xref: /linux/rust/kernel/device.rs (revision b891d11b74b447df6e18104199148e420c985ac1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic devices that are part of the kernel's driver model.
4 //!
5 //! C header: [`include/linux/device.h`](srctree/include/linux/device.h)
6 
7 use crate::{
8     bindings,
9     types::{ARef, ForeignOwnable, Opaque},
10 };
11 use core::{fmt, marker::PhantomData, ptr};
12 
13 #[cfg(CONFIG_PRINTK)]
14 use crate::c_str;
15 
16 pub mod property;
17 
18 /// The core representation of a device in the kernel's driver model.
19 ///
20 /// This structure represents the Rust abstraction for a C `struct device`. A [`Device`] can either
21 /// exist as temporary reference (see also [`Device::from_raw`]), which is only valid within a
22 /// certain scope or as [`ARef<Device>`], owning a dedicated reference count.
23 ///
24 /// # Device Types
25 ///
26 /// A [`Device`] can represent either a bus device or a class device.
27 ///
28 /// ## Bus Devices
29 ///
30 /// A bus device is a [`Device`] that is associated with a physical or virtual bus. Examples of
31 /// buses include PCI, USB, I2C, and SPI. Devices attached to a bus are registered with a specific
32 /// bus type, which facilitates matching devices with appropriate drivers based on IDs or other
33 /// identifying information. Bus devices are visible in sysfs under `/sys/bus/<bus-name>/devices/`.
34 ///
35 /// ## Class Devices
36 ///
37 /// A class device is a [`Device`] that is associated with a logical category of functionality
38 /// rather than a physical bus. Examples of classes include block devices, network interfaces, sound
39 /// cards, and input devices. Class devices are grouped under a common class and exposed to
40 /// userspace via entries in `/sys/class/<class-name>/`.
41 ///
42 /// # Device Context
43 ///
44 /// [`Device`] references are generic over a [`DeviceContext`], which represents the type state of
45 /// a [`Device`].
46 ///
47 /// As the name indicates, this type state represents the context of the scope the [`Device`]
48 /// reference is valid in. For instance, the [`Bound`] context guarantees that the [`Device`] is
49 /// bound to a driver for the entire duration of the existence of a [`Device<Bound>`] reference.
50 ///
51 /// Other [`DeviceContext`] types besides [`Bound`] are [`Normal`], [`Core`] and [`CoreInternal`].
52 ///
53 /// Unless selected otherwise [`Device`] defaults to the [`Normal`] [`DeviceContext`], which by
54 /// itself has no additional requirements.
55 ///
56 /// It is always up to the caller of [`Device::from_raw`] to select the correct [`DeviceContext`]
57 /// type for the corresponding scope the [`Device`] reference is created in.
58 ///
59 /// All [`DeviceContext`] types other than [`Normal`] are intended to be used with
60 /// [bus devices](#bus-devices) only.
61 ///
62 /// # Implementing Bus Devices
63 ///
64 /// This section provides a guideline to implement bus specific devices, such as [`pci::Device`] or
65 /// [`platform::Device`].
66 ///
67 /// A bus specific device should be defined as follows.
68 ///
69 /// ```ignore
70 /// #[repr(transparent)]
71 /// pub struct Device<Ctx: device::DeviceContext = device::Normal>(
72 ///     Opaque<bindings::bus_device_type>,
73 ///     PhantomData<Ctx>,
74 /// );
75 /// ```
76 ///
77 /// Since devices are reference counted, [`AlwaysRefCounted`] should be implemented for `Device`
78 /// (i.e. `Device<Normal>`). Note that [`AlwaysRefCounted`] must not be implemented for any other
79 /// [`DeviceContext`], since all other device context types are only valid within a certain scope.
80 ///
81 /// In order to be able to implement the [`DeviceContext`] dereference hierarchy, bus device
82 /// implementations should call the [`impl_device_context_deref`] macro as shown below.
83 ///
84 /// ```ignore
85 /// // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s
86 /// // generic argument.
87 /// kernel::impl_device_context_deref!(unsafe { Device });
88 /// ```
89 ///
90 /// In order to convert from a any [`Device<Ctx>`] to [`ARef<Device>`], bus devices can implement
91 /// the following macro call.
