1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166 }
167
free_devices(struct list_head * devices,struct mapped_device * md)168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180 }
181
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
dm_table_destroy(struct dm_table * t)184 void dm_table_destroy(struct dm_table *t)
185 {
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213 }
214
215 /*
216 * See if we've already got a device in the list.
217 */
find_device(struct list_head * l,dev_t dev)218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227 }
228
229 /*
230 * If possible, this checks an area of a destination device is invalid.
231 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234 {
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306 }
307
308 /*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316 {
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331 }
332
333 /*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
dm_devt_from_path(const char * path,dev_t * dev_p)337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354 #endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362
363 /*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369 {
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410 out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415 unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423 {
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452 }
453
454 /*
455 * Decrement a device's use count and remove it if necessary.
456 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483 unlock_ret:
484 up_write(&t->devices_lock);
485 }
486 EXPORT_SYMBOL(dm_put_device);
487
488 /*
489 * Checks to see if the target joins onto the end of the table.
490 */
adjoin(struct dm_table * t,struct dm_target * ti)491 static int adjoin(struct dm_table *t, struct dm_target *ti)
492 {
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500 }
501
502 /*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
realloc_argv(unsigned int * size,char ** old_argv)512 static char **realloc_argv(unsigned int *size, char **old_argv)
513 {
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533 }
534
535 /*
536 * Destructively splits up the argument list to pass to ctr.
537 */
dm_split_args(int * argc,char *** argvp,char * input)538 int dm_split_args(int *argc, char ***argvp, char *input)
539 {
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596 }
597
dm_set_stacking_limits(struct queue_limits * limits)598 static void dm_set_stacking_limits(struct queue_limits *limits)
599 {
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602 }
603
604 /*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)611 static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613 {
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676 }
677
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)678 int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680 {
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700 if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) {
701 DMERR("%s: too large device", dm_device_name(t->md));
702 return -EINVAL;
703 }
704
705 ti->type = dm_get_target_type(type);
706 if (!ti->type) {
707 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
708 return -EINVAL;
709 }
710
711 if (dm_target_needs_singleton(ti->type)) {
712 if (t->num_targets) {
713 ti->error = "singleton target type must appear alone in table";
714 goto bad;
715 }
716 t->singleton = true;
717 }
718
719 if (dm_target_always_writeable(ti->type) &&
720 !(t->mode & BLK_OPEN_WRITE)) {
721 ti->error = "target type may not be included in a read-only table";
722 goto bad;
723 }
724
725 if (t->immutable_target_type) {
726 if (t->immutable_target_type != ti->type) {
727 ti->error = "immutable target type cannot be mixed with other target types";
728 goto bad;
729 }
730 } else if (dm_target_is_immutable(ti->type)) {
731 if (t->num_targets) {
732 ti->error = "immutable target type cannot be mixed with other target types";
733 goto bad;
734 }
735 t->immutable_target_type = ti->type;
736 }
737
738 ti->table = t;
739 ti->begin = start;
740 ti->len = len;
741 ti->error = "Unknown error";
742
743 /*
744 * Does this target adjoin the previous one ?
745 */
746 if (!adjoin(t, ti)) {
747 ti->error = "Gap in table";
748 goto bad;
749 }
750
751 r = dm_split_args(&argc, &argv, params);
752 if (r) {
753 ti->error = "couldn't split parameters";
754 goto bad;
755 }
756
757 r = ti->type->ctr(ti, argc, argv);
758 kfree(argv);
759 if (r)
760 goto bad;
761
762 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
763
764 if (!ti->num_discard_bios && ti->discards_supported)
765 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
766 dm_device_name(t->md), type);
767
768 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
769 static_branch_enable(&swap_bios_enabled);
770
771 if (!ti->flush_bypasses_map)
772 t->flush_bypasses_map = false;
773
774 return 0;
775
776 bad:
777 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
778 dm_put_target_type(ti->type);
779 return r;
780 }
781
782 /*
783 * Target argument parsing helpers.
