xref: /linux/drivers/md/dm.c (revision d632ab86aff2cef21f794e337a8e7f2320ac3973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13 
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35 
36 #define DM_MSG_PREFIX "core"
37 
38 /*
39  * Cookies are numeric values sent with CHANGE and REMOVE
40  * uevents while resuming, removing or renaming the device.
41  */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44 
45 /*
46  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47  * dm_io into one list, and reuse bio->bi_private as the list head. Before
48  * ending this fs bio, we will recover its ->bi_private.
49  */
50 #define REQ_DM_POLL_LIST	REQ_DRV
51 
52 static const char *_name = DM_NAME;
53 
54 static unsigned int major;
55 static unsigned int _major;
56 
57 static DEFINE_IDR(_minor_idr);
58 
59 static DEFINE_SPINLOCK(_minor_lock);
60 
61 static void do_deferred_remove(struct work_struct *w);
62 
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64 
65 static struct workqueue_struct *deferred_remove_workqueue;
66 
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69 
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 	atomic_inc(&dm_global_event_nr);
73 	wake_up(&dm_global_eventq);
74 }
75 
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79 
80 /*
81  * One of these is allocated (on-stack) per original bio.
82  */
83 struct clone_info {
84 	struct dm_table *map;
85 	struct bio *bio;
86 	struct dm_io *io;
87 	sector_t sector;
88 	unsigned int sector_count;
89 	bool is_abnormal_io:1;
90 	bool submit_as_polled:1;
91 };
92 
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 	return container_of(clone, struct dm_target_io, clone);
96 }
97 
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105 
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109 
110 	if (io->magic == DM_IO_MAGIC)
111 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 	BUG_ON(io->magic != DM_TIO_MAGIC);
113 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116 
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122 
123 #define MINOR_ALLOCED ((void *)-1)
124 
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127 
128 #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 	int latch = READ_ONCE(swap_bios);
133 
134 	if (unlikely(latch <= 0))
135 		latch = DEFAULT_SWAP_BIOS;
136 	return latch;
137 }
138 
139 struct table_device {
140 	struct list_head list;
141 	refcount_t count;
142 	struct dm_dev dm_dev;
143 };
144 
145 /*
146  * Bio-based DM's mempools' reserved IOs set by the user.
147  */
148 #define RESERVED_BIO_BASED_IOS		16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150 
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 	int param = READ_ONCE(*module_param);
154 	int modified_param = 0;
155 	bool modified = true;
156 
157 	if (param < min)
158 		modified_param = min;
159 	else if (param > max)
160 		modified_param = max;
161 	else
162 		modified = false;
163 
164 	if (modified) {
165 		(void)cmpxchg(module_param, param, modified_param);
166 		param = modified_param;
167 	}
168 
169 	return param;
170 }
171 
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 	unsigned int param = READ_ONCE(*module_param);
175 	unsigned int modified_param = 0;
176 
177 	if (!param)
178 		modified_param = def;
179 	else if (param > max)
180 		modified_param = max;
181 
182 	if (modified_param) {
183 		(void)cmpxchg(module_param, param, modified_param);
184 		param = modified_param;
185 	}
186 
187 	return param;
188 }
189 
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 	return __dm_get_module_param(&reserved_bio_based_ios,
193 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196 
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 	return __dm_get_module_param_int(&dm_numa_node,
200 					 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202 
local_init(void)203 static int __init local_init(void)
204 {
205 	int r;
206 
207 	r = dm_uevent_init();
208 	if (r)
209 		return r;
210 
211 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 	if (!deferred_remove_workqueue) {
213 		r = -ENOMEM;
214 		goto out_uevent_exit;
215 	}
216 
217 	_major = major;
218 	r = register_blkdev(_major, _name);
219 	if (r < 0)
220 		goto out_free_workqueue;
221 
222 	if (!_major)
223 		_major = r;
224 
225 	return 0;
226 
227 out_free_workqueue:
228 	destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 	dm_uevent_exit();
231 
232 	return r;
233 }
234 
local_exit(void)235 static void local_exit(void)
236 {
237 	destroy_workqueue(deferred_remove_workqueue);
238 
239 	unregister_blkdev(_major, _name);
240 	dm_uevent_exit();
241 
242 	_major = 0;
243 
244 	DMINFO("cleaned up");
245 }
246 
247 static int (*_inits[])(void) __initdata = {
248 	local_init,
249 	dm_target_init,
250 	dm_linear_init,
251 	dm_stripe_init,
252 	dm_io_init,
253 	dm_kcopyd_init,
254 	dm_interface_init,
255 	dm_statistics_init,
256 };
257 
258 static void (*_exits[])(void) = {
259 	local_exit,
260 	dm_target_exit,
261 	dm_linear_exit,
262 	dm_stripe_exit,
263 	dm_io_exit,
264 	dm_kcopyd_exit,
265 	dm_interface_exit,
266 	dm_statistics_exit,
267 };
268 
dm_init(void)269 static int __init dm_init(void)
270 {
271 	const int count = ARRAY_SIZE(_inits);
272 	int r, i;
273 
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278 
279 	for (i = 0; i < count; i++) {
280 		r = _inits[i]();
281 		if (r)
282 			goto bad;
283 	}
284 
285 	return 0;
286 bad:
287 	while (i--)
288 		_exits[i]();
289 
290 	return r;
291 }
292 
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 	int i = ARRAY_SIZE(_exits);
296 
297 	while (i--)
298 		_exits[i]();
299 
300 	/*
301 	 * Should be empty by this point.
302 	 */
303 	idr_destroy(&_minor_idr);
304 }
305 
306 /*
307  * Block device functions
308  */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 	return test_bit(DMF_DELETING, &md->flags);
312 }
313 
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 	struct mapped_device *md;
317 
318 	spin_lock(&_minor_lock);
319 
320 	md = disk->private_data;
321 	if (!md)
322 		goto out;
323 
324 	if (test_bit(DMF_FREEING, &md->flags) ||
325 	    dm_deleting_md(md)) {
326 		md = NULL;
327 		goto out;
328 	}
329 
330 	dm_get(md);
331 	atomic_inc(&md->open_count);
332 out:
333 	spin_unlock(&_minor_lock);
334 
335 	return md ? 0 : -ENXIO;
336 }
337 
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 	struct mapped_device *md;
341 
342 	spin_lock(&_minor_lock);
343 
344 	md = disk->private_data;
345 	if (WARN_ON(!md))
346 		goto out;
347 
348 	if (atomic_dec_and_test(&md->open_count) &&
349 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
351 
352 	dm_put(md);
353 out:
354 	spin_unlock(&_minor_lock);
355 }
356 
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 	return atomic_read(&md->open_count);
360 }
361 
362 /*
363  * Guarantees nothing is using the device before it's deleted.
364  */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (dm_open_count(md)) {
372 		r = -EBUSY;
373 		if (mark_deferred)
374 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 		r = -EEXIST;
377 	else
378 		set_bit(DMF_DELETING, &md->flags);
379 
380 	spin_unlock(&_minor_lock);
381 
382 	return r;
383 }
384 
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 	int r = 0;
388 
389 	spin_lock(&_minor_lock);
390 
391 	if (test_bit(DMF_DELETING, &md->flags))
392 		r = -EBUSY;
393 	else
394 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395 
396 	spin_unlock(&_minor_lock);
397 
398 	return r;
399 }
400 
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 	dm_deferred_remove();
404 }
405 
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 			    struct block_device **bdev, unsigned int cmd,
415 			    unsigned long arg, bool *forward)
416 {
417 	struct dm_target *ti;
418 	struct dm_table *map;
419 	int r;
420 
421 retry:
422 	r = -ENOTTY;
423 	map = dm_get_live_table(md, srcu_idx);
424 	if (!map || !dm_table_get_size(map))
425 		return r;
426 
427 	/* We only support devices that have a single target */
428 	if (map->num_targets != 1)
429 		return r;
430 
431 	ti = dm_table_get_target(map, 0);
432 	if (!ti->type->prepare_ioctl)
433 		return r;
434 
435 	if (dm_suspended_md(md))
436 		return -EAGAIN;
437 
438 	r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 	if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 		dm_put_live_table(md, *srcu_idx);
441 		fsleep(10000);
442 		goto retry;
443 	}
444 
445 	return r;
446 }
447 
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 {
450 	dm_put_live_table(md, srcu_idx);
451 }
452 
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 			unsigned int cmd, unsigned long arg)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 	int r, srcu_idx;
458 	bool forward = true;
459 
460 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 	if (!forward || r < 0)
462 		goto out;
463 
464 	if (r > 0) {
465 		/*
466 		 * Target determined this ioctl is being issued against a
467 		 * subset of the parent bdev; require extra privileges.
468 		 */
469 		if (!capable(CAP_SYS_RAWIO)) {
470 			DMDEBUG_LIMIT(
471 	"%s: sending ioctl %x to DM device without required privilege.",
472 				current->comm, cmd);
473 			r = -ENOIOCTLCMD;
474 			goto out;
475 		}
476 	}
477 
478 	if (!bdev->bd_disk->fops->ioctl)
479 		r = -ENOTTY;
480 	else
481 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 	dm_unprepare_ioctl(md, srcu_idx);
484 	return r;
485 }
486 
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492 
bio_is_flush_with_data(struct bio * bio)493 static inline bool bio_is_flush_with_data(struct bio *bio)
494 {
495 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497 
dm_io_sectors(struct dm_io * io,struct bio * bio)498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
499 {
500 	/*
501 	 * If REQ_PREFLUSH set, don't account payload, it will be
502 	 * submitted (and accounted) after this flush completes.
503 	 */
504 	if (bio_is_flush_with_data(bio))
505 		return 0;
506 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
507 		return io->sectors;
508 	return bio_sectors(bio);
509 }
510 
dm_io_acct(struct dm_io * io,bool end)511 static void dm_io_acct(struct dm_io *io, bool end)
512 {
513 	struct bio *bio = io->orig_bio;
514 
515 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
516 		if (!end)
517 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
518 					   io->start_time);
519 		else
520 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
521 					 dm_io_sectors(io, bio),
522 					 io->start_time);
523 	}
524 
525 	if (static_branch_unlikely(&stats_enabled) &&
526 	    unlikely(dm_stats_used(&io->md->stats))) {
527 		sector_t sector;
528 
529 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
530 			sector = bio_end_sector(bio) - io->sector_offset;
531 		else
532 			sector = bio->bi_iter.bi_sector;
533 
534 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
535 				    sector, dm_io_sectors(io, bio),
536 				    end, io->start_time, &io->stats_aux);
537 	}
538 }
539 
__dm_start_io_acct(struct dm_io * io)540 static void __dm_start_io_acct(struct dm_io *io)
541 {
542 	dm_io_acct(io, false);
543 }
544 
dm_start_io_acct(struct dm_io * io,struct bio * clone)545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 {
547 	/*
548 	 * Ensure IO accounting is only ever started once.
549 	 */
550 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
551 		return;
552 
553 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
554 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
555 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
556 	} else {
557 		unsigned long flags;
558 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
559 		spin_lock_irqsave(&io->lock, flags);
560 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
561 			spin_unlock_irqrestore(&io->lock, flags);
562 			return;
563 		}
564 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
565 		spin_unlock_irqrestore(&io->lock, flags);
566 	}
567 
568 	__dm_start_io_acct(io);
569 }
570 
dm_end_io_acct(struct dm_io * io)571 static void dm_end_io_acct(struct dm_io *io)
572 {
573 	dm_io_acct(io, true);
574 }
575 
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
577 {
578 	struct dm_io *io;
579 	struct dm_target_io *tio;
580 	struct bio *clone;
581 
582 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
583 	if (unlikely(!clone))
584 		return NULL;
585 	tio = clone_to_tio(clone);
586 	tio->flags = 0;
587 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
588 	tio->io = NULL;
589 
590 	io = container_of(tio, struct dm_io, tio);
591 	io->magic = DM_IO_MAGIC;
592 	io->status = BLK_STS_OK;
593 
594 	/* one ref is for submission, the other is for completion */
595 	atomic_set(&io->io_count, 2);
596 	this_cpu_inc(*md->pending_io);
597 	io->orig_bio = bio;
598 	io->md = md;
599 	spin_lock_init(&io->lock);
600 	io->start_time = jiffies;
601 	io->flags = 0;
602 	if (blk_queue_io_stat(md->queue))
603 		dm_io_set_flag(io, DM_IO_BLK_STAT);
604 
605 	if (static_branch_unlikely(&stats_enabled) &&
606 	    unlikely(dm_stats_used(&md->stats)))
607 		dm_stats_record_start(&md->stats, &io->stats_aux);
608 
609 	return io;
610 }
611 
free_io(struct dm_io * io)612 static void free_io(struct dm_io *io)
613 {
614 	bio_put(&io->tio.clone);
615 }
616 
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
619 {
620 	struct mapped_device *md = ci->io->md;
621 	struct dm_target_io *tio;
622 	struct bio *clone;
623 
624 	if (!ci->io->tio.io) {
625 		/* the dm_target_io embedded in ci->io is available */
626 		tio = &ci->io->tio;
627 		/* alloc_io() already initialized embedded clone */
628 		clone = &tio->clone;
629 	} else {
630 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
631 					&md->mempools->bs);
632 		if (!clone)
633 			return NULL;
634 
635 		/* REQ_DM_POLL_LIST shouldn't be inherited */
636 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
637 
638 		tio = clone_to_tio(clone);
639 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 	}
641 
642 	tio->magic = DM_TIO_MAGIC;
643 	tio->io = ci->io;
644 	tio->ti = ti;
645 	tio->target_bio_nr = target_bio_nr;
646 	tio->len_ptr = len;
647 	tio->old_sector = 0;
648 
649 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
650 	clone->bi_bdev = md->disk->part0;
651 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
652 		bio_set_dev(clone, md->disk->part0);
653 
654 	if (len) {
655 		clone->bi_iter.bi_size = to_bytes(*len);
656 		if (bio_integrity(clone))
657 			bio_integrity_trim(clone);
658 	}
659 
660 	return clone;
661 }
662 
free_tio(struct bio * clone)663 static void free_tio(struct bio *clone)
664 {
665 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
666 		return;
667 	bio_put(clone);
668 }
669 
670 /*
671  * Add the bio to the list of deferred io.
