1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 369 * server when it runs out of tasks to run. 370 * 371 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 372 * returns NULL. 373 * 374 * dl_server_update() -- called from update_curr_common(), propagates runtime 375 * to the server. 376 * 377 * dl_server_start() 378 * dl_server_stop() -- start/stop the server when it has (no) tasks. 379 * 380 * dl_server_init() -- initializes the server. 381 */ 382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 383 extern void dl_server_start(struct sched_dl_entity *dl_se); 384 extern void dl_server_stop(struct sched_dl_entity *dl_se); 385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 386 dl_server_has_tasks_f has_tasks, 387 dl_server_pick_f pick_task); 388 extern void sched_init_dl_servers(void); 389 390 extern void dl_server_update_idle_time(struct rq *rq, 391 struct task_struct *p); 392 extern void fair_server_init(struct rq *rq); 393 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 394 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 395 u64 runtime, u64 period, bool init); 396 397 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 398 { 399 return dl_se->dl_server_active; 400 } 401 402 #ifdef CONFIG_CGROUP_SCHED 403 404 extern struct list_head task_groups; 405 406 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 407 extern const u64 max_bw_quota_period_us; 408 409 /* 410 * default period for group bandwidth. 411 * default: 0.1s, units: microseconds 412 */ 413 static inline u64 default_bw_period_us(void) 414 { 415 return 100000ULL; 416 } 417 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 418 419 struct cfs_bandwidth { 420 #ifdef CONFIG_CFS_BANDWIDTH 421 raw_spinlock_t lock; 422 ktime_t period; 423 u64 quota; 424 u64 runtime; 425 u64 burst; 426 u64 runtime_snap; 427 s64 hierarchical_quota; 428 429 u8 idle; 430 u8 period_active; 431 u8 slack_started; 432 struct hrtimer period_timer; 433 struct hrtimer slack_timer; 434 struct list_head throttled_cfs_rq; 435 436 /* Statistics: */ 437 int nr_periods; 438 int nr_throttled; 439 int nr_burst; 440 u64 throttled_time; 441 u64 burst_time; 442 #endif /* CONFIG_CFS_BANDWIDTH */ 443 }; 444 445 /* Task group related information */ 446 struct task_group { 447 struct cgroup_subsys_state css; 448 449 #ifdef CONFIG_GROUP_SCHED_WEIGHT 450 /* A positive value indicates that this is a SCHED_IDLE group. */ 451 int idle; 452 #endif 453 454 #ifdef CONFIG_FAIR_GROUP_SCHED 455 /* schedulable entities of this group on each CPU */ 456 struct sched_entity **se; 457 /* runqueue "owned" by this group on each CPU */ 458 struct cfs_rq **cfs_rq; 459 unsigned long shares; 460 /* 461 * load_avg can be heavily contended at clock tick time, so put 462 * it in its own cache-line separated from the fields above which 463 * will also be accessed at each tick. 464 */ 465 atomic_long_t load_avg ____cacheline_aligned; 466 #endif /* CONFIG_FAIR_GROUP_SCHED */ 467 468 #ifdef CONFIG_RT_GROUP_SCHED 469 struct sched_rt_entity **rt_se; 470 struct rt_rq **rt_rq; 471 472 struct rt_bandwidth rt_bandwidth; 473 #endif 474 475 struct scx_task_group scx; 476 477 struct rcu_head rcu; 478 struct list_head list; 479 480 struct task_group *parent; 481 struct list_head siblings; 482 struct list_head children; 483 484 #ifdef CONFIG_SCHED_AUTOGROUP 485 struct autogroup *autogroup; 486 #endif 487 488 struct cfs_bandwidth cfs_bandwidth; 489 490 #ifdef CONFIG_UCLAMP_TASK_GROUP 491 /* The two decimal precision [%] value requested from user-space */ 492 unsigned int uclamp_pct[UCLAMP_CNT]; 493 /* Clamp values requested for a task group */ 494 struct uclamp_se uclamp_req[UCLAMP_CNT]; 495 /* Effective clamp values used for a task group */ 496 struct uclamp_se uclamp[UCLAMP_CNT]; 497 #endif 498 499 }; 500 501 #ifdef CONFIG_GROUP_SCHED_WEIGHT 502 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 503 504 /* 505 * A weight of 0 or 1 can cause arithmetics problems. 506 * A weight of a cfs_rq is the sum of weights of which entities 507 * are queued on this cfs_rq, so a weight of a entity should not be 508 * too large, so as the shares value of a task group. 509 * (The default weight is 1024 - so there's no practical 510 * limitation from this.) 511 */ 512 #define MIN_SHARES (1UL << 1) 513 #define MAX_SHARES (1UL << 18) 514 #endif 515 516 typedef int (*tg_visitor)(struct task_group *, void *); 517 518 extern int walk_tg_tree_from(struct task_group *from, 519 tg_visitor down, tg_visitor up, void *data); 520 521 /* 522 * Iterate the full tree, calling @down when first entering a node and @up when 523 * leaving it for the final time. 524 * 525 * Caller must hold rcu_lock or sufficient equivalent. 526 */ 527 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 528 { 529 return walk_tg_tree_from(&root_task_group, down, up, data); 530 } 531 532 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 533 { 534 return css ? container_of(css, struct task_group, css) : NULL; 535 } 536 537 extern int tg_nop(struct task_group *tg, void *data); 538 539 #ifdef CONFIG_FAIR_GROUP_SCHED 540 extern void free_fair_sched_group(struct task_group *tg); 541 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 542 extern void online_fair_sched_group(struct task_group *tg); 543 extern void unregister_fair_sched_group(struct task_group *tg); 544 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 545 static inline void free_fair_sched_group(struct task_group *tg) { } 546 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 547 { 548 return 1; 549 } 550 static inline void online_fair_sched_group(struct task_group *tg) { } 551 static inline void unregister_fair_sched_group(struct task_group *tg) { } 552 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 553 554 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 555 struct sched_entity *se, int cpu, 556 struct sched_entity *parent); 557 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 558 559 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 560 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 561 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 562 extern bool cfs_task_bw_constrained(struct task_struct *p); 563 564 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 565 struct sched_rt_entity *rt_se, int cpu, 566 struct sched_rt_entity *parent); 567 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 568 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 569 extern long sched_group_rt_runtime(struct task_group *tg); 570 extern long sched_group_rt_period(struct task_group *tg); 571 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 572 573 extern struct task_group *sched_create_group(struct task_group *parent); 574 extern void sched_online_group(struct task_group *tg, 575 struct task_group *parent); 576 extern void sched_destroy_group(struct task_group *tg); 577 extern void sched_release_group(struct task_group *tg); 578 579 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 580 581 #ifdef CONFIG_FAIR_GROUP_SCHED 582 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 583 584 extern int sched_group_set_idle(struct task_group *tg, long idle); 585 586 extern void set_task_rq_fair(struct sched_entity *se, 587 struct cfs_rq *prev, struct cfs_rq *next); 588 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 589 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 590 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 591 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 592 593 #else /* !CONFIG_CGROUP_SCHED: */ 594 595 struct cfs_bandwidth { }; 596 597 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 598 599 #endif /* !CONFIG_CGROUP_SCHED */ 600 601 extern void unregister_rt_sched_group(struct task_group *tg); 602 extern void free_rt_sched_group(struct task_group *tg); 603 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 604 605 /* 606 * u64_u32_load/u64_u32_store 607 * 608 * Use a copy of a u64 value to protect against data race. This is only 609 * applicable for 32-bits architectures. 610 */ 611 #ifdef CONFIG_64BIT 612 # define u64_u32_load_copy(var, copy) var 613 # define u64_u32_store_copy(var, copy, val) (var = val) 614 #else 615 # define u64_u32_load_copy(var, copy) \ 616 ({ \ 617 u64 __val, __val_copy; \ 618 do { \ 619 __val_copy = copy; \ 620 /* \ 621 * paired with u64_u32_store_copy(), ordering access \ 622 * to var and copy. \ 623 */ \ 624 smp_rmb(); \ 625 __val = var; \ 626 } while (__val != __val_copy); \ 627 __val; \ 628 }) 629 # define u64_u32_store_copy(var, copy, val) \ 630 do { \ 631 typeof(val) __val = (val); \ 632 var = __val; \ 633 /* \ 634 * paired with u64_u32_load_copy(), ordering access to var and \ 635 * copy. \ 636 */ \ 637 smp_wmb(); \ 638 copy = __val; \ 639 } while (0) 640 #endif 641 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 642 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 643 644 struct balance_callback { 645 struct balance_callback *next; 646 void (*func)(struct rq *rq); 647 }; 648 649 /* CFS-related fields in a runqueue */ 650 struct cfs_rq { 651 struct load_weight load; 652 unsigned int nr_queued; 653 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 654 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 655 unsigned int h_nr_idle; /* SCHED_IDLE */ 656 657 s64 avg_vruntime; 658 u64 avg_load; 659 660 u64 min_vruntime; 661 #ifdef CONFIG_SCHED_CORE 662 unsigned int forceidle_seq; 663 u64 min_vruntime_fi; 664 #endif 665 666 struct rb_root_cached tasks_timeline; 667 668 /* 669 * 'curr' points to currently running entity on this cfs_rq. 670 * It is set to NULL otherwise (i.e when none are currently running). 671 */ 672 struct sched_entity *curr; 673 struct sched_entity *next; 674 675 /* 676 * CFS load tracking 677 */ 678 struct sched_avg avg; 679 #ifndef CONFIG_64BIT 680 u64 last_update_time_copy; 681 #endif 682 struct { 683 raw_spinlock_t lock ____cacheline_aligned; 684 int nr; 685 unsigned long load_avg; 686 unsigned long util_avg; 687 unsigned long runnable_avg; 688 } removed; 689 690 #ifdef CONFIG_FAIR_GROUP_SCHED 691 u64 last_update_tg_load_avg; 692 unsigned long tg_load_avg_contrib; 693 long propagate; 694 long prop_runnable_sum; 695 696 /* 697 * h_load = weight * f(tg) 698 * 699 * Where f(tg) is the recursive weight fraction assigned to 700 * this group. 701 */ 702 unsigned long h_load; 703 u64 last_h_load_update; 704 struct sched_entity *h_load_next; 705 #endif /* CONFIG_FAIR_GROUP_SCHED */ 706 707 #ifdef CONFIG_FAIR_GROUP_SCHED 708 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 709 710 /* 711 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 712 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 713 * (like users, containers etc.) 714 * 715 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 716 * This list is used during load balance. 717 */ 718 int on_list; 719 struct list_head leaf_cfs_rq_list; 720 struct task_group *tg; /* group that "owns" this runqueue */ 721 722 /* Locally cached copy of our task_group's idle value */ 723 int idle; 724 725 #ifdef CONFIG_CFS_BANDWIDTH 726 int runtime_enabled; 727 s64 runtime_remaining; 728 729 u64 throttled_pelt_idle; 730 #ifndef CONFIG_64BIT 731 u64 throttled_pelt_idle_copy; 732 #endif 733 u64 throttled_clock; 734 u64 throttled_clock_pelt; 735 u64 throttled_clock_pelt_time; 736 u64 throttled_clock_self; 737 u64 throttled_clock_self_time; 738 int throttled; 739 int throttle_count; 740 struct list_head throttled_list; 741 struct list_head throttled_csd_list; 742 #endif /* CONFIG_CFS_BANDWIDTH */ 743 #endif /* CONFIG_FAIR_GROUP_SCHED */ 744 }; 745 746 #ifdef CONFIG_SCHED_CLASS_EXT 747 /* scx_rq->flags, protected by the rq lock */ 748 enum scx_rq_flags { 749 /* 750 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 751 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 752 * only while the BPF scheduler considers the CPU to be online. 