1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "kcov: " fmt 3 4 #define DISABLE_BRANCH_PROFILING 5 #include <linux/atomic.h> 6 #include <linux/compiler.h> 7 #include <linux/errno.h> 8 #include <linux/export.h> 9 #include <linux/types.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/hashtable.h> 13 #include <linux/init.h> 14 #include <linux/jiffies.h> 15 #include <linux/kmsan-checks.h> 16 #include <linux/mm.h> 17 #include <linux/preempt.h> 18 #include <linux/printk.h> 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/vmalloc.h> 23 #include <linux/debugfs.h> 24 #include <linux/uaccess.h> 25 #include <linux/kcov.h> 26 #include <linux/refcount.h> 27 #include <linux/log2.h> 28 #include <asm/setup.h> 29 30 #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) 31 32 /* Number of 64-bit words written per one comparison: */ 33 #define KCOV_WORDS_PER_CMP 4 34 35 /* 36 * kcov descriptor (one per opened debugfs file). 37 * State transitions of the descriptor: 38 * - initial state after open() 39 * - then there must be a single ioctl(KCOV_INIT_TRACE) call 40 * - then, mmap() call (several calls are allowed but not useful) 41 * - then, ioctl(KCOV_ENABLE, arg), where arg is 42 * KCOV_TRACE_PC - to trace only the PCs 43 * or 44 * KCOV_TRACE_CMP - to trace only the comparison operands 45 * - then, ioctl(KCOV_DISABLE) to disable the task. 46 * Enabling/disabling ioctls can be repeated (only one task a time allowed). 47 */ 48 struct kcov { 49 /* 50 * Reference counter. We keep one for: 51 * - opened file descriptor 52 * - task with enabled coverage (we can't unwire it from another task) 53 * - each code section for remote coverage collection 54 */ 55 refcount_t refcount; 56 /* The lock protects mode, size, area and t. */ 57 spinlock_t lock; 58 enum kcov_mode mode __guarded_by(&lock); 59 /* Size of arena (in long's). */ 60 unsigned int size __guarded_by(&lock); 61 /* Coverage buffer shared with user space. */ 62 void *area __guarded_by(&lock); 63 /* Task for which we collect coverage, or NULL. */ 64 struct task_struct *t __guarded_by(&lock); 65 /* Collecting coverage from remote (background) threads. */ 66 bool remote; 67 /* Size of remote area (in long's). */ 68 unsigned int remote_size; 69 /* 70 * Sequence is incremented each time kcov is reenabled, used by 71 * kcov_remote_stop(), see the comment there. 72 */ 73 int sequence; 74 }; 75 76 struct kcov_remote_area { 77 struct list_head list; 78 unsigned int size; 79 }; 80 81 struct kcov_remote { 82 u64 handle; 83 struct kcov *kcov; 84 struct hlist_node hnode; 85 }; 86 87 static DEFINE_SPINLOCK(kcov_remote_lock); 88 static DEFINE_HASHTABLE(kcov_remote_map, 4); 89 static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); 90 91 struct kcov_percpu_data { 92 void *irq_area; 93 local_lock_t lock; 94 95 unsigned int saved_mode; 96 unsigned int saved_size; 97 void *saved_area; 98 struct kcov *saved_kcov; 99 int saved_sequence; 100 }; 101 102 static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { 103 .lock = INIT_LOCAL_LOCK(lock), 104 }; 105 106 /* Must be called with kcov_remote_lock locked. */ 107 static struct kcov_remote *kcov_remote_find(u64 handle) 108 { 109 struct kcov_remote *remote; 110 111 hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { 112 if (remote->handle == handle) 113 return remote; 114 } 115 return NULL; 116 } 117 118 /* Must be called with kcov_remote_lock locked. */ 119 static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) 120 { 121 struct kcov_remote *remote; 122 123 if (kcov_remote_find(handle)) 124 return ERR_PTR(-EEXIST); 125 remote = kmalloc(sizeof(*remote), GFP_ATOMIC); 126 if (!remote) 127 return ERR_PTR(-ENOMEM); 128 remote->handle = handle; 129 remote->kcov = kcov; 130 hash_add(kcov_remote_map, &remote->hnode, handle); 131 return remote; 132 } 133 134 /* Must be called with kcov_remote_lock locked. */ 135 static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) 136 { 137 struct kcov_remote_area *area; 138 struct list_head *pos; 139 140 list_for_each(pos, &kcov_remote_areas) { 141 area = list_entry(pos, struct kcov_remote_area, list); 142 if (area->size == size) { 143 list_del(&area->list); 144 return area; 145 } 146 } 147 return NULL; 148 } 149 150 /* Must be called with kcov_remote_lock locked. */ 151 static void kcov_remote_area_put(struct kcov_remote_area *area, 152 unsigned int size) 153 { 154 INIT_LIST_HEAD(&area->list); 155 area->size = size; 156 list_add(&area->list, &kcov_remote_areas); 157 /* 158 * KMSAN doesn't instrument this file, so it may not know area->list 159 * is initialized. Unpoison it explicitly to avoid reports in 160 * kcov_remote_area_get(). 