xref: /linux/drivers/md/dm-table.c (revision 5014bebee0cffda14fafae5a2534d08120b7b9e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27 
28 #define DM_MSG_PREFIX "table"
29 
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33 
34 /*
35  * Similar to ceiling(log_size(n))
36  */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 	int result = 0;
40 
41 	while (n > 1) {
42 		n = dm_div_up(n, base);
43 		result++;
44 	}
45 
46 	return result;
47 }
48 
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 	return (n * CHILDREN_PER_NODE) + k;
55 }
56 
57 /*
58  * Return the n'th node of level l from table t.
59  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 				 unsigned int l, unsigned int n)
62 {
63 	return t->index[l] + (n * KEYS_PER_NODE);
64 }
65 
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 	for (; l < t->depth - 1; l++)
73 		n = get_child(n, CHILDREN_PER_NODE - 1);
74 
75 	if (n >= t->counts[l])
76 		return (sector_t) -1;
77 
78 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80 
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 	unsigned int n, k;
88 	sector_t *node;
89 
90 	for (n = 0U; n < t->counts[l]; n++) {
91 		node = get_node(t, l, n);
92 
93 		for (k = 0U; k < KEYS_PER_NODE; k++)
94 			node[k] = high(t, l + 1, get_child(n, k));
95 	}
96 
97 	return 0;
98 }
99 
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 	sector_t *n_highs;
107 	struct dm_target *n_targets;
108 
109 	/*
110 	 * Allocate both the target array and offset array at once.
111 	 */
112 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 			   GFP_KERNEL);
114 	if (!n_highs)
115 		return -ENOMEM;
116 
117 	n_targets = (struct dm_target *) (n_highs + num);
118 
119 	memset(n_highs, -1, sizeof(*n_highs) * num);
120 	kvfree(t->highs);
121 
122 	t->num_allocated = num;
123 	t->highs = n_highs;
124 	t->targets = n_targets;
125 
126 	return 0;
127 }
128 
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 		    unsigned int num_targets, struct mapped_device *md)
131 {
132 	struct dm_table *t;
133 
134 	if (num_targets > DM_MAX_TARGETS)
135 		return -EOVERFLOW;
136 
137 	t = kzalloc(sizeof(*t), GFP_KERNEL);
138 
139 	if (!t)
140 		return -ENOMEM;
141 
142 	INIT_LIST_HEAD(&t->devices);
143 	init_rwsem(&t->devices_lock);
144 
145 	if (!num_targets)
146 		num_targets = KEYS_PER_NODE;
147 
148 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149 
150 	if (!num_targets) {
151 		kfree(t);
152 		return -EOVERFLOW;
153 	}
154 
155 	if (alloc_targets(t, num_targets)) {
156 		kfree(t);
157 		return -ENOMEM;
158 	}
159 
160 	t->type = DM_TYPE_NONE;
161 	t->mode = mode;
162 	t->md = md;
163 	t->flush_bypasses_map = true;
164 	*result = t;
165 	return 0;
166 }
167 
free_devices(struct list_head * devices,struct mapped_device * md)168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 	struct list_head *tmp, *next;
171 
172 	list_for_each_safe(tmp, next, devices) {
173 		struct dm_dev_internal *dd =
174 		    list_entry(tmp, struct dm_dev_internal, list);
175 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 		       dm_device_name(md), dd->dm_dev->name);
177 		dm_put_table_device(md, dd->dm_dev);
178 		kfree(dd);
179 	}
180 }
181 
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183 
dm_table_destroy(struct dm_table * t)184 void dm_table_destroy(struct dm_table *t)
185 {
186 	if (!t)
187 		return;
188 
189 	/* free the indexes */
190 	if (t->depth >= 2)
191 		kvfree(t->index[t->depth - 2]);
192 
193 	/* free the targets */
194 	for (unsigned int i = 0; i < t->num_targets; i++) {
195 		struct dm_target *ti = dm_table_get_target(t, i);
196 
197 		if (ti->type->dtr)
198 			ti->type->dtr(ti);
199 
200 		dm_put_target_type(ti->type);
201 	}
202 
203 	kvfree(t->highs);
204 
205 	/* free the device list */
206 	free_devices(&t->devices, t->md);
207 
208 	dm_free_md_mempools(t->mempools);
209 
210 	dm_table_destroy_crypto_profile(t);
211 
212 	kfree(t);
213 }
214 
215 /*
216  * See if we've already got a device in the list.
217  */
find_device(struct list_head * l,dev_t dev)218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 	struct dm_dev_internal *dd;
221 
222 	list_for_each_entry(dd, l, list)
223 		if (dd->dm_dev->bdev->bd_dev == dev)
224 			return dd;
225 
226 	return NULL;
227 }
228 
229 /*
230  * If possible, this checks an area of a destination device is invalid.
231  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 				  sector_t start, sector_t len, void *data)
234 {
235 	struct queue_limits *limits = data;
236 	struct block_device *bdev = dev->bdev;
237 	sector_t dev_size = bdev_nr_sectors(bdev);
238 	unsigned short logical_block_size_sectors =
239 		limits->logical_block_size >> SECTOR_SHIFT;
240 
241 	if (!dev_size)
242 		return 0;
243 
244 	if ((start >= dev_size) || (start + len > dev_size)) {
245 		DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 		      dm_device_name(ti->table->md), bdev,
247 		      (unsigned long long)start,
248 		      (unsigned long long)len,
249 		      (unsigned long long)dev_size);
250 		return 1;
251 	}
252 
253 	/*
254 	 * If the target is mapped to zoned block device(s), check
255 	 * that the zones are not partially mapped.
256 	 */
257 	if (bdev_is_zoned(bdev)) {
258 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
259 
260 		if (start & (zone_sectors - 1)) {
261 			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 			      dm_device_name(ti->table->md),
263 			      (unsigned long long)start,
264 			      zone_sectors, bdev);
265 			return 1;
266 		}
267 
268 		/*
269 		 * Note: The last zone of a zoned block device may be smaller
270 		 * than other zones. So for a target mapping the end of a
271 		 * zoned block device with such a zone, len would not be zone
272 		 * aligned. We do not allow such last smaller zone to be part
273 		 * of the mapping here to ensure that mappings with multiple
274 		 * devices do not end up with a smaller zone in the middle of
275 		 * the sector range.
276 		 */
277 		if (len & (zone_sectors - 1)) {
278 			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 			      dm_device_name(ti->table->md),
280 			      (unsigned long long)len,
281 			      zone_sectors, bdev);
282 			return 1;
283 		}
284 	}
285 
286 	if (logical_block_size_sectors <= 1)
287 		return 0;
288 
289 	if (start & (logical_block_size_sectors - 1)) {
290 		DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 		      dm_device_name(ti->table->md),
292 		      (unsigned long long)start,
293 		      limits->logical_block_size, bdev);
294 		return 1;
295 	}
296 
297 	if (len & (logical_block_size_sectors - 1)) {
298 		DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 		      dm_device_name(ti->table->md),
300 		      (unsigned long long)len,
301 		      limits->logical_block_size, bdev);
302 		return 1;
303 	}
304 
305 	return 0;
306 }
307 
308 /*
309  * This upgrades the mode on an already open dm_dev, being
310  * careful to leave things as they were if we fail to reopen the
311  * device and not to touch the existing bdev field in case
312  * it is accessed concurrently.
313  */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 			struct mapped_device *md)
316 {
317 	int r;
318 	struct dm_dev *old_dev, *new_dev;
319 
320 	old_dev = dd->dm_dev;
321 
322 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 				dd->dm_dev->mode | new_mode, &new_dev);
324 	if (r)
325 		return r;
326 
327 	dd->dm_dev = new_dev;
328 	dm_put_table_device(md, old_dev);
329 
330 	return 0;
331 }
332 
333 /*
334  * Note: the __ref annotation is because this function can call the __init
335  * marked early_lookup_bdev when called during early boot code from dm-init.c.
