xref: /linux/drivers/base/power/main.c (revision abdf766d149c51fb256118f73be947d7a82f702e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52 
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58 
59 static DEFINE_MUTEX(dpm_list_mtx);
60 static pm_message_t pm_transition;
61 
62 static DEFINE_MUTEX(async_wip_mtx);
63 static int async_error;
64 
65 /**
66  * pm_hibernate_is_recovering - if recovering from hibernate due to error.
67  *
68  * Used to query if dev_pm_ops.thaw() is called for normal hibernation case or
69  * recovering from some error.
70  *
71  * Return: true for error case, false for normal case.
72  */
pm_hibernate_is_recovering(void)73 bool pm_hibernate_is_recovering(void)
74 {
75 	return pm_transition.event == PM_EVENT_RECOVER;
76 }
77 EXPORT_SYMBOL_GPL(pm_hibernate_is_recovering);
78 
pm_verb(int event)79 static const char *pm_verb(int event)
80 {
81 	switch (event) {
82 	case PM_EVENT_SUSPEND:
83 		return "suspend";
84 	case PM_EVENT_RESUME:
85 		return "resume";
86 	case PM_EVENT_FREEZE:
87 		return "freeze";
88 	case PM_EVENT_QUIESCE:
89 		return "quiesce";
90 	case PM_EVENT_HIBERNATE:
91 		return "hibernate";
92 	case PM_EVENT_THAW:
93 		return "thaw";
94 	case PM_EVENT_RESTORE:
95 		return "restore";
96 	case PM_EVENT_RECOVER:
97 		return "recover";
98 	default:
99 		return "(unknown PM event)";
100 	}
101 }
102 
103 /**
104  * device_pm_sleep_init - Initialize system suspend-related device fields.
105  * @dev: Device object being initialized.
106  */
device_pm_sleep_init(struct device * dev)107 void device_pm_sleep_init(struct device *dev)
108 {
109 	dev->power.is_prepared = false;
110 	dev->power.is_suspended = false;
111 	dev->power.is_noirq_suspended = false;
112 	dev->power.is_late_suspended = false;
113 	init_completion(&dev->power.completion);
114 	complete_all(&dev->power.completion);
115 	dev->power.wakeup = NULL;
116 	INIT_LIST_HEAD(&dev->power.entry);
117 }
118 
119 /**
120  * device_pm_lock - Lock the list of active devices used by the PM core.
121  */
device_pm_lock(void)122 void device_pm_lock(void)
123 {
124 	mutex_lock(&dpm_list_mtx);
125 }
126 
127 /**
128  * device_pm_unlock - Unlock the list of active devices used by the PM core.
129  */
device_pm_unlock(void)130 void device_pm_unlock(void)
131 {
132 	mutex_unlock(&dpm_list_mtx);
133 }
134 
135 /**
136  * device_pm_add - Add a device to the PM core's list of active devices.
137  * @dev: Device to add to the list.
138  */
device_pm_add(struct device * dev)139 void device_pm_add(struct device *dev)
140 {
141 	/* Skip PM setup/initialization. */
142 	if (device_pm_not_required(dev))
143 		return;
144 
145 	pr_debug("Adding info for %s:%s\n",
146 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147 	device_pm_check_callbacks(dev);
148 	mutex_lock(&dpm_list_mtx);
149 	if (dev->parent && dev->parent->power.is_prepared)
150 		dev_warn(dev, "parent %s should not be sleeping\n",
151 			dev_name(dev->parent));
152 	list_add_tail(&dev->power.entry, &dpm_list);
153 	dev->power.in_dpm_list = true;
154 	mutex_unlock(&dpm_list_mtx);
155 }
156 
157 /**
158  * device_pm_remove - Remove a device from the PM core's list of active devices.
159  * @dev: Device to be removed from the list.
160  */
device_pm_remove(struct device * dev)161 void device_pm_remove(struct device *dev)
162 {
163 	if (device_pm_not_required(dev))
164 		return;
165 
166 	pr_debug("Removing info for %s:%s\n",
167 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
168 	complete_all(&dev->power.completion);
169 	mutex_lock(&dpm_list_mtx);
170 	list_del_init(&dev->power.entry);
171 	dev->power.in_dpm_list = false;
172 	mutex_unlock(&dpm_list_mtx);
173 	device_wakeup_disable(dev);
174 	pm_runtime_remove(dev);
175 	device_pm_check_callbacks(dev);
176 }
177 
178 /**
179  * device_pm_move_before - Move device in the PM core's list of active devices.
180  * @deva: Device to move in dpm_list.
181  * @devb: Device @deva should come before.
182  */
device_pm_move_before(struct device * deva,struct device * devb)183 void device_pm_move_before(struct device *deva, struct device *devb)
184 {
185 	pr_debug("Moving %s:%s before %s:%s\n",
186 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
187 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
188 	/* Delete deva from dpm_list and reinsert before devb. */
189 	list_move_tail(&deva->power.entry, &devb->power.entry);
190 }
191 
192 /**
193  * device_pm_move_after - Move device in the PM core's list of active devices.
194  * @deva: Device to move in dpm_list.
195  * @devb: Device @deva should come after.
196  */
device_pm_move_after(struct device * deva,struct device * devb)197 void device_pm_move_after(struct device *deva, struct device *devb)
198 {
199 	pr_debug("Moving %s:%s after %s:%s\n",
200 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
201 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
202 	/* Delete deva from dpm_list and reinsert after devb. */
203 	list_move(&deva->power.entry, &devb->power.entry);
204 }
205 
206 /**
207  * device_pm_move_last - Move device to end of the PM core's list of devices.
208  * @dev: Device to move in dpm_list.
209  */
device_pm_move_last(struct device * dev)210 void device_pm_move_last(struct device *dev)
211 {
212 	pr_debug("Moving %s:%s to end of list\n",
213 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
214 	list_move_tail(&dev->power.entry, &dpm_list);
215 }
216 
initcall_debug_start(struct device * dev,void * cb)217 static ktime_t initcall_debug_start(struct device *dev, void *cb)
218 {
219 	if (!pm_print_times_enabled)
220 		return 0;
221 
222 	dev_info(dev, "calling %ps @ %i, parent: %s\n", cb,
223 		 task_pid_nr(current),
224 		 dev->parent ? dev_name(dev->parent) : "none");
225 	return ktime_get();
226 }
227 
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)228 static void initcall_debug_report(struct device *dev, ktime_t calltime,
229 				  void *cb, int error)
230 {
231 	ktime_t rettime;
232 
233 	if (!pm_print_times_enabled)
234 		return;
235 
236 	rettime = ktime_get();
237 	dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error,
238 		 (unsigned long long)ktime_us_delta(rettime, calltime));
239 }
240 
241 /**
242  * dpm_wait - Wait for a PM operation to complete.
243  * @dev: Device to wait for.
244  * @async: If unset, wait only if the device's power.async_suspend flag is set.
245  */
dpm_wait(struct device * dev,bool async)246 static void dpm_wait(struct device *dev, bool async)
247 {
248 	if (!dev)
249 		return;
250 
251 	if (async || (pm_async_enabled && dev->power.async_suspend))
252 		wait_for_completion(&dev->power.completion);
253 }
254 
dpm_wait_fn(struct device * dev,void * async_ptr)255 static int dpm_wait_fn(struct device *dev, void *async_ptr)
256 {
257 	dpm_wait(dev, *((bool *)async_ptr));
258 	return 0;
259 }
260 
dpm_wait_for_children(struct device * dev,bool async)261 static void dpm_wait_for_children(struct device *dev, bool async)
262 {
263 	device_for_each_child(dev, &async, dpm_wait_fn);
264 }
265 
dpm_wait_for_suppliers(struct device * dev,bool async)266 static void dpm_wait_for_suppliers(struct device *dev, bool async)
267 {
268 	struct device_link *link;
269 	int idx;
270 
271 	idx = device_links_read_lock();
272 
273 	/*
274 	 * If the supplier goes away right after we've checked the link to it,
275 	 * we'll wait for its completion to change the state, but that's fine,
276 	 * because the only things that will block as a result are the SRCU
277 	 * callbacks freeing the link objects for the links in the list we're
278 	 * walking.
279 	 */
280 	dev_for_each_link_to_supplier(link, dev)
281 		if (READ_ONCE(link->status) != DL_STATE_DORMANT &&
282 		    !device_link_flag_is_sync_state_only(link->flags))
283 			dpm_wait(link->supplier, async);
284 
285 	device_links_read_unlock(idx);
286 }
287 
dpm_wait_for_superior(struct device * dev,bool async)288 static bool dpm_wait_for_superior(struct device *dev, bool async)
289 {
290 	struct device *parent;
291 
292 	/*
293 	 * If the device is resumed asynchronously and the parent's callback
294 	 * deletes both the device and the parent itself, the parent object may
295 	 * be freed while this function is running, so avoid that by reference
296 	 * counting the parent once more unless the device has been deleted
297 	 * already (in which case return right away).
298 	 */
299 	mutex_lock(&dpm_list_mtx);
300 
301 	if (!device_pm_initialized(dev)) {
302 		mutex_unlock(&dpm_list_mtx);
303 		return false;
304 	}
305 
306 	parent = get_device(dev->parent);
307 
308 	mutex_unlock(&dpm_list_mtx);
309 
310 	dpm_wait(parent, async);
311 	put_device(parent);
312 
313 	dpm_wait_for_suppliers(dev, async);
314 
315 	/*
316 	 * If the parent's callback has deleted the device, attempting to resume
317 	 * it would be invalid, so avoid doing that then.
