xref: /linux/kernel/trace/ring_buffer.c (revision 5784d8c93eb0c3b26cbaa86237c3b106657fc0c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT		4U
159 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161 
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT	0
164 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT	1
167 # define RB_ARCH_ALIGNMENT		8U
168 #endif
169 
170 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171 
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174 
175 enum {
176 	RB_LEN_TIME_EXTEND = 8,
177 	RB_LEN_TIME_STAMP =  8,
178 };
179 
180 #define skip_time_extend(event) \
181 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182 
183 #define extended_time(event) \
184 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185 
rb_null_event(struct ring_buffer_event * event)186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190 
rb_event_set_padding(struct ring_buffer_event * event)191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 	/* padding has a NULL time_delta */
194 	event->type_len = RINGBUF_TYPE_PADDING;
195 	event->time_delta = 0;
196 }
197 
198 static unsigned
rb_event_data_length(struct ring_buffer_event * event)199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 	unsigned length;
202 
203 	if (event->type_len)
204 		length = event->type_len * RB_ALIGNMENT;
205 	else
206 		length = event->array[0];
207 	return length + RB_EVNT_HDR_SIZE;
208 }
209 
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
rb_event_length(struct ring_buffer_event * event)216 rb_event_length(struct ring_buffer_event *event)
217 {
218 	switch (event->type_len) {
219 	case RINGBUF_TYPE_PADDING:
220 		if (rb_null_event(event))
221 			/* undefined */
222 			return -1;
223 		return  event->array[0] + RB_EVNT_HDR_SIZE;
224 
225 	case RINGBUF_TYPE_TIME_EXTEND:
226 		return RB_LEN_TIME_EXTEND;
227 
228 	case RINGBUF_TYPE_TIME_STAMP:
229 		return RB_LEN_TIME_STAMP;
230 
231 	case RINGBUF_TYPE_DATA:
232 		return rb_event_data_length(event);
233 	default:
234 		WARN_ON_ONCE(1);
235 	}
236 	/* not hit */
237 	return 0;
238 }
239 
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 	unsigned len = 0;
248 
249 	if (extended_time(event)) {
250 		/* time extends include the data event after it */
251 		len = RB_LEN_TIME_EXTEND;
252 		event = skip_time_extend(event);
253 	}
254 	return len + rb_event_length(event);
255 }
256 
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
ring_buffer_event_length(struct ring_buffer_event * event)267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 	unsigned length;
270 
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 
274 	length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	if (extended_time(event))
289 		event = skip_time_extend(event);
290 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 	/* If length is in len field, then array[0] has the data */
292 	if (event->type_len)
293 		return (void *)&event->array[0];
294 	/* Otherwise length is in array[0] and array[1] has the data */
295 	return (void *)&event->array[1];
296 }
297 
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
ring_buffer_event_data(struct ring_buffer_event * event)302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 	return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307 
308 #define for_each_buffer_cpu(buffer, cpu)		\
309 	for_each_cpu(cpu, buffer->cpumask)
310 
311 #define for_each_online_buffer_cpu(buffer, cpu)		\
312 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313 
314 #define TS_SHIFT	27
315 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST	(~TS_MASK)
317 
rb_event_time_stamp(struct ring_buffer_event * event)318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 	u64 ts;
321 
322 	ts = event->array[0];
323 	ts <<= TS_SHIFT;
324 	ts += event->time_delta;
325 
326 	return ts;
327 }
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 #define RB_MISSED_MASK		(3 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 struct buffer_data_read_page {
343 	unsigned		order;	/* order of the page */
344 	struct buffer_data_page	*data;	/* actual data, stored in this page */
345 };
346 
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356 	struct list_head list;		/* list of buffer pages */
357 	local_t		 write;		/* index for next write */
358 	unsigned	 read;		/* index for next read */
359 	local_t		 entries;	/* entries on this page */
360 	unsigned long	 real_end;	/* real end of data */
361 	unsigned	 order;		/* order of the page */
362 	u32		 id:30;		/* ID for external mapping */
363 	u32		 range:1;	/* Mapped via a range */
364 	struct buffer_data_page *page;	/* Actual data page */
365 };
366 
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK		0xfffff
380 #define RB_WRITE_INTCNT		(1 << 20)
381 
rb_init_page(struct buffer_data_page * bpage)382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 	local_set(&bpage->commit, 0);
385 }
386 
rb_page_commit(struct buffer_page * bpage)387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 	return local_read(&bpage->page->commit);
390 }
391 
free_buffer_page(struct buffer_page * bpage)392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	/* Range pages are not to be freed */
395 	if (!bpage->range)
396 		free_pages((unsigned long)bpage->page, bpage->order);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
test_time_stamp(u64 delta)403 static inline bool test_time_stamp(u64 delta)
404 {
405 	return !!(delta & TS_DELTA_TEST);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	atomic_t			seq;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 struct rb_time_struct {
464 	local64_t	time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467 
468 #define MAX_NEST	5
469 
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474 	int				cpu;
475 	atomic_t			record_disabled;
476 	atomic_t			resize_disabled;
477 	struct trace_buffer	*buffer;
478 	raw_spinlock_t			reader_lock;	/* serialize readers */
479 	arch_spinlock_t			lock;
480 	struct lock_class_key		lock_key;
481 	struct buffer_data_page		*free_page;
482 	unsigned long			nr_pages;
483 	unsigned int			current_context;
484 	struct list_head		*pages;
485 	/* pages generation counter, incremented when the list changes */
486 	unsigned long			cnt;
487 	struct buffer_page		*head_page;	/* read from head */
488 	struct buffer_page		*tail_page;	/* write to tail */
489 	struct buffer_page		*commit_page;	/* committed pages */
490 	struct buffer_page		*reader_page;
491 	unsigned long			lost_events;
492 	unsigned long			last_overrun;
493 	unsigned long			nest;
494 	local_t				entries_bytes;
495 	local_t				entries;
496 	local_t				overrun;
497 	local_t				commit_overrun;
498 	local_t				dropped_events;
499 	local_t				committing;
500 	local_t				commits;
501 	local_t				pages_touched;
502 	local_t				pages_lost;
503 	local_t				pages_read;
504 	long				last_pages_touch;
505 	size_t				shortest_full;
506 	unsigned long			read;
507 	unsigned long			read_bytes;
508 	rb_time_t			write_stamp;
509 	rb_time_t			before_stamp;
510 	u64				event_stamp[MAX_NEST];
511 	u64				read_stamp;
512 	/* pages removed since last reset */
513 	unsigned long			pages_removed;
514 
515 	unsigned int			mapped;
516 	unsigned int			user_mapped;	/* user space mapping */
517 	struct mutex			mapping_lock;
518 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
519 	struct trace_buffer_meta	*meta_page;
520 	struct ring_buffer_meta		*ring_meta;
521 
522 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
523 	long				nr_pages_to_update;
524 	struct list_head		new_pages; /* new pages to add */
525 	struct work_struct		update_pages_work;
526 	struct completion		update_done;
527 
528 	struct rb_irq_work		irq_work;
529 };
530 
531 struct trace_buffer {
532 	unsigned			flags;
533 	int				cpus;
534 	atomic_t			record_disabled;
535 	atomic_t			resizing;
536 	cpumask_var_t			cpumask;
537 
538 	struct lock_class_key		*reader_lock_key;
539 
540 	struct mutex			mutex;
541 
542 	struct ring_buffer_per_cpu	**buffers;
543 
544 	struct hlist_node		node;
545 	u64				(*clock)(void);
546 
547 	struct rb_irq_work		irq_work;
548 	bool				time_stamp_abs;
549 
550 	unsigned long			range_addr_start;
551 	unsigned long			range_addr_end;
552 
553 	long				last_text_delta;
554 	long				last_data_delta;
555 
556 	unsigned int			subbuf_size;
557 	unsigned int			subbuf_order;
558 	unsigned int			max_data_size;
559 };
560 
561 struct ring_buffer_iter {
562 	struct ring_buffer_per_cpu	*cpu_buffer;
563 	unsigned long			head;
564 	unsigned long			next_event;
565 	struct buffer_page		*head_page;
566 	struct buffer_page		*cache_reader_page;
567 	unsigned long			cache_read;
568 	unsigned long			cache_pages_removed;
569 	u64				read_stamp;
570 	u64				page_stamp;
571 	struct ring_buffer_event	*event;
572 	size_t				event_size;
573 	int				missed_events;
574 };
575 
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578 	struct buffer_data_page field;
579 
580 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 			 (unsigned int)sizeof(field.time_stamp),
583 			 (unsigned int)is_signed_type(u64));
584 
585 	trace_seq_printf(s, "\tfield: local_t commit;\t"
586 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 			 (unsigned int)offsetof(typeof(field), commit),
588 			 (unsigned int)sizeof(field.commit),
589 			 (unsigned int)is_signed_type(long));
590 
591 	trace_seq_printf(s, "\tfield: int overwrite;\t"
592 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 			 (unsigned int)offsetof(typeof(field), commit),
594 			 1,
595 			 (unsigned int)is_signed_type(long));
596 
597 	trace_seq_printf(s, "\tfield: char data;\t"
598 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 			 (unsigned int)offsetof(typeof(field), data),
600 			 (unsigned int)buffer->subbuf_size,
601 			 (unsigned int)is_signed_type(char));
602 
603 	return !trace_seq_has_overflowed(s);
604 }
605 
rb_time_read(rb_time_t * t,u64 * ret)606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608 	*ret = local64_read(&t->time);
609 }
rb_time_set(rb_time_t * t,u64 val)610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612 	local64_set(&t->time, val);
613 }
614 
615 /*
616  * Enable this to make sure that the event passed to
617  * ring_buffer_event_time_stamp() is not committed and also
618  * is on the buffer that it passed in.
619  */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 			 void *event)
625 {
626 	struct buffer_page *page = cpu_buffer->commit_page;
627 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 	struct list_head *next;
629 	long commit, write;
630 	unsigned long addr = (unsigned long)event;
631 	bool done = false;
632 	int stop = 0;
633 
634 	/* Make sure the event exists and is not committed yet */
635 	do {
636 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 			done = true;
638 		commit = local_read(&page->page->commit);
639 		write = local_read(&page->write);
640 		if (addr >= (unsigned long)&page->page->data[commit] &&
641 		    addr < (unsigned long)&page->page->data[write])
642 			return;
643 
644 		next = rb_list_head(page->list.next);
645 		page = list_entry(next, struct buffer_page, list);
646 	} while (!done);
647 	WARN_ON_ONCE(1);
648 }
649 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 			 void *event)
652 {
653 }
654 #endif
655 
656 /*
657  * The absolute time stamp drops the 5 MSBs and some clocks may
658  * require them. The rb_fix_abs_ts() will take a previous full
659  * time stamp, and add the 5 MSB of that time stamp on to the
660  * saved absolute time stamp. Then they are compared in case of
661  * the unlikely event that the latest time stamp incremented
662  * the 5 MSB.
663  */
rb_fix_abs_ts(u64 abs,u64 save_ts)664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666 	if (save_ts & TS_MSB) {
667 		abs |= save_ts & TS_MSB;
668 		/* Check for overflow */
669 		if (unlikely(abs < save_ts))
670 			abs += 1ULL << 59;
671 	}
672 	return abs;
673 }
674 
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676 
677 /**
678  * ring_buffer_event_time_stamp - return the event's current time stamp
679  * @buffer: The buffer that the event is on
680  * @event: the event to get the time stamp of
681  *
682  * Note, this must be called after @event is reserved, and before it is
683  * committed to the ring buffer. And must be called from the same
684  * context where the event was reserved (normal, softirq, irq, etc).
685  *
686  * Returns the time stamp associated with the current event.
687  * If the event has an extended time stamp, then that is used as
688  * the time stamp to return.
689  * In the highly unlikely case that the event was nested more than
690  * the max nesting, then the write_stamp of the buffer is returned,
691  * otherwise  current time is returned, but that really neither of
692  * the last two cases should ever happen.
693  */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 				 struct ring_buffer_event *event)
696 {
697 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 	unsigned int nest;
699 	u64 ts;
700 
701 	/* If the event includes an absolute time, then just use that */
702 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 		ts = rb_event_time_stamp(event);
704 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 	}
706 
707 	nest = local_read(&cpu_buffer->committing);
708 	verify_event(cpu_buffer, event);
709 	if (WARN_ON_ONCE(!nest))
710 		goto fail;
711 
712 	/* Read the current saved nesting level time stamp */
713 	if (likely(--nest < MAX_NEST))
714 		return cpu_buffer->event_stamp[nest];
715 
716 	/* Shouldn't happen, warn if it does */
717 	WARN_ONCE(1, "nest (%d) greater than max", nest);
718 
719  fail:
720 	rb_time_read(&cpu_buffer->write_stamp, &ts);
721 
722 	return ts;
723 }
724 
725 /**
726  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727  * @buffer: The ring_buffer to get the number of pages from
728  * @cpu: The cpu of the ring_buffer to get the number of pages from
729  *
730  * Returns the number of pages that have content in the ring buffer.
731  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734 	size_t read;
735 	size_t lost;
736 	size_t cnt;
737 
738 	read = local_read(&buffer->buffers[cpu]->pages_read);
739 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741 
742 	if (WARN_ON_ONCE(cnt < lost))
743 		return 0;
744 
745 	cnt -= lost;
746 
747 	/* The reader can read an empty page, but not more than that */
748 	if (cnt < read) {
749 		WARN_ON_ONCE(read > cnt + 1);
750 		return 0;
751 	}
752 
753 	return cnt - read;
754 }
755 
full_hit(struct trace_buffer * buffer,int cpu,int full)756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 	size_t nr_pages;
760 	size_t dirty;
761 
762 	nr_pages = cpu_buffer->nr_pages;
763 	if (!nr_pages || !full)
764 		return true;
765 
766 	/*
767 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 	 * that the writer is on is not counted as dirty.
769 	 * This is needed if "buffer_percent" is set to 100.
770 	 */
771 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772 
773 	return (dirty * 100) >= (full * nr_pages);
774 }
775 
776 /*
777  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778  *
779  * Schedules a delayed work to wake up any task that is blocked on the
780  * ring buffer waiters queue.
781  */
rb_wake_up_waiters(struct irq_work * work)782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785 
786 	/* For waiters waiting for the first wake up */
787 	(void)atomic_fetch_inc_release(&rbwork->seq);
788 
789 	wake_up_all(&rbwork->waiters);
790 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 		/* Only cpu_buffer sets the above flags */
792 		struct ring_buffer_per_cpu *cpu_buffer =
793 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794 
795 		/* Called from interrupt context */
796 		raw_spin_lock(&cpu_buffer->reader_lock);
797 		rbwork->wakeup_full = false;
798 		rbwork->full_waiters_pending = false;
799 
800 		/* Waking up all waiters, they will reset the shortest full */
801 		cpu_buffer->shortest_full = 0;
802 		raw_spin_unlock(&cpu_buffer->reader_lock);
803 
804 		wake_up_all(&rbwork->full_waiters);
805 	}
806 }
807 
808 /**
809  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810  * @buffer: The ring buffer to wake waiters on
811  * @cpu: The CPU buffer to wake waiters on
812  *
813  * In the case of a file that represents a ring buffer is closing,
814  * it is prudent to wake up any waiters that are on this.
815  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818 	struct ring_buffer_per_cpu *cpu_buffer;
819 	struct rb_irq_work *rbwork;
820 
821 	if (!buffer)
822 		return;
823 
824 	if (cpu == RING_BUFFER_ALL_CPUS) {
825 
826 		/* Wake up individual ones too. One level recursion */
827 		for_each_buffer_cpu(buffer, cpu)
828 			ring_buffer_wake_waiters(buffer, cpu);
829 
830 		rbwork = &buffer->irq_work;
831 	} else {
832 		if (WARN_ON_ONCE(!buffer->buffers))
833 			return;
834 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 			return;
836 
837 		cpu_buffer = buffer->buffers[cpu];
838 		/* The CPU buffer may not have been initialized yet */
839 		if (!cpu_buffer)
840 			return;
841 		rbwork = &cpu_buffer->irq_work;
842 	}
843 
844 	/* This can be called in any context */
845 	irq_work_queue(&rbwork->work);
846 }
847 
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850 	struct ring_buffer_per_cpu *cpu_buffer;
851 	bool ret = false;
852 
853 	/* Reads of all CPUs always waits for any data */
854 	if (cpu == RING_BUFFER_ALL_CPUS)
855 		return !ring_buffer_empty(buffer);
856 
857 	cpu_buffer = buffer->buffers[cpu];
858 
859 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 		unsigned long flags;
861 		bool pagebusy;
862 
863 		if (!full)
864 			return true;
865 
866 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 		ret = !pagebusy && full_hit(buffer, cpu, full);
869 
870 		if (!ret && (!cpu_buffer->shortest_full ||
871 			     cpu_buffer->shortest_full > full)) {
872 		    cpu_buffer->shortest_full = full;
873 		}
874 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 	}
876 	return ret;
877 }
878 
879 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883 	if (rb_watermark_hit(buffer, cpu, full))
884 		return true;
885 
886 	if (cond(data))
887 		return true;
888 
889 	/*
890 	 * The events can happen in critical sections where
891 	 * checking a work queue can cause deadlocks.
892 	 * After adding a task to the queue, this flag is set
893 	 * only to notify events to try to wake up the queue
894 	 * using irq_work.
895 	 *
896 	 * We don't clear it even if the buffer is no longer
897 	 * empty. The flag only causes the next event to run
898 	 * irq_work to do the work queue wake up. The worse
899 	 * that can happen if we race with !trace_empty() is that
900 	 * an event will cause an irq_work to try to wake up
901 	 * an empty queue.
902 	 *
903 	 * There's no reason to protect this flag either, as
904 	 * the work queue and irq_work logic will do the necessary
905 	 * synchronization for the wake ups. The only thing
906 	 * that is necessary is that the wake up happens after
907 	 * a task has been queued. It's OK for spurious wake ups.
908 	 */
909 	if (full)
910 		rbwork->full_waiters_pending = true;
911 	else
912 		rbwork->waiters_pending = true;
913 
914 	return false;
915 }
916 
917 struct rb_wait_data {
918 	struct rb_irq_work		*irq_work;
919 	int				seq;
920 };
921 
922 /*
923  * The default wait condition for ring_buffer_wait() is to just to exit the
924  * wait loop the first time it is woken up.
925  */
rb_wait_once(void * data)926 static bool rb_wait_once(void *data)
927 {
928 	struct rb_wait_data *rdata = data;
929 	struct rb_irq_work *rbwork = rdata->irq_work;
930 
931 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933 
934 /**
935  * ring_buffer_wait - wait for input to the ring buffer
936  * @buffer: buffer to wait on
937  * @cpu: the cpu buffer to wait on
938  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939  * @cond: condition function to break out of wait (NULL to run once)
940  * @data: the data to pass to @cond.
941  *
942  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943  * as data is added to any of the @buffer's cpu buffers. Otherwise
944  * it will wait for data to be added to a specific cpu buffer.
945  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 		     ring_buffer_cond_fn cond, void *data)
948 {
949 	struct ring_buffer_per_cpu *cpu_buffer;
950 	struct wait_queue_head *waitq;
951 	struct rb_irq_work *rbwork;
952 	struct rb_wait_data rdata;
953 	int ret = 0;
954 
955 	/*
956 	 * Depending on what the caller is waiting for, either any
957 	 * data in any cpu buffer, or a specific buffer, put the
958 	 * caller on the appropriate wait queue.
959 	 */
960 	if (cpu == RING_BUFFER_ALL_CPUS) {
961 		rbwork = &buffer->irq_work;
962 		/* Full only makes sense on per cpu reads */
963 		full = 0;
964 	} else {
965 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 			return -ENODEV;
967 		cpu_buffer = buffer->buffers[cpu];
968 		rbwork = &cpu_buffer->irq_work;
969 	}
970 
971 	if (full)
972 		waitq = &rbwork->full_waiters;
973 	else
974 		waitq = &rbwork->waiters;
975 
976 	/* Set up to exit loop as soon as it is woken */
977 	if (!cond) {
978 		cond = rb_wait_once;
979 		rdata.irq_work = rbwork;
980 		rdata.seq = atomic_read_acquire(&rbwork->seq);
981 		data = &rdata;
982 	}
983 
984 	ret = wait_event_interruptible((*waitq),
985 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986 
987 	return ret;
988 }
989 
990 /**
991  * ring_buffer_poll_wait - poll on buffer input
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @filp: the file descriptor
995  * @poll_table: The poll descriptor
996  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997  *
998  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999  * as data is added to any of the @buffer's cpu buffers. Otherwise
1000  * it will wait for data to be added to a specific cpu buffer.
1001  *
1002  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003  * zero otherwise.
1004  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 			  struct file *filp, poll_table *poll_table, int full)
1007 {
1008 	struct ring_buffer_per_cpu *cpu_buffer;
1009 	struct rb_irq_work *rbwork;
1010 
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		rbwork = &buffer->irq_work;
1013 		full = 0;
1014 	} else {
1015 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 			return EPOLLERR;
1017 
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		rbwork = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	if (full) {
1023 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024 
1025 		if (rb_watermark_hit(buffer, cpu, full))
1026 			return EPOLLIN | EPOLLRDNORM;
1027 		/*
1028 		 * Only allow full_waiters_pending update to be seen after
1029 		 * the shortest_full is set (in rb_watermark_hit). If the
1030 		 * writer sees the full_waiters_pending flag set, it will
1031 		 * compare the amount in the ring buffer to shortest_full.
1032 		 * If the amount in the ring buffer is greater than the
1033 		 * shortest_full percent, it will call the irq_work handler
1034 		 * to wake up this list. The irq_handler will reset shortest_full
1035 		 * back to zero. That's done under the reader_lock, but
1036 		 * the below smp_mb() makes sure that the update to
1037 		 * full_waiters_pending doesn't leak up into the above.
1038 		 */
1039 		smp_mb();
1040 		rbwork->full_waiters_pending = true;
1041 		return 0;
1042 	}
1043 
1044 	poll_wait(filp, &rbwork->waiters, poll_table);
1045 	rbwork->waiters_pending = true;
1046 
1047 	/*
1048 	 * There's a tight race between setting the waiters_pending and
1049 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050 	 * is set, the next event will wake the task up, but we can get stuck
1051 	 * if there's only a single event in.
1052 	 *
1053 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 	 * but adding a memory barrier to all events will cause too much of a
1055 	 * performance hit in the fast path.  We only need a memory barrier when
1056 	 * the buffer goes from empty to having content.  But as this race is
1057 	 * extremely small, and it's not a problem if another event comes in, we
1058 	 * will fix it later.
1059 	 */
1060 	smp_mb();
1061 
1062 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 		return EPOLLIN | EPOLLRDNORM;
1065 	return 0;
1066 }
1067 
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond)						\
1070 	({								\
1071 		int _____ret = unlikely(cond);				\
1072 		if (_____ret) {						\
1073 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 				struct ring_buffer_per_cpu *__b =	\
1075 					(void *)b;			\
1076 				atomic_inc(&__b->buffer->record_disabled); \
1077 			} else						\
1078 				atomic_inc(&b->record_disabled);	\
1079 			WARN_ON(1);					\
1080 		}							\
1081 		_____ret;						\
1082 	})
1083 
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086 
rb_time_stamp(struct trace_buffer * buffer)1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089 	u64 ts;
1090 
1091 	/* Skip retpolines :-( */
1092 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 		ts = trace_clock_local();
1094 	else
1095 		ts = buffer->clock();
1096 
1097 	/* shift to debug/test normalization and TIME_EXTENTS */
1098 	return ts << DEBUG_SHIFT;
1099 }
1100 
ring_buffer_time_stamp(struct trace_buffer * buffer)1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103 	u64 time;
1104 
1105 	preempt_disable_notrace();
1106 	time = rb_time_stamp(buffer);
1107 	preempt_enable_notrace();
1108 
1109 	return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 				      int cpu, u64 *ts)
1115 {
1116 	/* Just stupid testing the normalize function and deltas */
1117 	*ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120 
1121 /*
1122  * Making the ring buffer lockless makes things tricky.
1123  * Although writes only happen on the CPU that they are on,
1124  * and they only need to worry about interrupts. Reads can
1125  * happen on any CPU.
1126  *
1127  * The reader page is always off the ring buffer, but when the
1128  * reader finishes with a page, it needs to swap its page with
1129  * a new one from the buffer. The reader needs to take from
1130  * the head (writes go to the tail). But if a writer is in overwrite
1131  * mode and wraps, it must push the head page forward.
1132  *
1133  * Here lies the problem.
1134  *
1135  * The reader must be careful to replace only the head page, and
1136  * not another one. As described at the top of the file in the
1137  * ASCII art, the reader sets its old page to point to the next
1138  * page after head. It then sets the page after head to point to
1139  * the old reader page. But if the writer moves the head page
1140  * during this operation, the reader could end up with the tail.
1141  *
1142  * We use cmpxchg to help prevent this race. We also do something
1143  * special with the page before head. We set the LSB to 1.
1144  *
1145  * When the writer must push the page forward, it will clear the
1146  * bit that points to the head page, move the head, and then set
1147  * the bit that points to the new head page.
1148  *
1149  * We also don't want an interrupt coming in and moving the head
1150  * page on another writer. Thus we use the second LSB to catch
1151  * that too. Thus:
1152  *
1153  * head->list->prev->next        bit 1          bit 0
1154  *                              -------        -------
1155  * Normal page                     0              0
1156  * Points to head page             0              1
1157  * New head page                   1              0
1158  *
1159  * Note we can not trust the prev pointer of the head page, because:
1160  *
1161  * +----+       +-----+        +-----+
1162  * |    |------>|  T  |---X--->|  N  |
1163  * |    |<------|     |        |     |
1164  * +----+       +-----+        +-----+
1165  *   ^                           ^ |
1166  *   |          +-----+          | |
1167  *   +----------|  R  |----------+ |
1168  *              |     |<-----------+
1169  *              +-----+
1170  *
1171  * Key:  ---X-->  HEAD flag set in pointer
1172  *         T      Tail page
1173  *         R      Reader page
1174  *         N      Next page
1175  *
1176  * (see __rb_reserve_next() to see where this happens)
1177  *
1178  *  What the above shows is that the reader just swapped out
1179  *  the reader page with a page in the buffer, but before it
1180  *  could make the new header point back to the new page added
1181  *  it was preempted by a writer. The writer moved forward onto
1182  *  the new page added by the reader and is about to move forward
1183  *  again.
1184  *
1185  *  You can see, it is legitimate for the previous pointer of
1186  *  the head (or any page) not to point back to itself. But only
1187  *  temporarily.
1188  */
1189 
1190 #define RB_PAGE_NORMAL		0UL
1191 #define RB_PAGE_HEAD		1UL
1192 #define RB_PAGE_UPDATE		2UL
1193 
1194 
1195 #define RB_FLAG_MASK		3UL
1196 
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED		4UL
1199 
1200 /*
1201  * rb_list_head - remove any bit
1202  */
rb_list_head(struct list_head * list)1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205 	unsigned long val = (unsigned long)list;
1206 
1207 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209 
1210 /*
1211  * rb_is_head_page - test if the given page is the head page
1212  *
1213  * Because the reader may move the head_page pointer, we can
1214  * not trust what the head page is (it may be pointing to
1215  * the reader page). But if the next page is a header page,
1216  * its flags will be non zero.
1217  */
1218 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221 	unsigned long val;
1222 
1223 	val = (unsigned long)list->next;
1224 
1225 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 		return RB_PAGE_MOVED;
1227 
1228 	return val & RB_FLAG_MASK;
1229 }
1230 
1231 /*
1232  * rb_is_reader_page
1233  *
1234  * The unique thing about the reader page, is that, if the
1235  * writer is ever on it, the previous pointer never points
1236  * back to the reader page.
1237  */
rb_is_reader_page(struct buffer_page * page)1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240 	struct list_head *list = page->list.prev;
1241 
1242 	return rb_list_head(list->next) != &page->list;
1243 }
1244 
1245 /*
1246  * rb_set_list_to_head - set a list_head to be pointing to head.
