xref: /freebsd/usr.sbin/makefs/zfs/dsl.c (revision da1255560f36d6cacda82fa94c3ba94c12d25050)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2022 The FreeBSD Foundation
5  *
6  * This software was developed by Mark Johnston under sponsorship from
7  * the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <assert.h>
32 #include <stdlib.h>
33 #include <string.h>
34 
35 #include <util.h>
36 
37 #include "makefs.h"
38 #include "zfs.h"
39 
40 typedef struct zfs_dsl_dataset {
41 	zfs_objset_t	*os;		/* referenced objset, may be null */
42 	dsl_dataset_phys_t *phys;	/* on-disk representation */
43 	uint64_t	dsid;		/* DSL dataset dnode */
44 
45 	struct zfs_dsl_dir *dir;	/* containing parent */
46 } zfs_dsl_dataset_t;
47 
48 typedef STAILQ_HEAD(zfs_dsl_dir_list, zfs_dsl_dir) zfs_dsl_dir_list_t;
49 
50 typedef struct zfs_dsl_dir {
51 	char		*fullname;	/* full dataset name */
52 	char		*name;		/* basename(fullname) */
53 	dsl_dir_phys_t	*phys;		/* on-disk representation */
54 	nvlist_t	*propsnv;	/* properties saved in propszap */
55 
56 	zfs_dsl_dataset_t *headds;	/* principal dataset, may be null */
57 
58 	uint64_t	dirid;		/* DSL directory dnode */
59 	zfs_zap_t	*propszap;	/* dataset properties */
60 	zfs_zap_t	*childzap;	/* child directories */
61 
62 	/* DSL directory tree linkage. */
63 	struct zfs_dsl_dir *parent;
64 	zfs_dsl_dir_list_t children;
65 	STAILQ_ENTRY(zfs_dsl_dir) next;
66 } zfs_dsl_dir_t;
67 
68 static zfs_dsl_dir_t *dsl_dir_alloc(zfs_opt_t *zfs, const char *name);
69 static zfs_dsl_dataset_t *dsl_dataset_alloc(zfs_opt_t *zfs, zfs_dsl_dir_t *dir);
70 
71 static int
nvlist_find_string(nvlist_t * nvl,const char * key,char ** retp)72 nvlist_find_string(nvlist_t *nvl, const char *key, char **retp)
73 {
74 	char *str;
75 	int error, len;
76 
77 	error = nvlist_find(nvl, key, DATA_TYPE_STRING, NULL, &str, &len);
78 	if (error == 0) {
79 		*retp = ecalloc(1, len + 1);
80 		memcpy(*retp, str, len);
81 	}
82 	return (error);
83 }
84 
85 static int
nvlist_find_uint64(nvlist_t * nvl,const char * key,uint64_t * retp)86 nvlist_find_uint64(nvlist_t *nvl, const char *key, uint64_t *retp)
87 {
88 	return (nvlist_find(nvl, key, DATA_TYPE_UINT64, NULL, retp, NULL));
89 }
90 
91 /*
92  * Return an allocated string containing the head dataset's mountpoint,
93  * including the root path prefix.
94  *
95  * If the dataset has a mountpoint property, it is returned.  Otherwise we have
96  * to follow ZFS' inheritance rules.
97  */
98 char *
dsl_dir_get_mountpoint(zfs_opt_t * zfs,zfs_dsl_dir_t * dir)99 dsl_dir_get_mountpoint(zfs_opt_t *zfs, zfs_dsl_dir_t *dir)
100 {
101 	zfs_dsl_dir_t *pdir;
102 	char *mountpoint;
103 
104 	if (nvlist_find_string(dir->propsnv, "mountpoint", &mountpoint) == 0) {
105 		if (strcmp(mountpoint, "none") == 0)
106 			return (NULL);
107 	} else {
108 		/*
109 		 * If we don't have a mountpoint, it's inherited from one of our
110 		 * ancestors.  Walk up the hierarchy until we find it, building
111 		 * up our mountpoint along the way.  The mountpoint property is
112 		 * always set for the root dataset.