318 	 */
319 	return device_pm_initialized(dev);
320 }
321 
dpm_wait_for_consumers(struct device * dev,bool async)322 static void dpm_wait_for_consumers(struct device *dev, bool async)
323 {
324 	struct device_link *link;
325 	int idx;
326 
327 	idx = device_links_read_lock();
328 
329 	/*
330 	 * The status of a device link can only be changed from "dormant" by a
331 	 * probe, but that cannot happen during system suspend/resume.  In
332 	 * theory it can change to "dormant" at that time, but then it is
333 	 * reasonable to wait for the target device anyway (eg. if it goes
334 	 * away, it's better to wait for it to go away completely and then
335 	 * continue instead of trying to continue in parallel with its
336 	 * unregistration).
337 	 */
338 	dev_for_each_link_to_consumer(link, dev)
339 		if (READ_ONCE(link->status) != DL_STATE_DORMANT &&
340 		    !device_link_flag_is_sync_state_only(link->flags))
341 			dpm_wait(link->consumer, async);
342 
343 	device_links_read_unlock(idx);
344 }
345 
dpm_wait_for_subordinate(struct device * dev,bool async)346 static void dpm_wait_for_subordinate(struct device *dev, bool async)
347 {
348 	dpm_wait_for_children(dev, async);
349 	dpm_wait_for_consumers(dev, async);
350 }
351 
352 /**
353  * pm_op - Return the PM operation appropriate for given PM event.
354  * @ops: PM operations to choose from.
355  * @state: PM transition of the system being carried out.
356  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)357 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
358 {
359 	switch (state.event) {
360 #ifdef CONFIG_SUSPEND
361 	case PM_EVENT_SUSPEND:
362 		return ops->suspend;
363 	case PM_EVENT_RESUME:
364 		return ops->resume;
365 #endif /* CONFIG_SUSPEND */
366 #ifdef CONFIG_HIBERNATE_CALLBACKS
367 	case PM_EVENT_FREEZE:
368 	case PM_EVENT_QUIESCE:
369 		return ops->freeze;
370 	case PM_EVENT_HIBERNATE:
371 		return ops->poweroff;
372 	case PM_EVENT_THAW:
373 	case PM_EVENT_RECOVER:
374 		return ops->thaw;
375 	case PM_EVENT_RESTORE:
376 		return ops->restore;
377 #endif /* CONFIG_HIBERNATE_CALLBACKS */
378 	}
379 
380 	return NULL;
381 }
382 
383 /**
384  * pm_late_early_op - Return the PM operation appropriate for given PM event.
385  * @ops: PM operations to choose from.
386  * @state: PM transition of the system being carried out.
387  *
388  * Runtime PM is disabled for @dev while this function is being executed.
389  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)390 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
391 				      pm_message_t state)
392 {
393 	switch (state.event) {
394 #ifdef CONFIG_SUSPEND
395 	case PM_EVENT_SUSPEND:
396 		return ops->suspend_late;
397 	case PM_EVENT_RESUME:
398 		return ops->resume_early;
399 #endif /* CONFIG_SUSPEND */
400 #ifdef CONFIG_HIBERNATE_CALLBACKS
401 	case PM_EVENT_FREEZE:
402 	case PM_EVENT_QUIESCE:
403 		return ops->freeze_late;
404 	case PM_EVENT_HIBERNATE:
405 		return ops->poweroff_late;
406 	case PM_EVENT_THAW:
407 	case PM_EVENT_RECOVER:
408 		return ops->thaw_early;
409 	case PM_EVENT_RESTORE:
410 		return ops->restore_early;
411 #endif /* CONFIG_HIBERNATE_CALLBACKS */
412 	}
413 
414 	return NULL;
415 }
416 
417 /**
418  * pm_noirq_op - Return the PM operation appropriate for given PM event.
419  * @ops: PM operations to choose from.
420  * @state: PM transition of the system being carried out.
421  *
422  * The driver of @dev will not receive interrupts while this function is being
423  * executed.
424  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)425 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
426 {
427 	switch (state.event) {
428 #ifdef CONFIG_SUSPEND
429 	case PM_EVENT_SUSPEND:
430 		return ops->suspend_noirq;
431 	case PM_EVENT_RESUME:
432 		return ops->resume_noirq;
433 #endif /* CONFIG_SUSPEND */
434 #ifdef CONFIG_HIBERNATE_CALLBACKS
435 	case PM_EVENT_FREEZE:
436 	case PM_EVENT_QUIESCE:
437 		return ops->freeze_noirq;
438 	case PM_EVENT_HIBERNATE:
439 		return ops->poweroff_noirq;
440 	case PM_EVENT_THAW:
441 	case PM_EVENT_RECOVER:
442 		return ops->thaw_noirq;
443 	case PM_EVENT_RESTORE:
444 		return ops->restore_noirq;
445 #endif /* CONFIG_HIBERNATE_CALLBACKS */
446 	}
447 
448 	return NULL;
449 }
450 
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)451 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
452 {
453 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
454 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
455 		", may wakeup" : "", dev->power.driver_flags);
456 }
457 
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)458 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
459 			int error)
460 {
461 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
462 		error);
463 }
464 
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)465 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
466 			  const char *info)
467 {
468 	ktime_t calltime;
469 	u64 usecs64;
470 	int usecs;
471 
472 	calltime = ktime_get();
473 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
474 	do_div(usecs64, NSEC_PER_USEC);
475 	usecs = usecs64;
476 	if (usecs == 0)
477 		usecs = 1;
478 
479 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
480 		  info ?: "", info ? " " : "", pm_verb(state.event),
481 		  error ? "aborted" : "complete",
482 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
483 }
484 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)485 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
486 			    pm_message_t state, const char *info)
487 {
488 	ktime_t calltime;
489 	int error;
490 
491 	if (!cb)
492 		return 0;
493 
494 	calltime = initcall_debug_start(dev, cb);
495 
496 	pm_dev_dbg(dev, state, info);
497 	trace_device_pm_callback_start(dev, info, state.event);
498 	error = cb(dev);
499 	trace_device_pm_callback_end(dev, error);
500 	suspend_report_result(dev, cb, error);
501 
502 	initcall_debug_report(dev, calltime, cb, error);
503 
504 	return error;
505 }
506 
507 #ifdef CONFIG_DPM_WATCHDOG
508 struct dpm_watchdog {
509 	struct device		*dev;
510 	struct task_struct	*tsk;
511 	struct timer_list	timer;
512 	bool			fatal;
513 };
514 
515 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
516 	struct dpm_watchdog wd
517 
518 /**
519  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
520  * @t: The timer that PM watchdog depends on.
521  *
522  * Called when a driver has timed out suspending or resuming.
523  * There's not much we can do here to recover so panic() to
524  * capture a crash-dump in pstore.
525  */
dpm_watchdog_handler(struct timer_list * t)526 static void dpm_watchdog_handler(struct timer_list *t)
527 {
528 	struct dpm_watchdog *wd = timer_container_of(wd, t, timer);
529 	struct timer_list *timer = &wd->timer;
530 	unsigned int time_left;
531 
532 	if (wd->fatal) {
533 		dev_emerg(wd->dev, "**** DPM device timeout ****\n");
534 		show_stack(wd->tsk, NULL, KERN_EMERG);
535 		panic("%s %s: unrecoverable failure\n",
536 			dev_driver_string(wd->dev), dev_name(wd->dev));
537 	}
538 
539 	time_left = CONFIG_DPM_WATCHDOG_TIMEOUT - CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
540 	dev_warn(wd->dev, "**** DPM device timeout after %u seconds; %u seconds until panic ****\n",
541 		 CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT, time_left);
542 	show_stack(wd->tsk, NULL, KERN_WARNING);
543 
544 	wd->fatal = true;
545 	mod_timer(timer, jiffies + HZ * time_left);
546 }
547 
548 /**
549  * dpm_watchdog_set - Enable pm watchdog for given device.
550  * @wd: Watchdog. Must be allocated on the stack.
551  * @dev: Device to handle.
552  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)553 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
554 {
555 	struct timer_list *timer = &wd->timer;
556 
557 	wd->dev = dev;
558 	wd->tsk = current;
559 	wd->fatal = CONFIG_DPM_WATCHDOG_TIMEOUT == CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
560 
561 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
562 	/* use same timeout value for both suspend and resume */
563 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_WARNING_TIMEOUT;
564 	add_timer(timer);
565 }
566 
567 /**
568  * dpm_watchdog_clear - Disable suspend/resume watchdog.
569  * @wd: Watchdog to disable.
570  */
dpm_watchdog_clear(struct dpm_watchdog * wd)571 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
572 {
573 	struct timer_list *timer = &wd->timer;
574 
575 	timer_delete_sync(timer);
576 	timer_destroy_on_stack(timer);
577 }
578 #else
579 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
580 #define dpm_watchdog_set(x, y)
581 #define dpm_watchdog_clear(x)
582 #endif
583 
584 /*------------------------- Resume routines -------------------------*/
585 
586 /**
587  * dev_pm_skip_resume - System-wide device resume optimization check.
588  * @dev: Target device.
589  *
590  * Return:
591  * - %false if the transition under way is RESTORE.
592  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
593  * - The logical negation of %power.must_resume otherwise (that is, when the
594  *   transition under way is RESUME).