672  */
queue_io(struct mapped_device * md,struct bio * bio)673 static void queue_io(struct mapped_device *md, struct bio *bio)
674 {
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&md->deferred_lock, flags);
678 	bio_list_add(&md->deferred, bio);
679 	spin_unlock_irqrestore(&md->deferred_lock, flags);
680 	queue_work(md->wq, &md->work);
681 }
682 
683 /*
684  * Everyone (including functions in this file), should use this
685  * function to access the md->map field, and make sure they call
686  * dm_put_live_table() when finished.
687  */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)688 struct dm_table *dm_get_live_table(struct mapped_device *md,
689 				   int *srcu_idx) __acquires(md->io_barrier)
690 {
691 	*srcu_idx = srcu_read_lock(&md->io_barrier);
692 
693 	return srcu_dereference(md->map, &md->io_barrier);
694 }
695 
dm_put_live_table(struct mapped_device * md,int srcu_idx)696 void dm_put_live_table(struct mapped_device *md,
697 		       int srcu_idx) __releases(md->io_barrier)
698 {
699 	srcu_read_unlock(&md->io_barrier, srcu_idx);
700 }
701 
dm_sync_table(struct mapped_device * md)702 void dm_sync_table(struct mapped_device *md)
703 {
704 	synchronize_srcu(&md->io_barrier);
705 	synchronize_rcu_expedited();
706 }
707 
708 /*
709  * A fast alternative to dm_get_live_table/dm_put_live_table.
710  * The caller must not block between these two functions.
711  */
dm_get_live_table_fast(struct mapped_device * md)712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
713 {
714 	rcu_read_lock();
715 	return rcu_dereference(md->map);
716 }
717 
dm_put_live_table_fast(struct mapped_device * md)718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
719 {
720 	rcu_read_unlock();
721 }
722 
723 static char *_dm_claim_ptr = "I belong to device-mapper";
724 
725 /*
726  * Open a table device so we can use it as a map destination.
727  */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)728 static struct table_device *open_table_device(struct mapped_device *md,
729 		dev_t dev, blk_mode_t mode)
730 {
731 	struct table_device *td;
732 	struct file *bdev_file;
733 	struct block_device *bdev;
734 	u64 part_off;
735 	int r;
736 
737 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
738 	if (!td)
739 		return ERR_PTR(-ENOMEM);
740 	refcount_set(&td->count, 1);
741 
742 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
743 	if (IS_ERR(bdev_file)) {
744 		r = PTR_ERR(bdev_file);
745 		goto out_free_td;
746 	}
747 
748 	bdev = file_bdev(bdev_file);
749 
750 	/*
751 	 * We can be called before the dm disk is added.  In that case we can't
752 	 * register the holder relation here.  It will be done once add_disk was
753 	 * called.
754 	 */
755 	if (md->disk->slave_dir) {
756 		r = bd_link_disk_holder(bdev, md->disk);
757 		if (r)
758 			goto out_blkdev_put;
759 	}
760 
761 	td->dm_dev.mode = mode;
762 	td->dm_dev.bdev = bdev;
763 	td->dm_dev.bdev_file = bdev_file;
764 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
765 						NULL, NULL);
766 	format_dev_t(td->dm_dev.name, dev);
767 	list_add(&td->list, &md->table_devices);
768 	return td;
769 
770 out_blkdev_put:
771 	__fput_sync(bdev_file);
772 out_free_td:
773 	kfree(td);
774 	return ERR_PTR(r);
775 }
776 
777 /*
778  * Close a table device that we've been using.
779  */
close_table_device(struct table_device * td,struct mapped_device * md)780 static void close_table_device(struct table_device *td, struct mapped_device *md)
781 {
782 	if (md->disk->slave_dir)
783 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
784 
785 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
786 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
787 		fput(td->dm_dev.bdev_file);
788 	else
789 		__fput_sync(td->dm_dev.bdev_file);
790 
791 	put_dax(td->dm_dev.dax_dev);
792 	list_del(&td->list);
793 	kfree(td);
794 }
795 
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)796 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
797 					      blk_mode_t mode)
798 {
799 	struct table_device *td;
800 
801 	list_for_each_entry(td, l, list)
802 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
803 			return td;
804 
805 	return NULL;
806 }
807 
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
809 			struct dm_dev **result)
810 {
811 	struct table_device *td;
812 
813 	mutex_lock(&md->table_devices_lock);
814 	td = find_table_device(&md->table_devices, dev, mode);
815 	if (!td) {
816 		td = open_table_device(md, dev, mode);
817 		if (IS_ERR(td)) {
818 			mutex_unlock(&md->table_devices_lock);
819 			return PTR_ERR(td);
820 		}
821 	} else {
822 		refcount_inc(&td->count);
823 	}
824 	mutex_unlock(&md->table_devices_lock);
825 
826 	*result = &td->dm_dev;
827 	return 0;
828 }
829 
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
831 {
832 	struct table_device *td = container_of(d, struct table_device, dm_dev);
833 
834 	mutex_lock(&md->table_devices_lock);
835 	if (refcount_dec_and_test(&td->count))
836 		close_table_device(td, md);
837 	mutex_unlock(&md->table_devices_lock);
838 }
839 
840 /*
841  * Get the geometry associated with a dm device
842  */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
844 {
845 	*geo = md->geometry;
846 
847 	return 0;
848 }
849 
850 /*
851  * Set the geometry of a device.
852  */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
854 {
855 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
856 
857 	if (geo->start > sz) {
858 		DMERR("Start sector is beyond the geometry limits.");
859 		return -EINVAL;
860 	}
861 
862 	md->geometry = *geo;
863 
864 	return 0;
865 }
866 
__noflush_suspending(struct mapped_device * md)867 static int __noflush_suspending(struct mapped_device *md)
868 {
869 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870 }
871 
dm_requeue_add_io(struct dm_io * io,bool first_stage)872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
873 {
874 	struct mapped_device *md = io->md;
875 
876 	if (first_stage) {
877 		struct dm_io *next = md->requeue_list;
878 
879 		md->requeue_list = io;
880 		io->next = next;
881 	} else {
882 		bio_list_add_head(&md->deferred, io->orig_bio);
883 	}
884 }
885 
dm_kick_requeue(struct mapped_device * md,bool first_stage)886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
887 {
888 	if (first_stage)
889 		queue_work(md->wq, &md->requeue_work);
890 	else
891 		queue_work(md->wq, &md->work);
892 }
893 
894 /*
895  * Return true if the dm_io's original bio is requeued.
896  * io->status is updated with error if requeue disallowed.
897  */
dm_handle_requeue(struct dm_io * io,bool first_stage)898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
899 {
900 	struct bio *bio = io->orig_bio;
901 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
902 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
903 				     (bio->bi_opf & REQ_POLLED));
904 	struct mapped_device *md = io->md;
905 	bool requeued = false;
906 
907 	if (handle_requeue || handle_polled_eagain) {
908 		unsigned long flags;
909 
910 		if (bio->bi_opf & REQ_POLLED) {
911 			/*
912 			 * Upper layer won't help us poll split bio
913 			 * (io->orig_bio may only reflect a subset of the
914 			 * pre-split original) so clear REQ_POLLED.
915 			 */
916 			bio_clear_polled(bio);
917 		}
918 
919 		/*
920 		 * Target requested pushing back the I/O or
921 		 * polled IO hit BLK_STS_AGAIN.
922 		 */
923 		spin_lock_irqsave(&md->deferred_lock, flags);
924 		if ((__noflush_suspending(md) &&
925 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
926 		    handle_polled_eagain || first_stage) {
927 			dm_requeue_add_io(io, first_stage);
928 			requeued = true;
929 		} else {
930 			/*
931 			 * noflush suspend was interrupted or this is
932 			 * a write to a zoned target.
933 			 */
934 			io->status = BLK_STS_IOERR;
935 		}
936 		spin_unlock_irqrestore(&md->deferred_lock, flags);
937 	}
938 
939 	if (requeued)
940 		dm_kick_requeue(md, first_stage);
941 
942 	return requeued;
943 }
944 
__dm_io_complete(struct dm_io * io,bool first_stage)945 static void __dm_io_complete(struct dm_io *io, bool first_stage)
946 {
947 	struct bio *bio = io->orig_bio;
948 	struct mapped_device *md = io->md;
949 	blk_status_t io_error;
950 	bool requeued;
951 
952 	requeued = dm_handle_requeue(io, first_stage);
953 	if (requeued && first_stage)
954 		return;
955 
956 	io_error = io->status;
957 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
958 		dm_end_io_acct(io);
959 	else if (!io_error) {
960 		/*
961 		 * Must handle target that DM_MAPIO_SUBMITTED only to
962 		 * then bio_endio() rather than dm_submit_bio_remap()
963 		 */
964 		__dm_start_io_acct(io);
965 		dm_end_io_acct(io);
966 	}
967 	free_io(io);
968 	smp_wmb();
969 	this_cpu_dec(*md->pending_io);
970 
971 	/* nudge anyone waiting on suspend queue */
972 	if (unlikely(wq_has_sleeper(&md->wait)))
973 		wake_up(&md->wait);
974 
975 	/* Return early if the original bio was requeued */
976 	if (requeued)
977 		return;
978 
979 	if (bio_is_flush_with_data(bio)) {
980 		/*
981 		 * Preflush done for flush with data, reissue
982 		 * without REQ_PREFLUSH.
983 		 */
984 		bio->bi_opf &= ~REQ_PREFLUSH;
985 		queue_io(md, bio);
986 	} else {
987 		/* done with normal IO or empty flush */
988 		if (io_error)
989 			bio->bi_status = io_error;
990 		bio_endio(bio);
991 	}
992 }
993 
dm_wq_requeue_work(struct work_struct * work)994 static void dm_wq_requeue_work(struct work_struct *work)
995 {
996 	struct mapped_device *md = container_of(work, struct mapped_device,
997 						requeue_work);
998 	unsigned long flags;
999 	struct dm_io *io;
1000 
1001 	/* reuse deferred lock to simplify dm_handle_requeue */
1002 	spin_lock_irqsave(&md->deferred_lock, flags);
1003 	io = md->requeue_list;
1004 	md->requeue_list = NULL;
1005 	spin_unlock_irqrestore(&md->deferred_lock, flags);
1006 
1007 	while (io) {
1008 		struct dm_io *next = io->next;
1009 
1010 		dm_io_rewind(io, &md->disk->bio_split);
1011 
1012 		io->next = NULL;
1013 		__dm_io_complete(io, false);
1014 		io = next;
1015 		cond_resched();
1016 	}
1017 }
1018 
1019 /*
1020  * Two staged requeue:
1021  *
1022  * 1) io->orig_bio points to the real original bio, and the part mapped to
1023  *    this io must be requeued, instead of other parts of the original bio.
1024  *
1025  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1026  */
dm_io_complete(struct dm_io * io)1027 static inline void dm_io_complete(struct dm_io *io)
1028 {
1029 	/*
1030 	 * Only dm_io that has been split needs two stage requeue, otherwise
1031 	 * we may run into long bio clone chain during suspend and OOM could
1032 	 * be triggered.
1033 	 *
1034 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 	 * also aren't handled via the first stage requeue.
1036 	 */
1037 	__dm_io_complete(io, dm_io_flagged(io, DM_IO_WAS_SPLIT));
1038 }
1039 
1040 /*
1041  * Decrements the number of outstanding ios that a bio has been
1042  * cloned into, completing the original io if necc.
1043  */
__dm_io_dec_pending(struct dm_io * io)1044 static inline void __dm_io_dec_pending(struct dm_io *io)
1045 {
1046 	if (atomic_dec_and_test(&io->io_count))
1047 		dm_io_complete(io);
1048 }
1049 
dm_io_set_error(struct dm_io * io,blk_status_t error)1050 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1051 {
1052 	unsigned long flags;
1053 
1054 	/* Push-back supersedes any I/O errors */
1055 	spin_lock_irqsave(&io->lock, flags);
1056 	if (!(io->status == BLK_STS_DM_REQUEUE &&
1057 	      __noflush_suspending(io->md))) {
1058 		io->status = error;
1059 	}
1060 	spin_unlock_irqrestore(&io->lock, flags);
1061 }
1062 
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1063 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1064 {
1065 	if (unlikely(error))
1066 		dm_io_set_error(io, error);
1067 
1068 	__dm_io_dec_pending(io);
1069 }
1070 
1071 /*
1072  * The queue_limits are only valid as long as you have a reference
1073  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1074  */
dm_get_queue_limits(struct mapped_device * md)1075 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1076 {
1077 	return &md->queue->limits;
1078 }
1079 
swap_bios_limit(struct dm_target * ti,struct bio * bio)1080 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1081 {
1082 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1083 }
1084 
clone_endio(struct bio * bio)1085 static void clone_endio(struct bio *bio)
1086 {
1087 	blk_status_t error = bio->bi_status;
1088 	struct dm_target_io *tio = clone_to_tio(bio);
1089 	struct dm_target *ti = tio->ti;
1090 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1091 	struct dm_io *io = tio->io;
1092 	struct mapped_device *md = io->md;
1093 
1094 	if (unlikely(error == BLK_STS_TARGET)) {
1095 		if (bio_op(bio) == REQ_OP_DISCARD &&
1096 		    !bdev_max_discard_sectors(bio->bi_bdev))
1097 			blk_queue_disable_discard(md->queue);
1098 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1099 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1100 			blk_queue_disable_write_zeroes(md->queue);
1101 	}
1102 
1103 	if (static_branch_unlikely(&zoned_enabled) &&
1104 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1105 		dm_zone_endio(io, bio);
1106 
1107 	if (endio) {
1108 		int r = endio(ti, bio, &error);
1109 
1110 		switch (r) {
1111 		case DM_ENDIO_REQUEUE:
1112 			if (static_branch_unlikely(&zoned_enabled)) {
1113 				/*
1114 				 * Requeuing writes to a sequential zone of a zoned
1115 				 * target will break the sequential write pattern:
1116 				 * fail such IO.