784 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)785 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
786 unsigned int *value, char **error, unsigned int grouped)
787 {
788 const char *arg_str = dm_shift_arg(arg_set);
789 char dummy;
790
791 if (!arg_str ||
792 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
793 (*value < arg->min) ||
794 (*value > arg->max) ||
795 (grouped && arg_set->argc < *value)) {
796 *error = arg->error;
797 return -EINVAL;
798 }
799
800 return 0;
801 }
802
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)803 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
804 unsigned int *value, char **error)
805 {
806 return validate_next_arg(arg, arg_set, value, error, 0);
807 }
808 EXPORT_SYMBOL(dm_read_arg);
809
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)810 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
811 unsigned int *value, char **error)
812 {
813 return validate_next_arg(arg, arg_set, value, error, 1);
814 }
815 EXPORT_SYMBOL(dm_read_arg_group);
816
dm_shift_arg(struct dm_arg_set * as)817 const char *dm_shift_arg(struct dm_arg_set *as)
818 {
819 char *r;
820
821 if (as->argc) {
822 as->argc--;
823 r = *as->argv;
824 as->argv++;
825 return r;
826 }
827
828 return NULL;
829 }
830 EXPORT_SYMBOL(dm_shift_arg);
831
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)832 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
833 {
834 BUG_ON(as->argc < num_args);
835 as->argc -= num_args;
836 as->argv += num_args;
837 }
838 EXPORT_SYMBOL(dm_consume_args);
839
__table_type_bio_based(enum dm_queue_mode table_type)840 static bool __table_type_bio_based(enum dm_queue_mode table_type)
841 {
842 return (table_type == DM_TYPE_BIO_BASED ||
843 table_type == DM_TYPE_DAX_BIO_BASED);
844 }
845
__table_type_request_based(enum dm_queue_mode table_type)846 static bool __table_type_request_based(enum dm_queue_mode table_type)
847 {
848 return table_type == DM_TYPE_REQUEST_BASED;
849 }
850
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)851 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
852 {
853 t->type = type;
854 }
855 EXPORT_SYMBOL_GPL(dm_table_set_type);
856
857 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)858 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
859 sector_t start, sector_t len, void *data)
860 {
861 if (dev->dax_dev)
862 return false;
863
864 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
865 return true;
866 }
867
868 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)869 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
870 sector_t start, sector_t len, void *data)
871 {
872 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
873 }
874
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)875 static bool dm_table_supports_dax(struct dm_table *t,
876 iterate_devices_callout_fn iterate_fn)
877 {
878 /* Ensure that all targets support DAX. */
879 for (unsigned int i = 0; i < t->num_targets; i++) {
880 struct dm_target *ti = dm_table_get_target(t, i);
881
882 if (!ti->type->direct_access)
883 return false;
884
885 if (dm_target_is_wildcard(ti->type) ||
886 !ti->type->iterate_devices ||
887 ti->type->iterate_devices(ti, iterate_fn, NULL))
888 return false;
889 }
890
891 return true;
892 }
893
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)894 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
895 sector_t start, sector_t len, void *data)
896 {
897 struct block_device *bdev = dev->bdev;
898 struct request_queue *q = bdev_get_queue(bdev);
899
900 /* request-based cannot stack on partitions! */
901 if (bdev_is_partition(bdev))
902 return false;
903
904 return queue_is_mq(q);
905 }
906
dm_table_determine_type(struct dm_table * t)907 static int dm_table_determine_type(struct dm_table *t)
908 {
909 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
910 struct dm_target *ti;
911 struct list_head *devices = dm_table_get_devices(t);
912 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
913
914 if (t->type != DM_TYPE_NONE) {
915 /* target already set the table's type */
916 if (t->type == DM_TYPE_BIO_BASED) {
917 /* possibly upgrade to a variant of bio-based */
918 goto verify_bio_based;
919 }
920 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
921 goto verify_rq_based;
922 }
923
924 for (unsigned int i = 0; i < t->num_targets; i++) {
925 ti = dm_table_get_target(t, i);
926 if (dm_target_hybrid(ti))
927 hybrid = 1;
928 else if (dm_target_request_based(ti))
929 request_based = 1;
930 else
931 bio_based = 1;
932
933 if (bio_based && request_based) {
934 DMERR("Inconsistent table: different target types can't be mixed up");
935 return -EINVAL;
936 }
937 }
938
939 if (hybrid && !bio_based && !request_based) {
940 /*
941 * The targets can work either way.
942 * Determine the type from the live device.
943 * Default to bio-based if device is new.
944 */
945 if (__table_type_request_based(live_md_type))
946 request_based = 1;
947 else
948 bio_based = 1;
949 }
950
951 if (bio_based) {
952 verify_bio_based:
953 /* We must use this table as bio-based */
954 t->type = DM_TYPE_BIO_BASED;
955 if (dm_table_supports_dax(t, device_not_dax_capable) ||
956 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
957 t->type = DM_TYPE_DAX_BIO_BASED;
958 }
959 return 0;
960 }
961
962 BUG_ON(!request_based); /* No targets in this table */
963
964 t->type = DM_TYPE_REQUEST_BASED;
965
966 verify_rq_based:
967 /*
968 * Request-based dm supports only tables that have a single target now.
969 * To support multiple targets, request splitting support is needed,
970 * and that needs lots of changes in the block-layer.
971 * (e.g. request completion process for partial completion.)