92 ///
93 /// ```ignore
94 /// kernel::impl_device_context_into_aref!(Device);
95 /// ```
96 ///
97 /// Bus devices should also implement the following [`AsRef`] implementation, such that users can
98 /// easily derive a generic [`Device`] reference.
99 ///
100 /// ```ignore
101 /// impl<Ctx: device::DeviceContext> AsRef<device::Device<Ctx>> for Device<Ctx> {
102 ///     fn as_ref(&self) -> &device::Device<Ctx> {
103 ///         ...
104 ///     }
105 /// }
106 /// ```
107 ///
108 /// # Implementing Class Devices
109 ///
110 /// Class device implementations require less infrastructure and depend slightly more on the
111 /// specific subsystem.
112 ///
113 /// An example implementation for a class device could look like this.
114 ///
115 /// ```ignore
116 /// #[repr(C)]
117 /// pub struct Device<T: class::Driver> {
118 ///     dev: Opaque<bindings::class_device_type>,
119 ///     data: T::Data,
120 /// }
121 /// ```
122 ///
123 /// This class device uses the sub-classing pattern to embed the driver's private data within the
124 /// allocation of the class device. For this to be possible the class device is generic over the
125 /// class specific `Driver` trait implementation.
126 ///
127 /// Just like any device, class devices are reference counted and should hence implement
128 /// [`AlwaysRefCounted`] for `Device`.
129 ///
130 /// Class devices should also implement the following [`AsRef`] implementation, such that users can
131 /// easily derive a generic [`Device`] reference.
132 ///
133 /// ```ignore
134 /// impl<T: class::Driver> AsRef<device::Device> for Device<T> {
135 ///     fn as_ref(&self) -> &device::Device {
136 ///         ...
137 ///     }
138 /// }
139 /// ```
140 ///
141 /// An example for a class device implementation is
142 #[cfg_attr(CONFIG_DRM = "y", doc = "[`drm::Device`](kernel::drm::Device).")]
143 #[cfg_attr(not(CONFIG_DRM = "y"), doc = "`drm::Device`.")]
144 ///
145 /// # Invariants
146 ///
147 /// A `Device` instance represents a valid `struct device` created by the C portion of the kernel.
148 ///
149 /// Instances of this type are always reference-counted, that is, a call to `get_device` ensures
150 /// that the allocation remains valid at least until the matching call to `put_device`.
151 ///
152 /// `bindings::device::release` is valid to be called from any thread, hence `ARef<Device>` can be
153 /// dropped from any thread.
154 ///
155 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
156 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
157 /// [`pci::Device`]: kernel::pci::Device
158 /// [`platform::Device`]: kernel::platform::Device
159 #[repr(transparent)]
160 pub struct Device<Ctx: DeviceContext = Normal>(Opaque<bindings::device>, PhantomData<Ctx>);
161 
162 impl Device {
163     /// Creates a new reference-counted abstraction instance of an existing `struct device` pointer.
164     ///
165     /// # Safety
166     ///
167     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
168     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
169     /// can't drop to zero, for the duration of this function call.
170     ///
171     /// It must also be ensured that `bindings::device::release` can be called from any thread.
172     /// While not officially documented, this should be the case for any `struct device`.
get_device(ptr: *mut bindings::device) -> ARef<Self>173     pub unsafe fn get_device(ptr: *mut bindings::device) -> ARef<Self> {
174         // SAFETY: By the safety requirements ptr is valid
175         unsafe { Self::from_raw(ptr) }.into()
176     }
177 
178     /// Convert a [`&Device`](Device) into a [`&Device<Bound>`](Device<Bound>).
179     ///
180     /// # Safety
181     ///
182     /// The caller is responsible to ensure that the returned [`&Device<Bound>`](Device<Bound>)
183     /// only lives as long as it can be guaranteed that the [`Device`] is actually bound.
as_bound(&self) -> &Device<Bound>184     pub unsafe fn as_bound(&self) -> &Device<Bound> {
185         let ptr = core::ptr::from_ref(self);
186 
187         // CAST: By the safety requirements the caller is responsible to guarantee that the
188         // returned reference only lives as long as the device is actually bound.