1117 				 */
1118 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1119 					error = BLK_STS_IOERR;
1120 				else
1121 					error = BLK_STS_DM_REQUEUE;
1122 			} else
1123 				error = BLK_STS_DM_REQUEUE;
1124 			fallthrough;
1125 		case DM_ENDIO_DONE:
1126 			break;
1127 		case DM_ENDIO_INCOMPLETE:
1128 			/* The target will handle the io */
1129 			return;
1130 		default:
1131 			DMCRIT("unimplemented target endio return value: %d", r);
1132 			BUG();
1133 		}
1134 	}
1135 
1136 	if (static_branch_unlikely(&swap_bios_enabled) &&
1137 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1138 		up(&md->swap_bios_semaphore);
1139 
1140 	free_tio(bio);
1141 	dm_io_dec_pending(io, error);
1142 }
1143 
1144 /*
1145  * Return maximum size of I/O possible at the supplied sector up to the current
1146  * target boundary.
1147  */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1148 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1149 						  sector_t target_offset)
1150 {
1151 	return ti->len - target_offset;
1152 }
1153 
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1154 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1155 			     unsigned int max_granularity,
1156 			     unsigned int max_sectors)
1157 {
1158 	sector_t target_offset = dm_target_offset(ti, sector);
1159 	sector_t len = max_io_len_target_boundary(ti, target_offset);
1160 
1161 	/*
1162 	 * Does the target need to split IO even further?
1163 	 * - varied (per target) IO splitting is a tenet of DM; this
1164 	 *   explains why stacked chunk_sectors based splitting via
1165 	 *   bio_split_to_limits() isn't possible here.
1166 	 */
1167 	if (!max_granularity)
1168 		return len;
1169 	return min_t(sector_t, len,
1170 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1171 		    blk_boundary_sectors_left(target_offset, max_granularity)));
1172 }
1173 
max_io_len(struct dm_target * ti,sector_t sector)1174 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1175 {
1176 	return __max_io_len(ti, sector, ti->max_io_len, 0);
1177 }
1178 
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1179 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1180 {
1181 	if (len > UINT_MAX) {
1182 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1183 		      (unsigned long long)len, UINT_MAX);
1184 		ti->error = "Maximum size of target IO is too large";
1185 		return -EINVAL;
1186 	}
1187 
1188 	ti->max_io_len = (uint32_t) len;
1189 
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1193 
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1194 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1195 						sector_t sector, int *srcu_idx)
1196 	__acquires(md->io_barrier)
1197 {
1198 	struct dm_table *map;
1199 	struct dm_target *ti;
1200 
1201 	map = dm_get_live_table(md, srcu_idx);
1202 	if (!map)
1203 		return NULL;
1204 
1205 	ti = dm_table_find_target(map, sector);
1206 	if (!ti)
1207 		return NULL;
1208 
1209 	return ti;
1210 }
1211 
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,unsigned long * pfn)1212 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1213 		long nr_pages, enum dax_access_mode mode, void **kaddr,
1214 		unsigned long *pfn)
1215 {
1216 	struct mapped_device *md = dax_get_private(dax_dev);
1217 	sector_t sector = pgoff * PAGE_SECTORS;
1218 	struct dm_target *ti;
1219 	long len, ret = -EIO;
1220 	int srcu_idx;
1221 
1222 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1223 
1224 	if (!ti)
1225 		goto out;
1226 	if (!ti->type->direct_access)
1227 		goto out;
1228 	len = max_io_len(ti, sector) / PAGE_SECTORS;
1229 	if (len < 1)
1230 		goto out;
1231 	nr_pages = min(len, nr_pages);
1232 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1233 
1234  out:
1235 	dm_put_live_table(md, srcu_idx);
1236 
1237 	return ret;
1238 }
1239 
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1240 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1241 				  size_t nr_pages)
1242 {
1243 	struct mapped_device *md = dax_get_private(dax_dev);
1244 	sector_t sector = pgoff * PAGE_SECTORS;
1245 	struct dm_target *ti;
1246 	int ret = -EIO;
1247 	int srcu_idx;
1248 
1249 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1250 
1251 	if (!ti)
1252 		goto out;
1253 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1254 		/*
1255 		 * ->zero_page_range() is mandatory dax operation. If we are
1256 		 *  here, something is wrong.
1257 		 */
1258 		goto out;
1259 	}
1260 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1261  out:
1262 	dm_put_live_table(md, srcu_idx);
1263 
1264 	return ret;
1265 }
1266 
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1267 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1268 		void *addr, size_t bytes, struct iov_iter *i)
1269 {
1270 	struct mapped_device *md = dax_get_private(dax_dev);
1271 	sector_t sector = pgoff * PAGE_SECTORS;
1272 	struct dm_target *ti;
1273 	int srcu_idx;
1274 	long ret = 0;
1275 
1276 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1277 	if (!ti || !ti->type->dax_recovery_write)
1278 		goto out;
1279 
1280 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1281 out:
1282 	dm_put_live_table(md, srcu_idx);
1283 	return ret;
1284 }
1285 
1286 /*
1287  * A target may call dm_accept_partial_bio only from the map routine.  It is
1288  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1289  * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1290  * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1291  * by __send_duplicate_bios().
1292  *
1293  * dm_accept_partial_bio informs the dm that the target only wants to process
1294  * additional n_sectors sectors of the bio and the rest of the data should be
1295  * sent in a next bio.
1296  *
1297  * A diagram that explains the arithmetics:
1298  * +--------------------+---------------+-------+
1299  * |         1          |       2       |   3   |
1300  * +--------------------+---------------+-------+
1301  *
1302  * <-------------- *tio->len_ptr --------------->
1303  *                      <----- bio_sectors ----->
1304  *                      <-- n_sectors -->
1305  *
1306  * Region 1 was already iterated over with bio_advance or similar function.
1307  *	(it may be empty if the target doesn't use bio_advance)
1308  * Region 2 is the remaining bio size that the target wants to process.
1309  *	(it may be empty if region 1 is non-empty, although there is no reason
1310  *	 to make it empty)
1311  * The target requires that region 3 is to be sent in the next bio.
1312  *
1313  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314  * the partially processed part (the sum of regions 1+2) must be the same for all
1315  * copies of the bio.
1316  */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1317 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1318 {
1319 	struct dm_target_io *tio = clone_to_tio(bio);
1320 	struct dm_io *io = tio->io;
1321 	unsigned int bio_sectors = bio_sectors(bio);
1322 
1323 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324 	BUG_ON(bio_sectors > *tio->len_ptr);
1325 	BUG_ON(n_sectors > bio_sectors);
1326 
1327 	if (static_branch_unlikely(&zoned_enabled) &&
1328 	    unlikely(bdev_is_zoned(bio->bi_bdev))) {
1329 		enum req_op op = bio_op(bio);
1330 
1331 		BUG_ON(op_is_zone_mgmt(op));
1332 		BUG_ON(op == REQ_OP_WRITE);
1333 		BUG_ON(op == REQ_OP_WRITE_ZEROES);
1334 		BUG_ON(op == REQ_OP_ZONE_APPEND);
1335 	}
1336 
1337 	*tio->len_ptr -= bio_sectors - n_sectors;
1338 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1339 
1340 	/*
1341 	 * __split_and_process_bio() may have already saved mapped part
1342 	 * for accounting but it is being reduced so update accordingly.
1343 	 */
1344 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1345 	io->sectors = n_sectors;
1346 	io->sector_offset = bio_sectors(io->orig_bio);
1347 }
1348 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1349 
1350 /*
1351  * @clone: clone bio that DM core passed to target's .map function
1352  * @tgt_clone: clone of @clone bio that target needs submitted
1353  *
1354  * Targets should use this interface to submit bios they take
1355  * ownership of when returning DM_MAPIO_SUBMITTED.
1356  *
1357  * Target should also enable ti->accounts_remapped_io
1358  */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1359 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1360 {
1361 	struct dm_target_io *tio = clone_to_tio(clone);
1362 	struct dm_io *io = tio->io;
1363 
1364 	/* establish bio that will get submitted */
1365 	if (!tgt_clone)
1366 		tgt_clone = clone;
1367 
1368 	/*
1369 	 * Account io->origin_bio to DM dev on behalf of target
1370 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1371 	 */
1372 	dm_start_io_acct(io, clone);
1373 
1374 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1375 			      tio->old_sector);
1376 	submit_bio_noacct(tgt_clone);
1377 }
1378 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1379 
__set_swap_bios_limit(struct mapped_device * md,int latch)1380 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1381 {
1382 	mutex_lock(&md->swap_bios_lock);
1383 	while (latch < md->swap_bios) {
1384 		cond_resched();
1385 		down(&md->swap_bios_semaphore);
1386 		md->swap_bios--;
1387 	}
1388 	while (latch > md->swap_bios) {
1389 		cond_resched();
1390 		up(&md->swap_bios_semaphore);
1391 		md->swap_bios++;
1392 	}
1393 	mutex_unlock(&md->swap_bios_lock);
1394 }
1395 
__map_bio(struct bio * clone)1396 static void __map_bio(struct bio *clone)
1397 {
1398 	struct dm_target_io *tio = clone_to_tio(clone);
1399 	struct dm_target *ti = tio->ti;
1400 	struct dm_io *io = tio->io;
1401 	struct mapped_device *md = io->md;
1402 	int r;
1403 
1404 	clone->bi_end_io = clone_endio;
1405 
1406 	/*
1407 	 * Map the clone.
1408 	 */
1409 	tio->old_sector = clone->bi_iter.bi_sector;
1410 
1411 	if (static_branch_unlikely(&swap_bios_enabled) &&
1412 	    unlikely(swap_bios_limit(ti, clone))) {
1413 		int latch = get_swap_bios();
1414 
1415 		if (unlikely(latch != md->swap_bios))
1416 			__set_swap_bios_limit(md, latch);
1417 		down(&md->swap_bios_semaphore);
1418 	}
1419 
1420 	if (likely(ti->type->map == linear_map))
1421 		r = linear_map(ti, clone);
1422 	else if (ti->type->map == stripe_map)
1423 		r = stripe_map(ti, clone);
1424 	else
1425 		r = ti->type->map(ti, clone);
1426 
1427 	switch (r) {
1428 	case DM_MAPIO_SUBMITTED:
1429 		/* target has assumed ownership of this io */
1430 		if (!ti->accounts_remapped_io)
1431 			dm_start_io_acct(io, clone);
1432 		break;
1433 	case DM_MAPIO_REMAPPED:
1434 		dm_submit_bio_remap(clone, NULL);
1435 		break;
1436 	case DM_MAPIO_KILL:
1437 	case DM_MAPIO_REQUEUE:
1438 		if (static_branch_unlikely(&swap_bios_enabled) &&
1439 		    unlikely(swap_bios_limit(ti, clone)))
1440 			up(&md->swap_bios_semaphore);
1441 		free_tio(clone);
1442 		if (r == DM_MAPIO_KILL)
1443 			dm_io_dec_pending(io, BLK_STS_IOERR);
1444 		else
1445 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1446 		break;
1447 	default:
1448 		DMCRIT("unimplemented target map return value: %d", r);
1449 		BUG();
1450 	}
1451 }
1452 
setup_split_accounting(struct clone_info * ci,unsigned int len)1453 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1454 {
1455 	struct dm_io *io = ci->io;
1456 
1457 	if (ci->sector_count > len) {
1458 		/*
1459 		 * Split needed, save the mapped part for accounting.
1460 		 * NOTE: dm_accept_partial_bio() will update accordingly.
1461 		 */
1462 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1463 		io->sectors = len;
1464 		io->sector_offset = bio_sectors(ci->bio);
1465 	}
1466 }
1467 
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1468 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1469 				struct dm_target *ti, unsigned int num_bios,
1470 				unsigned *len)
1471 {
1472 	struct bio *bio;
1473 	int try;
1474 
1475 	for (try = 0; try < 2; try++) {
1476 		int bio_nr;
1477 
1478 		if (try && num_bios > 1)
1479 			mutex_lock(&ci->io->md->table_devices_lock);
1480 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1481 			bio = alloc_tio(ci, ti, bio_nr, len,
1482 					try ? GFP_NOIO : GFP_NOWAIT);
1483 			if (!bio)
1484 				break;
1485 
1486 			bio_list_add(blist, bio);
1487 		}
1488 		if (try && num_bios > 1)
1489 			mutex_unlock(&ci->io->md->table_devices_lock);
1490 		if (bio_nr == num_bios)
1491 			return;
1492 
1493 		while ((bio = bio_list_pop(blist)))
1494 			free_tio(bio);
1495 	}
1496 }
1497 
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1498 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1499 					  unsigned int num_bios, unsigned int *len)
1500 {
1501 	struct bio_list blist = BIO_EMPTY_LIST;
1502 	struct bio *clone;
1503 	unsigned int ret = 0;
1504 
1505 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1506 		return 0;
1507 
1508 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1509 	if (len)
1510 		setup_split_accounting(ci, *len);
1511 
1512 	/*
1513 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1514 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1515 	 */
1516 	alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1517 	while ((clone = bio_list_pop(&blist))) {
1518 		if (num_bios > 1)
1519 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1520 		__map_bio(clone);
1521 		ret += 1;
1522 	}
1523 
1524 	return ret;
1525 }
1526 
__send_empty_flush(struct clone_info * ci)1527 static void __send_empty_flush(struct clone_info *ci)
1528 {
1529 	struct dm_table *t = ci->map;
1530 	struct bio flush_bio;
1531 	blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1532 
1533 	if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1534 	    (REQ_IDLE | REQ_SYNC))
1535 		opf |= REQ_IDLE;
1536 
1537 	/*
1538 	 * Use an on-stack bio for this, it's safe since we don't
1539 	 * need to reference it after submit. It's just used as
1540 	 * the basis for the clone(s).