113 		 */
114 		for (pdir = dir->parent, mountpoint = estrdup(dir->name);;
115 		    pdir = pdir->parent) {
116 			char *origmountpoint, *tmp;
117 
118 			origmountpoint = mountpoint;
119 
120 			if (nvlist_find_string(pdir->propsnv, "mountpoint",
121 			    &tmp) == 0) {
122 				(void)easprintf(&mountpoint, "%s%s%s", tmp,
123 				    tmp[strlen(tmp) - 1] == '/' ?  "" : "/",
124 				    origmountpoint);
125 				free(tmp);
126 				free(origmountpoint);
127 				break;
128 			}
129 
130 			(void)easprintf(&mountpoint, "%s/%s", pdir->name,
131 			    origmountpoint);
132 			free(origmountpoint);
133 		}
134 	}
135 	assert(mountpoint[0] == '/');
136 	assert(strstr(mountpoint, zfs->rootpath) == mountpoint);
137 
138 	return (mountpoint);
139 }
140 
141 int
dsl_dir_get_canmount(zfs_dsl_dir_t * dir,uint64_t * canmountp)142 dsl_dir_get_canmount(zfs_dsl_dir_t *dir, uint64_t *canmountp)
143 {
144 	return (nvlist_find_uint64(dir->propsnv, "canmount", canmountp));
145 }
146 
147 /*
148  * Handle dataset properties that we know about; stash them into an nvlist to be
149  * written later to the properties ZAP object.
150  *
151  * If the set of properties we handle grows too much, we should probably explore
152  * using libzfs to manage them.
153  */
154 static void
dsl_dir_set_prop(zfs_opt_t * zfs,zfs_dsl_dir_t * dir,const char * key,const char * val)155 dsl_dir_set_prop(zfs_opt_t *zfs, zfs_dsl_dir_t *dir, const char *key,
156     const char *val)
157 {
158 	nvlist_t *nvl;
159 
160 	nvl = dir->propsnv;
161 	if (val == NULL || val[0] == '\0')
162 		errx(1, "missing value for property `%s'", key);
163 	if (nvpair_find(nvl, key) != NULL)
164 		errx(1, "property `%s' already set", key);
165 
166 	if (strcmp(key, "mountpoint") == 0) {
167 		if (strcmp(val, "none") != 0) {
168 			if (val[0] != '/')
169 				errx(1, "mountpoint `%s' is not absolute", val);
170 			if (strcmp(val, zfs->rootpath) != 0 &&
171 			    strcmp(zfs->rootpath, "/") != 0 &&
172 			    (strstr(val, zfs->rootpath) != val ||
173 			     val[strlen(zfs->rootpath)] != '/')) {
174 				errx(1, "mountpoint `%s' is not prefixed by "
175 				    "the root path `%s'", val, zfs->rootpath);
176 			}
177 		}
178 		(void)nvlist_add_string(nvl, key, val);
179 	} else if (strcmp(key, "atime") == 0 || strcmp(key, "exec") == 0 ||
180 	    strcmp(key, "setuid") == 0) {
181 		if (strcmp(val, "on") == 0)
182 			(void)nvlist_add_uint64(nvl, key, 1);
183 		else if (strcmp(val, "off") == 0)
184 			(void)nvlist_add_uint64(nvl, key, 0);
185 		else
186 			errx(1, "invalid value `%s' for %s", val, key);
187 	} else if (strcmp(key, "canmount") == 0) {
188 		if (strcmp(val, "noauto") == 0)
189 			(void)nvlist_add_uint64(nvl, key, 2);
190 		else if (strcmp(val, "on") == 0)
191 			(void)nvlist_add_uint64(nvl, key, 1);
192 		else if (strcmp(val, "off") == 0)
193 			(void)nvlist_add_uint64(nvl, key, 0);
194 		else
195 			errx(1, "invalid value `%s' for %s", val, key);
196 	} else if (strcmp(key, "compression") == 0) {
197 		size_t i;
198 
199 		const struct zfs_compression_algorithm {
200 			const char *name;