189         let ptr = ptr.cast();
190 
191         // SAFETY:
192         // - `ptr` comes from `from_ref(self)` above, hence it's guaranteed to be valid.
193         // - Any valid `Device` pointer is also a valid pointer for `Device<Bound>`.
194         unsafe { &*ptr }
195     }
196 }
197 
198 impl Device<CoreInternal> {
199     /// Store a pointer to the bound driver's private data.
set_drvdata(&self, data: impl ForeignOwnable)200     pub fn set_drvdata(&self, data: impl ForeignOwnable) {
201         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
202         unsafe { bindings::dev_set_drvdata(self.as_raw(), data.into_foreign().cast()) }
203     }
204 
205     /// Take ownership of the private data stored in this [`Device`].
206     ///
207     /// # Safety
208     ///
209     /// - Must only be called once after a preceding call to [`Device::set_drvdata`].
210     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
211     ///   [`Device::set_drvdata`].
drvdata_obtain<T: ForeignOwnable>(&self) -> T212     pub unsafe fn drvdata_obtain<T: ForeignOwnable>(&self) -> T {
213         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
214         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
215 
216         // SAFETY:
217         // - By the safety requirements of this function, `ptr` comes from a previous call to
218         //   `into_foreign()`.
219         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
220         //   in `into_foreign()`.
221         unsafe { T::from_foreign(ptr.cast()) }
222     }
223 
224     /// Borrow the driver's private data bound to this [`Device`].
225     ///
226     /// # Safety
227     ///
228     /// - Must only be called after a preceding call to [`Device::set_drvdata`] and before
229     ///   [`Device::drvdata_obtain`].
230     /// - The type `T` must match the type of the `ForeignOwnable` previously stored by
231     ///   [`Device::set_drvdata`].
drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_>232     pub unsafe fn drvdata_borrow<T: ForeignOwnable>(&self) -> T::Borrowed<'_> {
233         // SAFETY: By the type invariants, `self.as_raw()` is a valid pointer to a `struct device`.
234         let ptr = unsafe { bindings::dev_get_drvdata(self.as_raw()) };
235 
236         // SAFETY:
237         // - By the safety requirements of this function, `ptr` comes from a previous call to
238         //   `into_foreign()`.
239         // - `dev_get_drvdata()` guarantees to return the same pointer given to `dev_set_drvdata()`
240         //   in `into_foreign()`.
241         unsafe { T::borrow(ptr.cast()) }
242     }
243 }
244 
245 impl<Ctx: DeviceContext> Device<Ctx> {
246     /// Obtain the raw `struct device *`.
as_raw(&self) -> *mut bindings::device247     pub(crate) fn as_raw(&self) -> *mut bindings::device {
248         self.0.get()
249     }
250 
251     /// Returns a reference to the parent device, if any.
252     #[cfg_attr(not(CONFIG_AUXILIARY_BUS), expect(dead_code))]
parent(&self) -> Option<&Self>253     pub(crate) fn parent(&self) -> Option<&Self> {
254         // SAFETY:
255         // - By the type invariant `self.as_raw()` is always valid.
256         // - The parent device is only ever set at device creation.
257         let parent = unsafe { (*self.as_raw()).parent };
258 
259         if parent.is_null() {
260             None
261         } else {
262             // SAFETY:
263             // - Since `parent` is not NULL, it must be a valid pointer to a `struct device`.
264             // - `parent` is valid for the lifetime of `self`, since a `struct device` holds a
265             //   reference count of its parent.
266             Some(unsafe { Self::from_raw(parent) })
267         }
268     }
269 
270     /// Convert a raw C `struct device` pointer to a `&'a Device`.
271     ///
272     /// # Safety
273     ///
274     /// Callers must ensure that `ptr` is valid, non-null, and has a non-zero reference count,
275     /// i.e. it must be ensured that the reference count of the C `struct device` `ptr` points to
276     /// can't drop to zero, for the duration of this function call and the entire duration when the
277     /// returned reference exists.
from_raw<'a>(ptr: *mut bindings::device) -> &'a Self278     pub unsafe fn from_raw<'a>(ptr: *mut bindings::device) -> &'a Self {
279         // SAFETY: Guaranteed by the safety requirements of the function.
