also happens on 'umount -rf' or on shutdown, when the
1343 	 * filesystem is busy.
1344 	 */
1345 	cancel_work_sync(&fs_info->async_reclaim_work);
1346 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1347 
1348 	btrfs_discard_cleanup(fs_info);
1349 
1350 	/* Wait for the uuid_scan task to finish */
1351 	down(&fs_info->uuid_tree_rescan_sem);
1352 	/* Avoid complains from lockdep et al. */
1353 	up(&fs_info->uuid_tree_rescan_sem);
1354 
1355 	btrfs_set_sb_rdonly(fs_info->sb);
1356 
1357 	/*
1358 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1359 	 * loop if it's already active.  If it's already asleep, we'll leave
1360 	 * unused block groups on disk until we're mounted read-write again
1361 	 * unless we clean them up here.
1362 	 */
1363 	btrfs_delete_unused_bgs(fs_info);
1364 
1365 	/*
1366 	 * The cleaner task could be already running before we set the flag
1367 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1368 	 * sure that after we finish the remount, i.e. after we call
1369 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1370 	 * - either because it was dropping a dead root, running delayed iputs
1371 	 *   or deleting an unused block group (the cleaner picked a block
1372 	 *   group from the list of unused block groups before we were able to
1373 	 *   in the previous call to btrfs_delete_unused_bgs()).
1374 	 */
1375 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1376 
1377 	/*
1378 	 * We've set the superblock to RO mode, so we might have made the
1379 	 * cleaner task sleep without running all pending delayed iputs. Go
1380 	 * through all the delayed iputs here, so that if an unmount happens
1381 	 * without remounting RW we don't end up at finishing close_ctree()
1382 	 * with a non-empty list of delayed iputs.
1383 	 */
1384 	btrfs_run_delayed_iputs(fs_info);
1385 
1386 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1387 	btrfs_scrub_cancel(fs_info);
1388 	btrfs_pause_balance(fs_info);
1389 
1390 	/*
1391 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1392 	 * be still running after we are in RO mode, as after that, by the time
1393 	 * we unmount, it might have left a transaction open, so we would leak
1394 	 * the transaction and/or crash.
1395 	 */
1396 	btrfs_qgroup_wait_for_completion(fs_info, false);
1397 
1398 	return btrfs_commit_super(fs_info);
1399 }
1400 
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1401 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1402 {
1403 	fs_info->max_inline = ctx->max_inline;
1404 	fs_info->commit_interval = ctx->commit_interval;
1405 	fs_info->metadata_ratio = ctx->metadata_ratio;
1406 	fs_info->thread_pool_size = ctx->thread_pool_size;
1407 	fs_info->mount_opt = ctx->mount_opt;
1408 	fs_info->compress_type = ctx->compress_type;
1409 	fs_info->compress_level = ctx->compress_level;
1410 }
1411 
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1412 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1413 {
1414 	ctx->max_inline = fs_info->max_inline;
1415 	ctx->commit_interval = fs_info->commit_interval;
1416 	ctx->metadata_ratio = fs_info->metadata_ratio;
1417 	ctx->thread_pool_size = fs_info->thread_pool_size;
1418 	ctx->mount_opt = fs_info->mount_opt;
1419 	ctx->compress_type = fs_info->compress_type;
1420 	ctx->compress_level = fs_info->compress_level;
1421 }
1422 
1423 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1424 do {										\
1425 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1426 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1427 		btrfs_info(fs_info, fmt, ##args);				\
1428 } while (0)
1429 
1430 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1431 do {									\
1432 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1433 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1434 		btrfs_info(fs_info, fmt, ##args);			\
1435 } while (0)
1436 
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1437 static void btrfs_emit_options(struct btrfs_fs_info *info,
1438 			       struct btrfs_fs_context *old)
1439 {
1440 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1441 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1442 	btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow");
1443 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1444 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1445 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1446 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1447 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1448 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1449 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1450 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1451 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1452 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1453 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1454 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1455 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1456 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1457 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1458 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1459 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1460 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1461 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1462 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1463 
1464 	btrfs_info_if_unset(info, old, NODATASUM, "setting datasum");
1465 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1466 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1467 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1468 	btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers");
1469 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1470 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1471 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1472 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1473 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1474 
1475 	/* Did the compression settings change? */
1476 	if (btrfs_test_opt(info, COMPRESS) &&
1477 	    (!old ||
1478 	     old->compress_type != info->compress_type ||
1479 	     old->compress_level != info->compress_level ||
1480 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1481 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1482 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1483 
1484 		btrfs_info(info, "%s %s compression, level %d",
1485 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1486 			   compress_type, info->compress_level);
1487 	}
1488 
1489 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1490 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1491 }
1492 
btrfs_reconfigure(struct fs_context * fc)1493 static int btrfs_reconfigure(struct fs_context *fc)
1494 {
1495 	struct super_block *sb = fc->root->d_sb;
1496 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1497 	struct btrfs_fs_context *ctx = fc->fs_private;
1498 	struct btrfs_fs_context old_ctx;
1499 	int ret = 0;
1500 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1501 
1502 	btrfs_info_to_ctx(fs_info, &old_ctx);
1503 
1504 	/*
1505 	 * This is our "bind mount" trick, we don't want to allow the user to do
1506 	 * anything other than mount a different ro/rw and a different subvol,
1507 	 * all of the mount options should be maintained.
