1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72
73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 close_ctree(fs_info);
75 }
76
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 char *subvol_name;
80 u64 subvol_objectid;
81 u64 max_inline;
82 u32 commit_interval;
83 u32 metadata_ratio;
84 u32 thread_pool_size;
85 unsigned long long mount_opt;
86 unsigned long compress_type:4;
87 int compress_level;
88 refcount_t refs;
89 };
90
91 static void btrfs_emit_options(struct btrfs_fs_info *info,
92 struct btrfs_fs_context *old);
93
94 enum {
95 Opt_acl,
96 Opt_clear_cache,
97 Opt_commit_interval,
98 Opt_compress,
99 Opt_compress_force,
100 Opt_compress_force_type,
101 Opt_compress_type,
102 Opt_degraded,
103 Opt_device,
104 Opt_fatal_errors,
105 Opt_flushoncommit,
106 Opt_max_inline,
107 Opt_barrier,
108 Opt_datacow,
109 Opt_datasum,
110 Opt_defrag,
111 Opt_discard,
112 Opt_discard_mode,
113 Opt_ratio,
114 Opt_rescan_uuid_tree,
115 Opt_skip_balance,
116 Opt_space_cache,
117 Opt_space_cache_version,
118 Opt_ssd,
119 Opt_ssd_spread,
120 Opt_subvol,
121 Opt_subvol_empty,
122 Opt_subvolid,
123 Opt_thread_pool,
124 Opt_treelog,
125 Opt_user_subvol_rm_allowed,
126 Opt_norecovery,
127
128 /* Rescue options */
129 Opt_rescue,
130 Opt_usebackuproot,
131
132 /* Debugging options */
133 Opt_enospc_debug,
134 #ifdef CONFIG_BTRFS_DEBUG
135 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
136 #endif
137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
138 Opt_ref_verify,
139 #endif
140 Opt_err,
141 };
142
143 enum {
144 Opt_fatal_errors_panic,
145 Opt_fatal_errors_bug,
146 };
147
148 static const struct constant_table btrfs_parameter_fatal_errors[] = {
149 { "panic", Opt_fatal_errors_panic },
150 { "bug", Opt_fatal_errors_bug },
151 {}
152 };
153
154 enum {
155 Opt_discard_sync,
156 Opt_discard_async,
157 };
158
159 static const struct constant_table btrfs_parameter_discard[] = {
160 { "sync", Opt_discard_sync },
161 { "async", Opt_discard_async },
162 {}
163 };
164
165 enum {
166 Opt_space_cache_v1,
167 Opt_space_cache_v2,
168 };
169
170 static const struct constant_table btrfs_parameter_space_cache[] = {
171 { "v1", Opt_space_cache_v1 },
172 { "v2", Opt_space_cache_v2 },
173 {}
174 };
175
176 enum {
177 Opt_rescue_usebackuproot,
178 Opt_rescue_nologreplay,
179 Opt_rescue_ignorebadroots,
180 Opt_rescue_ignoredatacsums,
181 Opt_rescue_ignoremetacsums,
182 Opt_rescue_ignoresuperflags,
183 Opt_rescue_parameter_all,
184 };
185
186 static const struct constant_table btrfs_parameter_rescue[] = {
187 { "usebackuproot", Opt_rescue_usebackuproot },
188 { "nologreplay", Opt_rescue_nologreplay },
189 { "ignorebadroots", Opt_rescue_ignorebadroots },
190 { "ibadroots", Opt_rescue_ignorebadroots },
191 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
192 { "ignoremetacsums", Opt_rescue_ignoremetacsums},
193 { "ignoresuperflags", Opt_rescue_ignoresuperflags},
194 { "idatacsums", Opt_rescue_ignoredatacsums },
195 { "imetacsums", Opt_rescue_ignoremetacsums},
196 { "isuperflags", Opt_rescue_ignoresuperflags},
197 { "all", Opt_rescue_parameter_all },
198 {}
199 };
200
201 #ifdef CONFIG_BTRFS_DEBUG
202 enum {
203 Opt_fragment_parameter_data,
204 Opt_fragment_parameter_metadata,
205 Opt_fragment_parameter_all,
206 };
207
208 static const struct constant_table btrfs_parameter_fragment[] = {
209 { "data", Opt_fragment_parameter_data },
210 { "metadata", Opt_fragment_parameter_metadata },
211 { "all", Opt_fragment_parameter_all },
212 {}
213 };
214 #endif
215
216 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
217 fsparam_flag_no("acl", Opt_acl),
218 fsparam_flag_no("autodefrag", Opt_defrag),
219 fsparam_flag_no("barrier", Opt_barrier),
220 fsparam_flag("clear_cache", Opt_clear_cache),
221 fsparam_u32("commit", Opt_commit_interval),
222 fsparam_flag("compress", Opt_compress),
223 fsparam_string("compress", Opt_compress_type),
224 fsparam_flag("compress-force", Opt_compress_force),
225 fsparam_string("compress-force", Opt_compress_force_type),
226 fsparam_flag_no("datacow", Opt_datacow),
227 fsparam_flag_no("datasum", Opt_datasum),
228 fsparam_flag("degraded", Opt_degraded),
229 fsparam_string("device", Opt_device),
230 fsparam_flag_no("discard", Opt_discard),
231 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
232 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
233 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
234 fsparam_string("max_inline", Opt_max_inline),
235 fsparam_u32("metadata_ratio", Opt_ratio),
236 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
237 fsparam_flag("skip_balance", Opt_skip_balance),
238 fsparam_flag_no("space_cache", Opt_space_cache),
239 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
240 fsparam_flag_no("ssd", Opt_ssd),
241 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
242 fsparam_string("subvol", Opt_subvol),
243 fsparam_flag("subvol=", Opt_subvol_empty),
244 fsparam_u64("subvolid", Opt_subvolid),
245 fsparam_u32("thread_pool", Opt_thread_pool),
246 fsparam_flag_no("treelog", Opt_treelog),
247 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
248
249 /* Rescue options. */
250 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
251 /* Deprecated, with alias rescue=usebackuproot */
252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 /* For compatibility only, alias for "rescue=nologreplay". */
254 fsparam_flag("norecovery", Opt_norecovery),
255
256 /* Debugging options. */
257 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 {}
265 };
266
btrfs_match_compress_type(const char * string,const char * type,bool may_have_level)267 static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level)
268 {
269 const int len = strlen(type);
270
271 return (strncmp(string, type, len) == 0) &&
272 ((may_have_level && string[len] == ':') || string[len] == '\0');
273 }
274
btrfs_parse_compress(struct btrfs_fs_context * ctx,const struct fs_parameter * param,int opt)275 static int btrfs_parse_compress(struct btrfs_fs_context *ctx,
276 const struct fs_parameter *param, int opt)
277 {
278 const char *string = param->string;
279
280 /*
281 * Provide the same semantics as older kernels that don't use fs
282 * context, specifying the "compress" option clears "force-compress"
283 * without the need to pass "compress-force=[no|none]" before
284 * specifying "compress".