1541 	 */
1542 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1543 
1544 	ci->bio = &flush_bio;
1545 	ci->sector_count = 0;
1546 	ci->io->tio.clone.bi_iter.bi_size = 0;
1547 
1548 	if (!t->flush_bypasses_map) {
1549 		for (unsigned int i = 0; i < t->num_targets; i++) {
1550 			unsigned int bios;
1551 			struct dm_target *ti = dm_table_get_target(t, i);
1552 
1553 			if (unlikely(ti->num_flush_bios == 0))
1554 				continue;
1555 
1556 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1557 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1558 						     NULL);
1559 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1560 		}
1561 	} else {
1562 		/*
1563 		 * Note that there's no need to grab t->devices_lock here
1564 		 * because the targets that support flush optimization don't
1565 		 * modify the list of devices.
1566 		 */
1567 		struct list_head *devices = dm_table_get_devices(t);
1568 		unsigned int len = 0;
1569 		struct dm_dev_internal *dd;
1570 		list_for_each_entry(dd, devices, list) {
1571 			struct bio *clone;
1572 			/*
1573 			 * Note that the structure dm_target_io is not
1574 			 * associated with any target (because the device may be
1575 			 * used by multiple targets), so we set tio->ti = NULL.
1576 			 * We must check for NULL in the I/O processing path, to
1577 			 * avoid NULL pointer dereference.
1578 			 */
1579 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1580 			atomic_add(1, &ci->io->io_count);
1581 			bio_set_dev(clone, dd->dm_dev->bdev);
1582 			clone->bi_end_io = clone_endio;
1583 			dm_submit_bio_remap(clone, NULL);
1584 		}
1585 	}
1586 
1587 	/*
1588 	 * alloc_io() takes one extra reference for submission, so the
1589 	 * reference won't reach 0 without the following subtraction
1590 	 */
1591 	atomic_sub(1, &ci->io->io_count);
1592 
1593 	bio_uninit(ci->bio);
1594 }
1595 
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1596 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1597 			       unsigned int num_bios, unsigned int max_granularity,
1598 			       unsigned int max_sectors)
1599 {
1600 	unsigned int len, bios;
1601 
1602 	len = min_t(sector_t, ci->sector_count,
1603 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1604 
1605 	atomic_add(num_bios, &ci->io->io_count);
1606 	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1607 	/*
1608 	 * alloc_io() takes one extra reference for submission, so the
1609 	 * reference won't reach 0 without the following (+1) subtraction
1610 	 */
1611 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1612 
1613 	ci->sector += len;
1614 	ci->sector_count -= len;
1615 }
1616 
is_abnormal_io(struct bio * bio)1617 static bool is_abnormal_io(struct bio *bio)
1618 {
1619 	switch (bio_op(bio)) {
1620 	case REQ_OP_READ:
1621 	case REQ_OP_WRITE:
1622 	case REQ_OP_FLUSH:
1623 		return false;
1624 	case REQ_OP_DISCARD:
1625 	case REQ_OP_SECURE_ERASE:
1626 	case REQ_OP_WRITE_ZEROES:
1627 	case REQ_OP_ZONE_RESET_ALL:
1628 		return true;
1629 	default:
1630 		return false;
1631 	}
1632 }
1633 
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1634 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1635 					  struct dm_target *ti)
1636 {
1637 	unsigned int num_bios = 0;
1638 	unsigned int max_granularity = 0;
1639 	unsigned int max_sectors = 0;
1640 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1641 
1642 	switch (bio_op(ci->bio)) {
1643 	case REQ_OP_DISCARD:
1644 		num_bios = ti->num_discard_bios;
1645 		max_sectors = limits->max_discard_sectors;
1646 		if (ti->max_discard_granularity)
1647 			max_granularity = max_sectors;
1648 		break;
1649 	case REQ_OP_SECURE_ERASE:
1650 		num_bios = ti->num_secure_erase_bios;
1651 		max_sectors = limits->max_secure_erase_sectors;
1652 		break;
1653 	case REQ_OP_WRITE_ZEROES:
1654 		num_bios = ti->num_write_zeroes_bios;
1655 		max_sectors = limits->max_write_zeroes_sectors;
1656 		break;
1657 	default:
1658 		break;
1659 	}
1660 
1661 	/*
1662 	 * Even though the device advertised support for this type of
1663 	 * request, that does not mean every target supports it, and
1664 	 * reconfiguration might also have changed that since the
1665 	 * check was performed.
1666 	 */
1667 	if (unlikely(!num_bios))
1668 		return BLK_STS_NOTSUPP;
1669 
1670 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1671 
1672 	return BLK_STS_OK;
1673 }
1674 
1675 /*
1676  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1677  * associated with this bio, and this bio's bi_private needs to be
1678  * stored in dm_io->data before the reuse.
1679  *
1680  * bio->bi_private is owned by fs or upper layer, so block layer won't
1681  * touch it after splitting. Meantime it won't be changed by anyone after
1682  * bio is submitted. So this reuse is safe.
1683  */
dm_poll_list_head(struct bio * bio)1684 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1685 {
1686 	return (struct dm_io **)&bio->bi_private;
1687 }
1688 
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1689 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1690 {
1691 	struct dm_io **head = dm_poll_list_head(bio);
1692 
1693 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1694 		bio->bi_opf |= REQ_DM_POLL_LIST;
1695 		/*
1696 		 * Save .bi_private into dm_io, so that we can reuse
1697 		 * .bi_private as dm_io list head for storing dm_io list
1698 		 */
1699 		io->data = bio->bi_private;
1700 
1701 		/* tell block layer to poll for completion */
1702 		bio->bi_cookie = ~BLK_QC_T_NONE;
1703 
1704 		io->next = NULL;
1705 	} else {
1706 		/*
1707 		 * bio recursed due to split, reuse original poll list,
1708 		 * and save bio->bi_private too.
1709 		 */
1710 		io->data = (*head)->data;
1711 		io->next = *head;
1712 	}
1713 
1714 	*head = io;
1715 }
1716 
1717 /*
1718  * Select the correct strategy for processing a non-flush bio.
1719  */
__split_and_process_bio(struct clone_info * ci)1720 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721 {
1722 	struct bio *clone;
1723 	struct dm_target *ti;
1724 	unsigned int len;
1725 
1726 	ti = dm_table_find_target(ci->map, ci->sector);
1727 	if (unlikely(!ti))
1728 		return BLK_STS_IOERR;
1729 
1730 	if (unlikely(ci->is_abnormal_io))
1731 		return __process_abnormal_io(ci, ti);
1732 
1733 	/*
1734 	 * Only support bio polling for normal IO, and the target io is
1735 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1736 	 */
1737 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1738 
1739 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1740 	if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1741 		return BLK_STS_IOERR;
1742 
1743 	setup_split_accounting(ci, len);
1744 
1745 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1746 		if (unlikely(!dm_target_supports_nowait(ti->type)))
1747 			return BLK_STS_NOTSUPP;
1748 
1749 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1750 		if (unlikely(!clone))
1751 			return BLK_STS_AGAIN;
1752 	} else {
1753 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1754 	}
1755 	__map_bio(clone);
1756 
1757 	ci->sector += len;
1758 	ci->sector_count -= len;
1759 
1760 	return BLK_STS_OK;
1761 }
1762 
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1763 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1764 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1765 {
1766 	ci->map = map;
1767 	ci->io = io;
1768 	ci->bio = bio;
1769 	ci->is_abnormal_io = is_abnormal;
1770 	ci->submit_as_polled = false;
1771 	ci->sector = bio->bi_iter.bi_sector;
1772 	ci->sector_count = bio_sectors(bio);
1773 
1774 	/* Shouldn't happen but sector_count was being set to 0 so... */
1775 	if (static_branch_unlikely(&zoned_enabled) &&
1776 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1777 		ci->sector_count = 0;
1778 }
1779 
1780 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1781 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1782 {
1783 	/*
1784 	 * Special case the zone operations that cannot or should not be split.
1785 	 */
1786 	switch (bio_op(bio)) {
1787 	case REQ_OP_ZONE_APPEND:
1788 	case REQ_OP_ZONE_FINISH:
1789 	case REQ_OP_ZONE_RESET:
1790 	case REQ_OP_ZONE_RESET_ALL:
1791 		return false;
1792 	default:
1793 		break;
1794 	}
1795 
1796 	/*
1797 	 * When mapped devices use the block layer zone write plugging, we must
1798 	 * split any large BIO to the mapped device limits to not submit BIOs
1799 	 * that span zone boundaries and to avoid potential deadlocks with
1800 	 * queue freeze operations.
1801 	 */
1802 	return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1803 }
1804 
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1805 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1806 {
1807 	if (!bio_needs_zone_write_plugging(bio))
1808 		return false;
1809 	return blk_zone_plug_bio(bio, 0);
1810 }
1811 
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1812 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1813 						   struct dm_target *ti)
1814 {
1815 	struct bio_list blist = BIO_EMPTY_LIST;
1816 	struct mapped_device *md = ci->io->md;
1817 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1818 	unsigned long *need_reset;
1819 	unsigned int i, nr_zones, nr_reset;
1820 	unsigned int num_bios = 0;
1821 	blk_status_t sts = BLK_STS_OK;
1822 	sector_t sector = ti->begin;
1823 	struct bio *clone;
1824 	int ret;
1825 
1826 	nr_zones = ti->len >> ilog2(zone_sectors);
1827 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1828 	if (!need_reset)
1829 		return BLK_STS_RESOURCE;
1830 
1831 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1832 				       nr_zones, need_reset);
1833 	if (ret) {
1834 		sts = BLK_STS_IOERR;
1835 		goto free_bitmap;
1836 	}
1837 
1838 	/* If we have no zone to reset, we are done. */
1839 	nr_reset = bitmap_weight(need_reset, nr_zones);
1840 	if (!nr_reset)
1841 		goto free_bitmap;
1842 
1843 	atomic_add(nr_zones, &ci->io->io_count);
1844 
1845 	for (i = 0; i < nr_zones; i++) {
1846 
1847 		if (!test_bit(i, need_reset)) {
1848 			sector += zone_sectors;
1849 			continue;
1850 		}
1851 
1852 		if (bio_list_empty(&blist)) {
1853 			/* This may take a while, so be nice to others */
1854 			if (num_bios)
1855 				cond_resched();
1856 
1857 			/*
1858 			 * We may need to reset thousands of zones, so let's
1859 			 * not go crazy with the clone allocation.
1860 			 */
1861 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1862 					    NULL);
1863 		}
1864 
1865 		/* Get a clone and change it to a regular reset operation. */
1866 		clone = bio_list_pop(&blist);
1867 		clone->bi_opf &= ~REQ_OP_MASK;
1868 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1869 		clone->bi_iter.bi_sector = sector;
1870 		clone->bi_iter.bi_size = 0;
1871 		__map_bio(clone);
1872 
1873 		sector += zone_sectors;
1874 		num_bios++;
1875 		nr_reset--;
1876 	}
1877 
1878 	WARN_ON_ONCE(!bio_list_empty(&blist));
1879 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1880 	ci->sector_count = 0;
1881 
1882 free_bitmap:
1883 	bitmap_free(need_reset);
1884 
1885 	return sts;
1886 }
1887 
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1888 static void __send_zone_reset_all_native(struct clone_info *ci,
1889 					 struct dm_target *ti)
1890 {
1891 	unsigned int bios;
1892 
1893 	atomic_add(1, &ci->io->io_count);
1894 	bios = __send_duplicate_bios(ci, ti, 1, NULL);
1895 	atomic_sub(1 - bios, &ci->io->io_count);
1896 
1897 	ci->sector_count = 0;
1898 }
1899 
__send_zone_reset_all(struct clone_info * ci)1900 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1901 {
1902 	struct dm_table *t = ci->map;
1903 	blk_status_t sts = BLK_STS_OK;
1904 
1905 	for (unsigned int i = 0; i < t->num_targets; i++) {
1906 		struct dm_target *ti = dm_table_get_target(t, i);
1907 
1908 		if (ti->zone_reset_all_supported) {
1909 			__send_zone_reset_all_native(ci, ti);
1910 			continue;
1911 		}
1912 
1913 		sts = __send_zone_reset_all_emulated(ci, ti);
1914 		if (sts != BLK_STS_OK)
1915 			break;
1916 	}
1917 
1918 	/* Release the reference that alloc_io() took for submission. */
1919 	atomic_sub(1, &ci->io->io_count);
1920 
1921 	return sts;
1922 }
1923 
1924 #else
dm_zone_bio_needs_split(struct bio * bio)1925 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1926 {
1927 	return false;
1928 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1929 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1930 {
1931 	return false;
1932 }
__send_zone_reset_all(struct clone_info * ci)1933 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1934 {
1935 	return BLK_STS_NOTSUPP;
1936 }
1937 #endif
1938 
1939 /*
1940  * Entry point to split a bio into clones and submit them to the targets.
1941  */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1942 static void dm_split_and_process_bio(struct mapped_device *md,
1943 				     struct dm_table *map, struct bio *bio)
1944 {
1945 	struct clone_info ci;
1946 	struct dm_io *io;
1947 	blk_status_t error = BLK_STS_OK;
1948 	bool is_abnormal, need_split;
1949 
1950 	is_abnormal = is_abnormal_io(bio);
1951 	if (static_branch_unlikely(&zoned_enabled)) {
1952 		need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1953 	} else {
1954 		need_split = is_abnormal;
1955 	}
1956 
1957 	if (unlikely(need_split)) {
1958 		/*
1959 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1960 		 * otherwise associated queue_limits won't be imposed.
1961 		 * Also split the BIO for mapped devices needing zone append
1962 		 * emulation to ensure that the BIO does not cross zone
1963 		 * boundaries.
1964 		 */
1965 		bio = bio_split_to_limits(bio);
1966 		if (!bio)
1967 			return;
1968 	}
1969 
1970 	/*
1971 	 * Use the block layer zone write plugging for mapped devices that
1972 	 * need zone append emulation (e.g. dm-crypt).
1973 	 */
1974 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1975 		return;
1976 
1977 	/* Only support nowait for normal IO */
1978 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1979 		/*
1980 		 * Don't support NOWAIT for FLUSH because it may allocate
1981 		 * multiple bios and there's no easy way how to undo the
1982 		 * allocations.
