1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29
30 /*
31 * Managed DMA API
32 */
33 struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38 };
39
dmam_release(struct device * dev,void * res)40 static void dmam_release(struct device *dev, void *res)
41 {
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46 }
47
dmam_match(struct device * dev,void * res,void * match_data)48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58 }
59
60 /**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71 {
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78
79 /**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95 {
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122 {
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133 #endif
134 return false;
135 }
136
137
138 /*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)143 static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145 {
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)149 static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151 {
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154
dma_map_phys(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)155 dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
156 enum dma_data_direction dir, unsigned long attrs)
157 {
158 const struct dma_map_ops *ops = get_dma_ops(dev);
159 bool is_mmio = attrs & DMA_ATTR_MMIO;
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 (!is_mmio && arch_dma_map_phys_direct(dev, phys + size)))
169 addr = dma_direct_map_phys(dev, phys, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_phys(dev, phys, size, dir, attrs);
172 else if (is_mmio) {
173 if (!ops->map_resource)
174 return DMA_MAPPING_ERROR;
175
176 addr = ops->map_resource(dev, phys, size, dir, attrs);
177 } else {
178 struct page *page = phys_to_page(phys);
179 size_t offset = offset_in_page(phys);
180
181 /*
182 * The dma_ops API contract for ops->map_page() requires
183 * kmappable memory, while ops->map_resource() does not.
184 */
185 addr = ops->map_page(dev, page, offset, size, dir, attrs);
186 }
187
188 if (!is_mmio)
189 kmsan_handle_dma(phys, size, dir);
190 trace_dma_map_phys(dev, phys, addr, size, dir, attrs);
191 debug_dma_map_phys(dev, phys, size, dir, addr, attrs);
192
193 return addr;
194 }
195 EXPORT_SYMBOL_GPL(dma_map_phys);
196
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)197 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
198 size_t offset, size_t size, enum dma_data_direction dir,
199 unsigned long attrs)
200 {
201 phys_addr_t phys = page_to_phys(page) + offset;
202
203 if (unlikely(attrs & DMA_ATTR_MMIO))
204 return DMA_MAPPING_ERROR;
205
206 if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
207 WARN_ON_ONCE(is_zone_device_page(page)))
208 return DMA_MAPPING_ERROR;
209
210 return dma_map_phys(dev, phys, size, dir, attrs);
211 }
212 EXPORT_SYMBOL(dma_map_page_attrs);
213
dma_unmap_phys(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)214 void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size,
215 enum dma_data_direction dir, unsigned long attrs)
216 {
217 const struct dma_map_ops *ops = get_dma_ops(dev);
218 bool is_mmio = attrs & DMA_ATTR_MMIO;
219
220 BUG_ON(!valid_dma_direction(dir));
221 if (dma_map_direct(dev, ops) ||
222 (!is_mmio && arch_dma_unmap_phys_direct(dev, addr + size)))
223 dma_direct_unmap_phys(dev, addr, size, dir, attrs);
224 else if (use_dma_iommu(dev))
225 iommu_dma_unmap_phys(dev, addr, size, dir, attrs);
226 else if (is_mmio) {
227 if (ops->unmap_resource)
228 ops->unmap_resource(dev, addr, size, dir, attrs);
229 } else
230 ops->unmap_page(dev, addr, size, dir, attrs);
231 trace_dma_unmap_phys(dev, addr, size, dir, attrs);
232 debug_dma_unmap_phys(dev, addr, size, dir);
233 }
234 EXPORT_SYMBOL_GPL(dma_unmap_phys);
235
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)236 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
237 enum dma_data_direction dir, unsigned long attrs)
238 {
239 if (unlikely(attrs & DMA_ATTR_MMIO))
240 return;
241
242 dma_unmap_phys(dev, addr, size, dir, attrs);
243 }
244 EXPORT_SYMBOL(dma_unmap_page_attrs);
245
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)246 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
247 int nents, enum dma_data_direction dir, unsigned long attrs)
248 {
249 const struct dma_map_ops *ops = get_dma_ops(dev);
250 int ents;
251
252 BUG_ON(!valid_dma_direction(dir));
253
254 if (WARN_ON_ONCE(!dev->dma_mask))
255 return 0;
256
257 if (dma_map_direct(dev, ops) ||
258 arch_dma_map_sg_direct(dev, sg, nents))
259 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
260 else if (use_dma_iommu(dev))
261 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
262 else
263 ents = ops->map_sg(dev, sg, nents, dir, attrs);
264
265 if (ents > 0) {
266 kmsan_handle_dma_sg(sg, nents, dir);
267 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
268 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
269 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
270 ents != -EIO && ents != -EREMOTEIO)) {
271 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
272 return -EIO;
273 }
274
275 return ents;
276 }
277
278 /**
279 * dma_map_sg_attrs - Map the given buffer for DMA
280 * @dev: The device for which to perform the DMA operation
281 * @sg: The sg_table object describing the buffer
282 * @nents: Number of entries to map
283 * @dir: DMA direction
284 * @attrs: Optional DMA attributes for the map operation
285 *
286 * Maps a buffer described by a scatterlist passed in the sg argument with
287 * nents segments for the @dir DMA operation by the @dev device.
