xref: /linux/kernel/sched/syscalls.c (revision bf76f23aa1c178e9115eba17f699fa726aed669b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/syscalls.c
4  *
5  *  Core kernel scheduler syscalls related code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13 
14 #include <uapi/linux/sched/types.h>
15 
16 #include "sched.h"
17 #include "autogroup.h"
18 
__normal_prio(int policy,int rt_prio,int nice)19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 	int prio;
22 
23 	if (dl_policy(policy))
24 		prio = MAX_DL_PRIO - 1;
25 	else if (rt_policy(policy))
26 		prio = MAX_RT_PRIO - 1 - rt_prio;
27 	else
28 		prio = NICE_TO_PRIO(nice);
29 
30 	return prio;
31 }
32 
33 /*
34  * Calculate the expected normal priority: i.e. priority
35  * without taking RT-inheritance into account. Might be
36  * boosted by interactivity modifiers. Changes upon fork,
37  * setprio syscalls, and whenever the interactivity
38  * estimator recalculates.
39  */
normal_prio(struct task_struct * p)40 static inline int normal_prio(struct task_struct *p)
41 {
42 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44 
45 /*
46  * Calculate the current priority, i.e. the priority
47  * taken into account by the scheduler. This value might
48  * be boosted by RT tasks, or might be boosted by
49  * interactivity modifiers. Will be RT if the task got
50  * RT-boosted. If not then it returns p->normal_prio.
51  */
effective_prio(struct task_struct * p)52 static int effective_prio(struct task_struct *p)
53 {
54 	p->normal_prio = normal_prio(p);
55 	/*
56 	 * If we are RT tasks or we were boosted to RT priority,
57 	 * keep the priority unchanged. Otherwise, update priority
58 	 * to the normal priority:
59 	 */
60 	if (!rt_or_dl_prio(p->prio))
61 		return p->normal_prio;
62 	return p->prio;
63 }
64 
set_user_nice(struct task_struct * p,long nice)65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 	bool queued, running;
68 	struct rq *rq;
69 	int old_prio;
70 
71 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72 		return;
73 	/*
74 	 * We have to be careful, if called from sys_setpriority(),
75 	 * the task might be in the middle of scheduling on another CPU.
76 	 */
77 	CLASS(task_rq_lock, rq_guard)(p);
78 	rq = rq_guard.rq;
79 
80 	update_rq_clock(rq);
81 
82 	/*
83 	 * The RT priorities are set via sched_setscheduler(), but we still
84 	 * allow the 'normal' nice value to be set - but as expected
85 	 * it won't have any effect on scheduling until the task is
86 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87 	 */
88 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89 		p->static_prio = NICE_TO_PRIO(nice);
90 		return;
91 	}
92 
93 	queued = task_on_rq_queued(p);
94 	running = task_current_donor(rq, p);
95 	if (queued)
96 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97 	if (running)
98 		put_prev_task(rq, p);
99 
100 	p->static_prio = NICE_TO_PRIO(nice);
101 	set_load_weight(p, true);
102 	old_prio = p->prio;
103 	p->prio = effective_prio(p);
104 
105 	if (queued)
106 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107 	if (running)
108 		set_next_task(rq, p);
109 
110 	/*
111 	 * If the task increased its priority or is running and
112 	 * lowered its priority, then reschedule its CPU:
113 	 */
114 	p->sched_class->prio_changed(rq, p, old_prio);
115 }
116 EXPORT_SYMBOL(set_user_nice);
117 
118 /*
119  * is_nice_reduction - check if nice value is an actual reduction
120  *
121  * Similar to can_nice() but does not perform a capability check.
122  *
123  * @p: task
124  * @nice: nice value
125  */
is_nice_reduction(const struct task_struct * p,const int nice)126 static bool is_nice_reduction(const struct task_struct *p, const int nice)
127 {
128 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129 	int nice_rlim = nice_to_rlimit(nice);
130 
131 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132 }
133 
134 /*
135  * can_nice - check if a task can reduce its nice value
136  * @p: task
137  * @nice: nice value
138  */
can_nice(const struct task_struct * p,const int nice)139 int can_nice(const struct task_struct *p, const int nice)
140 {
141 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142 }
143 
144 #ifdef __ARCH_WANT_SYS_NICE
145 
146 /*
147  * sys_nice - change the priority of the current process.
148  * @increment: priority increment
149  *
150  * sys_setpriority is a more generic, but much slower function that
151  * does similar things.
152  */
SYSCALL_DEFINE1(nice,int,increment)153 SYSCALL_DEFINE1(nice, int, increment)
154 {
155 	long nice, retval;
156 
157 	/*
158 	 * Setpriority might change our priority at the same moment.
159 	 * We don't have to worry. Conceptually one call occurs first
160 	 * and we have a single winner.
161 	 */
162 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163 	nice = task_nice(current) + increment;
164 
165 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166 	if (increment < 0 && !can_nice(current, nice))
167 		return -EPERM;
168 
169 	retval = security_task_setnice(current, nice);
170 	if (retval)
171 		return retval;
172 
173 	set_user_nice(current, nice);
174 	return 0;
175 }
176 
177 #endif /* __ARCH_WANT_SYS_NICE */
178 
179 /**
180  * task_prio - return the priority value of a given task.
181  * @p: the task in question.
182  *
183  * Return: The priority value as seen by users in /proc.
184  *
185  * sched policy         return value   kernel prio    user prio/nice
186  *
187  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189  * deadline                     -101             -1           0
190  */
task_prio(const struct task_struct * p)191 int task_prio(const struct task_struct *p)
192 {
193 	return p->prio - MAX_RT_PRIO;
194 }
195 
196 /**
197  * idle_cpu - is a given CPU idle currently?
198  * @cpu: the processor in question.
199  *
200  * Return: 1 if the CPU is currently idle. 0 otherwise.