201 			enum zio_compress alg;
202 		} compression_algorithms[] = {
203 			{ "off", ZIO_COMPRESS_OFF },
204 			{ "on", ZIO_COMPRESS_ON },
205 			{ "lzjb", ZIO_COMPRESS_LZJB },
206 			{ "gzip", ZIO_COMPRESS_GZIP_6 },
207 			{ "gzip-1", ZIO_COMPRESS_GZIP_1 },
208 			{ "gzip-2", ZIO_COMPRESS_GZIP_2 },
209 			{ "gzip-3", ZIO_COMPRESS_GZIP_3 },
210 			{ "gzip-4", ZIO_COMPRESS_GZIP_4 },
211 			{ "gzip-5", ZIO_COMPRESS_GZIP_5 },
212 			{ "gzip-6", ZIO_COMPRESS_GZIP_6 },
213 			{ "gzip-7", ZIO_COMPRESS_GZIP_7 },
214 			{ "gzip-8", ZIO_COMPRESS_GZIP_8 },
215 			{ "gzip-9", ZIO_COMPRESS_GZIP_9 },
216 			{ "zle", ZIO_COMPRESS_ZLE },
217 			{ "lz4", ZIO_COMPRESS_LZ4 },
218 			{ "zstd", ZIO_COMPRESS_ZSTD },
219 		};
220 		for (i = 0; i < nitems(compression_algorithms); i++) {
221 			if (strcmp(val, compression_algorithms[i].name) == 0) {
222 				nvlist_add_uint64(nvl, key,
223 				    compression_algorithms[i].alg);
224 				break;
225 			}
226 		}
227 		if (i == nitems(compression_algorithms))
228 			errx(1, "invalid compression algorithm `%s'", val);
229 	} else {
230 		errx(1, "unknown property `%s'", key);
231 	}
232 }
233 
234 static zfs_dsl_dir_t *
dsl_metadir_alloc(zfs_opt_t * zfs,const char * name)235 dsl_metadir_alloc(zfs_opt_t *zfs, const char *name)
236 {
237 	zfs_dsl_dir_t *dir;
238 	char *path;
239 
240 	(void)easprintf(&path, "%s/%s", zfs->poolname, name);
241 	dir = dsl_dir_alloc(zfs, path);
242 	free(path);
243 	return (dir);
244 }
245 
246 static void
dsl_origindir_init(zfs_opt_t * zfs)247 dsl_origindir_init(zfs_opt_t *zfs)
248 {
249 	dnode_phys_t *clones;
250 	uint64_t clonesid;
251 
252 	zfs->origindsldir = dsl_metadir_alloc(zfs, "$ORIGIN");
253 	zfs->originds = dsl_dataset_alloc(zfs, zfs->origindsldir);
254 	zfs->snapds = dsl_dataset_alloc(zfs, zfs->origindsldir);
255 
256 	clones = objset_dnode_alloc(zfs->mos, DMU_OT_DSL_CLONES, &clonesid);
257 	zfs->cloneszap = zap_alloc(zfs->mos, clones);
258 	zfs->origindsldir->phys->dd_clones = clonesid;
259 }
260 
261 void
dsl_init(zfs_opt_t * zfs)262 dsl_init(zfs_opt_t *zfs)
263 {
264 	zfs_dsl_dir_t *dir;
265 	struct dataset_desc *d;
266 	const char *dspropdelim;
267 
268 	dspropdelim = ";";
269 
270 	zfs->rootdsldir = dsl_dir_alloc(zfs, NULL);
271 
272 	zfs->rootds = dsl_dataset_alloc(zfs, zfs->rootdsldir);
273 	zfs->rootdsldir->headds = zfs->rootds;
274 
275 	zfs->mosdsldir = dsl_metadir_alloc(zfs, "$MOS");
276 	zfs->freedsldir = dsl_metadir_alloc(zfs, "$FREE");
277 	dsl_origindir_init(zfs);
278 
279 	/*
280 	 * Go through the list of user-specified datasets and create DSL objects
281 	 * for them.
282 	 */
283 	STAILQ_FOREACH(d, &zfs->datasetdescs, next) {
284 		char *dsname, *next, *params, *param, *nextparam;
285 
286 		params = d->params;
287 		dsname = strsep(&params, dspropdelim);
288 
289 		if (strcmp(dsname, zfs->poolname) == 0) {
290 			/*
291 			 * This is the root dataset; it's already created, so
292 			 * we're just setting options.
293 			 */
294 			dir = zfs->rootdsldir;
295 		} else {
296 			/*
297 			 * This dataset must be a child of the root dataset.