1247  */
rb_set_list_to_head(struct list_head * list)1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250 	unsigned long *ptr;
1251 
1252 	ptr = (unsigned long *)&list->next;
1253 	*ptr |= RB_PAGE_HEAD;
1254 	*ptr &= ~RB_PAGE_UPDATE;
1255 }
1256 
1257 /*
1258  * rb_head_page_activate - sets up head page
1259  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 	struct buffer_page *head;
1263 
1264 	head = cpu_buffer->head_page;
1265 	if (!head)
1266 		return;
1267 
1268 	/*
1269 	 * Set the previous list pointer to have the HEAD flag.
1270 	 */
1271 	rb_set_list_to_head(head->list.prev);
1272 
1273 	if (cpu_buffer->ring_meta) {
1274 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 		meta->head_buffer = (unsigned long)head->page;
1276 	}
1277 }
1278 
rb_list_head_clear(struct list_head * list)1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281 	unsigned long *ptr = (unsigned long *)&list->next;
1282 
1283 	*ptr &= ~RB_FLAG_MASK;
1284 }
1285 
1286 /*
1287  * rb_head_page_deactivate - clears head page ptr (for free list)
1288  */
1289 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 	struct list_head *hd;
1293 
1294 	/* Go through the whole list and clear any pointers found. */
1295 	rb_list_head_clear(cpu_buffer->pages);
1296 
1297 	list_for_each(hd, cpu_buffer->pages)
1298 		rb_list_head_clear(hd);
1299 }
1300 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 			    struct buffer_page *head,
1303 			    struct buffer_page *prev,
1304 			    int old_flag, int new_flag)
1305 {
1306 	struct list_head *list;
1307 	unsigned long val = (unsigned long)&head->list;
1308 	unsigned long ret;
1309 
1310 	list = &prev->list;
1311 
1312 	val &= ~RB_FLAG_MASK;
1313 
1314 	ret = cmpxchg((unsigned long *)&list->next,
1315 		      val | old_flag, val | new_flag);
1316 
1317 	/* check if the reader took the page */
1318 	if ((ret & ~RB_FLAG_MASK) != val)
1319 		return RB_PAGE_MOVED;
1320 
1321 	return ret & RB_FLAG_MASK;
1322 }
1323 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 				   struct buffer_page *head,
1326 				   struct buffer_page *prev,
1327 				   int old_flag)
1328 {
1329 	return rb_head_page_set(cpu_buffer, head, prev,
1330 				old_flag, RB_PAGE_UPDATE);
1331 }
1332 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 				 struct buffer_page *head,
1335 				 struct buffer_page *prev,
1336 				 int old_flag)
1337 {
1338 	return rb_head_page_set(cpu_buffer, head, prev,
1339 				old_flag, RB_PAGE_HEAD);
1340 }
1341 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 				   struct buffer_page *head,
1344 				   struct buffer_page *prev,
1345 				   int old_flag)
1346 {
1347 	return rb_head_page_set(cpu_buffer, head, prev,
1348 				old_flag, RB_PAGE_NORMAL);
1349 }
1350 
rb_inc_page(struct buffer_page ** bpage)1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353 	struct list_head *p = rb_list_head((*bpage)->list.next);
1354 
1355 	*bpage = list_entry(p, struct buffer_page, list);
1356 }
1357 
1358 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361 	struct buffer_page *head;
1362 	struct buffer_page *page;
1363 	struct list_head *list;
1364 	int i;
1365 
1366 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 		return NULL;
1368 
1369 	/* sanity check */
1370 	list = cpu_buffer->pages;
1371 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 		return NULL;
1373 
1374 	page = head = cpu_buffer->head_page;
1375 	/*
1376 	 * It is possible that the writer moves the header behind
1377 	 * where we started, and we miss in one loop.
1378 	 * A second loop should grab the header, but we'll do
1379 	 * three loops just because I'm paranoid.
1380 	 */
1381 	for (i = 0; i < 3; i++) {
1382 		do {
1383 			if (rb_is_head_page(page, page->list.prev)) {
1384 				cpu_buffer->head_page = page;
1385 				return page;
1386 			}
1387 			rb_inc_page(&page);
1388 		} while (page != head);
1389 	}
1390 
1391 	RB_WARN_ON(cpu_buffer, 1);
1392 
1393 	return NULL;
1394 }
1395 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 				struct buffer_page *new)
1398 {
1399 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 	unsigned long val;
1401 
1402 	val = *ptr & ~RB_FLAG_MASK;
1403 	val |= RB_PAGE_HEAD;
1404 
1405 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407 
1408 /*
1409  * rb_tail_page_update - move the tail page forward
1410  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 			       struct buffer_page *tail_page,
1413 			       struct buffer_page *next_page)
1414 {
1415 	unsigned long old_entries;
1416 	unsigned long old_write;
1417 
1418 	/*
1419 	 * The tail page now needs to be moved forward.
1420 	 *
1421 	 * We need to reset the tail page, but without messing
1422 	 * with possible erasing of data brought in by interrupts
1423 	 * that have moved the tail page and are currently on it.
1424 	 *
1425 	 * We add a counter to the write field to denote this.
1426 	 */
1427 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429 
1430 	/*
1431 	 * Just make sure we have seen our old_write and synchronize
1432 	 * with any interrupts that come in.
1433 	 */
1434 	barrier();
1435 
1436 	/*
1437 	 * If the tail page is still the same as what we think
1438 	 * it is, then it is up to us to update the tail
1439 	 * pointer.
1440 	 */
1441 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 		/* Zero the write counter */
1443 		unsigned long val = old_write & ~RB_WRITE_MASK;
1444 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445 
1446 		/*
1447 		 * This will only succeed if an interrupt did
1448 		 * not come in and change it. In which case, we
1449 		 * do not want to modify it.
1450 		 *
1451 		 * We add (void) to let the compiler know that we do not care
1452 		 * about the return value of these functions. We use the
1453 		 * cmpxchg to only update if an interrupt did not already
1454 		 * do it for us. If the cmpxchg fails, we don't care.
1455 		 */
1456 		(void)local_cmpxchg(&next_page->write, old_write, val);
1457 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458 
1459 		/*
1460 		 * No need to worry about races with clearing out the commit.
1461 		 * it only can increment when a commit takes place. But that
1462 		 * only happens in the outer most nested commit.
1463 		 */
1464 		local_set(&next_page->page->commit, 0);
1465 
1466 		/* Either we update tail_page or an interrupt does */
1467 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 			local_inc(&cpu_buffer->pages_touched);
1469 	}
1470 }
1471 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 			  struct buffer_page *bpage)
1474 {
1475 	unsigned long val = (unsigned long)bpage;
1476 
1477 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479 
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 			   struct list_head *list)
1482 {
1483 	if (RB_WARN_ON(cpu_buffer,
1484 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485 		return false;
1486 
1487 	if (RB_WARN_ON(cpu_buffer,
1488 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * rb_check_pages - integrity check of buffer pages
1496  * @cpu_buffer: CPU buffer with pages to test
1497  *
1498  * As a safety measure we check to make sure the data pages have not
1499  * been corrupted.
1500  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503 	struct list_head *head, *tmp;
1504 	unsigned long buffer_cnt;
1505 	unsigned long flags;
1506 	int nr_loops = 0;
1507 
1508 	/*
1509 	 * Walk the linked list underpinning the ring buffer and validate all
1510 	 * its next and prev links.
1511 	 *
1512 	 * The check acquires the reader_lock to avoid concurrent processing
1513 	 * with code that could be modifying the list. However, the lock cannot
1514 	 * be held for the entire duration of the walk, as this would make the
1515 	 * time when interrupts are disabled non-deterministic, dependent on the
1516 	 * ring buffer size. Therefore, the code releases and re-acquires the
1517 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 	 * is then used to detect if the list was modified while the lock was
1519 	 * not held, in which case the check needs to be restarted.
1520 	 *
1521 	 * The code attempts to perform the check at most three times before
1522 	 * giving up. This is acceptable because this is only a self-validation
1523 	 * to detect problems early on. In practice, the list modification
1524 	 * operations are fairly spaced, and so this check typically succeeds at
1525 	 * most on the second try.
1526 	 */
1527 again:
1528 	if (++nr_loops > 3)
1529 		return;
1530 
1531 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 	head = rb_list_head(cpu_buffer->pages);
1533 	if (!rb_check_links(cpu_buffer, head))
1534 		goto out_locked;
1535 	buffer_cnt = cpu_buffer->cnt;
1536 	tmp = head;
1537 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538 
1539 	while (true) {
1540 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541 
1542 		if (buffer_cnt != cpu_buffer->cnt) {
1543 			/* The list was updated, try again. */
1544 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 			goto again;
1546 		}
1547 
1548 		tmp = rb_list_head(tmp->next);
1549 		if (tmp == head)
1550 			/* The iteration circled back, all is done. */
1551 			goto out_locked;
1552 
1553 		if (!rb_check_links(cpu_buffer, tmp))
1554 			goto out_locked;
1555 
1556 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 	}
1558 
1559 out_locked:
1560 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562 
1563 /*
1564  * Take an address, add the meta data size as well as the array of
1565  * array subbuffer indexes, then align it to a subbuffer size.
1566  *
1567  * This is used to help find the next per cpu subbuffer within a mapped range.
1568  */
1569 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572 	addr += sizeof(struct ring_buffer_meta) +
1573 		sizeof(int) * nr_subbufs;
1574 	return ALIGN(addr, subbuf_size);
1575 }
1576 
1577 /*
1578  * Return the ring_buffer_meta for a given @cpu.
1579  */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 	unsigned long ptr = buffer->range_addr_start;
1584 	struct ring_buffer_meta *meta;
1585 	int nr_subbufs;
1586 
1587 	if (!ptr)
1588 		return NULL;
1589 
1590 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591 	if (!nr_pages) {
1592 		meta = (struct ring_buffer_meta *)ptr;
1593 		nr_subbufs = meta->nr_subbufs;
1594 	} else {
1595 		meta = NULL;
1596 		/* Include the reader page */
1597 		nr_subbufs = nr_pages + 1;
1598 	}
1599 
1600 	/*
1601 	 * The first chunk may not be subbuffer aligned, where as
1602 	 * the rest of the chunks are.
1603 	 */
1604 	if (cpu) {
1605 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 		ptr += subbuf_size * nr_subbufs;
1607 
1608 		/* We can use multiplication to find chunks greater than 1 */
1609 		if (cpu > 1) {
1610 			unsigned long size;
1611 			unsigned long p;
1612 
1613 			/* Save the beginning of this CPU chunk */
1614 			p = ptr;
1615 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 			ptr += subbuf_size * nr_subbufs;
1617 
1618 			/* Now all chunks after this are the same size */
1619 			size = ptr - p;
1620 			ptr += size * (cpu - 2);
1621 		}
1622 	}
1623 	return (void *)ptr;
1624 }
1625 
1626 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629 	int subbuf_size = meta->subbuf_size;
1630 	unsigned long ptr;
1631 
1632 	ptr = (unsigned long)meta;
1633 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634 
1635 	return (void *)ptr;
1636 }
1637 
1638 /*
1639  * Return a specific sub-buffer for a given @cpu defined by @idx.
1640  */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643 	struct ring_buffer_meta *meta;
1644 	unsigned long ptr;
1645 	int subbuf_size;
1646 
1647 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 	if (!meta)
1649 		return NULL;
1650 
1651 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 		return NULL;
1653 
1654 	subbuf_size = meta->subbuf_size;
1655 
1656 	/* Map this buffer to the order that's in meta->buffers[] */
1657 	idx = meta->buffers[idx];
1658 
1659 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660 
1661 	ptr += subbuf_size * idx;
1662 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 		return NULL;
1664 
1665 	return (void *)ptr;
1666 }
1667 
1668 /*
1669  * See if the existing memory contains valid ring buffer data.
1670  * As the previous kernel must be the same as this kernel, all
1671  * the calculations (size of buffers and number of buffers)
1672  * must be the same.
1673  */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 			  struct trace_buffer *buffer, int nr_pages,
1676 			  unsigned long *subbuf_mask)
1677 {
1678 	int subbuf_size = PAGE_SIZE;
1679 	struct buffer_data_page *subbuf;
1680 	unsigned long buffers_start;
1681 	unsigned long buffers_end;
1682 	int i;
1683 
1684 	if (!subbuf_mask)
1685 		return false;
1686 
1687 	/* Check the meta magic and meta struct size */
1688 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689 	    meta->struct_size != sizeof(*meta)) {
1690 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691 		return false;
1692 	}
1693 
1694 	/* The subbuffer's size and number of subbuffers must match */
1695 	if (meta->subbuf_size != subbuf_size ||
1696 	    meta->nr_subbufs != nr_pages + 1) {
1697 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698 		return false;
1699 	}
1700 
1701 	buffers_start = meta->first_buffer;
1702 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703 
1704 	/* Is the head and commit buffers within the range of buffers? */
1705 	if (meta->head_buffer < buffers_start ||
1706 	    meta->head_buffer >= buffers_end) {
1707 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708 		return false;
1709 	}
1710 
1711 	if (meta->commit_buffer < buffers_start ||
1712 	    meta->commit_buffer >= buffers_end) {
1713 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714 		return false;
1715 	}
1716 
1717 	subbuf = rb_subbufs_from_meta(meta);
1718 
1719 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720 
1721 	/* Is the meta buffers and the subbufs themselves have correct data? */
1722 	for (i = 0; i < meta->nr_subbufs; i++) {
1723 		if (meta->buffers[i] < 0 ||
1724 		    meta->buffers[i] >= meta->nr_subbufs) {
1725 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726 			return false;
1727 		}
1728 
1729 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731 			return false;
1732 		}
1733 
1734 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736 			return false;
1737 		}
1738 
1739 		set_bit(meta->buffers[i], subbuf_mask);
1740 		subbuf = (void *)subbuf + subbuf_size;
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747 
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1748 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749 			       unsigned long long *timestamp, u64 *delta_ptr)
1750 {
1751 	struct ring_buffer_event *event;
1752 	u64 ts, delta;
1753 	int events = 0;
1754 	int e;
1755 
1756 	*delta_ptr = 0;
1757 	*timestamp = 0;
1758 
1759 	ts = dpage->time_stamp;
1760 
1761 	for (e = 0; e < tail; e += rb_event_length(event)) {
1762 
1763 		event = (struct ring_buffer_event *)(dpage->data + e);
1764 
1765 		switch (event->type_len) {
1766 
1767 		case RINGBUF_TYPE_TIME_EXTEND:
1768 			delta = rb_event_time_stamp(event);
1769 			ts += delta;
1770 			break;
1771 
1772 		case RINGBUF_TYPE_TIME_STAMP:
1773 			delta = rb_event_time_stamp(event);
1774 			delta = rb_fix_abs_ts(delta, ts);
1775 			if (delta < ts) {
1776 				*delta_ptr = delta;
1777 				*timestamp = ts;
1778 				return -1;
1779 			}
1780 			ts = delta;
1781 			break;
1782 
1783 		case RINGBUF_TYPE_PADDING:
1784 			if (event->time_delta == 1)
1785 				break;
1786 			fallthrough;
1787 		case RINGBUF_TYPE_DATA:
1788 			events++;
1789 			ts += event->time_delta;
1790 			break;
1791 
1792 		default:
1793 			return -1;
1794 		}
1795 	}
1796 	*timestamp = ts;
1797 	return events;
1798 }
1799 
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1800 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801 {
1802 	unsigned long long ts;
1803 	u64 delta;
1804 	int tail;
1805 
1806 	tail = local_read(&dpage->commit);
1807 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808 }
1809 
1810 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1811 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812 {
1813 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814 	struct buffer_page *head_page;
1815 	unsigned long entry_bytes = 0;
1816 	unsigned long entries = 0;
1817 	int ret;
1818 	int i;
1819 
1820 	if (!meta || !meta->head_buffer)
1821 		return;
1822 
1823 	/* Do the reader page first */
1824 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825 	if (ret < 0) {
1826 		pr_info("Ring buffer reader page is invalid\n");
1827 		goto invalid;
1828 	}
1829 	entries += ret;
1830 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831 	local_set(&cpu_buffer->reader_page->entries, ret);
1832 
1833 	head_page = cpu_buffer->head_page;
1834 
1835 	/* If both the head and commit are on the reader_page then we are done. */
1836 	if (head_page == cpu_buffer->reader_page &&
1837 	    head_page == cpu_buffer->commit_page)
1838 		goto done;
1839 
1840 	/* Iterate until finding the commit page */
1841 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842 
1843 		/* Reader page has already been done */
1844 		if (head_page == cpu_buffer->reader_page)
1845 			continue;
1846 
1847 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848 		if (ret < 0) {
1849 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850 				cpu_buffer->cpu);
1851 			goto invalid;
1852 		}
1853 
1854 		/* If the buffer has content, update pages_touched */
1855 		if (ret)
1856 			local_inc(&cpu_buffer->pages_touched);
1857 
1858 		entries += ret;
1859 		entry_bytes += local_read(&head_page->page->commit);
1860 		local_set(&cpu_buffer->head_page->entries, ret);
1861 
1862 		if (head_page == cpu_buffer->commit_page)
1863 			break;
1864 	}
1865 
1866 	if (head_page != cpu_buffer->commit_page) {
1867 		pr_info("Ring buffer meta [%d] commit page not found\n",
1868 			cpu_buffer->cpu);
1869 		goto invalid;
1870 	}
1871  done:
1872 	local_set(&cpu_buffer->entries, entries);
1873 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1874 
1875 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1876 	return;
1877 
1878  invalid:
1879 	/* The content of the buffers are invalid, reset the meta data */
1880 	meta->head_buffer = 0;
1881 	meta->commit_buffer = 0;
1882 
1883 	/* Reset the reader page */
1884 	local_set(&cpu_buffer->reader_page->entries, 0);
1885 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1886 
1887 	/* Reset all the subbuffers */
1888 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1889 		local_set(&head_page->entries, 0);
1890 		local_set(&head_page->page->commit, 0);
1891 	}
1892 }
1893 
1894 /* Used to calculate data delta */
1895 static char rb_data_ptr[] = "";
1896 
1897 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1898 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1899 
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1900 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1901 {
1902 	meta->text_addr = THIS_TEXT_PTR;
1903 	meta->data_addr = THIS_DATA_PTR;
1904 }
1905 
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1906 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1907 {
1908 	struct ring_buffer_meta *meta;
1909 	unsigned long *subbuf_mask;
1910 	unsigned long delta;
1911 	void *subbuf;
1912 	int cpu;
1913 	int i;
1914 
1915 	/* Create a mask to test the subbuf array */
1916 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1917 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1918 
1919 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1920 		void *next_meta;
1921 
1922 		meta = rb_range_meta(buffer, nr_pages, cpu);
1923 
1924 		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1925 			/* Make the mappings match the current address */
1926 			subbuf = rb_subbufs_from_meta(meta);
1927 			delta = (unsigned long)subbuf - meta->first_buffer;
1928 			meta->first_buffer += delta;
1929 			meta->head_buffer += delta;
1930 			meta->commit_buffer += delta;
1931 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1932 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1933 			continue;
1934 		}
1935 
1936 		if (cpu < nr_cpu_ids - 1)
1937 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1938 		else
1939 			next_meta = (void *)buffer->range_addr_end;
1940 
1941 		memset(meta, 0, next_meta - (void *)meta);
1942 
1943 		meta->magic = RING_BUFFER_META_MAGIC;
1944 		meta->struct_size = sizeof(*meta);
1945 
1946 		meta->nr_subbufs = nr_pages + 1;
1947 		meta->subbuf_size = PAGE_SIZE;
1948 
1949 		subbuf = rb_subbufs_from_meta(meta);
1950 
1951 		meta->first_buffer = (unsigned long)subbuf;
1952 		rb_meta_init_text_addr(meta);
1953 
1954 		/*
1955 		 * The buffers[] array holds the order of the sub-buffers
1956 		 * that are after the meta data. The sub-buffers may
1957 		 * be swapped out when read and inserted into a different
1958 		 * location of the ring buffer. Although their addresses
1959 		 * remain the same, the buffers[] array contains the
1960 		 * index into the sub-buffers holding their actual order.
1961 		 */
1962 		for (i = 0; i < meta->nr_subbufs; i++) {
1963 			meta->buffers[i] = i;
1964 			rb_init_page(subbuf);
1965 			subbuf += meta->subbuf_size;
1966 		}
1967 	}
1968 	bitmap_free(subbuf_mask);
1969 }
1970 
rbm_start(struct seq_file * m,loff_t * pos)1971 static void *rbm_start(struct seq_file *m, loff_t *pos)
1972 {
1973 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1974 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1975 	unsigned long val;
1976 
1977 	if (!meta)
1978 		return NULL;
1979 
1980 	if (*pos > meta->nr_subbufs)
1981 		return NULL;
1982 
1983 	val = *pos;
1984 	val++;
1985 
1986 	return (void *)val;
1987 }
1988 
rbm_next(struct seq_file * m,void * v,loff_t * pos)1989 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1990 {
1991 	(*pos)++;
1992 
1993 	return rbm_start(m, pos);
1994 }
1995 
rbm_show(struct seq_file * m,void * v)1996 static int rbm_show(struct seq_file *m, void *v)
1997 {
1998 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1999 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2000 	unsigned long val = (unsigned long)v;
2001 
2002 	if (val == 1) {
2003 		seq_printf(m, "head_buffer:   %d\n",
2004 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2005 		seq_printf(m, "commit_buffer: %d\n",
2006 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2007 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2008 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2009 		return 0;
2010 	}
2011 
2012 	val -= 2;
2013 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2014 
2015 	return 0;
2016 }
2017 
rbm_stop(struct seq_file * m,void * p)2018 static void rbm_stop(struct seq_file *m, void *p)
2019 {
2020 }
2021 
2022 static const struct seq_operations rb_meta_seq_ops = {
2023 	.start		= rbm_start,
2024 	.next		= rbm_next,
2025 	.show		= rbm_show,
2026 	.stop		= rbm_stop,
2027 };
2028 
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2029 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2030 {
2031 	struct seq_file *m;
2032 	int ret;
2033 
2034 	ret = seq_open(file, &rb_meta_seq_ops);
2035 	if (ret)
2036 		return ret;
2037 
2038 	m = file->private_data;
2039 	m->private = buffer->buffers[cpu];
2040 
2041 	return 0;
2042 }
2043 
2044 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2045 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2046 				  struct buffer_page *bpage)
2047 {
2048 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2049 
2050 	if (meta->head_buffer == (unsigned long)bpage->page)
2051 		cpu_buffer->head_page = bpage;
2052 
2053 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2054 		cpu_buffer->commit_page = bpage;
2055 		cpu_buffer->tail_page = bpage;
2056 	}
2057 }
2058 
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2059 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2060 		long nr_pages, struct list_head *pages)
2061 {
2062 	struct trace_buffer *buffer = cpu_buffer->buffer;
2063 	struct ring_buffer_meta *meta = NULL;
2064 	struct buffer_page *bpage, *tmp;
2065 	bool user_thread = current->mm != NULL;
2066 	gfp_t mflags;
2067 	long i;
2068 
2069 	/*
2070 	 * Check if the available memory is there first.
2071 	 * Note, si_mem_available() only gives us a rough estimate of available
2072 	 * memory. It may not be accurate. But we don't care, we just want
2073 	 * to prevent doing any allocation when it is obvious that it is
2074 	 * not going to succeed.
2075 	 */
2076 	i = si_mem_available();
2077 	if (i < nr_pages)
2078 		return -ENOMEM;
2079 
2080 	/*
2081 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2082 	 * gracefully without invoking oom-killer and the system is not
2083 	 * destabilized.
2084 	 */
2085 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2086 
2087 	/*
2088 	 * If a user thread allocates too much, and si_mem_available()
2089 	 * reports there's enough memory, even though there is not.
2090 	 * Make sure the OOM killer kills this thread. This can happen
2091 	 * even with RETRY_MAYFAIL because another task may be doing
2092 	 * an allocation after this task has taken all memory.
2093 	 * This is the task the OOM killer needs to take out during this
2094 	 * loop, even if it was triggered by an allocation somewhere else.
2095 	 */
2096 	if (user_thread)
2097 		set_current_oom_origin();
2098 
2099 	if (buffer->range_addr_start)
2100 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2101 
2102 	for (i = 0; i < nr_pages; i++) {
2103 		struct page *page;
2104 
2105 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2106 				    mflags, cpu_to_node(cpu_buffer->cpu));
2107 		if (!bpage)
2108 			goto free_pages;
2109 
2110 		rb_check_bpage(cpu_buffer, bpage);
2111 
2112 		/*
2113 		 * Append the pages as for mapped buffers we want to keep
2114 		 * the order
2115 		 */
2116 		list_add_tail(&bpage->list, pages);
2117 
2118 		if (meta) {
2119 			/* A range was given. Use that for the buffer page */
2120 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2121 			if (!bpage->page)
2122 				goto free_pages;
2123 			/* If this is valid from a previous boot */
2124 			if (meta->head_buffer)
2125 				rb_meta_buffer_update(cpu_buffer, bpage);
2126 			bpage->range = 1;
2127 			bpage->id = i + 1;
2128 		} else {
2129 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2130 						mflags | __GFP_COMP | __GFP_ZERO,
2131 						cpu_buffer->buffer->subbuf_order);
2132 			if (!page)
2133 				goto free_pages;
2134 			bpage->page = page_address(page);
2135 			rb_init_page(bpage->page);
2136 		}
2137 		bpage->order = cpu_buffer->buffer->subbuf_order;
2138 
2139 		if (user_thread && fatal_signal_pending(current))
2140 			goto free_pages;
2141 	}
2142 	if (user_thread)
2143 		clear_current_oom_origin();
2144 
2145 	return 0;
2146 
2147 free_pages:
2148 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2149 		list_del_init(&bpage->list);
2150 		free_buffer_page(bpage);
2151 	}
2152 	if (user_thread)
2153 		clear_current_oom_origin();
2154 
2155 	return -ENOMEM;
2156 }
2157 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2158 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2159 			     unsigned long nr_pages)
2160 {
2161 	LIST_HEAD(pages);
2162 
2163 	WARN_ON(!nr_pages);
2164 
2165 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2166 		return -ENOMEM;
2167 
2168 	/*
2169 	 * The ring buffer page list is a circular list that does not
2170 	 * start and end with a list head. All page list items point to
2171 	 * other pages.
2172 	 */
2173 	cpu_buffer->pages = pages.next;
2174 	list_del(&pages);
2175 
2176 	cpu_buffer->nr_pages = nr_pages;
2177 
2178 	rb_check_pages(cpu_buffer);
2179 
2180 	return 0;
2181 }
2182 
2183 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2184 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2185 {
2186 	struct ring_buffer_per_cpu *cpu_buffer;
2187 	struct ring_buffer_meta *meta;
2188 	struct buffer_page *bpage;
2189 	struct page *page;
2190 	int ret;
2191 
2192 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2193 				  GFP_KERNEL, cpu_to_node(cpu));
2194 	if (!cpu_buffer)
2195 		return NULL;
2196 
2197 	cpu_buffer->cpu = cpu;
2198 	cpu_buffer->buffer = buffer;
2199 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2200 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2201 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2202 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2203 	init_completion(&cpu_buffer->update_done);
2204 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2205 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2206 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2207 	mutex_init(&cpu_buffer->mapping_lock);
2208 
2209 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2210 			    GFP_KERNEL, cpu_to_node(cpu));
2211 	if (!bpage)
2212 		goto fail_free_buffer;
2213 
2214 	rb_check_bpage(cpu_buffer, bpage);
2215 
2216 	cpu_buffer->reader_page = bpage;
2217 
2218 	if (buffer->range_addr_start) {
2219 		/*
2220 		 * Range mapped buffers have the same restrictions as memory
2221 		 * mapped ones do.