285 */
286 if (opt != Opt_compress_force && opt != Opt_compress_force_type)
287 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
288
289 if (opt == Opt_compress || opt == Opt_compress_force) {
290 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
291 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
292 btrfs_set_opt(ctx->mount_opt, COMPRESS);
293 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
294 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
295 } else if (btrfs_match_compress_type(string, "zlib", true)) {
296 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
297 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
298 string + 4);
299 btrfs_set_opt(ctx->mount_opt, COMPRESS);
300 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
301 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
302 } else if (btrfs_match_compress_type(string, "lzo", true)) {
303 ctx->compress_type = BTRFS_COMPRESS_LZO;
304 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_LZO,
305 string + 3);
306 if (string[3] == ':' && string[4])
307 btrfs_warn(NULL, "Compression level ignored for LZO");
308 btrfs_set_opt(ctx->mount_opt, COMPRESS);
309 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
310 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
311 } else if (btrfs_match_compress_type(string, "zstd", true)) {
312 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
313 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
314 string + 4);
315 btrfs_set_opt(ctx->mount_opt, COMPRESS);
316 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
317 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
318 } else if (btrfs_match_compress_type(string, "no", false) ||
319 btrfs_match_compress_type(string, "none", false)) {
320 ctx->compress_level = 0;
321 ctx->compress_type = 0;
322 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
323 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
324 } else {
325 btrfs_err(NULL, "unrecognized compression value %s", string);
326 return -EINVAL;
327 }
328 return 0;
329 }
330
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)331 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
332 {
333 struct btrfs_fs_context *ctx = fc->fs_private;
334 struct fs_parse_result result;
335 int opt;
336
337 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
338 if (opt < 0)
339 return opt;
340
341 switch (opt) {
342 case Opt_degraded:
343 btrfs_set_opt(ctx->mount_opt, DEGRADED);
344 break;
345 case Opt_subvol_empty:
346 /*
347 * This exists because we used to allow it on accident, so we're
348 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
349 * empty subvol= again").
350 */
351 break;
352 case Opt_subvol:
353 kfree(ctx->subvol_name);
354 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
355 if (!ctx->subvol_name)
356 return -ENOMEM;
357 break;
358 case Opt_subvolid:
359 ctx->subvol_objectid = result.uint_64;
360
361 /* subvolid=0 means give me the original fs_tree. */
362 if (!ctx->subvol_objectid)
363 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
364 break;
365 case Opt_device: {
366 struct btrfs_device *device;
367
368 mutex_lock(&uuid_mutex);
369 device = btrfs_scan_one_device(param->string, false);
370 mutex_unlock(&uuid_mutex);
371 if (IS_ERR(device))
372 return PTR_ERR(device);
373 break;
374 }
375 case Opt_datasum:
376 if (result.negated) {
377 btrfs_set_opt(ctx->mount_opt, NODATASUM);
378 } else {
379 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
380 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
381 }
382 break;
383 case Opt_datacow:
384 if (result.negated) {
385 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
386 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
387 btrfs_set_opt(ctx->mount_opt, NODATACOW);
388 btrfs_set_opt(ctx->mount_opt, NODATASUM);
389 } else {
390 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
391 }
392 break;
393 case Opt_compress_force:
394 case Opt_compress_force_type:
395 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
396 fallthrough;
397 case Opt_compress:
398 case Opt_compress_type:
399 if (btrfs_parse_compress(ctx, param, opt))
400 return -EINVAL;
401 break;
402 case Opt_ssd:
403 if (result.negated) {
404 btrfs_set_opt(ctx->mount_opt, NOSSD);
405 btrfs_clear_opt(ctx->mount_opt, SSD);
406 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
407 } else {
408 btrfs_set_opt(ctx->mount_opt, SSD);
409 btrfs_clear_opt(ctx->mount_opt, NOSSD);
410 }
411 break;
412 case Opt_ssd_spread:
413 if (result.negated) {
414 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
415 } else {
416 btrfs_set_opt(ctx->mount_opt, SSD);
417 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
418 btrfs_clear_opt(ctx->mount_opt, NOSSD);
419 }
420 break;
421 case Opt_barrier:
422 if (result.negated)
423 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
424 else
425 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
426 break;
427 case Opt_thread_pool:
428 if (result.uint_32 == 0) {
429 btrfs_err(NULL, "invalid value 0 for thread_pool");
430 return -EINVAL;
431 }
432 ctx->thread_pool_size = result.uint_32;
433 break;
434 case Opt_max_inline:
435 ctx->max_inline = memparse(param->string, NULL);
436 break;
437 case Opt_acl:
438 if (result.negated) {
439 fc->sb_flags &= ~SB_POSIXACL;
440 } else {
441 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
442 fc->sb_flags |= SB_POSIXACL;
443 #else
444 btrfs_err(NULL, "support for ACL not compiled in");
445 return -EINVAL;
446 #endif
447 }
448 /*
449 * VFS limits the ability to toggle ACL on and off via remount,
450 * despite every file system allowing this. This seems to be
451 * an oversight since we all do, but it'll fail if we're
452 * remounting. So don't set the mask here, we'll check it in
453 * btrfs_reconfigure and do the toggling ourselves.