288 *
289 * Returns the number of mapped entries (which can be less than nents)
290 * on success. Zero is returned for any error.
291 *
292 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
293 * original sg and original nents (not the value returned by this funciton).
294 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)295 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
296 int nents, enum dma_data_direction dir, unsigned long attrs)
297 {
298 int ret;
299
300 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
301 if (ret < 0)
302 return 0;
303 return ret;
304 }
305 EXPORT_SYMBOL(dma_map_sg_attrs);
306
307 /**
308 * dma_map_sgtable - Map the given buffer for DMA
309 * @dev: The device for which to perform the DMA operation
310 * @sgt: The sg_table object describing the buffer
311 * @dir: DMA direction
312 * @attrs: Optional DMA attributes for the map operation
313 *
314 * Maps a buffer described by a scatterlist stored in the given sg_table
315 * object for the @dir DMA operation by the @dev device. After success, the
316 * ownership for the buffer is transferred to the DMA domain. One has to
317 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
318 * ownership of the buffer back to the CPU domain before touching the
319 * buffer by the CPU.
320 *
321 * Returns 0 on success or a negative error code on error. The following
322 * error codes are supported with the given meaning:
323 *
324 * -EINVAL An invalid argument, unaligned access or other error
325 * in usage. Will not succeed if retried.
326 * -ENOMEM Insufficient resources (like memory or IOVA space) to
327 * complete the mapping. Should succeed if retried later.
328 * -EIO Legacy error code with an unknown meaning. eg. this is
329 * returned if a lower level call returned
330 * DMA_MAPPING_ERROR.
331 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
332 * in the sg_table. This will not succeed if retried.
333 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)334 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
335 enum dma_data_direction dir, unsigned long attrs)
336 {
337 int nents;
338
339 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
340 if (nents < 0)
341 return nents;
342 sgt->nents = nents;
343 return 0;
344 }
345 EXPORT_SYMBOL_GPL(dma_map_sgtable);
346
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)347 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
348 int nents, enum dma_data_direction dir,
349 unsigned long attrs)
350 {
351 const struct dma_map_ops *ops = get_dma_ops(dev);
352
353 BUG_ON(!valid_dma_direction(dir));
354 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
355 debug_dma_unmap_sg(dev, sg, nents, dir);
356 if (dma_map_direct(dev, ops) ||
357 arch_dma_unmap_sg_direct(dev, sg, nents))
358 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
359 else if (use_dma_iommu(dev))
360 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
361 else if (ops->unmap_sg)
362 ops->unmap_sg(dev, sg, nents, dir, attrs);
363 }
364 EXPORT_SYMBOL(dma_unmap_sg_attrs);
365
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)366 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
367 size_t size, enum dma_data_direction dir, unsigned long attrs)
368 {
369 if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
370 WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
371 return DMA_MAPPING_ERROR;
372
373 return dma_map_phys(dev, phys_addr, size, dir, attrs | DMA_ATTR_MMIO);
374 }
375 EXPORT_SYMBOL(dma_map_resource);
376
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)377 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
378 enum dma_data_direction dir, unsigned long attrs)
379 {
380 dma_unmap_phys(dev, addr, size, dir, attrs | DMA_ATTR_MMIO);
381 }
382 EXPORT_SYMBOL(dma_unmap_resource);
383
384 #ifdef CONFIG_DMA_NEED_SYNC
__dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)385 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
386 enum dma_data_direction dir)
387 {
388 const struct dma_map_ops *ops = get_dma_ops(dev);
389
390 BUG_ON(!valid_dma_direction(dir));
391 if (dma_map_direct(dev, ops))