161 */ 162 kmsan_unpoison_memory(&area->list, sizeof(area->list)); 163 } 164 165 /* 166 * Unlike in_serving_softirq(), this function returns false when called during 167 * a hardirq or an NMI that happened in the softirq context. 168 */ 169 static __always_inline bool in_softirq_really(void) 170 { 171 return in_serving_softirq() && !in_hardirq() && !in_nmi(); 172 } 173 174 static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) 175 { 176 unsigned int mode; 177 178 /* 179 * We are interested in code coverage as a function of a syscall inputs, 180 * so we ignore code executed in interrupts, unless we are in a remote 181 * coverage collection section in a softirq. 182 */ 183 if (!in_task() && !(in_softirq_really() && t->kcov_softirq)) 184 return false; 185 mode = READ_ONCE(t->kcov_mode); 186 /* 187 * There is some code that runs in interrupts but for which 188 * in_interrupt() returns false (e.g. preempt_schedule_irq()). 189 * READ_ONCE()/barrier() effectively provides load-acquire wrt 190 * interrupts, there are paired barrier()/WRITE_ONCE() in 191 * kcov_start(). 192 */ 193 barrier(); 194 return mode == needed_mode; 195 } 196 197 static notrace unsigned long canonicalize_ip(unsigned long ip) 198 { 199 #ifdef CONFIG_RANDOMIZE_BASE 200 ip -= kaslr_offset(); 201 #endif 202 return ip; 203 } 204 205 /* 206 * Entry point from instrumented code. 207 * This is called once per basic-block/edge. 208 */ 209 void notrace __sanitizer_cov_trace_pc(void) 210 { 211 struct task_struct *t; 212 unsigned long *area; 213 unsigned long ip = canonicalize_ip(_RET_IP_); 214 unsigned long pos; 215 216 t = current; 217 if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) 218 return; 219 220 area = t->kcov_area; 221 /* The first 64-bit word is the number of subsequent PCs. */ 222 pos = READ_ONCE(area[0]) + 1; 223 if (likely(pos < t->kcov_size)) { 224 /* Previously we write pc before updating pos. However, some 225 * early interrupt code could bypass check_kcov_mode() check 226 * and invoke __sanitizer_cov_trace_pc(). If such interrupt is 227 * raised between writing pc and updating pos, the pc could be 228 * overitten by the recursive __sanitizer_cov_trace_pc(). 229 * Update pos before writing pc to avoid such interleaving. 230 */ 231 WRITE_ONCE(area[0], pos); 232 barrier(); 233 area[pos] = ip; 234 } 235 } 236 EXPORT_SYMBOL(__sanitizer_cov_trace_pc); 237 238 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 239 static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) 240 { 241 struct task_struct *t; 242 u64 *area; 243 u64 count, start_index, end_pos, max_pos; 244 245 t = current; 246 if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) 247 return; 248 249 ip = canonicalize_ip(ip); 250 251 /* 252 * We write all comparison arguments and types as u64. 253 * The buffer was allocated for t->kcov_size unsigned longs. 254 */ 255 area = (u64 *)t->kcov_area; 256 max_pos = t->kcov_size * sizeof(unsigned long); 257 258 count = READ_ONCE(area[0]); 259 260 /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ 261 start_index = 1 + count * KCOV_WORDS_PER_CMP; 262 end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); 263 if (likely(end_pos <= max_pos)) { 264 /* See comment in __sanitizer_cov_trace_pc(). */ 265 WRITE_ONCE(area[0], count + 1); 266 barrier(); 267 area[start_index] = type; 268 area[start_index + 1] = arg1; 269 area[start_index + 2] = arg2; 270 area[start_index + 3] = ip; 271 } 272 } 273 274 void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) 275 { 276 write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); 277 } 278 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); 279 280 void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) 281 { 282 write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); 283 } 284 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); 285 286 void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) 287 { 288 write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); 289 } 290 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); 291 