280         unsafe { &*ptr.cast() }
281     }
282 
283     /// Prints an emergency-level message (level 0) prefixed with device information.
284     ///
285     /// More details are available from [`dev_emerg`].
286     ///
287     /// [`dev_emerg`]: crate::dev_emerg
pr_emerg(&self, args: fmt::Arguments<'_>)288     pub fn pr_emerg(&self, args: fmt::Arguments<'_>) {
289         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
290         unsafe { self.printk(bindings::KERN_EMERG, args) };
291     }
292 
293     /// Prints an alert-level message (level 1) prefixed with device information.
294     ///
295     /// More details are available from [`dev_alert`].
296     ///
297     /// [`dev_alert`]: crate::dev_alert
pr_alert(&self, args: fmt::Arguments<'_>)298     pub fn pr_alert(&self, args: fmt::Arguments<'_>) {
299         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
300         unsafe { self.printk(bindings::KERN_ALERT, args) };
301     }
302 
303     /// Prints a critical-level message (level 2) prefixed with device information.
304     ///
305     /// More details are available from [`dev_crit`].
306     ///
307     /// [`dev_crit`]: crate::dev_crit
pr_crit(&self, args: fmt::Arguments<'_>)308     pub fn pr_crit(&self, args: fmt::Arguments<'_>) {
309         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
310         unsafe { self.printk(bindings::KERN_CRIT, args) };
311     }
312 
313     /// Prints an error-level message (level 3) prefixed with device information.
314     ///
315     /// More details are available from [`dev_err`].
316     ///
317     /// [`dev_err`]: crate::dev_err
pr_err(&self, args: fmt::Arguments<'_>)318     pub fn pr_err(&self, args: fmt::Arguments<'_>) {
319         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
320         unsafe { self.printk(bindings::KERN_ERR, args) };
321     }
322 
323     /// Prints a warning-level message (level 4) prefixed with device information.
324     ///
325     /// More details are available from [`dev_warn`].
326     ///
327     /// [`dev_warn`]: crate::dev_warn
pr_warn(&self, args: fmt::Arguments<'_>)328     pub fn pr_warn(&self, args: fmt::Arguments<'_>) {
329         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
330         unsafe { self.printk(bindings::KERN_WARNING, args) };
331     }
332 
333     /// Prints a notice-level message (level 5) prefixed with device information.
334     ///
335     /// More details are available from [`dev_notice`].
336     ///
337     /// [`dev_notice`]: crate::dev_notice
pr_notice(&self, args: fmt::Arguments<'_>)338     pub fn pr_notice(&self, args: fmt::Arguments<'_>) {
339         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
340         unsafe { self.printk(bindings::KERN_NOTICE, args) };
341     }
342 
343     /// Prints an info-level message (level 6) prefixed with device information.
344     ///
345     /// More details are available from [`dev_info`].
346     ///
347     /// [`dev_info`]: crate::dev_info
pr_info(&self, args: fmt::Arguments<'_>)348     pub fn pr_info(&self, args: fmt::Arguments<'_>) {
349         // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
350         unsafe { self.printk(bindings::KERN_INFO, args) };
351     }
352 
353     /// Prints a debug-level message (level 7) prefixed with device information.
354     ///
355     /// More details are available from [`dev_dbg`].
356     ///
357     /// [`dev_dbg`]: crate::dev_dbg
pr_dbg(&self, args: fmt::Arguments<'_>)358     pub fn pr_dbg(&self, args: fmt::Arguments<'_>) {
359         if cfg!(debug_assertions) {
360             // SAFETY: `klevel` is null-terminated, uses one of the kernel constants.
361             unsafe { self.printk(bindings::KERN_DEBUG, args) };
362         }
363     }
364 
365     /// Prints the provided message to the console.
366     ///
367     /// # Safety
368     ///
369     /// Callers must ensure that `klevel` is null-terminated; in particular, one of the
370     /// `KERN_*`constants, for example, `KERN_CRIT`, `KERN_ALERT`, etc.