1508 	 */
1509 	if (mount_reconfigure)
1510 		ctx->mount_opt = old_ctx.mount_opt;
1511 
1512 	sync_filesystem(sb);
1513 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1514 
1515 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1516 		return -EINVAL;
1517 
1518 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1519 	if (ret < 0)
1520 		return ret;
1521 
1522 	btrfs_ctx_to_info(fs_info, ctx);
1523 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1524 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1525 				 old_ctx.thread_pool_size);
1526 
1527 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1528 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1529 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1530 		btrfs_warn(fs_info,
1531 		"remount supports changing free space tree only from RO to RW");
1532 		/* Make sure free space cache options match the state on disk. */
1533 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1534 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1535 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1536 		}
1537 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1538 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1539 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1540 		}
1541 	}
1542 
1543 	ret = 0;
1544 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1545 		ret = btrfs_remount_ro(fs_info);
1546 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1547 		ret = btrfs_remount_rw(fs_info);
1548 	if (ret)
1549 		goto restore;
1550 
1551 	/*
1552 	 * If we set the mask during the parameter parsing VFS would reject the
1553 	 * remount.  Here we can set the mask and the value will be updated
1554 	 * appropriately.
1555 	 */
1556 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1557 		fc->sb_flags_mask |= SB_POSIXACL;
1558 
1559 	btrfs_emit_options(fs_info, &old_ctx);
1560 	wake_up_process(fs_info->transaction_kthread);
1561 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1562 	btrfs_clear_oneshot_options(fs_info);
1563 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1564 
1565 	return 0;
1566 restore:
1567 	btrfs_ctx_to_info(fs_info, &old_ctx);
1568 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1569 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1570 	return ret;
1571 }
1572 
1573 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1574 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1575 {
1576 	const struct btrfs_device_info *dev_info1 = a;
1577 	const struct btrfs_device_info *dev_info2 = b;
1578 
1579 	if (dev_info1->max_avail > dev_info2->max_avail)
1580 		return -1;
1581 	else if (dev_info1->max_avail < dev_info2->max_avail)
1582 		return 1;
1583 	return 0;
1584 }
1585 
1586 /*
1587  * sort the devices by max_avail, in which max free extent size of each device
1588  * is stored.(Descending Sort)
1589  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1590 static inline void btrfs_descending_sort_devices(
1591 					struct btrfs_device_info *devices,
1592 					size_t nr_devices)
1593 {
1594 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1595 	     btrfs_cmp_device_free_bytes, NULL);
1596 }
1597 
1598 /*
1599  * The helper to calc the free space on the devices that can be used to store
1600  * file data.
1601  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1602 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1603 					      u64 *free_bytes)
1604 {
1605 	struct btrfs_device_info *devices_info;
1606 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1607 	struct btrfs_device *device;
1608 	u64 type;
1609 	u64 avail_space;
1610 	u64 min_stripe_size;
1611 	int num_stripes = 1;
1612 	int i = 0, nr_devices;
1613 	const struct btrfs_raid_attr *rattr;
1614 
1615 	/*
1616 	 * We aren't under the device list lock, so this is racy-ish, but good
1617 	 * enough for our purposes.
1618 	 */
1619 	nr_devices = fs_info->fs_devices->open_devices;
1620 	if (!nr_devices) {
1621 		smp_mb();
1622 		nr_devices = fs_info->fs_devices->open_devices;
1623 		ASSERT(nr_devices);
1624 		if (!nr_devices) {
1625 			*free_bytes = 0;
1626 			return 0;
1627 		}
1628 	}
1629 
1630 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1631 			       GFP_KERNEL);
1632 	if (!devices_info)
1633 		return -ENOMEM;
1634 
1635 	/* calc min stripe number for data space allocation */
1636 	type = btrfs_data_alloc_profile(fs_info);
1637 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1638 
1639 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1640 		num_stripes = nr_devices;
1641 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1642 		num_stripes = rattr->ncopies;
1643 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1644 		num_stripes = 4;
1645 
1646 	/* Adjust for more than 1 stripe per device */
1647 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1648 
1649 	rcu_read_lock();
1650 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1651 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1652 						&device->dev_state) ||
1653 		    !device->bdev ||
1654 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1655 			continue;
1656 
1657 		if (i >= nr_devices)
1658 			break;
1659 
1660 		avail_space = device->total_bytes - device->bytes_used;
1661 
1662 		/* align with stripe_len */
1663 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1664 
1665 		/*
1666 		 * Ensure we have at least min_stripe_size on top of the
1667 		 * reserved space on the device.
1668 		 */
1669 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1670 			continue;
1671 
1672 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1673 
1674 		devices_info[i].dev = device;
1675 		devices_info[i].max_avail = avail_space;
1676 
1677 		i++;
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	nr_devices = i;
1682 
1683 	btrfs_descending_sort_devices(devices_info, nr_devices);
1684 
1685 	i = nr_devices - 1;
1686 	avail_space = 0;
1687 	while (nr_devices >= rattr->devs_min) {
1688 		num_stripes = min(num_stripes, nr_devices);
1689 
1690 		if (devices_info[i].max_avail >= min_stripe_size) {
1691 			int j;
1692 			u64 alloc_size;
1693 
1694 			avail_space += devices_info[i].max_avail * num_stripes;
1695 			alloc_size = devices_info[i].max_avail;
1696 			for (j = i + 1 - num_stripes; j <= i; j++)
1697 				devices_info[j].max_avail -= alloc_size;
1698 		}
1699 		i--;
1700 		nr_devices--;
1701 	}
1702 
1703 	kfree(devices_info);
1704 	*free_bytes = avail_space;
1705 	return 0;
1706 }
1707 
1708 /*
1709  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1710  *
1711  * If there's a redundant raid level at DATA block groups, use the respective
1712  * multiplier to scale the sizes.