2222 		 */
2223 		cpu_buffer->mapped = 1;
2224 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2225 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2226 		if (!bpage->page)
2227 			goto fail_free_reader;
2228 		if (cpu_buffer->ring_meta->head_buffer)
2229 			rb_meta_buffer_update(cpu_buffer, bpage);
2230 		bpage->range = 1;
2231 	} else {
2232 		page = alloc_pages_node(cpu_to_node(cpu),
2233 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2234 					cpu_buffer->buffer->subbuf_order);
2235 		if (!page)
2236 			goto fail_free_reader;
2237 		bpage->page = page_address(page);
2238 		rb_init_page(bpage->page);
2239 	}
2240 
2241 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2242 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2243 
2244 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2245 	if (ret < 0)
2246 		goto fail_free_reader;
2247 
2248 	rb_meta_validate_events(cpu_buffer);
2249 
2250 	/* If the boot meta was valid then this has already been updated */
2251 	meta = cpu_buffer->ring_meta;
2252 	if (!meta || !meta->head_buffer ||
2253 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2254 		if (meta && meta->head_buffer &&
2255 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2256 			pr_warn("Ring buffer meta buffers not all mapped\n");
2257 			if (!cpu_buffer->head_page)
2258 				pr_warn("   Missing head_page\n");
2259 			if (!cpu_buffer->commit_page)
2260 				pr_warn("   Missing commit_page\n");
2261 			if (!cpu_buffer->tail_page)
2262 				pr_warn("   Missing tail_page\n");
2263 		}
2264 
2265 		cpu_buffer->head_page
2266 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2267 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2268 
2269 		rb_head_page_activate(cpu_buffer);
2270 
2271 		if (cpu_buffer->ring_meta)
2272 			meta->commit_buffer = meta->head_buffer;
2273 	} else {
2274 		/* The valid meta buffer still needs to activate the head page */
2275 		rb_head_page_activate(cpu_buffer);
2276 	}
2277 
2278 	return cpu_buffer;
2279 
2280  fail_free_reader:
2281 	free_buffer_page(cpu_buffer->reader_page);
2282 
2283  fail_free_buffer:
2284 	kfree(cpu_buffer);
2285 	return NULL;
2286 }
2287 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2289 {
2290 	struct list_head *head = cpu_buffer->pages;
2291 	struct buffer_page *bpage, *tmp;
2292 
2293 	irq_work_sync(&cpu_buffer->irq_work.work);
2294 
2295 	free_buffer_page(cpu_buffer->reader_page);
2296 
2297 	if (head) {
2298 		rb_head_page_deactivate(cpu_buffer);
2299 
2300 		list_for_each_entry_safe(bpage, tmp, head, list) {
2301 			list_del_init(&bpage->list);
2302 			free_buffer_page(bpage);
2303 		}
2304 		bpage = list_entry(head, struct buffer_page, list);
2305 		free_buffer_page(bpage);
2306 	}
2307 
2308 	free_page((unsigned long)cpu_buffer->free_page);
2309 
2310 	kfree(cpu_buffer);
2311 }
2312 
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key)2313 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2314 					 int order, unsigned long start,
2315 					 unsigned long end,
2316 					 struct lock_class_key *key)
2317 {
2318 	struct trace_buffer *buffer;
2319 	long nr_pages;
2320 	int subbuf_size;
2321 	int bsize;
2322 	int cpu;
2323 	int ret;
2324 
2325 	/* keep it in its own cache line */
2326 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2327 			 GFP_KERNEL);
2328 	if (!buffer)
2329 		return NULL;
2330 
2331 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2332 		goto fail_free_buffer;
2333 
2334 	buffer->subbuf_order = order;
2335 	subbuf_size = (PAGE_SIZE << order);
2336 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2337 
2338 	/* Max payload is buffer page size - header (8bytes) */
2339 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2340 
2341 	buffer->flags = flags;
2342 	buffer->clock = trace_clock_local;
2343 	buffer->reader_lock_key = key;
2344 
2345 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2346 	init_waitqueue_head(&buffer->irq_work.waiters);
2347 
2348 	buffer->cpus = nr_cpu_ids;
2349 
2350 	bsize = sizeof(void *) * nr_cpu_ids;
2351 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2352 				  GFP_KERNEL);
2353 	if (!buffer->buffers)
2354 		goto fail_free_cpumask;
2355 
2356 	/* If start/end are specified, then that overrides size */
2357 	if (start && end) {
2358 		unsigned long ptr;
2359 		int n;
2360 
2361 		size = end - start;
2362 		size = size / nr_cpu_ids;
2363 
2364 		/*
2365 		 * The number of sub-buffers (nr_pages) is determined by the
2366 		 * total size allocated minus the meta data size.
2367 		 * Then that is divided by the number of per CPU buffers
2368 		 * needed, plus account for the integer array index that
2369 		 * will be appended to the meta data.
2370 		 */
2371 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2372 			(subbuf_size + sizeof(int));
2373 		/* Need at least two pages plus the reader page */
2374 		if (nr_pages < 3)
2375 			goto fail_free_buffers;
2376 
2377  again:
2378 		/* Make sure that the size fits aligned */
2379 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2380 			ptr += sizeof(struct ring_buffer_meta) +
2381 				sizeof(int) * nr_pages;
2382 			ptr = ALIGN(ptr, subbuf_size);
2383 			ptr += subbuf_size * nr_pages;
2384 		}
2385 		if (ptr > end) {
2386 			if (nr_pages <= 3)
2387 				goto fail_free_buffers;
2388 			nr_pages--;
2389 			goto again;
2390 		}
2391 
2392 		/* nr_pages should not count the reader page */
2393 		nr_pages--;
2394 		buffer->range_addr_start = start;
2395 		buffer->range_addr_end = end;
2396 
2397 		rb_range_meta_init(buffer, nr_pages);
2398 	} else {
2399 
2400 		/* need at least two pages */
2401 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2402 		if (nr_pages < 2)
2403 			nr_pages = 2;
2404 	}
2405 
2406 	cpu = raw_smp_processor_id();
2407 	cpumask_set_cpu(cpu, buffer->cpumask);
2408 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2409 	if (!buffer->buffers[cpu])
2410 		goto fail_free_buffers;
2411 
2412 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2413 	if (ret < 0)
2414 		goto fail_free_buffers;
2415 
2416 	mutex_init(&buffer->mutex);
2417 
2418 	return buffer;
2419 
2420  fail_free_buffers:
2421 	for_each_buffer_cpu(buffer, cpu) {
2422 		if (buffer->buffers[cpu])
2423 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2424 	}
2425 	kfree(buffer->buffers);
2426 
2427  fail_free_cpumask:
2428 	free_cpumask_var(buffer->cpumask);
2429 
2430  fail_free_buffer:
2431 	kfree(buffer);
2432 	return NULL;
2433 }
2434 
2435 /**
2436  * __ring_buffer_alloc - allocate a new ring_buffer
2437  * @size: the size in bytes per cpu that is needed.
2438  * @flags: attributes to set for the ring buffer.
2439  * @key: ring buffer reader_lock_key.
2440  *
2441  * Currently the only flag that is available is the RB_FL_OVERWRITE
2442  * flag. This flag means that the buffer will overwrite old data
2443  * when the buffer wraps. If this flag is not set, the buffer will
2444  * drop data when the tail hits the head.
2445  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)2446 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2447 					struct lock_class_key *key)
2448 {
2449 	/* Default buffer page size - one system page */
2450 	return alloc_buffer(size, flags, 0, 0, 0,key);
2451 
2452 }
2453 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2454 
2455 /**
2456  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2457  * @size: the size in bytes per cpu that is needed.
2458  * @flags: attributes to set for the ring buffer.
2459  * @order: sub-buffer order
2460  * @start: start of allocated range
2461  * @range_size: size of allocated range
2462  * @key: ring buffer reader_lock_key.
2463  *
2464  * Currently the only flag that is available is the RB_FL_OVERWRITE
2465  * flag. This flag means that the buffer will overwrite old data
2466  * when the buffer wraps. If this flag is not set, the buffer will
2467  * drop data when the tail hits the head.
2468  */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2469 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2470 					       int order, unsigned long start,
2471 					       unsigned long range_size,
2472 					       struct lock_class_key *key)
2473 {
2474 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2475 }
2476 
2477 /**
2478  * ring_buffer_last_boot_delta - return the delta offset from last boot
2479  * @buffer: The buffer to return the delta from
2480  * @text: Return text delta
2481  * @data: Return data delta
2482  *
2483  * Returns: The true if the delta is non zero
2484  */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2485 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2486 				 long *data)
2487 {
2488 	if (!buffer)
2489 		return false;
2490 
2491 	if (!buffer->last_text_delta)
2492 		return false;
2493 
2494 	*text = buffer->last_text_delta;
2495 	*data = buffer->last_data_delta;
2496 
2497 	return true;
2498 }
2499 
2500 /**
2501  * ring_buffer_free - free a ring buffer.
2502  * @buffer: the buffer to free.
2503  */
2504 void
ring_buffer_free(struct trace_buffer * buffer)2505 ring_buffer_free(struct trace_buffer *buffer)
2506 {
2507 	int cpu;
2508 
2509 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2510 
2511 	irq_work_sync(&buffer->irq_work.work);
2512 
2513 	for_each_buffer_cpu(buffer, cpu)
2514 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2515 
2516 	kfree(buffer->buffers);
2517 	free_cpumask_var(buffer->cpumask);
2518 
2519 	kfree(buffer);
2520 }
2521 EXPORT_SYMBOL_GPL(ring_buffer_free);
2522 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2523 void ring_buffer_set_clock(struct trace_buffer *buffer,
2524 			   u64 (*clock)(void))
2525 {
2526 	buffer->clock = clock;
2527 }
2528 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2529 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2530 {
2531 	buffer->time_stamp_abs = abs;
2532 }
2533 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2534 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2535 {
2536 	return buffer->time_stamp_abs;
2537 }
2538 
rb_page_entries(struct buffer_page * bpage)2539 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2540 {
2541 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2542 }
2543 
rb_page_write(struct buffer_page * bpage)2544 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2545 {
2546 	return local_read(&bpage->write) & RB_WRITE_MASK;
2547 }
2548 
2549 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2550 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2551 {
2552 	struct list_head *tail_page, *to_remove, *next_page;
2553 	struct buffer_page *to_remove_page, *tmp_iter_page;
2554 	struct buffer_page *last_page, *first_page;
2555 	unsigned long nr_removed;
2556 	unsigned long head_bit;
2557 	int page_entries;
2558 
2559 	head_bit = 0;
2560 
2561 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2562 	atomic_inc(&cpu_buffer->record_disabled);
2563 	/*
2564 	 * We don't race with the readers since we have acquired the reader
2565 	 * lock. We also don't race with writers after disabling recording.
2566 	 * This makes it easy to figure out the first and the last page to be
2567 	 * removed from the list. We unlink all the pages in between including
2568 	 * the first and last pages. This is done in a busy loop so that we
2569 	 * lose the least number of traces.
2570 	 * The pages are freed after we restart recording and unlock readers.
2571 	 */
2572 	tail_page = &cpu_buffer->tail_page->list;
2573 
2574 	/*
2575 	 * tail page might be on reader page, we remove the next page
2576 	 * from the ring buffer
2577 	 */
2578 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2579 		tail_page = rb_list_head(tail_page->next);
2580 	to_remove = tail_page;
2581 
2582 	/* start of pages to remove */
2583 	first_page = list_entry(rb_list_head(to_remove->next),
2584 				struct buffer_page, list);
2585 
2586 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2587 		to_remove = rb_list_head(to_remove)->next;
2588 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2589 	}
2590 	/* Read iterators need to reset themselves when some pages removed */
2591 	cpu_buffer->pages_removed += nr_removed;
2592 
2593 	next_page = rb_list_head(to_remove)->next;
2594 
2595 	/*
2596 	 * Now we remove all pages between tail_page and next_page.
2597 	 * Make sure that we have head_bit value preserved for the
2598 	 * next page
2599 	 */
2600 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2601 						head_bit);
2602 	next_page = rb_list_head(next_page);
2603 	next_page->prev = tail_page;
2604 
2605 	/* make sure pages points to a valid page in the ring buffer */
2606 	cpu_buffer->pages = next_page;
2607 	cpu_buffer->cnt++;
2608 
2609 	/* update head page */
2610 	if (head_bit)
2611 		cpu_buffer->head_page = list_entry(next_page,
2612 						struct buffer_page, list);
2613 
2614 	/* pages are removed, resume tracing and then free the pages */
2615 	atomic_dec(&cpu_buffer->record_disabled);
2616 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2617 
2618 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2619 
2620 	/* last buffer page to remove */
2621 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2622 				list);
2623 	tmp_iter_page = first_page;
2624 
2625 	do {
2626 		cond_resched();
2627 
2628 		to_remove_page = tmp_iter_page;
2629 		rb_inc_page(&tmp_iter_page);
2630 
2631 		/* update the counters */
2632 		page_entries = rb_page_entries(to_remove_page);
2633 		if (page_entries) {
2634 			/*
2635 			 * If something was added to this page, it was full
2636 			 * since it is not the tail page. So we deduct the
2637 			 * bytes consumed in ring buffer from here.
2638 			 * Increment overrun to account for the lost events.
2639 			 */
2640 			local_add(page_entries, &cpu_buffer->overrun);
2641 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2642 			local_inc(&cpu_buffer->pages_lost);
2643 		}
2644 
2645 		/*
2646 		 * We have already removed references to this list item, just
2647 		 * free up the buffer_page and its page
2648 		 */
2649 		free_buffer_page(to_remove_page);
2650 		nr_removed--;
2651 
2652 	} while (to_remove_page != last_page);
2653 
2654 	RB_WARN_ON(cpu_buffer, nr_removed);
2655 
2656 	return nr_removed == 0;
2657 }
2658 
2659 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2660 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2661 {
2662 	struct list_head *pages = &cpu_buffer->new_pages;
2663 	unsigned long flags;
2664 	bool success;
2665 	int retries;
2666 
2667 	/* Can be called at early boot up, where interrupts must not been enabled */
2668 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2669 	/*
2670 	 * We are holding the reader lock, so the reader page won't be swapped
2671 	 * in the ring buffer. Now we are racing with the writer trying to
2672 	 * move head page and the tail page.
2673 	 * We are going to adapt the reader page update process where:
2674 	 * 1. We first splice the start and end of list of new pages between
2675 	 *    the head page and its previous page.
2676 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2677 	 *    start of new pages list.
2678 	 * 3. Finally, we update the head->prev to the end of new list.
2679 	 *
2680 	 * We will try this process 10 times, to make sure that we don't keep
2681 	 * spinning.
2682 	 */
2683 	retries = 10;
2684 	success = false;
2685 	while (retries--) {
2686 		struct list_head *head_page, *prev_page;
2687 		struct list_head *last_page, *first_page;
2688 		struct list_head *head_page_with_bit;
2689 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2690 
2691 		if (!hpage)
2692 			break;
2693 		head_page = &hpage->list;
2694 		prev_page = head_page->prev;
2695 
2696 		first_page = pages->next;
2697 		last_page  = pages->prev;
2698 
2699 		head_page_with_bit = (struct list_head *)
2700 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2701 
2702 		last_page->next = head_page_with_bit;
2703 		first_page->prev = prev_page;
2704 
2705 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2706 		if (try_cmpxchg(&prev_page->next,
2707 				&head_page_with_bit, first_page)) {
2708 			/*
2709 			 * yay, we replaced the page pointer to our new list,
2710 			 * now, we just have to update to head page's prev
2711 			 * pointer to point to end of list
2712 			 */
2713 			head_page->prev = last_page;
2714 			cpu_buffer->cnt++;
2715 			success = true;
2716 			break;
2717 		}
2718 	}
2719 
2720 	if (success)
2721 		INIT_LIST_HEAD(pages);
2722 	/*
2723 	 * If we weren't successful in adding in new pages, warn and stop
2724 	 * tracing
2725 	 */
2726 	RB_WARN_ON(cpu_buffer, !success);
2727 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2728 
2729 	/* free pages if they weren't inserted */
2730 	if (!success) {
2731 		struct buffer_page *bpage, *tmp;
2732 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2733 					 list) {
2734 			list_del_init(&bpage->list);
2735 			free_buffer_page(bpage);
2736 		}
2737 	}
2738 	return success;
2739 }
2740 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2741 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2742 {
2743 	bool success;
2744 
2745 	if (cpu_buffer->nr_pages_to_update > 0)
2746 		success = rb_insert_pages(cpu_buffer);
2747 	else
2748 		success = rb_remove_pages(cpu_buffer,
2749 					-cpu_buffer->nr_pages_to_update);
2750 
2751 	if (success)
2752 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2753 }
2754 
update_pages_handler(struct work_struct * work)2755 static void update_pages_handler(struct work_struct *work)
2756 {
2757 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2758 			struct ring_buffer_per_cpu, update_pages_work);
2759 	rb_update_pages(cpu_buffer);
2760 	complete(&cpu_buffer->update_done);
2761 }
2762 
2763 /**
2764  * ring_buffer_resize - resize the ring buffer
2765  * @buffer: the buffer to resize.
2766  * @size: the new size.
2767  * @cpu_id: the cpu buffer to resize
2768  *
2769  * Minimum size is 2 * buffer->subbuf_size.
2770  *
2771  * Returns 0 on success and < 0 on failure.
2772  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2773 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2774 			int cpu_id)
2775 {
2776 	struct ring_buffer_per_cpu *cpu_buffer;
2777 	unsigned long nr_pages;
2778 	int cpu, err;
2779 
2780 	/*
2781 	 * Always succeed at resizing a non-existent buffer:
2782 	 */
2783 	if (!buffer)
2784 		return 0;
2785 
2786 	/* Make sure the requested buffer exists */
2787 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2788 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2789 		return 0;
2790 
2791 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2792 
2793 	/* we need a minimum of two pages */
2794 	if (nr_pages < 2)
2795 		nr_pages = 2;
2796 
2797 	/* prevent another thread from changing buffer sizes */
2798 	mutex_lock(&buffer->mutex);
2799 	atomic_inc(&buffer->resizing);
2800 
2801 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2802 		/*
2803 		 * Don't succeed if resizing is disabled, as a reader might be
2804 		 * manipulating the ring buffer and is expecting a sane state while
2805 		 * this is true.
2806 		 */
2807 		for_each_buffer_cpu(buffer, cpu) {
2808 			cpu_buffer = buffer->buffers[cpu];
2809 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2810 				err = -EBUSY;
2811 				goto out_err_unlock;
2812 			}
2813 		}
2814 
2815 		/* calculate the pages to update */
2816 		for_each_buffer_cpu(buffer, cpu) {
2817 			cpu_buffer = buffer->buffers[cpu];
2818 
2819 			cpu_buffer->nr_pages_to_update = nr_pages -
2820 							cpu_buffer->nr_pages;
2821 			/*
2822 			 * nothing more to do for removing pages or no update
2823 			 */
2824 			if (cpu_buffer->nr_pages_to_update <= 0)
2825 				continue;
2826 			/*
2827 			 * to add pages, make sure all new pages can be
2828 			 * allocated without receiving ENOMEM
2829 			 */
2830 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2831 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2832 						&cpu_buffer->new_pages)) {
2833 				/* not enough memory for new pages */
2834 				err = -ENOMEM;
2835 				goto out_err;
2836 			}
2837 
2838 			cond_resched();
2839 		}
2840 
2841 		cpus_read_lock();
2842 		/*
2843 		 * Fire off all the required work handlers
2844 		 * We can't schedule on offline CPUs, but it's not necessary
2845 		 * since we can change their buffer sizes without any race.
2846 		 */
2847 		for_each_buffer_cpu(buffer, cpu) {
2848 			cpu_buffer = buffer->buffers[cpu];
2849 			if (!cpu_buffer->nr_pages_to_update)
2850 				continue;
2851 
2852 			/* Can't run something on an offline CPU. */
2853 			if (!cpu_online(cpu)) {
2854 				rb_update_pages(cpu_buffer);
2855 				cpu_buffer->nr_pages_to_update = 0;
2856 			} else {
2857 				/* Run directly if possible. */
2858 				migrate_disable();
2859 				if (cpu != smp_processor_id()) {
2860 					migrate_enable();
2861 					schedule_work_on(cpu,
2862 							 &cpu_buffer->update_pages_work);
2863 				} else {
2864 					update_pages_handler(&cpu_buffer->update_pages_work);
2865 					migrate_enable();
2866 				}
2867 			}
2868 		}
2869 
2870 		/* wait for all the updates to complete */
2871 		for_each_buffer_cpu(buffer, cpu) {
2872 			cpu_buffer = buffer->buffers[cpu];
2873 			if (!cpu_buffer->nr_pages_to_update)
2874 				continue;
2875 
2876 			if (cpu_online(cpu))
2877 				wait_for_completion(&cpu_buffer->update_done);
2878 			cpu_buffer->nr_pages_to_update = 0;
2879 		}
2880 
2881 		cpus_read_unlock();
2882 	} else {
2883 		cpu_buffer = buffer->buffers[cpu_id];
2884 
2885 		if (nr_pages == cpu_buffer->nr_pages)
2886 			goto out;
2887 
2888 		/*
2889 		 * Don't succeed if resizing is disabled, as a reader might be
2890 		 * manipulating the ring buffer and is expecting a sane state while
2891 		 * this is true.
2892 		 */
2893 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2894 			err = -EBUSY;
2895 			goto out_err_unlock;
2896 		}
2897 
2898 		cpu_buffer->nr_pages_to_update = nr_pages -
2899 						cpu_buffer->nr_pages;
2900 
2901 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2902 		if (cpu_buffer->nr_pages_to_update > 0 &&
2903 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2904 					    &cpu_buffer->new_pages)) {
2905 			err = -ENOMEM;
2906 			goto out_err;
2907 		}
2908 
2909 		cpus_read_lock();
2910 
2911 		/* Can't run something on an offline CPU. */
2912 		if (!cpu_online(cpu_id))
2913 			rb_update_pages(cpu_buffer);
2914 		else {
2915 			/* Run directly if possible. */
2916 			migrate_disable();
2917 			if (cpu_id == smp_processor_id()) {
2918 				rb_update_pages(cpu_buffer);
2919 				migrate_enable();
2920 			} else {
2921 				migrate_enable();
2922 				schedule_work_on(cpu_id,
2923 						 &cpu_buffer->update_pages_work);
2924 				wait_for_completion(&cpu_buffer->update_done);
2925 			}
2926 		}
2927 
2928 		cpu_buffer->nr_pages_to_update = 0;
2929 		cpus_read_unlock();
2930 	}
2931 
2932  out:
2933 	/*
2934 	 * The ring buffer resize can happen with the ring buffer
2935 	 * enabled, so that the update disturbs the tracing as little
2936 	 * as possible. But if the buffer is disabled, we do not need
2937 	 * to worry about that, and we can take the time to verify
2938 	 * that the buffer is not corrupt.
2939 	 */
2940 	if (atomic_read(&buffer->record_disabled)) {
2941 		atomic_inc(&buffer->record_disabled);
2942 		/*
2943 		 * Even though the buffer was disabled, we must make sure
2944 		 * that it is truly disabled before calling rb_check_pages.
2945 		 * There could have been a race between checking
2946 		 * record_disable and incrementing it.
2947 		 */
2948 		synchronize_rcu();
2949 		for_each_buffer_cpu(buffer, cpu) {
2950 			cpu_buffer = buffer->buffers[cpu];
2951 			rb_check_pages(cpu_buffer);
2952 		}
2953 		atomic_dec(&buffer->record_disabled);
2954 	}
2955 
2956 	atomic_dec(&buffer->resizing);
2957 	mutex_unlock(&buffer->mutex);
2958 	return 0;
2959 
2960  out_err:
2961 	for_each_buffer_cpu(buffer, cpu) {
2962 		struct buffer_page *bpage, *tmp;
2963 
2964 		cpu_buffer = buffer->buffers[cpu];
2965 		cpu_buffer->nr_pages_to_update = 0;
2966 
2967 		if (list_empty(&cpu_buffer->new_pages))
2968 			continue;
2969 
2970 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2971 					list) {
2972 			list_del_init(&bpage->list);
2973 			free_buffer_page(bpage);
2974 		}
2975 	}
2976  out_err_unlock:
2977 	atomic_dec(&buffer->resizing);
2978 	mutex_unlock(&buffer->mutex);
2979 	return err;
2980 }
2981 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2982 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)2983 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2984 {
2985 	mutex_lock(&buffer->mutex);
2986 	if (val)
2987 		buffer->flags |= RB_FL_OVERWRITE;
2988 	else
2989 		buffer->flags &= ~RB_FL_OVERWRITE;
2990 	mutex_unlock(&buffer->mutex);
2991 }
2992 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2993 
__rb_page_index(struct buffer_page * bpage,unsigned index)2994 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2995 {
2996 	return bpage->page->data + index;
2997 }
2998 
2999 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3000 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3001 {
3002 	return __rb_page_index(cpu_buffer->reader_page,
3003 			       cpu_buffer->reader_page->read);
3004 }
3005 
3006 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3007 rb_iter_head_event(struct ring_buffer_iter *iter)
3008 {
3009 	struct ring_buffer_event *event;
3010 	struct buffer_page *iter_head_page = iter->head_page;
3011 	unsigned long commit;
3012 	unsigned length;
3013 
3014 	if (iter->head != iter->next_event)
3015 		return iter->event;
3016 
3017 	/*
3018 	 * When the writer goes across pages, it issues a cmpxchg which
3019 	 * is a mb(), which will synchronize with the rmb here.
3020 	 * (see rb_tail_page_update() and __rb_reserve_next())
3021 	 */
3022 	commit = rb_page_commit(iter_head_page);
3023 	smp_rmb();
3024 
3025 	/* An event needs to be at least 8 bytes in size */
3026 	if (iter->head > commit - 8)
3027 		goto reset;
3028 
3029 	event = __rb_page_index(iter_head_page, iter->head);
3030 	length = rb_event_length(event);
3031 
3032 	/*
3033 	 * READ_ONCE() doesn't work on functions and we don't want the
3034 	 * compiler doing any crazy optimizations with length.
3035 	 */
3036 	barrier();
3037 
3038 	if ((iter->head + length) > commit || length > iter->event_size)
3039 		/* Writer corrupted the read? */
3040 		goto reset;
3041 
3042 	memcpy(iter->event, event, length);
3043 	/*
3044 	 * If the page stamp is still the same after this rmb() then the
3045 	 * event was safely copied without the writer entering the page.
3046 	 */
3047 	smp_rmb();
3048 
3049 	/* Make sure the page didn't change since we read this */
3050 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3051 	    commit > rb_page_commit(iter_head_page))
3052 		goto reset;
3053 
3054 	iter->next_event = iter->head + length;
3055 	return iter->event;
3056  reset:
3057 	/* Reset to the beginning */
3058 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3059 	iter->head = 0;
3060 	iter->next_event = 0;
3061 	iter->missed_events = 1;
3062 	return NULL;
3063 }
3064 
3065 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3066 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3067 {
3068 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3069 }
3070 
3071 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3072 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3073 {
3074 	return rb_page_commit(cpu_buffer->commit_page);
3075 }
3076 
3077 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3078 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3079 {
3080 	unsigned long addr = (unsigned long)event;
3081 
3082 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3083 
3084 	return addr - BUF_PAGE_HDR_SIZE;
3085 }
3086 
rb_inc_iter(struct ring_buffer_iter * iter)3087 static void rb_inc_iter(struct ring_buffer_iter *iter)
3088 {
3089 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3090 
3091 	/*
3092 	 * The iterator could be on the reader page (it starts there).
3093 	 * But the head could have moved, since the reader was
3094 	 * found. Check for this case and assign the iterator
3095 	 * to the head page instead of next.