201  */
idle_cpu(int cpu)202 int idle_cpu(int cpu)
203 {
204 	struct rq *rq = cpu_rq(cpu);
205 
206 	if (rq->curr != rq->idle)
207 		return 0;
208 
209 	if (rq->nr_running)
210 		return 0;
211 
212 	if (rq->ttwu_pending)
213 		return 0;
214 
215 	return 1;
216 }
217 
218 /**
219  * available_idle_cpu - is a given CPU idle for enqueuing work.
220  * @cpu: the CPU in question.
221  *
222  * Return: 1 if the CPU is currently idle. 0 otherwise.
223  */
available_idle_cpu(int cpu)224 int available_idle_cpu(int cpu)
225 {
226 	if (!idle_cpu(cpu))
227 		return 0;
228 
229 	if (vcpu_is_preempted(cpu))
230 		return 0;
231 
232 	return 1;
233 }
234 
235 /**
236  * idle_task - return the idle task for a given CPU.
237  * @cpu: the processor in question.
238  *
239  * Return: The idle task for the CPU @cpu.
240  */
idle_task(int cpu)241 struct task_struct *idle_task(int cpu)
242 {
243 	return cpu_rq(cpu)->idle;
244 }
245 
246 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)247 int sched_core_idle_cpu(int cpu)
248 {
249 	struct rq *rq = cpu_rq(cpu);
250 
251 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
252 		return 1;
253 
254 	return idle_cpu(cpu);
255 }
256 #endif /* CONFIG_SCHED_CORE */
257 
258 /**
259  * find_process_by_pid - find a process with a matching PID value.
260  * @pid: the pid in question.
261  *
262  * The task of @pid, if found. %NULL otherwise.
263  */
find_process_by_pid(pid_t pid)264 static struct task_struct *find_process_by_pid(pid_t pid)
265 {
266 	return pid ? find_task_by_vpid(pid) : current;
267 }
268 
find_get_task(pid_t pid)269 static struct task_struct *find_get_task(pid_t pid)
270 {
271 	struct task_struct *p;
272 	guard(rcu)();
273 
274 	p = find_process_by_pid(pid);
275 	if (likely(p))
276 		get_task_struct(p);
277 
278 	return p;
279 }
280 
DEFINE_CLASS(find_get_task,struct task_struct *,if (_T)put_task_struct (_T),find_get_task (pid),pid_t pid)281 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
282 	     find_get_task(pid), pid_t pid)
283 
284 /*
285  * sched_setparam() passes in -1 for its policy, to let the functions
286  * it calls know not to change it.
287  */
288 #define SETPARAM_POLICY	-1
289 
290 static void __setscheduler_params(struct task_struct *p,
291 		const struct sched_attr *attr)
292 {
293 	int policy = attr->sched_policy;
294 
295 	if (policy == SETPARAM_POLICY)
296 		policy = p->policy;
297 
298 	p->policy = policy;
299 
300 	if (dl_policy(policy))
301 		__setparam_dl(p, attr);
302 	else if (fair_policy(policy))
303 		__setparam_fair(p, attr);
304 
305 	/* rt-policy tasks do not have a timerslack */
306 	if (rt_or_dl_task_policy(p)) {
307 		p->timer_slack_ns = 0;
308 	} else if (p->timer_slack_ns == 0) {
309 		/* when switching back to non-rt policy, restore timerslack */
310 		p->timer_slack_ns = p->default_timer_slack_ns;
311 	}
312 
313 	/*
314 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
315 	 * !rt_policy. Always setting this ensures that things like
316 	 * getparam()/getattr() don't report silly values for !rt tasks.
317 	 */
318 	p->rt_priority = attr->sched_priority;
319 	p->normal_prio = normal_prio(p);
320 	set_load_weight(p, true);
321 }
322 
323 /*
324  * Check the target process has a UID that matches the current process's:
325  */
check_same_owner(struct task_struct * p)326 static bool check_same_owner(struct task_struct *p)
327 {
328 	const struct cred *cred = current_cred(), *pcred;
329 	guard(rcu)();
330 
331 	pcred = __task_cred(p);
332 	return (uid_eq(cred->euid, pcred->euid) ||
333 		uid_eq(cred->euid, pcred->uid));
334 }
335 
336 #ifdef CONFIG_UCLAMP_TASK
337 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)338 static int uclamp_validate(struct task_struct *p,
339 			   const struct sched_attr *attr)
340 {
341 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
342 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
343 
344 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
345 		util_min = attr->sched_util_min;
346 
347 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
348 			return -EINVAL;
349 	}
350 
351 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
352 		util_max = attr->sched_util_max;
353 
354 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
355 			return -EINVAL;
356 	}
357 
358 	if (util_min != -1 && util_max != -1 && util_min > util_max)
359 		return -EINVAL;
360 
361 	/*
362 	 * We have valid uclamp attributes; make sure uclamp is enabled.
363 	 *
364 	 * We need to do that here, because enabling static branches is a
365 	 * blocking operation which obviously cannot be done while holding
366 	 * scheduler locks.
367 	 */
368 	sched_uclamp_enable();
369 
370 	return 0;
371 }
372 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)373 static bool uclamp_reset(const struct sched_attr *attr,
374 			 enum uclamp_id clamp_id,
375 			 struct uclamp_se *uc_se)
376 {
377 	/* Reset on sched class change for a non user-defined clamp value. */
378 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
379 	    !uc_se->user_defined)
380 		return true;
381 
382 	/* Reset on sched_util_{min,max} == -1. */
383 	if (clamp_id == UCLAMP_MIN &&
384 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
385 	    attr->sched_util_min == -1) {
386 		return true;
387 	}
388 
389 	if (clamp_id == UCLAMP_MAX &&
390 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
391 	    attr->sched_util_max == -1) {
392 		return true;
393 	}
394 
395 	return false;
396 }
397 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)398 static void __setscheduler_uclamp(struct task_struct *p,
399 				  const struct sched_attr *attr)
400 {
401 	enum uclamp_id clamp_id;
402 
403 	for_each_clamp_id(clamp_id) {
404 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
405 		unsigned int value;
406 
407 		if (!uclamp_reset(attr, clamp_id, uc_se))
408 			continue;
409 
410 		/*
411 		 * RT by default have a 100% boost value that could be modified
412 		 * at runtime.