336  */
dm_devt_from_path(const char * path,dev_t * dev_p)337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 	int r;
340 	dev_t dev;
341 	unsigned int major, minor;
342 	char dummy;
343 
344 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 		/* Extract the major/minor numbers */
346 		dev = MKDEV(major, minor);
347 		if (MAJOR(dev) != major || MINOR(dev) != minor)
348 			return -EOVERFLOW;
349 	} else {
350 		r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 		if (r && system_state < SYSTEM_RUNNING)
353 			r = early_lookup_bdev(path, &dev);
354 #endif
355 		if (r)
356 			return r;
357 	}
358 	*dev_p = dev;
359 	return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362 
363 /*
364  * Add a device to the list, or just increment the usage count if
365  * it's already present.
366  */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 		  struct dm_dev **result)
369 {
370 	int r;
371 	dev_t dev;
372 	struct dm_dev_internal *dd;
373 	struct dm_table *t = ti->table;
374 
375 	BUG_ON(!t);
376 
377 	r = dm_devt_from_path(path, &dev);
378 	if (r)
379 		return r;
380 
381 	if (dev == disk_devt(t->md->disk))
382 		return -EINVAL;
383 
384 	down_write(&t->devices_lock);
385 
386 	dd = find_device(&t->devices, dev);
387 	if (!dd) {
388 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 		if (!dd) {
390 			r = -ENOMEM;
391 			goto unlock_ret_r;
392 		}
393 
394 		r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 		if (r) {
396 			kfree(dd);
397 			goto unlock_ret_r;
398 		}
399 
400 		refcount_set(&dd->count, 1);
401 		list_add(&dd->list, &t->devices);
402 		goto out;
403 
404 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 		r = upgrade_mode(dd, mode, t->md);
406 		if (r)
407 			goto unlock_ret_r;
408 	}
409 	refcount_inc(&dd->count);
410 out:
411 	up_write(&t->devices_lock);
412 	*result = dd->dm_dev;
413 	return 0;
414 
415 unlock_ret_r:
416 	up_write(&t->devices_lock);
417 	return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 				sector_t start, sector_t len, void *data)
423 {
424 	struct queue_limits *limits = data;
425 	struct block_device *bdev = dev->bdev;
426 	struct request_queue *q = bdev_get_queue(bdev);
427 
428 	if (unlikely(!q)) {
429 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 		       dm_device_name(ti->table->md), bdev);
431 		return 0;
432 	}
433 
434 	if (blk_stack_limits(limits, &q->limits,
435 			get_start_sect(bdev) + start) < 0)
436 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 		       "physical_block_size=%u, logical_block_size=%u, "
438 		       "alignment_offset=%u, start=%llu",
439 		       dm_device_name(ti->table->md), bdev,
440 		       q->limits.physical_block_size,
441 		       q->limits.logical_block_size,
442 		       q->limits.alignment_offset,
443 		       (unsigned long long) start << SECTOR_SHIFT);
444 
445 	/*
446 	 * Only stack the integrity profile if the target doesn't have native
447 	 * integrity support.
448 	 */
449 	if (!dm_target_has_integrity(ti->type))
450 		queue_limits_stack_integrity_bdev(limits, bdev);
451 	return 0;
452 }
453 
454 /*
455  * Decrement a device's use count and remove it if necessary.
456  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 	int found = 0;
460 	struct dm_table *t = ti->table;
461 	struct list_head *devices = &t->devices;
462 	struct dm_dev_internal *dd;
463 
464 	down_write(&t->devices_lock);
465 
466 	list_for_each_entry(dd, devices, list) {
467 		if (dd->dm_dev == d) {
468 			found = 1;
469 			break;
470 		}
471 	}
472 	if (!found) {
473 		DMERR("%s: device %s not in table devices list",
474 		      dm_device_name(t->md), d->name);
475 		goto unlock_ret;
476 	}
477 	if (refcount_dec_and_test(&dd->count)) {
478 		dm_put_table_device(t->md, d);
479 		list_del(&dd->list);
480 		kfree(dd);
481 	}
482 
483 unlock_ret:
484 	up_write(&t->devices_lock);
485 }
486 EXPORT_SYMBOL(dm_put_device);
487 
488 /*
489  * Checks to see if the target joins onto the end of the table.
490  */
adjoin(struct dm_table * t,struct dm_target * ti)491 static int adjoin(struct dm_table *t, struct dm_target *ti)
492 {
493 	struct dm_target *prev;
494 
495 	if (!t->num_targets)
496 		return !ti->begin;
497 
498 	prev = &t->targets[t->num_targets - 1];
499 	return (ti->begin == (prev->begin + prev->len));
500 }
501 
502 /*
503  * Used to dynamically allocate the arg array.
504  *
505  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506  * process messages even if some device is suspended. These messages have a
507  * small fixed number of arguments.
508  *
509  * On the other hand, dm-switch needs to process bulk data using messages and
510  * excessive use of GFP_NOIO could cause trouble.
511  */
realloc_argv(unsigned int * size,char ** old_argv)512 static char **realloc_argv(unsigned int *size, char **old_argv)
513 {
514 	char **argv;
515 	unsigned int new_size;
516 	gfp_t gfp;
517 
518 	if (*size) {
519 		new_size = *size * 2;
520 		gfp = GFP_KERNEL;
521 	} else {
522 		new_size = 8;
523 		gfp = GFP_NOIO;
524 	}
525 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 	if (argv && old_argv) {
527 		memcpy(argv, old_argv, *size * sizeof(*argv));
528 		*size = new_size;
529 	}
530 
531 	kfree(old_argv);
532 	return argv;
533 }
534 
535 /*
536  * Destructively splits up the argument list to pass to ctr.
537  */
dm_split_args(int * argc,char *** argvp,char * input)538 int dm_split_args(int *argc, char ***argvp, char *input)
539 {
540 	char *start, *end = input, *out, **argv = NULL;
541 	unsigned int array_size = 0;
542 
543 	*argc = 0;
544 
545 	if (!input) {
546 		*argvp = NULL;
547 		return 0;
548 	}
549 
550 	argv = realloc_argv(&array_size, argv);
551 	if (!argv)
552 		return -ENOMEM;
553 
554 	while (1) {
555 		/* Skip whitespace */
556 		start = skip_spaces(end);
557 
558 		if (!*start)
559 			break;	/* success, we hit the end */
560 
561 		/* 'out' is used to remove any back-quotes */
562 		end = out = start;
563 		while (*end) {
564 			/* Everything apart from '\0' can be quoted */
565 			if (*end == '\\' && *(end + 1)) {
566 				*out++ = *(end + 1);
567 				end += 2;
568 				continue;
569 			}
570 
571 			if (isspace(*end))
572 				break;	/* end of token */
573 
574 			*out++ = *end++;
575 		}
576 
577 		/* have we already filled the array ? */
578 		if ((*argc + 1) > array_size) {
579 			argv = realloc_argv(&array_size, argv);
580 			if (!argv)
581 				return -ENOMEM;
582 		}
583 
584 		/* we know this is whitespace */
585 		if (*end)
586 			end++;
587 
588 		/* terminate the string and put it in the array */
589 		*out = '\0';
590 		argv[*argc] = start;
591 		(*argc)++;
592 	}
593 
594 	*argvp = argv;
595 	return 0;
596 }
597 
dm_set_stacking_limits(struct queue_limits * limits)598 static void dm_set_stacking_limits(struct queue_limits *limits)
599 {
600 	blk_set_stacking_limits(limits);
601 	limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602 }
603 
604 /*
605  * Impose necessary and sufficient conditions on a devices's table such
606  * that any incoming bio which respects its logical_block_size can be
607  * processed successfully.  If it falls across the boundary between
608  * two or more targets, the size of each piece it gets split into must
609  * be compatible with the logical_block_size of the target processing it.