298 			 */
299 			if (strstr(dsname, zfs->poolname) != dsname ||
300 			    (next = strchr(dsname, '/')) == NULL ||
301 			    (size_t)(next - dsname) != strlen(zfs->poolname)) {
302 				errx(1, "dataset `%s' must be a child of `%s'",
303 				    dsname, zfs->poolname);
304 			}
305 			dir = dsl_dir_alloc(zfs, dsname);
306 			dir->headds = dsl_dataset_alloc(zfs, dir);
307 		}
308 
309 		for (nextparam = param = params; nextparam != NULL;) {
310 			char *key, *val;
311 
312 			param = strsep(&nextparam, dspropdelim);
313 
314 			key = val = param;
315 			key = strsep(&val, "=");
316 			dsl_dir_set_prop(zfs, dir, key, val);
317 		}
318 	}
319 
320 	/*
321 	 * Set the root dataset's mount point and compression strategy if the
322 	 * user didn't override the defaults.
323 	 */
324 	if (nvpair_find(zfs->rootdsldir->propsnv, "compression") == NULL) {
325 		(void)nvlist_add_uint64(zfs->rootdsldir->propsnv,
326 		    "compression", ZIO_COMPRESS_OFF);
327 	}
328 	if (nvpair_find(zfs->rootdsldir->propsnv, "mountpoint") == NULL) {
329 		(void)nvlist_add_string(zfs->rootdsldir->propsnv, "mountpoint",
330 		    zfs->rootpath);
331 	}
332 }
333 
334 uint64_t
dsl_dir_id(zfs_dsl_dir_t * dir)335 dsl_dir_id(zfs_dsl_dir_t *dir)
336 {
337 	return (dir->dirid);
338 }
339 
340 uint64_t
dsl_dir_dataset_id(zfs_dsl_dir_t * dir)341 dsl_dir_dataset_id(zfs_dsl_dir_t *dir)
342 {
343 	return (dir->headds->dsid);
344 }
345 
346 static void
dsl_dir_foreach_post(zfs_opt_t * zfs,zfs_dsl_dir_t * dsldir,void (* cb)(zfs_opt_t *,zfs_dsl_dir_t *,void *),void * arg)347 dsl_dir_foreach_post(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir,
348     void (*cb)(zfs_opt_t *, zfs_dsl_dir_t *, void *), void *arg)
349 {
350 	zfs_dsl_dir_t *cdsldir;
351 
352 	STAILQ_FOREACH(cdsldir, &dsldir->children, next) {
353 		dsl_dir_foreach_post(zfs, cdsldir, cb, arg);
354 	}
355 	cb(zfs, dsldir, arg);
356 }
357 
358 /*
359  * Used when the caller doesn't care about the order one way or another.
360  */
361 void
dsl_dir_foreach(zfs_opt_t * zfs,zfs_dsl_dir_t * dsldir,void (* cb)(zfs_opt_t *,zfs_dsl_dir_t *,void *),void * arg)362 dsl_dir_foreach(zfs_opt_t *zfs, zfs_dsl_dir_t *dsldir,
363     void (*cb)(zfs_opt_t *, zfs_dsl_dir_t *, void *), void *arg)
364 {
365 	dsl_dir_foreach_post(zfs, dsldir, cb, arg);
366 }
367 
368 const char *
dsl_dir_fullname(const zfs_dsl_dir_t * dir)369 dsl_dir_fullname(const zfs_dsl_dir_t *dir)
370 {
371 	return (dir->fullname);
372 }
373 
374 /*
375  * Create a DSL directory, which is effectively an entry in the ZFS namespace.
376  * We always create a root DSL directory, whose name is the pool's name, and
377  * several metadata directories.
378  *
379  * Each directory has two ZAP objects, one pointing to child directories, and
380  * one for properties (which are inherited by children unless overridden).
381  * Directories typically reference a DSL dataset, the "head dataset", which
382  * points to an object set.