972 */
973 if (t->num_targets > 1) {
974 DMERR("request-based DM doesn't support multiple targets");
975 return -EINVAL;
976 }
977
978 if (list_empty(devices)) {
979 int srcu_idx;
980 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
981
982 /* inherit live table's type */
983 if (live_table)
984 t->type = live_table->type;
985 dm_put_live_table(t->md, srcu_idx);
986 return 0;
987 }
988
989 ti = dm_table_get_immutable_target(t);
990 if (!ti) {
991 DMERR("table load rejected: immutable target is required");
992 return -EINVAL;
993 } else if (ti->max_io_len) {
994 DMERR("table load rejected: immutable target that splits IO is not supported");
995 return -EINVAL;
996 }
997
998 /* Non-request-stackable devices can't be used for request-based dm */
999 if (!ti->type->iterate_devices ||
1000 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
1001 DMERR("table load rejected: including non-request-stackable devices");
1002 return -EINVAL;
1003 }
1004
1005 return 0;
1006 }
1007
dm_table_get_type(struct dm_table * t)1008 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1009 {
1010 return t->type;
1011 }
1012
dm_table_get_immutable_target_type(struct dm_table * t)1013 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1014 {
1015 return t->immutable_target_type;
1016 }
1017
dm_table_get_immutable_target(struct dm_table * t)1018 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1019 {
1020 /* Immutable target is implicitly a singleton */
1021 if (t->num_targets > 1 ||
1022 !dm_target_is_immutable(t->targets[0].type))
1023 return NULL;
1024
1025 return t->targets;
1026 }
1027
dm_table_get_wildcard_target(struct dm_table * t)1028 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1029 {
1030 for (unsigned int i = 0; i < t->num_targets; i++) {
1031 struct dm_target *ti = dm_table_get_target(t, i);
1032
1033 if (dm_target_is_wildcard(ti->type))
1034 return ti;
1035 }
1036
1037 return NULL;
1038 }
1039
dm_table_request_based(struct dm_table * t)1040 bool dm_table_request_based(struct dm_table *t)
1041 {
1042 return __table_type_request_based(dm_table_get_type(t));
1043 }
1044
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1045 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1046 {
1047 enum dm_queue_mode type = dm_table_get_type(t);
1048 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1049 unsigned int min_pool_size = 0, pool_size;
1050 struct dm_md_mempools *pools;
1051 unsigned int bioset_flags = 0;
1052 bool mempool_needs_integrity = t->integrity_supported;
1053
1054 if (unlikely(type == DM_TYPE_NONE)) {
1055 DMERR("no table type is set, can't allocate mempools");
1056 return -EINVAL;
1057 }
1058
1059 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1060 if (!pools)
1061 return -ENOMEM;
1062
1063 if (type == DM_TYPE_REQUEST_BASED) {
1064 pool_size = dm_get_reserved_rq_based_ios();
1065 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1066 goto init_bs;
1067 }
1068
1069 if (md->queue->limits.features & BLK_FEAT_POLL)
1070 bioset_flags |= BIOSET_PERCPU_CACHE;
1071
1072 for (unsigned int i = 0; i < t->num_targets; i++) {
1073 struct dm_target *ti = dm_table_get_target(t, i);
1074
1075 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1076 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1077
1078 mempool_needs_integrity |= ti->mempool_needs_integrity;
1079 }
1080 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1081 front_pad = roundup(per_io_data_size,
1082 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1083
1084 io_front_pad = roundup(per_io_data_size,
1085 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1086 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1087 goto out_free_pools;
1088 init_bs:
1089 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1090 goto out_free_pools;
1091
1092 t->mempools = pools;
1093 return 0;
1094
1095 out_free_pools:
1096 dm_free_md_mempools(pools);
1097 return -ENOMEM;
1098 }
1099
setup_indexes(struct dm_table * t)1100 static int setup_indexes(struct dm_table *t)
1101 {
1102 int i;
1103 unsigned int total = 0;
1104 sector_t *indexes;
1105
1106 /* allocate the space for *all* the indexes */
1107 for (i = t->depth - 2; i >= 0; i--) {
1108 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1109 total += t->counts[i];
1110 }
1111
1112 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1113 if (!indexes)
1114 return -ENOMEM;
1115
1116 /* set up internal nodes, bottom-up */
1117 for (i = t->depth - 2; i >= 0; i--) {
1118 t->index[i] = indexes;
1119 indexes += (KEYS_PER_NODE * t->counts[i]);
1120 setup_btree_index(i, t);
1121 }
1122
1123 return 0;
1124 }
1125
1126 /*
1127 * Builds the btree to index the map.
1128 */
dm_table_build_index(struct dm_table * t)1129 static int dm_table_build_index(struct dm_table *t)
1130 {
1131 int r = 0;
1132 unsigned int leaf_nodes;
1133
1134 /* how many indexes will the btree have ? */
1135 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1136 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1137
1138 /* leaf layer has already been set up */
1139 t->counts[t->depth - 1] = leaf_nodes;
1140 t->index[t->depth - 1] = t->highs;
1141
1142 if (t->depth >= 2)
1143 r = setup_indexes(t);
1144
1145 return r;
1146 }
1147
1148 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1149
1150 struct dm_crypto_profile {
1151 struct blk_crypto_profile profile;
1152 struct mapped_device *md;
1153 };
1154
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1155 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1156 sector_t start, sector_t len, void *data)
1157 {
1158 const struct blk_crypto_key *key = data;
1159
1160 blk_crypto_evict_key(dev->bdev, key);
1161 return 0;
1162 }
1163
1164 /*
1165 * When an inline encryption key is evicted from a device-mapper device, evict
1166 * it from all the underlying devices.