753 */ 754 SCX_RQ_ONLINE = 1 << 0, 755 SCX_RQ_CAN_STOP_TICK = 1 << 1, 756 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 757 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 758 SCX_RQ_BYPASSING = 1 << 4, 759 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 760 761 SCX_RQ_IN_WAKEUP = 1 << 16, 762 SCX_RQ_IN_BALANCE = 1 << 17, 763 }; 764 765 struct scx_rq { 766 struct scx_dispatch_q local_dsq; 767 struct list_head runnable_list; /* runnable tasks on this rq */ 768 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 769 unsigned long ops_qseq; 770 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 771 u32 nr_running; 772 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 773 bool cpu_released; 774 u32 flags; 775 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 776 cpumask_var_t cpus_to_kick; 777 cpumask_var_t cpus_to_kick_if_idle; 778 cpumask_var_t cpus_to_preempt; 779 cpumask_var_t cpus_to_wait; 780 unsigned long pnt_seq; 781 struct balance_callback deferred_bal_cb; 782 struct irq_work deferred_irq_work; 783 struct irq_work kick_cpus_irq_work; 784 }; 785 #endif /* CONFIG_SCHED_CLASS_EXT */ 786 787 static inline int rt_bandwidth_enabled(void) 788 { 789 return sysctl_sched_rt_runtime >= 0; 790 } 791 792 /* RT IPI pull logic requires IRQ_WORK */ 793 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 794 # define HAVE_RT_PUSH_IPI 795 #endif 796 797 /* Real-Time classes' related field in a runqueue: */ 798 struct rt_rq { 799 struct rt_prio_array active; 800 unsigned int rt_nr_running; 801 unsigned int rr_nr_running; 802 struct { 803 int curr; /* highest queued rt task prio */ 804 int next; /* next highest */ 805 } highest_prio; 806 bool overloaded; 807 struct plist_head pushable_tasks; 808 809 int rt_queued; 810 811 #ifdef CONFIG_RT_GROUP_SCHED 812 int rt_throttled; 813 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 814 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 815 /* Nests inside the rq lock: */ 816 raw_spinlock_t rt_runtime_lock; 817 818 unsigned int rt_nr_boosted; 819 820 struct rq *rq; /* this is always top-level rq, cache? */ 821 #endif 822 #ifdef CONFIG_CGROUP_SCHED 823 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 824 #endif 825 }; 826 827 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 828 { 829 return rt_rq->rt_queued && rt_rq->rt_nr_running; 830 } 831 832 /* Deadline class' related fields in a runqueue */ 833 struct dl_rq { 834 /* runqueue is an rbtree, ordered by deadline */ 835 struct rb_root_cached root; 836 837 unsigned int dl_nr_running; 838 839 /* 840 * Deadline values of the currently executing and the 841 * earliest ready task on this rq. Caching these facilitates 842 * the decision whether or not a ready but not running task 843 * should migrate somewhere else. 844 */ 845 struct { 846 u64 curr; 847 u64 next; 848 } earliest_dl; 849 850 bool overloaded; 851 852 /* 853 * Tasks on this rq that can be pushed away. They are kept in 854 * an rb-tree, ordered by tasks' deadlines, with caching 855 * of the leftmost (earliest deadline) element. 856 */ 857 struct rb_root_cached pushable_dl_tasks_root; 858 859 /* 860 * "Active utilization" for this runqueue: increased when a 861 * task wakes up (becomes TASK_RUNNING) and decreased when a 862 * task blocks 863 */ 864 u64 running_bw; 865 866 /* 867 * Utilization of the tasks "assigned" to this runqueue (including 868 * the tasks that are in runqueue and the tasks that executed on this 869 * CPU and blocked). Increased when a task moves to this runqueue, and 870 * decreased when the task moves away (migrates, changes scheduling 871 * policy, or terminates). 872 * This is needed to compute the "inactive utilization" for the 873 * runqueue (inactive utilization = this_bw - running_bw). 874 */ 875 u64 this_bw; 876 u64 extra_bw; 877 878 /* 879 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 880 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 881 */ 882 u64 max_bw; 883 884 /* 885 * Inverse of the fraction of CPU utilization that can be reclaimed 886 * by the GRUB algorithm. 887 */ 888 u64 bw_ratio; 889 }; 890 891 #ifdef CONFIG_FAIR_GROUP_SCHED 892 893 /* An entity is a task if it doesn't "own" a runqueue */ 894 #define entity_is_task(se) (!se->my_q) 895 896 static inline void se_update_runnable(struct sched_entity *se) 897 { 898 if (!entity_is_task(se)) 899 se->runnable_weight = se->my_q->h_nr_runnable; 900 } 901 902 static inline long se_runnable(struct sched_entity *se) 903 { 904 if (se->sched_delayed) 905 return false; 906 907 if (entity_is_task(se)) 908 return !!se->on_rq; 909 else 910 return se->runnable_weight; 911 } 912 913 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 914 915 #define entity_is_task(se) 1 916 917 static inline void se_update_runnable(struct sched_entity *se) { } 918 919 static inline long se_runnable(struct sched_entity *se) 920 { 921 if (se->sched_delayed) 922 return false; 923 924 return !!se->on_rq; 925 } 926 927 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 928 929 /* 930 * XXX we want to get rid of these helpers and use the full load resolution. 931 */ 932 static inline long se_weight(struct sched_entity *se) 933 { 934 return scale_load_down(se->load.weight); 935 } 936 937 938 static inline bool sched_asym_prefer(int a, int b) 939 { 940 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 941 } 942 943 struct perf_domain { 944 struct em_perf_domain *em_pd; 945 struct perf_domain *next; 946 struct rcu_head rcu; 947 }; 948 949 /* 950 * We add the notion of a root-domain which will be used to define per-domain 951 * variables. Each exclusive cpuset essentially defines an island domain by 952 * fully partitioning the member CPUs from any other cpuset. Whenever a new 953 * exclusive cpuset is created, we also create and attach a new root-domain 954 * object. 955 * 956 */ 957 struct root_domain { 958 atomic_t refcount; 959 atomic_t rto_count; 960 struct rcu_head rcu; 961 cpumask_var_t span; 962 cpumask_var_t online; 963 964 /* 965 * Indicate pullable load on at least one CPU, e.g: 966 * - More than one runnable task 967 * - Running task is misfit 968 */ 969 bool overloaded; 970 971 /* Indicate one or more CPUs over-utilized (tipping point) */ 972 bool overutilized; 973 974 /* 975 * The bit corresponding to a CPU gets set here if such CPU has more 976 * than one runnable -deadline task (as it is below for RT tasks). 977 */ 978 cpumask_var_t dlo_mask; 979 atomic_t dlo_count; 980 struct dl_bw dl_bw; 981 struct cpudl cpudl; 982 983 /* 984 * Indicate whether a root_domain's dl_bw has been checked or 985 * updated. It's monotonously increasing value. 986 * 987 * Also, some corner cases, like 'wrap around' is dangerous, but given 988 * that u64 is 'big enough'. So that shouldn't be a concern. 989 */ 990 u64 visit_cookie; 991 992 #ifdef HAVE_RT_PUSH_IPI 993 /* 994 * For IPI pull requests, loop across the rto_mask. 995 */ 996 struct irq_work rto_push_work; 997 raw_spinlock_t rto_lock; 998 /* These are only updated and read within rto_lock */ 999 int rto_loop; 1000 int rto_cpu; 1001 /* These atomics are updated outside of a lock */ 1002 atomic_t rto_loop_next; 1003 atomic_t rto_loop_start; 1004 #endif /* HAVE_RT_PUSH_IPI */ 1005 /* 1006 * The "RT overload" flag: it gets set if a CPU has more than 1007 * one runnable RT task. 1008 */ 1009 cpumask_var_t rto_mask; 1010 struct cpupri cpupri; 1011 1012 /* 1013 * NULL-terminated list of performance domains intersecting with the 1014 * CPUs of the rd. Protected by RCU. 1015 */ 1016 struct perf_domain __rcu *pd; 1017 }; 1018 1019 extern void init_defrootdomain(void); 1020 extern int sched_init_domains(const struct cpumask *cpu_map); 1021 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1022 extern void sched_get_rd(struct root_domain *rd); 1023 extern void sched_put_rd(struct root_domain *rd); 1024 1025 static inline int get_rd_overloaded(struct root_domain *rd) 1026 { 1027 return READ_ONCE(rd->overloaded); 1028 } 1029 1030 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1031 { 1032 if (get_rd_overloaded(rd) != status) 1033 WRITE_ONCE(rd->overloaded, status); 1034 } 1035 1036 #ifdef HAVE_RT_PUSH_IPI 1037 extern void rto_push_irq_work_func(struct irq_work *work); 1038 #endif 1039 1040 #ifdef CONFIG_UCLAMP_TASK 1041 /* 1042 * struct uclamp_bucket - Utilization clamp bucket 1043 * @value: utilization clamp value for tasks on this clamp bucket 1044 * @tasks: number of RUNNABLE tasks on this clamp bucket 1045 * 1046 * Keep track of how many tasks are RUNNABLE for a given utilization 1047 * clamp value. 1048 */ 1049 struct uclamp_bucket { 1050 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1051 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1052 }; 1053 1054 /* 1055 * struct uclamp_rq - rq's utilization clamp 1056 * @value: currently active clamp values for a rq 1057 * @bucket: utilization clamp buckets affecting a rq 1058 * 1059 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1060 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1061 * (or actually running) with that value. 1062 * 1063 * There are up to UCLAMP_CNT possible different clamp values, currently there 1064 * are only two: minimum utilization and maximum utilization. 1065 * 1066 * All utilization clamping values are MAX aggregated, since: 1067 * - for util_min: we want to run the CPU at least at the max of the minimum 1068 * utilization required by its currently RUNNABLE tasks. 1069 * - for util_max: we want to allow the CPU to run up to the max of the 1070 * maximum utilization allowed by its currently RUNNABLE tasks. 1071 * 1072 * Since on each system we expect only a limited number of different 1073 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1074 * the metrics required to compute all the per-rq utilization clamp values. 1075 */ 1076 struct uclamp_rq { 1077 unsigned int value; 1078 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1079 }; 1080 1081 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1082 #endif /* CONFIG_UCLAMP_TASK */ 1083 1084 /* 1085 * This is the main, per-CPU runqueue data structure. 1086 * 1087 * Locking rule: those places that want to lock multiple runqueues 1088 * (such as the load balancing or the thread migration code), lock 1089 * acquire operations must be ordered by ascending &runqueue. 1090 */ 1091 struct rq { 1092 /* runqueue lock: */ 1093 raw_spinlock_t __lock; 1094 1095 unsigned int nr_running; 1096 #ifdef CONFIG_NUMA_BALANCING 1097 unsigned int nr_numa_running; 1098 unsigned int nr_preferred_running; 1099 unsigned int numa_migrate_on; 1100 #endif 1101 #ifdef CONFIG_NO_HZ_COMMON 1102 unsigned long last_blocked_load_update_tick; 1103 unsigned int has_blocked_load; 1104 call_single_data_t nohz_csd; 1105 unsigned int nohz_tick_stopped; 1106 atomic_t nohz_flags; 1107 #endif /* CONFIG_NO_HZ_COMMON */ 1108 1109 unsigned int ttwu_pending; 1110 u64 nr_switches; 1111 1112 #ifdef CONFIG_UCLAMP_TASK 1113 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1114 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1115 unsigned int uclamp_flags; 1116 #define UCLAMP_FLAG_IDLE 0x01 1117 #endif 1118 1119 struct cfs_rq cfs; 1120 struct rt_rq rt; 1121 struct dl_rq dl; 1122 #ifdef CONFIG_SCHED_CLASS_EXT 1123 struct scx_rq scx; 1124 #endif 1125 1126 struct sched_dl_entity fair_server; 1127 1128 #ifdef CONFIG_FAIR_GROUP_SCHED 1129 /* list of leaf cfs_rq on this CPU: */ 1130 struct list_head leaf_cfs_rq_list; 1131 struct list_head *tmp_alone_branch; 1132 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1133 1134 /* 1135 * This is part of a global counter where only the total sum 1136 * over all CPUs matters. A task can increase this counter on 1137 * one CPU and if it got migrated afterwards it may decrease 1138 * it on another CPU. Always updated under the runqueue lock: 1139 */ 1140 unsigned long nr_uninterruptible; 1141 1142 #ifdef CONFIG_SCHED_PROXY_EXEC 1143 struct task_struct __rcu *donor; /* Scheduling context */ 1144 struct task_struct __rcu *curr; /* Execution context */ 1145 #else 1146 union { 1147 struct task_struct __rcu *donor; /* Scheduler context */ 1148 struct task_struct __rcu *curr; /* Execution context */ 1149 }; 1150 #endif 1151 struct sched_dl_entity *dl_server; 1152 struct task_struct *idle; 1153 struct task_struct *stop; 1154 unsigned long next_balance; 1155 struct mm_struct *prev_mm; 1156 1157 unsigned int clock_update_flags; 1158 u64 clock; 1159 /* Ensure that all clocks are in the same cache line */ 1160 u64 clock_task ____cacheline_aligned; 1161 u64 clock_pelt; 1162 unsigned long lost_idle_time; 1163 u64 clock_pelt_idle; 1164 u64 clock_idle; 1165 #ifndef CONFIG_64BIT 1166 u64 clock_pelt_idle_copy; 1167 u64 clock_idle_copy; 1168 #endif 1169 1170 atomic_t nr_iowait; 1171 1172 u64 last_seen_need_resched_ns; 1173 int ticks_without_resched; 1174 1175 #ifdef CONFIG_MEMBARRIER 1176 int membarrier_state; 1177 #endif 1178 1179 struct root_domain *rd; 1180 struct sched_domain __rcu *sd; 1181 1182 unsigned long cpu_capacity; 1183 1184 struct balance_callback *balance_callback; 1185 1186 unsigned char nohz_idle_balance; 1187 unsigned char idle_balance; 1188 1189 unsigned long misfit_task_load; 1190 1191 /* For active balancing */ 1192 int active_balance; 1193 int push_cpu; 1194 struct cpu_stop_work active_balance_work; 1195 1196 /* CPU of this runqueue: */ 1197 int cpu; 1198 int online; 1199 1200 struct list_head cfs_tasks; 1201 1202 struct sched_avg avg_rt; 1203 struct sched_avg avg_dl; 1204 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1205 struct sched_avg avg_irq; 1206 #endif 1207 #ifdef CONFIG_SCHED_HW_PRESSURE 1208 struct sched_avg avg_hw; 1209 #endif 1210 u64 idle_stamp; 1211 u64 avg_idle; 1212 1213 /* This is used to determine avg_idle's max value */ 1214 u64 max_idle_balance_cost; 1215 1216 #ifdef CONFIG_HOTPLUG_CPU 1217 struct rcuwait hotplug_wait; 1218 #endif 1219 1220 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1221 u64 prev_irq_time; 1222 u64 psi_irq_time; 1223 #endif 