454 */
455 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
456 fc->sb_flags_mask |= SB_POSIXACL;
457 break;
458 case Opt_treelog:
459 if (result.negated)
460 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
461 else
462 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
463 break;
464 case Opt_norecovery:
465 btrfs_info(NULL,
466 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
467 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
468 break;
469 case Opt_flushoncommit:
470 if (result.negated)
471 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
472 else
473 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
474 break;
475 case Opt_ratio:
476 ctx->metadata_ratio = result.uint_32;
477 break;
478 case Opt_discard:
479 if (result.negated) {
480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
481 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
482 btrfs_set_opt(ctx->mount_opt, NODISCARD);
483 } else {
484 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
485 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
486 }
487 break;
488 case Opt_discard_mode:
489 switch (result.uint_32) {
490 case Opt_discard_sync:
491 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
492 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
493 break;
494 case Opt_discard_async:
495 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
496 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
497 break;
498 default:
499 btrfs_err(NULL, "unrecognized discard mode value %s",
500 param->key);
501 return -EINVAL;
502 }
503 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
504 break;
505 case Opt_space_cache:
506 if (result.negated) {
507 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
508 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
509 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
510 } else {
511 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
512 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
513 }
514 break;
515 case Opt_space_cache_version:
516 switch (result.uint_32) {
517 case Opt_space_cache_v1:
518 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
519 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
520 break;
521 case Opt_space_cache_v2:
522 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
523 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
524 break;
525 default:
526 btrfs_err(NULL, "unrecognized space_cache value %s",
527 param->key);
528 return -EINVAL;
529 }
530 break;
531 case Opt_rescan_uuid_tree:
532 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
533 break;
534 case Opt_clear_cache:
535 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
536 break;
537 case Opt_user_subvol_rm_allowed:
538 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
539 break;
540 case Opt_enospc_debug:
541 if (result.negated)
542 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
543 else
544 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
545 break;
546 case Opt_defrag:
547 if (result.negated)
548 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
549 else
550 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
551 break;
552 case Opt_usebackuproot:
553 btrfs_warn(NULL,
554 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
555 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
556
557 /* If we're loading the backup roots we can't trust the space cache. */
558 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
559 break;
560 case Opt_skip_balance:
561 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
562 break;
563 case Opt_fatal_errors:
564 switch (result.uint_32) {
565 case Opt_fatal_errors_panic:
566 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
567 break;
568 case Opt_fatal_errors_bug:
569 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
570 break;
571 default:
572 btrfs_err(NULL, "unrecognized fatal_errors value %s",
573 param->key);
574 return -EINVAL;
575 }
576 break;
577 case Opt_commit_interval:
578 ctx->commit_interval = result.uint_32;
579 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
580 btrfs_warn(NULL, "excessive commit interval %u, use with care",
581 ctx->commit_interval);
582 }
583 if (ctx->commit_interval == 0)
584 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
585 break;
586 case Opt_rescue:
587 switch (result.uint_32) {
588 case Opt_rescue_usebackuproot:
589 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
590 break;
591 case Opt_rescue_nologreplay:
592 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
593 break;
594 case Opt_rescue_ignorebadroots:
595 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
596 break;
597 case Opt_rescue_ignoredatacsums:
598 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
599 break;
600 case Opt_rescue_ignoremetacsums:
601 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
602 break;
603 case Opt_rescue_ignoresuperflags:
604 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
605 break;
606 case Opt_rescue_parameter_all:
607 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
608 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
609 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
610 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
611 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
612 break;
613 default:
614 btrfs_info(NULL, "unrecognized rescue option '%s'",
615 param->key);
616 return -EINVAL;
617 }
618 break;
619 #ifdef CONFIG_BTRFS_DEBUG
620 case Opt_fragment:
621 switch (result.uint_32) {
622 case Opt_fragment_parameter_all:
623 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
624 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
625 break;
626 case Opt_fragment_parameter_metadata:
627 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
628 break;
629 case Opt_fragment_parameter_data:
630 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
631 break;
632 default:
633 btrfs_info(NULL, "unrecognized fragment option '%s'",
634 param->key);
635 return -EINVAL;
636 }
637 break;
638 #endif
639 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
640 case Opt_ref_verify:
641 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
642 break;
643 #endif
644 default:
645 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
646 return -EINVAL;
647 }
648
649 return 0;
650 }
651
652 /*
653 * Some options only have meaning at mount time and shouldn't persist across
654 * remounts, or be displayed. Clear these at the end of mount and remount code
655 * paths.
656 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)657 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
658 {
659 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
660 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
661 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
662 }
663
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)664 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
665 unsigned long long mount_opt, unsigned long long opt,
666 const char *opt_name)
667 {
668 if (mount_opt & opt) {
669 btrfs_err(fs_info, "%s must be used with ro mount option",
670 opt_name);
671 return true;
672 }
673 return false;
674 }
675
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)676 bool btrfs_check_options(const struct btrfs_fs_info *info,
677 unsigned long long *mount_opt,
678 unsigned long flags)
679 {
680 bool ret = true;
681
682 if (!(flags & SB_RDONLY) &&
683 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
684 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
685 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
686 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
687 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
688 ret = false;
689
690 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
691 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
692 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
693 btrfs_err(info, "cannot disable free-space-tree");
694 ret = false;
695 }
696 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
697 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
698 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
699 ret = false;
700 }
701
702 if (btrfs_check_mountopts_zoned(info, mount_opt))
703 ret = false;
704
705 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
706 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
707 btrfs_warn(info,
708 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
709 }
710 }
711
712 return ret;
713 }
714
715 /*
716 * This is subtle, we only call this during open_ctree(). We need to pre-load
717 * the mount options with the on-disk settings. Before the new mount API took
718 * effect we would do this on mount and remount. With the new mount API we'll
719 * only do this on the initial mount.