292 void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2) 293 { 294 write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); 295 } 296 EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); 297 298 void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) 299 { 300 write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, 301 _RET_IP_); 302 } 303 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); 304 305 void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) 306 { 307 write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, 308 _RET_IP_); 309 } 310 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); 311 312 void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) 313 { 314 write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, 315 _RET_IP_); 316 } 317 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); 318 319 void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2) 320 { 321 write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, 322 _RET_IP_); 323 } 324 EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); 325 326 void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg) 327 { 328 u64 i; 329 u64 *cases = arg; 330 u64 count = cases[0]; 331 u64 size = cases[1]; 332 u64 type = KCOV_CMP_CONST; 333 334 switch (size) { 335 case 8: 336 type |= KCOV_CMP_SIZE(0); 337 break; 338 case 16: 339 type |= KCOV_CMP_SIZE(1); 340 break; 341 case 32: 342 type |= KCOV_CMP_SIZE(2); 343 break; 344 case 64: 345 type |= KCOV_CMP_SIZE(3); 346 break; 347 default: 348 return; 349 } 350 for (i = 0; i < count; i++) 351 write_comp_data(type, cases[i + 2], val, _RET_IP_); 352 } 353 EXPORT_SYMBOL(__sanitizer_cov_trace_switch); 354 #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ 355 356 static void kcov_start(struct task_struct *t, struct kcov *kcov, 357 unsigned int size, void *area, enum kcov_mode mode, 358 int sequence) 359 { 360 kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); 361 t->kcov = kcov; 362 /* Cache in task struct for performance. */ 363 t->kcov_size = size; 364 t->kcov_area = area; 365 t->kcov_sequence = sequence; 366 /* See comment in check_kcov_mode(). */ 367 barrier(); 368 WRITE_ONCE(t->kcov_mode, mode); 369 } 370 371 static void kcov_stop(struct task_struct *t) 372 { 373 WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); 374 barrier(); 375 t->kcov = NULL; 376 t->kcov_size = 0; 377 t->kcov_area = NULL; 378 } 379 380 static void kcov_task_reset(struct task_struct *t) 381 { 382 kcov_stop(t); 383 t->kcov_sequence = 0; 384 t->kcov_handle = 0; 385 } 386 387 void kcov_task_init(struct task_struct *t) 388 { 389 kcov_task_reset(t); 390 t->kcov_handle = current->kcov_handle; 391 } 392 393 static void kcov_reset(struct kcov *kcov) 394 __must_hold(&kcov->lock) 395 { 396 kcov->t = NULL; 397 kcov->mode = KCOV_MODE_INIT; 398 kcov->remote = false; 399 kcov->remote_size = 0; 400 kcov->sequence++; 401 } 402 403 static void kcov_remote_reset(struct kcov *kcov) 404 __must_hold(&kcov->lock) 405 { 406 int bkt; 407 struct kcov_remote *remote; 408 struct hlist_node *tmp; 409 unsigned long flags; 410 411 spin_lock_irqsave(&kcov_remote_lock, flags); 412 hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { 413 if (remote->kcov != kcov) 414 continue; 415 hash_del(&remote->hnode); 416 kfree(remote); 417 } 418 /* Do reset before unlock to prevent races with kcov_remote_start(). */ 419 kcov_reset(kcov); 420 spin_unlock_irqrestore(&kcov_remote_lock, flags); 421 } 422 423 static void kcov_disable(struct task_struct *t, struct kcov *kcov) 424 __must_hold(&kcov->lock) 425 { 426 kcov_task_reset(t); 427 if (kcov->remote) 428 kcov_remote_reset(kcov); 429 else 430 kcov_reset(kcov); 431 } 432 433 static void kcov_get(struct kcov *kcov) 434 { 435 refcount_inc(&kcov->refcount); 436 } 437 438 static void kcov_put(struct kcov *kcov) 439 { 440 if (refcount_dec_and_test(&kcov->refcount)) { 441 /* Context-safety: no references left, object being destroyed. */ 442 context_unsafe( 443 kcov_remote_reset(kcov); 444 vfree(kcov->area); 445 ); 446 kfree(kcov); 447 } 448 } 449 450 void kcov_task_exit(struct task_struct *t) 451 { 452 struct kcov *kcov; 453 unsigned long flags; 454 455 kcov = t->kcov; 456 if (kcov == NULL) 457 return; 458 459 spin_lock_irqsave(&kcov->lock, flags); 460 kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); 461 /* 462 * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, 463 * which comes down to: 464 * WARN_ON(!kcov->remote && kcov->t != t); 465 * 466 * For KCOV_REMOTE_ENABLE devices, the exiting task is either: 467 * 468 * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). 