1224 #ifdef CONFIG_PARAVIRT 1225 u64 prev_steal_time; 1226 #endif 1227 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1228 u64 prev_steal_time_rq; 1229 #endif 1230 1231 /* calc_load related fields */ 1232 unsigned long calc_load_update; 1233 long calc_load_active; 1234 1235 #ifdef CONFIG_SCHED_HRTICK 1236 call_single_data_t hrtick_csd; 1237 struct hrtimer hrtick_timer; 1238 ktime_t hrtick_time; 1239 #endif 1240 1241 #ifdef CONFIG_SCHEDSTATS 1242 /* latency stats */ 1243 struct sched_info rq_sched_info; 1244 unsigned long long rq_cpu_time; 1245 1246 /* sys_sched_yield() stats */ 1247 unsigned int yld_count; 1248 1249 /* schedule() stats */ 1250 unsigned int sched_count; 1251 unsigned int sched_goidle; 1252 1253 /* try_to_wake_up() stats */ 1254 unsigned int ttwu_count; 1255 unsigned int ttwu_local; 1256 #endif 1257 1258 #ifdef CONFIG_CPU_IDLE 1259 /* Must be inspected within a RCU lock section */ 1260 struct cpuidle_state *idle_state; 1261 #endif 1262 1263 unsigned int nr_pinned; 1264 unsigned int push_busy; 1265 struct cpu_stop_work push_work; 1266 1267 #ifdef CONFIG_SCHED_CORE 1268 /* per rq */ 1269 struct rq *core; 1270 struct task_struct *core_pick; 1271 struct sched_dl_entity *core_dl_server; 1272 unsigned int core_enabled; 1273 unsigned int core_sched_seq; 1274 struct rb_root core_tree; 1275 1276 /* shared state -- careful with sched_core_cpu_deactivate() */ 1277 unsigned int core_task_seq; 1278 unsigned int core_pick_seq; 1279 unsigned long core_cookie; 1280 unsigned int core_forceidle_count; 1281 unsigned int core_forceidle_seq; 1282 unsigned int core_forceidle_occupation; 1283 u64 core_forceidle_start; 1284 #endif /* CONFIG_SCHED_CORE */ 1285 1286 /* Scratch cpumask to be temporarily used under rq_lock */ 1287 cpumask_var_t scratch_mask; 1288 1289 #ifdef CONFIG_CFS_BANDWIDTH 1290 call_single_data_t cfsb_csd; 1291 struct list_head cfsb_csd_list; 1292 #endif 1293 }; 1294 1295 #ifdef CONFIG_FAIR_GROUP_SCHED 1296 1297 /* CPU runqueue to which this cfs_rq is attached */ 1298 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1299 { 1300 return cfs_rq->rq; 1301 } 1302 1303 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1304 1305 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1306 { 1307 return container_of(cfs_rq, struct rq, cfs); 1308 } 1309 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1310 1311 static inline int cpu_of(struct rq *rq) 1312 { 1313 return rq->cpu; 1314 } 1315 1316 #define MDF_PUSH 0x01 1317 1318 static inline bool is_migration_disabled(struct task_struct *p) 1319 { 1320 return p->migration_disabled; 1321 } 1322 1323 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1324 1325 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1326 #define this_rq() this_cpu_ptr(&runqueues) 1327 #define task_rq(p) cpu_rq(task_cpu(p)) 1328 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1329 #define raw_rq() raw_cpu_ptr(&runqueues) 1330 1331 #ifdef CONFIG_SCHED_PROXY_EXEC 1332 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1333 { 1334 rcu_assign_pointer(rq->donor, t); 1335 } 1336 #else 1337 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1338 { 1339 /* Do nothing */ 1340 } 1341 #endif 1342 1343 #ifdef CONFIG_SCHED_CORE 1344 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1345 1346 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1347 1348 static inline bool sched_core_enabled(struct rq *rq) 1349 { 1350 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1351 } 1352 1353 static inline bool sched_core_disabled(void) 1354 { 1355 return !static_branch_unlikely(&__sched_core_enabled); 1356 } 1357 1358 /* 1359 * Be careful with this function; not for general use. The return value isn't 1360 * stable unless you actually hold a relevant rq->__lock. 1361 */ 1362 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1363 { 1364 if (sched_core_enabled(rq)) 1365 return &rq->core->__lock; 1366 1367 return &rq->__lock; 1368 } 1369 1370 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1371 { 1372 if (rq->core_enabled) 1373 return &rq->core->__lock; 1374 1375 return &rq->__lock; 1376 } 1377 1378 extern bool 1379 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1380 1381 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1382 1383 /* 1384 * Helpers to check if the CPU's core cookie matches with the task's cookie 1385 * when core scheduling is enabled. 1386 * A special case is that the task's cookie always matches with CPU's core 1387 * cookie if the CPU is in an idle core. 1388 */ 1389 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1390 { 1391 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1392 if (!sched_core_enabled(rq)) 1393 return true; 1394 1395 return rq->core->core_cookie == p->core_cookie; 1396 } 1397 1398 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1399 { 1400 bool idle_core = true; 1401 int cpu; 1402 1403 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1404 if (!sched_core_enabled(rq)) 1405 return true; 1406 1407 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1408 if (!available_idle_cpu(cpu)) { 1409 idle_core = false; 1410 break; 1411 } 1412 } 1413 1414 /* 1415 * A CPU in an idle core is always the best choice for tasks with 1416 * cookies. 1417 */ 1418 return idle_core || rq->core->core_cookie == p->core_cookie; 1419 } 1420 1421 static inline bool sched_group_cookie_match(struct rq *rq, 1422 struct task_struct *p, 1423 struct sched_group *group) 1424 { 1425 int cpu; 1426 1427 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1428 if (!sched_core_enabled(rq)) 1429 return true; 1430 1431 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1432 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1433 return true; 1434 } 1435 return false; 1436 } 1437 1438 static inline bool sched_core_enqueued(struct task_struct *p) 1439 { 1440 return !RB_EMPTY_NODE(&p->core_node); 1441 } 1442 1443 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1444 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1445 1446 extern void sched_core_get(void); 1447 extern void sched_core_put(void); 1448 1449 #else /* !CONFIG_SCHED_CORE: */ 1450 1451 static inline bool sched_core_enabled(struct rq *rq) 1452 { 1453 return false; 1454 } 1455 1456 static inline bool sched_core_disabled(void) 1457 { 1458 return true; 1459 } 1460 1461 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1462 { 1463 return &rq->__lock; 1464 } 1465 1466 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1467 { 1468 return &rq->__lock; 1469 } 1470 1471 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1472 { 1473 return true; 1474 } 1475 1476 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1477 { 1478 return true; 1479 } 1480 1481 static inline bool sched_group_cookie_match(struct rq *rq, 1482 struct task_struct *p, 1483 struct sched_group *group) 1484 { 1485 return true; 1486 } 1487 1488 #endif /* !CONFIG_SCHED_CORE */ 1489 1490 #ifdef CONFIG_RT_GROUP_SCHED 1491 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1492 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1493 static inline bool rt_group_sched_enabled(void) 1494 { 1495 return static_branch_unlikely(&rt_group_sched); 1496 } 1497 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1498 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1499 static inline bool rt_group_sched_enabled(void) 1500 { 1501 return static_branch_likely(&rt_group_sched); 1502 } 1503 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1504 #else /* !CONFIG_RT_GROUP_SCHED: */ 1505 # define rt_group_sched_enabled() false 1506 #endif /* !CONFIG_RT_GROUP_SCHED */ 1507 1508 static inline void lockdep_assert_rq_held(struct rq *rq) 1509 { 1510 lockdep_assert_held(__rq_lockp(rq)); 1511 } 1512 1513 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1514 extern bool raw_spin_rq_trylock(struct rq *rq); 1515 extern void raw_spin_rq_unlock(struct rq *rq); 1516 1517 static inline void raw_spin_rq_lock(struct rq *rq) 1518 { 1519 raw_spin_rq_lock_nested(rq, 0); 1520 } 1521 1522 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1523 { 1524 local_irq_disable(); 1525 raw_spin_rq_lock(rq); 1526 } 1527 1528 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1529 { 1530 raw_spin_rq_unlock(rq); 1531 local_irq_enable(); 1532 } 1533 1534 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1535 { 1536 unsigned long flags; 1537 1538 local_irq_save(flags); 1539 raw_spin_rq_lock(rq); 1540 1541 return flags; 1542 } 1543 1544 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1545 { 1546 raw_spin_rq_unlock(rq); 1547 local_irq_restore(flags); 1548 } 1549 1550 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1551 do { \ 1552 flags = _raw_spin_rq_lock_irqsave(rq); \ 1553 } while (0) 1554 1555 #ifdef CONFIG_SCHED_SMT 1556 extern void __update_idle_core(struct rq *rq); 1557 1558 static inline void update_idle_core(struct rq *rq) 1559 { 1560 if (static_branch_unlikely(&sched_smt_present)) 1561 __update_idle_core(rq); 1562 } 1563 1564 #else /* !CONFIG_SCHED_SMT: */ 1565 static inline void update_idle_core(struct rq *rq) { } 1566 #endif /* !CONFIG_SCHED_SMT */ 1567 1568 #ifdef CONFIG_FAIR_GROUP_SCHED 1569 1570 static inline struct task_struct *task_of(struct sched_entity *se) 1571 { 1572 WARN_ON_ONCE(!entity_is_task(se)); 1573 return container_of(se, struct task_struct, se); 1574 } 1575 1576 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1577 { 1578 return p->se.cfs_rq; 1579 } 1580 1581 /* runqueue on which this entity is (to be) queued */ 1582 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1583 { 1584 return se->cfs_rq; 1585 } 1586 1587 /* runqueue "owned" by this group */ 1588 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1589 { 1590 return grp->my_q; 1591 } 1592 1593 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1594 1595 #define task_of(_se) container_of(_se, struct task_struct, se) 1596 1597 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1598 { 1599 return &task_rq(p)->cfs; 1600 } 1601 1602 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1603 { 1604 const struct task_struct *p = task_of(se); 1605 struct rq *rq = task_rq(p); 1606 1607 return &rq->cfs; 1608 } 1609 1610 /* runqueue "owned" by this group */ 1611 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1612 { 1613 return NULL; 1614 } 1615 1616 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1617 1618 extern void update_rq_clock(struct rq *rq); 1619 1620 /* 1621 * rq::clock_update_flags bits 1622 * 1623 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1624 * call to __schedule(). This is an optimisation to avoid 1625 * neighbouring rq clock updates. 1626 * 1627 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1628 * in effect and calls to update_rq_clock() are being ignored. 1629 * 1630 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1631 * made to update_rq_clock() since the last time rq::lock was pinned. 1632 * 1633 * If inside of __schedule(), clock_update_flags will have been 1634 * shifted left (a left shift is a cheap operation for the fast path 1635 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1636 * 1637 * if (rq-clock_update_flags >= RQCF_UPDATED) 1638 * 1639 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1640 * one position though, because the next rq_unpin_lock() will shift it 1641 * back. 1642 */ 1643 #define RQCF_REQ_SKIP 0x01 1644 #define RQCF_ACT_SKIP 0x02 1645 #define RQCF_UPDATED 0x04 1646 1647 static inline void assert_clock_updated(struct rq *rq) 1648 { 1649 /* 1650 * The only reason for not seeing a clock update since the 1651 * last rq_pin_lock() is if we're currently skipping updates. 1652 */ 1653 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1654 } 1655 1656 static inline u64 rq_clock(struct rq *rq) 1657 { 1658 lockdep_assert_rq_held(rq); 1659 assert_clock_updated(rq); 1660 1661 return rq->clock; 1662 } 1663 1664 static inline u64 rq_clock_task(struct rq *rq) 1665 { 1666 lockdep_assert_rq_held(rq); 1667 assert_clock_updated(rq); 1668 1669 return rq->clock_task; 1670 } 1671 1672 static inline void rq_clock_skip_update(struct rq *rq) 1673 { 1674 lockdep_assert_rq_held(rq); 1675 rq->clock_update_flags |= RQCF_REQ_SKIP; 1676 } 1677 1678 /* 1679 * See rt task throttling, which is the only time a skip 1680 * request is canceled. 1681 */ 1682 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1683 { 1684 lockdep_assert_rq_held(rq); 1685 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1686 } 1687 1688 /* 1689 * During cpu offlining and rq wide unthrottling, we can trigger 1690 * an update_rq_clock() for several cfs and rt runqueues (Typically 1691 * when using list_for_each_entry_*) 1692 * rq_clock_start_loop_update() can be called after updating the clock 1693 * once and before iterating over the list to prevent multiple update. 