3096 	 */
3097 	if (iter->head_page == cpu_buffer->reader_page)
3098 		iter->head_page = rb_set_head_page(cpu_buffer);
3099 	else
3100 		rb_inc_page(&iter->head_page);
3101 
3102 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3103 	iter->head = 0;
3104 	iter->next_event = 0;
3105 }
3106 
3107 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3108 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3109 {
3110 	void *subbuf_array;
3111 
3112 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3113 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3114 	return (subbuf - subbuf_array) / meta->subbuf_size;
3115 }
3116 
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3117 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3118 				struct buffer_page *next_page)
3119 {
3120 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3121 	unsigned long old_head = (unsigned long)next_page->page;
3122 	unsigned long new_head;
3123 
3124 	rb_inc_page(&next_page);
3125 	new_head = (unsigned long)next_page->page;
3126 
3127 	/*
3128 	 * Only move it forward once, if something else came in and
3129 	 * moved it forward, then we don't want to touch it.
3130 	 */
3131 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3132 }
3133 
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3134 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3135 				  struct buffer_page *reader)
3136 {
3137 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3138 	void *old_reader = cpu_buffer->reader_page->page;
3139 	void *new_reader = reader->page;
3140 	int id;
3141 
3142 	id = reader->id;
3143 	cpu_buffer->reader_page->id = id;
3144 	reader->id = 0;
3145 
3146 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3147 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3148 
3149 	/* The head pointer is the one after the reader */
3150 	rb_update_meta_head(cpu_buffer, reader);
3151 }
3152 
3153 /*
3154  * rb_handle_head_page - writer hit the head page
3155  *
3156  * Returns: +1 to retry page
3157  *           0 to continue
3158  *          -1 on error
3159  */
3160 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3161 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3162 		    struct buffer_page *tail_page,
3163 		    struct buffer_page *next_page)
3164 {
3165 	struct buffer_page *new_head;
3166 	int entries;
3167 	int type;
3168 	int ret;
3169 
3170 	entries = rb_page_entries(next_page);
3171 
3172 	/*
3173 	 * The hard part is here. We need to move the head
3174 	 * forward, and protect against both readers on
3175 	 * other CPUs and writers coming in via interrupts.
3176 	 */
3177 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3178 				       RB_PAGE_HEAD);
3179 
3180 	/*
3181 	 * type can be one of four:
3182 	 *  NORMAL - an interrupt already moved it for us
3183 	 *  HEAD   - we are the first to get here.
3184 	 *  UPDATE - we are the interrupt interrupting
3185 	 *           a current move.
3186 	 *  MOVED  - a reader on another CPU moved the next
3187 	 *           pointer to its reader page. Give up
3188 	 *           and try again.
3189 	 */
3190 
3191 	switch (type) {
3192 	case RB_PAGE_HEAD:
3193 		/*
3194 		 * We changed the head to UPDATE, thus
3195 		 * it is our responsibility to update
3196 		 * the counters.
3197 		 */
3198 		local_add(entries, &cpu_buffer->overrun);
3199 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3200 		local_inc(&cpu_buffer->pages_lost);
3201 
3202 		if (cpu_buffer->ring_meta)
3203 			rb_update_meta_head(cpu_buffer, next_page);
3204 		/*
3205 		 * The entries will be zeroed out when we move the
3206 		 * tail page.
3207 		 */
3208 
3209 		/* still more to do */
3210 		break;
3211 
3212 	case RB_PAGE_UPDATE:
3213 		/*
3214 		 * This is an interrupt that interrupt the
3215 		 * previous update. Still more to do.
3216 		 */
3217 		break;
3218 	case RB_PAGE_NORMAL:
3219 		/*
3220 		 * An interrupt came in before the update
3221 		 * and processed this for us.
3222 		 * Nothing left to do.
3223 		 */
3224 		return 1;
3225 	case RB_PAGE_MOVED:
3226 		/*
3227 		 * The reader is on another CPU and just did
3228 		 * a swap with our next_page.
3229 		 * Try again.
3230 		 */
3231 		return 1;
3232 	default:
3233 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3234 		return -1;
3235 	}
3236 
3237 	/*
3238 	 * Now that we are here, the old head pointer is
3239 	 * set to UPDATE. This will keep the reader from
3240 	 * swapping the head page with the reader page.
3241 	 * The reader (on another CPU) will spin till
3242 	 * we are finished.
3243 	 *
3244 	 * We just need to protect against interrupts
3245 	 * doing the job. We will set the next pointer
3246 	 * to HEAD. After that, we set the old pointer
3247 	 * to NORMAL, but only if it was HEAD before.
3248 	 * otherwise we are an interrupt, and only
3249 	 * want the outer most commit to reset it.
3250 	 */
3251 	new_head = next_page;
3252 	rb_inc_page(&new_head);
3253 
3254 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3255 				    RB_PAGE_NORMAL);
3256 
3257 	/*
3258 	 * Valid returns are:
3259 	 *  HEAD   - an interrupt came in and already set it.
3260 	 *  NORMAL - One of two things:
3261 	 *            1) We really set it.
3262 	 *            2) A bunch of interrupts came in and moved
3263 	 *               the page forward again.
3264 	 */
3265 	switch (ret) {
3266 	case RB_PAGE_HEAD:
3267 	case RB_PAGE_NORMAL:
3268 		/* OK */
3269 		break;
3270 	default:
3271 		RB_WARN_ON(cpu_buffer, 1);
3272 		return -1;
3273 	}
3274 
3275 	/*
3276 	 * It is possible that an interrupt came in,
3277 	 * set the head up, then more interrupts came in
3278 	 * and moved it again. When we get back here,
3279 	 * the page would have been set to NORMAL but we
3280 	 * just set it back to HEAD.
3281 	 *
3282 	 * How do you detect this? Well, if that happened
3283 	 * the tail page would have moved.
3284 	 */
3285 	if (ret == RB_PAGE_NORMAL) {
3286 		struct buffer_page *buffer_tail_page;
3287 
3288 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3289 		/*
3290 		 * If the tail had moved passed next, then we need
3291 		 * to reset the pointer.
3292 		 */
3293 		if (buffer_tail_page != tail_page &&
3294 		    buffer_tail_page != next_page)
3295 			rb_head_page_set_normal(cpu_buffer, new_head,
3296 						next_page,
3297 						RB_PAGE_HEAD);
3298 	}
3299 
3300 	/*
3301 	 * If this was the outer most commit (the one that
3302 	 * changed the original pointer from HEAD to UPDATE),
3303 	 * then it is up to us to reset it to NORMAL.
3304 	 */
3305 	if (type == RB_PAGE_HEAD) {
3306 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3307 					      tail_page,
3308 					      RB_PAGE_UPDATE);
3309 		if (RB_WARN_ON(cpu_buffer,
3310 			       ret != RB_PAGE_UPDATE))
3311 			return -1;
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3318 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3319 	      unsigned long tail, struct rb_event_info *info)
3320 {
3321 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3322 	struct buffer_page *tail_page = info->tail_page;
3323 	struct ring_buffer_event *event;
3324 	unsigned long length = info->length;
3325 
3326 	/*
3327 	 * Only the event that crossed the page boundary
3328 	 * must fill the old tail_page with padding.
3329 	 */
3330 	if (tail >= bsize) {
3331 		/*
3332 		 * If the page was filled, then we still need
3333 		 * to update the real_end. Reset it to zero
3334 		 * and the reader will ignore it.
3335 		 */
3336 		if (tail == bsize)
3337 			tail_page->real_end = 0;
3338 
3339 		local_sub(length, &tail_page->write);
3340 		return;
3341 	}
3342 
3343 	event = __rb_page_index(tail_page, tail);
3344 
3345 	/*
3346 	 * Save the original length to the meta data.
3347 	 * This will be used by the reader to add lost event
3348 	 * counter.
3349 	 */
3350 	tail_page->real_end = tail;
3351 
3352 	/*
3353 	 * If this event is bigger than the minimum size, then
3354 	 * we need to be careful that we don't subtract the
3355 	 * write counter enough to allow another writer to slip
3356 	 * in on this page.
3357 	 * We put in a discarded commit instead, to make sure
3358 	 * that this space is not used again, and this space will
3359 	 * not be accounted into 'entries_bytes'.
3360 	 *
3361 	 * If we are less than the minimum size, we don't need to
3362 	 * worry about it.
3363 	 */
3364 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3365 		/* No room for any events */
3366 
3367 		/* Mark the rest of the page with padding */
3368 		rb_event_set_padding(event);
3369 
3370 		/* Make sure the padding is visible before the write update */
3371 		smp_wmb();
3372 
3373 		/* Set the write back to the previous setting */
3374 		local_sub(length, &tail_page->write);
3375 		return;
3376 	}
3377 
3378 	/* Put in a discarded event */
3379 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3380 	event->type_len = RINGBUF_TYPE_PADDING;
3381 	/* time delta must be non zero */
3382 	event->time_delta = 1;
3383 
3384 	/* account for padding bytes */
3385 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3386 
3387 	/* Make sure the padding is visible before the tail_page->write update */
3388 	smp_wmb();
3389 
3390 	/* Set write to end of buffer */
3391 	length = (tail + length) - bsize;
3392 	local_sub(length, &tail_page->write);
3393 }
3394 
3395 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3396 
3397 /*
3398  * This is the slow path, force gcc not to inline it.
3399  */
3400 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3401 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3402 	     unsigned long tail, struct rb_event_info *info)
3403 {
3404 	struct buffer_page *tail_page = info->tail_page;
3405 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3406 	struct trace_buffer *buffer = cpu_buffer->buffer;
3407 	struct buffer_page *next_page;
3408 	int ret;
3409 
3410 	next_page = tail_page;
3411 
3412 	rb_inc_page(&next_page);
3413 
3414 	/*
3415 	 * If for some reason, we had an interrupt storm that made
3416 	 * it all the way around the buffer, bail, and warn
3417 	 * about it.
3418 	 */
3419 	if (unlikely(next_page == commit_page)) {
3420 		local_inc(&cpu_buffer->commit_overrun);
3421 		goto out_reset;
3422 	}
3423 
3424 	/*
3425 	 * This is where the fun begins!
3426 	 *
3427 	 * We are fighting against races between a reader that
3428 	 * could be on another CPU trying to swap its reader
3429 	 * page with the buffer head.
3430 	 *
3431 	 * We are also fighting against interrupts coming in and
3432 	 * moving the head or tail on us as well.
3433 	 *
3434 	 * If the next page is the head page then we have filled
3435 	 * the buffer, unless the commit page is still on the
3436 	 * reader page.
3437 	 */
3438 	if (rb_is_head_page(next_page, &tail_page->list)) {
3439 
3440 		/*
3441 		 * If the commit is not on the reader page, then
3442 		 * move the header page.
3443 		 */
3444 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3445 			/*
3446 			 * If we are not in overwrite mode,
3447 			 * this is easy, just stop here.
3448 			 */
3449 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3450 				local_inc(&cpu_buffer->dropped_events);
3451 				goto out_reset;
3452 			}
3453 
3454 			ret = rb_handle_head_page(cpu_buffer,
3455 						  tail_page,
3456 						  next_page);
3457 			if (ret < 0)
3458 				goto out_reset;
3459 			if (ret)
3460 				goto out_again;
3461 		} else {
3462 			/*
3463 			 * We need to be careful here too. The
3464 			 * commit page could still be on the reader
3465 			 * page. We could have a small buffer, and
3466 			 * have filled up the buffer with events
3467 			 * from interrupts and such, and wrapped.
3468 			 *
3469 			 * Note, if the tail page is also on the
3470 			 * reader_page, we let it move out.
3471 			 */
3472 			if (unlikely((cpu_buffer->commit_page !=
3473 				      cpu_buffer->tail_page) &&
3474 				     (cpu_buffer->commit_page ==
3475 				      cpu_buffer->reader_page))) {
3476 				local_inc(&cpu_buffer->commit_overrun);
3477 				goto out_reset;
3478 			}
3479 		}
3480 	}
3481 
3482 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3483 
3484  out_again:
3485 
3486 	rb_reset_tail(cpu_buffer, tail, info);
3487 
3488 	/* Commit what we have for now. */
3489 	rb_end_commit(cpu_buffer);
3490 	/* rb_end_commit() decs committing */
3491 	local_inc(&cpu_buffer->committing);
3492 
3493 	/* fail and let the caller try again */
3494 	return ERR_PTR(-EAGAIN);
3495 
3496  out_reset:
3497 	/* reset write */
3498 	rb_reset_tail(cpu_buffer, tail, info);
3499 
3500 	return NULL;
3501 }
3502 
3503 /* Slow path */
3504 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3505 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3506 		  struct ring_buffer_event *event, u64 delta, bool abs)
3507 {
3508 	if (abs)
3509 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3510 	else
3511 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3512 
3513 	/* Not the first event on the page, or not delta? */
3514 	if (abs || rb_event_index(cpu_buffer, event)) {
3515 		event->time_delta = delta & TS_MASK;
3516 		event->array[0] = delta >> TS_SHIFT;
3517 	} else {
3518 		/* nope, just zero it */
3519 		event->time_delta = 0;
3520 		event->array[0] = 0;
3521 	}
3522 
3523 	return skip_time_extend(event);
3524 }
3525 
3526 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3527 static inline bool sched_clock_stable(void)
3528 {
3529 	return true;
3530 }
3531 #endif
3532 
3533 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3534 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3535 		   struct rb_event_info *info)
3536 {
3537 	u64 write_stamp;
3538 
3539 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3540 		  (unsigned long long)info->delta,
3541 		  (unsigned long long)info->ts,
3542 		  (unsigned long long)info->before,
3543 		  (unsigned long long)info->after,
3544 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3545 		  sched_clock_stable() ? "" :
3546 		  "If you just came from a suspend/resume,\n"
3547 		  "please switch to the trace global clock:\n"
3548 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3549 		  "or add trace_clock=global to the kernel command line\n");
3550 }
3551 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3552 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3553 				      struct ring_buffer_event **event,
3554 				      struct rb_event_info *info,
3555 				      u64 *delta,
3556 				      unsigned int *length)
3557 {
3558 	bool abs = info->add_timestamp &
3559 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3560 
3561 	if (unlikely(info->delta > (1ULL << 59))) {
3562 		/*
3563 		 * Some timers can use more than 59 bits, and when a timestamp
3564 		 * is added to the buffer, it will lose those bits.
3565 		 */
3566 		if (abs && (info->ts & TS_MSB)) {
3567 			info->delta &= ABS_TS_MASK;
3568 
3569 		/* did the clock go backwards */
3570 		} else if (info->before == info->after && info->before > info->ts) {
3571 			/* not interrupted */
3572 			static int once;
3573 
3574 			/*
3575 			 * This is possible with a recalibrating of the TSC.
3576 			 * Do not produce a call stack, but just report it.
3577 			 */
3578 			if (!once) {
3579 				once++;
3580 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3581 					info->before, info->ts);
3582 			}
3583 		} else
3584 			rb_check_timestamp(cpu_buffer, info);
3585 		if (!abs)
3586 			info->delta = 0;
3587 	}
3588 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3589 	*length -= RB_LEN_TIME_EXTEND;
3590 	*delta = 0;
3591 }
3592 
3593 /**
3594  * rb_update_event - update event type and data
3595  * @cpu_buffer: The per cpu buffer of the @event
3596  * @event: the event to update
3597  * @info: The info to update the @event with (contains length and delta)
3598  *
3599  * Update the type and data fields of the @event. The length
3600  * is the actual size that is written to the ring buffer,
3601  * and with this, we can determine what to place into the
3602  * data field.
3603  */
3604 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3605 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3606 		struct ring_buffer_event *event,
3607 		struct rb_event_info *info)
3608 {
3609 	unsigned length = info->length;
3610 	u64 delta = info->delta;
3611 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3612 
3613 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3614 		cpu_buffer->event_stamp[nest] = info->ts;
3615 
3616 	/*
3617 	 * If we need to add a timestamp, then we
3618 	 * add it to the start of the reserved space.
3619 	 */
3620 	if (unlikely(info->add_timestamp))
3621 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3622 
3623 	event->time_delta = delta;
3624 	length -= RB_EVNT_HDR_SIZE;
3625 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3626 		event->type_len = 0;
3627 		event->array[0] = length;
3628 	} else
3629 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3630 }
3631 
rb_calculate_event_length(unsigned length)3632 static unsigned rb_calculate_event_length(unsigned length)
3633 {
3634 	struct ring_buffer_event event; /* Used only for sizeof array */
3635 
3636 	/* zero length can cause confusions */
3637 	if (!length)
3638 		length++;
3639 
3640 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3641 		length += sizeof(event.array[0]);
3642 
3643 	length += RB_EVNT_HDR_SIZE;
3644 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3645 
3646 	/*
3647 	 * In case the time delta is larger than the 27 bits for it
3648 	 * in the header, we need to add a timestamp. If another
3649 	 * event comes in when trying to discard this one to increase
3650 	 * the length, then the timestamp will be added in the allocated
3651 	 * space of this event. If length is bigger than the size needed
3652 	 * for the TIME_EXTEND, then padding has to be used. The events
3653 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3654 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3655 	 * As length is a multiple of 4, we only need to worry if it
3656 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3657 	 */
3658 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3659 		length += RB_ALIGNMENT;
3660 
3661 	return length;
3662 }
3663 
3664 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3665 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3666 		  struct ring_buffer_event *event)
3667 {
3668 	unsigned long new_index, old_index;
3669 	struct buffer_page *bpage;
3670 	unsigned long addr;
3671 
3672 	new_index = rb_event_index(cpu_buffer, event);
3673 	old_index = new_index + rb_event_ts_length(event);
3674 	addr = (unsigned long)event;
3675 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3676 
3677 	bpage = READ_ONCE(cpu_buffer->tail_page);
3678 
3679 	/*
3680 	 * Make sure the tail_page is still the same and
3681 	 * the next write location is the end of this event
3682 	 */
3683 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3684 		unsigned long write_mask =
3685 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3686 		unsigned long event_length = rb_event_length(event);
3687 
3688 		/*
3689 		 * For the before_stamp to be different than the write_stamp
3690 		 * to make sure that the next event adds an absolute
3691 		 * value and does not rely on the saved write stamp, which
3692 		 * is now going to be bogus.
3693 		 *
3694 		 * By setting the before_stamp to zero, the next event
3695 		 * is not going to use the write_stamp and will instead
3696 		 * create an absolute timestamp. This means there's no
3697 		 * reason to update the wirte_stamp!
3698 		 */
3699 		rb_time_set(&cpu_buffer->before_stamp, 0);
3700 
3701 		/*
3702 		 * If an event were to come in now, it would see that the
3703 		 * write_stamp and the before_stamp are different, and assume
3704 		 * that this event just added itself before updating
3705 		 * the write stamp. The interrupting event will fix the
3706 		 * write stamp for us, and use an absolute timestamp.
3707 		 */
3708 
3709 		/*
3710 		 * This is on the tail page. It is possible that
3711 		 * a write could come in and move the tail page
3712 		 * and write to the next page. That is fine
3713 		 * because we just shorten what is on this page.
3714 		 */
3715 		old_index += write_mask;
3716 		new_index += write_mask;
3717 
3718 		/* caution: old_index gets updated on cmpxchg failure */
3719 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3720 			/* update counters */
3721 			local_sub(event_length, &cpu_buffer->entries_bytes);
3722 			return true;
3723 		}
3724 	}
3725 
3726 	/* could not discard */
3727 	return false;
3728 }
3729 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3730 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3731 {
3732 	local_inc(&cpu_buffer->committing);
3733 	local_inc(&cpu_buffer->commits);
3734 }
3735 
3736 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3737 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3738 {
3739 	unsigned long max_count;
3740 
3741 	/*
3742 	 * We only race with interrupts and NMIs on this CPU.
3743 	 * If we own the commit event, then we can commit
3744 	 * all others that interrupted us, since the interruptions
3745 	 * are in stack format (they finish before they come
3746 	 * back to us). This allows us to do a simple loop to
3747 	 * assign the commit to the tail.
3748 	 */
3749  again:
3750 	max_count = cpu_buffer->nr_pages * 100;
3751 
3752 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3753 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3754 			return;
3755 		if (RB_WARN_ON(cpu_buffer,
3756 			       rb_is_reader_page(cpu_buffer->tail_page)))
3757 			return;
3758 		/*
3759 		 * No need for a memory barrier here, as the update
3760 		 * of the tail_page did it for this page.
3761 		 */
3762 		local_set(&cpu_buffer->commit_page->page->commit,
3763 			  rb_page_write(cpu_buffer->commit_page));
3764 		rb_inc_page(&cpu_buffer->commit_page);
3765 		if (cpu_buffer->ring_meta) {
3766 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3767 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3768 		}
3769 		/* add barrier to keep gcc from optimizing too much */
3770 		barrier();
3771 	}
3772 	while (rb_commit_index(cpu_buffer) !=
3773 	       rb_page_write(cpu_buffer->commit_page)) {
3774 
3775 		/* Make sure the readers see the content of what is committed. */
3776 		smp_wmb();
3777 		local_set(&cpu_buffer->commit_page->page->commit,
3778 			  rb_page_write(cpu_buffer->commit_page));
3779 		RB_WARN_ON(cpu_buffer,
3780 			   local_read(&cpu_buffer->commit_page->page->commit) &
3781 			   ~RB_WRITE_MASK);
3782 		barrier();
3783 	}
3784 
3785 	/* again, keep gcc from optimizing */
3786 	barrier();
3787 
3788 	/*
3789 	 * If an interrupt came in just after the first while loop
3790 	 * and pushed the tail page forward, we will be left with
3791 	 * a dangling commit that will never go forward.
3792 	 */
3793 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3794 		goto again;
3795 }
3796 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3797 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3798 {
3799 	unsigned long commits;
3800 
3801 	if (RB_WARN_ON(cpu_buffer,
3802 		       !local_read(&cpu_buffer->committing)))
3803 		return;
3804 
3805  again:
3806 	commits = local_read(&cpu_buffer->commits);
3807 	/* synchronize with interrupts */
3808 	barrier();
3809 	if (local_read(&cpu_buffer->committing) == 1)
3810 		rb_set_commit_to_write(cpu_buffer);
3811 
3812 	local_dec(&cpu_buffer->committing);
3813 
3814 	/* synchronize with interrupts */
3815 	barrier();
3816 
3817 	/*
3818 	 * Need to account for interrupts coming in between the
3819 	 * updating of the commit page and the clearing of the
3820 	 * committing counter.
3821 	 */
3822 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3823 	    !local_read(&cpu_buffer->committing)) {
3824 		local_inc(&cpu_buffer->committing);
3825 		goto again;
3826 	}
3827 }
3828 
rb_event_discard(struct ring_buffer_event * event)3829 static inline void rb_event_discard(struct ring_buffer_event *event)
3830 {
3831 	if (extended_time(event))
3832 		event = skip_time_extend(event);
3833 
3834 	/* array[0] holds the actual length for the discarded event */
3835 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3836 	event->type_len = RINGBUF_TYPE_PADDING;
3837 	/* time delta must be non zero */
3838 	if (!event->time_delta)
3839 		event->time_delta = 1;
3840 }
3841 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3842 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3843 {
3844 	local_inc(&cpu_buffer->entries);
3845 	rb_end_commit(cpu_buffer);
3846 }
3847 
3848 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3849 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3850 {
3851 	if (buffer->irq_work.waiters_pending) {
3852 		buffer->irq_work.waiters_pending = false;
3853 		/* irq_work_queue() supplies it's own memory barriers */
3854 		irq_work_queue(&buffer->irq_work.work);
3855 	}
3856 
3857 	if (cpu_buffer->irq_work.waiters_pending) {
3858 		cpu_buffer->irq_work.waiters_pending = false;
3859 		/* irq_work_queue() supplies it's own memory barriers */
3860 		irq_work_queue(&cpu_buffer->irq_work.work);
3861 	}
3862 
3863 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3864 		return;
3865 
3866 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3867 		return;
3868 
3869 	if (!cpu_buffer->irq_work.full_waiters_pending)
3870 		return;
3871 
3872 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3873 
3874 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3875 		return;
3876 
3877 	cpu_buffer->irq_work.wakeup_full = true;
3878 	cpu_buffer->irq_work.full_waiters_pending = false;
3879 	/* irq_work_queue() supplies it's own memory barriers */
3880 	irq_work_queue(&cpu_buffer->irq_work.work);
3881 }
3882 
3883 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3884 # define do_ring_buffer_record_recursion()	\
3885 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3886 #else
3887 # define do_ring_buffer_record_recursion() do { } while (0)
3888 #endif
3889 
3890 /*
3891  * The lock and unlock are done within a preempt disable section.
3892  * The current_context per_cpu variable can only be modified
3893  * by the current task between lock and unlock. But it can
3894  * be modified more than once via an interrupt. To pass this
3895  * information from the lock to the unlock without having to
3896  * access the 'in_interrupt()' functions again (which do show
3897  * a bit of overhead in something as critical as function tracing,
3898  * we use a bitmask trick.
3899  *
3900  *  bit 1 =  NMI context
3901  *  bit 2 =  IRQ context
3902  *  bit 3 =  SoftIRQ context
3903  *  bit 4 =  normal context.
3904  *
3905  * This works because this is the order of contexts that can
3906  * preempt other contexts. A SoftIRQ never preempts an IRQ
3907  * context.
3908  *
3909  * When the context is determined, the corresponding bit is
3910  * checked and set (if it was set, then a recursion of that context
3911  * happened).
3912  *
3913  * On unlock, we need to clear this bit. To do so, just subtract
3914  * 1 from the current_context and AND it to itself.
3915  *
3916  * (binary)
3917  *  101 - 1 = 100
3918  *  101 & 100 = 100 (clearing bit zero)
3919  *
3920  *  1010 - 1 = 1001
3921  *  1010 & 1001 = 1000 (clearing bit 1)
3922  *
3923  * The least significant bit can be cleared this way, and it
3924  * just so happens that it is the same bit corresponding to
3925  * the current context.
3926  *
3927  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3928  * is set when a recursion is detected at the current context, and if
3929  * the TRANSITION bit is already set, it will fail the recursion.
3930  * This is needed because there's a lag between the changing of
3931  * interrupt context and updating the preempt count. In this case,
3932  * a false positive will be found. To handle this, one extra recursion
3933  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3934  * bit is already set, then it is considered a recursion and the function
3935  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3936  *
3937  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3938  * to be cleared. Even if it wasn't the context that set it. That is,
3939  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3940  * is called before preempt_count() is updated, since the check will
3941  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3942  * NMI then comes in, it will set the NMI bit, but when the NMI code
3943  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3944  * and leave the NMI bit set. But this is fine, because the interrupt
3945  * code that set the TRANSITION bit will then clear the NMI bit when it
3946  * calls trace_recursive_unlock(). If another NMI comes in, it will
3947  * set the TRANSITION bit and continue.
3948  *
3949  * Note: The TRANSITION bit only handles a single transition between context.
3950  */
3951 
3952 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3953 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3954 {
3955 	unsigned int val = cpu_buffer->current_context;
3956 	int bit = interrupt_context_level();
3957 
3958 	bit = RB_CTX_NORMAL - bit;
3959 
3960 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3961 		/*
3962 		 * It is possible that this was called by transitioning
3963 		 * between interrupt context, and preempt_count() has not
3964 		 * been updated yet. In this case, use the TRANSITION bit.
3965 		 */
3966 		bit = RB_CTX_TRANSITION;
3967 		if (val & (1 << (bit + cpu_buffer->nest))) {
3968 			do_ring_buffer_record_recursion();
3969 			return true;
3970 		}
3971 	}
3972 
3973 	val |= (1 << (bit + cpu_buffer->nest));
3974 	cpu_buffer->current_context = val;
3975 
3976 	return false;
3977 }
3978 
3979 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)3980 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3981 {
3982 	cpu_buffer->current_context &=
3983 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3984 }
3985 
3986 /* The recursive locking above uses 5 bits */
3987 #define NESTED_BITS 5
3988 
3989 /**
3990  * ring_buffer_nest_start - Allow to trace while nested
3991  * @buffer: The ring buffer to modify
3992  *
3993  * The ring buffer has a safety mechanism to prevent recursion.
3994  * But there may be a case where a trace needs to be done while
3995  * tracing something else. In this case, calling this function
3996  * will allow this function to nest within a currently active
3997  * ring_buffer_lock_reserve().