720 *
721 * This isn't a change in behavior, because we're using the current state of the
722 * file system to set the current mount options. If you mounted with special
723 * options to disable these features and then remounted we wouldn't revert the
724 * settings, because mounting without these features cleared the on-disk
725 * settings, so this being called on re-mount is not needed.
726 */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)727 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
728 {
729 if (fs_info->sectorsize < PAGE_SIZE) {
730 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
731 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
732 btrfs_info(fs_info,
733 "forcing free space tree for sector size %u with page size %lu",
734 fs_info->sectorsize, PAGE_SIZE);
735 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
736 }
737 }
738
739 /*
740 * At this point our mount options are populated, so we only mess with
741 * these settings if we don't have any settings already.
742 */
743 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
744 return;
745
746 if (btrfs_is_zoned(fs_info) &&
747 btrfs_free_space_cache_v1_active(fs_info)) {
748 btrfs_info(fs_info, "zoned: clearing existing space cache");
749 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
750 return;
751 }
752
753 if (btrfs_test_opt(fs_info, SPACE_CACHE))
754 return;
755
756 if (btrfs_test_opt(fs_info, NOSPACECACHE))
757 return;
758
759 /*
760 * At this point we don't have explicit options set by the user, set
761 * them ourselves based on the state of the file system.
762 */
763 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
764 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
765 else if (btrfs_free_space_cache_v1_active(fs_info))
766 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
767 }
768
set_device_specific_options(struct btrfs_fs_info * fs_info)769 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
770 {
771 if (!btrfs_test_opt(fs_info, NOSSD) &&
772 !fs_info->fs_devices->rotating)
773 btrfs_set_opt(fs_info->mount_opt, SSD);
774
775 /*
776 * For devices supporting discard turn on discard=async automatically,
777 * unless it's already set or disabled. This could be turned off by
778 * nodiscard for the same mount.
779 *
780 * The zoned mode piggy backs on the discard functionality for
781 * resetting a zone. There is no reason to delay the zone reset as it is
782 * fast enough. So, do not enable async discard for zoned mode.
783 */
784 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
785 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
786 btrfs_test_opt(fs_info, NODISCARD)) &&
787 fs_info->fs_devices->discardable &&
788 !btrfs_is_zoned(fs_info))
789 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
790 }
791
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)792 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
793 u64 subvol_objectid)
794 {
795 struct btrfs_root *root = fs_info->tree_root;
796 struct btrfs_root *fs_root = NULL;
797 struct btrfs_root_ref *root_ref;
798 struct btrfs_inode_ref *inode_ref;
799 struct btrfs_key key;
800 struct btrfs_path *path = NULL;
801 char *name = NULL, *ptr;
802 u64 dirid;
803 int len;
804 int ret;
805
806 path = btrfs_alloc_path();
807 if (!path) {
808 ret = -ENOMEM;
809 goto err;
810 }
811
812 name = kmalloc(PATH_MAX, GFP_KERNEL);
813 if (!name) {
814 ret = -ENOMEM;
815 goto err;
816 }
817 ptr = name + PATH_MAX - 1;
818 ptr[0] = '\0';
819
820 /*
821 * Walk up the subvolume trees in the tree of tree roots by root
822 * backrefs until we hit the top-level subvolume.
823 */
824 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
825 key.objectid = subvol_objectid;
826 key.type = BTRFS_ROOT_BACKREF_KEY;
827 key.offset = (u64)-1;
828
829 ret = btrfs_search_backwards(root, &key, path);
830 if (ret < 0) {
831 goto err;
832 } else if (ret > 0) {
833 ret = -ENOENT;
834 goto err;
835 }
836
837 subvol_objectid = key.offset;
838
839 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
840 struct btrfs_root_ref);
841 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
842 ptr -= len + 1;
843 if (ptr < name) {
844 ret = -ENAMETOOLONG;
845 goto err;
846 }
847 read_extent_buffer(path->nodes[0], ptr + 1,
848 (unsigned long)(root_ref + 1), len);
849 ptr[0] = '/';
850 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
851 btrfs_release_path(path);
852
853 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
854 if (IS_ERR(fs_root)) {
855 ret = PTR_ERR(fs_root);
856 fs_root = NULL;
857 goto err;
858 }
859
860 /*
861 * Walk up the filesystem tree by inode refs until we hit the
862 * root directory.