1694 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1695 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1696 */ 1697 static inline void rq_clock_start_loop_update(struct rq *rq) 1698 { 1699 lockdep_assert_rq_held(rq); 1700 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1701 rq->clock_update_flags |= RQCF_ACT_SKIP; 1702 } 1703 1704 static inline void rq_clock_stop_loop_update(struct rq *rq) 1705 { 1706 lockdep_assert_rq_held(rq); 1707 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1708 } 1709 1710 struct rq_flags { 1711 unsigned long flags; 1712 struct pin_cookie cookie; 1713 /* 1714 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1715 * current pin context is stashed here in case it needs to be 1716 * restored in rq_repin_lock(). 1717 */ 1718 unsigned int clock_update_flags; 1719 }; 1720 1721 extern struct balance_callback balance_push_callback; 1722 1723 #ifdef CONFIG_SCHED_CLASS_EXT 1724 extern const struct sched_class ext_sched_class; 1725 1726 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1727 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1728 1729 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1730 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1731 1732 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1733 { 1734 if (!scx_enabled()) 1735 return; 1736 WRITE_ONCE(rq->scx.clock, clock); 1737 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1738 } 1739 1740 static inline void scx_rq_clock_invalidate(struct rq *rq) 1741 { 1742 if (!scx_enabled()) 1743 return; 1744 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1745 } 1746 1747 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1748 #define scx_enabled() false 1749 #define scx_switched_all() false 1750 1751 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1752 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1753 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1754 1755 /* 1756 * Lockdep annotation that avoids accidental unlocks; it's like a 1757 * sticky/continuous lockdep_assert_held(). 1758 * 1759 * This avoids code that has access to 'struct rq *rq' (basically everything in 1760 * the scheduler) from accidentally unlocking the rq if they do not also have a 1761 * copy of the (on-stack) 'struct rq_flags rf'. 1762 * 1763 * Also see Documentation/locking/lockdep-design.rst. 1764 */ 1765 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1766 { 1767 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1768 1769 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1770 rf->clock_update_flags = 0; 1771 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1772 } 1773 1774 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1775 { 1776 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1777 rf->clock_update_flags = RQCF_UPDATED; 1778 1779 scx_rq_clock_invalidate(rq); 1780 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1781 } 1782 1783 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1784 { 1785 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1786 1787 /* 1788 * Restore the value we stashed in @rf for this pin context. 1789 */ 1790 rq->clock_update_flags |= rf->clock_update_flags; 1791 } 1792 1793 extern 1794 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1795 __acquires(rq->lock); 1796 1797 extern 1798 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1799 __acquires(p->pi_lock) 1800 __acquires(rq->lock); 1801 1802 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1803 __releases(rq->lock) 1804 { 1805 rq_unpin_lock(rq, rf); 1806 raw_spin_rq_unlock(rq); 1807 } 1808 1809 static inline void 1810 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1811 __releases(rq->lock) 1812 __releases(p->pi_lock) 1813 { 1814 rq_unpin_lock(rq, rf); 1815 raw_spin_rq_unlock(rq); 1816 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1817 } 1818 1819 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1820 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1821 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1822 struct rq *rq; struct rq_flags rf) 1823 1824 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1825 __acquires(rq->lock) 1826 { 1827 raw_spin_rq_lock_irqsave(rq, rf->flags); 1828 rq_pin_lock(rq, rf); 1829 } 1830 1831 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1832 __acquires(rq->lock) 1833 { 1834 raw_spin_rq_lock_irq(rq); 1835 rq_pin_lock(rq, rf); 1836 } 1837 1838 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1839 __acquires(rq->lock) 1840 { 1841 raw_spin_rq_lock(rq); 1842 rq_pin_lock(rq, rf); 1843 } 1844 1845 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1846 __releases(rq->lock) 1847 { 1848 rq_unpin_lock(rq, rf); 1849 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1850 } 1851 1852 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1853 __releases(rq->lock) 1854 { 1855 rq_unpin_lock(rq, rf); 1856 raw_spin_rq_unlock_irq(rq); 1857 } 1858 1859 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1860 __releases(rq->lock) 1861 { 1862 rq_unpin_lock(rq, rf); 1863 raw_spin_rq_unlock(rq); 1864 } 1865 1866 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1867 rq_lock(_T->lock, &_T->rf), 1868 rq_unlock(_T->lock, &_T->rf), 1869 struct rq_flags rf) 1870 1871 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1872 rq_lock_irq(_T->lock, &_T->rf), 1873 rq_unlock_irq(_T->lock, &_T->rf), 1874 struct rq_flags rf) 1875 1876 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1877 rq_lock_irqsave(_T->lock, &_T->rf), 1878 rq_unlock_irqrestore(_T->lock, &_T->rf), 1879 struct rq_flags rf) 1880 1881 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1882 __acquires(rq->lock) 1883 { 1884 struct rq *rq; 1885 1886 local_irq_disable(); 1887 rq = this_rq(); 1888 rq_lock(rq, rf); 1889 1890 return rq; 1891 } 1892 1893 #ifdef CONFIG_NUMA 1894 1895 enum numa_topology_type { 1896 NUMA_DIRECT, 1897 NUMA_GLUELESS_MESH, 1898 NUMA_BACKPLANE, 1899 }; 1900 1901 extern enum numa_topology_type sched_numa_topology_type; 1902 extern int sched_max_numa_distance; 1903 extern bool find_numa_distance(int distance); 1904 extern void sched_init_numa(int offline_node); 1905 extern void sched_update_numa(int cpu, bool online); 1906 extern void sched_domains_numa_masks_set(unsigned int cpu); 1907 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1908 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1909 1910 #else /* !CONFIG_NUMA: */ 1911 1912 static inline void sched_init_numa(int offline_node) { } 1913 static inline void sched_update_numa(int cpu, bool online) { } 1914 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1915 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1916 1917 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1918 { 1919 return nr_cpu_ids; 1920 } 1921 1922 #endif /* !CONFIG_NUMA */ 1923 1924 #ifdef CONFIG_NUMA_BALANCING 1925 1926 /* The regions in numa_faults array from task_struct */ 1927 enum numa_faults_stats { 1928 NUMA_MEM = 0, 1929 NUMA_CPU, 1930 NUMA_MEMBUF, 1931 NUMA_CPUBUF 1932 }; 1933 1934 extern void sched_setnuma(struct task_struct *p, int node); 1935 extern int migrate_task_to(struct task_struct *p, int cpu); 1936 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1937 int cpu, int scpu); 1938 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1939 1940 #else /* !CONFIG_NUMA_BALANCING: */ 1941 1942 static inline void 1943 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1944 { 1945 } 1946 1947 #endif /* !CONFIG_NUMA_BALANCING */ 1948 1949 static inline void 1950 queue_balance_callback(struct rq *rq, 1951 struct balance_callback *head, 1952 void (*func)(struct rq *rq)) 1953 { 1954 lockdep_assert_rq_held(rq); 1955 1956 /* 1957 * Don't (re)queue an already queued item; nor queue anything when 1958 * balance_push() is active, see the comment with 1959 * balance_push_callback. 1960 */ 1961 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1962 return; 1963 1964 head->func = func; 1965 head->next = rq->balance_callback; 1966 rq->balance_callback = head; 1967 } 1968 1969 #define rcu_dereference_check_sched_domain(p) \ 1970 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1971 1972 /* 1973 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1974 * See destroy_sched_domains: call_rcu for details. 1975 * 1976 * The domain tree of any CPU may only be accessed from within 1977 * preempt-disabled sections. 1978 */ 1979 #define for_each_domain(cpu, __sd) \ 1980 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1981 __sd; __sd = __sd->parent) 1982 1983 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1984 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1985 static const unsigned int SD_SHARED_CHILD_MASK = 1986 #include <linux/sched/sd_flags.h> 1987 0; 1988 #undef SD_FLAG 1989 1990 /** 1991 * highest_flag_domain - Return highest sched_domain containing flag. 1992 * @cpu: The CPU whose highest level of sched domain is to 1993 * be returned. 1994 * @flag: The flag to check for the highest sched_domain 1995 * for the given CPU. 1996 * 1997 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1998 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1999 */ 2000 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2001 { 2002 struct sched_domain *sd, *hsd = NULL; 2003 2004 for_each_domain(cpu, sd) { 2005 if (sd->flags & flag) { 2006 hsd = sd; 2007 continue; 2008 } 2009 2010 /* 2011 * Stop the search if @flag is known to be shared at lower 2012 * levels. It will not be found further up. 2013 */ 2014 if (flag & SD_SHARED_CHILD_MASK) 2015 break; 2016 } 2017 2018 return hsd; 2019 } 2020 2021 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2022 { 2023 struct sched_domain *sd; 2024 2025 for_each_domain(cpu, sd) { 2026 if (sd->flags & flag) 2027 break; 2028 } 2029 2030 return sd; 2031 } 2032 2033 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2034 DECLARE_PER_CPU(int, sd_llc_size); 2035 DECLARE_PER_CPU(int, sd_llc_id); 2036 DECLARE_PER_CPU(int, sd_share_id); 2037 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2038 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2039 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2040 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2041 2042 extern struct static_key_false sched_asym_cpucapacity; 2043 extern struct static_key_false sched_cluster_active; 2044 2045 static __always_inline bool sched_asym_cpucap_active(void) 2046 { 2047 return static_branch_unlikely(&sched_asym_cpucapacity); 2048 } 2049 2050 struct sched_group_capacity { 2051 atomic_t ref; 2052 /* 2053 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2054 * for a single CPU. 2055 */ 2056 unsigned long capacity; 2057 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2058 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2059 unsigned long next_update; 2060 int imbalance; /* XXX unrelated to capacity but shared group state */ 2061 2062 int id; 2063 2064 unsigned long cpumask[]; /* Balance mask */ 2065 }; 2066 2067 struct sched_group { 2068 struct sched_group *next; /* Must be a circular list */ 2069 atomic_t ref; 2070 2071 unsigned int group_weight; 2072 unsigned int cores; 2073 struct sched_group_capacity *sgc; 2074 int asym_prefer_cpu; /* CPU of highest priority in group */ 2075 int flags; 2076 2077 /* 2078 * The CPUs this group covers. 2079 * 2080 * NOTE: this field is variable length. (Allocated dynamically 2081 * by attaching extra space to the end of the structure, 2082 * depending on how many CPUs the kernel has booted up with) 2083 */ 2084 unsigned long cpumask[]; 2085 }; 2086 2087 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2088 { 2089 return to_cpumask(sg->cpumask); 2090 } 2091 2092 /* 2093 * See build_balance_mask(). 2094 */ 2095 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2096 { 2097 return to_cpumask(sg->sgc->cpumask); 2098 } 2099 2100 extern int group_balance_cpu(struct sched_group *sg); 2101 2102 extern void update_sched_domain_debugfs(void); 2103 extern void dirty_sched_domain_sysctl(int cpu); 2104 2105 extern int sched_update_scaling(void); 2106 2107 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2108 { 2109 if (!p->user_cpus_ptr) 2110 return cpu_possible_mask; /* &init_task.cpus_mask */ 2111 return p->user_cpus_ptr; 2112 } 2113 2114 #ifdef CONFIG_CGROUP_SCHED 2115 2116 /* 2117 * Return the group to which this tasks belongs. 2118 * 2119 * We cannot use task_css() and friends because the cgroup subsystem 2120 * changes that value before the cgroup_subsys::attach() method is called, 2121 * therefore we cannot pin it and might observe the wrong value. 2122 * 2123 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2124 * core changes this before calling sched_move_task(). 