383  */
384 static zfs_dsl_dir_t *
dsl_dir_alloc(zfs_opt_t * zfs,const char * name)385 dsl_dir_alloc(zfs_opt_t *zfs, const char *name)
386 {
387 	zfs_dsl_dir_list_t l, *lp;
388 	zfs_dsl_dir_t *dir, *parent;
389 	dnode_phys_t *dnode;
390 	char *dirname, *nextdir, *origname;
391 	uint64_t childid, propsid;
392 
393 	dir = ecalloc(1, sizeof(*dir));
394 
395 	dnode = objset_dnode_bonus_alloc(zfs->mos, DMU_OT_DSL_DIR,
396 	    DMU_OT_DSL_DIR, sizeof(dsl_dir_phys_t), &dir->dirid);
397 	dir->phys = (dsl_dir_phys_t *)DN_BONUS(dnode);
398 
399 	dnode = objset_dnode_alloc(zfs->mos, DMU_OT_DSL_PROPS, &propsid);
400 	dir->propszap = zap_alloc(zfs->mos, dnode);
401 
402 	dnode = objset_dnode_alloc(zfs->mos, DMU_OT_DSL_DIR_CHILD_MAP,
403 	    &childid);
404 	dir->childzap = zap_alloc(zfs->mos, dnode);
405 
406 	dir->propsnv = nvlist_create(NV_UNIQUE_NAME);
407 	STAILQ_INIT(&dir->children);
408 
409 	dir->phys->dd_child_dir_zapobj = childid;
410 	dir->phys->dd_props_zapobj = propsid;
411 
412 	if (name == NULL) {
413 		/*
414 		 * This is the root DSL directory.
415 		 */
416 		dir->name = estrdup(zfs->poolname);
417 		dir->fullname = estrdup(zfs->poolname);
418 		dir->parent = NULL;
419 		dir->phys->dd_parent_obj = 0;
420 
421 		assert(zfs->rootdsldir == NULL);
422 		zfs->rootdsldir = dir;
423 		return (dir);
424 	}
425 
426 	/*
427 	 * Insert the new directory into the hierarchy.  Currently this must be
428 	 * done in order, e.g., when creating pool/a/b, pool/a must already
429 	 * exist.
430 	 */
431 	STAILQ_INIT(&l);
432 	STAILQ_INSERT_HEAD(&l, zfs->rootdsldir, next);
433 	origname = dirname = nextdir = estrdup(name);
434 	parent = NULL;
435 	for (lp = &l;; lp = &parent->children) {
436 		dirname = strsep(&nextdir, "/");
437 		if (nextdir == NULL)
438 			break;
439 
440 		STAILQ_FOREACH(parent, lp, next) {
441 			if (strcmp(parent->name, dirname) == 0)
442 				break;
443 		}
444 		if (parent == NULL) {
445 			errx(1, "no parent at `%s' for filesystem `%s'",
446 			    dirname, name);
447 		}
448 	}
449 
450 	dir->fullname = estrdup(name);
451 	dir->name = estrdup(dirname);
452 	free(origname);
453 	STAILQ_INSERT_TAIL(lp, dir, next);
454 	zap_add_uint64(parent->childzap, dir->name, dir->dirid);
455 
456 	dir->parent = parent;
457 	dir->phys->dd_parent_obj = parent->dirid;
458 	return (dir);
459 }
460 
461 static void
dsl_dir_size_add(zfs_dsl_dir_t * dir,uint64_t bytes)462 dsl_dir_size_add(zfs_dsl_dir_t *dir, uint64_t bytes)
463 {
464 	dir->phys->dd_used_bytes += bytes;
465 	dir->phys->dd_compressed_bytes += bytes;
466 	dir->phys->dd_uncompressed_bytes += bytes;
467 }
468 
469 /*
470  * See dsl_dir_root_finalize().
471  */
472 void
dsl_dir_root_finalize(zfs_opt_t * zfs,uint64_t bytes)473 dsl_dir_root_finalize(zfs_opt_t *zfs, uint64_t bytes)
474 {
475 	dsl_dir_size_add(zfs->mosdsldir, bytes);
476 	zfs->mosdsldir->phys->dd_used_breakdown[DD_USED_HEAD] += bytes;
477 
478 	dsl_dir_size_add(zfs->rootdsldir, bytes);
479 	zfs->rootdsldir->phys->dd_used_breakdown[DD_USED_CHILD] += bytes;
480 }
481 
482 /*
483  * Convert dataset properties into entries in the DSL directory's properties
484  * ZAP.