863 */
864 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
865 key.objectid = dirid;
866 key.type = BTRFS_INODE_REF_KEY;
867 key.offset = (u64)-1;
868
869 ret = btrfs_search_backwards(fs_root, &key, path);
870 if (ret < 0) {
871 goto err;
872 } else if (ret > 0) {
873 ret = -ENOENT;
874 goto err;
875 }
876
877 dirid = key.offset;
878
879 inode_ref = btrfs_item_ptr(path->nodes[0],
880 path->slots[0],
881 struct btrfs_inode_ref);
882 len = btrfs_inode_ref_name_len(path->nodes[0],
883 inode_ref);
884 ptr -= len + 1;
885 if (ptr < name) {
886 ret = -ENAMETOOLONG;
887 goto err;
888 }
889 read_extent_buffer(path->nodes[0], ptr + 1,
890 (unsigned long)(inode_ref + 1), len);
891 ptr[0] = '/';
892 btrfs_release_path(path);
893 }
894 btrfs_put_root(fs_root);
895 fs_root = NULL;
896 }
897
898 btrfs_free_path(path);
899 if (ptr == name + PATH_MAX - 1) {
900 name[0] = '/';
901 name[1] = '\0';
902 } else {
903 memmove(name, ptr, name + PATH_MAX - ptr);
904 }
905 return name;
906
907 err:
908 btrfs_put_root(fs_root);
909 btrfs_free_path(path);
910 kfree(name);
911 return ERR_PTR(ret);
912 }
913
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)914 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
915 {
916 struct btrfs_root *root = fs_info->tree_root;
917 struct btrfs_dir_item *di;
918 struct btrfs_path *path;
919 struct btrfs_key location;
920 struct fscrypt_str name = FSTR_INIT("default", 7);
921 u64 dir_id;
922
923 path = btrfs_alloc_path();
924 if (!path)
925 return -ENOMEM;
926
927 /*
928 * Find the "default" dir item which points to the root item that we
929 * will mount by default if we haven't been given a specific subvolume
930 * to mount.
931 */
932 dir_id = btrfs_super_root_dir(fs_info->super_copy);
933 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
934 if (IS_ERR(di)) {
935 btrfs_free_path(path);
936 return PTR_ERR(di);
937 }
938 if (!di) {
939 /*
940 * Ok the default dir item isn't there. This is weird since
941 * it's always been there, but don't freak out, just try and
942 * mount the top-level subvolume.
943 */
944 btrfs_free_path(path);
945 *objectid = BTRFS_FS_TREE_OBJECTID;
946 return 0;
947 }
948
949 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
950 btrfs_free_path(path);
951 *objectid = location.objectid;
952 return 0;
953 }
954
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)955 static int btrfs_fill_super(struct super_block *sb,
956 struct btrfs_fs_devices *fs_devices)
957 {
958 struct btrfs_inode *inode;
959 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
960 int ret;
961
962 sb->s_maxbytes = MAX_LFS_FILESIZE;
963 sb->s_magic = BTRFS_SUPER_MAGIC;
964 sb->s_op = &btrfs_super_ops;
965 set_default_d_op(sb, &btrfs_dentry_operations);
966 sb->s_export_op = &btrfs_export_ops;
967 #ifdef CONFIG_FS_VERITY
968 sb->s_vop = &btrfs_verityops;
969 #endif
970 sb->s_xattr = btrfs_xattr_handlers;
971 sb->s_time_gran = 1;
972 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
973
974 ret = super_setup_bdi(sb);
975 if (ret) {
976 btrfs_err(fs_info, "super_setup_bdi failed");
977 return ret;
978 }
979
980 ret = open_ctree(sb, fs_devices);
981 if (ret) {
982 btrfs_err(fs_info, "open_ctree failed: %d", ret);
983 return ret;
984 }
985
986 btrfs_emit_options(fs_info, NULL);
987
988 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
989 if (IS_ERR(inode)) {
990 ret = PTR_ERR(inode);
991 btrfs_handle_fs_error(fs_info, ret, NULL);
992 goto fail_close;
993 }
994
995 sb->s_root = d_make_root(&inode->vfs_inode);
996 if (!sb->s_root) {
997 ret = -ENOMEM;
998 goto fail_close;
999 }
1000
1001 sb->s_flags |= SB_ACTIVE;
1002 return 0;
1003
1004 fail_close:
1005 close_ctree(fs_info);
1006 return ret;
1007 }
1008
btrfs_sync_fs(struct super_block * sb,int wait)1009 int btrfs_sync_fs(struct super_block *sb, int wait)
1010 {
1011 struct btrfs_trans_handle *trans;
1012 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1013 struct btrfs_root *root = fs_info->tree_root;
1014
1015 trace_btrfs_sync_fs(fs_info, wait);
1016
1017 if (!wait) {
1018 filemap_flush(fs_info->btree_inode->i_mapping);
1019 return 0;
1020 }
1021
1022 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1023
1024 trans = btrfs_attach_transaction_barrier(root);
1025 if (IS_ERR(trans)) {
1026 /* no transaction, don't bother */
1027 if (PTR_ERR(trans) == -ENOENT) {
1028 /*
1029 * Exit unless we have some pending changes
1030 * that need to go through commit
1031 */
1032 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1033 &fs_info->flags))
1034 return 0;
1035 /*
1036 * A non-blocking test if the fs is frozen. We must not
1037 * start a new transaction here otherwise a deadlock
1038 * happens. The pending operations are delayed to the
1039 * next commit after thawing.