610  */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)611 static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 						     struct queue_limits *limits)
613 {
614 	/*
615 	 * This function uses arithmetic modulo the logical_block_size
616 	 * (in units of 512-byte sectors).
617 	 */
618 	unsigned short device_logical_block_size_sects =
619 		limits->logical_block_size >> SECTOR_SHIFT;
620 
621 	/*
622 	 * Offset of the start of the next table entry, mod logical_block_size.
623 	 */
624 	unsigned short next_target_start = 0;
625 
626 	/*
627 	 * Given an aligned bio that extends beyond the end of a
628 	 * target, how many sectors must the next target handle?
629 	 */
630 	unsigned short remaining = 0;
631 
632 	struct dm_target *ti;
633 	struct queue_limits ti_limits;
634 	unsigned int i;
635 
636 	/*
637 	 * Check each entry in the table in turn.
638 	 */
639 	for (i = 0; i < t->num_targets; i++) {
640 		ti = dm_table_get_target(t, i);
641 
642 		dm_set_stacking_limits(&ti_limits);
643 
644 		/* combine all target devices' limits */
645 		if (ti->type->iterate_devices)
646 			ti->type->iterate_devices(ti, dm_set_device_limits,
647 						  &ti_limits);
648 
649 		/*
650 		 * If the remaining sectors fall entirely within this
651 		 * table entry are they compatible with its logical_block_size?
652 		 */
653 		if (remaining < ti->len &&
654 		    remaining & ((ti_limits.logical_block_size >>
655 				  SECTOR_SHIFT) - 1))
656 			break;	/* Error */
657 
658 		next_target_start =
659 		    (unsigned short) ((next_target_start + ti->len) &
660 				      (device_logical_block_size_sects - 1));
661 		remaining = next_target_start ?
662 		    device_logical_block_size_sects - next_target_start : 0;
663 	}
664 
665 	if (remaining) {
666 		DMERR("%s: table line %u (start sect %llu len %llu) "
667 		      "not aligned to h/w logical block size %u",
668 		      dm_device_name(t->md), i,
669 		      (unsigned long long) ti->begin,
670 		      (unsigned long long) ti->len,
671 		      limits->logical_block_size);
672 		return -EINVAL;
673 	}
674 
675 	return 0;
676 }
677 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)678 int dm_table_add_target(struct dm_table *t, const char *type,
679 			sector_t start, sector_t len, char *params)
680 {
681 	int r = -EINVAL, argc;
682 	char **argv;
683 	struct dm_target *ti;
684 
685 	if (t->singleton) {
686 		DMERR("%s: target type %s must appear alone in table",
687 		      dm_device_name(t->md), t->targets->type->name);
688 		return -EINVAL;
689 	}
690 
691 	BUG_ON(t->num_targets >= t->num_allocated);
692 
693 	ti = t->targets + t->num_targets;
694 	memset(ti, 0, sizeof(*ti));
695 
696 	if (!len) {
697 		DMERR("%s: zero-length target", dm_device_name(t->md));
698 		return -EINVAL;
699 	}
700 	if (start + len < start || start + len > LLONG_MAX >> SECTOR_SHIFT) {
701 		DMERR("%s: too large device", dm_device_name(t->md));
702 		return -EINVAL;
703 	}
704 
705 	ti->type = dm_get_target_type(type);
706 	if (!ti->type) {
707 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
708 		return -EINVAL;
709 	}
710 
711 	if (dm_target_needs_singleton(ti->type)) {
712 		if (t->num_targets) {
713 			ti->error = "singleton target type must appear alone in table";
714 			goto bad;
715 		}
716 		t->singleton = true;
717 	}
718 
719 	if (dm_target_always_writeable(ti->type) &&
720 	    !(t->mode & BLK_OPEN_WRITE)) {
721 		ti->error = "target type may not be included in a read-only table";
722 		goto bad;
723 	}
724 
725 	if (t->immutable_target_type) {
726 		if (t->immutable_target_type != ti->type) {
727 			ti->error = "immutable target type cannot be mixed with other target types";
728 			goto bad;
729 		}
730 	} else if (dm_target_is_immutable(ti->type)) {
731 		if (t->num_targets) {
732 			ti->error = "immutable target type cannot be mixed with other target types";
733 			goto bad;
734 		}
735 		t->immutable_target_type = ti->type;
736 	}
737 
738 	ti->table = t;
739 	ti->begin = start;
740 	ti->len = len;
741 	ti->error = "Unknown error";
742 
743 	/*
744 	 * Does this target adjoin the previous one ?
745 	 */
746 	if (!adjoin(t, ti)) {
747 		ti->error = "Gap in table";
748 		goto bad;
749 	}
750 
751 	r = dm_split_args(&argc, &argv, params);
752 	if (r) {
753 		ti->error = "couldn't split parameters";
754 		goto bad;
755 	}
756 
757 	r = ti->type->ctr(ti, argc, argv);
758 	kfree(argv);
759 	if (r)
760 		goto bad;
761 
762 	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
763 
764 	if (!ti->num_discard_bios && ti->discards_supported)
765 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
766 		       dm_device_name(t->md), type);
767 
768 	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
769 		static_branch_enable(&swap_bios_enabled);
770 
771 	if (!ti->flush_bypasses_map)
772 		t->flush_bypasses_map = false;
773 
774 	return 0;
775 
776  bad:
777 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
778 	dm_put_target_type(ti->type);
779 	return r;
780 }
781 
782 /*
783  * Target argument parsing helpers.