2125 * 2126 * Instead we use a 'copy' which is updated from sched_move_task() while 2127 * holding both task_struct::pi_lock and rq::lock. 2128 */ 2129 static inline struct task_group *task_group(struct task_struct *p) 2130 { 2131 return p->sched_task_group; 2132 } 2133 2134 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2135 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2136 { 2137 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2138 struct task_group *tg = task_group(p); 2139 #endif 2140 2141 #ifdef CONFIG_FAIR_GROUP_SCHED 2142 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2143 p->se.cfs_rq = tg->cfs_rq[cpu]; 2144 p->se.parent = tg->se[cpu]; 2145 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2146 #endif 2147 2148 #ifdef CONFIG_RT_GROUP_SCHED 2149 /* 2150 * p->rt.rt_rq is NULL initially and it is easier to assign 2151 * root_task_group's rt_rq than switching in rt_rq_of_se() 2152 * Clobbers tg(!) 2153 */ 2154 if (!rt_group_sched_enabled()) 2155 tg = &root_task_group; 2156 p->rt.rt_rq = tg->rt_rq[cpu]; 2157 p->rt.parent = tg->rt_se[cpu]; 2158 #endif /* CONFIG_RT_GROUP_SCHED */ 2159 } 2160 2161 #else /* !CONFIG_CGROUP_SCHED: */ 2162 2163 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2164 2165 static inline struct task_group *task_group(struct task_struct *p) 2166 { 2167 return NULL; 2168 } 2169 2170 #endif /* !CONFIG_CGROUP_SCHED */ 2171 2172 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2173 { 2174 set_task_rq(p, cpu); 2175 #ifdef CONFIG_SMP 2176 /* 2177 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2178 * successfully executed on another CPU. We must ensure that updates of 2179 * per-task data have been completed by this moment. 2180 */ 2181 smp_wmb(); 2182 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2183 p->wake_cpu = cpu; 2184 #endif /* CONFIG_SMP */ 2185 } 2186 2187 /* 2188 * Tunables: 2189 */ 2190 2191 #define SCHED_FEAT(name, enabled) \ 2192 __SCHED_FEAT_##name , 2193 2194 enum { 2195 #include "features.h" 2196 __SCHED_FEAT_NR, 2197 }; 2198 2199 #undef SCHED_FEAT 2200 2201 /* 2202 * To support run-time toggling of sched features, all the translation units 2203 * (but core.c) reference the sysctl_sched_features defined in core.c. 2204 */ 2205 extern __read_mostly unsigned int sysctl_sched_features; 2206 2207 #ifdef CONFIG_JUMP_LABEL 2208 2209 #define SCHED_FEAT(name, enabled) \ 2210 static __always_inline bool static_branch_##name(struct static_key *key) \ 2211 { \ 2212 return static_key_##enabled(key); \ 2213 } 2214 2215 #include "features.h" 2216 #undef SCHED_FEAT 2217 2218 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2219 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2220 2221 #else /* !CONFIG_JUMP_LABEL: */ 2222 2223 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2224 2225 #endif /* !CONFIG_JUMP_LABEL */ 2226 2227 extern struct static_key_false sched_numa_balancing; 2228 extern struct static_key_false sched_schedstats; 2229 2230 static inline u64 global_rt_period(void) 2231 { 2232 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2233 } 2234 2235 static inline u64 global_rt_runtime(void) 2236 { 2237 if (sysctl_sched_rt_runtime < 0) 2238 return RUNTIME_INF; 2239 2240 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2241 } 2242 2243 /* 2244 * Is p the current execution context? 2245 */ 2246 static inline int task_current(struct rq *rq, struct task_struct *p) 2247 { 2248 return rq->curr == p; 2249 } 2250 2251 /* 2252 * Is p the current scheduling context? 2253 * 2254 * Note that it might be the current execution context at the same time if 2255 * rq->curr == rq->donor == p. 2256 */ 2257 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2258 { 2259 return rq->donor == p; 2260 } 2261 2262 static inline bool task_is_blocked(struct task_struct *p) 2263 { 2264 if (!sched_proxy_exec()) 2265 return false; 2266 2267 return !!p->blocked_on; 2268 } 2269 2270 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2271 { 2272 return p->on_cpu; 2273 } 2274 2275 static inline int task_on_rq_queued(struct task_struct *p) 2276 { 2277 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2278 } 2279 2280 static inline int task_on_rq_migrating(struct task_struct *p) 2281 { 2282 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2283 } 2284 2285 /* Wake flags. The first three directly map to some SD flag value */ 2286 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2287 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2288 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2289 2290 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2291 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2292 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2293 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2294 2295 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2296 static_assert(WF_FORK == SD_BALANCE_FORK); 2297 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2298 2299 /* 2300 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2301 * of tasks with abnormal "nice" values across CPUs the contribution that 2302 * each task makes to its run queue's load is weighted according to its 2303 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2304 * scaled version of the new time slice allocation that they receive on time 2305 * slice expiry etc. 2306 */ 2307 2308 #define WEIGHT_IDLEPRIO 3 2309 #define WMULT_IDLEPRIO 1431655765 2310 2311 extern const int sched_prio_to_weight[40]; 2312 extern const u32 sched_prio_to_wmult[40]; 2313 2314 /* 2315 * {de,en}queue flags: 2316 * 2317 * DEQUEUE_SLEEP - task is no longer runnable 2318 * ENQUEUE_WAKEUP - task just became runnable 2319 * 2320 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2321 * are in a known state which allows modification. Such pairs 2322 * should preserve as much state as possible. 2323 * 2324 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2325 * in the runqueue. 2326 * 2327 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2328 * 2329 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2330 * 2331 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2332 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2333 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2334 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2335 * 2336 */ 2337 2338 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2339 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2340 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2341 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2342 #define DEQUEUE_SPECIAL 0x10 2343 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2344 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2345 2346 #define ENQUEUE_WAKEUP 0x01 2347 #define ENQUEUE_RESTORE 0x02 2348 #define ENQUEUE_MOVE 0x04 2349 #define ENQUEUE_NOCLOCK 0x08 2350 2351 #define ENQUEUE_HEAD 0x10 2352 #define ENQUEUE_REPLENISH 0x20 2353 #define ENQUEUE_MIGRATED 0x40 2354 #define ENQUEUE_INITIAL 0x80 2355 #define ENQUEUE_MIGRATING 0x100 2356 #define ENQUEUE_DELAYED 0x200 2357 #define ENQUEUE_RQ_SELECTED 0x400 2358 2359 #define RETRY_TASK ((void *)-1UL) 2360 2361 struct affinity_context { 2362 const struct cpumask *new_mask; 2363 struct cpumask *user_mask; 2364 unsigned int flags; 2365 }; 2366 2367 extern s64 update_curr_common(struct rq *rq); 2368 2369 struct sched_class { 2370 2371 #ifdef CONFIG_UCLAMP_TASK 2372 int uclamp_enabled; 2373 #endif 2374 2375 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2376 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2377 void (*yield_task) (struct rq *rq); 2378 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2379 2380 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2381 2382 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2383 struct task_struct *(*pick_task)(struct rq *rq); 2384 /* 2385 * Optional! When implemented pick_next_task() should be equivalent to: 2386 * 2387 * next = pick_task(); 2388 * if (next) { 2389 * put_prev_task(prev); 2390 * set_next_task_first(next); 2391 * } 2392 */ 2393 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2394 2395 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2396 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2397 2398 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2399 2400 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2401 2402 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2403 2404 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2405 2406 void (*rq_online)(struct rq *rq); 2407 void (*rq_offline)(struct rq *rq); 2408 2409 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2410 2411 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2412 void (*task_fork)(struct task_struct *p); 2413 void (*task_dead)(struct task_struct *p); 2414 2415 /* 2416 * The switched_from() call is allowed to drop rq->lock, therefore we 2417 * cannot assume the switched_from/switched_to pair is serialized by 2418 * rq->lock. They are however serialized by p->pi_lock. 2419 */ 2420 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2421 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2422 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2423 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2424 const struct load_weight *lw); 2425 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2426 int oldprio); 2427 2428 unsigned int (*get_rr_interval)(struct rq *rq, 2429 struct task_struct *task); 2430 2431 void (*update_curr)(struct rq *rq); 2432 2433 #ifdef CONFIG_FAIR_GROUP_SCHED 2434 void (*task_change_group)(struct task_struct *p); 2435 #endif 2436 2437 #ifdef CONFIG_SCHED_CORE 2438 int (*task_is_throttled)(struct task_struct *p, int cpu); 2439 #endif 2440 }; 2441 2442 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2443 { 2444 WARN_ON_ONCE(rq->donor != prev); 2445 prev->sched_class->put_prev_task(rq, prev, NULL); 2446 } 2447 2448 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2449 { 2450 next->sched_class->set_next_task(rq, next, false); 2451 } 2452 2453 static inline void 2454 __put_prev_set_next_dl_server(struct rq *rq, 2455 struct task_struct *prev, 2456 struct task_struct *next) 2457 { 2458 prev->dl_server = NULL; 2459 next->dl_server = rq->dl_server; 2460 rq->dl_server = NULL; 2461 } 2462 2463 static inline void put_prev_set_next_task(struct rq *rq, 2464 struct task_struct *prev, 2465 struct task_struct *next) 2466 { 2467 WARN_ON_ONCE(rq->donor != prev); 2468 2469 __put_prev_set_next_dl_server(rq, prev, next); 2470 2471 if (next == prev) 2472 return; 2473 2474 prev->sched_class->put_prev_task(rq, prev, next); 2475 next->sched_class->set_next_task(rq, next, true); 2476 } 2477 2478 /* 2479 * Helper to define a sched_class instance; each one is placed in a separate 2480 * section which is ordered by the linker script: 2481 * 2482 * include/asm-generic/vmlinux.lds.h 2483 * 2484 * *CAREFUL* they are laid out in *REVERSE* order!!! 2485 * 2486 * Also enforce alignment on the instance, not the type, to guarantee layout. 2487 */ 2488 #define DEFINE_SCHED_CLASS(name) \ 2489 const struct sched_class name##_sched_class \ 2490 __aligned(__alignof__(struct sched_class)) \ 2491 __section("__" #name "_sched_class") 2492 2493 /* Defined in include/asm-generic/vmlinux.lds.h */ 2494 extern struct sched_class __sched_class_highest[]; 2495 extern struct sched_class __sched_class_lowest[]; 2496 2497 extern const struct sched_class stop_sched_class; 2498 extern const struct sched_class dl_sched_class; 2499 extern const struct sched_class rt_sched_class; 2500 extern const struct sched_class fair_sched_class; 2501 extern const struct sched_class idle_sched_class; 2502 2503 /* 2504 * Iterate only active classes. SCX can take over all fair tasks or be 2505 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2506 */ 2507 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2508 { 2509 class++; 2510 #ifdef CONFIG_SCHED_CLASS_EXT 2511 if (scx_switched_all() && class == &fair_sched_class) 2512 class++; 2513 if (!scx_enabled() && class == &ext_sched_class) 2514 class++; 2515 #endif 2516 return class; 2517 } 2518 2519 #define for_class_range(class, _from, _to) \ 2520 for (class = (_from); class < (_to); class++) 2521 2522 #define for_each_class(class) \ 2523 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2524 2525 #define for_active_class_range(class, _from, _to) \ 2526 for (class = (_from); class != (_to); class = next_active_class(class)) 2527 2528 #define for_each_active_class(class) \ 2529 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2530 2531 #define sched_class_above(_a, _b) ((_a) < (_b)) 2532 2533 static inline bool sched_stop_runnable(struct rq *rq) 2534 { 2535 return rq->stop && task_on_rq_queued(rq->stop); 2536 } 2537 2538 static inline bool sched_dl_runnable(struct rq *rq) 2539 { 2540 return rq->dl.dl_nr_running > 0; 2541 } 2542 2543 static inline bool sched_rt_runnable(struct rq *rq) 2544 { 2545 return rq->rt.rt_queued > 0; 2546 } 2547 2548 static inline bool sched_fair_runnable(struct rq *rq) 2549 { 2550 return rq->cfs.nr_queued > 0; 2551 } 2552 2553 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2554 extern struct task_struct *pick_task_idle(struct rq *rq); 2555 2556 #define SCA_CHECK 0x01 2557 #define SCA_MIGRATE_DISABLE 0x02 2558 #define SCA_MIGRATE_ENABLE 0x04 2559 #define SCA_USER 0x08 2560 2561 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2562 2563 extern void sched_balance_trigger(struct rq *rq); 2564 2565 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2566 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2567 2568 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2569 { 2570 /* When not in the task's cpumask, no point in looking further. */ 2571 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2572 return false; 2573 2574 /* Can @cpu run a user thread? */ 2575 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2576 return false; 2577 2578 return true; 2579 } 2580 2581 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2582 { 2583 /* 2584 * See do_set_cpus_allowed() above for the rcu_head usage. 