1040 */
1041 if (sb_start_write_trylock(sb))
1042 sb_end_write(sb);
1043 else
1044 return 0;
1045 trans = btrfs_start_transaction(root, 0);
1046 }
1047 if (IS_ERR(trans))
1048 return PTR_ERR(trans);
1049 }
1050 return btrfs_commit_transaction(trans);
1051 }
1052
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1053 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1054 {
1055 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1056 *printed = true;
1057 }
1058
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1059 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1060 {
1061 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1062 const char *compress_type;
1063 const char *subvol_name;
1064 bool printed = false;
1065
1066 if (btrfs_test_opt(info, DEGRADED))
1067 seq_puts(seq, ",degraded");
1068 if (btrfs_test_opt(info, NODATASUM))
1069 seq_puts(seq, ",nodatasum");
1070 if (btrfs_test_opt(info, NODATACOW))
1071 seq_puts(seq, ",nodatacow");
1072 if (btrfs_test_opt(info, NOBARRIER))
1073 seq_puts(seq, ",nobarrier");
1074 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1075 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1076 if (info->thread_pool_size != min_t(unsigned long,
1077 num_online_cpus() + 2, 8))
1078 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1079 if (btrfs_test_opt(info, COMPRESS)) {
1080 compress_type = btrfs_compress_type2str(info->compress_type);
1081 if (btrfs_test_opt(info, FORCE_COMPRESS))
1082 seq_printf(seq, ",compress-force=%s", compress_type);
1083 else
1084 seq_printf(seq, ",compress=%s", compress_type);
1085 if (info->compress_level && info->compress_type != BTRFS_COMPRESS_LZO)
1086 seq_printf(seq, ":%d", info->compress_level);
1087 }
1088 if (btrfs_test_opt(info, NOSSD))
1089 seq_puts(seq, ",nossd");
1090 if (btrfs_test_opt(info, SSD_SPREAD))
1091 seq_puts(seq, ",ssd_spread");
1092 else if (btrfs_test_opt(info, SSD))
1093 seq_puts(seq, ",ssd");
1094 if (btrfs_test_opt(info, NOTREELOG))
1095 seq_puts(seq, ",notreelog");
1096 if (btrfs_test_opt(info, NOLOGREPLAY))
1097 print_rescue_option(seq, "nologreplay", &printed);
1098 if (btrfs_test_opt(info, USEBACKUPROOT))
1099 print_rescue_option(seq, "usebackuproot", &printed);
1100 if (btrfs_test_opt(info, IGNOREBADROOTS))
1101 print_rescue_option(seq, "ignorebadroots", &printed);
1102 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1103 print_rescue_option(seq, "ignoredatacsums", &printed);
1104 if (btrfs_test_opt(info, IGNOREMETACSUMS))
1105 print_rescue_option(seq, "ignoremetacsums", &printed);
1106 if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1107 print_rescue_option(seq, "ignoresuperflags", &printed);
1108 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1109 seq_puts(seq, ",flushoncommit");
1110 if (btrfs_test_opt(info, DISCARD_SYNC))
1111 seq_puts(seq, ",discard");
1112 if (btrfs_test_opt(info, DISCARD_ASYNC))
1113 seq_puts(seq, ",discard=async");
1114 if (!(info->sb->s_flags & SB_POSIXACL))
1115 seq_puts(seq, ",noacl");
1116 if (btrfs_free_space_cache_v1_active(info))
1117 seq_puts(seq, ",space_cache");
1118 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1119 seq_puts(seq, ",space_cache=v2");
1120 else
1121 seq_puts(seq, ",nospace_cache");
1122 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1123 seq_puts(seq, ",rescan_uuid_tree");
1124 if (btrfs_test_opt(info, CLEAR_CACHE))
1125 seq_puts(seq, ",clear_cache");
1126 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1127 seq_puts(seq, ",user_subvol_rm_allowed");
1128 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1129 seq_puts(seq, ",enospc_debug");
1130 if (btrfs_test_opt(info, AUTO_DEFRAG))
1131 seq_puts(seq, ",autodefrag");
1132 if (btrfs_test_opt(info, SKIP_BALANCE))
1133 seq_puts(seq, ",skip_balance");
1134 if (info->metadata_ratio)
1135 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1136 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1137 seq_puts(seq, ",fatal_errors=panic");
1138 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1139 seq_printf(seq, ",commit=%u", info->commit_interval);
1140 #ifdef CONFIG_BTRFS_DEBUG
1141 if (btrfs_test_opt(info, FRAGMENT_DATA))
1142 seq_puts(seq, ",fragment=data");
1143 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1144 seq_puts(seq, ",fragment=metadata");
1145 #endif
1146 if (btrfs_test_opt(info, REF_VERIFY))
1147 seq_puts(seq, ",ref_verify");
1148 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1149 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1150 btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1151 if (!IS_ERR(subvol_name)) {
1152 seq_show_option(seq, "subvol", subvol_name);
1153 kfree(subvol_name);
1154 }
1155 return 0;
1156 }
1157
1158 /*
1159 * subvolumes are identified by ino 256
1160 */
is_subvolume_inode(struct inode * inode)1161 static inline bool is_subvolume_inode(struct inode *inode)
1162 {
1163 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1164 return true;
1165 return false;
1166 }
1167
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1168 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1169 struct vfsmount *mnt)
1170 {
1171 struct dentry *root;
1172 int ret;
1173
1174 if (!subvol_name) {
1175 if (!subvol_objectid) {
1176 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1177 &subvol_objectid);
1178 if (ret) {
1179 root = ERR_PTR(ret);
1180 goto out;
1181 }
1182 }
1183 subvol_name = btrfs_get_subvol_name_from_objectid(
1184 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1185 if (IS_ERR(subvol_name)) {
1186 root = ERR_CAST(subvol_name);
1187 subvol_name = NULL;
1188 goto out;
1189 }
1190
1191 }
1192
1193 root = mount_subtree(mnt, subvol_name);
1194 /* mount_subtree() drops our reference on the vfsmount. */
1195 mnt = NULL;
1196
1197 if (!IS_ERR(root)) {
1198 struct super_block *s = root->d_sb;
1199 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1200 struct inode *root_inode = d_inode(root);
1201 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1202
1203 ret = 0;
1204 if (!is_subvolume_inode(root_inode)) {
1205 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1206 subvol_name);
1207 ret = -EINVAL;
1208 }
1209 if (subvol_objectid && root_objectid != subvol_objectid) {
1210 /*
1211 * This will also catch a race condition where a
1212 * subvolume which was passed by ID is renamed and
1213 * another subvolume is renamed over the old location.