1167 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1168 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1169 const struct blk_crypto_key *key, unsigned int slot)
1170 {
1171 struct mapped_device *md =
1172 container_of(profile, struct dm_crypto_profile, profile)->md;
1173 struct dm_table *t;
1174 int srcu_idx;
1175
1176 t = dm_get_live_table(md, &srcu_idx);
1177 if (!t)
1178 return 0;
1179
1180 for (unsigned int i = 0; i < t->num_targets; i++) {
1181 struct dm_target *ti = dm_table_get_target(t, i);
1182
1183 if (!ti->type->iterate_devices)
1184 continue;
1185 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1186 (void *)key);
1187 }
1188
1189 dm_put_live_table(md, srcu_idx);
1190 return 0;
1191 }
1192
1193 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1194 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1195 sector_t start, sector_t len, void *data)
1196 {
1197 struct blk_crypto_profile *parent = data;
1198 struct blk_crypto_profile *child =
1199 bdev_get_queue(dev->bdev)->crypto_profile;
1200
1201 blk_crypto_intersect_capabilities(parent, child);
1202 return 0;
1203 }
1204
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1205 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1206 {
1207 struct dm_crypto_profile *dmcp = container_of(profile,
1208 struct dm_crypto_profile,
1209 profile);
1210
1211 if (!profile)
1212 return;
1213
1214 blk_crypto_profile_destroy(profile);
1215 kfree(dmcp);
1216 }
1217
dm_table_destroy_crypto_profile(struct dm_table * t)1218 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1219 {
1220 dm_destroy_crypto_profile(t->crypto_profile);
1221 t->crypto_profile = NULL;
1222 }
1223
1224 /*
1225 * Constructs and initializes t->crypto_profile with a crypto profile that
1226 * represents the common set of crypto capabilities of the devices described by
1227 * the dm_table. However, if the constructed crypto profile doesn't support all
1228 * crypto capabilities that are supported by the current mapped_device, it
1229 * returns an error instead, since we don't support removing crypto capabilities
1230 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1231 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1232 */
dm_table_construct_crypto_profile(struct dm_table * t)1233 static int dm_table_construct_crypto_profile(struct dm_table *t)
1234 {
1235 struct dm_crypto_profile *dmcp;
1236 struct blk_crypto_profile *profile;
1237 unsigned int i;
1238 bool empty_profile = true;
1239
1240 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1241 if (!dmcp)
1242 return -ENOMEM;
1243 dmcp->md = t->md;
1244
1245 profile = &dmcp->profile;
1246 blk_crypto_profile_init(profile, 0);
1247 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1248 profile->max_dun_bytes_supported = UINT_MAX;
1249 memset(profile->modes_supported, 0xFF,
1250 sizeof(profile->modes_supported));
1251 profile->key_types_supported = ~0;
1252
1253 for (i = 0; i < t->num_targets; i++) {
1254 struct dm_target *ti = dm_table_get_target(t, i);
1255
1256 if (!dm_target_passes_crypto(ti->type)) {
1257 blk_crypto_intersect_capabilities(profile, NULL);
1258 break;
1259 }
1260 if (!ti->type->iterate_devices)
1261 continue;
1262 ti->type->iterate_devices(ti,
1263 device_intersect_crypto_capabilities,
1264 profile);
1265 }
1266
1267 if (t->md->queue &&
1268 !blk_crypto_has_capabilities(profile,
1269 t->md->queue->crypto_profile)) {
1270 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1271 dm_destroy_crypto_profile(profile);
1272 return -EINVAL;
1273 }
1274
1275 /*
1276 * If the new profile doesn't actually support any crypto capabilities,
1277 * we may as well represent it with a NULL profile.
1278 */
1279 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1280 if (profile->modes_supported[i]) {
1281 empty_profile = false;
1282 break;
1283 }
1284 }
1285
1286 if (empty_profile) {
1287 dm_destroy_crypto_profile(profile);
1288 profile = NULL;
1289 }
1290
1291 /*
1292 * t->crypto_profile is only set temporarily while the table is being
1293 * set up, and it gets set to NULL after the profile has been
1294 * transferred to the request_queue.
1295 */
1296 t->crypto_profile = profile;
1297
1298 return 0;
1299 }
1300
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1301 static void dm_update_crypto_profile(struct request_queue *q,
1302 struct dm_table *t)
1303 {
1304 if (!t->crypto_profile)
1305 return;
1306
1307 /* Make the crypto profile less restrictive. */
1308 if (!q->crypto_profile) {
1309 blk_crypto_register(t->crypto_profile, q);
1310 } else {
1311 blk_crypto_update_capabilities(q->crypto_profile,
1312 t->crypto_profile);
1313 dm_destroy_crypto_profile(t->crypto_profile);
1314 }
1315 t->crypto_profile = NULL;
1316 }
1317
1318 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1319
dm_table_construct_crypto_profile(struct dm_table * t)1320 static int dm_table_construct_crypto_profile(struct dm_table *t)
1321 {
1322 return 0;
1323 }
1324
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1325 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1326 {
1327 }
1328
dm_table_destroy_crypto_profile(struct dm_table * t)1329 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1330 {
1331 }
1332
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1333 static void dm_update_crypto_profile(struct request_queue *q,
1334 struct dm_table *t)
1335 {
1336 }
1337
1338 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1339
1340 /*
1341 * Prepares the table for use by building the indices,
1342 * setting the type, and allocating mempools.