784  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)785 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
786 			     unsigned int *value, char **error, unsigned int grouped)
787 {
788 	const char *arg_str = dm_shift_arg(arg_set);
789 	char dummy;
790 
791 	if (!arg_str ||
792 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
793 	    (*value < arg->min) ||
794 	    (*value > arg->max) ||
795 	    (grouped && arg_set->argc < *value)) {
796 		*error = arg->error;
797 		return -EINVAL;
798 	}
799 
800 	return 0;
801 }
802 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)803 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
804 		unsigned int *value, char **error)
805 {
806 	return validate_next_arg(arg, arg_set, value, error, 0);
807 }
808 EXPORT_SYMBOL(dm_read_arg);
809 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)810 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
811 		      unsigned int *value, char **error)
812 {
813 	return validate_next_arg(arg, arg_set, value, error, 1);
814 }
815 EXPORT_SYMBOL(dm_read_arg_group);
816 
dm_shift_arg(struct dm_arg_set * as)817 const char *dm_shift_arg(struct dm_arg_set *as)
818 {
819 	char *r;
820 
821 	if (as->argc) {
822 		as->argc--;
823 		r = *as->argv;
824 		as->argv++;
825 		return r;
826 	}
827 
828 	return NULL;
829 }
830 EXPORT_SYMBOL(dm_shift_arg);
831 
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)832 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
833 {
834 	BUG_ON(as->argc < num_args);
835 	as->argc -= num_args;
836 	as->argv += num_args;
837 }
838 EXPORT_SYMBOL(dm_consume_args);
839 
__table_type_bio_based(enum dm_queue_mode table_type)840 static bool __table_type_bio_based(enum dm_queue_mode table_type)
841 {
842 	return (table_type == DM_TYPE_BIO_BASED ||
843 		table_type == DM_TYPE_DAX_BIO_BASED);
844 }
845 
__table_type_request_based(enum dm_queue_mode table_type)846 static bool __table_type_request_based(enum dm_queue_mode table_type)
847 {
848 	return table_type == DM_TYPE_REQUEST_BASED;
849 }
850 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)851 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
852 {
853 	t->type = type;
854 }
855 EXPORT_SYMBOL_GPL(dm_table_set_type);
856 
857 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)858 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
859 			sector_t start, sector_t len, void *data)
860 {
861 	if (dev->dax_dev)
862 		return false;
863 
864 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
865 	return true;
866 }
867 
868 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)869 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
870 					      sector_t start, sector_t len, void *data)
871 {
872 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
873 }
874 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)875 static bool dm_table_supports_dax(struct dm_table *t,
876 				  iterate_devices_callout_fn iterate_fn)
877 {
878 	/* Ensure that all targets support DAX. */
879 	for (unsigned int i = 0; i < t->num_targets; i++) {
880 		struct dm_target *ti = dm_table_get_target(t, i);
881 
882 		if (!ti->type->direct_access)
883 			return false;
884 
885 		if (dm_target_is_wildcard(ti->type) ||
886 		    !ti->type->iterate_devices ||
887 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
888 			return false;
889 	}
890 
891 	return true;
892 }
893 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)894 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
895 				  sector_t start, sector_t len, void *data)
896 {
897 	struct block_device *bdev = dev->bdev;
898 	struct request_queue *q = bdev_get_queue(bdev);
899 
900 	/* request-based cannot stack on partitions! */
901 	if (bdev_is_partition(bdev))
902 		return false;
903 
904 	return queue_is_mq(q);
905 }
906 
dm_table_determine_type(struct dm_table * t)907 static int dm_table_determine_type(struct dm_table *t)
908 {
909 	unsigned int bio_based = 0, request_based = 0, hybrid = 0;
910 	struct dm_target *ti;
911 	struct list_head *devices = dm_table_get_devices(t);
912 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
913 
914 	if (t->type != DM_TYPE_NONE) {
915 		/* target already set the table's type */
916 		if (t->type == DM_TYPE_BIO_BASED) {
917 			/* possibly upgrade to a variant of bio-based */
918 			goto verify_bio_based;
919 		}
920 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
921 		goto verify_rq_based;
922 	}
923 
924 	for (unsigned int i = 0; i < t->num_targets; i++) {
925 		ti = dm_table_get_target(t, i);
926 		if (dm_target_hybrid(ti))
927 			hybrid = 1;
928 		else if (dm_target_request_based(ti))
929 			request_based = 1;
930 		else
931 			bio_based = 1;
932 
933 		if (bio_based && request_based) {
934 			DMERR("Inconsistent table: different target types can't be mixed up");
935 			return -EINVAL;
936 		}
937 	}
938 
939 	if (hybrid && !bio_based && !request_based) {
940 		/*
941 		 * The targets can work either way.
942 		 * Determine the type from the live device.
943 		 * Default to bio-based if device is new.
944 		 */
945 		if (__table_type_request_based(live_md_type))
946 			request_based = 1;
947 		else
948 			bio_based = 1;
949 	}
950 
951 	if (bio_based) {
952 verify_bio_based:
953 		/* We must use this table as bio-based */
954 		t->type = DM_TYPE_BIO_BASED;
955 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
956 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
957 			t->type = DM_TYPE_DAX_BIO_BASED;
958 		}
959 		return 0;
960 	}
961 
962 	BUG_ON(!request_based); /* No targets in this table */
963 
964 	t->type = DM_TYPE_REQUEST_BASED;
965 
966 verify_rq_based:
967 	/*
968 	 * Request-based dm supports only tables that have a single target now.
969 	 * To support multiple targets, request splitting support is needed,
970 	 * and that needs lots of changes in the block-layer.
971 	 * (e.g. request completion process for partial completion.)
972 	 */
973 	if (t->num_targets > 1) {
974 		DMERR("request-based DM doesn't support multiple targets");
975 		return -EINVAL;
976 	}
977 
978 	if (list_empty(devices)) {
979 		int srcu_idx;
980 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
981 
982 		/* inherit live table's type */
983 		if (live_table)
984 			t->type = live_table->type;
985 		dm_put_live_table(t->md, srcu_idx);
986 		return 0;
987 	}
988 
989 	ti = dm_table_get_immutable_target(t);
990 	if (!ti) {
991 		DMERR("table load rejected: immutable target is required");
992 		return -EINVAL;
993 	} else if (ti->max_io_len) {
994 		DMERR("table load rejected: immutable target that splits IO is not supported");
995 		return -EINVAL;
996 	}
997 
998 	/* Non-request-stackable devices can't be used for request-based dm */
999 	if (!ti->type->iterate_devices ||
1000 	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
1001 		DMERR("table load rejected: including non-request-stackable devices");
1002 		return -EINVAL;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
dm_table_get_type(struct dm_table * t)1008 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1009 {
1010 	return t->type;
1011 }
1012 
dm_table_get_immutable_target_type(struct dm_table * t)1013 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1014 {
1015 	return t->immutable_target_type;
1016 }
1017 
dm_table_get_immutable_target(struct dm_table * t)1018 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1019 {
1020 	/* Immutable target is implicitly a singleton */
1021 	if (t->num_targets > 1 ||
1022 	    !dm_target_is_immutable(t->targets[0].type))
1023 		return NULL;
1024 
1025 	return t->targets;
1026 }
1027 
dm_table_get_wildcard_target(struct dm_table * t)1028 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1029 {
1030 	for (unsigned int i = 0; i < t->num_targets; i++) {
1031 		struct dm_target *ti = dm_table_get_target(t, i);
1032 
1033 		if (dm_target_is_wildcard(ti->type))
1034 			return ti;
1035 	}
1036 
1037 	return NULL;
1038 }
1039 
dm_table_request_based(struct dm_table * t)1040 bool dm_table_request_based(struct dm_table *t)
1041 {
1042 	return __table_type_request_based(dm_table_get_type(t));
1043 }
1044 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1045 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1046 {
1047 	enum dm_queue_mode type = dm_table_get_type(t);
1048 	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1049 	unsigned int min_pool_size = 0, pool_size;
1050 	struct dm_md_mempools *pools;
1051 	unsigned int bioset_flags = 0;
1052 	bool mempool_needs_integrity = t->integrity_supported;
1053 
1054 	if (unlikely(type == DM_TYPE_NONE)) {
1055 		DMERR("no table type is set, can't allocate mempools");
1056 		return -EINVAL;
1057 	}
1058 
1059 	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1060 	if (!pools)
1061 		return -ENOMEM;
1062 
1063 	if (type == DM_TYPE_REQUEST_BASED) {
1064 		pool_size = dm_get_reserved_rq_based_ios();
1065 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1066 		goto init_bs;
1067 	}
1068 
1069 	if (md->queue->limits.features & BLK_FEAT_POLL)
1070 		bioset_flags |= BIOSET_PERCPU_CACHE;
1071 
1072 	for (unsigned int i = 0; i < t->num_targets; i++) {
1073 		struct dm_target *ti = dm_table_get_target(t, i);
1074 
1075 		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1076 		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1077 
1078 		mempool_needs_integrity |= ti->mempool_needs_integrity;
1079 	}
1080 	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1081 	front_pad = roundup(per_io_data_size,
1082 		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1083 
1084 	io_front_pad = roundup(per_io_data_size,
1085 		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1086 	if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1087 		goto out_free_pools;
1088 init_bs:
1089 	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1090 		goto out_free_pools;
1091 
1092 	t->mempools = pools;
1093 	return 0;
1094 
1095 out_free_pools:
1096 	dm_free_md_mempools(pools);
1097 	return -ENOMEM;
1098 }
1099 
setup_indexes(struct dm_table * t)1100 static int setup_indexes(struct dm_table *t)
1101 {
1102 	int i;
1103 	unsigned int total = 0;
1104 	sector_t *indexes;
1105 
1106 	/* allocate the space for *all* the indexes */
1107 	for (i = t->depth - 2; i >= 0; i--) {
1108 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1109 		total += t->counts[i];
1110 	}
1111 
1112 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1113 	if (!indexes)
1114 		return -ENOMEM;
1115 
1116 	/* set up internal nodes, bottom-up */
1117 	for (i = t->depth - 2; i >= 0; i--) {
1118 		t->index[i] = indexes;
1119 		indexes += (KEYS_PER_NODE * t->counts[i]);
1120 		setup_btree_index(i, t);
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Builds the btree to index the map.