1214 */
1215 btrfs_err(fs_info,
1216 "subvol '%s' does not match subvolid %llu",
1217 subvol_name, subvol_objectid);
1218 ret = -EINVAL;
1219 }
1220 if (ret) {
1221 dput(root);
1222 root = ERR_PTR(ret);
1223 deactivate_locked_super(s);
1224 }
1225 }
1226
1227 out:
1228 mntput(mnt);
1229 kfree(subvol_name);
1230 return root;
1231 }
1232
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1233 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1234 u32 new_pool_size, u32 old_pool_size)
1235 {
1236 if (new_pool_size == old_pool_size)
1237 return;
1238
1239 fs_info->thread_pool_size = new_pool_size;
1240
1241 btrfs_info(fs_info, "resize thread pool %d -> %d",
1242 old_pool_size, new_pool_size);
1243
1244 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1245 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1246 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1247 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1248 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1249 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1250 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1251 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1252 }
1253
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1254 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1255 unsigned long long old_opts, int flags)
1256 {
1257 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1258 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1259 (flags & SB_RDONLY))) {
1260 /* wait for any defraggers to finish */
1261 wait_event(fs_info->transaction_wait,
1262 (atomic_read(&fs_info->defrag_running) == 0));
1263 if (flags & SB_RDONLY)
1264 sync_filesystem(fs_info->sb);
1265 }
1266 }
1267
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1268 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1269 unsigned long long old_opts)
1270 {
1271 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1272
1273 /*
1274 * We need to cleanup all defragable inodes if the autodefragment is
1275 * close or the filesystem is read only.
1276 */
1277 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1278 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1279 btrfs_cleanup_defrag_inodes(fs_info);
1280 }
1281
1282 /* If we toggled discard async */
1283 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1284 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1285 btrfs_discard_resume(fs_info);
1286 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1287 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1288 btrfs_discard_cleanup(fs_info);
1289
1290 /* If we toggled space cache */
1291 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1292 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1293 }
1294
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1295 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1296 {
1297 int ret;
1298
1299 if (BTRFS_FS_ERROR(fs_info)) {
1300 btrfs_err(fs_info,
1301 "remounting read-write after error is not allowed");
1302 return -EINVAL;
1303 }
1304
1305 if (fs_info->fs_devices->rw_devices == 0)
1306 return -EACCES;
1307
1308 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1309 btrfs_warn(fs_info,
1310 "too many missing devices, writable remount is not allowed");
1311 return -EACCES;
1312 }
1313
1314 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1315 btrfs_warn(fs_info,
1316 "mount required to replay tree-log, cannot remount read-write");
1317 return -EINVAL;
1318 }
1319
1320 /*
1321 * NOTE: when remounting with a change that does writes, don't put it
1322 * anywhere above this point, as we are not sure to be safe to write
1323 * until we pass the above checks.
1324 */
1325 ret = btrfs_start_pre_rw_mount(fs_info);
1326 if (ret)
1327 return ret;
1328
1329 btrfs_clear_sb_rdonly(fs_info->sb);
1330
1331 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1332
1333 /*
1334 * If we've gone from readonly -> read-write, we need to get our
1335 * sync/async discard lists in the right state.
1336 */
1337 btrfs_discard_resume(fs_info);
1338
1339 return 0;
1340 }
1341
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1342 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1343 {
1344 /*
1345 * This also happens on 'umount -rf' or on shutdown, when the
1346 * filesystem is busy.
1347 */
1348 cancel_work_sync(&fs_info->async_reclaim_work);
1349 cancel_work_sync(&fs_info->async_data_reclaim_work);
1350
1351 btrfs_discard_cleanup(fs_info);
1352
1353 /* Wait for the uuid_scan task to finish */
1354 down(&fs_info->uuid_tree_rescan_sem);
1355 /* Avoid complains from lockdep et al. */
1356 up(&fs_info->uuid_tree_rescan_sem);
1357
1358 btrfs_set_sb_rdonly(fs_info->sb);
1359
1360 /*
1361 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1362 * loop if it's already active. If it's already asleep, we'll leave
1363 * unused block groups on disk until we're mounted read-write again
1364 * unless we clean them up here.
1365 */
1366 btrfs_delete_unused_bgs(fs_info);
1367
1368 /*
1369 * The cleaner task could be already running before we set the flag
1370 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1371 * sure that after we finish the remount, i.e. after we call
1372 * btrfs_commit_super(), the cleaner can no longer start a transaction
1373 * - either because it was dropping a dead root, running delayed iputs
1374 * or deleting an unused block group (the cleaner picked a block
1375 * group from the list of unused block groups before we were able to
1376 * in the previous call to btrfs_delete_unused_bgs()).
1377 */
1378 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1379
1380 /*
1381 * We've set the superblock to RO mode, so we might have made the
1382 * cleaner task sleep without running all pending delayed iputs. Go
1383 * through all the delayed iputs here, so that if an unmount happens
1384 * without remounting RW we don't end up at finishing close_ctree()
1385 * with a non-empty list of delayed iputs.
1386 */
1387 btrfs_run_delayed_iputs(fs_info);
1388
1389 btrfs_dev_replace_suspend_for_unmount(fs_info);
1390 btrfs_scrub_cancel(fs_info);
1391 btrfs_pause_balance(fs_info);
1392
1393 /*
1394 * Pause the qgroup rescan worker if it is running. We don't want it to
1395 * be still running after we are in RO mode, as after that, by the time
1396 * we unmount, it might have left a transaction open, so we would leak
1397 * the transaction and/or crash.