1713  *
1714  * Unused device space usage is based on simulating the chunk allocator
1715  * algorithm that respects the device sizes and order of allocations.  This is
1716  * a close approximation of the actual use but there are other factors that may
1717  * change the result (like a new metadata chunk).
1718  *
1719  * If metadata is exhausted, f_bavail will be 0.
1720  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1721 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1722 {
1723 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1724 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1725 	struct btrfs_space_info *found;
1726 	u64 total_used = 0;
1727 	u64 total_free_data = 0;
1728 	u64 total_free_meta = 0;
1729 	u32 bits = fs_info->sectorsize_bits;
1730 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1731 	unsigned factor = 1;
1732 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1733 	int ret;
1734 	u64 thresh = 0;
1735 	int mixed = 0;
1736 
1737 	list_for_each_entry(found, &fs_info->space_info, list) {
1738 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1739 			int i;
1740 
1741 			total_free_data += found->disk_total - found->disk_used;
1742 			total_free_data -=
1743 				btrfs_account_ro_block_groups_free_space(found);
1744 
1745 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1746 				if (!list_empty(&found->block_groups[i]))
1747 					factor = btrfs_bg_type_to_factor(
1748 						btrfs_raid_array[i].bg_flag);
1749 			}
1750 		}
1751 
1752 		/*
1753 		 * Metadata in mixed block group profiles are accounted in data
1754 		 */
1755 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1756 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1757 				mixed = 1;
1758 			else
1759 				total_free_meta += found->disk_total -
1760 					found->disk_used;
1761 		}
1762 
1763 		total_used += found->disk_used;
1764 	}
1765 
1766 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1767 	buf->f_blocks >>= bits;
1768 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1769 
1770 	/* Account global block reserve as used, it's in logical size already */
1771 	spin_lock(&block_rsv->lock);
1772 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1773 	if (buf->f_bfree >= block_rsv->size >> bits)
1774 		buf->f_bfree -= block_rsv->size >> bits;
1775 	else
1776 		buf->f_bfree = 0;
1777 	spin_unlock(&block_rsv->lock);
1778 
1779 	buf->f_bavail = div_u64(total_free_data, factor);
1780 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1781 	if (ret)
1782 		return ret;
1783 	buf->f_bavail += div_u64(total_free_data, factor);
1784 	buf->f_bavail = buf->f_bavail >> bits;
1785 
1786 	/*
1787 	 * We calculate the remaining metadata space minus global reserve. If
1788 	 * this is (supposedly) smaller than zero, there's no space. But this
1789 	 * does not hold in practice, the exhausted state happens where's still
1790 	 * some positive delta. So we apply some guesswork and compare the
1791 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1792 	 *
1793 	 * We probably cannot calculate the exact threshold value because this
1794 	 * depends on the internal reservations requested by various
1795 	 * operations, so some operations that consume a few metadata will
1796 	 * succeed even if the Avail is zero. But this is better than the other
1797 	 * way around.
1798 	 */
1799 	thresh = SZ_4M;
1800 
1801 	/*
1802 	 * We only want to claim there's no available space if we can no longer
1803 	 * allocate chunks for our metadata profile and our global reserve will
1804 	 * not fit in the free metadata space.  If we aren't ->full then we
1805 	 * still can allocate chunks and thus are fine using the currently
1806 	 * calculated f_bavail.
1807 	 */
1808 	if (!mixed && block_rsv->space_info->full &&
1809 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1810 		buf->f_bavail = 0;
1811 
1812 	buf->f_type = BTRFS_SUPER_MAGIC;
1813 	buf->f_bsize = fs_info->sectorsize;
1814 	buf->f_namelen = BTRFS_NAME_LEN;
1815 
1816 	/* We treat it as constant endianness (it doesn't matter _which_)
1817 	   because we want the fsid to come out the same whether mounted
1818 	   on a big-endian or little-endian host */
1819 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1820 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1821 	/* Mask in the root object ID too, to disambiguate subvols */
1822 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1823 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1824 
1825 	return 0;
1826 }
1827 
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1828 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1829 {
1830 	struct btrfs_fs_info *p = fc->s_fs_info;
1831 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1832 
1833 	return fs_info->fs_devices == p->fs_devices;
1834 }
1835 
btrfs_get_tree_super(struct fs_context * fc)1836 static int btrfs_get_tree_super(struct fs_context *fc)
1837 {
1838 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1839 	struct btrfs_fs_context *ctx = fc->fs_private;
1840 	struct btrfs_fs_devices *fs_devices = NULL;
1841 	struct btrfs_device *device;
1842 	struct super_block *sb;
1843 	blk_mode_t mode = sb_open_mode(fc->sb_flags);
1844 	int ret;
1845 
1846 	btrfs_ctx_to_info(fs_info, ctx);
1847 	mutex_lock(&uuid_mutex);
1848 
1849 	/*
1850 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1851 	 * either a valid device or an error.
1852 	 */
1853 	device = btrfs_scan_one_device(fc->source, true);
1854 	ASSERT(device != NULL);
1855 	if (IS_ERR(device)) {
1856 		mutex_unlock(&uuid_mutex);
1857 		return PTR_ERR(device);
1858 	}
1859 	fs_devices = device->fs_devices;
1860 	/*
1861 	 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a
1862 	 * locking order reversal with s_umount.