469 * In this case we should print a warning right away, since a task 470 * shouldn't be exiting when it's in a kcov coverage collection 471 * section. Here t points to the task that is collecting remote 472 * coverage, and t->kcov->t points to the thread that created the 473 * kcov device. Which means that to detect this case we need to 474 * check that t != t->kcov->t, and this gives us the following: 475 * WARN_ON(kcov->remote && kcov->t != t); 476 * 477 * 2. The task that created kcov exiting without calling KCOV_DISABLE, 478 * and then again we make sure that t->kcov->t == t: 479 * WARN_ON(kcov->remote && kcov->t != t); 480 * 481 * By combining all three checks into one we get: 482 */ 483 if (WARN_ON(kcov->t != t)) { 484 spin_unlock_irqrestore(&kcov->lock, flags); 485 return; 486 } 487 /* Just to not leave dangling references behind. */ 488 kcov_disable(t, kcov); 489 spin_unlock_irqrestore(&kcov->lock, flags); 490 kcov_put(kcov); 491 } 492 493 static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) 494 { 495 int res = 0; 496 struct kcov *kcov = vma->vm_file->private_data; 497 unsigned long size, off; 498 struct page *page; 499 unsigned long flags; 500 void *area; 501 502 spin_lock_irqsave(&kcov->lock, flags); 503 size = kcov->size * sizeof(unsigned long); 504 if (kcov->area == NULL || vma->vm_pgoff != 0 || 505 vma->vm_end - vma->vm_start != size) { 506 res = -EINVAL; 507 goto exit; 508 } 509 area = kcov->area; 510 spin_unlock_irqrestore(&kcov->lock, flags); 511 vm_flags_set(vma, VM_DONTEXPAND); 512 for (off = 0; off < size; off += PAGE_SIZE) { 513 page = vmalloc_to_page(area + off); 514 res = vm_insert_page(vma, vma->vm_start + off, page); 515 if (res) { 516 pr_warn_once("kcov: vm_insert_page() failed\n"); 517 return res; 518 } 519 } 520 return 0; 521 exit: 522 spin_unlock_irqrestore(&kcov->lock, flags); 523 return res; 524 } 525 526 static int kcov_open(struct inode *inode, struct file *filep) 527 { 528 struct kcov *kcov; 529 530 kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); 531 if (!kcov) 532 return -ENOMEM; 533 guard(spinlock_init)(&kcov->lock); 534 kcov->mode = KCOV_MODE_DISABLED; 535 kcov->sequence = 1; 536 refcount_set(&kcov->refcount, 1); 537 filep->private_data = kcov; 538 return nonseekable_open(inode, filep); 539 } 540 541 static int kcov_close(struct inode *inode, struct file *filep) 542 { 543 kcov_put(filep->private_data); 544 return 0; 545 } 546 547 static int kcov_get_mode(unsigned long arg) 548 { 549 if (arg == KCOV_TRACE_PC) 550 return KCOV_MODE_TRACE_PC; 551 else if (arg == KCOV_TRACE_CMP) 552 #ifdef CONFIG_KCOV_ENABLE_COMPARISONS 553 return KCOV_MODE_TRACE_CMP; 554 #else 555 return -ENOTSUPP; 556 #endif 557 else 558 return -EINVAL; 559 } 560 561 /* 562 * Fault in a lazily-faulted vmalloc area before it can be used by 563 * __sanitizer_cov_trace_pc(), to avoid recursion issues if any code on the 564 * vmalloc fault handling path is instrumented. 565 */ 566 static void kcov_fault_in_area(struct kcov *kcov) 567 __must_hold(&kcov->lock) 568 { 569 unsigned long stride = PAGE_SIZE / sizeof(unsigned long); 570 unsigned long *area = kcov->area; 571 unsigned long offset; 572 573 for (offset = 0; offset < kcov->size; offset += stride) 574 READ_ONCE(area[offset]); 575 } 576 577 static inline bool kcov_check_handle(u64 handle, bool common_valid, 578 bool uncommon_valid, bool zero_valid) 579 { 580 if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) 581 return false; 582 switch (handle & KCOV_SUBSYSTEM_MASK) { 583 case KCOV_SUBSYSTEM_COMMON: 584 return (handle & KCOV_INSTANCE_MASK) ? 