392 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
393 else if (use_dma_iommu(dev))
394 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
395 else if (ops->sync_single_for_cpu)
396 ops->sync_single_for_cpu(dev, addr, size, dir);
397 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
398 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
399 }
400 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
401
__dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)402 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
403 size_t size, enum dma_data_direction dir)
404 {
405 const struct dma_map_ops *ops = get_dma_ops(dev);
406
407 BUG_ON(!valid_dma_direction(dir));
408 if (dma_map_direct(dev, ops))
409 dma_direct_sync_single_for_device(dev, addr, size, dir);
410 else if (use_dma_iommu(dev))
411 iommu_dma_sync_single_for_device(dev, addr, size, dir);
412 else if (ops->sync_single_for_device)
413 ops->sync_single_for_device(dev, addr, size, dir);
414 trace_dma_sync_single_for_device(dev, addr, size, dir);
415 debug_dma_sync_single_for_device(dev, addr, size, dir);
416 }
417 EXPORT_SYMBOL(__dma_sync_single_for_device);
418
__dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)419 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
420 int nelems, enum dma_data_direction dir)
421 {
422 const struct dma_map_ops *ops = get_dma_ops(dev);
423
424 BUG_ON(!valid_dma_direction(dir));
425 if (dma_map_direct(dev, ops))
426 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
427 else if (use_dma_iommu(dev))
428 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
429 else if (ops->sync_sg_for_cpu)
430 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
431 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
432 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
433 }
434 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
435
__dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)436 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
437 int nelems, enum dma_data_direction dir)
438 {
439 const struct dma_map_ops *ops = get_dma_ops(dev);
440
441 BUG_ON(!valid_dma_direction(dir));
442 if (dma_map_direct(dev, ops))
443 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
444 else if (use_dma_iommu(dev))
445 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
446 else if (ops->sync_sg_for_device)
447 ops->sync_sg_for_device(dev, sg, nelems, dir);
448 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
449 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
450 }
451 EXPORT_SYMBOL(__dma_sync_sg_for_device);
452
__dma_need_sync(struct device * dev,dma_addr_t dma_addr)453 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
454 {
455 const struct dma_map_ops *ops = get_dma_ops(dev);
456
457 if (dma_map_direct(dev, ops))
458 /*
459 * dma_skip_sync could've been reset on first SWIOTLB buffer
460 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
461 * In this case, fall back to more granular check.
462 */
463 return dma_direct_need_sync(dev, dma_addr);
464 return true;
465 }
466 EXPORT_SYMBOL_GPL(__dma_need_sync);
467
468 /**
469 * dma_need_unmap - does this device need dma_unmap_* operations
470 * @dev: device to check
471 *
472 * If this function returns %false, drivers can skip calling dma_unmap_* after
473 * finishing an I/O. This function must be called after all mappings that might
474 * need to be unmapped have been performed.
475 */
dma_need_unmap(struct device * dev)476 bool dma_need_unmap(struct device *dev)
477 {
478 if (!dma_map_direct(dev, get_dma_ops(dev)))
479 return true;
480 if (!dev->dma_skip_sync)
481 return true;
482 return IS_ENABLED(CONFIG_DMA_API_DEBUG);
483 }
484 EXPORT_SYMBOL_GPL(dma_need_unmap);
485
dma_setup_need_sync(struct device * dev)486 static void dma_setup_need_sync(struct device *dev)
487 {
488 const struct dma_map_ops *ops = get_dma_ops(dev);
489
490 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
491 /*
492 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
493 * mapping, if any. During the device initialization, it's
494 * enough to check only for the DMA coherence.