2585 */ 2586 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2587 2588 return kmalloc_node(size, GFP_KERNEL, node); 2589 } 2590 2591 static inline struct task_struct *get_push_task(struct rq *rq) 2592 { 2593 struct task_struct *p = rq->donor; 2594 2595 lockdep_assert_rq_held(rq); 2596 2597 if (rq->push_busy) 2598 return NULL; 2599 2600 if (p->nr_cpus_allowed == 1) 2601 return NULL; 2602 2603 if (p->migration_disabled) 2604 return NULL; 2605 2606 rq->push_busy = true; 2607 return get_task_struct(p); 2608 } 2609 2610 extern int push_cpu_stop(void *arg); 2611 2612 #ifdef CONFIG_CPU_IDLE 2613 2614 static inline void idle_set_state(struct rq *rq, 2615 struct cpuidle_state *idle_state) 2616 { 2617 rq->idle_state = idle_state; 2618 } 2619 2620 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2621 { 2622 WARN_ON_ONCE(!rcu_read_lock_held()); 2623 2624 return rq->idle_state; 2625 } 2626 2627 #else /* !CONFIG_CPU_IDLE: */ 2628 2629 static inline void idle_set_state(struct rq *rq, 2630 struct cpuidle_state *idle_state) 2631 { 2632 } 2633 2634 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2635 { 2636 return NULL; 2637 } 2638 2639 #endif /* !CONFIG_CPU_IDLE */ 2640 2641 extern void schedule_idle(void); 2642 asmlinkage void schedule_user(void); 2643 2644 extern void sysrq_sched_debug_show(void); 2645 extern void sched_init_granularity(void); 2646 extern void update_max_interval(void); 2647 2648 extern void init_sched_dl_class(void); 2649 extern void init_sched_rt_class(void); 2650 extern void init_sched_fair_class(void); 2651 2652 extern void resched_curr(struct rq *rq); 2653 extern void resched_curr_lazy(struct rq *rq); 2654 extern void resched_cpu(int cpu); 2655 2656 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2657 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2658 2659 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2660 2661 #define BW_SHIFT 20 2662 #define BW_UNIT (1 << BW_SHIFT) 2663 #define RATIO_SHIFT 8 2664 #define MAX_BW_BITS (64 - BW_SHIFT) 2665 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2666 2667 extern unsigned long to_ratio(u64 period, u64 runtime); 2668 2669 extern void init_entity_runnable_average(struct sched_entity *se); 2670 extern void post_init_entity_util_avg(struct task_struct *p); 2671 2672 #ifdef CONFIG_NO_HZ_FULL 2673 extern bool sched_can_stop_tick(struct rq *rq); 2674 extern int __init sched_tick_offload_init(void); 2675 2676 /* 2677 * Tick may be needed by tasks in the runqueue depending on their policy and 2678 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2679 * nohz mode if necessary. 2680 */ 2681 static inline void sched_update_tick_dependency(struct rq *rq) 2682 { 2683 int cpu = cpu_of(rq); 2684 2685 if (!tick_nohz_full_cpu(cpu)) 2686 return; 2687 2688 if (sched_can_stop_tick(rq)) 2689 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2690 else 2691 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2692 } 2693 #else /* !CONFIG_NO_HZ_FULL: */ 2694 static inline int sched_tick_offload_init(void) { return 0; } 2695 static inline void sched_update_tick_dependency(struct rq *rq) { } 2696 #endif /* !CONFIG_NO_HZ_FULL */ 2697 2698 static inline void add_nr_running(struct rq *rq, unsigned count) 2699 { 2700 unsigned prev_nr = rq->nr_running; 2701 2702 rq->nr_running = prev_nr + count; 2703 if (trace_sched_update_nr_running_tp_enabled()) { 2704 call_trace_sched_update_nr_running(rq, count); 2705 } 2706 2707 if (prev_nr < 2 && rq->nr_running >= 2) 2708 set_rd_overloaded(rq->rd, 1); 2709 2710 sched_update_tick_dependency(rq); 2711 } 2712 2713 static inline void sub_nr_running(struct rq *rq, unsigned count) 2714 { 2715 rq->nr_running -= count; 2716 if (trace_sched_update_nr_running_tp_enabled()) { 2717 call_trace_sched_update_nr_running(rq, -count); 2718 } 2719 2720 /* Check if we still need preemption */ 2721 sched_update_tick_dependency(rq); 2722 } 2723 2724 static inline void __block_task(struct rq *rq, struct task_struct *p) 2725 { 2726 if (p->sched_contributes_to_load) 2727 rq->nr_uninterruptible++; 2728 2729 if (p->in_iowait) { 2730 atomic_inc(&rq->nr_iowait); 2731 delayacct_blkio_start(); 2732 } 2733 2734 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2735 2736 /* 2737 * The moment this write goes through, ttwu() can swoop in and migrate 2738 * this task, rendering our rq->__lock ineffective. 2739 * 2740 * __schedule() try_to_wake_up() 2741 * LOCK rq->__lock LOCK p->pi_lock 2742 * pick_next_task() 2743 * pick_next_task_fair() 2744 * pick_next_entity() 2745 * dequeue_entities() 2746 * __block_task() 2747 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2748 * break; 2749 * 2750 * ACQUIRE (after ctrl-dep) 2751 * 2752 * cpu = select_task_rq(); 2753 * set_task_cpu(p, cpu); 2754 * ttwu_queue() 2755 * ttwu_do_activate() 2756 * LOCK rq->__lock 2757 * activate_task() 2758 * STORE p->on_rq = 1 2759 * UNLOCK rq->__lock 2760 * 2761 * Callers must ensure to not reference @p after this -- we no longer 2762 * own it. 2763 */ 2764 smp_store_release(&p->on_rq, 0); 2765 } 2766 2767 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2768 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2769 2770 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2771 2772 #ifdef CONFIG_PREEMPT_RT 2773 # define SCHED_NR_MIGRATE_BREAK 8 2774 #else 2775 # define SCHED_NR_MIGRATE_BREAK 32 2776 #endif 2777 2778 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2779 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2780 2781 extern unsigned int sysctl_sched_base_slice; 2782 2783 extern int sysctl_resched_latency_warn_ms; 2784 extern int sysctl_resched_latency_warn_once; 2785 2786 extern unsigned int sysctl_sched_tunable_scaling; 2787 2788 extern unsigned int sysctl_numa_balancing_scan_delay; 2789 extern unsigned int sysctl_numa_balancing_scan_period_min; 2790 extern unsigned int sysctl_numa_balancing_scan_period_max; 2791 extern unsigned int sysctl_numa_balancing_scan_size; 2792 extern unsigned int sysctl_numa_balancing_hot_threshold; 2793 2794 #ifdef CONFIG_SCHED_HRTICK 2795 2796 /* 2797 * Use hrtick when: 2798 * - enabled by features 2799 * - hrtimer is actually high res 2800 */ 2801 static inline int hrtick_enabled(struct rq *rq) 2802 { 2803 if (!cpu_active(cpu_of(rq))) 2804 return 0; 2805 return hrtimer_is_hres_active(&rq->hrtick_timer); 2806 } 2807 2808 static inline int hrtick_enabled_fair(struct rq *rq) 2809 { 2810 if (!sched_feat(HRTICK)) 2811 return 0; 2812 return hrtick_enabled(rq); 2813 } 2814 2815 static inline int hrtick_enabled_dl(struct rq *rq) 2816 { 2817 if (!sched_feat(HRTICK_DL)) 2818 return 0; 2819 return hrtick_enabled(rq); 2820 } 2821 2822 extern void hrtick_start(struct rq *rq, u64 delay); 2823 2824 #else /* !CONFIG_SCHED_HRTICK: */ 2825 2826 static inline int hrtick_enabled_fair(struct rq *rq) 2827 { 2828 return 0; 2829 } 2830 2831 static inline int hrtick_enabled_dl(struct rq *rq) 2832 { 2833 return 0; 2834 } 2835 2836 static inline int hrtick_enabled(struct rq *rq) 2837 { 2838 return 0; 2839 } 2840 2841 #endif /* !CONFIG_SCHED_HRTICK */ 2842 2843 #ifndef arch_scale_freq_tick 2844 static __always_inline void arch_scale_freq_tick(void) { } 2845 #endif 2846 2847 #ifndef arch_scale_freq_capacity 2848 /** 2849 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2850 * @cpu: the CPU in question. 2851 * 2852 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2853 * 2854 * f_curr 2855 * ------ * SCHED_CAPACITY_SCALE 2856 * f_max 2857 */ 2858 static __always_inline 2859 unsigned long arch_scale_freq_capacity(int cpu) 2860 { 2861 return SCHED_CAPACITY_SCALE; 2862 } 2863 #endif 2864 2865 /* 2866 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2867 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2868 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2869 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2870 */ 2871 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2872 { 2873 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2874 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2875 } 2876 2877 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2878 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2879 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2880 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2881 _lock; return _t; } 2882 2883 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2884 { 2885 #ifdef CONFIG_SCHED_CORE 2886 /* 2887 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2888 * order by core-id first and cpu-id second. 2889 * 2890 * Notably: 2891 * 2892 * double_rq_lock(0,3); will take core-0, core-1 lock 2893 * double_rq_lock(1,2); will take core-1, core-0 lock 2894 * 2895 * when only cpu-id is considered. 2896 */ 2897 if (rq1->core->cpu < rq2->core->cpu) 2898 return true; 2899 if (rq1->core->cpu > rq2->core->cpu) 2900 return false; 2901 2902 /* 2903 * __sched_core_flip() relies on SMT having cpu-id lock order. 2904 */ 2905 #endif /* CONFIG_SCHED_CORE */ 2906 return rq1->cpu < rq2->cpu; 2907 } 2908 2909 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2910 2911 #ifdef CONFIG_PREEMPTION 2912 2913 /* 2914 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2915 * way at the expense of forcing extra atomic operations in all 2916 * invocations. This assures that the double_lock is acquired using the 2917 * same underlying policy as the spinlock_t on this architecture, which 2918 * reduces latency compared to the unfair variant below. However, it 2919 * also adds more overhead and therefore may reduce throughput. 2920 */ 2921 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2922 __releases(this_rq->lock) 2923 __acquires(busiest->lock) 2924 __acquires(this_rq->lock) 2925 { 2926 raw_spin_rq_unlock(this_rq); 2927 double_rq_lock(this_rq, busiest); 2928 2929 return 1; 2930 } 2931 2932 #else /* !CONFIG_PREEMPTION: */ 2933 /* 2934 * Unfair double_lock_balance: Optimizes throughput at the expense of 2935 * latency by eliminating extra atomic operations when the locks are 2936 * already in proper order on entry. This favors lower CPU-ids and will 2937 * grant the double lock to lower CPUs over higher ids under contention, 2938 * regardless of entry order into the function. 2939 */ 2940 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2941 __releases(this_rq->lock) 2942 __acquires(busiest->lock) 2943 __acquires(this_rq->lock) 2944 { 2945 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2946 likely(raw_spin_rq_trylock(busiest))) { 2947 double_rq_clock_clear_update(this_rq, busiest); 2948 return 0; 2949 } 2950 2951 if (rq_order_less(this_rq, busiest)) { 2952 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2953 double_rq_clock_clear_update(this_rq, busiest); 2954 return 0; 2955 } 2956 2957 raw_spin_rq_unlock(this_rq); 2958 double_rq_lock(this_rq, busiest); 2959 2960 return 1; 2961 } 2962 2963 #endif /* !CONFIG_PREEMPTION */ 2964 2965 /* 2966 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2967 */ 2968 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2969 { 2970 lockdep_assert_irqs_disabled(); 2971 2972 return _double_lock_balance(this_rq, busiest); 2973 } 2974 2975 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2976 __releases(busiest->lock) 2977 { 2978 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2979 raw_spin_rq_unlock(busiest); 2980 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2981 } 2982 2983 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2984 { 2985 if (l1 > l2) 2986 swap(l1, l2); 2987 2988 spin_lock(l1); 2989 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2990 } 2991 2992 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2993 { 2994 if (l1 > l2) 2995 swap(l1, l2); 2996 2997 spin_lock_irq(l1); 2998 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2999 } 3000 3001 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3002 { 3003 if (l1 > l2) 3004 swap(l1, l2); 3005 3006 raw_spin_lock(l1); 3007 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3008 } 3009 3010 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3011 { 3012 raw_spin_unlock(l1); 3013 raw_spin_unlock(l2); 3014 } 3015 3016 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3017 double_raw_lock(_T->lock, _T->lock2), 3018 double_raw_unlock(_T->lock, _T->lock2)) 3019 3020 /* 3021 * double_rq_unlock - safely unlock two runqueues 3022 * 3023 * Note this does not restore interrupts like task_rq_unlock, 3024 * you need to do so manually after calling. 