585 common_valid : zero_valid; 586 case KCOV_SUBSYSTEM_USB: 587 return uncommon_valid; 588 default: 589 return false; 590 } 591 return false; 592 } 593 594 static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, 595 unsigned long arg) 596 __must_hold(&kcov->lock) 597 { 598 struct task_struct *t; 599 unsigned long flags, unused; 600 int mode, i; 601 struct kcov_remote_arg *remote_arg; 602 struct kcov_remote *remote; 603 604 switch (cmd) { 605 case KCOV_ENABLE: 606 /* 607 * Enable coverage for the current task. 608 * At this point user must have been enabled trace mode, 609 * and mmapped the file. Coverage collection is disabled only 610 * at task exit or voluntary by KCOV_DISABLE. After that it can 611 * be enabled for another task. 612 */ 613 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 614 return -EINVAL; 615 t = current; 616 if (kcov->t != NULL || t->kcov != NULL) 617 return -EBUSY; 618 mode = kcov_get_mode(arg); 619 if (mode < 0) 620 return mode; 621 kcov_fault_in_area(kcov); 622 kcov->mode = mode; 623 kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, 624 kcov->sequence); 625 kcov->t = t; 626 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 627 kcov_get(kcov); 628 return 0; 629 case KCOV_DISABLE: 630 /* Disable coverage for the current task. */ 631 unused = arg; 632 if (unused != 0 || current->kcov != kcov) 633 return -EINVAL; 634 t = current; 635 if (WARN_ON(kcov->t != t)) 636 return -EINVAL; 637 kcov_disable(t, kcov); 638 kcov_put(kcov); 639 return 0; 640 case KCOV_REMOTE_ENABLE: 641 if (kcov->mode != KCOV_MODE_INIT || !kcov->area) 642 return -EINVAL; 643 t = current; 644 if (kcov->t != NULL || t->kcov != NULL) 645 return -EBUSY; 646 remote_arg = (struct kcov_remote_arg *)arg; 647 mode = kcov_get_mode(remote_arg->trace_mode); 648 if (mode < 0) 649 return mode; 650 if ((unsigned long)remote_arg->area_size > 651 LONG_MAX / sizeof(unsigned long)) 652 return -EINVAL; 653 kcov->mode = mode; 654 t->kcov = kcov; 655 t->kcov_mode = KCOV_MODE_REMOTE; 656 kcov->t = t; 657 kcov->remote = true; 658 kcov->remote_size = remote_arg->area_size; 659 spin_lock_irqsave(&kcov_remote_lock, flags); 660 for (i = 0; i < remote_arg->num_handles; i++) { 661 if (!kcov_check_handle(remote_arg->handles[i], 662 false, true, false)) { 663 spin_unlock_irqrestore(&kcov_remote_lock, 664 flags); 665 kcov_disable(t, kcov); 666 return -EINVAL; 667 } 668 remote = kcov_remote_add(kcov, remote_arg->handles[i]); 669 if (IS_ERR(remote)) { 670 spin_unlock_irqrestore(&kcov_remote_lock, 671 flags); 672 kcov_disable(t, kcov); 673 return PTR_ERR(remote); 674 } 675 } 676 if (remote_arg->common_handle) { 677 if (!kcov_check_handle(remote_arg->common_handle, 678 true, false, false)) { 679 spin_unlock_irqrestore(&kcov_remote_lock, 680 flags); 681 kcov_disable(t, kcov); 682 return -EINVAL; 683 } 684 remote = kcov_remote_add(kcov, 685 remote_arg->common_handle); 686 if (IS_ERR(remote)) { 687 spin_unlock_irqrestore(&kcov_remote_lock, 688 flags); 689 kcov_disable(t, kcov); 690 return PTR_ERR(remote); 691 } 692 t->kcov_handle = remote_arg->common_handle; 693 } 694 spin_unlock_irqrestore(&kcov_remote_lock, flags); 695 /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ 696 kcov_get(kcov); 697 return 0; 698 default: 699 return -ENOTTY; 700 } 701 } 702 703 static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) 704 { 705 struct kcov *kcov; 706 int res; 707 struct kcov_remote_arg *remote_arg = NULL; 708 unsigned int remote_num_handles; 709 unsigned long remote_arg_size; 710 unsigned long size, flags; 711 void *area; 712 713 kcov = filep->private_data; 714 switch (cmd) { 715 case KCOV_INIT_TRACE: 716 /* 717 * Enable kcov in trace mode and setup buffer size. 718 * Must happen before anything else. 719 * 720 * First check the size argument - it must be at least 2 721 * to hold the current position and one PC. 722 */ 723 size = arg; 724 if (size < 2 || size > INT_MAX / sizeof(unsigned long)) 725 return -EINVAL; 726 area = vmalloc_user(size * sizeof(unsigned long)); 727 if (area == NULL) 728 return -ENOMEM; 729 spin_lock_irqsave(&kcov->lock, flags); 730 if (kcov->mode != KCOV_MODE_DISABLED) { 731 spin_unlock_irqrestore(&kcov->lock, flags); 732 vfree(area); 733 return -EBUSY; 734 } 735 kcov->area = area; 736 kcov->size = size; 737 kcov->mode = KCOV_MODE_INIT; 738 spin_unlock_irqrestore(&kcov->lock, flags); 739 return 0; 740 case KCOV_REMOTE_ENABLE: 741 if (get_user(remote_num_handles, (unsigned __user *)(arg + 742 offsetof(struct kcov_remote_arg, num_handles)))) 743 return -EFAULT; 744 if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) 745 return -EINVAL; 746 remote_arg_size = struct_size(remote_arg, handles, 747 remote_num_handles); 748 remote_arg = memdup_user((void __user *)arg, remote_arg_size); 749 if (IS_ERR(remote_arg)) 750 return PTR_ERR(remote_arg); 751 if (remote_arg->num_handles != remote_num_handles) { 752 kfree(remote_arg); 753 return -EINVAL; 754 } 755 arg = (unsigned long)remote_arg; 756 fallthrough; 757 default: 758 /* 759 * All other commands can be normally executed under a spin lock, so we 760 * obtain and release it here in order to simplify kcov_ioctl_locked(). 