413 		 */
414 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
415 			value = sysctl_sched_uclamp_util_min_rt_default;
416 		else
417 			value = uclamp_none(clamp_id);
418 
419 		uclamp_se_set(uc_se, value, false);
420 
421 	}
422 
423 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
424 		return;
425 
426 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
427 	    attr->sched_util_min != -1) {
428 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
429 			      attr->sched_util_min, true);
430 	}
431 
432 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
433 	    attr->sched_util_max != -1) {
434 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
435 			      attr->sched_util_max, true);
436 	}
437 }
438 
439 #else /* !CONFIG_UCLAMP_TASK: */
440 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)441 static inline int uclamp_validate(struct task_struct *p,
442 				  const struct sched_attr *attr)
443 {
444 	return -EOPNOTSUPP;
445 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)446 static void __setscheduler_uclamp(struct task_struct *p,
447 				  const struct sched_attr *attr) { }
448 #endif /* !CONFIG_UCLAMP_TASK */
449 
450 /*
451  * Allow unprivileged RT tasks to decrease priority.
452  * Only issue a capable test if needed and only once to avoid an audit
453  * event on permitted non-privileged operations:
454  */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)455 static int user_check_sched_setscheduler(struct task_struct *p,
456 					 const struct sched_attr *attr,
457 					 int policy, int reset_on_fork)
458 {
459 	if (fair_policy(policy)) {
460 		if (attr->sched_nice < task_nice(p) &&
461 		    !is_nice_reduction(p, attr->sched_nice))
462 			goto req_priv;
463 	}
464 
465 	if (rt_policy(policy)) {
466 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
467 
468 		/* Can't set/change the rt policy: */
469 		if (policy != p->policy && !rlim_rtprio)
470 			goto req_priv;
471 
472 		/* Can't increase priority: */
473 		if (attr->sched_priority > p->rt_priority &&
474 		    attr->sched_priority > rlim_rtprio)
475 			goto req_priv;
476 	}
477 
478 	/*
479 	 * Can't set/change SCHED_DEADLINE policy at all for now
480 	 * (safest behavior); in the future we would like to allow
481 	 * unprivileged DL tasks to increase their relative deadline
482 	 * or reduce their runtime (both ways reducing utilization)
483 	 */
484 	if (dl_policy(policy))
485 		goto req_priv;
486 
487 	/*
488 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
489 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
490 	 */
491 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
492 		if (!is_nice_reduction(p, task_nice(p)))
493 			goto req_priv;
494 	}
495 
496 	/* Can't change other user's priorities: */
497 	if (!check_same_owner(p))
498 		goto req_priv;
499 
500 	/* Normal users shall not reset the sched_reset_on_fork flag: */
501 	if (p->sched_reset_on_fork && !reset_on_fork)
502 		goto req_priv;
503 
504 	return 0;
505 
506 req_priv:
507 	if (!capable(CAP_SYS_NICE))
508 		return -EPERM;
509 
510 	return 0;
511 }
512 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)513 int __sched_setscheduler(struct task_struct *p,
514 			 const struct sched_attr *attr,
515 			 bool user, bool pi)
516 {
517 	int oldpolicy = -1, policy = attr->sched_policy;
518 	int retval, oldprio, newprio, queued, running;
519 	const struct sched_class *prev_class, *next_class;
520 	struct balance_callback *head;
521 	struct rq_flags rf;
522 	int reset_on_fork;
523 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
524 	struct rq *rq;
525 	bool cpuset_locked = false;
526 
527 	/* The pi code expects interrupts enabled */
528 	BUG_ON(pi && in_interrupt());
529 recheck:
530 	/* Double check policy once rq lock held: */
531 	if (policy < 0) {
532 		reset_on_fork = p->sched_reset_on_fork;
533 		policy = oldpolicy = p->policy;
534 	} else {
535 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
536 
537 		if (!valid_policy(policy))
538 			return -EINVAL;
539 	}
540 
541 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
542 		return -EINVAL;
543 
544 	/*
545 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
546 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
547 	 * SCHED_BATCH and SCHED_IDLE is 0.
548 	 */
549 	if (attr->sched_priority > MAX_RT_PRIO-1)
550 		return -EINVAL;
551 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
552 	    (rt_policy(policy) != (attr->sched_priority != 0)))
553 		return -EINVAL;
554 
555 	if (user) {
556 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
557 		if (retval)
558 			return retval;
559 
560 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
561 			return -EINVAL;
562 
563 		retval = security_task_setscheduler(p);
564 		if (retval)
565 			return retval;
566 	}
567 
568 	/* Update task specific "requested" clamps */
569 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
570 		retval = uclamp_validate(p, attr);
571 		if (retval)
572 			return retval;
573 	}
574 
575 	/*
576 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
577 	 * information.
578 	 */
579 	if (dl_policy(policy) || dl_policy(p->policy)) {
580 		cpuset_locked = true;
581 		cpuset_lock();
582 	}
583 
584 	/*
585 	 * Make sure no PI-waiters arrive (or leave) while we are
586 	 * changing the priority of the task:
587 	 *
588 	 * To be able to change p->policy safely, the appropriate
589 	 * runqueue lock must be held.
590 	 */
591 	rq = task_rq_lock(p, &rf);
592 	update_rq_clock(rq);
593 
594 	/*
595 	 * Changing the policy of the stop threads its a very bad idea:
596 	 */
597 	if (p == rq->stop) {
598 		retval = -EINVAL;
599 		goto unlock;
600 	}
601 
602 	retval = scx_check_setscheduler(p, policy);
603 	if (retval)
604 		goto unlock;
605 
606 	/*
607 	 * If not changing anything there's no need to proceed further,
608 	 * but store a possible modification of reset_on_fork.