1863 	 *
1864 	 * So here we increase the holding number of fs_devices, this will ensure
1865 	 * the fs_devices itself won't be freed.
1866 	 */
1867 	btrfs_fs_devices_inc_holding(fs_devices);
1868 	fs_info->fs_devices = fs_devices;
1869 	mutex_unlock(&uuid_mutex);
1870 
1871 
1872 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1873 	if (IS_ERR(sb)) {
1874 		mutex_lock(&uuid_mutex);
1875 		btrfs_fs_devices_dec_holding(fs_devices);
1876 		/*
1877 		 * Since the fs_devices is not opened, it can be freed at any
1878 		 * time after unlocking uuid_mutex.  We need to avoid double
1879 		 * free through put_fs_context()->btrfs_free_fs_info().
1880 		 * So here we reset fs_info->fs_devices to NULL, and let the
1881 		 * regular fs_devices reclaim path to handle it.
1882 		 *
1883 		 * This applies to all later branches where no fs_devices is
1884 		 * opened.
1885 		 */
1886 		fs_info->fs_devices = NULL;
1887 		mutex_unlock(&uuid_mutex);
1888 		return PTR_ERR(sb);
1889 	}
1890 
1891 	set_device_specific_options(fs_info);
1892 
1893 	if (sb->s_root) {
1894 		/*
1895 		 * Not the first mount of the fs thus got an existing super block.
1896 		 * Will reuse the returned super block, fs_info and fs_devices.
1897 		 *
1898 		 * fc->s_fs_info is not touched and will be later freed by
1899 		 * put_fs_context() through btrfs_free_fs_context().
1900 		 */
1901 		ASSERT(fc->s_fs_info == fs_info);
1902 
1903 		mutex_lock(&uuid_mutex);
1904 		btrfs_fs_devices_dec_holding(fs_devices);
1905 		fs_info->fs_devices = NULL;
1906 		mutex_unlock(&uuid_mutex);
1907 		/*
1908 		 * At this stage we may have RO flag mismatch between
1909 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1910 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1911 		 * needed.
1912 		 */
1913 	} else {
1914 		struct block_device *bdev;
1915 
1916 		/*
1917 		 * The first mount of the fs thus a new superblock, fc->s_fs_info
1918 		 * must be NULL, and the ownership of our fs_info and fs_devices is
1919 		 * transferred to the super block.
1920 		 */
1921 		ASSERT(fc->s_fs_info == NULL);
1922 
1923 		mutex_lock(&uuid_mutex);
1924 		btrfs_fs_devices_dec_holding(fs_devices);
1925 		ret = btrfs_open_devices(fs_devices, mode, sb);
1926 		if (ret < 0)
1927 			fs_info->fs_devices = NULL;
1928 		mutex_unlock(&uuid_mutex);
1929 		if (ret < 0) {
1930 			deactivate_locked_super(sb);
1931 			return ret;
1932 		}
1933 		if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1934 			deactivate_locked_super(sb);
1935 			return -EACCES;
1936 		}
1937 		bdev = fs_devices->latest_dev->bdev;
1938 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1939 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1940 		ret = btrfs_fill_super(sb, fs_devices);
1941 		if (ret) {
1942 			deactivate_locked_super(sb);
1943 			return ret;
1944 		}
1945 	}
1946 
1947 	btrfs_clear_oneshot_options(fs_info);
1948 
1949 	fc->root = dget(sb->s_root);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1955  * with different ro/rw options") the following works:
1956  *
1957  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1958  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1959  *
1960  * which looks nice and innocent but is actually pretty intricate and deserves
1961  * a long comment.
1962  *
1963  * On another filesystem a subvolume mount is close to something like:
1964  *
1965  *	(iii) # create rw superblock + initial mount
1966  *	      mount -t xfs /dev/sdb /opt/
1967  *
1968  *	      # create ro bind mount
1969  *	      mount --bind -o ro /opt/foo /mnt/foo
1970  *
1971  *	      # unmount initial mount
1972  *	      umount /opt
1973  *
1974  * Of course, there's some special subvolume sauce and there's the fact that the
1975  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1976  * it's very close and will help us understand the issue.
1977  *
1978  * The old mount API didn't cleanly distinguish between a mount being made ro
1979  * and a superblock being made ro.  The only way to change the ro state of
1980  * either object was by passing ms_rdonly. If a new mount was created via
1981  * mount(2) such as:
1982  *
1983  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1984  *
1985  * the MS_RDONLY flag being specified had two effects:
1986  *
1987  * (1) MNT_READONLY was raised -> the resulting mount got
1988  *     @mnt->mnt_flags |= MNT_READONLY raised.
1989  *
1990  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1991  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1992  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1993  *
1994  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1995  * subtree mounted ro.
1996  *
1997  * But consider the effect on the old mount API on btrfs subvolume mounting
1998  * which combines the distinct step in (iii) into a single step.
1999  *
2000  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
2001  * is issued the superblock is ro and thus even if the mount created for (ii) is
2002  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
2003  * to rw for (ii) which it did using an internal remount call.
2004  *
2005  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
2006  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
2007  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
2008  * passed by mount(8) to mount(2).
2009  *
2010  * Enter the new mount API. The new mount API disambiguates making a mount ro
2011  * and making a superblock ro.