595  */
dev_pm_skip_resume(struct device * dev)596 bool dev_pm_skip_resume(struct device *dev)
597 {
598 	if (pm_transition.event == PM_EVENT_RESTORE)
599 		return false;
600 
601 	if (pm_transition.event == PM_EVENT_THAW)
602 		return dev_pm_skip_suspend(dev);
603 
604 	return !dev->power.must_resume;
605 }
606 
is_async(struct device * dev)607 static bool is_async(struct device *dev)
608 {
609 	return dev->power.async_suspend && pm_async_enabled
610 		&& !pm_trace_is_enabled();
611 }
612 
__dpm_async(struct device * dev,async_func_t func)613 static bool __dpm_async(struct device *dev, async_func_t func)
614 {
615 	if (dev->power.work_in_progress)
616 		return true;
617 
618 	if (!is_async(dev))
619 		return false;
620 
621 	dev->power.work_in_progress = true;
622 
623 	get_device(dev);
624 
625 	if (async_schedule_dev_nocall(func, dev))
626 		return true;
627 
628 	put_device(dev);
629 
630 	return false;
631 }
632 
dpm_async_fn(struct device * dev,async_func_t func)633 static bool dpm_async_fn(struct device *dev, async_func_t func)
634 {
635 	guard(mutex)(&async_wip_mtx);
636 
637 	return __dpm_async(dev, func);
638 }
639 
dpm_async_with_cleanup(struct device * dev,void * fn)640 static int dpm_async_with_cleanup(struct device *dev, void *fn)
641 {
642 	guard(mutex)(&async_wip_mtx);
643 
644 	if (!__dpm_async(dev, fn))
645 		dev->power.work_in_progress = false;
646 
647 	return 0;
648 }
649 
dpm_async_resume_children(struct device * dev,async_func_t func)650 static void dpm_async_resume_children(struct device *dev, async_func_t func)
651 {
652 	/*
653 	 * Prevent racing with dpm_clear_async_state() during initial list
654 	 * walks in dpm_noirq_resume_devices(), dpm_resume_early(), and
655 	 * dpm_resume().
656 	 */
657 	guard(mutex)(&dpm_list_mtx);
658 
659 	/*
660 	 * Start processing "async" children of the device unless it's been
661 	 * started already for them.
662 	 */
663 	device_for_each_child(dev, func, dpm_async_with_cleanup);
664 }
665 
dpm_async_resume_subordinate(struct device * dev,async_func_t func)666 static void dpm_async_resume_subordinate(struct device *dev, async_func_t func)
667 {
668 	struct device_link *link;
669 	int idx;
670 
671 	dpm_async_resume_children(dev, func);
672 
673 	idx = device_links_read_lock();
674 
675 	/* Start processing the device's "async" consumers. */
676 	dev_for_each_link_to_consumer(link, dev)
677 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
678 			dpm_async_with_cleanup(link->consumer, func);
679 
680 	device_links_read_unlock(idx);
681 }
682 
dpm_clear_async_state(struct device * dev)683 static void dpm_clear_async_state(struct device *dev)
684 {
685 	reinit_completion(&dev->power.completion);
686 	dev->power.work_in_progress = false;
687 }
688 
dpm_root_device(struct device * dev)689 static bool dpm_root_device(struct device *dev)
690 {
691 	lockdep_assert_held(&dpm_list_mtx);
692 
693 	/*
694 	 * Since this function is required to run under dpm_list_mtx, the
695 	 * list_empty() below will only return true if the device's list of
696 	 * consumers is actually empty before calling it.
697 	 */
698 	return !dev->parent && list_empty(&dev->links.suppliers);
699 }
700 
701 static void async_resume_noirq(void *data, async_cookie_t cookie);
702 
703 /**
704  * device_resume_noirq - Execute a "noirq resume" callback for given device.
705  * @dev: Device to handle.
706  * @state: PM transition of the system being carried out.
707  * @async: If true, the device is being resumed asynchronously.
708  *
709  * The driver of @dev will not receive interrupts while this function is being
710  * executed.
711  */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)712 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
713 {
714 	pm_callback_t callback = NULL;
715 	const char *info = NULL;
716 	bool skip_resume;
717 	int error = 0;
718 
719 	TRACE_DEVICE(dev);
720 	TRACE_RESUME(0);
721 
722 	if (dev->power.syscore || dev->power.direct_complete)
723 		goto Out;
724 
725 	if (!dev->power.is_noirq_suspended) {
726 		/*
727 		 * This means that system suspend has been aborted in the noirq
728 		 * phase before invoking the noirq suspend callback for the
729 		 * device, so if device_suspend_late() has left it in suspend,
730 		 * device_resume_early() should leave it in suspend either in
731 		 * case the early resume of it depends on the noirq resume that
732 		 * has not run.
733 		 */
734 		if (dev_pm_skip_suspend(dev))
735 			dev->power.must_resume = false;
736 
737 		goto Out;
738 	}
739 
740 	if (!dpm_wait_for_superior(dev, async))
741 		goto Out;
742 
743 	skip_resume = dev_pm_skip_resume(dev);
744 	/*
745 	 * If the driver callback is skipped below or by the middle layer
746 	 * callback and device_resume_early() also skips the driver callback for
747 	 * this device later, it needs to appear as "suspended" to PM-runtime,
748 	 * so change its status accordingly.
749 	 *
750 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
751 	 * status to "active" unless its power.smart_suspend flag is clear, in
752 	 * which case it is not necessary to update its PM-runtime status.
753 	 */
754 	if (skip_resume)
755 		pm_runtime_set_suspended(dev);
756 	else if (dev_pm_smart_suspend(dev))
757 		pm_runtime_set_active(dev);
758 
759 	if (dev->pm_domain) {
760 		info = "noirq power domain ";
761 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
762 	} else if (dev->type && dev->type->pm) {
763 		info = "noirq type ";
764 		callback = pm_noirq_op(dev->type->pm, state);
765 	} else if (dev->class && dev->class->pm) {
766 		info = "noirq class ";
767 		callback = pm_noirq_op(dev->class->pm, state);
768 	} else if (dev->bus && dev->bus->pm) {
769 		info = "noirq bus ";
770 		callback = pm_noirq_op(dev->bus->pm, state);
771 	}
772 	if (callback)
773 		goto Run;
774 
775 	if (skip_resume)
776 		goto Skip;
777 
778 	if (dev->driver && dev->driver->pm) {
779 		info = "noirq driver ";
780 		callback = pm_noirq_op(dev->driver->pm, state);
781 	}
782 
783 Run:
784 	error = dpm_run_callback(callback, dev, state, info);
785 
786 Skip:
787 	dev->power.is_noirq_suspended = false;
788 
789 Out:
790 	complete_all(&dev->power.completion);
791 	TRACE_RESUME(error);
792 
793 	if (error) {
794 		WRITE_ONCE(async_error, error);
795 		dpm_save_failed_dev(dev_name(dev));
796 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
797 	}
798 
799 	dpm_async_resume_subordinate(dev, async_resume_noirq);
800 }
801 
async_resume_noirq(void * data,async_cookie_t cookie)802 static void async_resume_noirq(void *data, async_cookie_t cookie)
803 {
804 	struct device *dev = data;
805 
806 	device_resume_noirq(dev, pm_transition, true);
807 	put_device(dev);
808 }
809 
dpm_noirq_resume_devices(pm_message_t state)810 static void dpm_noirq_resume_devices(pm_message_t state)
811 {
812 	struct device *dev;
813 	ktime_t starttime = ktime_get();
814 
815 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
816 
817 	async_error = 0;
818 	pm_transition = state;
819 
820 	mutex_lock(&dpm_list_mtx);
821 
822 	/*
823 	 * Start processing "async" root devices upfront so they don't wait for
824 	 * the "sync" devices they don't depend on.
825 	 */
826 	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
827 		dpm_clear_async_state(dev);
828 		if (dpm_root_device(dev))
829 			dpm_async_with_cleanup(dev, async_resume_noirq);
830 	}
831 
832 	while (!list_empty(&dpm_noirq_list)) {
833 		dev = to_device(dpm_noirq_list.next);
834 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
835 
836 		if (!dpm_async_fn(dev, async_resume_noirq)) {
837 			get_device(dev);
838 
839 			mutex_unlock(&dpm_list_mtx);
840 
841 			device_resume_noirq(dev, state, false);
842 
843 			put_device(dev);
844 
845 			mutex_lock(&dpm_list_mtx);
846 		}
847 	}
848 	mutex_unlock(&dpm_list_mtx);
849 	async_synchronize_full();
850 	dpm_show_time(starttime, state, 0, "noirq");
851 	if (READ_ONCE(async_error))
852 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
853 
854 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
855 }
856 
857 /**
858  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
859  * @state: PM transition of the system being carried out.
860  *
861  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
862  * allow device drivers' interrupt handlers to be called.
863  */
dpm_resume_noirq(pm_message_t state)864 void dpm_resume_noirq(pm_message_t state)
865 {
866 	dpm_noirq_resume_devices(state);
867 
868 	resume_device_irqs();
869 	device_wakeup_disarm_wake_irqs();
870 }
871 
872 static void async_resume_early(void *data, async_cookie_t cookie);
873 
874 /**
875  * device_resume_early - Execute an "early resume" callback for given device.
876  * @dev: Device to handle.
877  * @state: PM transition of the system being carried out.
878  * @async: If true, the device is being resumed asynchronously.
879  *
880  * Runtime PM is disabled for @dev while this function is being executed.