371     #[cfg_attr(not(CONFIG_PRINTK), allow(unused_variables))]
printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>)372     unsafe fn printk(&self, klevel: &[u8], msg: fmt::Arguments<'_>) {
373         // SAFETY: `klevel` is null-terminated and one of the kernel constants. `self.as_raw`
374         // is valid because `self` is valid. The "%pA" format string expects a pointer to
375         // `fmt::Arguments`, which is what we're passing as the last argument.
376         #[cfg(CONFIG_PRINTK)]
377         unsafe {
378             bindings::_dev_printk(
379                 klevel.as_ptr().cast::<crate::ffi::c_char>(),
380                 self.as_raw(),
381                 c_str!("%pA").as_char_ptr(),
382                 core::ptr::from_ref(&msg).cast::<crate::ffi::c_void>(),
383             )
384         };
385     }
386 
387     /// Obtain the [`FwNode`](property::FwNode) corresponding to this [`Device`].
fwnode(&self) -> Option<&property::FwNode>388     pub fn fwnode(&self) -> Option<&property::FwNode> {
389         // SAFETY: `self` is valid.
390         let fwnode_handle = unsafe { bindings::__dev_fwnode(self.as_raw()) };
391         if fwnode_handle.is_null() {
392             return None;
393         }
394         // SAFETY: `fwnode_handle` is valid. Its lifetime is tied to `&self`. We
395         // return a reference instead of an `ARef<FwNode>` because `dev_fwnode()`
396         // doesn't increment the refcount. It is safe to cast from a
397         // `struct fwnode_handle*` to a `*const FwNode` because `FwNode` is
398         // defined as a `#[repr(transparent)]` wrapper around `fwnode_handle`.
399         Some(unsafe { &*fwnode_handle.cast() })
400     }
401 }
402 
403 // SAFETY: `Device` is a transparent wrapper of a type that doesn't depend on `Device`'s generic
404 // argument.
405 kernel::impl_device_context_deref!(unsafe { Device });
406 kernel::impl_device_context_into_aref!(Device);
407 
408 // SAFETY: Instances of `Device` are always reference-counted.
409 unsafe impl crate::types::AlwaysRefCounted for Device {
inc_ref(&self)410     fn inc_ref(&self) {
411         // SAFETY: The existence of a shared reference guarantees that the refcount is non-zero.
412         unsafe { bindings::get_device(self.as_raw()) };
413     }
414 
dec_ref(obj: ptr::NonNull<Self>)415     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
416         // SAFETY: The safety requirements guarantee that the refcount is non-zero.
417         unsafe { bindings::put_device(obj.cast().as_ptr()) }
418     }
419 }
420 
421 // SAFETY: As by the type invariant `Device` can be sent to any thread.
422 unsafe impl Send for Device {}
423 
424 // SAFETY: `Device` can be shared among threads because all immutable methods are protected by the
425 // synchronization in `struct device`.
426 unsafe impl Sync for Device {}
427 
428 /// Marker trait for the context or scope of a bus specific device.
429 ///
430 /// [`DeviceContext`] is a marker trait for types representing the context of a bus specific
431 /// [`Device`].
432 ///
433 /// The specific device context types are: [`CoreInternal`], [`Core`], [`Bound`] and [`Normal`].
434 ///
435 /// [`DeviceContext`] types are hierarchical, which means that there is a strict hierarchy that
436 /// defines which [`DeviceContext`] type can be derived from another. For instance, any
437 /// [`Device<Core>`] can dereference to a [`Device<Bound>`].
438 ///
439 /// The following enumeration illustrates the dereference hierarchy of [`DeviceContext`] types.
440 ///
441 /// - [`CoreInternal`] => [`Core`] => [`Bound`] => [`Normal`]
442 ///
443 /// Bus devices can automatically implement the dereference hierarchy by using
444 /// [`impl_device_context_deref`].
445 ///
446 /// Note that the guarantee for a [`Device`] reference to have a certain [`DeviceContext`] comes
447 /// from the specific scope the [`Device`] reference is valid in.