2012  *
2013  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
2014  *     fsmount() or mount_setattr() this is a pure VFS level change for a
2015  *     specific mount or mount tree that is never seen by the filesystem itself.
2016  *
2017  * (4) To turn a superblock ro the "ro" flag must be used with
2018  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
2019  *     in fc->sb_flags.
2020  *
2021  * But, currently the util-linux mount command already utilizes the new mount
2022  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
2023  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
2024  * work with different options work we need to keep backward compatibility.
2025  */
btrfs_reconfigure_for_mount(struct fs_context * fc)2026 static int btrfs_reconfigure_for_mount(struct fs_context *fc)
2027 {
2028 	int ret = 0;
2029 
2030 	if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY))
2031 		ret = btrfs_reconfigure(fc);
2032 
2033 	return ret;
2034 }
2035 
btrfs_get_tree_subvol(struct fs_context * fc)2036 static int btrfs_get_tree_subvol(struct fs_context *fc)
2037 {
2038 	struct btrfs_fs_info *fs_info = NULL;
2039 	struct btrfs_fs_context *ctx = fc->fs_private;
2040 	struct fs_context *dup_fc;
2041 	struct dentry *dentry;
2042 	struct vfsmount *mnt;
2043 	int ret = 0;
2044 
2045 	/*
2046 	 * Setup a dummy root and fs_info for test/set super.  This is because
2047 	 * we don't actually fill this stuff out until open_ctree, but we need
2048 	 * then open_ctree will properly initialize the file system specific
2049 	 * settings later.  btrfs_init_fs_info initializes the static elements
2050 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2051 	 * superblock with our given fs_devices later on at sget() time.
2052 	 */
2053 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2054 	if (!fs_info)
2055 		return -ENOMEM;
2056 
2057 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2058 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2059 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2060 		btrfs_free_fs_info(fs_info);
2061 		return -ENOMEM;
2062 	}
2063 	btrfs_init_fs_info(fs_info);
2064 
2065 	dup_fc = vfs_dup_fs_context(fc);
2066 	if (IS_ERR(dup_fc)) {
2067 		btrfs_free_fs_info(fs_info);
2068 		return PTR_ERR(dup_fc);
2069 	}
2070 
2071 	/*
2072 	 * When we do the sget_fc this gets transferred to the sb, so we only
2073 	 * need to set it on the dup_fc as this is what creates the super block.
2074 	 */
2075 	dup_fc->s_fs_info = fs_info;
2076 
2077 	ret = btrfs_get_tree_super(dup_fc);
2078 	if (ret)
2079 		goto error;
2080 
2081 	ret = btrfs_reconfigure_for_mount(dup_fc);
2082 	up_write(&dup_fc->root->d_sb->s_umount);
2083 	if (ret)
2084 		goto error;
2085 	mnt = vfs_create_mount(dup_fc);
2086 	put_fs_context(dup_fc);
2087 	if (IS_ERR(mnt))
2088 		return PTR_ERR(mnt);
2089 
2090 	/*
2091 	 * This free's ->subvol_name, because if it isn't set we have to
2092 	 * allocate a buffer to hold the subvol_name, so we just drop our
2093 	 * reference to it here.
2094 	 */
2095 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2096 	ctx->subvol_name = NULL;
2097 	if (IS_ERR(dentry))
2098 		return PTR_ERR(dentry);
2099 
2100 	fc->root = dentry;
2101 	return 0;
2102 error:
2103 	put_fs_context(dup_fc);
2104 	return ret;
2105 }
2106 
btrfs_get_tree(struct fs_context * fc)2107 static int btrfs_get_tree(struct fs_context *fc)
2108 {
2109 	ASSERT(fc->s_fs_info == NULL);
2110 
2111 	return btrfs_get_tree_subvol(fc);
2112 }
2113 
btrfs_kill_super(struct super_block * sb)2114 static void btrfs_kill_super(struct super_block *sb)
2115 {
2116 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2117 	kill_anon_super(sb);
2118 	btrfs_free_fs_info(fs_info);
2119 }
2120 
btrfs_free_fs_context(struct fs_context * fc)2121 static void btrfs_free_fs_context(struct fs_context *fc)
2122 {
2123 	struct btrfs_fs_context *ctx = fc->fs_private;
2124 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2125 
2126 	if (fs_info)
2127 		btrfs_free_fs_info(fs_info);
2128 
2129 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2130 		kfree(ctx->subvol_name);
2131 		kfree(ctx);
2132 	}
2133 }
2134 
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2135 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2136 {
2137 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2138 
2139 	/*
2140 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2141 	 * our original fc so we can have the subvolume name or objectid.
2142 	 *
2143 	 * We unset ->source in the original fc because the dup needs it for
2144 	 * mounting, and then once we free the dup it'll free ->source, so we
2145 	 * need to make sure we're only pointing to it in one fc.