3998  *
3999  * Call this function before calling another ring_buffer_lock_reserve() and
4000  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4001  */
ring_buffer_nest_start(struct trace_buffer * buffer)4002 void ring_buffer_nest_start(struct trace_buffer *buffer)
4003 {
4004 	struct ring_buffer_per_cpu *cpu_buffer;
4005 	int cpu;
4006 
4007 	/* Enabled by ring_buffer_nest_end() */
4008 	preempt_disable_notrace();
4009 	cpu = raw_smp_processor_id();
4010 	cpu_buffer = buffer->buffers[cpu];
4011 	/* This is the shift value for the above recursive locking */
4012 	cpu_buffer->nest += NESTED_BITS;
4013 }
4014 
4015 /**
4016  * ring_buffer_nest_end - Allow to trace while nested
4017  * @buffer: The ring buffer to modify
4018  *
4019  * Must be called after ring_buffer_nest_start() and after the
4020  * ring_buffer_unlock_commit().
4021  */
ring_buffer_nest_end(struct trace_buffer * buffer)4022 void ring_buffer_nest_end(struct trace_buffer *buffer)
4023 {
4024 	struct ring_buffer_per_cpu *cpu_buffer;
4025 	int cpu;
4026 
4027 	/* disabled by ring_buffer_nest_start() */
4028 	cpu = raw_smp_processor_id();
4029 	cpu_buffer = buffer->buffers[cpu];
4030 	/* This is the shift value for the above recursive locking */
4031 	cpu_buffer->nest -= NESTED_BITS;
4032 	preempt_enable_notrace();
4033 }
4034 
4035 /**
4036  * ring_buffer_unlock_commit - commit a reserved
4037  * @buffer: The buffer to commit to
4038  *
4039  * This commits the data to the ring buffer, and releases any locks held.
4040  *
4041  * Must be paired with ring_buffer_lock_reserve.
4042  */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4043 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4044 {
4045 	struct ring_buffer_per_cpu *cpu_buffer;
4046 	int cpu = raw_smp_processor_id();
4047 
4048 	cpu_buffer = buffer->buffers[cpu];
4049 
4050 	rb_commit(cpu_buffer);
4051 
4052 	rb_wakeups(buffer, cpu_buffer);
4053 
4054 	trace_recursive_unlock(cpu_buffer);
4055 
4056 	preempt_enable_notrace();
4057 
4058 	return 0;
4059 }
4060 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4061 
4062 /* Special value to validate all deltas on a page. */
4063 #define CHECK_FULL_PAGE		1L
4064 
4065 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4066 
show_irq_str(int bits)4067 static const char *show_irq_str(int bits)
4068 {
4069 	const char *type[] = {
4070 		".",	// 0
4071 		"s",	// 1
4072 		"h",	// 2
4073 		"Hs",	// 3
4074 		"n",	// 4
4075 		"Ns",	// 5
4076 		"Nh",	// 6
4077 		"NHs",	// 7
4078 	};
4079 
4080 	return type[bits];
4081 }
4082 
4083 /* Assume this is a trace event */
show_flags(struct ring_buffer_event * event)4084 static const char *show_flags(struct ring_buffer_event *event)
4085 {
4086 	struct trace_entry *entry;
4087 	int bits = 0;
4088 
4089 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4090 		return "X";
4091 
4092 	entry = ring_buffer_event_data(event);
4093 
4094 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4095 		bits |= 1;
4096 
4097 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4098 		bits |= 2;
4099 
4100 	if (entry->flags & TRACE_FLAG_NMI)
4101 		bits |= 4;
4102 
4103 	return show_irq_str(bits);
4104 }
4105 
show_irq(struct ring_buffer_event * event)4106 static const char *show_irq(struct ring_buffer_event *event)
4107 {
4108 	struct trace_entry *entry;
4109 
4110 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4111 		return "";
4112 
4113 	entry = ring_buffer_event_data(event);
4114 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4115 		return "d";
4116 	return "";
4117 }
4118 
show_interrupt_level(void)4119 static const char *show_interrupt_level(void)
4120 {
4121 	unsigned long pc = preempt_count();
4122 	unsigned char level = 0;
4123 
4124 	if (pc & SOFTIRQ_OFFSET)
4125 		level |= 1;
4126 
4127 	if (pc & HARDIRQ_MASK)
4128 		level |= 2;
4129 
4130 	if (pc & NMI_MASK)
4131 		level |= 4;
4132 
4133 	return show_irq_str(level);
4134 }
4135 
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4136 static void dump_buffer_page(struct buffer_data_page *bpage,
4137 			     struct rb_event_info *info,
4138 			     unsigned long tail)
4139 {
4140 	struct ring_buffer_event *event;
4141 	u64 ts, delta;
4142 	int e;
4143 
4144 	ts = bpage->time_stamp;
4145 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4146 
4147 	for (e = 0; e < tail; e += rb_event_length(event)) {
4148 
4149 		event = (struct ring_buffer_event *)(bpage->data + e);
4150 
4151 		switch (event->type_len) {
4152 
4153 		case RINGBUF_TYPE_TIME_EXTEND:
4154 			delta = rb_event_time_stamp(event);
4155 			ts += delta;
4156 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4157 				e, ts, delta);
4158 			break;
4159 
4160 		case RINGBUF_TYPE_TIME_STAMP:
4161 			delta = rb_event_time_stamp(event);
4162 			ts = rb_fix_abs_ts(delta, ts);
4163 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4164 				e, ts, delta);
4165 			break;
4166 
4167 		case RINGBUF_TYPE_PADDING:
4168 			ts += event->time_delta;
4169 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4170 				e, ts, event->time_delta);
4171 			break;
4172 
4173 		case RINGBUF_TYPE_DATA:
4174 			ts += event->time_delta;
4175 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4176 				e, ts, event->time_delta,
4177 				show_flags(event), show_irq(event));
4178 			break;
4179 
4180 		default:
4181 			break;
4182 		}
4183 	}
4184 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4185 }
4186 
4187 static DEFINE_PER_CPU(atomic_t, checking);
4188 static atomic_t ts_dump;
4189 
4190 #define buffer_warn_return(fmt, ...)					\
4191 	do {								\
4192 		/* If another report is happening, ignore this one */	\
4193 		if (atomic_inc_return(&ts_dump) != 1) {			\
4194 			atomic_dec(&ts_dump);				\
4195 			goto out;					\
4196 		}							\
4197 		atomic_inc(&cpu_buffer->record_disabled);		\
4198 		pr_warn(fmt, ##__VA_ARGS__);				\
4199 		dump_buffer_page(bpage, info, tail);			\
4200 		atomic_dec(&ts_dump);					\
4201 		/* There's some cases in boot up that this can happen */ \
4202 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4203 			/* Do not re-enable checking */			\
4204 			return;						\
4205 	} while (0)
4206 
4207 /*
4208  * Check if the current event time stamp matches the deltas on
4209  * the buffer page.
4210  */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4211 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4212 			 struct rb_event_info *info,
4213 			 unsigned long tail)
4214 {
4215 	struct buffer_data_page *bpage;
4216 	u64 ts, delta;
4217 	bool full = false;
4218 	int ret;
4219 
4220 	bpage = info->tail_page->page;
4221 
4222 	if (tail == CHECK_FULL_PAGE) {
4223 		full = true;
4224 		tail = local_read(&bpage->commit);
4225 	} else if (info->add_timestamp &
4226 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4227 		/* Ignore events with absolute time stamps */
4228 		return;
4229 	}
4230 
4231 	/*
4232 	 * Do not check the first event (skip possible extends too).
4233 	 * Also do not check if previous events have not been committed.
4234 	 */
4235 	if (tail <= 8 || tail > local_read(&bpage->commit))
4236 		return;
4237 
4238 	/*
4239 	 * If this interrupted another event,
4240 	 */
4241 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4242 		goto out;
4243 
4244 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4245 	if (ret < 0) {
4246 		if (delta < ts) {
4247 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4248 					   cpu_buffer->cpu, ts, delta);
4249 			goto out;
4250 		}
4251 	}
4252 	if ((full && ts > info->ts) ||
4253 	    (!full && ts + info->delta != info->ts)) {
4254 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4255 				   cpu_buffer->cpu,
4256 				   ts + info->delta, info->ts, info->delta,
4257 				   info->before, info->after,
4258 				   full ? " (full)" : "", show_interrupt_level());
4259 	}
4260 out:
4261 	atomic_dec(this_cpu_ptr(&checking));
4262 }
4263 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4264 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4265 			 struct rb_event_info *info,
4266 			 unsigned long tail)
4267 {
4268 }
4269 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4270 
4271 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4272 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4273 		  struct rb_event_info *info)
4274 {
4275 	struct ring_buffer_event *event;
4276 	struct buffer_page *tail_page;
4277 	unsigned long tail, write, w;
4278 
4279 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4280 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4281 
4282  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4283 	barrier();
4284 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4285 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4286 	barrier();
4287 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4288 
4289 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4290 		info->delta = info->ts;
4291 	} else {
4292 		/*
4293 		 * If interrupting an event time update, we may need an
4294 		 * absolute timestamp.
4295 		 * Don't bother if this is the start of a new page (w == 0).
4296 		 */
4297 		if (!w) {
4298 			/* Use the sub-buffer timestamp */
4299 			info->delta = 0;
4300 		} else if (unlikely(info->before != info->after)) {
4301 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4302 			info->length += RB_LEN_TIME_EXTEND;
4303 		} else {
4304 			info->delta = info->ts - info->after;
4305 			if (unlikely(test_time_stamp(info->delta))) {
4306 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4307 				info->length += RB_LEN_TIME_EXTEND;
4308 			}
4309 		}
4310 	}
4311 
4312  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4313 
4314  /*C*/	write = local_add_return(info->length, &tail_page->write);
4315 
4316 	/* set write to only the index of the write */
4317 	write &= RB_WRITE_MASK;
4318 
4319 	tail = write - info->length;
4320 
4321 	/* See if we shot pass the end of this buffer page */
4322 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4323 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4324 		return rb_move_tail(cpu_buffer, tail, info);
4325 	}
4326 
4327 	if (likely(tail == w)) {
4328 		/* Nothing interrupted us between A and C */
4329  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4330 		/*
4331 		 * If something came in between C and D, the write stamp
4332 		 * may now not be in sync. But that's fine as the before_stamp
4333 		 * will be different and then next event will just be forced
4334 		 * to use an absolute timestamp.
4335 		 */
4336 		if (likely(!(info->add_timestamp &
4337 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4338 			/* This did not interrupt any time update */
4339 			info->delta = info->ts - info->after;
4340 		else
4341 			/* Just use full timestamp for interrupting event */
4342 			info->delta = info->ts;
4343 		check_buffer(cpu_buffer, info, tail);
4344 	} else {
4345 		u64 ts;
4346 		/* SLOW PATH - Interrupted between A and C */
4347 
4348 		/* Save the old before_stamp */
4349 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4350 
4351 		/*
4352 		 * Read a new timestamp and update the before_stamp to make
4353 		 * the next event after this one force using an absolute
4354 		 * timestamp. This is in case an interrupt were to come in
4355 		 * between E and F.
4356 		 */
4357 		ts = rb_time_stamp(cpu_buffer->buffer);
4358 		rb_time_set(&cpu_buffer->before_stamp, ts);
4359 
4360 		barrier();
4361  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4362 		barrier();
4363  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4364 		    info->after == info->before && info->after < ts) {
4365 			/*
4366 			 * Nothing came after this event between C and F, it is
4367 			 * safe to use info->after for the delta as it
4368 			 * matched info->before and is still valid.
4369 			 */
4370 			info->delta = ts - info->after;
4371 		} else {
4372 			/*
4373 			 * Interrupted between C and F:
4374 			 * Lost the previous events time stamp. Just set the
4375 			 * delta to zero, and this will be the same time as
4376 			 * the event this event interrupted. And the events that
4377 			 * came after this will still be correct (as they would
4378 			 * have built their delta on the previous event.
4379 			 */
4380 			info->delta = 0;
4381 		}
4382 		info->ts = ts;
4383 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4384 	}
4385 
4386 	/*
4387 	 * If this is the first commit on the page, then it has the same
4388 	 * timestamp as the page itself.
4389 	 */
4390 	if (unlikely(!tail && !(info->add_timestamp &
4391 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4392 		info->delta = 0;
4393 
4394 	/* We reserved something on the buffer */
4395 
4396 	event = __rb_page_index(tail_page, tail);
4397 	rb_update_event(cpu_buffer, event, info);
4398 
4399 	local_inc(&tail_page->entries);
4400 
4401 	/*
4402 	 * If this is the first commit on the page, then update
4403 	 * its timestamp.
4404 	 */
4405 	if (unlikely(!tail))
4406 		tail_page->page->time_stamp = info->ts;
4407 
4408 	/* account for these added bytes */
4409 	local_add(info->length, &cpu_buffer->entries_bytes);
4410 
4411 	return event;
4412 }
4413 
4414 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4415 rb_reserve_next_event(struct trace_buffer *buffer,
4416 		      struct ring_buffer_per_cpu *cpu_buffer,
4417 		      unsigned long length)
4418 {
4419 	struct ring_buffer_event *event;
4420 	struct rb_event_info info;
4421 	int nr_loops = 0;
4422 	int add_ts_default;
4423 
4424 	/*
4425 	 * ring buffer does cmpxchg as well as atomic64 operations
4426 	 * (which some archs use locking for atomic64), make sure this
4427 	 * is safe in NMI context
4428 	 */
4429 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4430 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4431 	    (unlikely(in_nmi()))) {
4432 		return NULL;
4433 	}
4434 
4435 	rb_start_commit(cpu_buffer);
4436 	/* The commit page can not change after this */
4437 
4438 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4439 	/*
4440 	 * Due to the ability to swap a cpu buffer from a buffer
4441 	 * it is possible it was swapped before we committed.
4442 	 * (committing stops a swap). We check for it here and
4443 	 * if it happened, we have to fail the write.
4444 	 */
4445 	barrier();
4446 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4447 		local_dec(&cpu_buffer->committing);
4448 		local_dec(&cpu_buffer->commits);
4449 		return NULL;
4450 	}
4451 #endif
4452 
4453 	info.length = rb_calculate_event_length(length);
4454 
4455 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4456 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4457 		info.length += RB_LEN_TIME_EXTEND;
4458 		if (info.length > cpu_buffer->buffer->max_data_size)
4459 			goto out_fail;
4460 	} else {
4461 		add_ts_default = RB_ADD_STAMP_NONE;
4462 	}
4463 
4464  again:
4465 	info.add_timestamp = add_ts_default;
4466 	info.delta = 0;
4467 
4468 	/*
4469 	 * We allow for interrupts to reenter here and do a trace.
4470 	 * If one does, it will cause this original code to loop
4471 	 * back here. Even with heavy interrupts happening, this
4472 	 * should only happen a few times in a row. If this happens
4473 	 * 1000 times in a row, there must be either an interrupt
4474 	 * storm or we have something buggy.
4475 	 * Bail!
4476 	 */
4477 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4478 		goto out_fail;
4479 
4480 	event = __rb_reserve_next(cpu_buffer, &info);
4481 
4482 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4483 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4484 			info.length -= RB_LEN_TIME_EXTEND;
4485 		goto again;
4486 	}
4487 
4488 	if (likely(event))
4489 		return event;
4490  out_fail:
4491 	rb_end_commit(cpu_buffer);
4492 	return NULL;
4493 }
4494 
4495 /**
4496  * ring_buffer_lock_reserve - reserve a part of the buffer
4497  * @buffer: the ring buffer to reserve from
4498  * @length: the length of the data to reserve (excluding event header)
4499  *
4500  * Returns a reserved event on the ring buffer to copy directly to.
4501  * The user of this interface will need to get the body to write into
4502  * and can use the ring_buffer_event_data() interface.
4503  *
4504  * The length is the length of the data needed, not the event length
4505  * which also includes the event header.
4506  *
4507  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4508  * If NULL is returned, then nothing has been allocated or locked.
4509  */
4510 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4511 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4512 {
4513 	struct ring_buffer_per_cpu *cpu_buffer;
4514 	struct ring_buffer_event *event;
4515 	int cpu;
4516 
4517 	/* If we are tracing schedule, we don't want to recurse */
4518 	preempt_disable_notrace();
4519 
4520 	if (unlikely(atomic_read(&buffer->record_disabled)))
4521 		goto out;
4522 
4523 	cpu = raw_smp_processor_id();
4524 
4525 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4526 		goto out;
4527 
4528 	cpu_buffer = buffer->buffers[cpu];
4529 
4530 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4531 		goto out;
4532 
4533 	if (unlikely(length > buffer->max_data_size))
4534 		goto out;
4535 
4536 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4537 		goto out;
4538 
4539 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4540 	if (!event)
4541 		goto out_unlock;
4542 
4543 	return event;
4544 
4545  out_unlock:
4546 	trace_recursive_unlock(cpu_buffer);
4547  out:
4548 	preempt_enable_notrace();
4549 	return NULL;
4550 }
4551 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4552 
4553 /*
4554  * Decrement the entries to the page that an event is on.
4555  * The event does not even need to exist, only the pointer
4556  * to the page it is on. This may only be called before the commit
4557  * takes place.
4558  */
4559 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4560 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4561 		   struct ring_buffer_event *event)
4562 {
4563 	unsigned long addr = (unsigned long)event;
4564 	struct buffer_page *bpage = cpu_buffer->commit_page;
4565 	struct buffer_page *start;
4566 
4567 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4568 
4569 	/* Do the likely case first */
4570 	if (likely(bpage->page == (void *)addr)) {
4571 		local_dec(&bpage->entries);
4572 		return;
4573 	}
4574 
4575 	/*
4576 	 * Because the commit page may be on the reader page we
4577 	 * start with the next page and check the end loop there.
4578 	 */
4579 	rb_inc_page(&bpage);
4580 	start = bpage;
4581 	do {
4582 		if (bpage->page == (void *)addr) {
4583 			local_dec(&bpage->entries);
4584 			return;
4585 		}
4586 		rb_inc_page(&bpage);
4587 	} while (bpage != start);
4588 
4589 	/* commit not part of this buffer?? */
4590 	RB_WARN_ON(cpu_buffer, 1);
4591 }
4592 
4593 /**
4594  * ring_buffer_discard_commit - discard an event that has not been committed
4595  * @buffer: the ring buffer
4596  * @event: non committed event to discard
4597  *
4598  * Sometimes an event that is in the ring buffer needs to be ignored.
4599  * This function lets the user discard an event in the ring buffer
4600  * and then that event will not be read later.
4601  *
4602  * This function only works if it is called before the item has been
4603  * committed. It will try to free the event from the ring buffer
4604  * if another event has not been added behind it.
4605  *
4606  * If another event has been added behind it, it will set the event
4607  * up as discarded, and perform the commit.
4608  *
4609  * If this function is called, do not call ring_buffer_unlock_commit on
4610  * the event.
4611  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4612 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4613 				struct ring_buffer_event *event)
4614 {
4615 	struct ring_buffer_per_cpu *cpu_buffer;
4616 	int cpu;
4617 
4618 	/* The event is discarded regardless */
4619 	rb_event_discard(event);
4620 
4621 	cpu = smp_processor_id();
4622 	cpu_buffer = buffer->buffers[cpu];
4623 
4624 	/*
4625 	 * This must only be called if the event has not been
4626 	 * committed yet. Thus we can assume that preemption
4627 	 * is still disabled.
4628 	 */
4629 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4630 
4631 	rb_decrement_entry(cpu_buffer, event);
4632 	if (rb_try_to_discard(cpu_buffer, event))
4633 		goto out;
4634 
4635  out:
4636 	rb_end_commit(cpu_buffer);
4637 
4638 	trace_recursive_unlock(cpu_buffer);
4639 
4640 	preempt_enable_notrace();
4641 
4642 }
4643 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4644 
4645 /**
4646  * ring_buffer_write - write data to the buffer without reserving
4647  * @buffer: The ring buffer to write to.
4648  * @length: The length of the data being written (excluding the event header)
4649  * @data: The data to write to the buffer.
4650  *
4651  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4652  * one function. If you already have the data to write to the buffer, it
4653  * may be easier to simply call this function.
4654  *
4655  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4656  * and not the length of the event which would hold the header.
4657  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4658 int ring_buffer_write(struct trace_buffer *buffer,
4659 		      unsigned long length,
4660 		      void *data)
4661 {
4662 	struct ring_buffer_per_cpu *cpu_buffer;
4663 	struct ring_buffer_event *event;
4664 	void *body;
4665 	int ret = -EBUSY;
4666 	int cpu;
4667 
4668 	preempt_disable_notrace();
4669 
4670 	if (atomic_read(&buffer->record_disabled))
4671 		goto out;
4672 
4673 	cpu = raw_smp_processor_id();
4674 
4675 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4676 		goto out;
4677 
4678 	cpu_buffer = buffer->buffers[cpu];
4679 
4680 	if (atomic_read(&cpu_buffer->record_disabled))
4681 		goto out;
4682 
4683 	if (length > buffer->max_data_size)
4684 		goto out;
4685 
4686 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4687 		goto out;
4688 
4689 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4690 	if (!event)
4691 		goto out_unlock;
4692 
4693 	body = rb_event_data(event);
4694 
4695 	memcpy(body, data, length);
4696 
4697 	rb_commit(cpu_buffer);
4698 
4699 	rb_wakeups(buffer, cpu_buffer);
4700 
4701 	ret = 0;
4702 
4703  out_unlock:
4704 	trace_recursive_unlock(cpu_buffer);
4705 
4706  out:
4707 	preempt_enable_notrace();
4708 
4709 	return ret;
4710 }
4711 EXPORT_SYMBOL_GPL(ring_buffer_write);
4712 
4713 /*
4714  * The total entries in the ring buffer is the running counter
4715  * of entries entered into the ring buffer, minus the sum of
4716  * the entries read from the ring buffer and the number of
4717  * entries that were overwritten.
4718  */
4719 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4720 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4721 {
4722 	return local_read(&cpu_buffer->entries) -
4723 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4724 }
4725 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4726 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4727 {
4728 	return !rb_num_of_entries(cpu_buffer);
4729 }
4730 
4731 /**
4732  * ring_buffer_record_disable - stop all writes into the buffer
4733  * @buffer: The ring buffer to stop writes to.
4734  *
4735  * This prevents all writes to the buffer. Any attempt to write
4736  * to the buffer after this will fail and return NULL.
4737  *
4738  * The caller should call synchronize_rcu() after this.
4739  */
ring_buffer_record_disable(struct trace_buffer * buffer)4740 void ring_buffer_record_disable(struct trace_buffer *buffer)
4741 {
4742 	atomic_inc(&buffer->record_disabled);
4743 }
4744 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4745 
4746 /**
4747  * ring_buffer_record_enable - enable writes to the buffer
4748  * @buffer: The ring buffer to enable writes
4749  *
4750  * Note, multiple disables will need the same number of enables
4751  * to truly enable the writing (much like preempt_disable).
4752  */
ring_buffer_record_enable(struct trace_buffer * buffer)4753 void ring_buffer_record_enable(struct trace_buffer *buffer)
4754 {
4755 	atomic_dec(&buffer->record_disabled);
4756 }
4757 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4758 
4759 /**
4760  * ring_buffer_record_off - stop all writes into the buffer
4761  * @buffer: The ring buffer to stop writes to.
4762  *
4763  * This prevents all writes to the buffer. Any attempt to write
4764  * to the buffer after this will fail and return NULL.
4765  *
4766  * This is different than ring_buffer_record_disable() as
4767  * it works like an on/off switch, where as the disable() version
4768  * must be paired with a enable().
4769  */
ring_buffer_record_off(struct trace_buffer * buffer)4770 void ring_buffer_record_off(struct trace_buffer *buffer)
4771 {
4772 	unsigned int rd;
4773 	unsigned int new_rd;
4774 
4775 	rd = atomic_read(&buffer->record_disabled);
4776 	do {
4777 		new_rd = rd | RB_BUFFER_OFF;
4778 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4779 }
4780 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4781 
4782 /**
4783  * ring_buffer_record_on - restart writes into the buffer
4784  * @buffer: The ring buffer to start writes to.
4785  *
4786  * This enables all writes to the buffer that was disabled by
4787  * ring_buffer_record_off().
4788  *
4789  * This is different than ring_buffer_record_enable() as
4790  * it works like an on/off switch, where as the enable() version
4791  * must be paired with a disable().
4792  */
ring_buffer_record_on(struct trace_buffer * buffer)4793 void ring_buffer_record_on(struct trace_buffer *buffer)
4794 {
4795 	unsigned int rd;
4796 	unsigned int new_rd;
4797 
4798 	rd = atomic_read(&buffer->record_disabled);
4799 	do {
4800 		new_rd = rd & ~RB_BUFFER_OFF;
4801 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4802 }
4803 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4804 
4805 /**
4806  * ring_buffer_record_is_on - return true if the ring buffer can write
4807  * @buffer: The ring buffer to see if write is enabled
4808  *
4809  * Returns true if the ring buffer is in a state that it accepts writes.
4810  */
ring_buffer_record_is_on(struct trace_buffer * buffer)4811 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4812 {
4813 	return !atomic_read(&buffer->record_disabled);
4814 }
4815 
4816 /**
4817  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4818  * @buffer: The ring buffer to see if write is set enabled
4819  *
4820  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4821  * Note that this does NOT mean it is in a writable state.
4822  *
4823  * It may return true when the ring buffer has been disabled by
4824  * ring_buffer_record_disable(), as that is a temporary disabling of
4825  * the ring buffer.
4826  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4827 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4828 {
4829 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4830 }
4831 
4832 /**
4833  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4834  * @buffer: The ring buffer to stop writes to.
4835  * @cpu: The CPU buffer to stop
4836  *
4837  * This prevents all writes to the buffer. Any attempt to write
4838  * to the buffer after this will fail and return NULL.
4839  *
4840  * The caller should call synchronize_rcu() after this.
4841  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4842 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4843 {
4844 	struct ring_buffer_per_cpu *cpu_buffer;
4845 
4846 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4847 		return;
4848 
4849 	cpu_buffer = buffer->buffers[cpu];
4850 	atomic_inc(&cpu_buffer->record_disabled);
4851 }
4852 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4853 
4854 /**
4855  * ring_buffer_record_enable_cpu - enable writes to the buffer
4856  * @buffer: The ring buffer to enable writes
4857  * @cpu: The CPU to enable.
4858  *
4859  * Note, multiple disables will need the same number of enables
4860  * to truly enable the writing (much like preempt_disable).
4861  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4862 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4863 {
4864 	struct ring_buffer_per_cpu *cpu_buffer;
4865 
4866 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867 		return;
4868 
4869 	cpu_buffer = buffer->buffers[cpu];
4870 	atomic_dec(&cpu_buffer->record_disabled);
4871 }
4872 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4873 
4874 /**
4875  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4876  * @buffer: The ring buffer
4877  * @cpu: The per CPU buffer to read from.
4878  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4879 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4880 {
4881 	unsigned long flags;
4882 	struct ring_buffer_per_cpu *cpu_buffer;
4883 	struct buffer_page *bpage;
4884 	u64 ret = 0;
4885 
4886 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4887 		return 0;
4888 
4889 	cpu_buffer = buffer->buffers[cpu];
4890 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4891 	/*
4892 	 * if the tail is on reader_page, oldest time stamp is on the reader
4893 	 * page
4894 	 */
4895 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4896 		bpage = cpu_buffer->reader_page;
4897 	else
4898 		bpage = rb_set_head_page(cpu_buffer);
4899 	if (bpage)
4900 		ret = bpage->page->time_stamp;
4901 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4902 
4903 	return ret;
4904 }
4905 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4906 
4907 /**
4908  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4909  * @buffer: The ring buffer
4910  * @cpu: The per CPU buffer to read from.
4911  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4912 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4913 {
4914 	struct ring_buffer_per_cpu *cpu_buffer;
4915 	unsigned long ret;
4916 
4917 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4918 		return 0;
4919 
4920 	cpu_buffer = buffer->buffers[cpu];
4921 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4922 
4923 	return ret;
4924 }
4925 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4926 
4927 /**
4928  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4929  * @buffer: The ring buffer
4930  * @cpu: The per CPU buffer to get the entries from.