1983 		 */
1984 		if (bio->bi_opf & REQ_PREFLUSH) {
1985 			bio_wouldblock_error(bio);
1986 			return;
1987 		}
1988 		io = alloc_io(md, bio, GFP_NOWAIT);
1989 		if (unlikely(!io)) {
1990 			/* Unable to do anything without dm_io. */
1991 			bio_wouldblock_error(bio);
1992 			return;
1993 		}
1994 	} else {
1995 		io = alloc_io(md, bio, GFP_NOIO);
1996 	}
1997 	init_clone_info(&ci, io, map, bio, is_abnormal);
1998 
1999 	if (bio->bi_opf & REQ_PREFLUSH) {
2000 		__send_empty_flush(&ci);
2001 		/* dm_io_complete submits any data associated with flush */
2002 		goto out;
2003 	}
2004 
2005 	if (static_branch_unlikely(&zoned_enabled) &&
2006 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2007 		error = __send_zone_reset_all(&ci);
2008 		goto out;
2009 	}
2010 
2011 	error = __split_and_process_bio(&ci);
2012 	if (error || !ci.sector_count)
2013 		goto out;
2014 	/*
2015 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2016 	 * *after* bios already submitted have been completely processed.
2017 	 */
2018 	bio_trim(bio, io->sectors, ci.sector_count);
2019 	trace_block_split(bio, bio->bi_iter.bi_sector);
2020 	bio_inc_remaining(bio);
2021 	submit_bio_noacct(bio);
2022 out:
2023 	/*
2024 	 * Drop the extra reference count for non-POLLED bio, and hold one
2025 	 * reference for POLLED bio, which will be released in dm_poll_bio
2026 	 *
2027 	 * Add every dm_io instance into the dm_io list head which is stored
2028 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2029 	 */
2030 	if (error || !ci.submit_as_polled) {
2031 		/*
2032 		 * In case of submission failure, the extra reference for
2033 		 * submitting io isn't consumed yet
2034 		 */
2035 		if (error)
2036 			atomic_dec(&io->io_count);
2037 		dm_io_dec_pending(io, error);
2038 	} else
2039 		dm_queue_poll_io(bio, io);
2040 }
2041 
dm_submit_bio(struct bio * bio)2042 static void dm_submit_bio(struct bio *bio)
2043 {
2044 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2045 	int srcu_idx;
2046 	struct dm_table *map;
2047 
2048 	map = dm_get_live_table(md, &srcu_idx);
2049 	if (unlikely(!map)) {
2050 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2051 			    dm_device_name(md));
2052 		bio_io_error(bio);
2053 		goto out;
2054 	}
2055 
2056 	/* If suspended, queue this IO for later */
2057 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2058 		if (bio->bi_opf & REQ_NOWAIT)
2059 			bio_wouldblock_error(bio);
2060 		else if (bio->bi_opf & REQ_RAHEAD)
2061 			bio_io_error(bio);
2062 		else
2063 			queue_io(md, bio);
2064 		goto out;
2065 	}
2066 
2067 	dm_split_and_process_bio(md, map, bio);
2068 out:
2069 	dm_put_live_table(md, srcu_idx);
2070 }
2071 
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2072 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2073 			  unsigned int flags)
2074 {
2075 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2076 
2077 	/* don't poll if the mapped io is done */
2078 	if (atomic_read(&io->io_count) > 1)
2079 		bio_poll(&io->tio.clone, iob, flags);
2080 
2081 	/* bio_poll holds the last reference */
2082 	return atomic_read(&io->io_count) == 1;
2083 }
2084 
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2085 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2086 		       unsigned int flags)
2087 {
2088 	struct dm_io **head = dm_poll_list_head(bio);
2089 	struct dm_io *list = *head;
2090 	struct dm_io *tmp = NULL;
2091 	struct dm_io *curr, *next;
2092 
2093 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2094 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2095 		return 0;
2096 
2097 	WARN_ON_ONCE(!list);
2098 
2099 	/*
2100 	 * Restore .bi_private before possibly completing dm_io.
2101 	 *
2102 	 * bio_poll() is only possible once @bio has been completely
2103 	 * submitted via submit_bio_noacct()'s depth-first submission.
2104 	 * So there is no dm_queue_poll_io() race associated with
2105 	 * clearing REQ_DM_POLL_LIST here.
2106 	 */
2107 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2108 	bio->bi_private = list->data;
2109 
2110 	for (curr = list, next = curr->next; curr; curr = next, next =
2111 			curr ? curr->next : NULL) {
2112 		if (dm_poll_dm_io(curr, iob, flags)) {
2113 			/*
2114 			 * clone_endio() has already occurred, so no
2115 			 * error handling is needed here.
2116 			 */
2117 			__dm_io_dec_pending(curr);
2118 		} else {
2119 			curr->next = tmp;
2120 			tmp = curr;
2121 		}
2122 	}
2123 
2124 	/* Not done? */
2125 	if (tmp) {
2126 		bio->bi_opf |= REQ_DM_POLL_LIST;
2127 		/* Reset bio->bi_private to dm_io list head */
2128 		*head = tmp;
2129 		return 0;
2130 	}
2131 	return 1;
2132 }
2133 
2134 /*
2135  *---------------------------------------------------------------
2136  * An IDR is used to keep track of allocated minor numbers.
2137  *---------------------------------------------------------------
2138  */
free_minor(int minor)2139 static void free_minor(int minor)
2140 {
2141 	spin_lock(&_minor_lock);
2142 	idr_remove(&_minor_idr, minor);
2143 	spin_unlock(&_minor_lock);
2144 }
2145 
2146 /*
2147  * See if the device with a specific minor # is free.
2148  */
specific_minor(int minor)2149 static int specific_minor(int minor)
2150 {
2151 	int r;
2152 
2153 	if (minor >= (1 << MINORBITS))
2154 		return -EINVAL;
2155 
2156 	idr_preload(GFP_KERNEL);
2157 	spin_lock(&_minor_lock);
2158 
2159 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2160 
2161 	spin_unlock(&_minor_lock);
2162 	idr_preload_end();
2163 	if (r < 0)
2164 		return r == -ENOSPC ? -EBUSY : r;
2165 	return 0;
2166 }
2167 
next_free_minor(int * minor)2168 static int next_free_minor(int *minor)
2169 {
2170 	int r;
2171 
2172 	idr_preload(GFP_KERNEL);
2173 	spin_lock(&_minor_lock);
2174 
2175 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2176 
2177 	spin_unlock(&_minor_lock);
2178 	idr_preload_end();
2179 	if (r < 0)
2180 		return r;
2181 	*minor = r;
2182 	return 0;
2183 }
2184 
2185 static const struct block_device_operations dm_blk_dops;
2186 static const struct block_device_operations dm_rq_blk_dops;
2187 static const struct dax_operations dm_dax_ops;
2188 
2189 static void dm_wq_work(struct work_struct *work);
2190 
2191 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2192 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2193 {
2194 	dm_destroy_crypto_profile(q->crypto_profile);
2195 }
2196 
2197 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2198 
dm_queue_destroy_crypto_profile(struct request_queue * q)2199 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2200 {
2201 }
2202 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2203 
cleanup_mapped_device(struct mapped_device * md)2204 static void cleanup_mapped_device(struct mapped_device *md)
2205 {
2206 	if (md->wq)
2207 		destroy_workqueue(md->wq);
2208 	dm_free_md_mempools(md->mempools);
2209 
2210 	if (md->dax_dev) {
2211 		dax_remove_host(md->disk);
2212 		kill_dax(md->dax_dev);
2213 		put_dax(md->dax_dev);
2214 		md->dax_dev = NULL;
2215 	}
2216 
2217 	if (md->disk) {
2218 		spin_lock(&_minor_lock);
2219 		md->disk->private_data = NULL;
2220 		spin_unlock(&_minor_lock);
2221 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2222 			struct table_device *td;
2223 
2224 			dm_sysfs_exit(md);
2225 			list_for_each_entry(td, &md->table_devices, list) {
2226 				bd_unlink_disk_holder(td->dm_dev.bdev,
2227 						      md->disk);
2228 			}
2229 
2230 			/*
2231 			 * Hold lock to make sure del_gendisk() won't concurrent
2232 			 * with open/close_table_device().
2233 			 */
2234 			mutex_lock(&md->table_devices_lock);
2235 			del_gendisk(md->disk);
2236 			mutex_unlock(&md->table_devices_lock);
2237 		}
2238 		dm_queue_destroy_crypto_profile(md->queue);
2239 		put_disk(md->disk);
2240 	}
2241 
2242 	if (md->pending_io) {
2243 		free_percpu(md->pending_io);
2244 		md->pending_io = NULL;
2245 	}
2246 
2247 	cleanup_srcu_struct(&md->io_barrier);
2248 
2249 	mutex_destroy(&md->suspend_lock);
2250 	mutex_destroy(&md->type_lock);
2251 	mutex_destroy(&md->table_devices_lock);
2252 	mutex_destroy(&md->swap_bios_lock);
2253 
2254 	dm_mq_cleanup_mapped_device(md);
2255 }
2256 
2257 /*
2258  * Allocate and initialise a blank device with a given minor.
2259  */
alloc_dev(int minor)2260 static struct mapped_device *alloc_dev(int minor)
2261 {
2262 	int r, numa_node_id = dm_get_numa_node();
2263 	struct dax_device *dax_dev;
2264 	struct mapped_device *md;
2265 	void *old_md;
2266 
2267 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2268 	if (!md) {
2269 		DMERR("unable to allocate device, out of memory.");
2270 		return NULL;
2271 	}
2272 
2273 	if (!try_module_get(THIS_MODULE))
2274 		goto bad_module_get;
2275 
2276 	/* get a minor number for the dev */
2277 	if (minor == DM_ANY_MINOR)
2278 		r = next_free_minor(&minor);
2279 	else
2280 		r = specific_minor(minor);
2281 	if (r < 0)
2282 		goto bad_minor;
2283 
2284 	r = init_srcu_struct(&md->io_barrier);
2285 	if (r < 0)
2286 		goto bad_io_barrier;
2287 
2288 	md->numa_node_id = numa_node_id;
2289 	md->init_tio_pdu = false;
2290 	md->type = DM_TYPE_NONE;
2291 	mutex_init(&md->suspend_lock);
2292 	mutex_init(&md->type_lock);
2293 	mutex_init(&md->table_devices_lock);
2294 	spin_lock_init(&md->deferred_lock);
2295 	atomic_set(&md->holders, 1);
2296 	atomic_set(&md->open_count, 0);
2297 	atomic_set(&md->event_nr, 0);
2298 	atomic_set(&md->uevent_seq, 0);
2299 	INIT_LIST_HEAD(&md->uevent_list);
2300 	INIT_LIST_HEAD(&md->table_devices);
2301 	spin_lock_init(&md->uevent_lock);
2302 
2303 	/*
2304 	 * default to bio-based until DM table is loaded and md->type
2305 	 * established. If request-based table is loaded: blk-mq will
2306 	 * override accordingly.
2307 	 */
2308 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2309 	if (IS_ERR(md->disk)) {
2310 		md->disk = NULL;
2311 		goto bad;
2312 	}
2313 	md->queue = md->disk->queue;
2314 
2315 	init_waitqueue_head(&md->wait);
2316 	INIT_WORK(&md->work, dm_wq_work);
2317 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2318 	init_waitqueue_head(&md->eventq);
2319 	init_completion(&md->kobj_holder.completion);
2320 
2321 	md->requeue_list = NULL;
2322 	md->swap_bios = get_swap_bios();
2323 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2324 	mutex_init(&md->swap_bios_lock);
2325 
2326 	md->disk->major = _major;
2327 	md->disk->first_minor = minor;
2328 	md->disk->minors = 1;
2329 	md->disk->flags |= GENHD_FL_NO_PART;
2330 	md->disk->fops = &dm_blk_dops;
2331 	md->disk->private_data = md;
2332 	sprintf(md->disk->disk_name, "dm-%d", minor);
2333 
2334 	dax_dev = alloc_dax(md, &dm_dax_ops);
2335 	if (IS_ERR(dax_dev)) {
2336 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2337 			goto bad;
2338 	} else {
2339 		set_dax_nocache(dax_dev);
2340 		set_dax_nomc(dax_dev);
2341 		md->dax_dev = dax_dev;
2342 		if (dax_add_host(dax_dev, md->disk))
2343 			goto bad;
2344 	}
2345 
2346 	format_dev_t(md->name, MKDEV(_major, minor));
2347 
2348 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2349 	if (!md->wq)
2350 		goto bad;
2351 
2352 	md->pending_io = alloc_percpu(unsigned long);
2353 	if (!md->pending_io)
2354 		goto bad;
2355 
2356 	r = dm_stats_init(&md->stats);
2357 	if (r < 0)
2358 		goto bad;
2359 
2360 	/* Populate the mapping, nobody knows we exist yet */
2361 	spin_lock(&_minor_lock);
2362 	old_md = idr_replace(&_minor_idr, md, minor);
2363 	spin_unlock(&_minor_lock);
2364 
2365 	BUG_ON(old_md != MINOR_ALLOCED);
2366 
2367 	return md;
2368 
2369 bad:
2370 	cleanup_mapped_device(md);
2371 bad_io_barrier:
2372 	free_minor(minor);
2373 bad_minor:
2374 	module_put(THIS_MODULE);
2375 bad_module_get:
2376 	kvfree(md);
2377 	return NULL;
2378 }
2379 
2380 static void unlock_fs(struct mapped_device *md);
2381 
free_dev(struct mapped_device * md)2382 static void free_dev(struct mapped_device *md)
2383 {
2384 	int minor = MINOR(disk_devt(md->disk));
2385 
2386 	unlock_fs(md);
2387 
2388 	cleanup_mapped_device(md);
2389 
2390 	WARN_ON_ONCE(!list_empty(&md->table_devices));
2391 	dm_stats_cleanup(&md->stats);
2392 	free_minor(minor);
2393 
2394 	module_put(THIS_MODULE);
2395 	kvfree(md);
2396 }
2397 
2398 /*
2399  * Bind a table to the device.