2146 	 */
2147 	refcount_inc(&ctx->refs);
2148 	fc->fs_private = ctx;
2149 	fc->source = src_fc->source;
2150 	src_fc->source = NULL;
2151 	return 0;
2152 }
2153 
2154 static const struct fs_context_operations btrfs_fs_context_ops = {
2155 	.parse_param	= btrfs_parse_param,
2156 	.reconfigure	= btrfs_reconfigure,
2157 	.get_tree	= btrfs_get_tree,
2158 	.dup		= btrfs_dup_fs_context,
2159 	.free		= btrfs_free_fs_context,
2160 };
2161 
btrfs_init_fs_context(struct fs_context * fc)2162 static int btrfs_init_fs_context(struct fs_context *fc)
2163 {
2164 	struct btrfs_fs_context *ctx;
2165 
2166 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2167 	if (!ctx)
2168 		return -ENOMEM;
2169 
2170 	refcount_set(&ctx->refs, 1);
2171 	fc->fs_private = ctx;
2172 	fc->ops = &btrfs_fs_context_ops;
2173 
2174 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2175 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2176 	} else {
2177 		ctx->thread_pool_size =
2178 			min_t(unsigned long, num_online_cpus() + 2, 8);
2179 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2180 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2181 	}
2182 
2183 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2184 	fc->sb_flags |= SB_POSIXACL;
2185 #endif
2186 	fc->sb_flags |= SB_I_VERSION;
2187 
2188 	return 0;
2189 }
2190 
2191 static struct file_system_type btrfs_fs_type = {
2192 	.owner			= THIS_MODULE,
2193 	.name			= "btrfs",
2194 	.init_fs_context	= btrfs_init_fs_context,
2195 	.parameters		= btrfs_fs_parameters,
2196 	.kill_sb		= btrfs_kill_super,
2197 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2198 				  FS_ALLOW_IDMAP | FS_MGTIME,
2199  };
2200 
2201 MODULE_ALIAS_FS("btrfs");
2202 
btrfs_control_open(struct inode * inode,struct file * file)2203 static int btrfs_control_open(struct inode *inode, struct file *file)
2204 {
2205 	/*
2206 	 * The control file's private_data is used to hold the
2207 	 * transaction when it is started and is used to keep
2208 	 * track of whether a transaction is already in progress.
2209 	 */
2210 	file->private_data = NULL;
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Used by /dev/btrfs-control for devices ioctls.
2216  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2217 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2218 				unsigned long arg)
2219 {
2220 	struct btrfs_ioctl_vol_args *vol;
2221 	struct btrfs_device *device = NULL;
2222 	dev_t devt = 0;
2223 	int ret = -ENOTTY;
2224 
2225 	if (!capable(CAP_SYS_ADMIN))
2226 		return -EPERM;
2227 
2228 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2229 	if (IS_ERR(vol))
2230 		return PTR_ERR(vol);
2231 	ret = btrfs_check_ioctl_vol_args_path(vol);
2232 	if (ret < 0)
2233 		goto out;
2234 
2235 	switch (cmd) {
2236 	case BTRFS_IOC_SCAN_DEV:
2237 		mutex_lock(&uuid_mutex);
2238 		/*
2239 		 * Scanning outside of mount can return NULL which would turn
2240 		 * into 0 error code.
2241 		 */
2242 		device = btrfs_scan_one_device(vol->name, false);
2243 		ret = PTR_ERR_OR_ZERO(device);
2244 		mutex_unlock(&uuid_mutex);
2245 		break;
2246 	case BTRFS_IOC_FORGET_DEV:
2247 		if (vol->name[0] != 0) {
2248 			ret = lookup_bdev(vol->name, &devt);
2249 			if (ret)
2250 				break;
2251 		}
2252 		ret = btrfs_forget_devices(devt);
2253 		break;
2254 	case BTRFS_IOC_DEVICES_READY:
2255 		mutex_lock(&uuid_mutex);
2256 		/*
2257 		 * Scanning outside of mount can return NULL which would turn
2258 		 * into 0 error code.
2259 		 */
2260 		device = btrfs_scan_one_device(vol->name, false);
2261 		if (IS_ERR_OR_NULL(device)) {
2262 			mutex_unlock(&uuid_mutex);
2263 			if (IS_ERR(device))
2264 				ret = PTR_ERR(device);
2265 			else
2266 				ret = 0;
2267 			break;
2268 		}
2269 		ret = !(device->fs_devices->num_devices ==
2270 			device->fs_devices->total_devices);
2271 		mutex_unlock(&uuid_mutex);
2272 		break;
2273 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2274 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2275 		break;
2276 	}
2277 
2278 out:
2279 	kfree(vol);
2280 	return ret;
2281 }
2282 
btrfs_freeze(struct super_block * sb)2283 static int btrfs_freeze(struct super_block *sb)
2284 {
2285 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2286 
2287 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2288 	/*
2289 	 * We don't need a barrier here, we'll wait for any transaction that
2290 	 * could be in progress on other threads (and do delayed iputs that
2291 	 * we want to avoid on a frozen filesystem), or do the commit
2292 	 * ourselves.