3025 */ 3026 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3027 __releases(rq1->lock) 3028 __releases(rq2->lock) 3029 { 3030 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3031 raw_spin_rq_unlock(rq2); 3032 else 3033 __release(rq2->lock); 3034 raw_spin_rq_unlock(rq1); 3035 } 3036 3037 extern void set_rq_online (struct rq *rq); 3038 extern void set_rq_offline(struct rq *rq); 3039 3040 extern bool sched_smp_initialized; 3041 3042 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3043 double_rq_lock(_T->lock, _T->lock2), 3044 double_rq_unlock(_T->lock, _T->lock2)) 3045 3046 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3047 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3048 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3049 3050 extern bool sched_debug_verbose; 3051 3052 extern void print_cfs_stats(struct seq_file *m, int cpu); 3053 extern void print_rt_stats(struct seq_file *m, int cpu); 3054 extern void print_dl_stats(struct seq_file *m, int cpu); 3055 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3056 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3057 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3058 3059 extern void resched_latency_warn(int cpu, u64 latency); 3060 3061 #ifdef CONFIG_NUMA_BALANCING 3062 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3063 extern void 3064 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3065 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3066 #endif /* CONFIG_NUMA_BALANCING */ 3067 3068 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3069 extern void init_rt_rq(struct rt_rq *rt_rq); 3070 extern void init_dl_rq(struct dl_rq *dl_rq); 3071 3072 extern void cfs_bandwidth_usage_inc(void); 3073 extern void cfs_bandwidth_usage_dec(void); 3074 3075 #ifdef CONFIG_NO_HZ_COMMON 3076 3077 #define NOHZ_BALANCE_KICK_BIT 0 3078 #define NOHZ_STATS_KICK_BIT 1 3079 #define NOHZ_NEWILB_KICK_BIT 2 3080 #define NOHZ_NEXT_KICK_BIT 3 3081 3082 /* Run sched_balance_domains() */ 3083 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3084 /* Update blocked load */ 3085 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3086 /* Update blocked load when entering idle */ 3087 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3088 /* Update nohz.next_balance */ 3089 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3090 3091 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3092 3093 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3094 3095 extern void nohz_balance_exit_idle(struct rq *rq); 3096 #else /* !CONFIG_NO_HZ_COMMON: */ 3097 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3098 #endif /* !CONFIG_NO_HZ_COMMON */ 3099 3100 #ifdef CONFIG_NO_HZ_COMMON 3101 extern void nohz_run_idle_balance(int cpu); 3102 #else 3103 static inline void nohz_run_idle_balance(int cpu) { } 3104 #endif 3105 3106 #include "stats.h" 3107 3108 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3109 3110 extern void __sched_core_account_forceidle(struct rq *rq); 3111 3112 static inline void sched_core_account_forceidle(struct rq *rq) 3113 { 3114 if (schedstat_enabled()) 3115 __sched_core_account_forceidle(rq); 3116 } 3117 3118 extern void __sched_core_tick(struct rq *rq); 3119 3120 static inline void sched_core_tick(struct rq *rq) 3121 { 3122 if (sched_core_enabled(rq) && schedstat_enabled()) 3123 __sched_core_tick(rq); 3124 } 3125 3126 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3127 3128 static inline void sched_core_account_forceidle(struct rq *rq) { } 3129 3130 static inline void sched_core_tick(struct rq *rq) { } 3131 3132 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3133 3134 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3135 3136 struct irqtime { 3137 u64 total; 3138 u64 tick_delta; 3139 u64 irq_start_time; 3140 struct u64_stats_sync sync; 3141 }; 3142 3143 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3144 extern int sched_clock_irqtime; 3145 3146 static inline int irqtime_enabled(void) 3147 { 3148 return sched_clock_irqtime; 3149 } 3150 3151 /* 3152 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3153 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3154 * and never move forward. 3155 */ 3156 static inline u64 irq_time_read(int cpu) 3157 { 3158 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3159 unsigned int seq; 3160 u64 total; 3161 3162 do { 3163 seq = __u64_stats_fetch_begin(&irqtime->sync); 3164 total = irqtime->total; 3165 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3166 3167 return total; 3168 } 3169 3170 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3171 3172 static inline int irqtime_enabled(void) 3173 { 3174 return 0; 3175 } 3176 3177 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3178 3179 #ifdef CONFIG_CPU_FREQ 3180 3181 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3182 3183 /** 3184 * cpufreq_update_util - Take a note about CPU utilization changes. 3185 * @rq: Runqueue to carry out the update for. 3186 * @flags: Update reason flags. 3187 * 3188 * This function is called by the scheduler on the CPU whose utilization is 3189 * being updated. 3190 * 3191 * It can only be called from RCU-sched read-side critical sections. 3192 * 3193 * The way cpufreq is currently arranged requires it to evaluate the CPU 3194 * performance state (frequency/voltage) on a regular basis to prevent it from 3195 * being stuck in a completely inadequate performance level for too long. 3196 * That is not guaranteed to happen if the updates are only triggered from CFS 3197 * and DL, though, because they may not be coming in if only RT tasks are 3198 * active all the time (or there are RT tasks only). 3199 * 3200 * As a workaround for that issue, this function is called periodically by the 3201 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3202 * but that really is a band-aid. Going forward it should be replaced with 3203 * solutions targeted more specifically at RT tasks. 3204 */ 3205 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3206 { 3207 struct update_util_data *data; 3208 3209 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3210 cpu_of(rq))); 3211 if (data) 3212 data->func(data, rq_clock(rq), flags); 3213 } 3214 #else /* !CONFIG_CPU_FREQ: */ 3215 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3216 #endif /* !CONFIG_CPU_FREQ */ 3217 3218 #ifdef arch_scale_freq_capacity 3219 # ifndef arch_scale_freq_invariant 3220 # define arch_scale_freq_invariant() true 3221 # endif 3222 #else 3223 # define arch_scale_freq_invariant() false 3224 #endif 3225 3226 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3227 unsigned long *min, 3228 unsigned long *max); 3229 3230 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3231 unsigned long min, 3232 unsigned long max); 3233 3234 3235 /* 3236 * Verify the fitness of task @p to run on @cpu taking into account the 3237 * CPU original capacity and the runtime/deadline ratio of the task. 3238 * 3239 * The function will return true if the original capacity of @cpu is 3240 * greater than or equal to task's deadline density right shifted by 3241 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3242 */ 3243 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3244 { 3245 unsigned long cap = arch_scale_cpu_capacity(cpu); 3246 3247 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3248 } 3249 3250 static inline unsigned long cpu_bw_dl(struct rq *rq) 3251 { 3252 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3253 } 3254 3255 static inline unsigned long cpu_util_dl(struct rq *rq) 3256 { 3257 return READ_ONCE(rq->avg_dl.util_avg); 3258 } 3259 3260 3261 extern unsigned long cpu_util_cfs(int cpu); 3262 extern unsigned long cpu_util_cfs_boost(int cpu); 3263 3264 static inline unsigned long cpu_util_rt(struct rq *rq) 3265 { 3266 return READ_ONCE(rq->avg_rt.util_avg); 3267 } 3268 3269 #ifdef CONFIG_UCLAMP_TASK 3270 3271 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3272 3273 /* 3274 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3275 * by default in the fast path and only gets turned on once userspace performs 3276 * an operation that requires it. 3277 * 3278 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3279 * hence is active. 3280 */ 3281 static inline bool uclamp_is_used(void) 3282 { 3283 return static_branch_likely(&sched_uclamp_used); 3284 } 3285 3286 /* 3287 * Enabling static branches would get the cpus_read_lock(), 3288 * check whether uclamp_is_used before enable it to avoid always 3289 * calling cpus_read_lock(). Because we never disable this 3290 * static key once enable it. 3291 */ 3292 static inline void sched_uclamp_enable(void) 3293 { 3294 if (!uclamp_is_used()) 3295 static_branch_enable(&sched_uclamp_used); 3296 } 3297 3298 static inline unsigned long uclamp_rq_get(struct rq *rq, 3299 enum uclamp_id clamp_id) 3300 { 3301 return READ_ONCE(rq->uclamp[clamp_id].value); 3302 } 3303 3304 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3305 unsigned int value) 3306 { 3307 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3308 } 3309 3310 static inline bool uclamp_rq_is_idle(struct rq *rq) 3311 { 3312 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3313 } 3314 3315 /* Is the rq being capped/throttled by uclamp_max? */ 3316 static inline bool uclamp_rq_is_capped(struct rq *rq) 3317 { 3318 unsigned long rq_util; 3319 unsigned long max_util; 3320 3321 if (!uclamp_is_used()) 3322 return false; 3323 3324 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3325 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3326 3327 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3328 } 3329 3330 #define for_each_clamp_id(clamp_id) \ 3331 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3332 3333 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3334 3335 3336 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3337 { 3338 if (clamp_id == UCLAMP_MIN) 3339 return 0; 3340 return SCHED_CAPACITY_SCALE; 3341 } 3342 3343 /* Integer rounded range for each bucket */ 3344 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3345 3346 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3347 { 3348 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3349 } 3350 3351 static inline void 3352 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3353 { 3354 uc_se->value = value; 3355 uc_se->bucket_id = uclamp_bucket_id(value); 3356 uc_se->user_defined = user_defined; 3357 } 3358 3359 #else /* !CONFIG_UCLAMP_TASK: */ 3360 3361 static inline unsigned long 3362 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3363 { 3364 if (clamp_id == UCLAMP_MIN) 3365 return 0; 3366 3367 return SCHED_CAPACITY_SCALE; 3368 } 3369 3370 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3371 3372 static inline bool uclamp_is_used(void) 3373 { 3374 return false; 3375 } 3376 3377 static inline void sched_uclamp_enable(void) {} 3378 3379 static inline unsigned long 3380 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3381 { 3382 if (clamp_id == UCLAMP_MIN) 3383 return 0; 3384 3385 return SCHED_CAPACITY_SCALE; 3386 } 3387 3388 static inline void 3389 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3390 { 3391 } 3392 3393 static inline bool uclamp_rq_is_idle(struct rq *rq) 3394 { 3395 return false; 3396 } 3397 3398 #endif /* !CONFIG_UCLAMP_TASK */ 3399 3400 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3401 3402 static inline unsigned long cpu_util_irq(struct rq *rq) 3403 { 3404 return READ_ONCE(rq->avg_irq.util_avg); 3405 } 3406 3407 static inline 3408 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3409 { 3410 util *= (max - irq); 3411 util /= max; 3412 3413 return util; 3414 3415 } 3416 3417 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3418 3419 static inline unsigned long cpu_util_irq(struct rq *rq) 3420 { 3421 return 0; 3422 } 3423 3424 static inline 3425 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3426 { 3427 return util; 3428 } 3429 3430 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3431 3432 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3433 3434 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3435 3436 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3437 3438 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3439 3440 static inline bool sched_energy_enabled(void) 3441 { 3442 return static_branch_unlikely(&sched_energy_present); 3443 } 3444 3445 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3446 3447 #define perf_domain_span(pd) NULL 3448 3449 static inline bool sched_energy_enabled(void) { return false; } 3450 3451 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3452 3453 #ifdef CONFIG_MEMBARRIER 3454 3455 /* 3456 * The scheduler provides memory barriers required by membarrier between: 3457 * - prior user-space memory accesses and store to rq->membarrier_state, 3458 * - store to rq->membarrier_state and following user-space memory accesses. 