2400  */
event_callback(void * context)2401 static void event_callback(void *context)
2402 {
2403 	unsigned long flags;
2404 	LIST_HEAD(uevents);
2405 	struct mapped_device *md = context;
2406 
2407 	spin_lock_irqsave(&md->uevent_lock, flags);
2408 	list_splice_init(&md->uevent_list, &uevents);
2409 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2410 
2411 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2412 
2413 	atomic_inc(&md->event_nr);
2414 	wake_up(&md->eventq);
2415 	dm_issue_global_event();
2416 }
2417 
2418 /*
2419  * Returns old map, which caller must destroy.
2420  */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2421 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2422 			       struct queue_limits *limits)
2423 {
2424 	struct dm_table *old_map;
2425 	sector_t size, old_size;
2426 	int ret;
2427 
2428 	lockdep_assert_held(&md->suspend_lock);
2429 
2430 	size = dm_table_get_size(t);
2431 
2432 	old_size = dm_get_size(md);
2433 
2434 	if (!dm_table_supports_size_change(t, old_size, size)) {
2435 		old_map = ERR_PTR(-EINVAL);
2436 		goto out;
2437 	}
2438 
2439 	set_capacity(md->disk, size);
2440 
2441 	ret = dm_table_set_restrictions(t, md->queue, limits);
2442 	if (ret) {
2443 		set_capacity(md->disk, old_size);
2444 		old_map = ERR_PTR(ret);
2445 		goto out;
2446 	}
2447 
2448 	/*
2449 	 * Wipe any geometry if the size of the table changed.
2450 	 */
2451 	if (size != old_size)
2452 		memset(&md->geometry, 0, sizeof(md->geometry));
2453 
2454 	dm_table_event_callback(t, event_callback, md);
2455 
2456 	if (dm_table_request_based(t)) {
2457 		/*
2458 		 * Leverage the fact that request-based DM targets are
2459 		 * immutable singletons - used to optimize dm_mq_queue_rq.
2460 		 */
2461 		md->immutable_target = dm_table_get_immutable_target(t);
2462 
2463 		/*
2464 		 * There is no need to reload with request-based dm because the
2465 		 * size of front_pad doesn't change.
2466 		 *
2467 		 * Note for future: If you are to reload bioset, prep-ed
2468 		 * requests in the queue may refer to bio from the old bioset,
2469 		 * so you must walk through the queue to unprep.
2470 		 */
2471 		if (!md->mempools)
2472 			md->mempools = t->mempools;
2473 		else
2474 			dm_free_md_mempools(t->mempools);
2475 	} else {
2476 		/*
2477 		 * The md may already have mempools that need changing.
2478 		 * If so, reload bioset because front_pad may have changed
2479 		 * because a different table was loaded.
2480 		 */
2481 		dm_free_md_mempools(md->mempools);
2482 		md->mempools = t->mempools;
2483 	}
2484 	t->mempools = NULL;
2485 
2486 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2487 	rcu_assign_pointer(md->map, (void *)t);
2488 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2489 
2490 	if (old_map)
2491 		dm_sync_table(md);
2492 out:
2493 	return old_map;
2494 }
2495 
2496 /*
2497  * Returns unbound table for the caller to free.
2498  */
__unbind(struct mapped_device * md)2499 static struct dm_table *__unbind(struct mapped_device *md)
2500 {
2501 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2502 
2503 	if (!map)
2504 		return NULL;
2505 
2506 	dm_table_event_callback(map, NULL, NULL);
2507 	RCU_INIT_POINTER(md->map, NULL);
2508 	dm_sync_table(md);
2509 
2510 	return map;
2511 }
2512 
2513 /*
2514  * Constructor for a new device.
2515  */
dm_create(int minor,struct mapped_device ** result)2516 int dm_create(int minor, struct mapped_device **result)
2517 {
2518 	struct mapped_device *md;
2519 
2520 	md = alloc_dev(minor);
2521 	if (!md)
2522 		return -ENXIO;
2523 
2524 	dm_ima_reset_data(md);
2525 
2526 	*result = md;
2527 	return 0;
2528 }
2529 
2530 /*
2531  * Functions to manage md->type.
2532  * All are required to hold md->type_lock.
2533  */
dm_lock_md_type(struct mapped_device * md)2534 void dm_lock_md_type(struct mapped_device *md)
2535 {
2536 	mutex_lock(&md->type_lock);
2537 }
2538 
dm_unlock_md_type(struct mapped_device * md)2539 void dm_unlock_md_type(struct mapped_device *md)
2540 {
2541 	mutex_unlock(&md->type_lock);
2542 }
2543 
dm_get_md_type(struct mapped_device * md)2544 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2545 {
2546 	return md->type;
2547 }
2548 
dm_get_immutable_target_type(struct mapped_device * md)2549 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2550 {
2551 	return md->immutable_target_type;
2552 }
2553 
2554 /*
2555  * Setup the DM device's queue based on md's type
2556  */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2557 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2558 {
2559 	enum dm_queue_mode type = dm_table_get_type(t);
2560 	struct queue_limits limits;
2561 	struct table_device *td;
2562 	int r;
2563 
2564 	WARN_ON_ONCE(type == DM_TYPE_NONE);
2565 
2566 	if (type == DM_TYPE_REQUEST_BASED) {
2567 		md->disk->fops = &dm_rq_blk_dops;
2568 		r = dm_mq_init_request_queue(md, t);
2569 		if (r) {
2570 			DMERR("Cannot initialize queue for request-based dm mapped device");
2571 			return r;
2572 		}
2573 	}
2574 
2575 	r = dm_calculate_queue_limits(t, &limits);
2576 	if (r) {
2577 		DMERR("Cannot calculate initial queue limits");
2578 		return r;
2579 	}
2580 	r = dm_table_set_restrictions(t, md->queue, &limits);
2581 	if (r)
2582 		return r;
2583 
2584 	/*
2585 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2586 	 * with open_table_device() and close_table_device().
2587 	 */
2588 	mutex_lock(&md->table_devices_lock);
2589 	r = add_disk(md->disk);
2590 	mutex_unlock(&md->table_devices_lock);
2591 	if (r)
2592 		return r;
2593 
2594 	/*
2595 	 * Register the holder relationship for devices added before the disk
2596 	 * was live.
2597 	 */
2598 	list_for_each_entry(td, &md->table_devices, list) {
2599 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2600 		if (r)
2601 			goto out_undo_holders;
2602 	}
2603 
2604 	r = dm_sysfs_init(md);
2605 	if (r)
2606 		goto out_undo_holders;
2607 
2608 	md->type = type;
2609 	return 0;
2610 
2611 out_undo_holders:
2612 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2613 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2614 	mutex_lock(&md->table_devices_lock);
2615 	del_gendisk(md->disk);
2616 	mutex_unlock(&md->table_devices_lock);
2617 	return r;
2618 }
2619 
dm_get_md(dev_t dev)2620 struct mapped_device *dm_get_md(dev_t dev)
2621 {
2622 	struct mapped_device *md;
2623 	unsigned int minor = MINOR(dev);
2624 
2625 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2626 		return NULL;
2627 
2628 	spin_lock(&_minor_lock);
2629 
2630 	md = idr_find(&_minor_idr, minor);
2631 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2632 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2633 		md = NULL;
2634 		goto out;
2635 	}
2636 	dm_get(md);
2637 out:
2638 	spin_unlock(&_minor_lock);
2639 
2640 	return md;
2641 }
2642 EXPORT_SYMBOL_GPL(dm_get_md);
2643 
dm_get_mdptr(struct mapped_device * md)2644 void *dm_get_mdptr(struct mapped_device *md)
2645 {
2646 	return md->interface_ptr;
2647 }
2648 
dm_set_mdptr(struct mapped_device * md,void * ptr)2649 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2650 {
2651 	md->interface_ptr = ptr;
2652 }
2653 
dm_get(struct mapped_device * md)2654 void dm_get(struct mapped_device *md)
2655 {
2656 	atomic_inc(&md->holders);
2657 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2658 }
2659 
dm_hold(struct mapped_device * md)2660 int dm_hold(struct mapped_device *md)
2661 {
2662 	spin_lock(&_minor_lock);
2663 	if (test_bit(DMF_FREEING, &md->flags)) {
2664 		spin_unlock(&_minor_lock);
2665 		return -EBUSY;
2666 	}
2667 	dm_get(md);
2668 	spin_unlock(&_minor_lock);
2669 	return 0;
2670 }
2671 EXPORT_SYMBOL_GPL(dm_hold);
2672 
dm_device_name(struct mapped_device * md)2673 const char *dm_device_name(struct mapped_device *md)
2674 {
2675 	return md->name;
2676 }
2677 EXPORT_SYMBOL_GPL(dm_device_name);
2678 
__dm_destroy(struct mapped_device * md,bool wait)2679 static void __dm_destroy(struct mapped_device *md, bool wait)
2680 {
2681 	struct dm_table *map;
2682 	int srcu_idx;
2683 
2684 	might_sleep();
2685 
2686 	spin_lock(&_minor_lock);
2687 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2688 	set_bit(DMF_FREEING, &md->flags);
2689 	spin_unlock(&_minor_lock);
2690 
2691 	blk_mark_disk_dead(md->disk);
2692 
2693 	/*
2694 	 * Take suspend_lock so that presuspend and postsuspend methods
2695 	 * do not race with internal suspend.
2696 	 */
2697 	mutex_lock(&md->suspend_lock);
2698 	map = dm_get_live_table(md, &srcu_idx);
2699 	if (!dm_suspended_md(md)) {
2700 		dm_table_presuspend_targets(map);
2701 		set_bit(DMF_SUSPENDED, &md->flags);
2702 		set_bit(DMF_POST_SUSPENDING, &md->flags);
2703 		dm_table_postsuspend_targets(map);
2704 	}
2705 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2706 	dm_put_live_table(md, srcu_idx);
2707 	mutex_unlock(&md->suspend_lock);
2708 
2709 	/*
2710 	 * Rare, but there may be I/O requests still going to complete,
2711 	 * for example.  Wait for all references to disappear.
2712 	 * No one should increment the reference count of the mapped_device,
2713 	 * after the mapped_device state becomes DMF_FREEING.
2714 	 */
2715 	if (wait)
2716 		while (atomic_read(&md->holders))
2717 			fsleep(1000);
2718 	else if (atomic_read(&md->holders))
2719 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2720 		       dm_device_name(md), atomic_read(&md->holders));
2721 
2722 	dm_table_destroy(__unbind(md));
2723 	free_dev(md);
2724 }
2725 
dm_destroy(struct mapped_device * md)2726 void dm_destroy(struct mapped_device *md)
2727 {
2728 	__dm_destroy(md, true);
2729 }
2730 
dm_destroy_immediate(struct mapped_device * md)2731 void dm_destroy_immediate(struct mapped_device *md)
2732 {
2733 	__dm_destroy(md, false);
2734 }
2735 
dm_put(struct mapped_device * md)2736 void dm_put(struct mapped_device *md)
2737 {
2738 	atomic_dec(&md->holders);
2739 }
2740 EXPORT_SYMBOL_GPL(dm_put);
2741 
dm_in_flight_bios(struct mapped_device * md)2742 static bool dm_in_flight_bios(struct mapped_device *md)
2743 {
2744 	int cpu;
2745 	unsigned long sum = 0;
2746 
2747 	for_each_possible_cpu(cpu)
2748 		sum += *per_cpu_ptr(md->pending_io, cpu);
2749 
2750 	return sum != 0;
2751 }
2752 
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2753 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2754 {
2755 	int r = 0;
2756 	DEFINE_WAIT(wait);
2757 
2758 	while (true) {
2759 		prepare_to_wait(&md->wait, &wait, task_state);
2760 
2761 		if (!dm_in_flight_bios(md))
2762 			break;
2763 
2764 		if (signal_pending_state(task_state, current)) {
2765 			r = -ERESTARTSYS;
2766 			break;
2767 		}
2768 
2769 		io_schedule();
2770 	}
2771 	finish_wait(&md->wait, &wait);
2772 
2773 	smp_rmb();
2774 
2775 	return r;
2776 }
2777 
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2778 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2779 {
2780 	int r = 0;
2781 
2782 	if (!queue_is_mq(md->queue))
2783 		return dm_wait_for_bios_completion(md, task_state);
2784 
2785 	while (true) {
2786 		if (!blk_mq_queue_inflight(md->queue))
2787 			break;
2788 
2789 		if (signal_pending_state(task_state, current)) {
2790 			r = -ERESTARTSYS;
2791 			break;
2792 		}
2793 
2794 		fsleep(5000);
2795 	}
2796 
2797 	return r;
2798 }
2799 
2800 /*
2801  * Process the deferred bios
2802  */
dm_wq_work(struct work_struct * work)2803 static void dm_wq_work(struct work_struct *work)
2804 {
2805 	struct mapped_device *md = container_of(work, struct mapped_device, work);
2806 	struct bio *bio;
2807 
2808 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2809 		spin_lock_irq(&md->deferred_lock);
2810 		bio = bio_list_pop(&md->deferred);
2811 		spin_unlock_irq(&md->deferred_lock);
2812 
2813 		if (!bio)
2814 			break;
2815 
2816 		submit_bio_noacct(bio);
2817 		cond_resched();
2818 	}
2819 }
2820 
dm_queue_flush(struct mapped_device * md)2821 static void dm_queue_flush(struct mapped_device *md)
2822 {
2823 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2824 	smp_mb__after_atomic();
2825 	queue_work(md->wq, &md->work);
2826 }
2827 
2828 /*
2829  * Swap in a new table, returning the old one for the caller to destroy.
2830  */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2831 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2832 {
2833 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2834 	struct queue_limits limits;
2835 	int r;
2836 
2837 	mutex_lock(&md->suspend_lock);
2838 
2839 	/* device must be suspended */
2840 	if (!dm_suspended_md(md))
2841 		goto out;
2842 
2843 	/*
2844 	 * If the new table has no data devices, retain the existing limits.
2845 	 * This helps multipath with queue_if_no_path if all paths disappear,
2846 	 * then new I/O is queued based on these limits, and then some paths
2847 	 * reappear.