881  */
device_resume_early(struct device * dev,pm_message_t state,bool async)882 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
883 {
884 	pm_callback_t callback = NULL;
885 	const char *info = NULL;
886 	int error = 0;
887 
888 	TRACE_DEVICE(dev);
889 	TRACE_RESUME(0);
890 
891 	if (dev->power.syscore || dev->power.direct_complete)
892 		goto Out;
893 
894 	if (!dev->power.is_late_suspended)
895 		goto Out;
896 
897 	if (!dpm_wait_for_superior(dev, async))
898 		goto Out;
899 
900 	if (dev->pm_domain) {
901 		info = "early power domain ";
902 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
903 	} else if (dev->type && dev->type->pm) {
904 		info = "early type ";
905 		callback = pm_late_early_op(dev->type->pm, state);
906 	} else if (dev->class && dev->class->pm) {
907 		info = "early class ";
908 		callback = pm_late_early_op(dev->class->pm, state);
909 	} else if (dev->bus && dev->bus->pm) {
910 		info = "early bus ";
911 		callback = pm_late_early_op(dev->bus->pm, state);
912 	}
913 	if (callback)
914 		goto Run;
915 
916 	if (dev_pm_skip_resume(dev))
917 		goto Skip;
918 
919 	if (dev->driver && dev->driver->pm) {
920 		info = "early driver ";
921 		callback = pm_late_early_op(dev->driver->pm, state);
922 	}
923 
924 Run:
925 	error = dpm_run_callback(callback, dev, state, info);
926 
927 Skip:
928 	dev->power.is_late_suspended = false;
929 
930 Out:
931 	TRACE_RESUME(error);
932 
933 	pm_runtime_enable(dev);
934 	complete_all(&dev->power.completion);
935 
936 	if (error) {
937 		WRITE_ONCE(async_error, error);
938 		dpm_save_failed_dev(dev_name(dev));
939 		pm_dev_err(dev, state, async ? " async early" : " early", error);
940 	}
941 
942 	dpm_async_resume_subordinate(dev, async_resume_early);
943 }
944 
async_resume_early(void * data,async_cookie_t cookie)945 static void async_resume_early(void *data, async_cookie_t cookie)
946 {
947 	struct device *dev = data;
948 
949 	device_resume_early(dev, pm_transition, true);
950 	put_device(dev);
951 }
952 
953 /**
954  * dpm_resume_early - Execute "early resume" callbacks for all devices.
955  * @state: PM transition of the system being carried out.
956  */
dpm_resume_early(pm_message_t state)957 void dpm_resume_early(pm_message_t state)
958 {
959 	struct device *dev;
960 	ktime_t starttime = ktime_get();
961 
962 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
963 
964 	async_error = 0;
965 	pm_transition = state;
966 
967 	mutex_lock(&dpm_list_mtx);
968 
969 	/*
970 	 * Start processing "async" root devices upfront so they don't wait for
971 	 * the "sync" devices they don't depend on.
972 	 */
973 	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
974 		dpm_clear_async_state(dev);
975 		if (dpm_root_device(dev))
976 			dpm_async_with_cleanup(dev, async_resume_early);
977 	}
978 
979 	while (!list_empty(&dpm_late_early_list)) {
980 		dev = to_device(dpm_late_early_list.next);
981 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
982 
983 		if (!dpm_async_fn(dev, async_resume_early)) {
984 			get_device(dev);
985 
986 			mutex_unlock(&dpm_list_mtx);
987 
988 			device_resume_early(dev, state, false);
989 
990 			put_device(dev);
991 
992 			mutex_lock(&dpm_list_mtx);
993 		}
994 	}
995 	mutex_unlock(&dpm_list_mtx);
996 	async_synchronize_full();
997 	dpm_show_time(starttime, state, 0, "early");
998 	if (READ_ONCE(async_error))
999 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
1000 
1001 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
1002 }
1003 
1004 /**
1005  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
1006  * @state: PM transition of the system being carried out.
1007  */
dpm_resume_start(pm_message_t state)1008 void dpm_resume_start(pm_message_t state)
1009 {
1010 	dpm_resume_noirq(state);
1011 	dpm_resume_early(state);
1012 }
1013 EXPORT_SYMBOL_GPL(dpm_resume_start);
1014 
1015 static void async_resume(void *data, async_cookie_t cookie);
1016 
1017 /**
1018  * device_resume - Execute "resume" callbacks for given device.
1019  * @dev: Device to handle.
1020  * @state: PM transition of the system being carried out.
1021  * @async: If true, the device is being resumed asynchronously.
1022  */
device_resume(struct device * dev,pm_message_t state,bool async)1023 static void device_resume(struct device *dev, pm_message_t state, bool async)
1024 {
1025 	pm_callback_t callback = NULL;
1026 	const char *info = NULL;
1027 	int error = 0;
1028 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1029 
1030 	TRACE_DEVICE(dev);
1031 	TRACE_RESUME(0);
1032 
1033 	if (dev->power.syscore)
1034 		goto Complete;
1035 
1036 	if (!dev->power.is_suspended)
1037 		goto Complete;
1038 
1039 	dev->power.is_suspended = false;
1040 
1041 	if (dev->power.direct_complete) {
1042 		/*
1043 		 * Allow new children to be added under the device after this
1044 		 * point if it has no PM callbacks.
1045 		 */
1046 		if (dev->power.no_pm_callbacks)
1047 			dev->power.is_prepared = false;
1048 
1049 		/* Match the pm_runtime_disable() in device_suspend(). */
1050 		pm_runtime_enable(dev);
1051 		goto Complete;
1052 	}
1053 
1054 	if (!dpm_wait_for_superior(dev, async))
1055 		goto Complete;
1056 
1057 	dpm_watchdog_set(&wd, dev);
1058 	device_lock(dev);
1059 
1060 	/*
1061 	 * This is a fib.  But we'll allow new children to be added below
1062 	 * a resumed device, even if the device hasn't been completed yet.
1063 	 */
1064 	dev->power.is_prepared = false;
1065 
1066 	if (dev->pm_domain) {
1067 		info = "power domain ";
1068 		callback = pm_op(&dev->pm_domain->ops, state);
1069 		goto Driver;
1070 	}
1071 
1072 	if (dev->type && dev->type->pm) {
1073 		info = "type ";
1074 		callback = pm_op(dev->type->pm, state);
1075 		goto Driver;
1076 	}
1077 
1078 	if (dev->class && dev->class->pm) {
1079 		info = "class ";
1080 		callback = pm_op(dev->class->pm, state);
1081 		goto Driver;
1082 	}
1083 
1084 	if (dev->bus) {
1085 		if (dev->bus->pm) {
1086 			info = "bus ";
1087 			callback = pm_op(dev->bus->pm, state);
1088 		} else if (dev->bus->resume) {
1089 			info = "legacy bus ";
1090 			callback = dev->bus->resume;
1091 			goto End;
1092 		}
1093 	}
1094 
1095  Driver:
1096 	if (!callback && dev->driver && dev->driver->pm) {
1097 		info = "driver ";
1098 		callback = pm_op(dev->driver->pm, state);
1099 	}
1100 
1101  End:
1102 	error = dpm_run_callback(callback, dev, state, info);
1103 
1104 	device_unlock(dev);
1105 	dpm_watchdog_clear(&wd);
1106 
1107  Complete:
1108 	complete_all(&dev->power.completion);
1109 
1110 	TRACE_RESUME(error);
1111 
1112 	if (error) {
1113 		WRITE_ONCE(async_error, error);
1114 		dpm_save_failed_dev(dev_name(dev));
1115 		pm_dev_err(dev, state, async ? " async" : "", error);
1116 	}
1117 
1118 	dpm_async_resume_subordinate(dev, async_resume);
1119 }
1120 
async_resume(void * data,async_cookie_t cookie)1121 static void async_resume(void *data, async_cookie_t cookie)
1122 {
1123 	struct device *dev = data;
1124 
1125 	device_resume(dev, pm_transition, true);
1126 	put_device(dev);
1127 }
1128 
1129 /**
1130  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1131  * @state: PM transition of the system being carried out.
1132  *
1133  * Execute the appropriate "resume" callback for all devices whose status
1134  * indicates that they are suspended.
1135  */
dpm_resume(pm_message_t state)1136 void dpm_resume(pm_message_t state)
1137 {
1138 	struct device *dev;
1139 	ktime_t starttime = ktime_get();
1140 
1141 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1142 
1143 	pm_transition = state;
1144 	async_error = 0;
1145 
1146 	mutex_lock(&dpm_list_mtx);
1147 
1148 	/*
1149 	 * Start processing "async" root devices upfront so they don't wait for
1150 	 * the "sync" devices they don't depend on.
1151 	 */
1152 	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1153 		dpm_clear_async_state(dev);
1154 		if (dpm_root_device(dev))
1155 			dpm_async_with_cleanup(dev, async_resume);
1156 	}
1157 
1158 	while (!list_empty(&dpm_suspended_list)) {
1159 		dev = to_device(dpm_suspended_list.next);
1160 		list_move_tail(&dev->power.entry, &dpm_prepared_list);
1161 
1162 		if (!dpm_async_fn(dev, async_resume)) {
1163 			get_device(dev);
1164 
1165 			mutex_unlock(&dpm_list_mtx);
1166 
1167 			device_resume(dev, state, false);
1168 
1169 			put_device(dev);
1170 
1171 			mutex_lock(&dpm_list_mtx);
1172 		}
1173 	}
1174 	mutex_unlock(&dpm_list_mtx);
1175 	async_synchronize_full();
1176 	dpm_show_time(starttime, state, 0, NULL);
1177 	if (READ_ONCE(async_error))
1178 		dpm_save_failed_step(SUSPEND_RESUME);
1179 
1180 	cpufreq_resume();
1181 	devfreq_resume();
1182 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1183 }
1184 
1185 /**
1186  * device_complete - Complete a PM transition for given device.
1187  * @dev: Device to handle.
1188  * @state: PM transition of the system being carried out.