1343 */
dm_table_complete(struct dm_table * t)1344 int dm_table_complete(struct dm_table *t)
1345 {
1346 int r;
1347
1348 r = dm_table_determine_type(t);
1349 if (r) {
1350 DMERR("unable to determine table type");
1351 return r;
1352 }
1353
1354 r = dm_table_build_index(t);
1355 if (r) {
1356 DMERR("unable to build btrees");
1357 return r;
1358 }
1359
1360 r = dm_table_construct_crypto_profile(t);
1361 if (r) {
1362 DMERR("could not construct crypto profile.");
1363 return r;
1364 }
1365
1366 r = dm_table_alloc_md_mempools(t, t->md);
1367 if (r)
1368 DMERR("unable to allocate mempools");
1369
1370 return r;
1371 }
1372
1373 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1374 void dm_table_event_callback(struct dm_table *t,
1375 void (*fn)(void *), void *context)
1376 {
1377 mutex_lock(&_event_lock);
1378 t->event_fn = fn;
1379 t->event_context = context;
1380 mutex_unlock(&_event_lock);
1381 }
1382
dm_table_event(struct dm_table * t)1383 void dm_table_event(struct dm_table *t)
1384 {
1385 mutex_lock(&_event_lock);
1386 if (t->event_fn)
1387 t->event_fn(t->event_context);
1388 mutex_unlock(&_event_lock);
1389 }
1390 EXPORT_SYMBOL(dm_table_event);
1391
dm_table_get_size(struct dm_table * t)1392 inline sector_t dm_table_get_size(struct dm_table *t)
1393 {
1394 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1395 }
1396 EXPORT_SYMBOL(dm_table_get_size);
1397
1398 /*
1399 * Search the btree for the correct target.
1400 *
1401 * Caller should check returned pointer for NULL
1402 * to trap I/O beyond end of device.
1403 */
dm_table_find_target(struct dm_table * t,sector_t sector)1404 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1405 {
1406 unsigned int l, n = 0, k = 0;
1407 sector_t *node;
1408
1409 if (unlikely(sector >= dm_table_get_size(t)))
1410 return NULL;
1411
1412 for (l = 0; l < t->depth; l++) {
1413 n = get_child(n, k);
1414 node = get_node(t, l, n);
1415
1416 for (k = 0; k < KEYS_PER_NODE; k++)
1417 if (node[k] >= sector)
1418 break;
1419 }
1420
1421 return &t->targets[(KEYS_PER_NODE * n) + k];
1422 }
1423
1424 /*
1425 * type->iterate_devices() should be called when the sanity check needs to
1426 * iterate and check all underlying data devices. iterate_devices() will
1427 * iterate all underlying data devices until it encounters a non-zero return
1428 * code, returned by whether the input iterate_devices_callout_fn, or
1429 * iterate_devices() itself internally.
1430 *
1431 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1432 * iterate multiple underlying devices internally, in which case a non-zero
1433 * return code returned by iterate_devices_callout_fn will stop the iteration
1434 * in advance.
1435 *
1436 * Cases requiring _any_ underlying device supporting some kind of attribute,
1437 * should use the iteration structure like dm_table_any_dev_attr(), or call
1438 * it directly. @func should handle semantics of positive examples, e.g.
1439 * capable of something.
1440 *
1441 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1442 * should use the iteration structure like dm_table_supports_nowait() or
1443 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1444 * uses an @anti_func that handle semantics of counter examples, e.g. not
1445 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1446 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1447 static bool dm_table_any_dev_attr(struct dm_table *t,
1448 iterate_devices_callout_fn func, void *data)
1449 {
1450 for (unsigned int i = 0; i < t->num_targets; i++) {
1451 struct dm_target *ti = dm_table_get_target(t, i);
1452
1453 if (ti->type->iterate_devices &&
1454 ti->type->iterate_devices(ti, func, data))
1455 return true;
1456 }
1457
1458 return false;
1459 }
1460
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1461 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1462 sector_t start, sector_t len, void *data)
1463 {
1464 unsigned int *num_devices = data;
1465
1466 (*num_devices)++;
1467
1468 return 0;
1469 }
1470
1471 /*
1472 * Check whether a table has no data devices attached using each
1473 * target's iterate_devices method.
1474 * Returns false if the result is unknown because a target doesn't
1475 * support iterate_devices.
1476 */
dm_table_has_no_data_devices(struct dm_table * t)1477 bool dm_table_has_no_data_devices(struct dm_table *t)
1478 {
1479 for (unsigned int i = 0; i < t->num_targets; i++) {
1480 struct dm_target *ti = dm_table_get_target(t, i);
1481 unsigned int num_devices = 0;
1482
1483 if (!ti->type->iterate_devices)
1484 return false;
1485
1486 ti->type->iterate_devices(ti, count_device, &num_devices);
1487 if (num_devices)
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
device_not_zoned(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1494 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1495 sector_t start, sector_t len, void *data)
1496 {
1497 bool *zoned = data;
1498
1499 return bdev_is_zoned(dev->bdev) != *zoned;
1500 }
1501
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1502 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1503 sector_t start, sector_t len, void *data)
1504 {
1505 return bdev_is_zoned(dev->bdev);
1506 }
1507
1508 /*
1509 * Check the device zoned model based on the target feature flag. If the target
1510 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1511 * also accepted but all devices must have the same zoned model. If the target
1512 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1513 * zoned model with all zoned devices having the same zone size.
1514 */
dm_table_supports_zoned(struct dm_table * t,bool zoned)1515 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1516 {
1517 for (unsigned int i = 0; i < t->num_targets; i++) {
1518 struct dm_target *ti = dm_table_get_target(t, i);
1519
1520 /*
1521 * For the wildcard target (dm-error), if we do not have a
1522 * backing device, we must always return false. If we have a
1523 * backing device, the result must depend on checking zoned
1524 * model, like for any other target. So for this, check directly
1525 * if the target backing device is zoned as we get "false" when
1526 * dm-error was set without a backing device.