1128  */
dm_table_build_index(struct dm_table * t)1129 static int dm_table_build_index(struct dm_table *t)
1130 {
1131 	int r = 0;
1132 	unsigned int leaf_nodes;
1133 
1134 	/* how many indexes will the btree have ? */
1135 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1136 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1137 
1138 	/* leaf layer has already been set up */
1139 	t->counts[t->depth - 1] = leaf_nodes;
1140 	t->index[t->depth - 1] = t->highs;
1141 
1142 	if (t->depth >= 2)
1143 		r = setup_indexes(t);
1144 
1145 	return r;
1146 }
1147 
1148 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1149 
1150 struct dm_crypto_profile {
1151 	struct blk_crypto_profile profile;
1152 	struct mapped_device *md;
1153 };
1154 
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1155 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1156 				     sector_t start, sector_t len, void *data)
1157 {
1158 	const struct blk_crypto_key *key = data;
1159 
1160 	blk_crypto_evict_key(dev->bdev, key);
1161 	return 0;
1162 }
1163 
1164 /*
1165  * When an inline encryption key is evicted from a device-mapper device, evict
1166  * it from all the underlying devices.
1167  */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1168 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1169 			    const struct blk_crypto_key *key, unsigned int slot)
1170 {
1171 	struct mapped_device *md =
1172 		container_of(profile, struct dm_crypto_profile, profile)->md;
1173 	struct dm_table *t;
1174 	int srcu_idx;
1175 
1176 	t = dm_get_live_table(md, &srcu_idx);
1177 	if (!t)
1178 		return 0;
1179 
1180 	for (unsigned int i = 0; i < t->num_targets; i++) {
1181 		struct dm_target *ti = dm_table_get_target(t, i);
1182 
1183 		if (!ti->type->iterate_devices)
1184 			continue;
1185 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1186 					  (void *)key);
1187 	}
1188 
1189 	dm_put_live_table(md, srcu_idx);
1190 	return 0;
1191 }
1192 
1193 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1194 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1195 				     sector_t start, sector_t len, void *data)
1196 {
1197 	struct blk_crypto_profile *parent = data;
1198 	struct blk_crypto_profile *child =
1199 		bdev_get_queue(dev->bdev)->crypto_profile;
1200 
1201 	blk_crypto_intersect_capabilities(parent, child);
1202 	return 0;
1203 }
1204 
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1205 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1206 {
1207 	struct dm_crypto_profile *dmcp = container_of(profile,
1208 						      struct dm_crypto_profile,
1209 						      profile);
1210 
1211 	if (!profile)
1212 		return;
1213 
1214 	blk_crypto_profile_destroy(profile);
1215 	kfree(dmcp);
1216 }
1217 
dm_table_destroy_crypto_profile(struct dm_table * t)1218 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1219 {
1220 	dm_destroy_crypto_profile(t->crypto_profile);
1221 	t->crypto_profile = NULL;
1222 }
1223 
1224 /*
1225  * Constructs and initializes t->crypto_profile with a crypto profile that
1226  * represents the common set of crypto capabilities of the devices described by
1227  * the dm_table.  However, if the constructed crypto profile doesn't support all
1228  * crypto capabilities that are supported by the current mapped_device, it
1229  * returns an error instead, since we don't support removing crypto capabilities
1230  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1231  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1232  */
dm_table_construct_crypto_profile(struct dm_table * t)1233 static int dm_table_construct_crypto_profile(struct dm_table *t)
1234 {
1235 	struct dm_crypto_profile *dmcp;
1236 	struct blk_crypto_profile *profile;
1237 	unsigned int i;
1238 	bool empty_profile = true;
1239 
1240 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1241 	if (!dmcp)
1242 		return -ENOMEM;
1243 	dmcp->md = t->md;
1244 
1245 	profile = &dmcp->profile;
1246 	blk_crypto_profile_init(profile, 0);
1247 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1248 	profile->max_dun_bytes_supported = UINT_MAX;
1249 	memset(profile->modes_supported, 0xFF,
1250 	       sizeof(profile->modes_supported));
1251 	profile->key_types_supported = ~0;
1252 
1253 	for (i = 0; i < t->num_targets; i++) {
1254 		struct dm_target *ti = dm_table_get_target(t, i);
1255 
1256 		if (!dm_target_passes_crypto(ti->type)) {
1257 			blk_crypto_intersect_capabilities(profile, NULL);
1258 			break;
1259 		}
1260 		if (!ti->type->iterate_devices)
1261 			continue;
1262 		ti->type->iterate_devices(ti,
1263 					  device_intersect_crypto_capabilities,
1264 					  profile);
1265 	}
1266 
1267 	if (t->md->queue &&
1268 	    !blk_crypto_has_capabilities(profile,
1269 					 t->md->queue->crypto_profile)) {
1270 		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1271 		dm_destroy_crypto_profile(profile);
1272 		return -EINVAL;
1273 	}
1274 
1275 	/*
1276 	 * If the new profile doesn't actually support any crypto capabilities,
1277 	 * we may as well represent it with a NULL profile.
1278 	 */
1279 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1280 		if (profile->modes_supported[i]) {
1281 			empty_profile = false;
1282 			break;
1283 		}
1284 	}
1285 
1286 	if (empty_profile) {
1287 		dm_destroy_crypto_profile(profile);
1288 		profile = NULL;
1289 	}
1290 
1291 	/*
1292 	 * t->crypto_profile is only set temporarily while the table is being
1293 	 * set up, and it gets set to NULL after the profile has been
1294 	 * transferred to the request_queue.
1295 	 */
1296 	t->crypto_profile = profile;
1297 
1298 	return 0;
1299 }
1300 
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1301 static void dm_update_crypto_profile(struct request_queue *q,
1302 				     struct dm_table *t)
1303 {
1304 	if (!t->crypto_profile)
1305 		return;
1306 
1307 	/* Make the crypto profile less restrictive. */
1308 	if (!q->crypto_profile) {
1309 		blk_crypto_register(t->crypto_profile, q);
1310 	} else {
1311 		blk_crypto_update_capabilities(q->crypto_profile,
1312 					       t->crypto_profile);
1313 		dm_destroy_crypto_profile(t->crypto_profile);
1314 	}
1315 	t->crypto_profile = NULL;
1316 }
1317 
1318 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1319 
dm_table_construct_crypto_profile(struct dm_table * t)1320 static int dm_table_construct_crypto_profile(struct dm_table *t)
1321 {
1322 	return 0;
1323 }
1324 
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1325 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1326 {
1327 }
1328 
dm_table_destroy_crypto_profile(struct dm_table * t)1329 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1330 {
1331 }
1332 
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1333 static void dm_update_crypto_profile(struct request_queue *q,
1334 				     struct dm_table *t)
1335 {
1336 }
1337 
1338 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1339 
1340 /*
1341  * Prepares the table for use by building the indices,
1342  * setting the type, and allocating mempools.