1189  */
device_complete(struct device * dev,pm_message_t state)1190 static void device_complete(struct device *dev, pm_message_t state)
1191 {
1192 	void (*callback)(struct device *) = NULL;
1193 	const char *info = NULL;
1194 
1195 	if (dev->power.syscore)
1196 		goto out;
1197 
1198 	device_lock(dev);
1199 
1200 	if (dev->pm_domain) {
1201 		info = "completing power domain ";
1202 		callback = dev->pm_domain->ops.complete;
1203 	} else if (dev->type && dev->type->pm) {
1204 		info = "completing type ";
1205 		callback = dev->type->pm->complete;
1206 	} else if (dev->class && dev->class->pm) {
1207 		info = "completing class ";
1208 		callback = dev->class->pm->complete;
1209 	} else if (dev->bus && dev->bus->pm) {
1210 		info = "completing bus ";
1211 		callback = dev->bus->pm->complete;
1212 	}
1213 
1214 	if (!callback && dev->driver && dev->driver->pm) {
1215 		info = "completing driver ";
1216 		callback = dev->driver->pm->complete;
1217 	}
1218 
1219 	if (callback) {
1220 		pm_dev_dbg(dev, state, info);
1221 		callback(dev);
1222 	}
1223 
1224 	device_unlock(dev);
1225 
1226 out:
1227 	/* If enabling runtime PM for the device is blocked, unblock it. */
1228 	pm_runtime_unblock(dev);
1229 	pm_runtime_put(dev);
1230 }
1231 
1232 /**
1233  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1234  * @state: PM transition of the system being carried out.
1235  *
1236  * Execute the ->complete() callbacks for all devices whose PM status is not
1237  * DPM_ON (this allows new devices to be registered).
1238  */
dpm_complete(pm_message_t state)1239 void dpm_complete(pm_message_t state)
1240 {
1241 	struct list_head list;
1242 
1243 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1244 
1245 	INIT_LIST_HEAD(&list);
1246 	mutex_lock(&dpm_list_mtx);
1247 	while (!list_empty(&dpm_prepared_list)) {
1248 		struct device *dev = to_device(dpm_prepared_list.prev);
1249 
1250 		get_device(dev);
1251 		dev->power.is_prepared = false;
1252 		list_move(&dev->power.entry, &list);
1253 
1254 		mutex_unlock(&dpm_list_mtx);
1255 
1256 		trace_device_pm_callback_start(dev, "", state.event);
1257 		device_complete(dev, state);
1258 		trace_device_pm_callback_end(dev, 0);
1259 
1260 		put_device(dev);
1261 
1262 		mutex_lock(&dpm_list_mtx);
1263 	}
1264 	list_splice(&list, &dpm_list);
1265 	mutex_unlock(&dpm_list_mtx);
1266 
1267 	/* Allow device probing and trigger re-probing of deferred devices */
1268 	device_unblock_probing();
1269 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1270 }
1271 
1272 /**
1273  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1274  * @state: PM transition of the system being carried out.
1275  *
1276  * Execute "resume" callbacks for all devices and complete the PM transition of
1277  * the system.
1278  */
dpm_resume_end(pm_message_t state)1279 void dpm_resume_end(pm_message_t state)
1280 {
1281 	dpm_resume(state);
1282 	pm_restore_gfp_mask();
1283 	dpm_complete(state);
1284 }
1285 EXPORT_SYMBOL_GPL(dpm_resume_end);
1286 
1287 
1288 /*------------------------- Suspend routines -------------------------*/
1289 
dpm_leaf_device(struct device * dev)1290 static bool dpm_leaf_device(struct device *dev)
1291 {
1292 	struct device *child;
1293 
1294 	lockdep_assert_held(&dpm_list_mtx);
1295 
1296 	child = device_find_any_child(dev);
1297 	if (child) {
1298 		put_device(child);
1299 
1300 		return false;
1301 	}
1302 
1303 	/*
1304 	 * Since this function is required to run under dpm_list_mtx, the
1305 	 * list_empty() below will only return true if the device's list of
1306 	 * consumers is actually empty before calling it.
1307 	 */
1308 	return list_empty(&dev->links.consumers);
1309 }
1310 
dpm_async_suspend_parent(struct device * dev,async_func_t func)1311 static bool dpm_async_suspend_parent(struct device *dev, async_func_t func)
1312 {
1313 	guard(mutex)(&dpm_list_mtx);
1314 
1315 	/*
1316 	 * If the device is suspended asynchronously and the parent's callback
1317 	 * deletes both the device and the parent itself, the parent object may
1318 	 * be freed while this function is running, so avoid that by checking
1319 	 * if the device has been deleted already as the parent cannot be
1320 	 * deleted before it.
1321 	 */
1322 	if (!device_pm_initialized(dev))
1323 		return false;
1324 
1325 	/* Start processing the device's parent if it is "async". */
1326 	if (dev->parent)
1327 		dpm_async_with_cleanup(dev->parent, func);
1328 
1329 	return true;
1330 }
1331 
dpm_async_suspend_superior(struct device * dev,async_func_t func)1332 static void dpm_async_suspend_superior(struct device *dev, async_func_t func)
1333 {
1334 	struct device_link *link;
1335 	int idx;
1336 
1337 	if (!dpm_async_suspend_parent(dev, func))
1338 		return;
1339 
1340 	idx = device_links_read_lock();
1341 
1342 	/* Start processing the device's "async" suppliers. */
1343 	dev_for_each_link_to_supplier(link, dev)
1344 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
1345 			dpm_async_with_cleanup(link->supplier, func);
1346 
1347 	device_links_read_unlock(idx);
1348 }
1349 
dpm_async_suspend_complete_all(struct list_head * device_list)1350 static void dpm_async_suspend_complete_all(struct list_head *device_list)
1351 {
1352 	struct device *dev;
1353 
1354 	guard(mutex)(&async_wip_mtx);
1355 
1356 	list_for_each_entry_reverse(dev, device_list, power.entry) {
1357 		/*
1358 		 * In case the device is being waited for and async processing
1359 		 * has not started for it yet, let the waiters make progress.
1360 		 */
1361 		if (!dev->power.work_in_progress)
1362 			complete_all(&dev->power.completion);
1363 	}
1364 }
1365 
1366 /**
1367  * resume_event - Return a "resume" message for given "suspend" sleep state.
1368  * @sleep_state: PM message representing a sleep state.
1369  *
1370  * Return a PM message representing the resume event corresponding to given
1371  * sleep state.
1372  */
resume_event(pm_message_t sleep_state)1373 static pm_message_t resume_event(pm_message_t sleep_state)
1374 {
1375 	switch (sleep_state.event) {
1376 	case PM_EVENT_SUSPEND:
1377 		return PMSG_RESUME;
1378 	case PM_EVENT_FREEZE:
1379 	case PM_EVENT_QUIESCE:
1380 		return PMSG_RECOVER;
1381 	case PM_EVENT_HIBERNATE:
1382 		return PMSG_RESTORE;
1383 	}
1384 	return PMSG_ON;
1385 }
1386 
dpm_superior_set_must_resume(struct device * dev)1387 static void dpm_superior_set_must_resume(struct device *dev)
1388 {
1389 	struct device_link *link;
1390 	int idx;
1391 
1392 	if (dev->parent)
1393 		dev->parent->power.must_resume = true;
1394 
1395 	idx = device_links_read_lock();
1396 
1397 	dev_for_each_link_to_supplier(link, dev)
1398 		link->supplier->power.must_resume = true;
1399 
1400 	device_links_read_unlock(idx);
1401 }
1402 
1403 static void async_suspend_noirq(void *data, async_cookie_t cookie);
1404 
1405 /**
1406  * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1407  * @dev: Device to handle.
1408  * @state: PM transition of the system being carried out.
1409  * @async: If true, the device is being suspended asynchronously.
1410  *
1411  * The driver of @dev will not receive interrupts while this function is being
1412  * executed.
1413  */
device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1414 static void device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1415 {
1416 	pm_callback_t callback = NULL;
1417 	const char *info = NULL;
1418 	int error = 0;
1419 
1420 	TRACE_DEVICE(dev);
1421 	TRACE_SUSPEND(0);
1422 
1423 	dpm_wait_for_subordinate(dev, async);
1424 
1425 	if (READ_ONCE(async_error))
1426 		goto Complete;
1427 
1428 	if (dev->power.syscore || dev->power.direct_complete)
1429 		goto Complete;
1430 
1431 	if (dev->pm_domain) {
1432 		info = "noirq power domain ";
1433 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1434 	} else if (dev->type && dev->type->pm) {
1435 		info = "noirq type ";
1436 		callback = pm_noirq_op(dev->type->pm, state);
1437 	} else if (dev->class && dev->class->pm) {
1438 		info = "noirq class ";
1439 		callback = pm_noirq_op(dev->class->pm, state);
1440 	} else if (dev->bus && dev->bus->pm) {
1441 		info = "noirq bus ";
1442 		callback = pm_noirq_op(dev->bus->pm, state);
1443 	}
1444 	if (callback)
1445 		goto Run;
1446 
1447 	if (dev_pm_skip_suspend(dev))
1448 		goto Skip;
1449 
1450 	if (dev->driver && dev->driver->pm) {
1451 		info = "noirq driver ";
1452 		callback = pm_noirq_op(dev->driver->pm, state);
1453 	}
1454 
1455 Run:
1456 	error = dpm_run_callback(callback, dev, state, info);
1457 	if (error) {
1458 		WRITE_ONCE(async_error, error);
1459 		dpm_save_failed_dev(dev_name(dev));
1460 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1461 		goto Complete;
1462 	}
1463 
1464 Skip:
1465 	dev->power.is_noirq_suspended = true;
1466 
1467 	/*
1468 	 * Devices must be resumed unless they are explicitly allowed to be left
1469 	 * in suspend, but even in that case skipping the resume of devices that
1470 	 * were in use right before the system suspend (as indicated by their
1471 	 * runtime PM usage counters and child counters) would be suboptimal.