495 */
496 dev->dma_skip_sync = dev_is_dma_coherent(dev);
497 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
498 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
499 /*
500 * Synchronization is not possible when none of DMA sync ops
501 * is set.
502 */
503 dev->dma_skip_sync = true;
504 else
505 dev->dma_skip_sync = false;
506 }
507 #else /* !CONFIG_DMA_NEED_SYNC */
dma_setup_need_sync(struct device * dev)508 static inline void dma_setup_need_sync(struct device *dev) { }
509 #endif /* !CONFIG_DMA_NEED_SYNC */
510
511 /*
512 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
513 * that the intention is to allow exporting memory allocated via the
514 * coherent DMA APIs through the dma_buf API, which only accepts a
515 * scattertable. This presents a couple of problems:
516 * 1. Not all memory allocated via the coherent DMA APIs is backed by
517 * a struct page
518 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
519 * as we will try to flush the memory through a different alias to that
520 * actually being used (and the flushes are redundant.)
521 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)522 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
524 unsigned long attrs)
525 {
526 const struct dma_map_ops *ops = get_dma_ops(dev);
527
528 if (dma_alloc_direct(dev, ops))
529 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
530 size, attrs);
531 if (use_dma_iommu(dev))
532 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
533 size, attrs);
534 if (!ops->get_sgtable)
535 return -ENXIO;
536 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
537 }
538 EXPORT_SYMBOL(dma_get_sgtable_attrs);
539
540 #ifdef CONFIG_MMU
541 /*
542 * Return the page attributes used for mapping dma_alloc_* memory, either in
543 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
544 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)545 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
546 {
547 if (dev_is_dma_coherent(dev))
548 return prot;
549 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
550 if (attrs & DMA_ATTR_WRITE_COMBINE)
551 return pgprot_writecombine(prot);
552 #endif
553 return pgprot_dmacoherent(prot);
554 }
555 #endif /* CONFIG_MMU */
556
557 /**
558 * dma_can_mmap - check if a given device supports dma_mmap_*
559 * @dev: device to check
560 *
561 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
562 * map DMA allocations to userspace.
563 */
dma_can_mmap(struct device * dev)564 bool dma_can_mmap(struct device *dev)
565 {
566 const struct dma_map_ops *ops = get_dma_ops(dev);
567
568 if (dma_alloc_direct(dev, ops))
569 return dma_direct_can_mmap(dev);
570 if (use_dma_iommu(dev))
571 return true;
572 return ops->mmap != NULL;
573 }
574 EXPORT_SYMBOL_GPL(dma_can_mmap);
575
576 /**
577 * dma_mmap_attrs - map a coherent DMA allocation into user space
578 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
579 * @vma: vm_area_struct describing requested user mapping
580 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
581 * @dma_addr: device-view address returned from dma_alloc_attrs
582 * @size: size of memory originally requested in dma_alloc_attrs
583 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
584 *
585 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
586 * space. The coherent DMA buffer must not be freed by the driver until the
587 * user space mapping has been released.
588 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)589 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
590 void *cpu_addr, dma_addr_t dma_addr, size_t size,
591 unsigned long attrs)
592 {
593 const struct dma_map_ops *ops = get_dma_ops(dev);
594
595 if (dma_alloc_direct(dev, ops))
596 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
597 attrs);
598 if (use_dma_iommu(dev))
599 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
600 attrs);
601 if (!ops->mmap)
602 return -ENXIO;
603 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
604 }
605 EXPORT_SYMBOL(dma_mmap_attrs);
606
dma_get_required_mask(struct device * dev)607 u64 dma_get_required_mask(struct device *dev)
608 {
609 const struct dma_map_ops *ops = get_dma_ops(dev);
610
611 if (dma_alloc_direct(dev, ops))
612 return dma_direct_get_required_mask(dev);
613
614 if (use_dma_iommu(dev))
615 return DMA_BIT_MASK(32);
616
617 if (ops->get_required_mask)
618 return ops->get_required_mask(dev);
619
620 /*
621 * We require every DMA ops implementation to at least support a 32-bit
622 * DMA mask (and use bounce buffering if that isn't supported in
623 * hardware). As the direct mapping code has its own routine to
624 * actually report an optimal mask we default to 32-bit here as that
625 * is the right thing for most IOMMUs, and at least not actively
626 * harmful in general.