485  */
486 static void
dsl_dir_finalize_props(zfs_dsl_dir_t * dir)487 dsl_dir_finalize_props(zfs_dsl_dir_t *dir)
488 {
489 	for (nvp_header_t *nvh = NULL;
490 	    (nvh = nvlist_next_nvpair(dir->propsnv, nvh)) != NULL;) {
491 		nv_string_t *nvname;
492 		nv_pair_data_t *nvdata;
493 		char *name;
494 
495 		nvname = (nv_string_t *)(nvh + 1);
496 		nvdata = (nv_pair_data_t *)(&nvname->nv_data[0] +
497 		    NV_ALIGN4(nvname->nv_size));
498 
499 		name = nvstring_get(nvname);
500 		switch (nvdata->nv_type) {
501 		case DATA_TYPE_UINT64: {
502 			uint64_t val;
503 
504 			memcpy(&val, &nvdata->nv_data[0], sizeof(uint64_t));
505 			zap_add_uint64(dir->propszap, name, val);
506 			break;
507 		}
508 		case DATA_TYPE_STRING: {
509 			nv_string_t *nvstr;
510 			char *val;
511 
512 			nvstr = (nv_string_t *)&nvdata->nv_data[0];
513 			val = nvstring_get(nvstr);
514 			zap_add_string(dir->propszap, name, val);
515 			free(val);
516 			break;
517 		}
518 		default:
519 			assert(0);
520 		}
521 		free(name);
522 	}
523 }
524 
525 static void
dsl_dir_finalize(zfs_opt_t * zfs,zfs_dsl_dir_t * dir,void * arg __unused)526 dsl_dir_finalize(zfs_opt_t *zfs, zfs_dsl_dir_t *dir, void *arg __unused)
527 {
528 	zfs_dsl_dir_t *cdir;
529 	dnode_phys_t *snapnames;
530 	zfs_dsl_dataset_t *headds;
531 	zfs_objset_t *os;
532 	uint64_t bytes, childbytes, snapnamesid;
533 
534 	dsl_dir_finalize_props(dir);
535 	zap_write(zfs, dir->propszap);
536 	zap_write(zfs, dir->childzap);
537 
538 	headds = dir->headds;
539 	if (headds == NULL)
540 		return;
541 	os = headds->os;
542 	if (os == NULL)
543 		return;
544 
545 	snapnames = objset_dnode_alloc(zfs->mos, DMU_OT_DSL_DS_SNAP_MAP,
546 	    &snapnamesid);
547 	zap_write(zfs, zap_alloc(zfs->mos, snapnames));
548 
549 	dir->phys->dd_head_dataset_obj = headds->dsid;
550 	dir->phys->dd_clone_parent_obj = zfs->snapds->dsid;
551 	headds->phys->ds_prev_snap_obj = zfs->snapds->dsid;
552 	headds->phys->ds_snapnames_zapobj = snapnamesid;
553 	objset_root_blkptr_copy(os, &headds->phys->ds_bp);
554 
555 	zfs->snapds->phys->ds_num_children++;
556 	zap_add_uint64_self(zfs->cloneszap, headds->dsid);
557 
558 	bytes = objset_space(os);
559 	headds->phys->ds_used_bytes = bytes;
560 	headds->phys->ds_uncompressed_bytes = bytes;
561 	headds->phys->ds_compressed_bytes = bytes;
562 
563 	childbytes = 0;
564 	STAILQ_FOREACH(cdir, &dir->children, next) {
565 		/*
566 		 * The root directory needs a special case: the amount of
567 		 * space used for the MOS isn't known until everything else is
568 		 * finalized, so it can't be accounted in the MOS directory's
569 		 * parent until then, at which point dsl_dir_root_finalize() is
570 		 * called.