761 */ 762 spin_lock_irqsave(&kcov->lock, flags); 763 res = kcov_ioctl_locked(kcov, cmd, arg); 764 spin_unlock_irqrestore(&kcov->lock, flags); 765 kfree(remote_arg); 766 return res; 767 } 768 } 769 770 static const struct file_operations kcov_fops = { 771 .open = kcov_open, 772 .unlocked_ioctl = kcov_ioctl, 773 .compat_ioctl = kcov_ioctl, 774 .mmap = kcov_mmap, 775 .release = kcov_close, 776 }; 777 778 /* 779 * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section 780 * of code in a kernel background thread or in a softirq to allow kcov to be 781 * used to collect coverage from that part of code. 782 * 783 * The handle argument of kcov_remote_start() identifies a code section that is 784 * used for coverage collection. A userspace process passes this handle to 785 * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting 786 * coverage for the code section identified by this handle. 787 * 788 * The usage of these annotations in the kernel code is different depending on 789 * the type of the kernel thread whose code is being annotated. 790 * 791 * For global kernel threads that are spawned in a limited number of instances 792 * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for 793 * softirqs, each instance must be assigned a unique 4-byte instance id. The 794 * instance id is then combined with a 1-byte subsystem id to get a handle via 795 * kcov_remote_handle(subsystem_id, instance_id). 796 * 797 * For local kernel threads that are spawned from system calls handler when a 798 * user interacts with some kernel interface (e.g. vhost workers), a handle is 799 * passed from a userspace process as the common_handle field of the 800 * kcov_remote_arg struct (note, that the user must generate a handle by using 801 * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an 802 * arbitrary 4-byte non-zero number as the instance id). This common handle 803 * then gets saved into the task_struct of the process that issued the 804 * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn 805 * kernel threads, the common handle must be retrieved via kcov_common_handle() 806 * and passed to the spawned threads via custom annotations. Those kernel 807 * threads must in turn be annotated with kcov_remote_start(common_handle) and 808 * kcov_remote_stop(). All of the threads that are spawned by the same process 809 * obtain the same handle, hence the name "common". 810 * 811 * See Documentation/dev-tools/kcov.rst for more details. 812 * 813 * Internally, kcov_remote_start() looks up the kcov device associated with the 814 * provided handle, allocates an area for coverage collection, and saves the 815 * pointers to kcov and area into the current task_struct to allow coverage to 816 * be collected via __sanitizer_cov_trace_pc(). 817 * In turns kcov_remote_stop() clears those pointers from task_struct to stop 818 * collecting coverage and copies all collected coverage into the kcov area. 819 */ 820 821 static inline bool kcov_mode_enabled(unsigned int mode) 822 { 823 return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; 824 } 825 826 static void kcov_remote_softirq_start(struct task_struct *t) 827 __must_hold(&kcov_percpu_data.lock) 828 { 829 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 830 unsigned int mode; 831 832 mode = READ_ONCE(t->kcov_mode); 833 barrier(); 834 if (kcov_mode_enabled(mode)) { 835 data->saved_mode = mode; 836 data->saved_size = t->kcov_size; 837 data->saved_area = t->kcov_area; 838 data->saved_sequence = t->kcov_sequence; 839 data->saved_kcov = t->kcov; 840 kcov_stop(t); 841 } 842 } 843 844 static void kcov_remote_softirq_stop(struct task_struct *t) 845 __must_hold(&kcov_percpu_data.lock) 846 { 847 struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); 848 849 if (data->saved_kcov) { 850 kcov_start(t, data->saved_kcov, data->saved_size, 851 data->saved_area, data->saved_mode, 852 data->saved_sequence); 853 data->saved_mode = 0; 854 data->saved_size = 0; 855 data->saved_area = NULL; 856 data->saved_sequence = 0; 857 data->saved_kcov = NULL; 858 } 859 } 860 861 void kcov_remote_start(u64 handle) 862 { 863 struct task_struct *t = current; 864 struct kcov_remote *remote; 865 struct kcov *kcov; 866 unsigned int mode; 867 void *area; 868 unsigned int size; 869 int sequence; 870 unsigned long flags; 871 872 if (WARN_ON(!kcov_check_handle(handle, true, true, true))) 873 return; 874 if (!in_task() && !in_softirq_really()) 875 return; 876 877 local_lock_irqsave(&kcov_percpu_data.lock, flags); 878 879 /* 880 * Check that kcov_remote_start() is not called twice in background 881 * threads nor called by user tasks (with enabled kcov). 