2293 	 */
2294 	return btrfs_commit_current_transaction(fs_info->tree_root);
2295 }
2296 
check_dev_super(struct btrfs_device * dev)2297 static int check_dev_super(struct btrfs_device *dev)
2298 {
2299 	struct btrfs_fs_info *fs_info = dev->fs_info;
2300 	struct btrfs_super_block *sb;
2301 	u64 last_trans;
2302 	u16 csum_type;
2303 	int ret = 0;
2304 
2305 	/* This should be called with fs still frozen. */
2306 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2307 
2308 	/* Missing dev, no need to check. */
2309 	if (!dev->bdev)
2310 		return 0;
2311 
2312 	/* Only need to check the primary super block. */
2313 	sb = btrfs_read_disk_super(dev->bdev, 0, true);
2314 	if (IS_ERR(sb))
2315 		return PTR_ERR(sb);
2316 
2317 	/* Verify the checksum. */
2318 	csum_type = btrfs_super_csum_type(sb);
2319 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2320 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2321 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2322 		ret = -EUCLEAN;
2323 		goto out;
2324 	}
2325 
2326 	if (btrfs_check_super_csum(fs_info, sb)) {
2327 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2328 		ret = -EUCLEAN;
2329 		goto out;
2330 	}
2331 
2332 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2333 	ret = btrfs_validate_super(fs_info, sb, 0);
2334 	if (ret < 0)
2335 		goto out;
2336 
2337 	last_trans = btrfs_get_last_trans_committed(fs_info);
2338 	if (btrfs_super_generation(sb) != last_trans) {
2339 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2340 			  btrfs_super_generation(sb), last_trans);
2341 		ret = -EUCLEAN;
2342 		goto out;
2343 	}
2344 out:
2345 	btrfs_release_disk_super(sb);
2346 	return ret;
2347 }
2348 
btrfs_unfreeze(struct super_block * sb)2349 static int btrfs_unfreeze(struct super_block *sb)
2350 {
2351 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2352 	struct btrfs_device *device;
2353 	int ret = 0;
2354 
2355 	/*
2356 	 * Make sure the fs is not changed by accident (like hibernation then
2357 	 * modified by other OS).
2358 	 * If we found anything wrong, we mark the fs error immediately.
2359 	 *
2360 	 * And since the fs is frozen, no one can modify the fs yet, thus
2361 	 * we don't need to hold device_list_mutex.
2362 	 */
2363 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2364 		ret = check_dev_super(device);
2365 		if (ret < 0) {
2366 			btrfs_handle_fs_error(fs_info, ret,
2367 				"super block on devid %llu got modified unexpectedly",
2368 				device->devid);
2369 			break;
2370 		}
2371 	}
2372 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2373 
2374 	/*
2375 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2376 	 * above checks failed. Since the fs is either fine or read-only, we're
2377 	 * safe to continue, without causing further damage.
2378 	 */
2379 	return 0;
2380 }
2381 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2382 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2383 {
2384 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2385 
2386 	/*
2387 	 * There should be always a valid pointer in latest_dev, it may be stale
2388 	 * for a short moment in case it's being deleted but still valid until
2389 	 * the end of RCU grace period.
2390 	 */
2391 	rcu_read_lock();
2392 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2393 	rcu_read_unlock();
2394 
2395 	return 0;
2396 }
2397 
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2398 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2399 {
2400 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2401 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2402 
2403 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2404 
2405 	return nr;
2406 }
2407 
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2408 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2409 {
2410 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2411 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2412 
2413 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2414 
2415 	/* The extent map shrinker runs asynchronously, so always return 0. */
2416 	return 0;
2417 }
2418 
2419 static const struct super_operations btrfs_super_ops = {
2420 	.drop_inode	= btrfs_drop_inode,
2421 	.evict_inode	= btrfs_evict_inode,
2422 	.put_super	= btrfs_put_super,
2423 	.sync_fs	= btrfs_sync_fs,
2424 	.show_options	= btrfs_show_options,
2425 	.show_devname	= btrfs_show_devname,
2426 	.alloc_inode	= btrfs_alloc_inode,
2427 	.destroy_inode	= btrfs_destroy_inode,
2428 	.free_inode	= btrfs_free_inode,
2429 	.statfs		= btrfs_statfs,
2430 	.freeze_fs	= btrfs_freeze,
2431 	.unfreeze_fs	= btrfs_unfreeze,
2432 	.nr_cached_objects = btrfs_nr_cached_objects,
2433 	.free_cached_objects = btrfs_free_cached_objects,
2434 };
2435 
2436 static const struct file_operations btrfs_ctl_fops = {
2437 	.open = btrfs_control_open,
2438 	.unlocked_ioctl	 = btrfs_control_ioctl,
2439 	.compat_ioctl = compat_ptr_ioctl,
2440 	.owner	 = THIS_MODULE,
2441 	.llseek = noop_llseek,
2442 };
2443 
2444 static struct miscdevice btrfs_misc = {
2445 	.minor		= BTRFS_MINOR,
2446 	.name		= "btrfs-control",
2447 	.fops		= &btrfs_ctl_fops
2448 };
2449 
2450 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2451 MODULE_ALIAS("devname:btrfs-control");