1527 */
1528 if (dm_target_is_wildcard(ti->type) &&
1529 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1530 return false;
1531
1532 if (dm_target_supports_zoned_hm(ti->type)) {
1533 if (!ti->type->iterate_devices ||
1534 ti->type->iterate_devices(ti, device_not_zoned,
1535 &zoned))
1536 return false;
1537 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1538 if (zoned)
1539 return false;
1540 }
1541 }
1542
1543 return true;
1544 }
1545
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1546 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1547 sector_t start, sector_t len, void *data)
1548 {
1549 unsigned int *zone_sectors = data;
1550
1551 if (!bdev_is_zoned(dev->bdev))
1552 return 0;
1553 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1554 }
1555
1556 /*
1557 * Check consistency of zoned model and zone sectors across all targets. For
1558 * zone sectors, if the destination device is a zoned block device, it shall
1559 * have the specified zone_sectors.
1560 */
validate_hardware_zoned(struct dm_table * t,bool zoned,unsigned int zone_sectors)1561 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1562 unsigned int zone_sectors)
1563 {
1564 if (!zoned)
1565 return 0;
1566
1567 if (!dm_table_supports_zoned(t, zoned)) {
1568 DMERR("%s: zoned model is not consistent across all devices",
1569 dm_device_name(t->md));
1570 return -EINVAL;
1571 }
1572
1573 /* Check zone size validity and compatibility */
1574 if (!zone_sectors || !is_power_of_2(zone_sectors))
1575 return -EINVAL;
1576
1577 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1578 DMERR("%s: zone sectors is not consistent across all zoned devices",
1579 dm_device_name(t->md));
1580 return -EINVAL;
1581 }
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Establish the new table's queue_limits and validate them.
1588 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1589 int dm_calculate_queue_limits(struct dm_table *t,
1590 struct queue_limits *limits)
1591 {
1592 struct queue_limits ti_limits;
1593 unsigned int zone_sectors = 0;
1594 bool zoned = false;
1595
1596 dm_set_stacking_limits(limits);
1597
1598 t->integrity_supported = true;
1599 for (unsigned int i = 0; i < t->num_targets; i++) {
1600 struct dm_target *ti = dm_table_get_target(t, i);
1601
1602 if (!dm_target_passes_integrity(ti->type))
1603 t->integrity_supported = false;
1604 }
1605
1606 for (unsigned int i = 0; i < t->num_targets; i++) {
1607 struct dm_target *ti = dm_table_get_target(t, i);
1608
1609 dm_set_stacking_limits(&ti_limits);
1610
1611 if (!ti->type->iterate_devices) {
1612 /* Set I/O hints portion of queue limits */
1613 if (ti->type->io_hints)
1614 ti->type->io_hints(ti, &ti_limits);
1615 goto combine_limits;
1616 }
1617
1618 /*
1619 * Combine queue limits of all the devices this target uses.
1620 */
1621 ti->type->iterate_devices(ti, dm_set_device_limits,
1622 &ti_limits);
1623
1624 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1625 /*
1626 * After stacking all limits, validate all devices
1627 * in table support this zoned model and zone sectors.
1628 */
1629 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1630 zone_sectors = ti_limits.chunk_sectors;
1631 }
1632
1633 /* Set I/O hints portion of queue limits */
1634 if (ti->type->io_hints)
1635 ti->type->io_hints(ti, &ti_limits);
1636
1637 /*
1638 * Check each device area is consistent with the target's
1639 * overall queue limits.
1640 */
1641 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1642 &ti_limits))
1643 return -EINVAL;
1644
1645 combine_limits:
1646 /*
1647 * Merge this target's queue limits into the overall limits
1648 * for the table.
1649 */
1650 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1651 DMWARN("%s: adding target device (start sect %llu len %llu) "
1652 "caused an alignment inconsistency",
1653 dm_device_name(t->md),
1654 (unsigned long long) ti->begin,
1655 (unsigned long long) ti->len);
1656
1657 if (t->integrity_supported ||
1658 dm_target_has_integrity(ti->type)) {
1659 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1660 DMWARN("%s: adding target device (start sect %llu len %llu) "
1661 "disabled integrity support due to incompatibility",
1662 dm_device_name(t->md),
1663 (unsigned long long) ti->begin,
1664 (unsigned long long) ti->len);
1665 t->integrity_supported = false;
1666 }
1667 }
1668 }
1669
1670 /*
1671 * Verify that the zoned model and zone sectors, as determined before
1672 * any .io_hints override, are the same across all devices in the table.
1673 * - this is especially relevant if .io_hints is emulating a disk-managed
1674 * zoned model on host-managed zoned block devices.
1675 * BUT...
1676 */
1677 if (limits->features & BLK_FEAT_ZONED) {
1678 /*
1679 * ...IF the above limits stacking determined a zoned model
1680 * validate that all of the table's devices conform to it.
1681 */
1682 zoned = limits->features & BLK_FEAT_ZONED;
1683 zone_sectors = limits->chunk_sectors;
1684 }
1685 if (validate_hardware_zoned(t, zoned, zone_sectors))
1686 return -EINVAL;
1687
1688 return validate_hardware_logical_block_alignment(t, limits);
1689 }
1690
1691 /*
1692 * Check if a target requires flush support even if none of the underlying
1693 * devices need it (e.g. to persist target-specific metadata).