882 */ 883 mode = READ_ONCE(t->kcov_mode); 884 if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { 885 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 886 return; 887 } 888 /* 889 * Check that kcov_remote_start() is not called twice in softirqs. 890 * Note, that kcov_remote_start() can be called from a softirq that 891 * happened while collecting coverage from a background thread. 892 */ 893 if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { 894 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 895 return; 896 } 897 898 spin_lock(&kcov_remote_lock); 899 remote = kcov_remote_find(handle); 900 if (!remote) { 901 spin_unlock(&kcov_remote_lock); 902 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 903 return; 904 } 905 kcov_debug("handle = %llx, context: %s\n", handle, 906 in_task() ? "task" : "softirq"); 907 kcov = remote->kcov; 908 /* Put in kcov_remote_stop(). */ 909 kcov_get(kcov); 910 /* 911 * Read kcov fields before unlocking kcov_remote_lock to prevent races 912 * with KCOV_DISABLE and kcov_remote_reset(); cannot acquire kcov->lock 913 * here, because it might lead to deadlock given kcov_remote_lock is 914 * acquired _after_ kcov->lock elsewhere. 915 */ 916 mode = context_unsafe(kcov->mode); 917 sequence = kcov->sequence; 918 if (in_task()) { 919 size = kcov->remote_size; 920 area = kcov_remote_area_get(size); 921 } else { 922 size = CONFIG_KCOV_IRQ_AREA_SIZE; 923 area = this_cpu_ptr(&kcov_percpu_data)->irq_area; 924 } 925 spin_unlock(&kcov_remote_lock); 926 927 /* Can only happen when in_task(). */ 928 if (!area) { 929 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 930 area = vmalloc(size * sizeof(unsigned long)); 931 if (!area) { 932 kcov_put(kcov); 933 return; 934 } 935 local_lock_irqsave(&kcov_percpu_data.lock, flags); 936 } 937 938 /* Reset coverage size. */ 939 *(u64 *)area = 0; 940 941 if (in_serving_softirq()) { 942 kcov_remote_softirq_start(t); 943 t->kcov_softirq = 1; 944 } 945 kcov_start(t, kcov, size, area, mode, sequence); 946 947 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 948 949 } 950 EXPORT_SYMBOL(kcov_remote_start); 951 952 static void kcov_move_area(enum kcov_mode mode, void *dst_area, 953 unsigned int dst_area_size, void *src_area) 954 { 955 u64 word_size = sizeof(unsigned long); 956 u64 count_size, entry_size_log; 957 u64 dst_len, src_len; 958 void *dst_entries, *src_entries; 959 u64 dst_occupied, dst_free, bytes_to_move, entries_moved; 960 961 kcov_debug("%px %u <= %px %lu\n", 962 dst_area, dst_area_size, src_area, *(unsigned long *)src_area); 963 964 switch (mode) { 965 case KCOV_MODE_TRACE_PC: 966 dst_len = READ_ONCE(*(unsigned long *)dst_area); 967 src_len = *(unsigned long *)src_area; 968 count_size = sizeof(unsigned long); 969 entry_size_log = __ilog2_u64(sizeof(unsigned long)); 970 break; 971 case KCOV_MODE_TRACE_CMP: 972 dst_len = READ_ONCE(*(u64 *)dst_area); 973 src_len = *(u64 *)src_area; 974 count_size = sizeof(u64); 975 BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); 976 entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); 977 break; 978 default: 979 WARN_ON(1); 980 return; 981 } 982 983 /* As arm can't divide u64 integers use log of entry size. */ 984 if (dst_len > ((dst_area_size * word_size - count_size) >> 985 entry_size_log)) 986 return; 987 dst_occupied = count_size + (dst_len << entry_size_log); 988 dst_free = dst_area_size * word_size - dst_occupied; 989 bytes_to_move = min(dst_free, src_len << entry_size_log); 990 dst_entries = dst_area + dst_occupied; 991 src_entries = src_area + count_size; 992 memcpy(dst_entries, src_entries, bytes_to_move); 993 entries_moved = bytes_to_move >> entry_size_log; 994 995 /* 996 * A write memory barrier is required here, to ensure 997 * that the writes from the memcpy() are visible