448 ///
449 /// [`impl_device_context_deref`]: kernel::impl_device_context_deref
450 pub trait DeviceContext: private::Sealed {}
451 
452 /// The [`Normal`] context is the default [`DeviceContext`] of any [`Device`].
453 ///
454 /// The normal context does not indicate any specific context. Any `Device<Ctx>` is also a valid
455 /// [`Device<Normal>`]. It is the only [`DeviceContext`] for which it is valid to implement
456 /// [`AlwaysRefCounted`] for.
457 ///
458 /// [`AlwaysRefCounted`]: kernel::types::AlwaysRefCounted
459 pub struct Normal;
460 
461 /// The [`Core`] context is the context of a bus specific device when it appears as argument of
462 /// any bus specific callback, such as `probe()`.
463 ///
464 /// The core context indicates that the [`Device<Core>`] reference's scope is limited to the bus
465 /// callback it appears in. It is intended to be used for synchronization purposes. Bus device
466 /// implementations can implement methods for [`Device<Core>`], such that they can only be called
467 /// from bus callbacks.
468 pub struct Core;
469 
470 /// Semantically the same as [`Core`], but reserved for internal usage of the corresponding bus
471 /// abstraction.
472 ///
473 /// The internal core context is intended to be used in exactly the same way as the [`Core`]
474 /// context, with the difference that this [`DeviceContext`] is internal to the corresponding bus
475 /// abstraction.
476 ///
477 /// This context mainly exists to share generic [`Device`] infrastructure that should only be called
478 /// from bus callbacks with bus abstractions, but without making them accessible for drivers.
479 pub struct CoreInternal;
480 
481 /// The [`Bound`] context is the [`DeviceContext`] of a bus specific device when it is guaranteed to
482 /// be bound to a driver.
483 ///
484 /// The bound context indicates that for the entire duration of the lifetime of a [`Device<Bound>`]
485 /// reference, the [`Device`] is guaranteed to be bound to a driver.
486 ///
487 /// Some APIs, such as [`dma::CoherentAllocation`] or [`Devres`] rely on the [`Device`] to be bound,
488 /// which can be proven with the [`Bound`] device context.
489 ///
490 /// Any abstraction that can guarantee a scope where the corresponding bus device is bound, should
491 /// provide a [`Device<Bound>`] reference to its users for this scope. This allows users to benefit
492 /// from optimizations for accessing device resources, see also [`Devres::access`].
493 ///
494 /// [`Devres`]: kernel::devres::Devres
495 /// [`Devres::access`]: kernel::devres::Devres::access
496 /// [`dma::CoherentAllocation`]: kernel::dma::CoherentAllocation
497 pub struct Bound;
498 
499 mod private {
500     pub trait Sealed {}
501 
502     impl Sealed for super::Bound {}
503     impl Sealed for super::Core {}
504     impl Sealed for super::CoreInternal {}
505     impl Sealed for super::Normal {}
506 }
507 
508 impl DeviceContext for Bound {}
509 impl DeviceContext for Core {}
510 impl DeviceContext for CoreInternal {}
511 impl DeviceContext for Normal {}
512 
513 /// # Safety
514 ///
515 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
516 /// generic argument of `$device`.
517 #[doc(hidden)]
518 #[macro_export]
519 macro_rules! __impl_device_context_deref {
520     (unsafe { $device:ident, $src:ty => $dst:ty }) => {
521         impl ::core::ops::Deref for $device<$src> {
522             type Target = $device<$dst>;
523 
524             fn deref(&self) -> &Self::Target {
525                 let ptr: *const Self = self;
526 
527                 // CAST: `$device<$src>` and `$device<$dst>` transparently wrap the same type by the
528                 // safety requirement of the macro.
529                 let ptr = ptr.cast::<Self::Target>();
530 
531                 // SAFETY: `ptr` was derived from `&self`.
532                 unsafe { &*ptr }
533             }
534         }
535     };
536 }
537 
538 /// Implement [`core::ops::Deref`] traits for allowed [`DeviceContext`] conversions of a (bus
539 /// specific) device.