627 */
628 return DMA_BIT_MASK(32);
629 }
630 EXPORT_SYMBOL_GPL(dma_get_required_mask);
631
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)632 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
633 gfp_t flag, unsigned long attrs)
634 {
635 const struct dma_map_ops *ops = get_dma_ops(dev);
636 void *cpu_addr;
637
638 WARN_ON_ONCE(!dev->coherent_dma_mask);
639
640 /*
641 * DMA allocations can never be turned back into a page pointer, so
642 * requesting compound pages doesn't make sense (and can't even be
643 * supported at all by various backends).
644 */
645 if (WARN_ON_ONCE(flag & __GFP_COMP))
646 return NULL;
647
648 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
649 trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
650 DMA_BIDIRECTIONAL, flag, attrs);
651 return cpu_addr;
652 }
653
654 /* let the implementation decide on the zone to allocate from: */
655 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
656
657 if (dma_alloc_direct(dev, ops)) {
658 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
659 } else if (use_dma_iommu(dev)) {
660 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
661 } else if (ops->alloc) {
662 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
663 } else {
664 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
665 attrs);
666 return NULL;
667 }
668
669 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
670 flag, attrs);
671 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
672 return cpu_addr;
673 }
674 EXPORT_SYMBOL(dma_alloc_attrs);
675
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)676 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
677 dma_addr_t dma_handle, unsigned long attrs)
678 {
679 const struct dma_map_ops *ops = get_dma_ops(dev);
680
681 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
682 return;
683 /*
684 * On non-coherent platforms which implement DMA-coherent buffers via
685 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
686 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
687 * sleep on some machines, and b) an indication that the driver is
688 * probably misusing the coherent API anyway.
689 */
690 WARN_ON(irqs_disabled());
691
692 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
693 attrs);
694 if (!cpu_addr)
695 return;
696
697 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
698 if (dma_alloc_direct(dev, ops))
699 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
700 else if (use_dma_iommu(dev))
701 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
702 else if (ops->free)
703 ops->free(dev, size, cpu_addr, dma_handle, attrs);
704 }
705 EXPORT_SYMBOL(dma_free_attrs);
706
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)707 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
708 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
709 {
710 const struct dma_map_ops *ops = get_dma_ops(dev);
711
712 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
713 return NULL;
714 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
715 return NULL;
716 if (WARN_ON_ONCE(gfp & __GFP_COMP))
717 return NULL;
718
719 size = PAGE_ALIGN(size);
720 if (dma_alloc_direct(dev, ops))
721 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
722 if (use_dma_iommu(dev))
723 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
724 if (!ops->alloc_pages_op)
725 return NULL;
726 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
727 }
728
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)729 struct page *dma_alloc_pages(struct device *dev, size_t size,
730 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
731 {
732 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
733
734 if (page) {
735 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
736 size, dir, gfp, 0);
737 debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
738 } else {
739 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
740 }
741 return page;
742 }
743 EXPORT_SYMBOL_GPL(dma_alloc_pages);
744
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)745 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
746 dma_addr_t dma_handle, enum dma_data_direction dir)
747 {
748 const struct dma_map_ops *ops = get_dma_ops(dev);
749
750 size = PAGE_ALIGN(size);
751 if (dma_alloc_direct(dev, ops))
752 dma_direct_free_pages(dev, size, page, dma_handle, dir);
753 else if (use_dma_iommu(dev))
754 dma_common_free_pages(dev, size, page, dma_handle, dir);
755 else if (ops->free_pages)
756 ops->free_pages(dev, size, page, dma_handle, dir);
757 }
758
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)759 void dma_free_pages(struct device *dev, size_t size, struct page *page,
760 dma_addr_t dma_handle, enum dma_data_direction dir)
761 {
762 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