4931  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4932 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4933 {
4934 	struct ring_buffer_per_cpu *cpu_buffer;
4935 
4936 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4937 		return 0;
4938 
4939 	cpu_buffer = buffer->buffers[cpu];
4940 
4941 	return rb_num_of_entries(cpu_buffer);
4942 }
4943 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4944 
4945 /**
4946  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4947  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4948  * @buffer: The ring buffer
4949  * @cpu: The per CPU buffer to get the number of overruns from
4950  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4951 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4952 {
4953 	struct ring_buffer_per_cpu *cpu_buffer;
4954 	unsigned long ret;
4955 
4956 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4957 		return 0;
4958 
4959 	cpu_buffer = buffer->buffers[cpu];
4960 	ret = local_read(&cpu_buffer->overrun);
4961 
4962 	return ret;
4963 }
4964 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4965 
4966 /**
4967  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4968  * commits failing due to the buffer wrapping around while there are uncommitted
4969  * events, such as during an interrupt storm.
4970  * @buffer: The ring buffer
4971  * @cpu: The per CPU buffer to get the number of overruns from
4972  */
4973 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)4974 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4975 {
4976 	struct ring_buffer_per_cpu *cpu_buffer;
4977 	unsigned long ret;
4978 
4979 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4980 		return 0;
4981 
4982 	cpu_buffer = buffer->buffers[cpu];
4983 	ret = local_read(&cpu_buffer->commit_overrun);
4984 
4985 	return ret;
4986 }
4987 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4988 
4989 /**
4990  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4991  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4992  * @buffer: The ring buffer
4993  * @cpu: The per CPU buffer to get the number of overruns from
4994  */
4995 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)4996 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4997 {
4998 	struct ring_buffer_per_cpu *cpu_buffer;
4999 	unsigned long ret;
5000 
5001 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5002 		return 0;
5003 
5004 	cpu_buffer = buffer->buffers[cpu];
5005 	ret = local_read(&cpu_buffer->dropped_events);
5006 
5007 	return ret;
5008 }
5009 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5010 
5011 /**
5012  * ring_buffer_read_events_cpu - get the number of events successfully read
5013  * @buffer: The ring buffer
5014  * @cpu: The per CPU buffer to get the number of events read
5015  */
5016 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5017 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5018 {
5019 	struct ring_buffer_per_cpu *cpu_buffer;
5020 
5021 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5022 		return 0;
5023 
5024 	cpu_buffer = buffer->buffers[cpu];
5025 	return cpu_buffer->read;
5026 }
5027 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5028 
5029 /**
5030  * ring_buffer_entries - get the number of entries in a buffer
5031  * @buffer: The ring buffer
5032  *
5033  * Returns the total number of entries in the ring buffer
5034  * (all CPU entries)
5035  */
ring_buffer_entries(struct trace_buffer * buffer)5036 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5037 {
5038 	struct ring_buffer_per_cpu *cpu_buffer;
5039 	unsigned long entries = 0;
5040 	int cpu;
5041 
5042 	/* if you care about this being correct, lock the buffer */
5043 	for_each_buffer_cpu(buffer, cpu) {
5044 		cpu_buffer = buffer->buffers[cpu];
5045 		entries += rb_num_of_entries(cpu_buffer);
5046 	}
5047 
5048 	return entries;
5049 }
5050 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5051 
5052 /**
5053  * ring_buffer_overruns - get the number of overruns in buffer
5054  * @buffer: The ring buffer
5055  *
5056  * Returns the total number of overruns in the ring buffer
5057  * (all CPU entries)
5058  */
ring_buffer_overruns(struct trace_buffer * buffer)5059 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5060 {
5061 	struct ring_buffer_per_cpu *cpu_buffer;
5062 	unsigned long overruns = 0;
5063 	int cpu;
5064 
5065 	/* if you care about this being correct, lock the buffer */
5066 	for_each_buffer_cpu(buffer, cpu) {
5067 		cpu_buffer = buffer->buffers[cpu];
5068 		overruns += local_read(&cpu_buffer->overrun);
5069 	}
5070 
5071 	return overruns;
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5074 
rb_iter_reset(struct ring_buffer_iter * iter)5075 static void rb_iter_reset(struct ring_buffer_iter *iter)
5076 {
5077 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5078 
5079 	/* Iterator usage is expected to have record disabled */
5080 	iter->head_page = cpu_buffer->reader_page;
5081 	iter->head = cpu_buffer->reader_page->read;
5082 	iter->next_event = iter->head;
5083 
5084 	iter->cache_reader_page = iter->head_page;
5085 	iter->cache_read = cpu_buffer->read;
5086 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5087 
5088 	if (iter->head) {
5089 		iter->read_stamp = cpu_buffer->read_stamp;
5090 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5091 	} else {
5092 		iter->read_stamp = iter->head_page->page->time_stamp;
5093 		iter->page_stamp = iter->read_stamp;
5094 	}
5095 }
5096 
5097 /**
5098  * ring_buffer_iter_reset - reset an iterator
5099  * @iter: The iterator to reset
5100  *
5101  * Resets the iterator, so that it will start from the beginning
5102  * again.
5103  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5104 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5105 {
5106 	struct ring_buffer_per_cpu *cpu_buffer;
5107 	unsigned long flags;
5108 
5109 	if (!iter)
5110 		return;
5111 
5112 	cpu_buffer = iter->cpu_buffer;
5113 
5114 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5115 	rb_iter_reset(iter);
5116 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5117 }
5118 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5119 
5120 /**
5121  * ring_buffer_iter_empty - check if an iterator has no more to read
5122  * @iter: The iterator to check
5123  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5124 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5125 {
5126 	struct ring_buffer_per_cpu *cpu_buffer;
5127 	struct buffer_page *reader;
5128 	struct buffer_page *head_page;
5129 	struct buffer_page *commit_page;
5130 	struct buffer_page *curr_commit_page;
5131 	unsigned commit;
5132 	u64 curr_commit_ts;
5133 	u64 commit_ts;
5134 
5135 	cpu_buffer = iter->cpu_buffer;
5136 	reader = cpu_buffer->reader_page;
5137 	head_page = cpu_buffer->head_page;
5138 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5139 	commit_ts = commit_page->page->time_stamp;
5140 
5141 	/*
5142 	 * When the writer goes across pages, it issues a cmpxchg which
5143 	 * is a mb(), which will synchronize with the rmb here.
5144 	 * (see rb_tail_page_update())
5145 	 */
5146 	smp_rmb();
5147 	commit = rb_page_commit(commit_page);
5148 	/* We want to make sure that the commit page doesn't change */
5149 	smp_rmb();
5150 
5151 	/* Make sure commit page didn't change */
5152 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5153 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5154 
5155 	/* If the commit page changed, then there's more data */
5156 	if (curr_commit_page != commit_page ||
5157 	    curr_commit_ts != commit_ts)
5158 		return 0;
5159 
5160 	/* Still racy, as it may return a false positive, but that's OK */
5161 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5162 		(iter->head_page == reader && commit_page == head_page &&
5163 		 head_page->read == commit &&
5164 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5165 }
5166 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5167 
5168 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5169 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5170 		     struct ring_buffer_event *event)
5171 {
5172 	u64 delta;
5173 
5174 	switch (event->type_len) {
5175 	case RINGBUF_TYPE_PADDING:
5176 		return;
5177 
5178 	case RINGBUF_TYPE_TIME_EXTEND:
5179 		delta = rb_event_time_stamp(event);
5180 		cpu_buffer->read_stamp += delta;
5181 		return;
5182 
5183 	case RINGBUF_TYPE_TIME_STAMP:
5184 		delta = rb_event_time_stamp(event);
5185 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5186 		cpu_buffer->read_stamp = delta;
5187 		return;
5188 
5189 	case RINGBUF_TYPE_DATA:
5190 		cpu_buffer->read_stamp += event->time_delta;
5191 		return;
5192 
5193 	default:
5194 		RB_WARN_ON(cpu_buffer, 1);
5195 	}
5196 }
5197 
5198 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5199 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5200 			  struct ring_buffer_event *event)
5201 {
5202 	u64 delta;
5203 
5204 	switch (event->type_len) {
5205 	case RINGBUF_TYPE_PADDING:
5206 		return;
5207 
5208 	case RINGBUF_TYPE_TIME_EXTEND:
5209 		delta = rb_event_time_stamp(event);
5210 		iter->read_stamp += delta;
5211 		return;
5212 
5213 	case RINGBUF_TYPE_TIME_STAMP:
5214 		delta = rb_event_time_stamp(event);
5215 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5216 		iter->read_stamp = delta;
5217 		return;
5218 
5219 	case RINGBUF_TYPE_DATA:
5220 		iter->read_stamp += event->time_delta;
5221 		return;
5222 
5223 	default:
5224 		RB_WARN_ON(iter->cpu_buffer, 1);
5225 	}
5226 }
5227 
5228 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5229 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5230 {
5231 	struct buffer_page *reader = NULL;
5232 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5233 	unsigned long overwrite;
5234 	unsigned long flags;
5235 	int nr_loops = 0;
5236 	bool ret;
5237 
5238 	local_irq_save(flags);
5239 	arch_spin_lock(&cpu_buffer->lock);
5240 
5241  again:
5242 	/*
5243 	 * This should normally only loop twice. But because the
5244 	 * start of the reader inserts an empty page, it causes
5245 	 * a case where we will loop three times. There should be no
5246 	 * reason to loop four times (that I know of).
5247 	 */
5248 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5249 		reader = NULL;
5250 		goto out;
5251 	}
5252 
5253 	reader = cpu_buffer->reader_page;
5254 
5255 	/* If there's more to read, return this page */
5256 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5257 		goto out;
5258 
5259 	/* Never should we have an index greater than the size */
5260 	if (RB_WARN_ON(cpu_buffer,
5261 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5262 		goto out;
5263 
5264 	/* check if we caught up to the tail */
5265 	reader = NULL;
5266 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5267 		goto out;
5268 
5269 	/* Don't bother swapping if the ring buffer is empty */
5270 	if (rb_num_of_entries(cpu_buffer) == 0)
5271 		goto out;
5272 
5273 	/*
5274 	 * Reset the reader page to size zero.
5275 	 */
5276 	local_set(&cpu_buffer->reader_page->write, 0);
5277 	local_set(&cpu_buffer->reader_page->entries, 0);
5278 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5279 	cpu_buffer->reader_page->real_end = 0;
5280 
5281  spin:
5282 	/*
5283 	 * Splice the empty reader page into the list around the head.
5284 	 */
5285 	reader = rb_set_head_page(cpu_buffer);
5286 	if (!reader)
5287 		goto out;
5288 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5289 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5290 
5291 	/*
5292 	 * cpu_buffer->pages just needs to point to the buffer, it
5293 	 *  has no specific buffer page to point to. Lets move it out
5294 	 *  of our way so we don't accidentally swap it.
5295 	 */
5296 	cpu_buffer->pages = reader->list.prev;
5297 
5298 	/* The reader page will be pointing to the new head */
5299 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5300 
5301 	/*
5302 	 * We want to make sure we read the overruns after we set up our
5303 	 * pointers to the next object. The writer side does a
5304 	 * cmpxchg to cross pages which acts as the mb on the writer
5305 	 * side. Note, the reader will constantly fail the swap
5306 	 * while the writer is updating the pointers, so this
5307 	 * guarantees that the overwrite recorded here is the one we
5308 	 * want to compare with the last_overrun.
5309 	 */
5310 	smp_mb();
5311 	overwrite = local_read(&(cpu_buffer->overrun));
5312 
5313 	/*
5314 	 * Here's the tricky part.
5315 	 *
5316 	 * We need to move the pointer past the header page.
5317 	 * But we can only do that if a writer is not currently
5318 	 * moving it. The page before the header page has the
5319 	 * flag bit '1' set if it is pointing to the page we want.
5320 	 * but if the writer is in the process of moving it
5321 	 * than it will be '2' or already moved '0'.
5322 	 */
5323 
5324 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5325 
5326 	/*
5327 	 * If we did not convert it, then we must try again.
5328 	 */
5329 	if (!ret)
5330 		goto spin;
5331 
5332 	if (cpu_buffer->ring_meta)
5333 		rb_update_meta_reader(cpu_buffer, reader);
5334 
5335 	/*
5336 	 * Yay! We succeeded in replacing the page.
5337 	 *
5338 	 * Now make the new head point back to the reader page.
5339 	 */
5340 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5341 	rb_inc_page(&cpu_buffer->head_page);
5342 
5343 	cpu_buffer->cnt++;
5344 	local_inc(&cpu_buffer->pages_read);
5345 
5346 	/* Finally update the reader page to the new head */
5347 	cpu_buffer->reader_page = reader;
5348 	cpu_buffer->reader_page->read = 0;
5349 
5350 	if (overwrite != cpu_buffer->last_overrun) {
5351 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5352 		cpu_buffer->last_overrun = overwrite;
5353 	}
5354 
5355 	goto again;
5356 
5357  out:
5358 	/* Update the read_stamp on the first event */
5359 	if (reader && reader->read == 0)
5360 		cpu_buffer->read_stamp = reader->page->time_stamp;
5361 
5362 	arch_spin_unlock(&cpu_buffer->lock);
5363 	local_irq_restore(flags);
5364 
5365 	/*
5366 	 * The writer has preempt disable, wait for it. But not forever
5367 	 * Although, 1 second is pretty much "forever"
5368 	 */
5369 #define USECS_WAIT	1000000
5370         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5371 		/* If the write is past the end of page, a writer is still updating it */
5372 		if (likely(!reader || rb_page_write(reader) <= bsize))
5373 			break;
5374 
5375 		udelay(1);
5376 
5377 		/* Get the latest version of the reader write value */
5378 		smp_rmb();
5379 	}
5380 
5381 	/* The writer is not moving forward? Something is wrong */
5382 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5383 		reader = NULL;
5384 
5385 	/*
5386 	 * Make sure we see any padding after the write update
5387 	 * (see rb_reset_tail()).
5388 	 *
5389 	 * In addition, a writer may be writing on the reader page
5390 	 * if the page has not been fully filled, so the read barrier
5391 	 * is also needed to make sure we see the content of what is
5392 	 * committed by the writer (see rb_set_commit_to_write()).
5393 	 */
5394 	smp_rmb();
5395 
5396 
5397 	return reader;
5398 }
5399 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5400 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5401 {
5402 	struct ring_buffer_event *event;
5403 	struct buffer_page *reader;
5404 	unsigned length;
5405 
5406 	reader = rb_get_reader_page(cpu_buffer);
5407 
5408 	/* This function should not be called when buffer is empty */
5409 	if (RB_WARN_ON(cpu_buffer, !reader))
5410 		return;
5411 
5412 	event = rb_reader_event(cpu_buffer);
5413 
5414 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5415 		cpu_buffer->read++;
5416 
5417 	rb_update_read_stamp(cpu_buffer, event);
5418 
5419 	length = rb_event_length(event);
5420 	cpu_buffer->reader_page->read += length;
5421 	cpu_buffer->read_bytes += length;
5422 }
5423 
rb_advance_iter(struct ring_buffer_iter * iter)5424 static void rb_advance_iter(struct ring_buffer_iter *iter)
5425 {
5426 	struct ring_buffer_per_cpu *cpu_buffer;
5427 
5428 	cpu_buffer = iter->cpu_buffer;
5429 
5430 	/* If head == next_event then we need to jump to the next event */
5431 	if (iter->head == iter->next_event) {
5432 		/* If the event gets overwritten again, there's nothing to do */
5433 		if (rb_iter_head_event(iter) == NULL)
5434 			return;
5435 	}
5436 
5437 	iter->head = iter->next_event;
5438 
5439 	/*
5440 	 * Check if we are at the end of the buffer.
5441 	 */
5442 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5443 		/* discarded commits can make the page empty */
5444 		if (iter->head_page == cpu_buffer->commit_page)
5445 			return;
5446 		rb_inc_iter(iter);
5447 		return;
5448 	}
5449 
5450 	rb_update_iter_read_stamp(iter, iter->event);
5451 }
5452 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5453 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5454 {
5455 	return cpu_buffer->lost_events;
5456 }
5457 
5458 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5459 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5460 	       unsigned long *lost_events)
5461 {
5462 	struct ring_buffer_event *event;
5463 	struct buffer_page *reader;
5464 	int nr_loops = 0;
5465 
5466 	if (ts)
5467 		*ts = 0;
5468  again:
5469 	/*
5470 	 * We repeat when a time extend is encountered.
5471 	 * Since the time extend is always attached to a data event,
5472 	 * we should never loop more than once.
5473 	 * (We never hit the following condition more than twice).
5474 	 */
5475 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5476 		return NULL;
5477 
5478 	reader = rb_get_reader_page(cpu_buffer);
5479 	if (!reader)
5480 		return NULL;
5481 
5482 	event = rb_reader_event(cpu_buffer);
5483 
5484 	switch (event->type_len) {
5485 	case RINGBUF_TYPE_PADDING:
5486 		if (rb_null_event(event))
5487 			RB_WARN_ON(cpu_buffer, 1);
5488 		/*
5489 		 * Because the writer could be discarding every
5490 		 * event it creates (which would probably be bad)
5491 		 * if we were to go back to "again" then we may never
5492 		 * catch up, and will trigger the warn on, or lock
5493 		 * the box. Return the padding, and we will release
5494 		 * the current locks, and try again.
5495 		 */
5496 		return event;
5497 
5498 	case RINGBUF_TYPE_TIME_EXTEND:
5499 		/* Internal data, OK to advance */
5500 		rb_advance_reader(cpu_buffer);
5501 		goto again;
5502 
5503 	case RINGBUF_TYPE_TIME_STAMP:
5504 		if (ts) {
5505 			*ts = rb_event_time_stamp(event);
5506 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5507 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5508 							 cpu_buffer->cpu, ts);
5509 		}
5510 		/* Internal data, OK to advance */
5511 		rb_advance_reader(cpu_buffer);
5512 		goto again;
5513 
5514 	case RINGBUF_TYPE_DATA:
5515 		if (ts && !(*ts)) {
5516 			*ts = cpu_buffer->read_stamp + event->time_delta;
5517 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5518 							 cpu_buffer->cpu, ts);
5519 		}
5520 		if (lost_events)
5521 			*lost_events = rb_lost_events(cpu_buffer);
5522 		return event;
5523 
5524 	default:
5525 		RB_WARN_ON(cpu_buffer, 1);
5526 	}
5527 
5528 	return NULL;
5529 }
5530 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5531 
5532 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5533 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5534 {
5535 	struct trace_buffer *buffer;
5536 	struct ring_buffer_per_cpu *cpu_buffer;
5537 	struct ring_buffer_event *event;
5538 	int nr_loops = 0;
5539 
5540 	if (ts)
5541 		*ts = 0;
5542 
5543 	cpu_buffer = iter->cpu_buffer;
5544 	buffer = cpu_buffer->buffer;
5545 
5546 	/*
5547 	 * Check if someone performed a consuming read to the buffer
5548 	 * or removed some pages from the buffer. In these cases,
5549 	 * iterator was invalidated and we need to reset it.
5550 	 */
5551 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5552 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5553 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5554 		rb_iter_reset(iter);
5555 
5556  again:
5557 	if (ring_buffer_iter_empty(iter))
5558 		return NULL;
5559 
5560 	/*
5561 	 * As the writer can mess with what the iterator is trying
5562 	 * to read, just give up if we fail to get an event after
5563 	 * three tries. The iterator is not as reliable when reading
5564 	 * the ring buffer with an active write as the consumer is.
5565 	 * Do not warn if the three failures is reached.
5566 	 */
5567 	if (++nr_loops > 3)
5568 		return NULL;
5569 
5570 	if (rb_per_cpu_empty(cpu_buffer))
5571 		return NULL;
5572 
5573 	if (iter->head >= rb_page_size(iter->head_page)) {
5574 		rb_inc_iter(iter);
5575 		goto again;
5576 	}
5577 
5578 	event = rb_iter_head_event(iter);
5579 	if (!event)
5580 		goto again;
5581 
5582 	switch (event->type_len) {
5583 	case RINGBUF_TYPE_PADDING:
5584 		if (rb_null_event(event)) {
5585 			rb_inc_iter(iter);
5586 			goto again;
5587 		}
5588 		rb_advance_iter(iter);
5589 		return event;
5590 
5591 	case RINGBUF_TYPE_TIME_EXTEND:
5592 		/* Internal data, OK to advance */
5593 		rb_advance_iter(iter);
5594 		goto again;
5595 
5596 	case RINGBUF_TYPE_TIME_STAMP:
5597 		if (ts) {
5598 			*ts = rb_event_time_stamp(event);
5599 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5600 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5601 							 cpu_buffer->cpu, ts);
5602 		}
5603 		/* Internal data, OK to advance */
5604 		rb_advance_iter(iter);
5605 		goto again;
5606 
5607 	case RINGBUF_TYPE_DATA:
5608 		if (ts && !(*ts)) {
5609 			*ts = iter->read_stamp + event->time_delta;
5610 			ring_buffer_normalize_time_stamp(buffer,
5611 							 cpu_buffer->cpu, ts);
5612 		}
5613 		return event;
5614 
5615 	default:
5616 		RB_WARN_ON(cpu_buffer, 1);
5617 	}
5618 
5619 	return NULL;
5620 }
5621 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5622 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5623 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5624 {
5625 	if (likely(!in_nmi())) {
5626 		raw_spin_lock(&cpu_buffer->reader_lock);
5627 		return true;
5628 	}
5629 
5630 	/*
5631 	 * If an NMI die dumps out the content of the ring buffer
5632 	 * trylock must be used to prevent a deadlock if the NMI
5633 	 * preempted a task that holds the ring buffer locks. If
5634 	 * we get the lock then all is fine, if not, then continue
5635 	 * to do the read, but this can corrupt the ring buffer,
5636 	 * so it must be permanently disabled from future writes.
5637 	 * Reading from NMI is a oneshot deal.
5638 	 */
5639 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5640 		return true;
5641 
5642 	/* Continue without locking, but disable the ring buffer */
5643 	atomic_inc(&cpu_buffer->record_disabled);
5644 	return false;
5645 }
5646 
5647 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5648 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5649 {
5650 	if (likely(locked))
5651 		raw_spin_unlock(&cpu_buffer->reader_lock);
5652 }
5653 
5654 /**
5655  * ring_buffer_peek - peek at the next event to be read
5656  * @buffer: The ring buffer to read
5657  * @cpu: The cpu to peak at
5658  * @ts: The timestamp counter of this event.
5659  * @lost_events: a variable to store if events were lost (may be NULL)
5660  *
5661  * This will return the event that will be read next, but does
5662  * not consume the data.
5663  */
5664 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5665 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5666 		 unsigned long *lost_events)
5667 {
5668 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5669 	struct ring_buffer_event *event;
5670 	unsigned long flags;
5671 	bool dolock;
5672 
5673 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5674 		return NULL;
5675 
5676  again:
5677 	local_irq_save(flags);
5678 	dolock = rb_reader_lock(cpu_buffer);
5679 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5680 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5681 		rb_advance_reader(cpu_buffer);
5682 	rb_reader_unlock(cpu_buffer, dolock);
5683 	local_irq_restore(flags);
5684 
5685 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5686 		goto again;
5687 
5688 	return event;
5689 }
5690 
5691 /** ring_buffer_iter_dropped - report if there are dropped events
5692  * @iter: The ring buffer iterator
5693  *
5694  * Returns true if there was dropped events since the last peek.
5695  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5696 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5697 {
5698 	bool ret = iter->missed_events != 0;
5699 
5700 	iter->missed_events = 0;
5701 	return ret;
5702 }
5703 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5704 
5705 /**
5706  * ring_buffer_iter_peek - peek at the next event to be read
5707  * @iter: The ring buffer iterator
5708  * @ts: The timestamp counter of this event.
5709  *
5710  * This will return the event that will be read next, but does
5711  * not increment the iterator.
5712  */
5713 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5714 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5715 {
5716 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5717 	struct ring_buffer_event *event;
5718 	unsigned long flags;
5719 
5720  again:
5721 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5722 	event = rb_iter_peek(iter, ts);
5723 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5724 
5725 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5726 		goto again;
5727 
5728 	return event;
5729 }
5730 
5731 /**
5732  * ring_buffer_consume - return an event and consume it
5733  * @buffer: The ring buffer to get the next event from
5734  * @cpu: the cpu to read the buffer from
5735  * @ts: a variable to store the timestamp (may be NULL)
5736  * @lost_events: a variable to store if events were lost (may be NULL)
5737  *
5738  * Returns the next event in the ring buffer, and that event is consumed.
5739  * Meaning, that sequential reads will keep returning a different event,
5740  * and eventually empty the ring buffer if the producer is slower.
5741  */
5742 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5743 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5744 		    unsigned long *lost_events)
5745 {
5746 	struct ring_buffer_per_cpu *cpu_buffer;
5747 	struct ring_buffer_event *event = NULL;
5748 	unsigned long flags;
5749 	bool dolock;
5750 
5751  again:
5752 	/* might be called in atomic */
5753 	preempt_disable();
5754 
5755 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5756 		goto out;
5757 
5758 	cpu_buffer = buffer->buffers[cpu];
5759 	local_irq_save(flags);
5760 	dolock = rb_reader_lock(cpu_buffer);
5761 
5762 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5763 	if (event) {
5764 		cpu_buffer->lost_events = 0;
5765 		rb_advance_reader(cpu_buffer);
5766 	}
5767 
5768 	rb_reader_unlock(cpu_buffer, dolock);
5769 	local_irq_restore(flags);
5770 
5771  out:
5772 	preempt_enable();
5773 
5774 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5775 		goto again;
5776 
5777 	return event;
5778 }
5779 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5780 
5781 /**
5782  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5783  * @buffer: The ring buffer to read from
5784  * @cpu: The cpu buffer to iterate over
5785  * @flags: gfp flags to use for memory allocation
5786  *
5787  * This performs the initial preparations necessary to iterate
5788  * through the buffer.  Memory is allocated, buffer resizing
5789  * is disabled, and the iterator pointer is returned to the caller.
5790  *
5791  * After a sequence of ring_buffer_read_prepare calls, the user is
5792  * expected to make at least one call to ring_buffer_read_prepare_sync.
5793  * Afterwards, ring_buffer_read_start is invoked to get things going
5794  * for real.
5795  *
5796  * This overall must be paired with ring_buffer_read_finish.
5797  */
5798 struct ring_buffer_iter *
ring_buffer_read_prepare(struct trace_buffer * buffer,int cpu,gfp_t flags)5799 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5800 {
5801 	struct ring_buffer_per_cpu *cpu_buffer;
5802 	struct ring_buffer_iter *iter;
5803 
5804 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5805 		return NULL;
5806 
5807 	iter = kzalloc(sizeof(*iter), flags);
5808 	if (!iter)
5809 		return NULL;
5810 
5811 	/* Holds the entire event: data and meta data */
5812 	iter->event_size = buffer->subbuf_size;
5813 	iter->event = kmalloc(iter->event_size, flags);
5814 	if (!iter->event) {
5815 		kfree(iter);
5816 		return NULL;
5817 	}
5818 
5819 	cpu_buffer = buffer->buffers[cpu];
5820 
5821 	iter->cpu_buffer = cpu_buffer;
5822 
5823 	atomic_inc(&cpu_buffer->resize_disabled);
5824 
5825 	return iter;
5826 }
5827 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5828 
5829 /**
5830  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5831  *
5832  * All previously invoked ring_buffer_read_prepare calls to prepare
5833  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5834  * calls on those iterators are allowed.
5835  */
5836 void
ring_buffer_read_prepare_sync(void)5837 ring_buffer_read_prepare_sync(void)
5838 {
5839 	synchronize_rcu();
5840 }
5841 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5842 
5843 /**
5844  * ring_buffer_read_start - start a non consuming read of the buffer
5845  * @iter: The iterator returned by ring_buffer_read_prepare
5846  *
5847  * This finalizes the startup of an iteration through the buffer.