1343  */
dm_table_complete(struct dm_table * t)1344 int dm_table_complete(struct dm_table *t)
1345 {
1346 	int r;
1347 
1348 	r = dm_table_determine_type(t);
1349 	if (r) {
1350 		DMERR("unable to determine table type");
1351 		return r;
1352 	}
1353 
1354 	r = dm_table_build_index(t);
1355 	if (r) {
1356 		DMERR("unable to build btrees");
1357 		return r;
1358 	}
1359 
1360 	r = dm_table_construct_crypto_profile(t);
1361 	if (r) {
1362 		DMERR("could not construct crypto profile.");
1363 		return r;
1364 	}
1365 
1366 	r = dm_table_alloc_md_mempools(t, t->md);
1367 	if (r)
1368 		DMERR("unable to allocate mempools");
1369 
1370 	return r;
1371 }
1372 
1373 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1374 void dm_table_event_callback(struct dm_table *t,
1375 			     void (*fn)(void *), void *context)
1376 {
1377 	mutex_lock(&_event_lock);
1378 	t->event_fn = fn;
1379 	t->event_context = context;
1380 	mutex_unlock(&_event_lock);
1381 }
1382 
dm_table_event(struct dm_table * t)1383 void dm_table_event(struct dm_table *t)
1384 {
1385 	mutex_lock(&_event_lock);
1386 	if (t->event_fn)
1387 		t->event_fn(t->event_context);
1388 	mutex_unlock(&_event_lock);
1389 }
1390 EXPORT_SYMBOL(dm_table_event);
1391 
dm_table_get_size(struct dm_table * t)1392 inline sector_t dm_table_get_size(struct dm_table *t)
1393 {
1394 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1395 }
1396 EXPORT_SYMBOL(dm_table_get_size);
1397 
1398 /*
1399  * Search the btree for the correct target.
1400  *
1401  * Caller should check returned pointer for NULL
1402  * to trap I/O beyond end of device.
1403  */
dm_table_find_target(struct dm_table * t,sector_t sector)1404 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1405 {
1406 	unsigned int l, n = 0, k = 0;
1407 	sector_t *node;
1408 
1409 	if (unlikely(sector >= dm_table_get_size(t)))
1410 		return NULL;
1411 
1412 	for (l = 0; l < t->depth; l++) {
1413 		n = get_child(n, k);
1414 		node = get_node(t, l, n);
1415 
1416 		for (k = 0; k < KEYS_PER_NODE; k++)
1417 			if (node[k] >= sector)
1418 				break;
1419 	}
1420 
1421 	return &t->targets[(KEYS_PER_NODE * n) + k];
1422 }
1423 
1424 /*
1425  * type->iterate_devices() should be called when the sanity check needs to
1426  * iterate and check all underlying data devices. iterate_devices() will
1427  * iterate all underlying data devices until it encounters a non-zero return
1428  * code, returned by whether the input iterate_devices_callout_fn, or
1429  * iterate_devices() itself internally.
1430  *
1431  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1432  * iterate multiple underlying devices internally, in which case a non-zero
1433  * return code returned by iterate_devices_callout_fn will stop the iteration
1434  * in advance.
1435  *
1436  * Cases requiring _any_ underlying device supporting some kind of attribute,
1437  * should use the iteration structure like dm_table_any_dev_attr(), or call
1438  * it directly. @func should handle semantics of positive examples, e.g.
1439  * capable of something.
1440  *
1441  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1442  * should use the iteration structure like dm_table_supports_nowait() or
1443  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1444  * uses an @anti_func that handle semantics of counter examples, e.g. not
1445  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1446  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1447 static bool dm_table_any_dev_attr(struct dm_table *t,
1448 				  iterate_devices_callout_fn func, void *data)
1449 {
1450 	for (unsigned int i = 0; i < t->num_targets; i++) {
1451 		struct dm_target *ti = dm_table_get_target(t, i);
1452 
1453 		if (ti->type->iterate_devices &&
1454 		    ti->type->iterate_devices(ti, func, data))
1455 			return true;
1456 	}
1457 
1458 	return false;
1459 }
1460 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1461 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1462 			sector_t start, sector_t len, void *data)
1463 {
1464 	unsigned int *num_devices = data;
1465 
1466 	(*num_devices)++;
1467 
1468 	return 0;
1469 }
1470 
1471 /*
1472  * Check whether a table has no data devices attached using each
1473  * target's iterate_devices method.
1474  * Returns false if the result is unknown because a target doesn't
1475  * support iterate_devices.
1476  */
dm_table_has_no_data_devices(struct dm_table * t)1477 bool dm_table_has_no_data_devices(struct dm_table *t)
1478 {
1479 	for (unsigned int i = 0; i < t->num_targets; i++) {
1480 		struct dm_target *ti = dm_table_get_target(t, i);
1481 		unsigned int num_devices = 0;
1482 
1483 		if (!ti->type->iterate_devices)
1484 			return false;
1485 
1486 		ti->type->iterate_devices(ti, count_device, &num_devices);
1487 		if (num_devices)
1488 			return false;
1489 	}
1490 
1491 	return true;
1492 }
1493 
device_not_zoned(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1494 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1495 			    sector_t start, sector_t len, void *data)
1496 {
1497 	bool *zoned = data;
1498 
1499 	return bdev_is_zoned(dev->bdev) != *zoned;
1500 }
1501 
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1502 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1503 				 sector_t start, sector_t len, void *data)
1504 {
1505 	return bdev_is_zoned(dev->bdev);
1506 }
1507 
1508 /*
1509  * Check the device zoned model based on the target feature flag. If the target
1510  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1511  * also accepted but all devices must have the same zoned model. If the target
1512  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1513  * zoned model with all zoned devices having the same zone size.
1514  */
dm_table_supports_zoned(struct dm_table * t,bool zoned)1515 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1516 {
1517 	for (unsigned int i = 0; i < t->num_targets; i++) {
1518 		struct dm_target *ti = dm_table_get_target(t, i);
1519 
1520 		/*
1521 		 * For the wildcard target (dm-error), if we do not have a
1522 		 * backing device, we must always return false. If we have a
1523 		 * backing device, the result must depend on checking zoned
1524 		 * model, like for any other target. So for this, check directly
1525 		 * if the target backing device is zoned as we get "false" when
1526 		 * dm-error was set without a backing device.
1527 		 */
1528 		if (dm_target_is_wildcard(ti->type) &&
1529 		    !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1530 			return false;
1531 
1532 		if (dm_target_supports_zoned_hm(ti->type)) {
1533 			if (!ti->type->iterate_devices ||
1534 			    ti->type->iterate_devices(ti, device_not_zoned,
1535 						      &zoned))
1536 				return false;
1537 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1538 			if (zoned)
1539 				return false;
1540 		}
1541 	}
1542 
1543 	return true;
1544 }
1545 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1546 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1547 					   sector_t start, sector_t len, void *data)
1548 {
1549 	unsigned int *zone_sectors = data;
1550 
1551 	if (!bdev_is_zoned(dev->bdev))
1552 		return 0;
1553 	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1554 }
1555 
1556 /*
1557  * Check consistency of zoned model and zone sectors across all targets. For
1558  * zone sectors, if the destination device is a zoned block device, it shall
1559  * have the specified zone_sectors.
1560  */
validate_hardware_zoned(struct dm_table * t,bool zoned,unsigned int zone_sectors)1561 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1562 				   unsigned int zone_sectors)
1563 {
1564 	if (!zoned)
1565 		return 0;
1566 
1567 	if (!dm_table_supports_zoned(t, zoned)) {
1568 		DMERR("%s: zoned model is not consistent across all devices",
1569 		      dm_device_name(t->md));
1570 		return -EINVAL;
1571 	}
1572 
1573 	/* Check zone size validity and compatibility */
1574 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1575 		return -EINVAL;
1576 
1577 	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1578 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1579 		      dm_device_name(t->md));
1580 		return -EINVAL;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Establish the new table's queue_limits and validate them.