2452 
btrfs_interface_init(void)2453 static int __init btrfs_interface_init(void)
2454 {
2455 	return misc_register(&btrfs_misc);
2456 }
2457 
btrfs_interface_exit(void)2458 static __cold void btrfs_interface_exit(void)
2459 {
2460 	misc_deregister(&btrfs_misc);
2461 }
2462 
btrfs_print_mod_info(void)2463 static int __init btrfs_print_mod_info(void)
2464 {
2465 	static const char options[] = ""
2466 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2467 			", experimental=on"
2468 #endif
2469 #ifdef CONFIG_BTRFS_DEBUG
2470 			", debug=on"
2471 #endif
2472 #ifdef CONFIG_BTRFS_ASSERT
2473 			", assert=on"
2474 #endif
2475 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2476 			", ref-verify=on"
2477 #endif
2478 #ifdef CONFIG_BLK_DEV_ZONED
2479 			", zoned=yes"
2480 #else
2481 			", zoned=no"
2482 #endif
2483 #ifdef CONFIG_FS_VERITY
2484 			", fsverity=yes"
2485 #else
2486 			", fsverity=no"
2487 #endif
2488 			;
2489 
2490 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2491 	if (btrfs_get_mod_read_policy() == NULL)
2492 		pr_info("Btrfs loaded%s\n", options);
2493 	else
2494 		pr_info("Btrfs loaded%s, read_policy=%s\n",
2495 			 options, btrfs_get_mod_read_policy());
2496 #else
2497 	pr_info("Btrfs loaded%s\n", options);
2498 #endif
2499 
2500 	return 0;
2501 }
2502 
register_btrfs(void)2503 static int register_btrfs(void)
2504 {
2505 	return register_filesystem(&btrfs_fs_type);
2506 }
2507 
unregister_btrfs(void)2508 static void unregister_btrfs(void)
2509 {
2510 	unregister_filesystem(&btrfs_fs_type);
2511 }
2512 
2513 /* Helper structure for long init/exit functions. */
2514 struct init_sequence {
2515 	int (*init_func)(void);
2516 	/* Can be NULL if the init_func doesn't need cleanup. */
2517 	void (*exit_func)(void);
2518 };
2519 
2520 static const struct init_sequence mod_init_seq[] = {
2521 	{
2522 		.init_func = btrfs_props_init,
2523 		.exit_func = NULL,
2524 	}, {
2525 		.init_func = btrfs_init_sysfs,
2526 		.exit_func = btrfs_exit_sysfs,
2527 	}, {
2528 		.init_func = btrfs_init_compress,
2529 		.exit_func = btrfs_exit_compress,
2530 	}, {
2531 		.init_func = btrfs_init_cachep,
2532 		.exit_func = btrfs_destroy_cachep,
2533 	}, {
2534 		.init_func = btrfs_init_dio,
2535 		.exit_func = btrfs_destroy_dio,
2536 	}, {
2537 		.init_func = btrfs_transaction_init,
2538 		.exit_func = btrfs_transaction_exit,
2539 	}, {
2540 		.init_func = btrfs_ctree_init,
2541 		.exit_func = btrfs_ctree_exit,
2542 	}, {
2543 		.init_func = btrfs_free_space_init,
2544 		.exit_func = btrfs_free_space_exit,
2545 	}, {
2546 		.init_func = btrfs_extent_state_init_cachep,
2547 		.exit_func = btrfs_extent_state_free_cachep,
2548 	}, {
2549 		.init_func = extent_buffer_init_cachep,
2550 		.exit_func = extent_buffer_free_cachep,
2551 	}, {
2552 		.init_func = btrfs_bioset_init,
2553 		.exit_func = btrfs_bioset_exit,
2554 	}, {
2555 		.init_func = btrfs_extent_map_init,
2556 		.exit_func = btrfs_extent_map_exit,
2557 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2558 	}, {
2559 		.init_func = btrfs_read_policy_init,
2560 		.exit_func = NULL,
2561 #endif
2562 	}, {
2563 		.init_func = ordered_data_init,
2564 		.exit_func = ordered_data_exit,
2565 	}, {
2566 		.init_func = btrfs_delayed_inode_init,
2567 		.exit_func = btrfs_delayed_inode_exit,
2568 	}, {
2569 		.init_func = btrfs_auto_defrag_init,
2570 		.exit_func = btrfs_auto_defrag_exit,
2571 	}, {
2572 		.init_func = btrfs_delayed_ref_init,
2573 		.exit_func = btrfs_delayed_ref_exit,
2574 	}, {
2575 		.init_func = btrfs_prelim_ref_init,
2576 		.exit_func = btrfs_prelim_ref_exit,
2577 	}, {
2578 		.init_func = btrfs_interface_init,
2579 		.exit_func = btrfs_interface_exit,
2580 	}, {
2581 		.init_func = btrfs_print_mod_info,
2582 		.exit_func = NULL,
2583 	}, {
2584 		.init_func = btrfs_run_sanity_tests,
2585 		.exit_func = NULL,
2586 	}, {
2587 		.init_func = register_btrfs,
2588 		.exit_func = unregister_btrfs,
2589 	}
2590 };
2591 
2592 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2593 
btrfs_exit_btrfs_fs(void)2594 static __always_inline void btrfs_exit_btrfs_fs(void)
2595 {
2596 	int i;
2597 
2598 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2599 		if (!mod_init_result[i])
2600 			continue;
2601 		if (mod_init_seq[i].exit_func)
2602 			mod_init_seq[i].exit_func();
2603 		mod_init_result[i] = false;
2604 	}
2605 }
2606 
exit_btrfs_fs(void)2607 static void __exit exit_btrfs_fs(void)
2608 {
2609 	btrfs_exit_btrfs_fs();
2610 	btrfs_cleanup_fs_uuids();
2611 }
2612 
init_btrfs_fs(void)2613 static int __init init_btrfs_fs(void)
2614 {
2615 	int ret;
2616 	int i;
2617 
2618 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2619 		ASSERT(!mod_init_result[i]);
2620 		ret = mod_init_seq[i].init_func();
2621 		if (ret < 0) {
2622 			btrfs_exit_btrfs_fs();
2623 			return ret;
2624 		}
2625 		mod_init_result[i] = true;
2626 	}
2627 	return 0;
2628 }
2629 
2630 late_initcall(init_btrfs_fs);
2631 module_exit(exit_btrfs_fs)
2632 
2633 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2634 MODULE_LICENSE("GPL");
2635 MODULE_SOFTDEP("pre: crc32c");
2636 MODULE_SOFTDEP("pre: xxhash64");
2637 MODULE_SOFTDEP("pre: sha256");
2638 MODULE_SOFTDEP("pre: blake2b-256");
2639