5848  * The iterator comes from a call to ring_buffer_read_prepare and
5849  * an intervening ring_buffer_read_prepare_sync must have been
5850  * performed.
5851  *
5852  * Must be paired with ring_buffer_read_finish.
5853  */
5854 void
ring_buffer_read_start(struct ring_buffer_iter * iter)5855 ring_buffer_read_start(struct ring_buffer_iter *iter)
5856 {
5857 	struct ring_buffer_per_cpu *cpu_buffer;
5858 	unsigned long flags;
5859 
5860 	if (!iter)
5861 		return;
5862 
5863 	cpu_buffer = iter->cpu_buffer;
5864 
5865 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5866 	arch_spin_lock(&cpu_buffer->lock);
5867 	rb_iter_reset(iter);
5868 	arch_spin_unlock(&cpu_buffer->lock);
5869 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5870 }
5871 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5872 
5873 /**
5874  * ring_buffer_read_finish - finish reading the iterator of the buffer
5875  * @iter: The iterator retrieved by ring_buffer_start
5876  *
5877  * This re-enables resizing of the buffer, and frees the iterator.
5878  */
5879 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5880 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5881 {
5882 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5883 
5884 	/* Use this opportunity to check the integrity of the ring buffer. */
5885 	rb_check_pages(cpu_buffer);
5886 
5887 	atomic_dec(&cpu_buffer->resize_disabled);
5888 	kfree(iter->event);
5889 	kfree(iter);
5890 }
5891 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5892 
5893 /**
5894  * ring_buffer_iter_advance - advance the iterator to the next location
5895  * @iter: The ring buffer iterator
5896  *
5897  * Move the location of the iterator such that the next read will
5898  * be the next location of the iterator.
5899  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5900 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5901 {
5902 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5903 	unsigned long flags;
5904 
5905 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5906 
5907 	rb_advance_iter(iter);
5908 
5909 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5910 }
5911 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5912 
5913 /**
5914  * ring_buffer_size - return the size of the ring buffer (in bytes)
5915  * @buffer: The ring buffer.
5916  * @cpu: The CPU to get ring buffer size from.
5917  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5918 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5919 {
5920 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5921 		return 0;
5922 
5923 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5924 }
5925 EXPORT_SYMBOL_GPL(ring_buffer_size);
5926 
5927 /**
5928  * ring_buffer_max_event_size - return the max data size of an event
5929  * @buffer: The ring buffer.
5930  *
5931  * Returns the maximum size an event can be.
5932  */
ring_buffer_max_event_size(struct trace_buffer * buffer)5933 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5934 {
5935 	/* If abs timestamp is requested, events have a timestamp too */
5936 	if (ring_buffer_time_stamp_abs(buffer))
5937 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5938 	return buffer->max_data_size;
5939 }
5940 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5941 
rb_clear_buffer_page(struct buffer_page * page)5942 static void rb_clear_buffer_page(struct buffer_page *page)
5943 {
5944 	local_set(&page->write, 0);
5945 	local_set(&page->entries, 0);
5946 	rb_init_page(page->page);
5947 	page->read = 0;
5948 }
5949 
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5950 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5951 {
5952 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5953 
5954 	if (!meta)
5955 		return;
5956 
5957 	meta->reader.read = cpu_buffer->reader_page->read;
5958 	meta->reader.id = cpu_buffer->reader_page->id;
5959 	meta->reader.lost_events = cpu_buffer->lost_events;
5960 
5961 	meta->entries = local_read(&cpu_buffer->entries);
5962 	meta->overrun = local_read(&cpu_buffer->overrun);
5963 	meta->read = cpu_buffer->read;
5964 
5965 	/* Some archs do not have data cache coherency between kernel and user-space */
5966 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5967 }
5968 
5969 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)5970 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5971 {
5972 	struct buffer_page *page;
5973 
5974 	rb_head_page_deactivate(cpu_buffer);
5975 
5976 	cpu_buffer->head_page
5977 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5978 	rb_clear_buffer_page(cpu_buffer->head_page);
5979 	list_for_each_entry(page, cpu_buffer->pages, list) {
5980 		rb_clear_buffer_page(page);
5981 	}
5982 
5983 	cpu_buffer->tail_page = cpu_buffer->head_page;
5984 	cpu_buffer->commit_page = cpu_buffer->head_page;
5985 
5986 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5987 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5988 	rb_clear_buffer_page(cpu_buffer->reader_page);
5989 
5990 	local_set(&cpu_buffer->entries_bytes, 0);
5991 	local_set(&cpu_buffer->overrun, 0);
5992 	local_set(&cpu_buffer->commit_overrun, 0);
5993 	local_set(&cpu_buffer->dropped_events, 0);
5994 	local_set(&cpu_buffer->entries, 0);
5995 	local_set(&cpu_buffer->committing, 0);
5996 	local_set(&cpu_buffer->commits, 0);
5997 	local_set(&cpu_buffer->pages_touched, 0);
5998 	local_set(&cpu_buffer->pages_lost, 0);
5999 	local_set(&cpu_buffer->pages_read, 0);
6000 	cpu_buffer->last_pages_touch = 0;
6001 	cpu_buffer->shortest_full = 0;
6002 	cpu_buffer->read = 0;
6003 	cpu_buffer->read_bytes = 0;
6004 
6005 	rb_time_set(&cpu_buffer->write_stamp, 0);
6006 	rb_time_set(&cpu_buffer->before_stamp, 0);
6007 
6008 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6009 
6010 	cpu_buffer->lost_events = 0;
6011 	cpu_buffer->last_overrun = 0;
6012 
6013 	rb_head_page_activate(cpu_buffer);
6014 	cpu_buffer->pages_removed = 0;
6015 
6016 	if (cpu_buffer->mapped) {
6017 		rb_update_meta_page(cpu_buffer);
6018 		if (cpu_buffer->ring_meta) {
6019 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6020 			meta->commit_buffer = meta->head_buffer;
6021 		}
6022 	}
6023 }
6024 
6025 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6026 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6027 {
6028 	unsigned long flags;
6029 
6030 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6031 
6032 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6033 		goto out;
6034 
6035 	arch_spin_lock(&cpu_buffer->lock);
6036 
6037 	rb_reset_cpu(cpu_buffer);
6038 
6039 	arch_spin_unlock(&cpu_buffer->lock);
6040 
6041  out:
6042 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6043 }
6044 
6045 /**
6046  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6047  * @buffer: The ring buffer to reset a per cpu buffer of
6048  * @cpu: The CPU buffer to be reset
6049  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6050 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6051 {
6052 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6053 	struct ring_buffer_meta *meta;
6054 
6055 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6056 		return;
6057 
6058 	/* prevent another thread from changing buffer sizes */
6059 	mutex_lock(&buffer->mutex);
6060 
6061 	atomic_inc(&cpu_buffer->resize_disabled);
6062 	atomic_inc(&cpu_buffer->record_disabled);
6063 
6064 	/* Make sure all commits have finished */
6065 	synchronize_rcu();
6066 
6067 	reset_disabled_cpu_buffer(cpu_buffer);
6068 
6069 	atomic_dec(&cpu_buffer->record_disabled);
6070 	atomic_dec(&cpu_buffer->resize_disabled);
6071 
6072 	/* Make sure persistent meta now uses this buffer's addresses */
6073 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6074 	if (meta)
6075 		rb_meta_init_text_addr(meta);
6076 
6077 	mutex_unlock(&buffer->mutex);
6078 }
6079 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6080 
6081 /* Flag to ensure proper resetting of atomic variables */
6082 #define RESET_BIT	(1 << 30)
6083 
6084 /**
6085  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6086  * @buffer: The ring buffer to reset a per cpu buffer of
6087  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6088 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6089 {
6090 	struct ring_buffer_per_cpu *cpu_buffer;
6091 	struct ring_buffer_meta *meta;
6092 	int cpu;
6093 
6094 	/* prevent another thread from changing buffer sizes */
6095 	mutex_lock(&buffer->mutex);
6096 
6097 	for_each_online_buffer_cpu(buffer, cpu) {
6098 		cpu_buffer = buffer->buffers[cpu];
6099 
6100 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6101 		atomic_inc(&cpu_buffer->record_disabled);
6102 	}
6103 
6104 	/* Make sure all commits have finished */
6105 	synchronize_rcu();
6106 
6107 	for_each_buffer_cpu(buffer, cpu) {
6108 		cpu_buffer = buffer->buffers[cpu];
6109 
6110 		/*
6111 		 * If a CPU came online during the synchronize_rcu(), then
6112 		 * ignore it.
6113 		 */
6114 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6115 			continue;
6116 
6117 		reset_disabled_cpu_buffer(cpu_buffer);
6118 
6119 		/* Make sure persistent meta now uses this buffer's addresses */
6120 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6121 		if (meta)
6122 			rb_meta_init_text_addr(meta);
6123 
6124 		atomic_dec(&cpu_buffer->record_disabled);
6125 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6126 	}
6127 
6128 	mutex_unlock(&buffer->mutex);
6129 }
6130 
6131 /**
6132  * ring_buffer_reset - reset a ring buffer
6133  * @buffer: The ring buffer to reset all cpu buffers
6134  */
ring_buffer_reset(struct trace_buffer * buffer)6135 void ring_buffer_reset(struct trace_buffer *buffer)
6136 {
6137 	struct ring_buffer_per_cpu *cpu_buffer;
6138 	int cpu;
6139 
6140 	/* prevent another thread from changing buffer sizes */
6141 	mutex_lock(&buffer->mutex);
6142 
6143 	for_each_buffer_cpu(buffer, cpu) {
6144 		cpu_buffer = buffer->buffers[cpu];
6145 
6146 		atomic_inc(&cpu_buffer->resize_disabled);
6147 		atomic_inc(&cpu_buffer->record_disabled);
6148 	}
6149 
6150 	/* Make sure all commits have finished */
6151 	synchronize_rcu();
6152 
6153 	for_each_buffer_cpu(buffer, cpu) {
6154 		cpu_buffer = buffer->buffers[cpu];
6155 
6156 		reset_disabled_cpu_buffer(cpu_buffer);
6157 
6158 		atomic_dec(&cpu_buffer->record_disabled);
6159 		atomic_dec(&cpu_buffer->resize_disabled);
6160 	}
6161 
6162 	mutex_unlock(&buffer->mutex);
6163 }
6164 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6165 
6166 /**
6167  * ring_buffer_empty - is the ring buffer empty?
6168  * @buffer: The ring buffer to test
6169  */
ring_buffer_empty(struct trace_buffer * buffer)6170 bool ring_buffer_empty(struct trace_buffer *buffer)
6171 {
6172 	struct ring_buffer_per_cpu *cpu_buffer;
6173 	unsigned long flags;
6174 	bool dolock;
6175 	bool ret;
6176 	int cpu;
6177 
6178 	/* yes this is racy, but if you don't like the race, lock the buffer */
6179 	for_each_buffer_cpu(buffer, cpu) {
6180 		cpu_buffer = buffer->buffers[cpu];
6181 		local_irq_save(flags);
6182 		dolock = rb_reader_lock(cpu_buffer);
6183 		ret = rb_per_cpu_empty(cpu_buffer);
6184 		rb_reader_unlock(cpu_buffer, dolock);
6185 		local_irq_restore(flags);
6186 
6187 		if (!ret)
6188 			return false;
6189 	}
6190 
6191 	return true;
6192 }
6193 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6194 
6195 /**
6196  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6197  * @buffer: The ring buffer
6198  * @cpu: The CPU buffer to test
6199  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6200 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6201 {
6202 	struct ring_buffer_per_cpu *cpu_buffer;
6203 	unsigned long flags;
6204 	bool dolock;
6205 	bool ret;
6206 
6207 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6208 		return true;
6209 
6210 	cpu_buffer = buffer->buffers[cpu];
6211 	local_irq_save(flags);
6212 	dolock = rb_reader_lock(cpu_buffer);
6213 	ret = rb_per_cpu_empty(cpu_buffer);
6214 	rb_reader_unlock(cpu_buffer, dolock);
6215 	local_irq_restore(flags);
6216 
6217 	return ret;
6218 }
6219 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6220 
6221 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6222 /**
6223  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6224  * @buffer_a: One buffer to swap with
6225  * @buffer_b: The other buffer to swap with
6226  * @cpu: the CPU of the buffers to swap
6227  *
6228  * This function is useful for tracers that want to take a "snapshot"
6229  * of a CPU buffer and has another back up buffer lying around.
6230  * it is expected that the tracer handles the cpu buffer not being
6231  * used at the moment.
6232  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6233 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6234 			 struct trace_buffer *buffer_b, int cpu)
6235 {
6236 	struct ring_buffer_per_cpu *cpu_buffer_a;
6237 	struct ring_buffer_per_cpu *cpu_buffer_b;
6238 	int ret = -EINVAL;
6239 
6240 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6241 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6242 		goto out;
6243 
6244 	cpu_buffer_a = buffer_a->buffers[cpu];
6245 	cpu_buffer_b = buffer_b->buffers[cpu];
6246 
6247 	/* It's up to the callers to not try to swap mapped buffers */
6248 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6249 		ret = -EBUSY;
6250 		goto out;
6251 	}
6252 
6253 	/* At least make sure the two buffers are somewhat the same */
6254 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6255 		goto out;
6256 
6257 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6258 		goto out;
6259 
6260 	ret = -EAGAIN;
6261 
6262 	if (atomic_read(&buffer_a->record_disabled))
6263 		goto out;
6264 
6265 	if (atomic_read(&buffer_b->record_disabled))
6266 		goto out;
6267 
6268 	if (atomic_read(&cpu_buffer_a->record_disabled))
6269 		goto out;
6270 
6271 	if (atomic_read(&cpu_buffer_b->record_disabled))
6272 		goto out;
6273 
6274 	/*
6275 	 * We can't do a synchronize_rcu here because this
6276 	 * function can be called in atomic context.
6277 	 * Normally this will be called from the same CPU as cpu.
6278 	 * If not it's up to the caller to protect this.
6279 	 */
6280 	atomic_inc(&cpu_buffer_a->record_disabled);
6281 	atomic_inc(&cpu_buffer_b->record_disabled);
6282 
6283 	ret = -EBUSY;
6284 	if (local_read(&cpu_buffer_a->committing))
6285 		goto out_dec;
6286 	if (local_read(&cpu_buffer_b->committing))
6287 		goto out_dec;
6288 
6289 	/*
6290 	 * When resize is in progress, we cannot swap it because
6291 	 * it will mess the state of the cpu buffer.
6292 	 */
6293 	if (atomic_read(&buffer_a->resizing))
6294 		goto out_dec;
6295 	if (atomic_read(&buffer_b->resizing))
6296 		goto out_dec;
6297 
6298 	buffer_a->buffers[cpu] = cpu_buffer_b;
6299 	buffer_b->buffers[cpu] = cpu_buffer_a;
6300 
6301 	cpu_buffer_b->buffer = buffer_a;
6302 	cpu_buffer_a->buffer = buffer_b;
6303 
6304 	ret = 0;
6305 
6306 out_dec:
6307 	atomic_dec(&cpu_buffer_a->record_disabled);
6308 	atomic_dec(&cpu_buffer_b->record_disabled);
6309 out:
6310 	return ret;
6311 }
6312 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6313 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6314 
6315 /**
6316  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6317  * @buffer: the buffer to allocate for.
6318  * @cpu: the cpu buffer to allocate.
6319  *
6320  * This function is used in conjunction with ring_buffer_read_page.
6321  * When reading a full page from the ring buffer, these functions
6322  * can be used to speed up the process. The calling function should
6323  * allocate a few pages first with this function. Then when it
6324  * needs to get pages from the ring buffer, it passes the result
6325  * of this function into ring_buffer_read_page, which will swap
6326  * the page that was allocated, with the read page of the buffer.
6327  *
6328  * Returns:
6329  *  The page allocated, or ERR_PTR
6330  */
6331 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6332 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6333 {
6334 	struct ring_buffer_per_cpu *cpu_buffer;
6335 	struct buffer_data_read_page *bpage = NULL;
6336 	unsigned long flags;
6337 	struct page *page;
6338 
6339 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6340 		return ERR_PTR(-ENODEV);
6341 
6342 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6343 	if (!bpage)
6344 		return ERR_PTR(-ENOMEM);
6345 
6346 	bpage->order = buffer->subbuf_order;
6347 	cpu_buffer = buffer->buffers[cpu];
6348 	local_irq_save(flags);
6349 	arch_spin_lock(&cpu_buffer->lock);
6350 
6351 	if (cpu_buffer->free_page) {
6352 		bpage->data = cpu_buffer->free_page;
6353 		cpu_buffer->free_page = NULL;
6354 	}
6355 
6356 	arch_spin_unlock(&cpu_buffer->lock);
6357 	local_irq_restore(flags);
6358 
6359 	if (bpage->data)
6360 		goto out;
6361 
6362 	page = alloc_pages_node(cpu_to_node(cpu),
6363 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6364 				cpu_buffer->buffer->subbuf_order);
6365 	if (!page) {
6366 		kfree(bpage);
6367 		return ERR_PTR(-ENOMEM);
6368 	}
6369 
6370 	bpage->data = page_address(page);
6371 
6372  out:
6373 	rb_init_page(bpage->data);
6374 
6375 	return bpage;
6376 }
6377 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6378 
6379 /**
6380  * ring_buffer_free_read_page - free an allocated read page
6381  * @buffer: the buffer the page was allocate for
6382  * @cpu: the cpu buffer the page came from
6383  * @data_page: the page to free
6384  *
6385  * Free a page allocated from ring_buffer_alloc_read_page.
6386  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6387 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6388 				struct buffer_data_read_page *data_page)
6389 {
6390 	struct ring_buffer_per_cpu *cpu_buffer;
6391 	struct buffer_data_page *bpage = data_page->data;
6392 	struct page *page = virt_to_page(bpage);
6393 	unsigned long flags;
6394 
6395 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6396 		return;
6397 
6398 	cpu_buffer = buffer->buffers[cpu];
6399 
6400 	/*
6401 	 * If the page is still in use someplace else, or order of the page
6402 	 * is different from the subbuffer order of the buffer -
6403 	 * we can't reuse it
6404 	 */
6405 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6406 		goto out;
6407 
6408 	local_irq_save(flags);
6409 	arch_spin_lock(&cpu_buffer->lock);
6410 
6411 	if (!cpu_buffer->free_page) {
6412 		cpu_buffer->free_page = bpage;
6413 		bpage = NULL;
6414 	}
6415 
6416 	arch_spin_unlock(&cpu_buffer->lock);
6417 	local_irq_restore(flags);
6418 
6419  out:
6420 	free_pages((unsigned long)bpage, data_page->order);
6421 	kfree(data_page);
6422 }
6423 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6424 
6425 /**
6426  * ring_buffer_read_page - extract a page from the ring buffer
6427  * @buffer: buffer to extract from
6428  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6429  * @len: amount to extract
6430  * @cpu: the cpu of the buffer to extract
6431  * @full: should the extraction only happen when the page is full.
6432  *
6433  * This function will pull out a page from the ring buffer and consume it.
6434  * @data_page must be the address of the variable that was returned
6435  * from ring_buffer_alloc_read_page. This is because the page might be used
6436  * to swap with a page in the ring buffer.
6437  *
6438  * for example:
6439  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6440  *	if (IS_ERR(rpage))
6441  *		return PTR_ERR(rpage);
6442  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6443  *	if (ret >= 0)
6444  *		process_page(ring_buffer_read_page_data(rpage), ret);
6445  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6446  *
6447  * When @full is set, the function will not return true unless
6448  * the writer is off the reader page.
6449  *
6450  * Note: it is up to the calling functions to handle sleeps and wakeups.
6451  *  The ring buffer can be used anywhere in the kernel and can not
6452  *  blindly call wake_up. The layer that uses the ring buffer must be
6453  *  responsible for that.
6454  *
6455  * Returns:
6456  *  >=0 if data has been transferred, returns the offset of consumed data.
6457  *  <0 if no data has been transferred.
6458  */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6459 int ring_buffer_read_page(struct trace_buffer *buffer,
6460 			  struct buffer_data_read_page *data_page,
6461 			  size_t len, int cpu, int full)
6462 {
6463 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6464 	struct ring_buffer_event *event;
6465 	struct buffer_data_page *bpage;
6466 	struct buffer_page *reader;
6467 	unsigned long missed_events;
6468 	unsigned long flags;
6469 	unsigned int commit;
6470 	unsigned int read;
6471 	u64 save_timestamp;
6472 	int ret = -1;
6473 
6474 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6475 		goto out;
6476 
6477 	/*
6478 	 * If len is not big enough to hold the page header, then
6479 	 * we can not copy anything.
6480 	 */
6481 	if (len <= BUF_PAGE_HDR_SIZE)
6482 		goto out;
6483 
6484 	len -= BUF_PAGE_HDR_SIZE;
6485 
6486 	if (!data_page || !data_page->data)
6487 		goto out;
6488 	if (data_page->order != buffer->subbuf_order)
6489 		goto out;
6490 
6491 	bpage = data_page->data;
6492 	if (!bpage)
6493 		goto out;
6494 
6495 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6496 
6497 	reader = rb_get_reader_page(cpu_buffer);
6498 	if (!reader)
6499 		goto out_unlock;
6500 
6501 	event = rb_reader_event(cpu_buffer);
6502 
6503 	read = reader->read;
6504 	commit = rb_page_size(reader);
6505 
6506 	/* Check if any events were dropped */
6507 	missed_events = cpu_buffer->lost_events;
6508 
6509 	/*
6510 	 * If this page has been partially read or
6511 	 * if len is not big enough to read the rest of the page or
6512 	 * a writer is still on the page, then
6513 	 * we must copy the data from the page to the buffer.
6514 	 * Otherwise, we can simply swap the page with the one passed in.
6515 	 */
6516 	if (read || (len < (commit - read)) ||
6517 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6518 	    cpu_buffer->mapped) {
6519 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6520 		unsigned int rpos = read;
6521 		unsigned int pos = 0;
6522 		unsigned int size;
6523 
6524 		/*
6525 		 * If a full page is expected, this can still be returned
6526 		 * if there's been a previous partial read and the
6527 		 * rest of the page can be read and the commit page is off
6528 		 * the reader page.
6529 		 */
6530 		if (full &&
6531 		    (!read || (len < (commit - read)) ||
6532 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6533 			goto out_unlock;
6534 
6535 		if (len > (commit - read))
6536 			len = (commit - read);
6537 
6538 		/* Always keep the time extend and data together */
6539 		size = rb_event_ts_length(event);
6540 
6541 		if (len < size)
6542 			goto out_unlock;
6543 
6544 		/* save the current timestamp, since the user will need it */
6545 		save_timestamp = cpu_buffer->read_stamp;
6546 
6547 		/* Need to copy one event at a time */
6548 		do {
6549 			/* We need the size of one event, because
6550 			 * rb_advance_reader only advances by one event,
6551 			 * whereas rb_event_ts_length may include the size of
6552 			 * one or two events.
6553 			 * We have already ensured there's enough space if this
6554 			 * is a time extend. */
6555 			size = rb_event_length(event);
6556 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6557 
6558 			len -= size;
6559 
6560 			rb_advance_reader(cpu_buffer);
6561 			rpos = reader->read;
6562 			pos += size;
6563 
6564 			if (rpos >= commit)
6565 				break;
6566 
6567 			event = rb_reader_event(cpu_buffer);
6568 			/* Always keep the time extend and data together */
6569 			size = rb_event_ts_length(event);
6570 		} while (len >= size);
6571 
6572 		/* update bpage */
6573 		local_set(&bpage->commit, pos);
6574 		bpage->time_stamp = save_timestamp;
6575 
6576 		/* we copied everything to the beginning */
6577 		read = 0;
6578 	} else {
6579 		/* update the entry counter */
6580 		cpu_buffer->read += rb_page_entries(reader);
6581 		cpu_buffer->read_bytes += rb_page_size(reader);
6582 
6583 		/* swap the pages */
6584 		rb_init_page(bpage);
6585 		bpage = reader->page;
6586 		reader->page = data_page->data;
6587 		local_set(&reader->write, 0);
6588 		local_set(&reader->entries, 0);
6589 		reader->read = 0;
6590 		data_page->data = bpage;
6591 
6592 		/*
6593 		 * Use the real_end for the data size,
6594 		 * This gives us a chance to store the lost events
6595 		 * on the page.
6596 		 */
6597 		if (reader->real_end)
6598 			local_set(&bpage->commit, reader->real_end);
6599 	}
6600 	ret = read;
6601 
6602 	cpu_buffer->lost_events = 0;
6603 
6604 	commit = local_read(&bpage->commit);
6605 	/*
6606 	 * Set a flag in the commit field if we lost events
6607 	 */
6608 	if (missed_events) {
6609 		/* If there is room at the end of the page to save the
6610 		 * missed events, then record it there.
6611 		 */
6612 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6613 			memcpy(&bpage->data[commit], &missed_events,
6614 			       sizeof(missed_events));
6615 			local_add(RB_MISSED_STORED, &bpage->commit);
6616 			commit += sizeof(missed_events);
6617 		}
6618 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6619 	}
6620 
6621 	/*
6622 	 * This page may be off to user land. Zero it out here.
6623 	 */
6624 	if (commit < buffer->subbuf_size)
6625 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6626 
6627  out_unlock:
6628 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6629 
6630  out:
6631 	return ret;
6632 }
6633 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6634 
6635 /**
6636  * ring_buffer_read_page_data - get pointer to the data in the page.
6637  * @page:  the page to get the data from
6638  *
6639  * Returns pointer to the actual data in this page.
6640  */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6641 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6642 {
6643 	return page->data;
6644 }
6645 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6646 
6647 /**
6648  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6649  * @buffer: the buffer to get the sub buffer size from
6650  *
6651  * Returns size of the sub buffer, in bytes.
6652  */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6653 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6654 {
6655 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6656 }
6657 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6658 
6659 /**
6660  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6661  * @buffer: The ring_buffer to get the system sub page order from
6662  *
6663  * By default, one ring buffer sub page equals to one system page. This parameter
6664  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6665  * extended, but must be an order of system page size.
6666  *
6667  * Returns the order of buffer sub page size, in system pages:
6668  * 0 means the sub buffer size is 1 system page and so forth.
6669  * In case of an error < 0 is returned.
6670  */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6671 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6672 {
6673 	if (!buffer)
6674 		return -EINVAL;
6675 
6676 	return buffer->subbuf_order;
6677 }
6678 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6679 
6680 /**
6681  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6682  * @buffer: The ring_buffer to set the new page size.
6683  * @order: Order of the system pages in one sub buffer page
6684  *
6685  * By default, one ring buffer pages equals to one system page. This API can be
6686  * used to set new size of the ring buffer page. The size must be order of
6687  * system page size, that's why the input parameter @order is the order of
6688  * system pages that are allocated for one ring buffer page:
6689  *  0 - 1 system page
6690  *  1 - 2 system pages
6691  *  3 - 4 system pages
6692  *  ...
6693  *
6694  * Returns 0 on success or < 0 in case of an error.