before 998 * the count is updated. Without this, it is possible for 999 * a user to observe a new count value but stale 1000 * coverage data. 1001 */ 1002 smp_wmb(); 1003 1004 switch (mode) { 1005 case KCOV_MODE_TRACE_PC: 1006 WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); 1007 break; 1008 case KCOV_MODE_TRACE_CMP: 1009 WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); 1010 break; 1011 default: 1012 break; 1013 } 1014 } 1015 1016 /* See the comment before kcov_remote_start() for usage details. */ 1017 void kcov_remote_stop(void) 1018 { 1019 struct task_struct *t = current; 1020 struct kcov *kcov; 1021 unsigned int mode; 1022 void *area; 1023 unsigned int size; 1024 int sequence; 1025 unsigned long flags; 1026 1027 if (!in_task() && !in_softirq_really()) 1028 return; 1029 1030 local_lock_irqsave(&kcov_percpu_data.lock, flags); 1031 1032 mode = READ_ONCE(t->kcov_mode); 1033 barrier(); 1034 if (!kcov_mode_enabled(mode)) { 1035 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1036 return; 1037 } 1038 /* 1039 * When in softirq, check if the corresponding kcov_remote_start() 1040 * actually found the remote handle and started collecting coverage. 1041 */ 1042 if (in_serving_softirq() && !t->kcov_softirq) { 1043 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1044 return; 1045 } 1046 /* Make sure that kcov_softirq is only set when in softirq. */ 1047 if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { 1048 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1049 return; 1050 } 1051 1052 kcov = t->kcov; 1053 area = t->kcov_area; 1054 size = t->kcov_size; 1055 sequence = t->kcov_sequence; 1056 1057 kcov_stop(t); 1058 if (in_serving_softirq()) { 1059 t->kcov_softirq = 0; 1060 kcov_remote_softirq_stop(t); 1061 } 1062 1063 spin_lock(&kcov->lock); 1064 /* 1065 * KCOV_DISABLE could have been called between kcov_remote_start() 1066 * and kcov_remote_stop(), hence the sequence check. 1067 */ 1068 if (sequence == kcov->sequence && kcov->remote) 1069 kcov_move_area(kcov->mode, kcov->area, kcov->size, area); 1070 spin_unlock(&kcov->lock); 1071 1072 if (in_task()) { 1073 spin_lock(&kcov_remote_lock); 1074 kcov_remote_area_put(area, size); 1075 spin_unlock(&kcov_remote_lock); 1076 } 1077 1078 local_unlock_irqrestore(&kcov_percpu_data.lock, flags); 1079 1080 /* Get in kcov_remote_start(). */ 1081 kcov_put(kcov); 1082 } 1083 EXPORT_SYMBOL(kcov_remote_stop); 1084 1085 /* See the comment before kcov_remote_start() for usage details. */ 1086 u64 kcov_common_handle(void) 1087 { 1088 if (!in_task()) 1089 return 0; 1090 return current->kcov_handle; 1091 } 1092 EXPORT_SYMBOL(kcov_common_handle); 1093 1094 #ifdef CONFIG_KCOV_SELFTEST 1095 static void __init selftest(void) 1096 { 1097 unsigned long start; 1098 1099 pr_err("running self test\n"); 1100 /* 1101 * Test that interrupts don't produce spurious coverage. 1102 * The coverage callback filters out interrupt code, but only 1103 * after the handler updates preempt count. Some code periodically 1104 * leaks out of that section and leads to spurious coverage. 1105 * It's hard to call the actual interrupt handler directly, 1106 * so we just loop here for a bit waiting for a timer interrupt. 1107 * We set kcov_mode to enable tracing, but don't setup the area, 1108 * so any attempt to trace will crash. Note: we must not call any 1109 * potentially traced functions in this region. 1110 */ 1111 start = jiffies; 1112 current->kcov_mode = KCOV_MODE_TRACE_PC; 1113 while ((jiffies - start) * MSEC_PER_SEC / HZ < 300) 1114 ; 1115 current->kcov_mode = 0; 1116 pr_err("done running self test\n"); 1117 } 1118 #endif 1119 1120 static int __init kcov_init(void) 1121 { 1122 int cpu; 1123 1124 for_each_possible_cpu(cpu) { 1125 void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * 1126 sizeof(unsigned long), cpu_to_node(cpu)); 1127 if (!area) 1128 return -ENOMEM; 1129 per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; 1130 } 1131 1132 /* 1133 * The kcov debugfs file won't ever get removed and thus, 1134 * there is no need to protect it against removal races. The 1135 * use of debugfs_create_file_unsafe() is actually safe here. 1136 */ 1137 debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); 1138 1139 #ifdef CONFIG_KCOV_SELFTEST 1140 selftest(); 1141 #endif 1142 1143 return 0; 1144 } 1145 1146 device_initcall(kcov_init); 1147