1694 */
dm_table_supports_flush(struct dm_table * t)1695 static bool dm_table_supports_flush(struct dm_table *t)
1696 {
1697 for (unsigned int i = 0; i < t->num_targets; i++) {
1698 struct dm_target *ti = dm_table_get_target(t, i);
1699
1700 if (ti->num_flush_bios && ti->flush_supported)
1701 return true;
1702 }
1703
1704 return false;
1705 }
1706
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1707 static int device_dax_write_cache_enabled(struct dm_target *ti,
1708 struct dm_dev *dev, sector_t start,
1709 sector_t len, void *data)
1710 {
1711 struct dax_device *dax_dev = dev->dax_dev;
1712
1713 if (!dax_dev)
1714 return false;
1715
1716 if (dax_write_cache_enabled(dax_dev))
1717 return true;
1718 return false;
1719 }
1720
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1721 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1722 sector_t start, sector_t len, void *data)
1723 {
1724 struct request_queue *q = bdev_get_queue(dev->bdev);
1725
1726 return !q->limits.max_write_zeroes_sectors;
1727 }
1728
dm_table_supports_write_zeroes(struct dm_table * t)1729 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1730 {
1731 for (unsigned int i = 0; i < t->num_targets; i++) {
1732 struct dm_target *ti = dm_table_get_target(t, i);
1733
1734 if (!ti->num_write_zeroes_bios)
1735 return false;
1736
1737 if (!ti->type->iterate_devices ||
1738 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1739 return false;
1740 }
1741
1742 return true;
1743 }
1744
dm_table_supports_nowait(struct dm_table * t)1745 static bool dm_table_supports_nowait(struct dm_table *t)
1746 {
1747 for (unsigned int i = 0; i < t->num_targets; i++) {
1748 struct dm_target *ti = dm_table_get_target(t, i);
1749
1750 if (!dm_target_supports_nowait(ti->type))
1751 return false;
1752 }
1753
1754 return true;
1755 }
1756
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1757 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1758 sector_t start, sector_t len, void *data)
1759 {
1760 return !bdev_max_discard_sectors(dev->bdev);
1761 }
1762
dm_table_supports_discards(struct dm_table * t)1763 static bool dm_table_supports_discards(struct dm_table *t)
1764 {
1765 for (unsigned int i = 0; i < t->num_targets; i++) {
1766 struct dm_target *ti = dm_table_get_target(t, i);
1767
1768 if (!ti->num_discard_bios)
1769 return false;
1770
1771 /*
1772 * Either the target provides discard support (as implied by setting
1773 * 'discards_supported') or it relies on _all_ data devices having
1774 * discard support.
1775 */
1776 if (!ti->discards_supported &&
1777 (!ti->type->iterate_devices ||
1778 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1779 return false;
1780 }
1781
1782 return true;
1783 }
1784
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1785 static int device_not_secure_erase_capable(struct dm_target *ti,
1786 struct dm_dev *dev, sector_t start,
1787 sector_t len, void *data)
1788 {
1789 return !bdev_max_secure_erase_sectors(dev->bdev);
1790 }
1791
dm_table_supports_secure_erase(struct dm_table * t)1792 static bool dm_table_supports_secure_erase(struct dm_table *t)
1793 {
1794 for (unsigned int i = 0; i < t->num_targets; i++) {
1795 struct dm_target *ti = dm_table_get_target(t, i);
1796
1797 if (!ti->num_secure_erase_bios)
1798 return false;
1799
1800 if (!ti->type->iterate_devices ||
1801 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1802 return false;
1803 }
1804
1805 return true;
1806 }
1807
device_not_atomic_write_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1808 static int device_not_atomic_write_capable(struct dm_target *ti,
1809 struct dm_dev *dev, sector_t start,
1810 sector_t len, void *data)
1811 {
1812 return !bdev_can_atomic_write(dev->bdev);
1813 }
1814
dm_table_supports_atomic_writes(struct dm_table * t)1815 static bool dm_table_supports_atomic_writes(struct dm_table *t)
1816 {
1817 for (unsigned int i = 0; i < t->num_targets; i++) {
1818 struct dm_target *ti = dm_table_get_target(t, i);
1819
1820 if (!dm_target_supports_atomic_writes(ti->type))
1821 return false;
1822
1823 if (!ti->type->iterate_devices)
1824 return false;
1825
1826 if (ti->type->iterate_devices(ti,
1827 device_not_atomic_write_capable, NULL)) {
1828 return false;
1829 }
1830 }
1831 return true;
1832 }
1833
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1834 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1835 struct queue_limits *limits)
1836 {
1837 int r;
1838
1839 if (!dm_table_supports_nowait(t))
1840 limits->features &= ~BLK_FEAT_NOWAIT;
1841
1842 /*
1843 * The current polling impementation does not support request based
1844 * stacking.