609 	 */
610 	if (unlikely(policy == p->policy)) {
611 		if (fair_policy(policy) &&
612 		    (attr->sched_nice != task_nice(p) ||
613 		     (attr->sched_runtime != p->se.slice)))
614 			goto change;
615 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
616 			goto change;
617 		if (dl_policy(policy) && dl_param_changed(p, attr))
618 			goto change;
619 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
620 			goto change;
621 
622 		p->sched_reset_on_fork = reset_on_fork;
623 		retval = 0;
624 		goto unlock;
625 	}
626 change:
627 
628 	if (user) {
629 #ifdef CONFIG_RT_GROUP_SCHED
630 		/*
631 		 * Do not allow real-time tasks into groups that have no runtime
632 		 * assigned.
633 		 */
634 		if (rt_group_sched_enabled() &&
635 				rt_bandwidth_enabled() && rt_policy(policy) &&
636 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
637 				!task_group_is_autogroup(task_group(p))) {
638 			retval = -EPERM;
639 			goto unlock;
640 		}
641 #endif /* CONFIG_RT_GROUP_SCHED */
642 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
643 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
644 			cpumask_t *span = rq->rd->span;
645 
646 			/*
647 			 * Don't allow tasks with an affinity mask smaller than
648 			 * the entire root_domain to become SCHED_DEADLINE. We
649 			 * will also fail if there's no bandwidth available.
650 			 */
651 			if (!cpumask_subset(span, p->cpus_ptr) ||
652 			    rq->rd->dl_bw.bw == 0) {
653 				retval = -EPERM;
654 				goto unlock;
655 			}
656 		}
657 	}
658 
659 	/* Re-check policy now with rq lock held: */
660 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
661 		policy = oldpolicy = -1;
662 		task_rq_unlock(rq, p, &rf);
663 		if (cpuset_locked)
664 			cpuset_unlock();
665 		goto recheck;
666 	}
667 
668 	/*
669 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
670 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
671 	 * is available.
672 	 */
673 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
674 		retval = -EBUSY;
675 		goto unlock;
676 	}
677 
678 	p->sched_reset_on_fork = reset_on_fork;
679 	oldprio = p->prio;
680 
681 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
682 	if (pi) {
683 		/*
684 		 * Take priority boosted tasks into account. If the new
685 		 * effective priority is unchanged, we just store the new
686 		 * normal parameters and do not touch the scheduler class and
687 		 * the runqueue. This will be done when the task deboost
688 		 * itself.
689 		 */
690 		newprio = rt_effective_prio(p, newprio);
691 		if (newprio == oldprio)
692 			queue_flags &= ~DEQUEUE_MOVE;
693 	}
694 
695 	prev_class = p->sched_class;
696 	next_class = __setscheduler_class(policy, newprio);
697 
698 	if (prev_class != next_class && p->se.sched_delayed)
699 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
700 
701 	queued = task_on_rq_queued(p);
702 	running = task_current_donor(rq, p);
703 	if (queued)
704 		dequeue_task(rq, p, queue_flags);
705 	if (running)
706 		put_prev_task(rq, p);
707 
708 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
709 		__setscheduler_params(p, attr);
710 		p->sched_class = next_class;
711 		p->prio = newprio;
712 	}
713 	__setscheduler_uclamp(p, attr);
714 	check_class_changing(rq, p, prev_class);
715 
716 	if (queued) {
717 		/*
718 		 * We enqueue to tail when the priority of a task is
719 		 * increased (user space view).
720 		 */
721 		if (oldprio < p->prio)
722 			queue_flags |= ENQUEUE_HEAD;
723 
724 		enqueue_task(rq, p, queue_flags);
725 	}
726 	if (running)
727 		set_next_task(rq, p);
728 
729 	check_class_changed(rq, p, prev_class, oldprio);
730 
731 	/* Avoid rq from going away on us: */
732 	preempt_disable();
733 	head = splice_balance_callbacks(rq);
734 	task_rq_unlock(rq, p, &rf);
735 
736 	if (pi) {
737 		if (cpuset_locked)
738 			cpuset_unlock();
739 		rt_mutex_adjust_pi(p);
740 	}
741 
742 	/* Run balance callbacks after we've adjusted the PI chain: */
743 	balance_callbacks(rq, head);
744 	preempt_enable();
745 
746 	return 0;
747 
748 unlock:
749 	task_rq_unlock(rq, p, &rf);
750 	if (cpuset_locked)
751 		cpuset_unlock();
752 	return retval;
753 }
754 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)755 static int _sched_setscheduler(struct task_struct *p, int policy,
756 			       const struct sched_param *param, bool check)
757 {
758 	struct sched_attr attr = {
759 		.sched_policy   = policy,
760 		.sched_priority = param->sched_priority,
761 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
762 	};
763 
764 	if (p->se.custom_slice)
765 		attr.sched_runtime = p->se.slice;
766 
767 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
768 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
769 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
770 		policy &= ~SCHED_RESET_ON_FORK;
771 		attr.sched_policy = policy;
772 	}
773 
774 	return __sched_setscheduler(p, &attr, check, true);
775 }
776 /**
777  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
778  * @p: the task in question.
779  * @policy: new policy.
780  * @param: structure containing the new RT priority.
781  *
782  * Use sched_set_fifo(), read its comment.
783  *
784  * Return: 0 on success. An error code otherwise.
785  *
786  * NOTE that the task may be already dead.