763 debug_dma_free_pages(dev, page, size, dir, dma_handle);
764 __dma_free_pages(dev, size, page, dma_handle, dir);
765 }
766 EXPORT_SYMBOL_GPL(dma_free_pages);
767
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)768 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
769 size_t size, struct page *page)
770 {
771 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
772
773 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
774 return -ENXIO;
775 return remap_pfn_range(vma, vma->vm_start,
776 page_to_pfn(page) + vma->vm_pgoff,
777 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
778 }
779 EXPORT_SYMBOL_GPL(dma_mmap_pages);
780
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)781 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
782 enum dma_data_direction dir, gfp_t gfp)
783 {
784 struct sg_table *sgt;
785 struct page *page;
786
787 sgt = kmalloc(sizeof(*sgt), gfp);
788 if (!sgt)
789 return NULL;
790 if (sg_alloc_table(sgt, 1, gfp))
791 goto out_free_sgt;
792 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
793 if (!page)
794 goto out_free_table;
795 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
796 sg_dma_len(sgt->sgl) = sgt->sgl->length;
797 return sgt;
798 out_free_table:
799 sg_free_table(sgt);
800 out_free_sgt:
801 kfree(sgt);
802 return NULL;
803 }
804
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)805 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
806 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
807 {
808 struct sg_table *sgt;
809
810 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
811 return NULL;
812 if (WARN_ON_ONCE(gfp & __GFP_COMP))
813 return NULL;
814
815 if (use_dma_iommu(dev))
816 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
817 else
818 sgt = alloc_single_sgt(dev, size, dir, gfp);
819
820 if (sgt) {
821 sgt->nents = 1;
822 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
823 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
824 } else {
825 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
826 }
827 return sgt;
828 }
829 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
830
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)831 static void free_single_sgt(struct device *dev, size_t size,
832 struct sg_table *sgt, enum dma_data_direction dir)
833 {
834 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
835 dir);
836 sg_free_table(sgt);
837 kfree(sgt);
838 }
839
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)840 void dma_free_noncontiguous(struct device *dev, size_t size,
841 struct sg_table *sgt, enum dma_data_direction dir)
842 {
843 trace_dma_free_sgt(dev, sgt, size, dir);
844 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
845
846 if (use_dma_iommu(dev))
847 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
848 else
849 free_single_sgt(dev, size, sgt, dir);
850 }
851 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
852
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)853 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
854 struct sg_table *sgt)
855 {
856
857 if (use_dma_iommu(dev))
858 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
859
860 return page_address(sg_page(sgt->sgl));
861 }
862 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
863
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)864 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
865 {
866 if (use_dma_iommu(dev))
867 iommu_dma_vunmap_noncontiguous(dev, vaddr);
868 }
869 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
870
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)871 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
872 size_t size, struct sg_table *sgt)
873 {
874 if (use_dma_iommu(dev))
875 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
876 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
877 }
878 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
879
dma_supported(struct device * dev,u64 mask)880 static int dma_supported(struct device *dev, u64 mask)
881 {
882 const struct dma_map_ops *ops = get_dma_ops(dev);
883
884 if (use_dma_iommu(dev)) {
885 if (WARN_ON(ops))
886 return false;
887 return true;
888 }
889
890 /*
891 * ->dma_supported sets and clears the bypass flag, so ignore it here
892 * and always call into the method if there is one.
893 */
894 if (ops) {
895 if (!ops->dma_supported)
896 return true;
897 return ops->dma_supported(dev, mask);
898 }
899
900 return dma_direct_supported(dev, mask);
901 }
902
dma_pci_p2pdma_supported(struct device * dev)903 bool dma_pci_p2pdma_supported(struct device *dev)
904 {
905 const struct dma_map_ops *ops = get_dma_ops(dev);
906
907 /*
908 * Note: dma_ops_bypass is not checked here because P2PDMA should
909 * not be used with dma mapping ops that do not have support even
910 * if the specific device is bypassing them.