1845 */
1846 if (!__table_type_bio_based(t->type))
1847 limits->features &= ~BLK_FEAT_POLL;
1848
1849 if (!dm_table_supports_discards(t)) {
1850 limits->max_hw_discard_sectors = 0;
1851 limits->discard_granularity = 0;
1852 limits->discard_alignment = 0;
1853 }
1854
1855 if (!dm_table_supports_write_zeroes(t))
1856 limits->max_write_zeroes_sectors = 0;
1857
1858 if (!dm_table_supports_secure_erase(t))
1859 limits->max_secure_erase_sectors = 0;
1860
1861 if (dm_table_supports_flush(t))
1862 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1863
1864 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1865 limits->features |= BLK_FEAT_DAX;
1866 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1867 set_dax_synchronous(t->md->dax_dev);
1868 } else
1869 limits->features &= ~BLK_FEAT_DAX;
1870
1871 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1872 dax_write_cache(t->md->dax_dev, true);
1873
1874 /* For a zoned table, setup the zone related queue attributes. */
1875 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1876 (limits->features & BLK_FEAT_ZONED)) {
1877 r = dm_set_zones_restrictions(t, q, limits);
1878 if (r)
1879 return r;
1880 }
1881
1882 if (dm_table_supports_atomic_writes(t))
1883 limits->features |= BLK_FEAT_ATOMIC_WRITES;
1884
1885 r = queue_limits_set(q, limits);
1886 if (r)
1887 return r;
1888
1889 /*
1890 * Now that the limits are set, check the zones mapped by the table
1891 * and setup the resources for zone append emulation if necessary.
1892 */
1893 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1894 (limits->features & BLK_FEAT_ZONED)) {
1895 r = dm_revalidate_zones(t, q);
1896 if (r)
1897 return r;
1898 }
1899
1900 dm_update_crypto_profile(q, t);
1901 return 0;
1902 }
1903
dm_table_get_devices(struct dm_table * t)1904 struct list_head *dm_table_get_devices(struct dm_table *t)
1905 {
1906 return &t->devices;
1907 }
1908
dm_table_get_mode(struct dm_table * t)1909 blk_mode_t dm_table_get_mode(struct dm_table *t)
1910 {
1911 return t->mode;
1912 }
1913 EXPORT_SYMBOL(dm_table_get_mode);
1914
1915 enum suspend_mode {
1916 PRESUSPEND,
1917 PRESUSPEND_UNDO,
1918 POSTSUSPEND,
1919 };
1920
suspend_targets(struct dm_table * t,enum suspend_mode mode)1921 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1922 {
1923 lockdep_assert_held(&t->md->suspend_lock);
1924
1925 for (unsigned int i = 0; i < t->num_targets; i++) {
1926 struct dm_target *ti = dm_table_get_target(t, i);
1927
1928 switch (mode) {
1929 case PRESUSPEND:
1930 if (ti->type->presuspend)
1931 ti->type->presuspend(ti);
1932 break;
1933 case PRESUSPEND_UNDO:
1934 if (ti->type->presuspend_undo)
1935 ti->type->presuspend_undo(ti);
1936 break;
1937 case POSTSUSPEND:
1938 if (ti->type->postsuspend)
1939 ti->type->postsuspend(ti);
1940 break;
1941 }
1942 }
1943 }
1944
dm_table_presuspend_targets(struct dm_table * t)1945 void dm_table_presuspend_targets(struct dm_table *t)
1946 {
1947 if (!t)
1948 return;
1949
1950 suspend_targets(t, PRESUSPEND);
1951 }
1952
dm_table_presuspend_undo_targets(struct dm_table * t)1953 void dm_table_presuspend_undo_targets(struct dm_table *t)
1954 {
1955 if (!t)
1956 return;
1957
1958 suspend_targets(t, PRESUSPEND_UNDO);
1959 }
1960
dm_table_postsuspend_targets(struct dm_table * t)1961 void dm_table_postsuspend_targets(struct dm_table *t)
1962 {
1963 if (!t)
1964 return;
1965
1966 suspend_targets(t, POSTSUSPEND);
1967 }
1968
dm_table_resume_targets(struct dm_table * t)1969 int dm_table_resume_targets(struct dm_table *t)
1970 {
1971 unsigned int i;
1972 int r = 0;
1973
1974 lockdep_assert_held(&t->md->suspend_lock);
1975
1976 for (i = 0; i < t->num_targets; i++) {
1977 struct dm_target *ti = dm_table_get_target(t, i);
1978
1979 if (!ti->type->preresume)
1980 continue;
1981
1982 r = ti->type->preresume(ti);
1983 if (r) {
1984 DMERR("%s: %s: preresume failed, error = %d",
1985 dm_device_name(t->md), ti->type->name, r);
1986 return r;
1987 }
1988 }
1989
1990 for (i = 0; i < t->num_targets; i++) {
1991 struct dm_target *ti = dm_table_get_target(t, i);
1992
1993 if (ti->type->resume)
1994 ti->type->resume(ti);
1995 }
1996
1997 return 0;
1998 }
1999
dm_table_get_md(struct dm_table * t)2000 struct mapped_device *dm_table_get_md(struct dm_table *t)
2001 {
2002 return t->md;
2003 }
2004 EXPORT_SYMBOL(dm_table_get_md);
2005
dm_table_device_name(struct dm_table * t)2006 const char *dm_table_device_name(struct dm_table *t)
2007 {
2008 return dm_device_name(t->md);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_table_device_name);
2011
dm_table_run_md_queue_async(struct dm_table * t)2012 void dm_table_run_md_queue_async(struct dm_table *t)
2013 {
2014 if (!dm_table_request_based(t))
2015 return;
2016
2017 if (t->md->queue)
2018 blk_mq_run_hw_queues(t->md->queue, true);
2019 }
2020 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2021
2022