2848 	 */
2849 	if (dm_table_has_no_data_devices(table)) {
2850 		live_map = dm_get_live_table_fast(md);
2851 		if (live_map)
2852 			limits = md->queue->limits;
2853 		dm_put_live_table_fast(md);
2854 	}
2855 
2856 	if (!live_map) {
2857 		r = dm_calculate_queue_limits(table, &limits);
2858 		if (r) {
2859 			map = ERR_PTR(r);
2860 			goto out;
2861 		}
2862 	}
2863 
2864 	map = __bind(md, table, &limits);
2865 	dm_issue_global_event();
2866 
2867 out:
2868 	mutex_unlock(&md->suspend_lock);
2869 	return map;
2870 }
2871 
2872 /*
2873  * Functions to lock and unlock any filesystem running on the
2874  * device.
2875  */
lock_fs(struct mapped_device * md)2876 static int lock_fs(struct mapped_device *md)
2877 {
2878 	int r;
2879 
2880 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2881 
2882 	r = bdev_freeze(md->disk->part0);
2883 	if (!r)
2884 		set_bit(DMF_FROZEN, &md->flags);
2885 	return r;
2886 }
2887 
unlock_fs(struct mapped_device * md)2888 static void unlock_fs(struct mapped_device *md)
2889 {
2890 	if (!test_bit(DMF_FROZEN, &md->flags))
2891 		return;
2892 	bdev_thaw(md->disk->part0);
2893 	clear_bit(DMF_FROZEN, &md->flags);
2894 }
2895 
2896 /*
2897  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2898  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2899  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2900  *
2901  * If __dm_suspend returns 0, the device is completely quiescent
2902  * now. There is no request-processing activity. All new requests
2903  * are being added to md->deferred list.
2904  */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2905 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2906 			unsigned int suspend_flags, unsigned int task_state,
2907 			int dmf_suspended_flag)
2908 {
2909 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2910 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2911 	int r;
2912 
2913 	lockdep_assert_held(&md->suspend_lock);
2914 
2915 	/*
2916 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2917 	 * This flag is cleared before dm_suspend returns.
2918 	 */
2919 	if (noflush)
2920 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2921 	else
2922 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2923 
2924 	/*
2925 	 * This gets reverted if there's an error later and the targets
2926 	 * provide the .presuspend_undo hook.
2927 	 */
2928 	dm_table_presuspend_targets(map);
2929 
2930 	/*
2931 	 * Flush I/O to the device.
2932 	 * Any I/O submitted after lock_fs() may not be flushed.
2933 	 * noflush takes precedence over do_lockfs.
2934 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2935 	 */
2936 	if (!noflush && do_lockfs) {
2937 		r = lock_fs(md);
2938 		if (r) {
2939 			dm_table_presuspend_undo_targets(map);
2940 			return r;
2941 		}
2942 	}
2943 
2944 	/*
2945 	 * Here we must make sure that no processes are submitting requests
2946 	 * to target drivers i.e. no one may be executing
2947 	 * dm_split_and_process_bio from dm_submit_bio.
2948 	 *
2949 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2950 	 * we take the write lock. To prevent any process from reentering
2951 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2952 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2953 	 * flush_workqueue(md->wq).
2954 	 */
2955 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2956 	if (map)
2957 		synchronize_srcu(&md->io_barrier);
2958 
2959 	/*
2960 	 * Stop md->queue before flushing md->wq in case request-based
2961 	 * dm defers requests to md->wq from md->queue.
2962 	 */
2963 	if (dm_request_based(md))
2964 		dm_stop_queue(md->queue);
2965 
2966 	flush_workqueue(md->wq);
2967 
2968 	/*
2969 	 * At this point no more requests are entering target request routines.
2970 	 * We call dm_wait_for_completion to wait for all existing requests
2971 	 * to finish.
2972 	 */
2973 	r = dm_wait_for_completion(md, task_state);
2974 	if (!r)
2975 		set_bit(dmf_suspended_flag, &md->flags);
2976 
2977 	if (noflush)
2978 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2979 	if (map)
2980 		synchronize_srcu(&md->io_barrier);
2981 
2982 	/* were we interrupted ? */
2983 	if (r < 0) {
2984 		dm_queue_flush(md);
2985 
2986 		if (dm_request_based(md))
2987 			dm_start_queue(md->queue);
2988 
2989 		unlock_fs(md);
2990 		dm_table_presuspend_undo_targets(map);
2991 		/* pushback list is already flushed, so skip flush */
2992 	}
2993 
2994 	return r;
2995 }
2996 
2997 /*
2998  * We need to be able to change a mapping table under a mounted
2999  * filesystem.  For example we might want to move some data in
3000  * the background.  Before the table can be swapped with
3001  * dm_bind_table, dm_suspend must be called to flush any in
3002  * flight bios and ensure that any further io gets deferred.
3003  */
3004 /*
3005  * Suspend mechanism in request-based dm.
3006  *
3007  * 1. Flush all I/Os by lock_fs() if needed.
3008  * 2. Stop dispatching any I/O by stopping the request_queue.
3009  * 3. Wait for all in-flight I/Os to be completed or requeued.
3010  *
3011  * To abort suspend, start the request_queue.
3012  */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3013 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3014 {
3015 	struct dm_table *map = NULL;
3016 	int r = 0;
3017 
3018 retry:
3019 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3020 
3021 	if (dm_suspended_md(md)) {
3022 		r = -EINVAL;
3023 		goto out_unlock;
3024 	}
3025 
3026 	if (dm_suspended_internally_md(md)) {
3027 		/* already internally suspended, wait for internal resume */
3028 		mutex_unlock(&md->suspend_lock);
3029 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3030 		if (r)
3031 			return r;
3032 		goto retry;
3033 	}
3034 
3035 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3036 	if (!map) {
3037 		/* avoid deadlock with fs/namespace.c:do_mount() */
3038 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3039 	}
3040 
3041 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3042 	if (r)
3043 		goto out_unlock;
3044 
3045 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3046 	dm_table_postsuspend_targets(map);
3047 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3048 
3049 out_unlock:
3050 	mutex_unlock(&md->suspend_lock);
3051 	return r;
3052 }
3053 
__dm_resume(struct mapped_device * md,struct dm_table * map)3054 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3055 {
3056 	if (map) {
3057 		int r = dm_table_resume_targets(map);
3058 
3059 		if (r)
3060 			return r;
3061 	}
3062 
3063 	dm_queue_flush(md);
3064 
3065 	/*
3066 	 * Flushing deferred I/Os must be done after targets are resumed
3067 	 * so that mapping of targets can work correctly.
3068 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3069 	 */
3070 	if (dm_request_based(md))
3071 		dm_start_queue(md->queue);
3072 
3073 	unlock_fs(md);
3074 
3075 	return 0;
3076 }
3077 
dm_resume(struct mapped_device * md)3078 int dm_resume(struct mapped_device *md)
3079 {
3080 	int r;
3081 	struct dm_table *map = NULL;
3082 
3083 retry:
3084 	r = -EINVAL;
3085 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3086 
3087 	if (!dm_suspended_md(md))
3088 		goto out;
3089 
3090 	if (dm_suspended_internally_md(md)) {
3091 		/* already internally suspended, wait for internal resume */
3092 		mutex_unlock(&md->suspend_lock);
3093 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3094 		if (r)
3095 			return r;
3096 		goto retry;
3097 	}
3098 
3099 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3100 	if (!map || !dm_table_get_size(map))
3101 		goto out;
3102 
3103 	r = __dm_resume(md, map);
3104 	if (r)
3105 		goto out;
3106 
3107 	clear_bit(DMF_SUSPENDED, &md->flags);
3108 out:
3109 	mutex_unlock(&md->suspend_lock);
3110 
3111 	return r;
3112 }
3113 
3114 /*
3115  * Internal suspend/resume works like userspace-driven suspend. It waits
3116  * until all bios finish and prevents issuing new bios to the target drivers.
3117  * It may be used only from the kernel.
3118  */
3119 
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3120 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3121 {
3122 	struct dm_table *map = NULL;
3123 
3124 	lockdep_assert_held(&md->suspend_lock);
3125 
3126 	if (md->internal_suspend_count++)
3127 		return; /* nested internal suspend */
3128 
3129 	if (dm_suspended_md(md)) {
3130 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3131 		return; /* nest suspend */
3132 	}
3133 
3134 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3135 
3136 	/*
3137 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3138 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3139 	 * would require changing .presuspend to return an error -- avoid this
3140 	 * until there is a need for more elaborate variants of internal suspend.
3141 	 */
3142 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3143 			    DMF_SUSPENDED_INTERNALLY);
3144 
3145 	set_bit(DMF_POST_SUSPENDING, &md->flags);
3146 	dm_table_postsuspend_targets(map);
3147 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3148 }
3149 
__dm_internal_resume(struct mapped_device * md)3150 static void __dm_internal_resume(struct mapped_device *md)
3151 {
3152 	int r;
3153 	struct dm_table *map;
3154 
3155 	BUG_ON(!md->internal_suspend_count);
3156 
3157 	if (--md->internal_suspend_count)
3158 		return; /* resume from nested internal suspend */
3159 
3160 	if (dm_suspended_md(md))
3161 		goto done; /* resume from nested suspend */
3162 
3163 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3164 	r = __dm_resume(md, map);
3165 	if (r) {
3166 		/*
3167 		 * If a preresume method of some target failed, we are in a
3168 		 * tricky situation. We can't return an error to the caller. We
3169 		 * can't fake success because then the "resume" and
3170 		 * "postsuspend" methods would not be paired correctly, and it
3171 		 * would break various targets, for example it would cause list
3172 		 * corruption in the "origin" target.
3173 		 *
3174 		 * So, we fake normal suspend here, to make sure that the
3175 		 * "resume" and "postsuspend" methods will be paired correctly.
3176 		 */
3177 		DMERR("Preresume method failed: %d", r);
3178 		set_bit(DMF_SUSPENDED, &md->flags);
3179 	}
3180 done:
3181 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3182 	smp_mb__after_atomic();
3183 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3184 }
3185 
dm_internal_suspend_noflush(struct mapped_device * md)3186 void dm_internal_suspend_noflush(struct mapped_device *md)
3187 {
3188 	mutex_lock(&md->suspend_lock);
3189 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3190 	mutex_unlock(&md->suspend_lock);
3191 }
3192 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3193 
dm_internal_resume(struct mapped_device * md)3194 void dm_internal_resume(struct mapped_device *md)
3195 {
3196 	mutex_lock(&md->suspend_lock);
3197 	__dm_internal_resume(md);
3198 	mutex_unlock(&md->suspend_lock);
3199 }
3200 EXPORT_SYMBOL_GPL(dm_internal_resume);
3201 
3202 /*
3203  * Fast variants of internal suspend/resume hold md->suspend_lock,
3204  * which prevents interaction with userspace-driven suspend.
3205  */
3206 
dm_internal_suspend_fast(struct mapped_device * md)3207 void dm_internal_suspend_fast(struct mapped_device *md)
3208 {
3209 	mutex_lock(&md->suspend_lock);
3210 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3211 		return;
3212 
3213 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3214 	synchronize_srcu(&md->io_barrier);
3215 	flush_workqueue(md->wq);
3216 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3217 }
3218 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3219 
dm_internal_resume_fast(struct mapped_device * md)3220 void dm_internal_resume_fast(struct mapped_device *md)
3221 {
3222 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3223 		goto done;
3224 
3225 	dm_queue_flush(md);
3226 
3227 done:
3228 	mutex_unlock(&md->suspend_lock);
3229 }
3230 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3231 
3232 /*
3233  *---------------------------------------------------------------
3234  * Event notification.
3235  *---------------------------------------------------------------
3236  */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3237 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3238 		      unsigned int cookie, bool need_resize_uevent)
3239 {
3240 	int r;
3241 	unsigned int noio_flag;
3242 	char udev_cookie[DM_COOKIE_LENGTH];
3243 	char *envp[3] = { NULL, NULL, NULL };
3244 	char **envpp = envp;
3245 	if (cookie) {
3246 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3247 			 DM_COOKIE_ENV_VAR_NAME, cookie);
3248 		*envpp++ = udev_cookie;
3249 	}
3250 	if (need_resize_uevent) {
3251 		*envpp++ = "RESIZE=1";
3252 	}
3253 
3254 	noio_flag = memalloc_noio_save();
3255 
3256 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3257 
3258 	memalloc_noio_restore(noio_flag);
3259 
3260 	return r;
3261 }
3262 
dm_next_uevent_seq(struct mapped_device * md)3263 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3264 {
3265 	return atomic_add_return(1, &md->uevent_seq);
3266 }
3267 
dm_get_event_nr(struct mapped_device * md)3268 uint32_t dm_get_event_nr(struct mapped_device *md)
3269 {
3270 	return atomic_read(&md->event_nr);
3271 }
3272 
dm_wait_event(struct mapped_device * md,int event_nr)3273 int dm_wait_event(struct mapped_device *md, int event_nr)
3274 {
3275 	return wait_event_interruptible(md->eventq,
3276 			(event_nr != atomic_read(&md->event_nr)));
3277 }
3278 
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3279 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3280 {
3281 	unsigned long flags;
3282 
3283 	spin_lock_irqsave(&md->uevent_lock, flags);
3284 	list_add(elist, &md->uevent_list);
3285 	spin_unlock_irqrestore(&md->uevent_lock, flags);
3286 }
3287 
3288 /*
3289  * The gendisk is only valid as long as you have a reference
3290  * count on 'md'.