787  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)788 int sched_setscheduler(struct task_struct *p, int policy,
789 		       const struct sched_param *param)
790 {
791 	return _sched_setscheduler(p, policy, param, true);
792 }
793 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)794 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
795 {
796 	return __sched_setscheduler(p, attr, true, true);
797 }
798 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)799 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
800 {
801 	return __sched_setscheduler(p, attr, false, true);
802 }
803 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
804 
805 /**
806  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
807  * @p: the task in question.
808  * @policy: new policy.
809  * @param: structure containing the new RT priority.
810  *
811  * Just like sched_setscheduler, only don't bother checking if the
812  * current context has permission.  For example, this is needed in
813  * stop_machine(): we create temporary high priority worker threads,
814  * but our caller might not have that capability.
815  *
816  * Return: 0 on success. An error code otherwise.
817  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)818 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
819 			       const struct sched_param *param)
820 {
821 	return _sched_setscheduler(p, policy, param, false);
822 }
823 
824 /*
825  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
826  * incapable of resource management, which is the one thing an OS really should
827  * be doing.
828  *
829  * This is of course the reason it is limited to privileged users only.
830  *
831  * Worse still; it is fundamentally impossible to compose static priority
832  * workloads. You cannot take two correctly working static prio workloads
833  * and smash them together and still expect them to work.
834  *
835  * For this reason 'all' FIFO tasks the kernel creates are basically at:
836  *
837  *   MAX_RT_PRIO / 2
838  *
839  * The administrator _MUST_ configure the system, the kernel simply doesn't
840  * know enough information to make a sensible choice.
841  */
sched_set_fifo(struct task_struct * p)842 void sched_set_fifo(struct task_struct *p)
843 {
844 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
845 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
846 }
847 EXPORT_SYMBOL_GPL(sched_set_fifo);
848 
849 /*
850  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
851  */
sched_set_fifo_low(struct task_struct * p)852 void sched_set_fifo_low(struct task_struct *p)
853 {
854 	struct sched_param sp = { .sched_priority = 1 };
855 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
856 }
857 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
858 
sched_set_normal(struct task_struct * p,int nice)859 void sched_set_normal(struct task_struct *p, int nice)
860 {
861 	struct sched_attr attr = {
862 		.sched_policy = SCHED_NORMAL,
863 		.sched_nice = nice,
864 	};
865 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
866 }
867 EXPORT_SYMBOL_GPL(sched_set_normal);
868 
869 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)870 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
871 {
872 	struct sched_param lparam;
873 
874 	if (unlikely(!param || pid < 0))
875 		return -EINVAL;
876 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
877 		return -EFAULT;
878 
879 	CLASS(find_get_task, p)(pid);
880 	if (!p)
881 		return -ESRCH;
882 
883 	return sched_setscheduler(p, policy, &lparam);
884 }
885 
886 /*
887  * Mimics kernel/events/core.c perf_copy_attr().
888  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)889 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
890 {
891 	u32 size;
892 	int ret;
893 
894 	/* Zero the full structure, so that a short copy will be nice: */
895 	memset(attr, 0, sizeof(*attr));
896 
897 	ret = get_user(size, &uattr->size);
898 	if (ret)
899 		return ret;
900 
901 	/* ABI compatibility quirk: */
902 	if (!size)
903 		size = SCHED_ATTR_SIZE_VER0;
904 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
905 		goto err_size;
906 
907 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
908 	if (ret) {
909 		if (ret == -E2BIG)
910 			goto err_size;
911 		return ret;
912 	}
913 
914 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
915 	    size < SCHED_ATTR_SIZE_VER1)
916 		return -EINVAL;
917 
918 	/*
919 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
920 	 * to be strict and return an error on out-of-bounds values?
921 	 */
922 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
923 
924 	return 0;
925 
926 err_size:
927 	put_user(sizeof(*attr), &uattr->size);
928 	return -E2BIG;
929 }
930 
get_params(struct task_struct * p,struct sched_attr * attr)931 static void get_params(struct task_struct *p, struct sched_attr *attr)
932 {
933 	if (task_has_dl_policy(p)) {
934 		__getparam_dl(p, attr);
935 	} else if (task_has_rt_policy(p)) {
936 		attr->sched_priority = p->rt_priority;
937 	} else {
938 		attr->sched_nice = task_nice(p);
939 		attr->sched_runtime = p->se.slice;
940 	}
941 }
942 
943 /**
944  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
945  * @pid: the pid in question.
946  * @policy: new policy.
947  * @param: structure containing the new RT priority.
948  *
949  * Return: 0 on success. An error code otherwise.
950  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)951 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
952 {
953 	if (policy < 0)
954 		return -EINVAL;
955 
956 	return do_sched_setscheduler(pid, policy, param);
957 }
958 
959 /**
960  * sys_sched_setparam - set/change the RT priority of a thread
961  * @pid: the pid in question.
962  * @param: structure containing the new RT priority.
963  *
964  * Return: 0 on success. An error code otherwise.
965  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)966 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
967 {
968 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
969 }
970 
971 /**
972  * sys_sched_setattr - same as above, but with extended sched_attr
973  * @pid: the pid in question.
974  * @uattr: structure containing the extended parameters.
975  * @flags: for future extension.
976  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)977 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
978 			       unsigned int, flags)
979 {
980 	struct sched_attr attr;
981 	int retval;
982 
983 	if (unlikely(!uattr || pid < 0 || flags))
984 		return -EINVAL;
985 
986 	retval = sched_copy_attr(uattr, &attr);
987 	if (retval)
988 		return retval;
989 
990 	if ((int)attr.sched_policy < 0)
991 		return -EINVAL;
992 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
993 		attr.sched_policy = SETPARAM_POLICY;
994 
995 	CLASS(find_get_task, p)(pid);
996 	if (!p)
997 		return -ESRCH;
998 
999 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1000 		get_params(p, &attr);
1001 
1002 	return sched_setattr(p, &attr);
1003 }
1004 
1005 /**
1006  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1007  * @pid: the pid in question.