1588  */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1589 int dm_calculate_queue_limits(struct dm_table *t,
1590 			      struct queue_limits *limits)
1591 {
1592 	struct queue_limits ti_limits;
1593 	unsigned int zone_sectors = 0;
1594 	bool zoned = false;
1595 
1596 	dm_set_stacking_limits(limits);
1597 
1598 	t->integrity_supported = true;
1599 	for (unsigned int i = 0; i < t->num_targets; i++) {
1600 		struct dm_target *ti = dm_table_get_target(t, i);
1601 
1602 		if (!dm_target_passes_integrity(ti->type))
1603 			t->integrity_supported = false;
1604 	}
1605 
1606 	for (unsigned int i = 0; i < t->num_targets; i++) {
1607 		struct dm_target *ti = dm_table_get_target(t, i);
1608 
1609 		dm_set_stacking_limits(&ti_limits);
1610 
1611 		if (!ti->type->iterate_devices) {
1612 			/* Set I/O hints portion of queue limits */
1613 			if (ti->type->io_hints)
1614 				ti->type->io_hints(ti, &ti_limits);
1615 			goto combine_limits;
1616 		}
1617 
1618 		/*
1619 		 * Combine queue limits of all the devices this target uses.
1620 		 */
1621 		ti->type->iterate_devices(ti, dm_set_device_limits,
1622 					  &ti_limits);
1623 
1624 		if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1625 			/*
1626 			 * After stacking all limits, validate all devices
1627 			 * in table support this zoned model and zone sectors.
1628 			 */
1629 			zoned = (ti_limits.features & BLK_FEAT_ZONED);
1630 			zone_sectors = ti_limits.chunk_sectors;
1631 		}
1632 
1633 		/* Set I/O hints portion of queue limits */
1634 		if (ti->type->io_hints)
1635 			ti->type->io_hints(ti, &ti_limits);
1636 
1637 		/*
1638 		 * Check each device area is consistent with the target's
1639 		 * overall queue limits.
1640 		 */
1641 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1642 					      &ti_limits))
1643 			return -EINVAL;
1644 
1645 combine_limits:
1646 		/*
1647 		 * Merge this target's queue limits into the overall limits
1648 		 * for the table.
1649 		 */
1650 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1651 			DMWARN("%s: adding target device (start sect %llu len %llu) "
1652 			       "caused an alignment inconsistency",
1653 			       dm_device_name(t->md),
1654 			       (unsigned long long) ti->begin,
1655 			       (unsigned long long) ti->len);
1656 
1657 		if (t->integrity_supported ||
1658 		    dm_target_has_integrity(ti->type)) {
1659 			if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1660 				DMWARN("%s: adding target device (start sect %llu len %llu) "
1661 				       "disabled integrity support due to incompatibility",
1662 				       dm_device_name(t->md),
1663 				       (unsigned long long) ti->begin,
1664 				       (unsigned long long) ti->len);
1665 				t->integrity_supported = false;
1666 			}
1667 		}
1668 	}
1669 
1670 	/*
1671 	 * Verify that the zoned model and zone sectors, as determined before
1672 	 * any .io_hints override, are the same across all devices in the table.
1673 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1674 	 *   zoned model on host-managed zoned block devices.
1675 	 * BUT...
1676 	 */
1677 	if (limits->features & BLK_FEAT_ZONED) {
1678 		/*
1679 		 * ...IF the above limits stacking determined a zoned model
1680 		 * validate that all of the table's devices conform to it.
1681 		 */
1682 		zoned = limits->features & BLK_FEAT_ZONED;
1683 		zone_sectors = limits->chunk_sectors;
1684 	}
1685 	if (validate_hardware_zoned(t, zoned, zone_sectors))
1686 		return -EINVAL;
1687 
1688 	return validate_hardware_logical_block_alignment(t, limits);
1689 }
1690 
1691 /*
1692  * Check if a target requires flush support even if none of the underlying
1693  * devices need it (e.g. to persist target-specific metadata).
1694  */
dm_table_supports_flush(struct dm_table * t)1695 static bool dm_table_supports_flush(struct dm_table *t)
1696 {
1697 	for (unsigned int i = 0; i < t->num_targets; i++) {
1698 		struct dm_target *ti = dm_table_get_target(t, i);
1699 
1700 		if (ti->num_flush_bios && ti->flush_supported)
1701 			return true;
1702 	}
1703 
1704 	return false;
1705 }
1706 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1707 static int device_dax_write_cache_enabled(struct dm_target *ti,
1708 					  struct dm_dev *dev, sector_t start,
1709 					  sector_t len, void *data)
1710 {
1711 	struct dax_device *dax_dev = dev->dax_dev;
1712 
1713 	if (!dax_dev)
1714 		return false;
1715 
1716 	if (dax_write_cache_enabled(dax_dev))
1717 		return true;
1718 	return false;
1719 }
1720 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1721 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1722 					   sector_t start, sector_t len, void *data)
1723 {
1724 	struct request_queue *q = bdev_get_queue(dev->bdev);
1725 
1726 	return !q->limits.max_write_zeroes_sectors;
1727 }
1728 
dm_table_supports_write_zeroes(struct dm_table * t)1729 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1730 {
1731 	for (unsigned int i = 0; i < t->num_targets; i++) {
1732 		struct dm_target *ti = dm_table_get_target(t, i);
1733 
1734 		if (!ti->num_write_zeroes_bios)
1735 			return false;
1736 
1737 		if (!ti->type->iterate_devices ||
1738 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1739 			return false;
1740 	}
1741 
1742 	return true;
1743 }
1744 
dm_table_supports_nowait(struct dm_table * t)1745 static bool dm_table_supports_nowait(struct dm_table *t)
1746 {
1747 	for (unsigned int i = 0; i < t->num_targets; i++) {
1748 		struct dm_target *ti = dm_table_get_target(t, i);
1749 
1750 		if (!dm_target_supports_nowait(ti->type))
1751 			return false;
1752 	}
1753 
1754 	return true;
1755 }
1756 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1757 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1758 				      sector_t start, sector_t len, void *data)
1759 {
1760 	return !bdev_max_discard_sectors(dev->bdev);
1761 }
1762 
dm_table_supports_discards(struct dm_table * t)1763 static bool dm_table_supports_discards(struct dm_table *t)
1764 {
1765 	for (unsigned int i = 0; i < t->num_targets; i++) {
1766 		struct dm_target *ti = dm_table_get_target(t, i);
1767 
1768 		if (!ti->num_discard_bios)
1769 			return false;
1770 
1771 		/*
1772 		 * Either the target provides discard support (as implied by setting
1773 		 * 'discards_supported') or it relies on _all_ data devices having
1774 		 * discard support.