3291  */
dm_disk(struct mapped_device * md)3292 struct gendisk *dm_disk(struct mapped_device *md)
3293 {
3294 	return md->disk;
3295 }
3296 EXPORT_SYMBOL_GPL(dm_disk);
3297 
dm_kobject(struct mapped_device * md)3298 struct kobject *dm_kobject(struct mapped_device *md)
3299 {
3300 	return &md->kobj_holder.kobj;
3301 }
3302 
dm_get_from_kobject(struct kobject * kobj)3303 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3304 {
3305 	struct mapped_device *md;
3306 
3307 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3308 
3309 	spin_lock(&_minor_lock);
3310 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3311 		md = NULL;
3312 		goto out;
3313 	}
3314 	dm_get(md);
3315 out:
3316 	spin_unlock(&_minor_lock);
3317 
3318 	return md;
3319 }
3320 
dm_suspended_md(struct mapped_device * md)3321 int dm_suspended_md(struct mapped_device *md)
3322 {
3323 	return test_bit(DMF_SUSPENDED, &md->flags);
3324 }
3325 
dm_post_suspending_md(struct mapped_device * md)3326 static int dm_post_suspending_md(struct mapped_device *md)
3327 {
3328 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3329 }
3330 
dm_suspended_internally_md(struct mapped_device * md)3331 int dm_suspended_internally_md(struct mapped_device *md)
3332 {
3333 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3334 }
3335 
dm_test_deferred_remove_flag(struct mapped_device * md)3336 int dm_test_deferred_remove_flag(struct mapped_device *md)
3337 {
3338 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3339 }
3340 
dm_suspended(struct dm_target * ti)3341 int dm_suspended(struct dm_target *ti)
3342 {
3343 	return dm_suspended_md(ti->table->md);
3344 }
3345 EXPORT_SYMBOL_GPL(dm_suspended);
3346 
dm_post_suspending(struct dm_target * ti)3347 int dm_post_suspending(struct dm_target *ti)
3348 {
3349 	return dm_post_suspending_md(ti->table->md);
3350 }
3351 EXPORT_SYMBOL_GPL(dm_post_suspending);
3352 
dm_noflush_suspending(struct dm_target * ti)3353 int dm_noflush_suspending(struct dm_target *ti)
3354 {
3355 	return __noflush_suspending(ti->table->md);
3356 }
3357 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3358 
dm_free_md_mempools(struct dm_md_mempools * pools)3359 void dm_free_md_mempools(struct dm_md_mempools *pools)
3360 {
3361 	if (!pools)
3362 		return;
3363 
3364 	bioset_exit(&pools->bs);
3365 	bioset_exit(&pools->io_bs);
3366 
3367 	kfree(pools);
3368 }
3369 
3370 struct dm_blkdev_id {
3371 	u8 *id;
3372 	enum blk_unique_id type;
3373 };
3374 
__dm_get_unique_id(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3375 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3376 				sector_t start, sector_t len, void *data)
3377 {
3378 	struct dm_blkdev_id *dm_id = data;
3379 	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3380 
3381 	if (!fops->get_unique_id)
3382 		return 0;
3383 
3384 	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3385 }
3386 
3387 /*
3388  * Allow access to get_unique_id() for the first device returning a
3389  * non-zero result.  Reasonable use expects all devices to have the
3390  * same unique id.
3391  */
dm_blk_get_unique_id(struct gendisk * disk,u8 * id,enum blk_unique_id type)3392 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3393 		enum blk_unique_id type)
3394 {
3395 	struct mapped_device *md = disk->private_data;
3396 	struct dm_table *table;
3397 	struct dm_target *ti;
3398 	int ret = 0, srcu_idx;
3399 
3400 	struct dm_blkdev_id dm_id = {
3401 		.id = id,
3402 		.type = type,
3403 	};
3404 
3405 	table = dm_get_live_table(md, &srcu_idx);
3406 	if (!table || !dm_table_get_size(table))
3407 		goto out;
3408 
3409 	/* We only support devices that have a single target */
3410 	if (table->num_targets != 1)
3411 		goto out;
3412 	ti = dm_table_get_target(table, 0);
3413 
3414 	if (!ti->type->iterate_devices)
3415 		goto out;
3416 
3417 	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3418 out:
3419 	dm_put_live_table(md, srcu_idx);
3420 	return ret;
3421 }
3422 
3423 struct dm_pr {
3424 	u64	old_key;
3425 	u64	new_key;
3426 	u32	flags;
3427 	bool	abort;
3428 	bool	fail_early;
3429 	int	ret;
3430 	enum pr_type type;
3431 	struct pr_keys *read_keys;
3432 	struct pr_held_reservation *rsv;
3433 };
3434 
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3435 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3436 		      struct dm_pr *pr)
3437 {
3438 	struct mapped_device *md = bdev->bd_disk->private_data;
3439 	struct dm_table *table;
3440 	struct dm_target *ti;
3441 	int ret = -ENOTTY, srcu_idx;
3442 
3443 	table = dm_get_live_table(md, &srcu_idx);
3444 	if (!table || !dm_table_get_size(table))
3445 		goto out;
3446 
3447 	/* We only support devices that have a single target */
3448 	if (table->num_targets != 1)
3449 		goto out;
3450 	ti = dm_table_get_target(table, 0);
3451 
3452 	if (dm_suspended_md(md)) {
3453 		ret = -EAGAIN;
3454 		goto out;
3455 	}
3456 
3457 	ret = -EINVAL;
3458 	if (!ti->type->iterate_devices)
3459 		goto out;
3460 
3461 	ti->type->iterate_devices(ti, fn, pr);
3462 	ret = 0;
3463 out:
3464 	dm_put_live_table(md, srcu_idx);
3465 	return ret;
3466 }
3467 
3468 /*
3469  * For register / unregister we need to manually call out to every path.
3470  */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3471 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3472 			    sector_t start, sector_t len, void *data)
3473 {
3474 	struct dm_pr *pr = data;
3475 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3476 	int ret;
3477 
3478 	if (!ops || !ops->pr_register) {
3479 		pr->ret = -EOPNOTSUPP;
3480 		return -1;
3481 	}
3482 
3483 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3484 	if (!ret)
3485 		return 0;
3486 
3487 	if (!pr->ret)
3488 		pr->ret = ret;
3489 
3490 	if (pr->fail_early)
3491 		return -1;
3492 
3493 	return 0;
3494 }
3495 
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3496 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3497 			  u32 flags)
3498 {
3499 	struct dm_pr pr = {
3500 		.old_key	= old_key,
3501 		.new_key	= new_key,
3502 		.flags		= flags,
3503 		.fail_early	= true,
3504 		.ret		= 0,
3505 	};
3506 	int ret;
3507 
3508 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3509 	if (ret) {
3510 		/* Didn't even get to register a path */
3511 		return ret;
3512 	}
3513 
3514 	if (!pr.ret)
3515 		return 0;
3516 	ret = pr.ret;
3517 
3518 	if (!new_key)
3519 		return ret;
3520 
3521 	/* unregister all paths if we failed to register any path */
3522 	pr.old_key = new_key;
3523 	pr.new_key = 0;
3524 	pr.flags = 0;
3525 	pr.fail_early = false;
3526 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3527 	return ret;
3528 }
3529 
3530 
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3531 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3532 			   sector_t start, sector_t len, void *data)
3533 {
3534 	struct dm_pr *pr = data;
3535 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3536 
3537 	if (!ops || !ops->pr_reserve) {
3538 		pr->ret = -EOPNOTSUPP;
3539 		return -1;
3540 	}
3541 
3542 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3543 	if (!pr->ret)
3544 		return -1;
3545 
3546 	return 0;
3547 }
3548 
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3549 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3550 			 u32 flags)
3551 {
3552 	struct dm_pr pr = {
3553 		.old_key	= key,
3554 		.flags		= flags,
3555 		.type		= type,
3556 		.fail_early	= false,
3557 		.ret		= 0,
3558 	};
3559 	int ret;
3560 
3561 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3562 	if (ret)
3563 		return ret;
3564 
3565 	return pr.ret;
3566 }
3567 
3568 /*
3569  * If there is a non-All Registrants type of reservation, the release must be
3570  * sent down the holding path. For the cases where there is no reservation or
3571  * the path is not the holder the device will also return success, so we must
3572  * try each path to make sure we got the correct path.
3573  */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3574 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3575 			   sector_t start, sector_t len, void *data)
3576 {
3577 	struct dm_pr *pr = data;
3578 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3579 
3580 	if (!ops || !ops->pr_release) {
3581 		pr->ret = -EOPNOTSUPP;
3582 		return -1;
3583 	}
3584 
3585 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3586 	if (pr->ret)
3587 		return -1;
3588 
3589 	return 0;
3590 }
3591 
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3592 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3593 {
3594 	struct dm_pr pr = {
3595 		.old_key	= key,
3596 		.type		= type,
3597 		.fail_early	= false,
3598 	};
3599 	int ret;
3600 
3601 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3602 	if (ret)
3603 		return ret;
3604 
3605 	return pr.ret;
3606 }
3607 
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3608 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3609 			   sector_t start, sector_t len, void *data)
3610 {
3611 	struct dm_pr *pr = data;
3612 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3613 
3614 	if (!ops || !ops->pr_preempt) {
3615 		pr->ret = -EOPNOTSUPP;
3616 		return -1;
3617 	}
3618 
3619 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3620 				  pr->abort);
3621 	if (!pr->ret)
3622 		return -1;
3623 
3624 	return 0;
3625 }
3626 
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3627 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3628 			 enum pr_type type, bool abort)
3629 {
3630 	struct dm_pr pr = {
3631 		.new_key	= new_key,
3632 		.old_key	= old_key,
3633 		.type		= type,
3634 		.fail_early	= false,
3635 	};
3636 	int ret;
3637 
3638 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3639 	if (ret)
3640 		return ret;
3641 
3642 	return pr.ret;
3643 }
3644 
dm_pr_clear(struct block_device * bdev,u64 key)3645 static int dm_pr_clear(struct block_device *bdev, u64 key)
3646 {
3647 	struct mapped_device *md = bdev->bd_disk->private_data;
3648 	const struct pr_ops *ops;
3649 	int r, srcu_idx;
3650 	bool forward = true;
3651 
3652 	/* Not a real ioctl, but targets must not interpret non-DM ioctls */
3653 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3654 	if (r < 0)
3655 		goto out;
3656 	WARN_ON_ONCE(!forward);
3657 
3658 	ops = bdev->bd_disk->fops->pr_ops;
3659 	if (ops && ops->pr_clear)
3660 		r = ops->pr_clear(bdev, key);
3661 	else
3662 		r = -EOPNOTSUPP;
3663 out:
3664 	dm_unprepare_ioctl(md, srcu_idx);
3665 	return r;
3666 }
3667 
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3668 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3669 			     sector_t start, sector_t len, void *data)
3670 {
3671 	struct dm_pr *pr = data;
3672 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3673 
3674 	if (!ops || !ops->pr_read_keys) {
3675 		pr->ret = -EOPNOTSUPP;
3676 		return -1;
3677 	}
3678 
3679 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3680 	if (!pr->ret)
3681 		return -1;
3682 
3683 	return 0;
3684 }
3685 
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3686 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3687 {
3688 	struct dm_pr pr = {
3689 		.read_keys = keys,
3690 	};
3691 	int ret;
3692 
3693 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3694 	if (ret)
3695 		return ret;
3696 
3697 	return pr.ret;
3698 }
3699 
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3700 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3701 				    sector_t start, sector_t len, void *data)
3702 {
3703 	struct dm_pr *pr = data;
3704 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3705 
3706 	if (!ops || !ops->pr_read_reservation) {
3707 		pr->ret = -EOPNOTSUPP;
3708 		return -1;
3709 	}
3710 
3711 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3712 	if (!pr->ret)
3713 		return -1;
3714 
3715 	return 0;
3716 }
3717 
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3718 static int dm_pr_read_reservation(struct block_device *bdev,
3719 				  struct pr_held_reservation *rsv)
3720 {
3721 	struct dm_pr pr = {
3722 		.rsv = rsv,
3723 	};
3724 	int ret;
3725 
3726 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3727 	if (ret)
3728 		return ret;
3729 
3730 	return pr.ret;
3731 }
3732 
3733 static const struct pr_ops dm_pr_ops = {
3734 	.pr_register	= dm_pr_register,
3735 	.pr_reserve	= dm_pr_reserve,
3736 	.pr_release	= dm_pr_release,
3737 	.pr_preempt	= dm_pr_preempt,
3738 	.pr_clear	= dm_pr_clear,
3739 	.pr_read_keys	= dm_pr_read_keys,
3740 	.pr_read_reservation = dm_pr_read_reservation,
3741 };
3742 
3743 static const struct block_device_operations dm_blk_dops = {
3744 	.submit_bio = dm_submit_bio,
3745 	.poll_bio = dm_poll_bio,
3746 	.open = dm_blk_open,
3747 	.release = dm_blk_close,
3748 	.ioctl = dm_blk_ioctl,
3749 	.getgeo = dm_blk_getgeo,
3750 	.report_zones = dm_blk_report_zones,
3751 	.get_unique_id = dm_blk_get_unique_id,
3752 	.pr_ops = &dm_pr_ops,
3753 	.owner = THIS_MODULE
3754 };
3755 
3756 static const struct block_device_operations dm_rq_blk_dops = {
3757 	.open = dm_blk_open,
3758 	.release = dm_blk_close,
3759 	.ioctl = dm_blk_ioctl,
3760 	.getgeo = dm_blk_getgeo,
3761 	.get_unique_id = dm_blk_get_unique_id,
3762 	.pr_ops = &dm_pr_ops,
3763 	.owner = THIS_MODULE
3764 };
3765 
3766 static const struct dax_operations dm_dax_ops = {
3767 	.direct_access = dm_dax_direct_access,
3768 	.zero_page_range = dm_dax_zero_page_range,
3769 	.recovery_write = dm_dax_recovery_write,
3770 };
3771 
3772 /*
3773  * module hooks
3774  */
3775 module_init(dm_init);
3776 module_exit(dm_exit);
3777 
3778 module_param(major, uint, 0);
3779 MODULE_PARM_DESC(major, "The major number of the device mapper");
3780 
3781 module_param(reserved_bio_based_ios, uint, 0644);
3782 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3783 
3784 module_param(dm_numa_node, int, 0644);
3785 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3786 
3787 module_param(swap_bios, int, 0644);
3788 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3789 
3790 MODULE_DESCRIPTION(DM_NAME " driver");
3791 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3792 MODULE_LICENSE("GPL");
3793