540 ///
541 /// # Safety
542 ///
543 /// The type given as `$device` must be a transparent wrapper of a type that doesn't depend on the
544 /// generic argument of `$device`.
545 #[macro_export]
546 macro_rules! impl_device_context_deref {
547     (unsafe { $device:ident }) => {
548         // SAFETY: This macro has the exact same safety requirement as
549         // `__impl_device_context_deref!`.
550         ::kernel::__impl_device_context_deref!(unsafe {
551             $device,
552             $crate::device::CoreInternal => $crate::device::Core
553         });
554 
555         // SAFETY: This macro has the exact same safety requirement as
556         // `__impl_device_context_deref!`.
557         ::kernel::__impl_device_context_deref!(unsafe {
558             $device,
559             $crate::device::Core => $crate::device::Bound
560         });
561 
562         // SAFETY: This macro has the exact same safety requirement as
563         // `__impl_device_context_deref!`.
564         ::kernel::__impl_device_context_deref!(unsafe {
565             $device,
566             $crate::device::Bound => $crate::device::Normal
567         });
568     };
569 }
570 
571 #[doc(hidden)]
572 #[macro_export]
573 macro_rules! __impl_device_context_into_aref {
574     ($src:ty, $device:tt) => {
575         impl ::core::convert::From<&$device<$src>> for $crate::types::ARef<$device> {
576             fn from(dev: &$device<$src>) -> Self {
577                 (&**dev).into()
578             }
579         }
580     };
581 }
582 
583 /// Implement [`core::convert::From`], such that all `&Device<Ctx>` can be converted to an
584 /// `ARef<Device>`.
585 #[macro_export]
586 macro_rules! impl_device_context_into_aref {
587     ($device:tt) => {
588         ::kernel::__impl_device_context_into_aref!($crate::device::CoreInternal, $device);
589         ::kernel::__impl_device_context_into_aref!($crate::device::Core, $device);
590         ::kernel::__impl_device_context_into_aref!($crate::device::Bound, $device);
591     };
592 }
593 
594 #[doc(hidden)]
595 #[macro_export]
596 macro_rules! dev_printk {
597     ($method:ident, $dev:expr, $($f:tt)*) => {
598         {
599             ($dev).$method(::core::format_args!($($f)*));
600         }
601     }
602 }
603 
604 /// Prints an emergency-level message (level 0) prefixed with device information.
605 ///
606 /// This level should be used if the system is unusable.
607 ///
608 /// Equivalent to the kernel's `dev_emerg` macro.
609 ///
610 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
611 /// [`core::fmt`] and [`std::format!`].
612 ///
613 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
614 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// # use kernel::device::Device;
620 ///
621 /// fn example(dev: &Device) {
622 ///     dev_emerg!(dev, "hello {}\n", "there");
623 /// }
624 /// ```
625 #[macro_export]
626 macro_rules! dev_emerg {
627     ($($f:tt)*) => { $crate::dev_printk!(pr_emerg, $($f)*); }
628 }
629 
630 /// Prints an alert-level message (level 1) prefixed with device information.
631 ///
632 /// This level should be used if action must be taken immediately.
633 ///
634 /// Equivalent to the kernel's `dev_alert` macro.
635 ///
636 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
637 /// [`core::fmt`] and [`std::format!`].
638 ///
639 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
640 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
641 ///
642 /// # Examples
643 ///
644 /// ```
645 /// # use kernel::device::Device;
646 ///
647 /// fn example(dev: &Device) {
648 ///     dev_alert!(dev, "hello {}\n", "there");
649 /// }
650 /// ```
651 #[macro_export]
652 macro_rules! dev_alert {
653     ($($f:tt)*) => { $crate::dev_printk!(pr_alert, $($f)*); }
654 }
655 
656 /// Prints a critical-level message (level 2) prefixed with device information.
657 ///
658 /// This level should be used in critical conditions.
659 ///
660 /// Equivalent to the kernel's `dev_crit` macro.
661 ///
662 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
663 /// [`core::fmt`] and [`std::format!`].