1472 	 */
1473 	if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1474 	      dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev))
1475 		dev->power.must_resume = true;
1476 
1477 	if (dev->power.must_resume)
1478 		dpm_superior_set_must_resume(dev);
1479 
1480 Complete:
1481 	complete_all(&dev->power.completion);
1482 	TRACE_SUSPEND(error);
1483 
1484 	if (error || READ_ONCE(async_error))
1485 		return;
1486 
1487 	dpm_async_suspend_superior(dev, async_suspend_noirq);
1488 }
1489 
async_suspend_noirq(void * data,async_cookie_t cookie)1490 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1491 {
1492 	struct device *dev = data;
1493 
1494 	device_suspend_noirq(dev, pm_transition, true);
1495 	put_device(dev);
1496 }
1497 
dpm_noirq_suspend_devices(pm_message_t state)1498 static int dpm_noirq_suspend_devices(pm_message_t state)
1499 {
1500 	ktime_t starttime = ktime_get();
1501 	struct device *dev;
1502 	int error;
1503 
1504 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1505 
1506 	pm_transition = state;
1507 	async_error = 0;
1508 
1509 	mutex_lock(&dpm_list_mtx);
1510 
1511 	/*
1512 	 * Start processing "async" leaf devices upfront so they don't need to
1513 	 * wait for the "sync" devices they don't depend on.
1514 	 */
1515 	list_for_each_entry_reverse(dev, &dpm_late_early_list, power.entry) {
1516 		dpm_clear_async_state(dev);
1517 		if (dpm_leaf_device(dev))
1518 			dpm_async_with_cleanup(dev, async_suspend_noirq);
1519 	}
1520 
1521 	while (!list_empty(&dpm_late_early_list)) {
1522 		dev = to_device(dpm_late_early_list.prev);
1523 
1524 		list_move(&dev->power.entry, &dpm_noirq_list);
1525 
1526 		if (dpm_async_fn(dev, async_suspend_noirq))
1527 			continue;
1528 
1529 		get_device(dev);
1530 
1531 		mutex_unlock(&dpm_list_mtx);
1532 
1533 		device_suspend_noirq(dev, state, false);
1534 
1535 		put_device(dev);
1536 
1537 		mutex_lock(&dpm_list_mtx);
1538 
1539 		if (READ_ONCE(async_error)) {
1540 			dpm_async_suspend_complete_all(&dpm_late_early_list);
1541 			/*
1542 			 * Move all devices to the target list to resume them
1543 			 * properly.
1544 			 */
1545 			list_splice_init(&dpm_late_early_list, &dpm_noirq_list);
1546 			break;
1547 		}
1548 	}
1549 
1550 	mutex_unlock(&dpm_list_mtx);
1551 
1552 	async_synchronize_full();
1553 
1554 	error = READ_ONCE(async_error);
1555 	if (error)
1556 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1557 
1558 	dpm_show_time(starttime, state, error, "noirq");
1559 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1560 	return error;
1561 }
1562 
1563 /**
1564  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1565  * @state: PM transition of the system being carried out.
1566  *
1567  * Prevent device drivers' interrupt handlers from being called and invoke
1568  * "noirq" suspend callbacks for all non-sysdev devices.
1569  */
dpm_suspend_noirq(pm_message_t state)1570 int dpm_suspend_noirq(pm_message_t state)
1571 {
1572 	int ret;
1573 
1574 	device_wakeup_arm_wake_irqs();
1575 	suspend_device_irqs();
1576 
1577 	ret = dpm_noirq_suspend_devices(state);
1578 	if (ret)
1579 		dpm_resume_noirq(resume_event(state));
1580 
1581 	return ret;
1582 }
1583 
dpm_propagate_wakeup_to_parent(struct device * dev)1584 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1585 {
1586 	struct device *parent = dev->parent;
1587 
1588 	if (!parent)
1589 		return;
1590 
1591 	spin_lock_irq(&parent->power.lock);
1592 
1593 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1594 		parent->power.wakeup_path = true;
1595 
1596 	spin_unlock_irq(&parent->power.lock);
1597 }
1598 
1599 static void async_suspend_late(void *data, async_cookie_t cookie);
1600 
1601 /**
1602  * device_suspend_late - Execute a "late suspend" callback for given device.
1603  * @dev: Device to handle.
1604  * @state: PM transition of the system being carried out.
1605  * @async: If true, the device is being suspended asynchronously.
1606  *
1607  * Runtime PM is disabled for @dev while this function is being executed.
1608  */
device_suspend_late(struct device * dev,pm_message_t state,bool async)1609 static void device_suspend_late(struct device *dev, pm_message_t state, bool async)
1610 {
1611 	pm_callback_t callback = NULL;
1612 	const char *info = NULL;
1613 	int error = 0;
1614 
1615 	TRACE_DEVICE(dev);
1616 	TRACE_SUSPEND(0);
1617 
1618 	/*
1619 	 * Disable runtime PM for the device without checking if there is a
1620 	 * pending resume request for it.
1621 	 */
1622 	__pm_runtime_disable(dev, false);
1623 
1624 	dpm_wait_for_subordinate(dev, async);
1625 
1626 	if (READ_ONCE(async_error))
1627 		goto Complete;
1628 
1629 	if (pm_wakeup_pending()) {
1630 		WRITE_ONCE(async_error, -EBUSY);
1631 		goto Complete;
1632 	}
1633 
1634 	if (dev->power.syscore || dev->power.direct_complete)
1635 		goto Complete;
1636 
1637 	if (dev->pm_domain) {
1638 		info = "late power domain ";
1639 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1640 	} else if (dev->type && dev->type->pm) {
1641 		info = "late type ";
1642 		callback = pm_late_early_op(dev->type->pm, state);
1643 	} else if (dev->class && dev->class->pm) {
1644 		info = "late class ";
1645 		callback = pm_late_early_op(dev->class->pm, state);
1646 	} else if (dev->bus && dev->bus->pm) {
1647 		info = "late bus ";
1648 		callback = pm_late_early_op(dev->bus->pm, state);
1649 	}
1650 	if (callback)
1651 		goto Run;
1652 
1653 	if (dev_pm_skip_suspend(dev))
1654 		goto Skip;
1655 
1656 	if (dev->driver && dev->driver->pm) {
1657 		info = "late driver ";
1658 		callback = pm_late_early_op(dev->driver->pm, state);
1659 	}
1660 
1661 Run:
1662 	error = dpm_run_callback(callback, dev, state, info);
1663 	if (error) {
1664 		WRITE_ONCE(async_error, error);
1665 		dpm_save_failed_dev(dev_name(dev));
1666 		pm_dev_err(dev, state, async ? " async late" : " late", error);
1667 		goto Complete;
1668 	}
1669 	dpm_propagate_wakeup_to_parent(dev);
1670 
1671 Skip:
1672 	dev->power.is_late_suspended = true;
1673 
1674 Complete:
1675 	TRACE_SUSPEND(error);
1676 	complete_all(&dev->power.completion);
1677 
1678 	if (error || READ_ONCE(async_error))
1679 		return;
1680 
1681 	dpm_async_suspend_superior(dev, async_suspend_late);
1682 }
1683 
async_suspend_late(void * data,async_cookie_t cookie)1684 static void async_suspend_late(void *data, async_cookie_t cookie)
1685 {
1686 	struct device *dev = data;
1687 
1688 	device_suspend_late(dev, pm_transition, true);
1689 	put_device(dev);
1690 }
1691 
1692 /**
1693  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1694  * @state: PM transition of the system being carried out.
1695  */
dpm_suspend_late(pm_message_t state)1696 int dpm_suspend_late(pm_message_t state)
1697 {
1698 	ktime_t starttime = ktime_get();
1699 	struct device *dev;
1700 	int error;
1701 
1702 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1703 
1704 	pm_transition = state;
1705 	async_error = 0;
1706 
1707 	wake_up_all_idle_cpus();
1708 
1709 	mutex_lock(&dpm_list_mtx);
1710 
1711 	/*
1712 	 * Start processing "async" leaf devices upfront so they don't need to
1713 	 * wait for the "sync" devices they don't depend on.
1714 	 */
1715 	list_for_each_entry_reverse(dev, &dpm_suspended_list, power.entry) {
1716 		dpm_clear_async_state(dev);
1717 		if (dpm_leaf_device(dev))
1718 			dpm_async_with_cleanup(dev, async_suspend_late);
1719 	}
1720 
1721 	while (!list_empty(&dpm_suspended_list)) {
1722 		dev = to_device(dpm_suspended_list.prev);
1723 
1724 		list_move(&dev->power.entry, &dpm_late_early_list);
1725 
1726 		if (dpm_async_fn(dev, async_suspend_late))
1727 			continue;
1728 
1729 		get_device(dev);
1730 
1731 		mutex_unlock(&dpm_list_mtx);
1732 
1733 		device_suspend_late(dev, state, false);
1734 
1735 		put_device(dev);
1736 
1737 		mutex_lock(&dpm_list_mtx);
1738 
1739 		if (READ_ONCE(async_error)) {
1740 			dpm_async_suspend_complete_all(&dpm_suspended_list);
1741 			/*
1742 			 * Move all devices to the target list to resume them
1743 			 * properly.
1744 			 */
1745 			list_splice_init(&dpm_suspended_list, &dpm_late_early_list);
1746 			break;
1747 		}
1748 	}
1749 
1750 	mutex_unlock(&dpm_list_mtx);
1751 
1752 	async_synchronize_full();
1753 
1754 	error = READ_ONCE(async_error);
1755 	if (error) {
1756 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1757 		dpm_resume_early(resume_event(state));
1758 	}
1759 	dpm_show_time(starttime, state, error, "late");
1760 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1761 	return error;
1762 }
1763 
1764 /**
1765  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1766  * @state: PM transition of the system being carried out.