1008  *
1009  * Return: On success, the policy of the thread. Otherwise, a negative error
1010  * code.
1011  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)1012 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1013 {
1014 	struct task_struct *p;
1015 	int retval;
1016 
1017 	if (pid < 0)
1018 		return -EINVAL;
1019 
1020 	guard(rcu)();
1021 	p = find_process_by_pid(pid);
1022 	if (!p)
1023 		return -ESRCH;
1024 
1025 	retval = security_task_getscheduler(p);
1026 	if (!retval) {
1027 		retval = p->policy;
1028 		if (p->sched_reset_on_fork)
1029 			retval |= SCHED_RESET_ON_FORK;
1030 	}
1031 	return retval;
1032 }
1033 
1034 /**
1035  * sys_sched_getparam - get the RT priority of a thread
1036  * @pid: the pid in question.
1037  * @param: structure containing the RT priority.
1038  *
1039  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1040  * code.
1041  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)1042 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1043 {
1044 	struct sched_param lp = { .sched_priority = 0 };
1045 	struct task_struct *p;
1046 	int retval;
1047 
1048 	if (unlikely(!param || pid < 0))
1049 		return -EINVAL;
1050 
1051 	scoped_guard (rcu) {
1052 		p = find_process_by_pid(pid);
1053 		if (!p)
1054 			return -ESRCH;
1055 
1056 		retval = security_task_getscheduler(p);
1057 		if (retval)
1058 			return retval;
1059 
1060 		if (task_has_rt_policy(p))
1061 			lp.sched_priority = p->rt_priority;
1062 	}
1063 
1064 	/*
1065 	 * This one might sleep, we cannot do it with a spinlock held ...
1066 	 */
1067 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1068 }
1069 
1070 /**
1071  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1072  * @pid: the pid in question.
1073  * @uattr: structure containing the extended parameters.
1074  * @usize: sizeof(attr) for fwd/bwd comp.
1075  * @flags: for future extension.
1076  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)1077 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1078 		unsigned int, usize, unsigned int, flags)
1079 {
1080 	struct sched_attr kattr = { };
1081 	struct task_struct *p;
1082 	int retval;
1083 
1084 	if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE ||
1085 		      usize < SCHED_ATTR_SIZE_VER0 || flags))
1086 		return -EINVAL;
1087 
1088 	scoped_guard (rcu) {
1089 		p = find_process_by_pid(pid);
1090 		if (!p)
1091 			return -ESRCH;
1092 
1093 		retval = security_task_getscheduler(p);
1094 		if (retval)
1095 			return retval;
1096 
1097 		kattr.sched_policy = p->policy;
1098 		if (p->sched_reset_on_fork)
1099 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1100 		get_params(p, &kattr);
1101 		kattr.sched_flags &= SCHED_FLAG_ALL;
1102 
1103 #ifdef CONFIG_UCLAMP_TASK
1104 		/*
1105 		 * This could race with another potential updater, but this is fine
1106 		 * because it'll correctly read the old or the new value. We don't need
1107 		 * to guarantee who wins the race as long as it doesn't return garbage.
1108 		 */
1109 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1110 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1111 #endif
1112 	}
1113 
1114 	kattr.size = min(usize, sizeof(kattr));
1115 	return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
1116 }
1117 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1118 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1119 {
1120 	/*
1121 	 * If the task isn't a deadline task or admission control is
1122 	 * disabled then we don't care about affinity changes.
1123 	 */
1124 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1125 		return 0;
1126 
1127 	/*
1128 	 * The special/sugov task isn't part of regular bandwidth/admission
1129 	 * control so let userspace change affinities.
1130 	 */
1131 	if (dl_entity_is_special(&p->dl))
1132 		return 0;
1133 
1134 	/*
1135 	 * Since bandwidth control happens on root_domain basis,
1136 	 * if admission test is enabled, we only admit -deadline
1137 	 * tasks allowed to run on all the CPUs in the task's
1138 	 * root_domain.
1139 	 */
1140 	guard(rcu)();
1141 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1142 		return -EBUSY;
1143 
1144 	return 0;
1145 }
1146 
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)1147 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1148 {
1149 	int retval;
1150 	cpumask_var_t cpus_allowed, new_mask;
1151 
1152 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1153 		return -ENOMEM;
1154 
1155 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1156 		retval = -ENOMEM;
1157 		goto out_free_cpus_allowed;
1158 	}
1159 
1160 	cpuset_cpus_allowed(p, cpus_allowed);
1161 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1162 
1163 	ctx->new_mask = new_mask;
1164 	ctx->flags |= SCA_CHECK;
1165 
1166 	retval = dl_task_check_affinity(p, new_mask);
1167 	if (retval)
1168 		goto out_free_new_mask;
1169 
1170 	retval = __set_cpus_allowed_ptr(p, ctx);
1171 	if (retval)
1172 		goto out_free_new_mask;
1173 
1174 	cpuset_cpus_allowed(p, cpus_allowed);
1175 	if (!cpumask_subset(new_mask, cpus_allowed)) {
1176 		/*
1177 		 * We must have raced with a concurrent cpuset update.
1178 		 * Just reset the cpumask to the cpuset's cpus_allowed.
1179 		 */
1180 		cpumask_copy(new_mask, cpus_allowed);
1181 
1182 		/*
1183 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1184 		 * will restore the previous user_cpus_ptr value.
1185 		 *
1186 		 * In the unlikely event a previous user_cpus_ptr exists,
1187 		 * we need to further restrict the mask to what is allowed
1188 		 * by that old user_cpus_ptr.