911 */
912
913 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
914 return !ops;
915 }
916 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
917
dma_set_mask(struct device * dev,u64 mask)918 int dma_set_mask(struct device *dev, u64 mask)
919 {
920 /*
921 * Truncate the mask to the actually supported dma_addr_t width to
922 * avoid generating unsupportable addresses.
923 */
924 mask = (dma_addr_t)mask;
925
926 if (!dev->dma_mask || !dma_supported(dev, mask))
927 return -EIO;
928
929 arch_dma_set_mask(dev, mask);
930 *dev->dma_mask = mask;
931 dma_setup_need_sync(dev);
932
933 return 0;
934 }
935 EXPORT_SYMBOL(dma_set_mask);
936
dma_set_coherent_mask(struct device * dev,u64 mask)937 int dma_set_coherent_mask(struct device *dev, u64 mask)
938 {
939 /*
940 * Truncate the mask to the actually supported dma_addr_t width to
941 * avoid generating unsupportable addresses.
942 */
943 mask = (dma_addr_t)mask;
944
945 if (!dma_supported(dev, mask))
946 return -EIO;
947
948 dev->coherent_dma_mask = mask;
949 return 0;
950 }
951 EXPORT_SYMBOL(dma_set_coherent_mask);
952
__dma_addressing_limited(struct device * dev)953 static bool __dma_addressing_limited(struct device *dev)
954 {
955 const struct dma_map_ops *ops = get_dma_ops(dev);
956
957 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
958 dma_get_required_mask(dev))
959 return true;
960
961 if (unlikely(ops) || use_dma_iommu(dev))
962 return false;
963 return !dma_direct_all_ram_mapped(dev);
964 }
965
966 /**
967 * dma_addressing_limited - return if the device is addressing limited
968 * @dev: device to check
969 *
970 * Return %true if the devices DMA mask is too small to address all memory in
971 * the system, else %false. Lack of addressing bits is the prime reason for
972 * bounce buffering, but might not be the only one.
973 */
dma_addressing_limited(struct device * dev)974 bool dma_addressing_limited(struct device *dev)
975 {
976 if (!__dma_addressing_limited(dev))
977 return false;
978
979 dev_dbg(dev, "device is DMA addressing limited\n");
980 return true;
981 }
982 EXPORT_SYMBOL_GPL(dma_addressing_limited);
983
dma_max_mapping_size(struct device * dev)984 size_t dma_max_mapping_size(struct device *dev)
985 {
986 const struct dma_map_ops *ops = get_dma_ops(dev);
987 size_t size = SIZE_MAX;
988
989 if (dma_map_direct(dev, ops))
990 size = dma_direct_max_mapping_size(dev);
991 else if (use_dma_iommu(dev))
992 size = iommu_dma_max_mapping_size(dev);
993 else if (ops && ops->max_mapping_size)
994 size = ops->max_mapping_size(dev);
995
996 return size;
997 }
998 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
999
dma_opt_mapping_size(struct device * dev)1000 size_t dma_opt_mapping_size(struct device *dev)
1001 {
1002 const struct dma_map_ops *ops = get_dma_ops(dev);
1003 size_t size = SIZE_MAX;
1004
1005 if (use_dma_iommu(dev))
1006 size = iommu_dma_opt_mapping_size();
1007 else if (ops && ops->opt_mapping_size)
1008 size = ops->opt_mapping_size();
1009
1010 return min(dma_max_mapping_size(dev), size);
1011 }
1012 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
1013
dma_get_merge_boundary(struct device * dev)1014 unsigned long dma_get_merge_boundary(struct device *dev)
1015 {
1016 const struct dma_map_ops *ops = get_dma_ops(dev);
1017
1018 if (use_dma_iommu(dev))
1019 return iommu_dma_get_merge_boundary(dev);
1020
1021 if (!ops || !ops->get_merge_boundary)
1022 return 0; /* can't merge */
1023
1024 return ops->get_merge_boundary(dev);
1025 }
1026 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1027