1775 		 */
1776 		if (!ti->discards_supported &&
1777 		    (!ti->type->iterate_devices ||
1778 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1779 			return false;
1780 	}
1781 
1782 	return true;
1783 }
1784 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1785 static int device_not_secure_erase_capable(struct dm_target *ti,
1786 					   struct dm_dev *dev, sector_t start,
1787 					   sector_t len, void *data)
1788 {
1789 	return !bdev_max_secure_erase_sectors(dev->bdev);
1790 }
1791 
dm_table_supports_secure_erase(struct dm_table * t)1792 static bool dm_table_supports_secure_erase(struct dm_table *t)
1793 {
1794 	for (unsigned int i = 0; i < t->num_targets; i++) {
1795 		struct dm_target *ti = dm_table_get_target(t, i);
1796 
1797 		if (!ti->num_secure_erase_bios)
1798 			return false;
1799 
1800 		if (!ti->type->iterate_devices ||
1801 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1802 			return false;
1803 	}
1804 
1805 	return true;
1806 }
1807 
device_not_atomic_write_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1808 static int device_not_atomic_write_capable(struct dm_target *ti,
1809 			struct dm_dev *dev, sector_t start,
1810 			sector_t len, void *data)
1811 {
1812 	return !bdev_can_atomic_write(dev->bdev);
1813 }
1814 
dm_table_supports_atomic_writes(struct dm_table * t)1815 static bool dm_table_supports_atomic_writes(struct dm_table *t)
1816 {
1817 	for (unsigned int i = 0; i < t->num_targets; i++) {
1818 		struct dm_target *ti = dm_table_get_target(t, i);
1819 
1820 		if (!dm_target_supports_atomic_writes(ti->type))
1821 			return false;
1822 
1823 		if (!ti->type->iterate_devices)
1824 			return false;
1825 
1826 		if (ti->type->iterate_devices(ti,
1827 			device_not_atomic_write_capable, NULL)) {
1828 			return false;
1829 		}
1830 	}
1831 	return true;
1832 }
1833 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1834 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1835 			      struct queue_limits *limits)
1836 {
1837 	int r;
1838 
1839 	if (!dm_table_supports_nowait(t))
1840 		limits->features &= ~BLK_FEAT_NOWAIT;
1841 
1842 	/*
1843 	 * The current polling impementation does not support request based
1844 	 * stacking.
1845 	 */
1846 	if (!__table_type_bio_based(t->type))
1847 		limits->features &= ~BLK_FEAT_POLL;
1848 
1849 	if (!dm_table_supports_discards(t)) {
1850 		limits->max_hw_discard_sectors = 0;
1851 		limits->discard_granularity = 0;
1852 		limits->discard_alignment = 0;
1853 	}
1854 
1855 	if (!dm_table_supports_write_zeroes(t))
1856 		limits->max_write_zeroes_sectors = 0;
1857 
1858 	if (!dm_table_supports_secure_erase(t))
1859 		limits->max_secure_erase_sectors = 0;
1860 
1861 	if (dm_table_supports_flush(t))
1862 		limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1863 
1864 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1865 		limits->features |= BLK_FEAT_DAX;
1866 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1867 			set_dax_synchronous(t->md->dax_dev);
1868 	} else
1869 		limits->features &= ~BLK_FEAT_DAX;
1870 
1871 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1872 		dax_write_cache(t->md->dax_dev, true);
1873 
1874 	/* For a zoned table, setup the zone related queue attributes. */
1875 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1876 	    (limits->features & BLK_FEAT_ZONED)) {
1877 		r = dm_set_zones_restrictions(t, q, limits);
1878 		if (r)
1879 			return r;
1880 	}
1881 
1882 	if (dm_table_supports_atomic_writes(t))
1883 		limits->features |= BLK_FEAT_ATOMIC_WRITES;
1884 
1885 	r = queue_limits_set(q, limits);
1886 	if (r)
1887 		return r;
1888 
1889 	/*
1890 	 * Now that the limits are set, check the zones mapped by the table
1891 	 * and setup the resources for zone append emulation if necessary.
1892 	 */
1893 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1894 	    (limits->features & BLK_FEAT_ZONED)) {
1895 		r = dm_revalidate_zones(t, q);
1896 		if (r)
1897 			return r;
1898 	}
1899 
1900 	dm_update_crypto_profile(q, t);
1901 	return 0;
1902 }
1903 
dm_table_get_devices(struct dm_table * t)1904 struct list_head *dm_table_get_devices(struct dm_table *t)
1905 {
1906 	return &t->devices;
1907 }
1908 
dm_table_get_mode(struct dm_table * t)1909 blk_mode_t dm_table_get_mode(struct dm_table *t)
1910 {
1911 	return t->mode;
1912 }
1913 EXPORT_SYMBOL(dm_table_get_mode);
1914 
1915 enum suspend_mode {
1916 	PRESUSPEND,
1917 	PRESUSPEND_UNDO,
1918 	POSTSUSPEND,
1919 };
1920 
suspend_targets(struct dm_table * t,enum suspend_mode mode)1921 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1922 {
1923 	lockdep_assert_held(&t->md->suspend_lock);
1924 
1925 	for (unsigned int i = 0; i < t->num_targets; i++) {
1926 		struct dm_target *ti = dm_table_get_target(t, i);
1927 
1928 		switch (mode) {
1929 		case PRESUSPEND:
1930 			if (ti->type->presuspend)
1931 				ti->type->presuspend(ti);
1932 			break;
1933 		case PRESUSPEND_UNDO:
1934 			if (ti->type->presuspend_undo)
1935 				ti->type->presuspend_undo(ti);
1936 			break;
1937 		case POSTSUSPEND:
1938 			if (ti->type->postsuspend)
1939 				ti->type->postsuspend(ti);
1940 			break;
1941 		}
1942 	}
1943 }
1944 
dm_table_presuspend_targets(struct dm_table * t)1945 void dm_table_presuspend_targets(struct dm_table *t)
1946 {
1947 	if (!t)
1948 		return;
1949 
1950 	suspend_targets(t, PRESUSPEND);
1951 }
1952 
dm_table_presuspend_undo_targets(struct dm_table * t)1953 void dm_table_presuspend_undo_targets(struct dm_table *t)
1954 {
1955 	if (!t)
1956 		return;
1957 
1958 	suspend_targets(t, PRESUSPEND_UNDO);
1959 }
1960 
dm_table_postsuspend_targets(struct dm_table * t)1961 void dm_table_postsuspend_targets(struct dm_table *t)
1962 {
1963 	if (!t)
1964 		return;
1965 
1966 	suspend_targets(t, POSTSUSPEND);
1967 }
1968 
dm_table_resume_targets(struct dm_table * t)1969 int dm_table_resume_targets(struct dm_table *t)
1970 {
1971 	unsigned int i;
1972 	int r = 0;
1973 
1974 	lockdep_assert_held(&t->md->suspend_lock);
1975 
1976 	for (i = 0; i < t->num_targets; i++) {
1977 		struct dm_target *ti = dm_table_get_target(t, i);
1978 
1979 		if (!ti->type->preresume)
1980 			continue;
1981 
1982 		r = ti->type->preresume(ti);
1983 		if (r) {
1984 			DMERR("%s: %s: preresume failed, error = %d",
1985 			      dm_device_name(t->md), ti->type->name, r);
1986 			return r;
1987 		}
1988 	}
1989 
1990 	for (i = 0; i < t->num_targets; i++) {
1991 		struct dm_target *ti = dm_table_get_target(t, i);
1992 
1993 		if (ti->type->resume)
1994 			ti->type->resume(ti);
1995 	}
1996 
1997 	return 0;
1998 }
1999 
dm_table_get_md(struct dm_table * t)2000 struct mapped_device *dm_table_get_md(struct dm_table *t)
2001 {
2002 	return t->md;
2003 }
2004 EXPORT_SYMBOL(dm_table_get_md);
2005 
dm_table_device_name(struct dm_table * t)2006 const char *dm_table_device_name(struct dm_table *t)
2007 {
2008 	return dm_device_name(t->md);
2009 }
2010 EXPORT_SYMBOL_GPL(dm_table_device_name);
2011 
dm_table_run_md_queue_async(struct dm_table * t)2012 void dm_table_run_md_queue_async(struct dm_table *t)
2013 {
2014 	if (!dm_table_request_based(t))
2015 		return;
2016 
2017 	if (t->md->queue)
2018 		blk_mq_run_hw_queues(t->md->queue, true);
2019 }
2020 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2021 
2022