3459 * In the same way it provides those guarantees around store to rq->curr. 3460 */ 3461 static inline void membarrier_switch_mm(struct rq *rq, 3462 struct mm_struct *prev_mm, 3463 struct mm_struct *next_mm) 3464 { 3465 int membarrier_state; 3466 3467 if (prev_mm == next_mm) 3468 return; 3469 3470 membarrier_state = atomic_read(&next_mm->membarrier_state); 3471 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3472 return; 3473 3474 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3475 } 3476 3477 #else /* !CONFIG_MEMBARRIER: */ 3478 3479 static inline void membarrier_switch_mm(struct rq *rq, 3480 struct mm_struct *prev_mm, 3481 struct mm_struct *next_mm) 3482 { 3483 } 3484 3485 #endif /* !CONFIG_MEMBARRIER */ 3486 3487 static inline bool is_per_cpu_kthread(struct task_struct *p) 3488 { 3489 if (!(p->flags & PF_KTHREAD)) 3490 return false; 3491 3492 if (p->nr_cpus_allowed != 1) 3493 return false; 3494 3495 return true; 3496 } 3497 3498 extern void swake_up_all_locked(struct swait_queue_head *q); 3499 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3500 3501 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3502 3503 #ifdef CONFIG_PREEMPT_DYNAMIC 3504 extern int preempt_dynamic_mode; 3505 extern int sched_dynamic_mode(const char *str); 3506 extern void sched_dynamic_update(int mode); 3507 #endif 3508 extern const char *preempt_modes[]; 3509 3510 #ifdef CONFIG_SCHED_MM_CID 3511 3512 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3513 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3514 3515 extern raw_spinlock_t cid_lock; 3516 extern int use_cid_lock; 3517 3518 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3519 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3520 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3521 extern void init_sched_mm_cid(struct task_struct *t); 3522 3523 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3524 { 3525 if (cid < 0) 3526 return; 3527 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3528 } 3529 3530 /* 3531 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3532 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3533 * be held to transition to other states. 3534 * 3535 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3536 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3537 */ 3538 static inline void mm_cid_put_lazy(struct task_struct *t) 3539 { 3540 struct mm_struct *mm = t->mm; 3541 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3542 int cid; 3543 3544 lockdep_assert_irqs_disabled(); 3545 cid = __this_cpu_read(pcpu_cid->cid); 3546 if (!mm_cid_is_lazy_put(cid) || 3547 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3548 return; 3549 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3550 } 3551 3552 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3553 { 3554 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3555 int cid, res; 3556 3557 lockdep_assert_irqs_disabled(); 3558 cid = __this_cpu_read(pcpu_cid->cid); 3559 for (;;) { 3560 if (mm_cid_is_unset(cid)) 3561 return MM_CID_UNSET; 3562 /* 3563 * Attempt transition from valid or lazy-put to unset. 3564 */ 3565 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3566 if (res == cid) 3567 break; 3568 cid = res; 3569 } 3570 return cid; 3571 } 3572 3573 static inline void mm_cid_put(struct mm_struct *mm) 3574 { 3575 int cid; 3576 3577 lockdep_assert_irqs_disabled(); 3578 cid = mm_cid_pcpu_unset(mm); 3579 if (cid == MM_CID_UNSET) 3580 return; 3581 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3582 } 3583 3584 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3585 { 3586 struct cpumask *cidmask = mm_cidmask(mm); 3587 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3588 int cid, max_nr_cid, allowed_max_nr_cid; 3589 3590 /* 3591 * After shrinking the number of threads or reducing the number 3592 * of allowed cpus, reduce the value of max_nr_cid so expansion 3593 * of cid allocation will preserve cache locality if the number 3594 * of threads or allowed cpus increase again. 3595 */ 3596 max_nr_cid = atomic_read(&mm->max_nr_cid); 3597 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3598 atomic_read(&mm->mm_users))), 3599 max_nr_cid > allowed_max_nr_cid) { 3600 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3601 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3602 max_nr_cid = allowed_max_nr_cid; 3603 break; 3604 } 3605 } 3606 /* Try to re-use recent cid. This improves cache locality. */ 3607 cid = __this_cpu_read(pcpu_cid->recent_cid); 3608 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3609 !cpumask_test_and_set_cpu(cid, cidmask)) 3610 return cid; 3611 /* 3612 * Expand cid allocation if the maximum number of concurrency 3613 * IDs allocated (max_nr_cid) is below the number cpus allowed 3614 * and number of threads. Expanding cid allocation as much as 3615 * possible improves cache locality. 3616 */ 3617 cid = max_nr_cid; 3618 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3619 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3620 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3621 continue; 3622 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3623 return cid; 3624 } 3625 /* 3626 * Find the first available concurrency id. 3627 * Retry finding first zero bit if the mask is temporarily 3628 * filled. This only happens during concurrent remote-clear 3629 * which owns a cid without holding a rq lock. 3630 */ 3631 for (;;) { 3632 cid = cpumask_first_zero(cidmask); 3633 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3634 break; 3635 cpu_relax(); 3636 } 3637 if (cpumask_test_and_set_cpu(cid, cidmask)) 3638 return -1; 3639 3640 return cid; 3641 } 3642 3643 /* 3644 * Save a snapshot of the current runqueue time of this cpu 3645 * with the per-cpu cid value, allowing to estimate how recently it was used. 3646 */ 3647 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3648 { 3649 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3650 3651 lockdep_assert_rq_held(rq); 3652 WRITE_ONCE(pcpu_cid->time, rq->clock); 3653 } 3654 3655 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3656 struct mm_struct *mm) 3657 { 3658 int cid; 3659 3660 /* 3661 * All allocations (even those using the cid_lock) are lock-free. If 3662 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3663 * guarantee forward progress. 3664 */ 3665 if (!READ_ONCE(use_cid_lock)) { 3666 cid = __mm_cid_try_get(t, mm); 3667 if (cid >= 0) 3668 goto end; 3669 raw_spin_lock(&cid_lock); 3670 } else { 3671 raw_spin_lock(&cid_lock); 3672 cid = __mm_cid_try_get(t, mm); 3673 if (cid >= 0) 3674 goto unlock; 3675 } 3676 3677 /* 3678 * cid concurrently allocated. Retry while forcing following 3679 * allocations to use the cid_lock to ensure forward progress. 3680 */ 3681 WRITE_ONCE(use_cid_lock, 1); 3682 /* 3683 * Set use_cid_lock before allocation. Only care about program order 3684 * because this is only required for forward progress. 3685 */ 3686 barrier(); 3687 /* 3688 * Retry until it succeeds. It is guaranteed to eventually succeed once 3689 * all newcoming allocations observe the use_cid_lock flag set. 3690 */ 3691 do { 3692 cid = __mm_cid_try_get(t, mm); 3693 cpu_relax(); 3694 } while (cid < 0); 3695 /* 3696 * Allocate before clearing use_cid_lock. Only care about 3697 * program order because this is for forward progress. 3698 */ 3699 barrier(); 3700 WRITE_ONCE(use_cid_lock, 0); 3701 unlock: 3702 raw_spin_unlock(&cid_lock); 3703 end: 3704 mm_cid_snapshot_time(rq, mm); 3705 3706 return cid; 3707 } 3708 3709 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3710 struct mm_struct *mm) 3711 { 3712 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3713 struct cpumask *cpumask; 3714 int cid; 3715 3716 lockdep_assert_rq_held(rq); 3717 cpumask = mm_cidmask(mm); 3718 cid = __this_cpu_read(pcpu_cid->cid); 3719 if (mm_cid_is_valid(cid)) { 3720 mm_cid_snapshot_time(rq, mm); 3721 return cid; 3722 } 3723 if (mm_cid_is_lazy_put(cid)) { 3724 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3725 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3726 } 3727 cid = __mm_cid_get(rq, t, mm); 3728 __this_cpu_write(pcpu_cid->cid, cid); 3729 __this_cpu_write(pcpu_cid->recent_cid, cid); 3730 3731 return cid; 3732 } 3733 3734 static inline void switch_mm_cid(struct rq *rq, 3735 struct task_struct *prev, 3736 struct task_struct *next) 3737 { 3738 /* 3739 * Provide a memory barrier between rq->curr store and load of 3740 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3741 * 3742 * Should be adapted if context_switch() is modified. 3743 */ 3744 if (!next->mm) { // to kernel 3745 /* 3746 * user -> kernel transition does not guarantee a barrier, but 3747 * we can use the fact that it performs an atomic operation in 3748 * mmgrab(). 3749 */ 3750 if (prev->mm) // from user 3751 smp_mb__after_mmgrab(); 3752 /* 3753 * kernel -> kernel transition does not change rq->curr->mm 3754 * state. It stays NULL. 3755 */ 3756 } else { // to user 3757 /* 3758 * kernel -> user transition does not provide a barrier 3759 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3760 * Provide it here. 3761 */ 3762 if (!prev->mm) { // from kernel 3763 smp_mb(); 3764 } else { // from user 3765 /* 3766 * user->user transition relies on an implicit 3767 * memory barrier in switch_mm() when 3768 * current->mm changes. If the architecture 3769 * switch_mm() does not have an implicit memory 3770 * barrier, it is emitted here. If current->mm 3771 * is unchanged, no barrier is needed. 3772 */ 3773 smp_mb__after_switch_mm(); 3774 } 3775 } 3776 if (prev->mm_cid_active) { 3777 mm_cid_snapshot_time(rq, prev->mm); 3778 mm_cid_put_lazy(prev); 3779 prev->mm_cid = -1; 3780 } 3781 if (next->mm_cid_active) 3782 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3783 } 3784 3785 #else /* !CONFIG_SCHED_MM_CID: */ 3786 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3787 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3788 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3789 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3790 static inline void init_sched_mm_cid(struct task_struct *t) { } 3791 #endif /* !CONFIG_SCHED_MM_CID */ 3792 3793 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3794 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3795 static inline 3796 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3797 { 3798 lockdep_assert_rq_held(src_rq); 3799 lockdep_assert_rq_held(dst_rq); 3800 3801 deactivate_task(src_rq, task, 0); 3802 set_task_cpu(task, dst_rq->cpu); 3803 activate_task(dst_rq, task, 0); 3804 } 3805 3806 static inline 3807 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3808 { 3809 if (!task_on_cpu(rq, p) && 3810 cpumask_test_cpu(cpu, &p->cpus_mask)) 3811 return true; 3812 3813 return false; 3814 } 3815 3816 #ifdef CONFIG_RT_MUTEXES 3817 3818 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3819 { 3820 if (pi_task) 3821 prio = min(prio, pi_task->prio); 3822 3823 return prio; 3824 } 3825 3826 static inline int rt_effective_prio(struct task_struct *p, int prio) 3827 { 3828 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3829 3830 return __rt_effective_prio(pi_task, prio); 3831 } 3832 3833 #else /* !CONFIG_RT_MUTEXES: */ 3834 3835 static inline int rt_effective_prio(struct task_struct *p, int prio) 3836 { 3837 return prio; 3838 } 3839 3840 #endif /* !CONFIG_RT_MUTEXES */ 3841 3842 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3843 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3844 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3845 extern void set_load_weight(struct task_struct *p, bool update_load); 3846 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3847 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3848 3849 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3850 const struct sched_class *prev_class); 3851 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3852 const struct sched_class *prev_class, 3853 int oldprio); 3854 3855 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3856 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3857 3858 #ifdef CONFIG_SCHED_CLASS_EXT 3859 /* 3860 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3861 * and establish invariants. 3862 */ 3863 struct sched_enq_and_set_ctx { 3864 struct task_struct *p; 3865 int queue_flags; 3866 bool queued; 3867 bool running; 3868 }; 3869 3870 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3871 struct sched_enq_and_set_ctx *ctx); 3872 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3873 3874 #endif /* CONFIG_SCHED_CLASS_EXT */ 3875 3876 #include "ext.h" 3877 3878 #endif /* _KERNEL_SCHED_SCHED_H */ 3879