571 		 */
572 		if (dir == zfs->rootdsldir && cdir == zfs->mosdsldir)
573 			continue;
574 		childbytes += cdir->phys->dd_used_bytes;
575 	}
576 	dsl_dir_size_add(dir, bytes + childbytes);
577 
578 	dir->phys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
579 	dir->phys->dd_used_breakdown[DD_USED_HEAD] = bytes;
580 	dir->phys->dd_used_breakdown[DD_USED_CHILD] = childbytes;
581 }
582 
583 void
dsl_write(zfs_opt_t * zfs)584 dsl_write(zfs_opt_t *zfs)
585 {
586 	zfs_zap_t *snapnameszap;
587 	dnode_phys_t *snapnames;
588 	uint64_t snapmapid;
589 
590 	/*
591 	 * Perform accounting, starting from the leaves of the DSL directory
592 	 * tree.  Accounting for $MOS is done later, once we've finished
593 	 * allocating space.
594 	 */
595 	dsl_dir_foreach_post(zfs, zfs->rootdsldir, dsl_dir_finalize, NULL);
596 
597 	snapnames = objset_dnode_alloc(zfs->mos, DMU_OT_DSL_DS_SNAP_MAP,
598 	    &snapmapid);
599 	snapnameszap = zap_alloc(zfs->mos, snapnames);
600 	zap_add_uint64(snapnameszap, "$ORIGIN", zfs->snapds->dsid);
601 	zap_write(zfs, snapnameszap);
602 
603 	zfs->origindsldir->phys->dd_head_dataset_obj = zfs->originds->dsid;
604 	zfs->originds->phys->ds_prev_snap_obj = zfs->snapds->dsid;
605 	zfs->originds->phys->ds_snapnames_zapobj = snapmapid;
606 
607 	zfs->snapds->phys->ds_next_snap_obj = zfs->originds->dsid;
608 	assert(zfs->snapds->phys->ds_num_children > 0);
609 	zfs->snapds->phys->ds_num_children++;
610 
611 	zap_write(zfs, zfs->cloneszap);
612 
613 	/* XXX-MJ dirs and datasets are leaked */
614 }
615 
616 void
dsl_dir_dataset_write(zfs_opt_t * zfs,zfs_objset_t * os,zfs_dsl_dir_t * dir)617 dsl_dir_dataset_write(zfs_opt_t *zfs, zfs_objset_t *os, zfs_dsl_dir_t *dir)
618 {
619 	dir->headds->os = os;
620 	objset_write(zfs, os);
621 }
622 
623 bool
dsl_dir_has_dataset(zfs_dsl_dir_t * dir)624 dsl_dir_has_dataset(zfs_dsl_dir_t *dir)
625 {
626 	return (dir->headds != NULL);
627 }
628 
629 bool
dsl_dir_dataset_has_objset(zfs_dsl_dir_t * dir)630 dsl_dir_dataset_has_objset(zfs_dsl_dir_t *dir)
631 {
632 	return (dsl_dir_has_dataset(dir) && dir->headds->os != NULL);
633 }
634 
635 static zfs_dsl_dataset_t *
dsl_dataset_alloc(zfs_opt_t * zfs,zfs_dsl_dir_t * dir)636 dsl_dataset_alloc(zfs_opt_t *zfs, zfs_dsl_dir_t *dir)
637 {
638 	zfs_dsl_dataset_t *ds;
639 	dnode_phys_t *dnode;
640 	uint64_t deadlistid;
641 
642 	ds = ecalloc(1, sizeof(*ds));
643 
644 	dnode = objset_dnode_bonus_alloc(zfs->mos, DMU_OT_DSL_DATASET,
645 	    DMU_OT_DSL_DATASET, sizeof(dsl_dataset_phys_t), &ds->dsid);
646 	ds->phys = (dsl_dataset_phys_t *)DN_BONUS(dnode);
647 
648 	dnode = objset_dnode_bonus_alloc(zfs->mos, DMU_OT_DEADLIST,
649 	    DMU_OT_DEADLIST_HDR, sizeof(dsl_deadlist_phys_t), &deadlistid);
650 	zap_write(zfs, zap_alloc(zfs->mos, dnode));
651 
652 	ds->phys->ds_dir_obj = dir->dirid;
653 	ds->phys->ds_deadlist_obj = deadlistid;
654 	ds->phys->ds_creation_txg = TXG - 1;
655 	if (ds != zfs->snapds)
656 		ds->phys->ds_prev_snap_txg = TXG - 1;
657 	ds->phys->ds_guid = randomguid();
658 	ds->dir = dir;
659 
660 	return (ds);
661 }
662