1189 		 */
1190 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1191 			bool empty = !cpumask_and(new_mask, new_mask,
1192 						  ctx->user_mask);
1193 
1194 			if (empty)
1195 				cpumask_copy(new_mask, cpus_allowed);
1196 		}
1197 		__set_cpus_allowed_ptr(p, ctx);
1198 		retval = -EINVAL;
1199 	}
1200 
1201 out_free_new_mask:
1202 	free_cpumask_var(new_mask);
1203 out_free_cpus_allowed:
1204 	free_cpumask_var(cpus_allowed);
1205 	return retval;
1206 }
1207 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)1208 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1209 {
1210 	struct affinity_context ac;
1211 	struct cpumask *user_mask;
1212 	int retval;
1213 
1214 	CLASS(find_get_task, p)(pid);
1215 	if (!p)
1216 		return -ESRCH;
1217 
1218 	if (p->flags & PF_NO_SETAFFINITY)
1219 		return -EINVAL;
1220 
1221 	if (!check_same_owner(p)) {
1222 		guard(rcu)();
1223 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1224 			return -EPERM;
1225 	}
1226 
1227 	retval = security_task_setscheduler(p);
1228 	if (retval)
1229 		return retval;
1230 
1231 	/*
1232 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1233 	 * alloc_user_cpus_ptr() returns NULL.
1234 	 */
1235 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1236 	if (user_mask) {
1237 		cpumask_copy(user_mask, in_mask);
1238 	} else {
1239 		return -ENOMEM;
1240 	}
1241 
1242 	ac = (struct affinity_context){
1243 		.new_mask  = in_mask,
1244 		.user_mask = user_mask,
1245 		.flags     = SCA_USER,
1246 	};
1247 
1248 	retval = __sched_setaffinity(p, &ac);
1249 	kfree(ac.user_mask);
1250 
1251 	return retval;
1252 }
1253 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)1254 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1255 			     struct cpumask *new_mask)
1256 {
1257 	if (len < cpumask_size())
1258 		cpumask_clear(new_mask);
1259 	else if (len > cpumask_size())
1260 		len = cpumask_size();
1261 
1262 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1263 }
1264 
1265 /**
1266  * sys_sched_setaffinity - set the CPU affinity of a process
1267  * @pid: pid of the process
1268  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1269  * @user_mask_ptr: user-space pointer to the new CPU mask
1270  *
1271  * Return: 0 on success. An error code otherwise.
1272  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1273 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1274 		unsigned long __user *, user_mask_ptr)
1275 {
1276 	cpumask_var_t new_mask;
1277 	int retval;
1278 
1279 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1280 		return -ENOMEM;
1281 
1282 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1283 	if (retval == 0)
1284 		retval = sched_setaffinity(pid, new_mask);
1285 	free_cpumask_var(new_mask);
1286 	return retval;
1287 }
1288 
sched_getaffinity(pid_t pid,struct cpumask * mask)1289 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1290 {
1291 	struct task_struct *p;
1292 	int retval;
1293 
1294 	guard(rcu)();
1295 	p = find_process_by_pid(pid);
1296 	if (!p)
1297 		return -ESRCH;
1298 
1299 	retval = security_task_getscheduler(p);
1300 	if (retval)
1301 		return retval;
1302 
1303 	guard(raw_spinlock_irqsave)(&p->pi_lock);
1304 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * sys_sched_getaffinity - get the CPU affinity of a process
1311  * @pid: pid of the process
1312  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1313  * @user_mask_ptr: user-space pointer to hold the current CPU mask
1314  *
1315  * Return: size of CPU mask copied to user_mask_ptr on success. An
1316  * error code otherwise.
1317  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1318 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1319 		unsigned long __user *, user_mask_ptr)
1320 {
1321 	int ret;
1322 	cpumask_var_t mask;
1323 
1324 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1325 		return -EINVAL;
1326 	if (len & (sizeof(unsigned long)-1))
1327 		return -EINVAL;
1328 
1329 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1330 		return -ENOMEM;
1331 
1332 	ret = sched_getaffinity(pid, mask);
1333 	if (ret == 0) {
1334 		unsigned int retlen = min(len, cpumask_size());
1335 
1336 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1337 			ret = -EFAULT;
1338 		else
1339 			ret = retlen;
1340 	}
1341 	free_cpumask_var(mask);
1342 
1343 	return ret;
1344 }
1345 
do_sched_yield(void)1346 static void do_sched_yield(void)
1347 {
1348 	struct rq_flags rf;
1349 	struct rq *rq;
1350 
1351 	rq = this_rq_lock_irq(&rf);
1352 
1353 	schedstat_inc(rq->yld_count);
1354 	current->sched_class->yield_task(rq);
1355 
1356 	preempt_disable();
1357 	rq_unlock_irq(rq, &rf);
1358 	sched_preempt_enable_no_resched();
1359 
1360 	schedule();
1361 }
1362 
1363 /**
1364  * sys_sched_yield - yield the current processor to other threads.
1365  *
1366  * This function yields the current CPU to other tasks. If there are no
1367  * other threads running on this CPU then this function will return.
1368  *
1369  * Return: 0.
1370  */
SYSCALL_DEFINE0(sched_yield)1371 SYSCALL_DEFINE0(sched_yield)
1372 {
1373 	do_sched_yield();
1374 	return 0;
1375 }
1376 
1377 /**
1378  * yield - yield the current processor to other threads.
1379  *
1380  * Do not ever use this function, there's a 99% chance you're doing it wrong.
1381  *
1382  * The scheduler is at all times free to pick the calling task as the most
1383  * eligible task to run, if removing the yield() call from your code breaks
1384  * it, it's already broken.
1385  *
1386  * Typical broken usage is:
1387  *
1388  * while (!event)
1389  *	yield();
1390  *
1391  * where one assumes that yield() will let 'the other' process run that will
1392  * make event true. If the current task is a SCHED_FIFO task that will never
1393  * happen. Never use yield() as a progress guarantee!!
1394  *
1395  * If you want to use yield() to wait for something, use wait_event().
1396  * If you want to use yield() to be 'nice' for others, use cond_resched().
1397  * If you still want to use yield(), do not!