6695  */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6696 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6697 {
6698 	struct ring_buffer_per_cpu *cpu_buffer;
6699 	struct buffer_page *bpage, *tmp;
6700 	int old_order, old_size;
6701 	int nr_pages;
6702 	int psize;
6703 	int err;
6704 	int cpu;
6705 
6706 	if (!buffer || order < 0)
6707 		return -EINVAL;
6708 
6709 	if (buffer->subbuf_order == order)
6710 		return 0;
6711 
6712 	psize = (1 << order) * PAGE_SIZE;
6713 	if (psize <= BUF_PAGE_HDR_SIZE)
6714 		return -EINVAL;
6715 
6716 	/* Size of a subbuf cannot be greater than the write counter */
6717 	if (psize > RB_WRITE_MASK + 1)
6718 		return -EINVAL;
6719 
6720 	old_order = buffer->subbuf_order;
6721 	old_size = buffer->subbuf_size;
6722 
6723 	/* prevent another thread from changing buffer sizes */
6724 	mutex_lock(&buffer->mutex);
6725 	atomic_inc(&buffer->record_disabled);
6726 
6727 	/* Make sure all commits have finished */
6728 	synchronize_rcu();
6729 
6730 	buffer->subbuf_order = order;
6731 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6732 
6733 	/* Make sure all new buffers are allocated, before deleting the old ones */
6734 	for_each_buffer_cpu(buffer, cpu) {
6735 
6736 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6737 			continue;
6738 
6739 		cpu_buffer = buffer->buffers[cpu];
6740 
6741 		if (cpu_buffer->mapped) {
6742 			err = -EBUSY;
6743 			goto error;
6744 		}
6745 
6746 		/* Update the number of pages to match the new size */
6747 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6748 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6749 
6750 		/* we need a minimum of two pages */
6751 		if (nr_pages < 2)
6752 			nr_pages = 2;
6753 
6754 		cpu_buffer->nr_pages_to_update = nr_pages;
6755 
6756 		/* Include the reader page */
6757 		nr_pages++;
6758 
6759 		/* Allocate the new size buffer */
6760 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6761 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6762 					&cpu_buffer->new_pages)) {
6763 			/* not enough memory for new pages */
6764 			err = -ENOMEM;
6765 			goto error;
6766 		}
6767 	}
6768 
6769 	for_each_buffer_cpu(buffer, cpu) {
6770 		struct buffer_data_page *old_free_data_page;
6771 		struct list_head old_pages;
6772 		unsigned long flags;
6773 
6774 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6775 			continue;
6776 
6777 		cpu_buffer = buffer->buffers[cpu];
6778 
6779 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6780 
6781 		/* Clear the head bit to make the link list normal to read */
6782 		rb_head_page_deactivate(cpu_buffer);
6783 
6784 		/*
6785 		 * Collect buffers from the cpu_buffer pages list and the
6786 		 * reader_page on old_pages, so they can be freed later when not
6787 		 * under a spinlock. The pages list is a linked list with no
6788 		 * head, adding old_pages turns it into a regular list with
6789 		 * old_pages being the head.
6790 		 */
6791 		list_add(&old_pages, cpu_buffer->pages);
6792 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6793 
6794 		/* One page was allocated for the reader page */
6795 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6796 						     struct buffer_page, list);
6797 		list_del_init(&cpu_buffer->reader_page->list);
6798 
6799 		/* Install the new pages, remove the head from the list */
6800 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6801 		list_del_init(&cpu_buffer->new_pages);
6802 		cpu_buffer->cnt++;
6803 
6804 		cpu_buffer->head_page
6805 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6806 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6807 
6808 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6809 		cpu_buffer->nr_pages_to_update = 0;
6810 
6811 		old_free_data_page = cpu_buffer->free_page;
6812 		cpu_buffer->free_page = NULL;
6813 
6814 		rb_head_page_activate(cpu_buffer);
6815 
6816 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6817 
6818 		/* Free old sub buffers */
6819 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6820 			list_del_init(&bpage->list);
6821 			free_buffer_page(bpage);
6822 		}
6823 		free_pages((unsigned long)old_free_data_page, old_order);
6824 
6825 		rb_check_pages(cpu_buffer);
6826 	}
6827 
6828 	atomic_dec(&buffer->record_disabled);
6829 	mutex_unlock(&buffer->mutex);
6830 
6831 	return 0;
6832 
6833 error:
6834 	buffer->subbuf_order = old_order;
6835 	buffer->subbuf_size = old_size;
6836 
6837 	atomic_dec(&buffer->record_disabled);
6838 	mutex_unlock(&buffer->mutex);
6839 
6840 	for_each_buffer_cpu(buffer, cpu) {
6841 		cpu_buffer = buffer->buffers[cpu];
6842 
6843 		if (!cpu_buffer->nr_pages_to_update)
6844 			continue;
6845 
6846 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6847 			list_del_init(&bpage->list);
6848 			free_buffer_page(bpage);
6849 		}
6850 	}
6851 
6852 	return err;
6853 }
6854 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6855 
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6856 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6857 {
6858 	struct page *page;
6859 
6860 	if (cpu_buffer->meta_page)
6861 		return 0;
6862 
6863 	page = alloc_page(GFP_USER | __GFP_ZERO);
6864 	if (!page)
6865 		return -ENOMEM;
6866 
6867 	cpu_buffer->meta_page = page_to_virt(page);
6868 
6869 	return 0;
6870 }
6871 
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6872 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6873 {
6874 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6875 
6876 	free_page(addr);
6877 	cpu_buffer->meta_page = NULL;
6878 }
6879 
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6880 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6881 				   unsigned long *subbuf_ids)
6882 {
6883 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6884 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6885 	struct buffer_page *first_subbuf, *subbuf;
6886 	int id = 0;
6887 
6888 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6889 	cpu_buffer->reader_page->id = id++;
6890 
6891 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6892 	do {
6893 		if (WARN_ON(id >= nr_subbufs))
6894 			break;
6895 
6896 		subbuf_ids[id] = (unsigned long)subbuf->page;
6897 		subbuf->id = id;
6898 
6899 		rb_inc_page(&subbuf);
6900 		id++;
6901 	} while (subbuf != first_subbuf);
6902 
6903 	/* install subbuf ID to kern VA translation */
6904 	cpu_buffer->subbuf_ids = subbuf_ids;
6905 
6906 	meta->meta_struct_len = sizeof(*meta);
6907 	meta->nr_subbufs = nr_subbufs;
6908 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6909 	meta->meta_page_size = meta->subbuf_size;
6910 
6911 	rb_update_meta_page(cpu_buffer);
6912 }
6913 
6914 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)6915 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6916 {
6917 	struct ring_buffer_per_cpu *cpu_buffer;
6918 
6919 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6920 		return ERR_PTR(-EINVAL);
6921 
6922 	cpu_buffer = buffer->buffers[cpu];
6923 
6924 	mutex_lock(&cpu_buffer->mapping_lock);
6925 
6926 	if (!cpu_buffer->user_mapped) {
6927 		mutex_unlock(&cpu_buffer->mapping_lock);
6928 		return ERR_PTR(-ENODEV);
6929 	}
6930 
6931 	return cpu_buffer;
6932 }
6933 
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)6934 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6935 {
6936 	mutex_unlock(&cpu_buffer->mapping_lock);
6937 }
6938 
6939 /*
6940  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6941  * to be set-up or torn-down.
6942  */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)6943 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6944 			       bool inc)
6945 {
6946 	unsigned long flags;
6947 
6948 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6949 
6950 	/* mapped is always greater or equal to user_mapped */
6951 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6952 		return -EINVAL;
6953 
6954 	if (inc && cpu_buffer->mapped == UINT_MAX)
6955 		return -EBUSY;
6956 
6957 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6958 		return -EINVAL;
6959 
6960 	mutex_lock(&cpu_buffer->buffer->mutex);
6961 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6962 
6963 	if (inc) {
6964 		cpu_buffer->user_mapped++;
6965 		cpu_buffer->mapped++;
6966 	} else {
6967 		cpu_buffer->user_mapped--;
6968 		cpu_buffer->mapped--;
6969 	}
6970 
6971 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6972 	mutex_unlock(&cpu_buffer->buffer->mutex);
6973 
6974 	return 0;
6975 }
6976 
6977 /*
6978  *   +--------------+  pgoff == 0
6979  *   |   meta page  |
6980  *   +--------------+  pgoff == 1
6981  *   | subbuffer 0  |
6982  *   |              |
6983  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6984  *   | subbuffer 1  |
6985  *   |              |
6986  *         ...
6987  */
6988 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)6989 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6990 			struct vm_area_struct *vma)
6991 {
6992 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6993 	unsigned int subbuf_pages, subbuf_order;
6994 	struct page **pages;
6995 	int p = 0, s = 0;
6996 	int err;
6997 
6998 	/* Refuse MP_PRIVATE or writable mappings */
6999 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7000 	    !(vma->vm_flags & VM_MAYSHARE))
7001 		return -EPERM;
7002 
7003 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7004 	subbuf_pages = 1 << subbuf_order;
7005 
7006 	if (subbuf_order && pgoff % subbuf_pages)
7007 		return -EINVAL;
7008 
7009 	/*
7010 	 * Make sure the mapping cannot become writable later. Also tell the VM
7011 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7012 	 */
7013 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7014 		     VM_MAYWRITE);
7015 
7016 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7017 
7018 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7019 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7020 	if (nr_pages <= pgoff)
7021 		return -EINVAL;
7022 
7023 	nr_pages -= pgoff;
7024 
7025 	nr_vma_pages = vma_pages(vma);
7026 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7027 		return -EINVAL;
7028 
7029 	nr_pages = nr_vma_pages;
7030 
7031 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7032 	if (!pages)
7033 		return -ENOMEM;
7034 
7035 	if (!pgoff) {
7036 		unsigned long meta_page_padding;
7037 
7038 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7039 
7040 		/*
7041 		 * Pad with the zero-page to align the meta-page with the
7042 		 * sub-buffers.
7043 		 */
7044 		meta_page_padding = subbuf_pages - 1;
7045 		while (meta_page_padding-- && p < nr_pages) {
7046 			unsigned long __maybe_unused zero_addr =
7047 				vma->vm_start + (PAGE_SIZE * p);
7048 
7049 			pages[p++] = ZERO_PAGE(zero_addr);
7050 		}
7051 	} else {
7052 		/* Skip the meta-page */
7053 		pgoff -= subbuf_pages;
7054 
7055 		s += pgoff / subbuf_pages;
7056 	}
7057 
7058 	while (p < nr_pages) {
7059 		struct page *page;
7060 		int off = 0;
7061 
7062 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7063 			err = -EINVAL;
7064 			goto out;
7065 		}
7066 
7067 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7068 
7069 		for (; off < (1 << (subbuf_order)); off++, page++) {
7070 			if (p >= nr_pages)
7071 				break;
7072 
7073 			pages[p++] = page;
7074 		}
7075 		s++;
7076 	}
7077 
7078 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7079 
7080 out:
7081 	kfree(pages);
7082 
7083 	return err;
7084 }
7085 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7086 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7087 			struct vm_area_struct *vma)
7088 {
7089 	return -EOPNOTSUPP;
7090 }
7091 #endif
7092 
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7093 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7094 		    struct vm_area_struct *vma)
7095 {
7096 	struct ring_buffer_per_cpu *cpu_buffer;
7097 	unsigned long flags, *subbuf_ids;
7098 	int err = 0;
7099 
7100 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7101 		return -EINVAL;
7102 
7103 	cpu_buffer = buffer->buffers[cpu];
7104 
7105 	mutex_lock(&cpu_buffer->mapping_lock);
7106 
7107 	if (cpu_buffer->user_mapped) {
7108 		err = __rb_map_vma(cpu_buffer, vma);
7109 		if (!err)
7110 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7111 		mutex_unlock(&cpu_buffer->mapping_lock);
7112 		return err;
7113 	}
7114 
7115 	/* prevent another thread from changing buffer/sub-buffer sizes */
7116 	mutex_lock(&buffer->mutex);
7117 
7118 	err = rb_alloc_meta_page(cpu_buffer);
7119 	if (err)
7120 		goto unlock;
7121 
7122 	/* subbuf_ids include the reader while nr_pages does not */
7123 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7124 	if (!subbuf_ids) {
7125 		rb_free_meta_page(cpu_buffer);
7126 		err = -ENOMEM;
7127 		goto unlock;
7128 	}
7129 
7130 	atomic_inc(&cpu_buffer->resize_disabled);
7131 
7132 	/*
7133 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7134 	 * assigned.
7135 	 */
7136 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7137 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7138 
7139 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7140 
7141 	err = __rb_map_vma(cpu_buffer, vma);
7142 	if (!err) {
7143 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7144 		/* This is the first time it is mapped by user */
7145 		cpu_buffer->mapped++;
7146 		cpu_buffer->user_mapped = 1;
7147 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7148 	} else {
7149 		kfree(cpu_buffer->subbuf_ids);
7150 		cpu_buffer->subbuf_ids = NULL;
7151 		rb_free_meta_page(cpu_buffer);
7152 		atomic_dec(&cpu_buffer->resize_disabled);
7153 	}
7154 
7155 unlock:
7156 	mutex_unlock(&buffer->mutex);
7157 	mutex_unlock(&cpu_buffer->mapping_lock);
7158 
7159 	return err;
7160 }
7161 
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7162 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7163 {
7164 	struct ring_buffer_per_cpu *cpu_buffer;
7165 	unsigned long flags;
7166 	int err = 0;
7167 
7168 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7169 		return -EINVAL;
7170 
7171 	cpu_buffer = buffer->buffers[cpu];
7172 
7173 	mutex_lock(&cpu_buffer->mapping_lock);
7174 
7175 	if (!cpu_buffer->user_mapped) {
7176 		err = -ENODEV;
7177 		goto out;
7178 	} else if (cpu_buffer->user_mapped > 1) {
7179 		__rb_inc_dec_mapped(cpu_buffer, false);
7180 		goto out;
7181 	}
7182 
7183 	mutex_lock(&buffer->mutex);
7184 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7185 
7186 	/* This is the last user space mapping */
7187 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7188 		cpu_buffer->mapped--;
7189 	cpu_buffer->user_mapped = 0;
7190 
7191 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7192 
7193 	kfree(cpu_buffer->subbuf_ids);
7194 	cpu_buffer->subbuf_ids = NULL;
7195 	rb_free_meta_page(cpu_buffer);
7196 	atomic_dec(&cpu_buffer->resize_disabled);
7197 
7198 	mutex_unlock(&buffer->mutex);
7199 
7200 out:
7201 	mutex_unlock(&cpu_buffer->mapping_lock);
7202 
7203 	return err;
7204 }
7205 
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7206 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7207 {
7208 	struct ring_buffer_per_cpu *cpu_buffer;
7209 	struct buffer_page *reader;
7210 	unsigned long missed_events;
7211 	unsigned long reader_size;
7212 	unsigned long flags;
7213 
7214 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7215 	if (IS_ERR(cpu_buffer))
7216 		return (int)PTR_ERR(cpu_buffer);
7217 
7218 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7219 
7220 consume:
7221 	if (rb_per_cpu_empty(cpu_buffer))
7222 		goto out;
7223 
7224 	reader_size = rb_page_size(cpu_buffer->reader_page);
7225 
7226 	/*
7227 	 * There are data to be read on the current reader page, we can
7228 	 * return to the caller. But before that, we assume the latter will read
7229 	 * everything. Let's update the kernel reader accordingly.
7230 	 */
7231 	if (cpu_buffer->reader_page->read < reader_size) {
7232 		while (cpu_buffer->reader_page->read < reader_size)
7233 			rb_advance_reader(cpu_buffer);
7234 		goto out;
7235 	}
7236 
7237 	reader = rb_get_reader_page(cpu_buffer);
7238 	if (WARN_ON(!reader))
7239 		goto out;
7240 
7241 	/* Check if any events were dropped */
7242 	missed_events = cpu_buffer->lost_events;
7243 
7244 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7245 		if (missed_events) {
7246 			struct buffer_data_page *bpage = reader->page;
7247 			unsigned int commit;
7248 			/*
7249 			 * Use the real_end for the data size,
7250 			 * This gives us a chance to store the lost events
7251 			 * on the page.
7252 			 */
7253 			if (reader->real_end)
7254 				local_set(&bpage->commit, reader->real_end);
7255 			/*
7256 			 * If there is room at the end of the page to save the
7257 			 * missed events, then record it there.
7258 			 */
7259 			commit = rb_page_size(reader);
7260 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7261 				memcpy(&bpage->data[commit], &missed_events,
7262 				       sizeof(missed_events));
7263 				local_add(RB_MISSED_STORED, &bpage->commit);
7264 			}
7265 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7266 		}
7267 	} else {
7268 		/*
7269 		 * There really shouldn't be any missed events if the commit
7270 		 * is on the reader page.
7271 		 */
7272 		WARN_ON_ONCE(missed_events);
7273 	}
7274 
7275 	cpu_buffer->lost_events = 0;
7276 
7277 	goto consume;
7278 
7279 out:
7280 	/* Some archs do not have data cache coherency between kernel and user-space */
7281 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7282 
7283 	rb_update_meta_page(cpu_buffer);
7284 
7285 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7286 	rb_put_mapped_buffer(cpu_buffer);
7287 
7288 	return 0;
7289 }
7290 
7291 /*
7292  * We only allocate new buffers, never free them if the CPU goes down.
7293  * If we were to free the buffer, then the user would lose any trace that was in
7294  * the buffer.
7295  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7296 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7297 {
7298 	struct trace_buffer *buffer;
7299 	long nr_pages_same;
7300 	int cpu_i;
7301 	unsigned long nr_pages;
7302 
7303 	buffer = container_of(node, struct trace_buffer, node);
7304 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7305 		return 0;
7306 
7307 	nr_pages = 0;
7308 	nr_pages_same = 1;
7309 	/* check if all cpu sizes are same */
7310 	for_each_buffer_cpu(buffer, cpu_i) {
7311 		/* fill in the size from first enabled cpu */
7312 		if (nr_pages == 0)
7313 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7314 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7315 			nr_pages_same = 0;
7316 			break;
7317 		}
7318 	}
7319 	/* allocate minimum pages, user can later expand it */
7320 	if (!nr_pages_same)
7321 		nr_pages = 2;
7322 	buffer->buffers[cpu] =
7323 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7324 	if (!buffer->buffers[cpu]) {
7325 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7326 		     cpu);
7327 		return -ENOMEM;
7328 	}
7329 	smp_wmb();
7330 	cpumask_set_cpu(cpu, buffer->cpumask);
7331 	return 0;
7332 }
7333 
7334 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7335 /*
7336  * This is a basic integrity check of the ring buffer.
7337  * Late in the boot cycle this test will run when configured in.
7338  * It will kick off a thread per CPU that will go into a loop
7339  * writing to the per cpu ring buffer various sizes of data.
7340  * Some of the data will be large items, some small.
7341  *
7342  * Another thread is created that goes into a spin, sending out
7343  * IPIs to the other CPUs to also write into the ring buffer.
7344  * this is to test the nesting ability of the buffer.
7345  *
7346  * Basic stats are recorded and reported. If something in the
7347  * ring buffer should happen that's not expected, a big warning
7348  * is displayed and all ring buffers are disabled.
7349  */
7350 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7351 
7352 struct rb_test_data {
7353 	struct trace_buffer *buffer;
7354 	unsigned long		events;
7355 	unsigned long		bytes_written;
7356 	unsigned long		bytes_alloc;
7357 	unsigned long		bytes_dropped;
7358 	unsigned long		events_nested;
7359 	unsigned long		bytes_written_nested;
7360 	unsigned long		bytes_alloc_nested;
7361 	unsigned long		bytes_dropped_nested;
7362 	int			min_size_nested;
7363 	int			max_size_nested;
7364 	int			max_size;
7365 	int			min_size;
7366 	int			cpu;
7367 	int			cnt;
7368 };
7369 
7370 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7371 
7372 /* 1 meg per cpu */
7373 #define RB_TEST_BUFFER_SIZE	1048576
7374 
7375 static char rb_string[] __initdata =
7376 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7377 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7378 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7379 
7380 static bool rb_test_started __initdata;
7381 
7382 struct rb_item {
7383 	int size;
7384 	char str[];
7385 };
7386 
rb_write_something(struct rb_test_data * data,bool nested)7387 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7388 {
7389 	struct ring_buffer_event *event;
7390 	struct rb_item *item;
7391 	bool started;
7392 	int event_len;
7393 	int size;
7394 	int len;
7395 	int cnt;
7396 
7397 	/* Have nested writes different that what is written */
7398 	cnt = data->cnt + (nested ? 27 : 0);
7399 
7400 	/* Multiply cnt by ~e, to make some unique increment */
7401 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7402 
7403 	len = size + sizeof(struct rb_item);
7404 
7405 	started = rb_test_started;
7406 	/* read rb_test_started before checking buffer enabled */
7407 	smp_rmb();
7408 
7409 	event = ring_buffer_lock_reserve(data->buffer, len);
7410 	if (!event) {
7411 		/* Ignore dropped events before test starts. */
7412 		if (started) {
7413 			if (nested)
7414 				data->bytes_dropped += len;
7415 			else
7416 				data->bytes_dropped_nested += len;
7417 		}
7418 		return len;
7419 	}
7420 
7421 	event_len = ring_buffer_event_length(event);
7422 
7423 	if (RB_WARN_ON(data->buffer, event_len < len))
7424 		goto out;
7425 
7426 	item = ring_buffer_event_data(event);
7427 	item->size = size;
7428 	memcpy(item->str, rb_string, size);
7429 
7430 	if (nested) {
7431 		data->bytes_alloc_nested += event_len;
7432 		data->bytes_written_nested += len;
7433 		data->events_nested++;
7434 		if (!data->min_size_nested || len < data->min_size_nested)
7435 			data->min_size_nested = len;
7436 		if (len > data->max_size_nested)
7437 			data->max_size_nested = len;
7438 	} else {
7439 		data->bytes_alloc += event_len;
7440 		data->bytes_written += len;
7441 		data->events++;
7442 		if (!data->min_size || len < data->min_size)
7443 			data->max_size = len;
7444 		if (len > data->max_size)
7445 			data->max_size = len;
7446 	}
7447 
7448  out:
7449 	ring_buffer_unlock_commit(data->buffer);
7450 
7451 	return 0;
7452 }
7453 
rb_test(void * arg)7454 static __init int rb_test(void *arg)
7455 {
7456 	struct rb_test_data *data = arg;
7457 
7458 	while (!kthread_should_stop()) {
7459 		rb_write_something(data, false);
7460 		data->cnt++;
7461 
7462 		set_current_state(TASK_INTERRUPTIBLE);
7463 		/* Now sleep between a min of 100-300us and a max of 1ms */
7464 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7465 	}
7466 
7467 	return 0;
7468 }
7469 
rb_ipi(void * ignore)7470 static __init void rb_ipi(void *ignore)
7471 {
7472 	struct rb_test_data *data;
7473 	int cpu = smp_processor_id();
7474 
7475 	data = &rb_data[cpu];
7476 	rb_write_something(data, true);
7477 }
7478 
rb_hammer_test(void * arg)7479 static __init int rb_hammer_test(void *arg)
7480 {
7481 	while (!kthread_should_stop()) {
7482 
7483 		/* Send an IPI to all cpus to write data! */
7484 		smp_call_function(rb_ipi, NULL, 1);
7485 		/* No sleep, but for non preempt, let others run */
7486 		schedule();
7487 	}
7488 
7489 	return 0;
7490 }
7491 
test_ringbuffer(void)7492 static __init int test_ringbuffer(void)
7493 {
7494 	struct task_struct *rb_hammer;
7495 	struct trace_buffer *buffer;
7496 	int cpu;
7497 	int ret = 0;
7498 
7499 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7500 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7501 		return 0;
7502 	}
7503 
7504 	pr_info("Running ring buffer tests...\n");
7505 
7506 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7507 	if (WARN_ON(!buffer))
7508 		return 0;
7509 
7510 	/* Disable buffer so that threads can't write to it yet */
7511 	ring_buffer_record_off(buffer);
7512 
7513 	for_each_online_cpu(cpu) {
7514 		rb_data[cpu].buffer = buffer;
7515 		rb_data[cpu].cpu = cpu;
7516 		rb_data[cpu].cnt = cpu;
7517 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7518 						     cpu, "rbtester/%u");
7519 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7520 			pr_cont("FAILED\n");
7521 			ret = PTR_ERR(rb_threads[cpu]);
7522 			goto out_free;
7523 		}
7524 	}
7525 
7526 	/* Now create the rb hammer! */
7527 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7528 	if (WARN_ON(IS_ERR(rb_hammer))) {
7529 		pr_cont("FAILED\n");
7530 		ret = PTR_ERR(rb_hammer);
7531 		goto out_free;
7532 	}
7533 
7534 	ring_buffer_record_on(buffer);
7535 	/*
7536 	 * Show buffer is enabled before setting rb_test_started.
7537 	 * Yes there's a small race window where events could be
7538 	 * dropped and the thread wont catch it. But when a ring
7539 	 * buffer gets enabled, there will always be some kind of
7540 	 * delay before other CPUs see it. Thus, we don't care about
7541 	 * those dropped events. We care about events dropped after
7542 	 * the threads see that the buffer is active.
7543 	 */
7544 	smp_wmb();
7545 	rb_test_started = true;
7546 
7547 	set_current_state(TASK_INTERRUPTIBLE);
7548 	/* Just run for 10 seconds */;
7549 	schedule_timeout(10 * HZ);
7550 
7551 	kthread_stop(rb_hammer);
7552 
7553  out_free:
7554 	for_each_online_cpu(cpu) {
7555 		if (!rb_threads[cpu])
7556 			break;
7557 		kthread_stop(rb_threads[cpu]);
7558 	}
7559 	if (ret) {
7560 		ring_buffer_free(buffer);
7561 		return ret;
7562 	}
7563 
7564 	/* Report! */
7565 	pr_info("finished\n");
7566 	for_each_online_cpu(cpu) {
7567 		struct ring_buffer_event *event;
7568 		struct rb_test_data *data = &rb_data[cpu];
7569 		struct rb_item *item;
7570 		unsigned long total_events;
7571 		unsigned long total_dropped;
7572 		unsigned long total_written;
7573 		unsigned long total_alloc;
7574 		unsigned long total_read = 0;
7575 		unsigned long total_size = 0;
7576 		unsigned long total_len = 0;
7577 		unsigned long total_lost = 0;
7578 		unsigned long lost;
7579 		int big_event_size;
7580 		int small_event_size;
7581 
7582 		ret = -1;
7583 
7584 		total_events = data->events + data->events_nested;
7585 		total_written = data->bytes_written + data->bytes_written_nested;
7586 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7587 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7588 
7589 		big_event_size = data->max_size + data->max_size_nested;
7590 		small_event_size = data->min_size + data->min_size_nested;
7591 
7592 		pr_info("CPU %d:\n", cpu);
7593 		pr_info("              events:    %ld\n", total_events);
7594 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7595 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7596 		pr_info("       written bytes:    %ld\n", total_written);
7597 		pr_info("       biggest event:    %d\n", big_event_size);
7598 		pr_info("      smallest event:    %d\n", small_event_size);
7599 
7600 		if (RB_WARN_ON(buffer, total_dropped))
7601 			break;
7602 
7603 		ret = 0;
7604 
7605 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7606 			total_lost += lost;
7607 			item = ring_buffer_event_data(event);
7608 			total_len += ring_buffer_event_length(event);
7609 			total_size += item->size + sizeof(struct rb_item);
7610 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7611 				pr_info("FAILED!\n");
7612 				pr_info("buffer had: %.*s\n", item->size, item->str);
7613 				pr_info("expected:   %.*s\n", item->size, rb_string);
7614 				RB_WARN_ON(buffer, 1);
7615 				ret = -1;
7616 				break;
7617 			}
7618 			total_read++;
7619 		}
7620 		if (ret)
7621 			break;
7622 
7623 		ret = -1;
7624 
7625 		pr_info("         read events:   %ld\n", total_read);
7626 		pr_info("         lost events:   %ld\n", total_lost);
7627 		pr_info("        total events:   %ld\n", total_lost + total_read);
7628 		pr_info("  recorded len bytes:   %ld\n", total_len);
7629 		pr_info(" recorded size bytes:   %ld\n", total_size);
7630 		if (total_lost) {
7631 			pr_info(" With dropped events, record len and size may not match\n"
7632 				" alloced and written from above\n");
7633 		} else {
7634 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7635 				       total_size != total_written))
7636 				break;
7637 		}
7638 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7639 			break;
7640 
7641 		ret = 0;
7642 	}
7643 	if (!ret)
7644 		pr_info("Ring buffer PASSED!\n");
7645 
7646 	ring_buffer_free(buffer);
7647 	return 0;
7648 }
7649 
7650 late_initcall(test_ringbuffer);
7651 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7652