1767  */
dpm_suspend_end(pm_message_t state)1768 int dpm_suspend_end(pm_message_t state)
1769 {
1770 	ktime_t starttime = ktime_get();
1771 	int error;
1772 
1773 	error = dpm_suspend_late(state);
1774 	if (error)
1775 		goto out;
1776 
1777 	error = dpm_suspend_noirq(state);
1778 	if (error)
1779 		dpm_resume_early(resume_event(state));
1780 
1781 out:
1782 	dpm_show_time(starttime, state, error, "end");
1783 	return error;
1784 }
1785 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1786 
1787 /**
1788  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1789  * @dev: Device to suspend.
1790  * @state: PM transition of the system being carried out.
1791  * @cb: Suspend callback to execute.
1792  * @info: string description of caller.
1793  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1794 static int legacy_suspend(struct device *dev, pm_message_t state,
1795 			  int (*cb)(struct device *dev, pm_message_t state),
1796 			  const char *info)
1797 {
1798 	int error;
1799 	ktime_t calltime;
1800 
1801 	calltime = initcall_debug_start(dev, cb);
1802 
1803 	trace_device_pm_callback_start(dev, info, state.event);
1804 	error = cb(dev, state);
1805 	trace_device_pm_callback_end(dev, error);
1806 	suspend_report_result(dev, cb, error);
1807 
1808 	initcall_debug_report(dev, calltime, cb, error);
1809 
1810 	return error;
1811 }
1812 
dpm_clear_superiors_direct_complete(struct device * dev)1813 static void dpm_clear_superiors_direct_complete(struct device *dev)
1814 {
1815 	struct device_link *link;
1816 	int idx;
1817 
1818 	if (dev->parent) {
1819 		spin_lock_irq(&dev->parent->power.lock);
1820 		dev->parent->power.direct_complete = false;
1821 		spin_unlock_irq(&dev->parent->power.lock);
1822 	}
1823 
1824 	idx = device_links_read_lock();
1825 
1826 	dev_for_each_link_to_supplier(link, dev) {
1827 		spin_lock_irq(&link->supplier->power.lock);
1828 		link->supplier->power.direct_complete = false;
1829 		spin_unlock_irq(&link->supplier->power.lock);
1830 	}
1831 
1832 	device_links_read_unlock(idx);
1833 }
1834 
1835 static void async_suspend(void *data, async_cookie_t cookie);
1836 
1837 /**
1838  * device_suspend - Execute "suspend" callbacks for given device.
1839  * @dev: Device to handle.
1840  * @state: PM transition of the system being carried out.
1841  * @async: If true, the device is being suspended asynchronously.
1842  */
device_suspend(struct device * dev,pm_message_t state,bool async)1843 static void device_suspend(struct device *dev, pm_message_t state, bool async)
1844 {
1845 	pm_callback_t callback = NULL;
1846 	const char *info = NULL;
1847 	int error = 0;
1848 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1849 
1850 	TRACE_DEVICE(dev);
1851 	TRACE_SUSPEND(0);
1852 
1853 	dpm_wait_for_subordinate(dev, async);
1854 
1855 	if (READ_ONCE(async_error)) {
1856 		dev->power.direct_complete = false;
1857 		goto Complete;
1858 	}
1859 
1860 	/*
1861 	 * Wait for possible runtime PM transitions of the device in progress
1862 	 * to complete and if there's a runtime resume request pending for it,
1863 	 * resume it before proceeding with invoking the system-wide suspend
1864 	 * callbacks for it.
1865 	 *
1866 	 * If the system-wide suspend callbacks below change the configuration
1867 	 * of the device, they must disable runtime PM for it or otherwise
1868 	 * ensure that its runtime-resume callbacks will not be confused by that
1869 	 * change in case they are invoked going forward.
1870 	 */
1871 	pm_runtime_barrier(dev);
1872 
1873 	if (pm_wakeup_pending()) {
1874 		dev->power.direct_complete = false;
1875 		WRITE_ONCE(async_error, -EBUSY);
1876 		goto Complete;
1877 	}
1878 
1879 	if (dev->power.syscore)
1880 		goto Complete;
1881 
1882 	/* Avoid direct_complete to let wakeup_path propagate. */
1883 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1884 		dev->power.direct_complete = false;
1885 
1886 	if (dev->power.direct_complete) {
1887 		if (pm_runtime_status_suspended(dev)) {
1888 			pm_runtime_disable(dev);
1889 			if (pm_runtime_status_suspended(dev)) {
1890 				pm_dev_dbg(dev, state, "direct-complete ");
1891 				dev->power.is_suspended = true;
1892 				goto Complete;
1893 			}
1894 
1895 			pm_runtime_enable(dev);
1896 		}
1897 		dev->power.direct_complete = false;
1898 	}
1899 
1900 	dev->power.may_skip_resume = true;
1901 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1902 
1903 	dpm_watchdog_set(&wd, dev);
1904 	device_lock(dev);
1905 
1906 	if (dev->pm_domain) {
1907 		info = "power domain ";
1908 		callback = pm_op(&dev->pm_domain->ops, state);
1909 		goto Run;
1910 	}
1911 
1912 	if (dev->type && dev->type->pm) {
1913 		info = "type ";
1914 		callback = pm_op(dev->type->pm, state);
1915 		goto Run;
1916 	}
1917 
1918 	if (dev->class && dev->class->pm) {
1919 		info = "class ";
1920 		callback = pm_op(dev->class->pm, state);
1921 		goto Run;
1922 	}
1923 
1924 	if (dev->bus) {
1925 		if (dev->bus->pm) {
1926 			info = "bus ";
1927 			callback = pm_op(dev->bus->pm, state);
1928 		} else if (dev->bus->suspend) {
1929 			pm_dev_dbg(dev, state, "legacy bus ");
1930 			error = legacy_suspend(dev, state, dev->bus->suspend,
1931 						"legacy bus ");
1932 			goto End;
1933 		}
1934 	}
1935 
1936  Run:
1937 	if (!callback && dev->driver && dev->driver->pm) {
1938 		info = "driver ";
1939 		callback = pm_op(dev->driver->pm, state);
1940 	}
1941 
1942 	error = dpm_run_callback(callback, dev, state, info);
1943 
1944  End:
1945 	if (!error) {
1946 		dev->power.is_suspended = true;
1947 		if (device_may_wakeup(dev))
1948 			dev->power.wakeup_path = true;
1949 
1950 		dpm_propagate_wakeup_to_parent(dev);
1951 		dpm_clear_superiors_direct_complete(dev);
1952 	}
1953 
1954 	device_unlock(dev);
1955 	dpm_watchdog_clear(&wd);
1956 
1957  Complete:
1958 	if (error) {
1959 		WRITE_ONCE(async_error, error);
1960 		dpm_save_failed_dev(dev_name(dev));
1961 		pm_dev_err(dev, state, async ? " async" : "", error);
1962 	}
1963 
1964 	complete_all(&dev->power.completion);
1965 	TRACE_SUSPEND(error);
1966 
1967 	if (error || READ_ONCE(async_error))
1968 		return;
1969 
1970 	dpm_async_suspend_superior(dev, async_suspend);
1971 }
1972 
async_suspend(void * data,async_cookie_t cookie)1973 static void async_suspend(void *data, async_cookie_t cookie)
1974 {
1975 	struct device *dev = data;
1976 
1977 	device_suspend(dev, pm_transition, true);
1978 	put_device(dev);
1979 }
1980 
1981 /**
1982  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1983  * @state: PM transition of the system being carried out.
1984  */
dpm_suspend(pm_message_t state)1985 int dpm_suspend(pm_message_t state)
1986 {
1987 	ktime_t starttime = ktime_get();
1988 	struct device *dev;
1989 	int error;
1990 
1991 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1992 	might_sleep();
1993 
1994 	devfreq_suspend();
1995 	cpufreq_suspend();
1996 
1997 	pm_transition = state;
1998 	async_error = 0;
1999 
2000 	mutex_lock(&dpm_list_mtx);
2001 
2002 	/*
2003 	 * Start processing "async" leaf devices upfront so they don't need to
2004 	 * wait for the "sync" devices they don't depend on.
2005 	 */
2006 	list_for_each_entry_reverse(dev, &dpm_prepared_list, power.entry) {
2007 		dpm_clear_async_state(dev);
2008 		if (dpm_leaf_device(dev))
2009 			dpm_async_with_cleanup(dev, async_suspend);
2010 	}
2011 
2012 	while (!list_empty(&dpm_prepared_list)) {
2013 		dev = to_device(dpm_prepared_list.prev);
2014 
2015 		list_move(&dev->power.entry, &dpm_suspended_list);
2016 
2017 		if (dpm_async_fn(dev, async_suspend))
2018 			continue;
2019 
2020 		get_device(dev);
2021 
2022 		mutex_unlock(&dpm_list_mtx);
2023 
2024 		device_suspend(dev, state, false);
2025 
2026 		put_device(dev);
2027 
2028 		mutex_lock(&dpm_list_mtx);
2029 
2030 		if (READ_ONCE(async_error)) {
2031 			dpm_async_suspend_complete_all(&dpm_prepared_list);
2032 			/*
2033 			 * Move all devices to the target list to resume them
2034 			 * properly.
2035 			 */
2036 			list_splice_init(&dpm_prepared_list, &dpm_suspended_list);
2037 			break;
2038 		}
2039 	}
2040 
2041 	mutex_unlock(&dpm_list_mtx);
2042 
2043 	async_synchronize_full();
2044 
2045 	error = READ_ONCE(async_error);
2046 	if (error)
2047 		dpm_save_failed_step(SUSPEND_SUSPEND);
2048 
2049 	dpm_show_time(starttime, state, error, NULL);
2050 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
2051 	return error;
2052 }
2053 
device_prepare_smart_suspend(struct device * dev)2054 static bool device_prepare_smart_suspend(struct device *dev)
2055 {
2056 	struct device_link *link;
2057 	bool ret = true;
2058 	int idx;
2059 
2060 	/*
2061 	 * The "smart suspend" feature is enabled for devices whose drivers ask
2062 	 * for it and for devices without PM callbacks.