1398  */
yield(void)1399 void __sched yield(void)
1400 {
1401 	set_current_state(TASK_RUNNING);
1402 	do_sched_yield();
1403 }
1404 EXPORT_SYMBOL(yield);
1405 
1406 /**
1407  * yield_to - yield the current processor to another thread in
1408  * your thread group, or accelerate that thread toward the
1409  * processor it's on.
1410  * @p: target task
1411  * @preempt: whether task preemption is allowed or not
1412  *
1413  * It's the caller's job to ensure that the target task struct
1414  * can't go away on us before we can do any checks.
1415  *
1416  * Return:
1417  *	true (>0) if we indeed boosted the target task.
1418  *	false (0) if we failed to boost the target.
1419  *	-ESRCH if there's no task to yield to.
1420  */
yield_to(struct task_struct * p,bool preempt)1421 int __sched yield_to(struct task_struct *p, bool preempt)
1422 {
1423 	struct task_struct *curr = current;
1424 	struct rq *rq, *p_rq;
1425 	int yielded = 0;
1426 
1427 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
1428 		rq = this_rq();
1429 
1430 again:
1431 		p_rq = task_rq(p);
1432 		/*
1433 		 * If we're the only runnable task on the rq and target rq also
1434 		 * has only one task, there's absolutely no point in yielding.
1435 		 */
1436 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1437 			return -ESRCH;
1438 
1439 		guard(double_rq_lock)(rq, p_rq);
1440 		if (task_rq(p) != p_rq)
1441 			goto again;
1442 
1443 		if (!curr->sched_class->yield_to_task)
1444 			return 0;
1445 
1446 		if (curr->sched_class != p->sched_class)
1447 			return 0;
1448 
1449 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1450 			return 0;
1451 
1452 		yielded = curr->sched_class->yield_to_task(rq, p);
1453 		if (yielded) {
1454 			schedstat_inc(rq->yld_count);
1455 			/*
1456 			 * Make p's CPU reschedule; pick_next_entity
1457 			 * takes care of fairness.
1458 			 */
1459 			if (preempt && rq != p_rq)
1460 				resched_curr(p_rq);
1461 		}
1462 	}
1463 
1464 	if (yielded)
1465 		schedule();
1466 
1467 	return yielded;
1468 }
1469 EXPORT_SYMBOL_GPL(yield_to);
1470 
1471 /**
1472  * sys_sched_get_priority_max - return maximum RT priority.
1473  * @policy: scheduling class.
1474  *
1475  * Return: On success, this syscall returns the maximum
1476  * rt_priority that can be used by a given scheduling class.
1477  * On failure, a negative error code is returned.
1478  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)1479 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1480 {
1481 	int ret = -EINVAL;
1482 
1483 	switch (policy) {
1484 	case SCHED_FIFO:
1485 	case SCHED_RR:
1486 		ret = MAX_RT_PRIO-1;
1487 		break;
1488 	case SCHED_DEADLINE:
1489 	case SCHED_NORMAL:
1490 	case SCHED_BATCH:
1491 	case SCHED_IDLE:
1492 	case SCHED_EXT:
1493 		ret = 0;
1494 		break;
1495 	}
1496 	return ret;
1497 }
1498 
1499 /**
1500  * sys_sched_get_priority_min - return minimum RT priority.
1501  * @policy: scheduling class.
1502  *
1503  * Return: On success, this syscall returns the minimum
1504  * rt_priority that can be used by a given scheduling class.
1505  * On failure, a negative error code is returned.
1506  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)1507 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1508 {
1509 	int ret = -EINVAL;
1510 
1511 	switch (policy) {
1512 	case SCHED_FIFO:
1513 	case SCHED_RR:
1514 		ret = 1;
1515 		break;
1516 	case SCHED_DEADLINE:
1517 	case SCHED_NORMAL:
1518 	case SCHED_BATCH:
1519 	case SCHED_IDLE:
1520 	case SCHED_EXT:
1521 		ret = 0;
1522 	}
1523 	return ret;
1524 }
1525 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)1526 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1527 {
1528 	unsigned int time_slice = 0;
1529 	int retval;
1530 
1531 	if (pid < 0)
1532 		return -EINVAL;
1533 
1534 	scoped_guard (rcu) {
1535 		struct task_struct *p = find_process_by_pid(pid);
1536 		if (!p)
1537 			return -ESRCH;
1538 
1539 		retval = security_task_getscheduler(p);
1540 		if (retval)
1541 			return retval;
1542 
1543 		scoped_guard (task_rq_lock, p) {
1544 			struct rq *rq = scope.rq;
1545 			if (p->sched_class->get_rr_interval)
1546 				time_slice = p->sched_class->get_rr_interval(rq, p);
1547 		}
1548 	}
1549 
1550 	jiffies_to_timespec64(time_slice, t);
1551 	return 0;
1552 }
1553 
1554 /**
1555  * sys_sched_rr_get_interval - return the default time-slice of a process.
1556  * @pid: pid of the process.
1557  * @interval: userspace pointer to the time-slice value.
1558  *
1559  * this syscall writes the default time-slice value of a given process
1560  * into the user-space timespec buffer. A value of '0' means infinity.
1561  *
1562  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1563  * an error code.
1564  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)1565 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1566 		struct __kernel_timespec __user *, interval)
1567 {
1568 	struct timespec64 t;
1569 	int retval = sched_rr_get_interval(pid, &t);
1570 
1571 	if (retval == 0)
1572 		retval = put_timespec64(&t, interval);
1573 
1574 	return retval;
1575 }
1576 
1577 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)1578 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1579 		struct old_timespec32 __user *, interval)
1580 {
1581 	struct timespec64 t;
1582 	int retval = sched_rr_get_interval(pid, &t);
1583 
1584 	if (retval == 0)
1585 		retval = put_old_timespec32(&t, interval);
1586 	return retval;
1587 }
1588 #endif
1589