664 ///
665 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
666 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// # use kernel::device::Device;
672 ///
673 /// fn example(dev: &Device) {
674 ///     dev_crit!(dev, "hello {}\n", "there");
675 /// }
676 /// ```
677 #[macro_export]
678 macro_rules! dev_crit {
679     ($($f:tt)*) => { $crate::dev_printk!(pr_crit, $($f)*); }
680 }
681 
682 /// Prints an error-level message (level 3) prefixed with device information.
683 ///
684 /// This level should be used in error conditions.
685 ///
686 /// Equivalent to the kernel's `dev_err` macro.
687 ///
688 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
689 /// [`core::fmt`] and [`std::format!`].
690 ///
691 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
692 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// # use kernel::device::Device;
698 ///
699 /// fn example(dev: &Device) {
700 ///     dev_err!(dev, "hello {}\n", "there");
701 /// }
702 /// ```
703 #[macro_export]
704 macro_rules! dev_err {
705     ($($f:tt)*) => { $crate::dev_printk!(pr_err, $($f)*); }
706 }
707 
708 /// Prints a warning-level message (level 4) prefixed with device information.
709 ///
710 /// This level should be used in warning conditions.
711 ///
712 /// Equivalent to the kernel's `dev_warn` macro.
713 ///
714 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
715 /// [`core::fmt`] and [`std::format!`].
716 ///
717 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
718 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
719 ///
720 /// # Examples
721 ///
722 /// ```
723 /// # use kernel::device::Device;
724 ///
725 /// fn example(dev: &Device) {
726 ///     dev_warn!(dev, "hello {}\n", "there");
727 /// }
728 /// ```
729 #[macro_export]
730 macro_rules! dev_warn {
731     ($($f:tt)*) => { $crate::dev_printk!(pr_warn, $($f)*); }
732 }
733 
734 /// Prints a notice-level message (level 5) prefixed with device information.
735 ///
736 /// This level should be used in normal but significant conditions.
737 ///
738 /// Equivalent to the kernel's `dev_notice` macro.
739 ///
740 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
741 /// [`core::fmt`] and [`std::format!`].
742 ///
743 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
744 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// # use kernel::device::Device;
750 ///
751 /// fn example(dev: &Device) {
752 ///     dev_notice!(dev, "hello {}\n", "there");
753 /// }
754 /// ```
755 #[macro_export]
756 macro_rules! dev_notice {
757     ($($f:tt)*) => { $crate::dev_printk!(pr_notice, $($f)*); }
758 }
759 
760 /// Prints an info-level message (level 6) prefixed with device information.
761 ///
762 /// This level should be used for informational messages.
763 ///
764 /// Equivalent to the kernel's `dev_info` macro.
765 ///
766 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
767 /// [`core::fmt`] and [`std::format!`].
768 ///
769 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
770 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
771 ///
772 /// # Examples
773 ///
774 /// ```
775 /// # use kernel::device::Device;
776 ///
777 /// fn example(dev: &Device) {
778 ///     dev_info!(dev, "hello {}\n", "there");
779 /// }
780 /// ```
781 #[macro_export]
782 macro_rules! dev_info {
783     ($($f:tt)*) => { $crate::dev_printk!(pr_info, $($f)*); }
784 }
785 
786 /// Prints a debug-level message (level 7) prefixed with device information.
787 ///
788 /// This level should be used for debug messages.
789 ///
790 /// Equivalent to the kernel's `dev_dbg` macro, except that it doesn't support dynamic debug yet.
791 ///
792 /// Mimics the interface of [`std::print!`]. More information about the syntax is available from
793 /// [`core::fmt`] and [`std::format!`].
794 ///
795 /// [`std::print!`]: https://doc.rust-lang.org/std/macro.print.html
796 /// [`std::format!`]: https://doc.rust-lang.org/std/macro.format.html
797 ///
798 /// # Examples
799 ///
800 /// ```
801 /// # use kernel::device::Device;
802 ///
803 /// fn example(dev: &Device) {
804 ///     dev_dbg!(dev, "hello {}\n", "there");
805 /// }
806 /// ```
807 #[macro_export]
808 macro_rules! dev_dbg {
809     ($($f:tt)*) => { $crate::dev_printk!(pr_dbg, $($f)*); }
810 }
811