2063 	 *
2064 	 * However, if "smart suspend" is not enabled for the device's parent
2065 	 * or any of its suppliers that take runtime PM into account, it cannot
2066 	 * be enabled for the device either.
2067 	 */
2068 	if (!dev->power.no_pm_callbacks &&
2069 	    !dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
2070 		return false;
2071 
2072 	if (dev->parent && !dev_pm_smart_suspend(dev->parent) &&
2073 	    !dev->parent->power.ignore_children && !pm_runtime_blocked(dev->parent))
2074 		return false;
2075 
2076 	idx = device_links_read_lock();
2077 
2078 	dev_for_each_link_to_supplier(link, dev) {
2079 		if (!device_link_test(link, DL_FLAG_PM_RUNTIME))
2080 			continue;
2081 
2082 		if (!dev_pm_smart_suspend(link->supplier) &&
2083 		    !pm_runtime_blocked(link->supplier)) {
2084 			ret = false;
2085 			break;
2086 		}
2087 	}
2088 
2089 	device_links_read_unlock(idx);
2090 
2091 	return ret;
2092 }
2093 
2094 /**
2095  * device_prepare - Prepare a device for system power transition.
2096  * @dev: Device to handle.
2097  * @state: PM transition of the system being carried out.
2098  *
2099  * Execute the ->prepare() callback(s) for given device.  No new children of the
2100  * device may be registered after this function has returned.
2101  */
device_prepare(struct device * dev,pm_message_t state)2102 static int device_prepare(struct device *dev, pm_message_t state)
2103 {
2104 	int (*callback)(struct device *) = NULL;
2105 	bool smart_suspend;
2106 	int ret = 0;
2107 
2108 	/*
2109 	 * If a device's parent goes into runtime suspend at the wrong time,
2110 	 * it won't be possible to resume the device.  To prevent this we
2111 	 * block runtime suspend here, during the prepare phase, and allow
2112 	 * it again during the complete phase.
2113 	 */
2114 	pm_runtime_get_noresume(dev);
2115 	/*
2116 	 * If runtime PM is disabled for the device at this point and it has
2117 	 * never been enabled so far, it should not be enabled until this system
2118 	 * suspend-resume cycle is complete, so prepare to trigger a warning on
2119 	 * subsequent attempts to enable it.
2120 	 */
2121 	smart_suspend = !pm_runtime_block_if_disabled(dev);
2122 
2123 	if (dev->power.syscore)
2124 		return 0;
2125 
2126 	device_lock(dev);
2127 
2128 	dev->power.wakeup_path = false;
2129 
2130 	if (dev->power.no_pm_callbacks)
2131 		goto unlock;
2132 
2133 	if (dev->pm_domain)
2134 		callback = dev->pm_domain->ops.prepare;
2135 	else if (dev->type && dev->type->pm)
2136 		callback = dev->type->pm->prepare;
2137 	else if (dev->class && dev->class->pm)
2138 		callback = dev->class->pm->prepare;
2139 	else if (dev->bus && dev->bus->pm)
2140 		callback = dev->bus->pm->prepare;
2141 
2142 	if (!callback && dev->driver && dev->driver->pm)
2143 		callback = dev->driver->pm->prepare;
2144 
2145 	if (callback)
2146 		ret = callback(dev);
2147 
2148 unlock:
2149 	device_unlock(dev);
2150 
2151 	if (ret < 0) {
2152 		suspend_report_result(dev, callback, ret);
2153 		pm_runtime_put(dev);
2154 		return ret;
2155 	}
2156 	/* Do not enable "smart suspend" for devices with disabled runtime PM. */
2157 	if (smart_suspend)
2158 		smart_suspend = device_prepare_smart_suspend(dev);
2159 
2160 	spin_lock_irq(&dev->power.lock);
2161 
2162 	dev->power.smart_suspend = smart_suspend;
2163 	/*
2164 	 * A positive return value from ->prepare() means "this device appears
2165 	 * to be runtime-suspended and its state is fine, so if it really is
2166 	 * runtime-suspended, you can leave it in that state provided that you
2167 	 * will do the same thing with all of its descendants".  This only
2168 	 * applies to suspend transitions, however.
2169 	 */
2170 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
2171 		(ret > 0 || dev->power.no_pm_callbacks) &&
2172 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
2173 
2174 	spin_unlock_irq(&dev->power.lock);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
2181  * @state: PM transition of the system being carried out.
2182  *
2183  * Execute the ->prepare() callback(s) for all devices.
2184  */
dpm_prepare(pm_message_t state)2185 int dpm_prepare(pm_message_t state)
2186 {
2187 	int error = 0;
2188 
2189 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
2190 
2191 	/*
2192 	 * Give a chance for the known devices to complete their probes, before
2193 	 * disable probing of devices. This sync point is important at least
2194 	 * at boot time + hibernation restore.
2195 	 */
2196 	wait_for_device_probe();
2197 	/*
2198 	 * It is unsafe if probing of devices will happen during suspend or
2199 	 * hibernation and system behavior will be unpredictable in this case.
2200 	 * So, let's prohibit device's probing here and defer their probes
2201 	 * instead. The normal behavior will be restored in dpm_complete().
2202 	 */
2203 	device_block_probing();
2204 
2205 	mutex_lock(&dpm_list_mtx);
2206 	while (!list_empty(&dpm_list) && !error) {
2207 		struct device *dev = to_device(dpm_list.next);
2208 
2209 		get_device(dev);
2210 
2211 		mutex_unlock(&dpm_list_mtx);
2212 
2213 		trace_device_pm_callback_start(dev, "", state.event);
2214 		error = device_prepare(dev, state);
2215 		trace_device_pm_callback_end(dev, error);
2216 
2217 		mutex_lock(&dpm_list_mtx);
2218 
2219 		if (!error) {
2220 			dev->power.is_prepared = true;
2221 			if (!list_empty(&dev->power.entry))
2222 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
2223 		} else if (error == -EAGAIN) {
2224 			error = 0;
2225 		} else {
2226 			dev_info(dev, "not prepared for power transition: code %d\n",
2227 				 error);
2228 		}
2229 
2230 		mutex_unlock(&dpm_list_mtx);
2231 
2232 		put_device(dev);
2233 
2234 		mutex_lock(&dpm_list_mtx);
2235 	}
2236 	mutex_unlock(&dpm_list_mtx);
2237 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2238 	return error;
2239 }
2240 
2241 /**
2242  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2243  * @state: PM transition of the system being carried out.
2244  *
2245  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2246  * callbacks for them.
2247  */
dpm_suspend_start(pm_message_t state)2248 int dpm_suspend_start(pm_message_t state)
2249 {
2250 	ktime_t starttime = ktime_get();
2251 	int error;
2252 
2253 	error = dpm_prepare(state);
2254 	if (error)
2255 		dpm_save_failed_step(SUSPEND_PREPARE);
2256 	else {
2257 		pm_restrict_gfp_mask();
2258 		error = dpm_suspend(state);
2259 	}
2260 
2261 	dpm_show_time(starttime, state, error, "start");
2262 	return error;
2263 }
2264 EXPORT_SYMBOL_GPL(dpm_suspend_start);
2265 
__suspend_report_result(const char * function,struct device * dev,void * fn,int ret)2266 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
2267 {
2268 	if (ret)
2269 		dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret);
2270 }
2271 EXPORT_SYMBOL_GPL(__suspend_report_result);
2272 
2273 /**
2274  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2275  * @subordinate: Device that needs to wait for @dev.
2276  * @dev: Device to wait for.
2277  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)2278 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2279 {
2280 	dpm_wait(dev, subordinate->power.async_suspend);
2281 	return async_error;
2282 }
2283 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2284 
2285 /**
2286  * dpm_for_each_dev - device iterator.
2287  * @data: data for the callback.
2288  * @fn: function to be called for each device.
2289  *
2290  * Iterate over devices in dpm_list, and call @fn for each device,
2291  * passing it @data.
2292  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))2293 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2294 {
2295 	struct device *dev;
2296 
2297 	if (!fn)
2298 		return;
2299 
2300 	device_pm_lock();
2301 	list_for_each_entry(dev, &dpm_list, power.entry)
2302 		fn(dev, data);
2303 	device_pm_unlock();
2304 }
2305 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2306 
pm_ops_is_empty(const struct dev_pm_ops * ops)2307 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2308 {
2309 	if (!ops)
2310 		return true;
2311 
2312 	return !ops->prepare &&
2313 	       !ops->suspend &&
2314 	       !ops->suspend_late &&
2315 	       !ops->suspend_noirq &&
2316 	       !ops->resume_noirq &&
2317 	       !ops->resume_early &&
2318 	       !ops->resume &&
2319 	       !ops->complete;
2320 }
2321 
device_pm_check_callbacks(struct device * dev)2322 void device_pm_check_callbacks(struct device *dev)
2323 {
2324 	unsigned long flags;
2325 
2326 	spin_lock_irqsave(&dev->power.lock, flags);
2327 	dev->power.no_pm_callbacks =
2328 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2329 		 !dev->bus->suspend && !dev->bus->resume)) &&
2330 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2331 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2332 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2333 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2334 		 !dev->driver->suspend && !dev->driver->resume));
2335 	spin_unlock_irqrestore(&dev->power.lock, flags);
2336 }
2337 
dev_pm_skip_suspend(struct device * dev)2338 bool dev_pm_skip_suspend(struct device *dev)
2339 {
2340 	return dev_pm_smart_suspend(dev) && pm_runtime_status_suspended(dev);
2341 }
2342