1398 */
1399 btrfs_qgroup_wait_for_completion(fs_info, false);
1400
1401 return btrfs_commit_super(fs_info);
1402 }
1403
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1404 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1405 {
1406 fs_info->max_inline = ctx->max_inline;
1407 fs_info->commit_interval = ctx->commit_interval;
1408 fs_info->metadata_ratio = ctx->metadata_ratio;
1409 fs_info->thread_pool_size = ctx->thread_pool_size;
1410 fs_info->mount_opt = ctx->mount_opt;
1411 fs_info->compress_type = ctx->compress_type;
1412 fs_info->compress_level = ctx->compress_level;
1413 }
1414
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1415 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1416 {
1417 ctx->max_inline = fs_info->max_inline;
1418 ctx->commit_interval = fs_info->commit_interval;
1419 ctx->metadata_ratio = fs_info->metadata_ratio;
1420 ctx->thread_pool_size = fs_info->thread_pool_size;
1421 ctx->mount_opt = fs_info->mount_opt;
1422 ctx->compress_type = fs_info->compress_type;
1423 ctx->compress_level = fs_info->compress_level;
1424 }
1425
1426 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1427 do { \
1428 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1429 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1430 btrfs_info(fs_info, fmt, ##args); \
1431 } while (0)
1432
1433 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1434 do { \
1435 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1436 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1437 btrfs_info(fs_info, fmt, ##args); \
1438 } while (0)
1439
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1440 static void btrfs_emit_options(struct btrfs_fs_info *info,
1441 struct btrfs_fs_context *old)
1442 {
1443 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1444 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1445 btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow");
1446 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1447 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1448 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1449 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1450 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1451 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1452 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1453 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1454 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1455 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1456 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1457 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1458 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1459 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1460 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1461 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1462 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1463 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1464 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1465 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1466
1467 btrfs_info_if_unset(info, old, NODATASUM, "setting datasum");
1468 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1469 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1470 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1471 btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers");
1472 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1473 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1474 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1475 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1476 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1477
1478 /* Did the compression settings change? */
1479 if (btrfs_test_opt(info, COMPRESS) &&
1480 (!old ||
1481 old->compress_type != info->compress_type ||
1482 old->compress_level != info->compress_level ||
1483 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1484 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1485 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1486
1487 btrfs_info(info, "%s %s compression, level %d",
1488 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1489 compress_type, info->compress_level);
1490 }
1491
1492 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1493 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1494 }
1495
btrfs_reconfigure(struct fs_context * fc)1496 static int btrfs_reconfigure(struct fs_context *fc)
1497 {
1498 struct super_block *sb = fc->root->d_sb;
1499 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1500 struct btrfs_fs_context *ctx = fc->fs_private;
1501 struct btrfs_fs_context old_ctx;
1502 int ret = 0;
1503 bool mount_reconfigure = (fc->s_fs_info != NULL);
1504
1505 btrfs_info_to_ctx(fs_info, &old_ctx);
1506
1507 /*
1508 * This is our "bind mount" trick, we don't want to allow the user to do
1509 * anything other than mount a different ro/rw and a different subvol,
1510 * all of the mount options should be maintained.
1511 */
1512 if (mount_reconfigure)
1513 ctx->mount_opt = old_ctx.mount_opt;
1514
1515 sync_filesystem(sb);
1516 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1517
1518 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1519 return -EINVAL;
1520
1521 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1522 if (ret < 0)
1523 return ret;
1524
1525 btrfs_ctx_to_info(fs_info, ctx);
1526 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1527 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1528 old_ctx.thread_pool_size);
1529
1530 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1531 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1532 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1533 btrfs_warn(fs_info,
1534 "remount supports changing free space tree only from RO to RW");
1535 /* Make sure free space cache options match the state on disk. */
1536 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1537 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1538 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1539 }
1540 if (btrfs_free_space_cache_v1_active(fs_info)) {
1541 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1542 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1543 }
1544 }
1545
1546 ret = 0;
1547 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1548 ret = btrfs_remount_ro(fs_info);
1549 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1550 ret = btrfs_remount_rw(fs_info);
1551 if (ret)
1552 goto restore;
1553
1554 /*
1555 * If we set the mask during the parameter parsing VFS would reject the
1556 * remount. Here we can set the mask and the value will be updated
1557 * appropriately.
1558 */
1559 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1560 fc->sb_flags_mask |= SB_POSIXACL;
1561
1562 btrfs_emit_options(fs_info, &old_ctx);
1563 wake_up_process(fs_info->transaction_kthread);
1564 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1565 btrfs_clear_oneshot_options(fs_info);
1566 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1567
1568 return 0;
1569 restore:
1570 btrfs_ctx_to_info(fs_info, &old_ctx);
1571 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1572 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1573 return ret;
1574 }
1575
1576 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1577 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1578 {
1579 const struct btrfs_device_info *dev_info1 = a;
1580 const struct btrfs_device_info *dev_info2 = b;
1581
1582 if (dev_info1->max_avail > dev_info2->max_avail)
1583 return -1;
1584 else if (dev_info1->max_avail < dev_info2->max_avail)
1585 return 1;
1586 return 0;
1587 }
1588
1589 /*
1590 * sort the devices by max_avail, in which max free extent size of each device
1591 * is stored.(Descending Sort)
1592 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1593 static inline void btrfs_descending_sort_devices(
1594 struct btrfs_device_info *devices,
1595 size_t nr_devices)
1596 {
1597 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1598 btrfs_cmp_device_free_bytes, NULL);
1599 }
1600
1601 /*
1602 * The helper to calc the free space on the devices that can be used to store
1603 * file data.
1604 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1605 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1606 u64 *free_bytes)
1607 {
1608 struct btrfs_device_info *devices_info;
1609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1610 struct btrfs_device *device;
1611 u64 type;
1612 u64 avail_space;
1613 u64 min_stripe_size;
1614 int num_stripes = 1;
1615 int i = 0, nr_devices;
1616 const struct btrfs_raid_attr *rattr;
1617
1618 /*
1619 * We aren't under the device list lock, so this is racy-ish, but good
1620 * enough for our purposes.
1621 */
1622 nr_devices = fs_info->fs_devices->open_devices;
1623 if (!nr_devices) {
1624 smp_mb();
1625 nr_devices = fs_info->fs_devices->open_devices;
1626 ASSERT(nr_devices);
1627 if (!nr_devices) {
1628 *free_bytes = 0;
1629 return 0;
1630 }
1631 }
1632
1633 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1634 GFP_KERNEL);
1635 if (!devices_info)
1636 return -ENOMEM;
1637
1638 /* calc min stripe number for data space allocation */
1639 type = btrfs_data_alloc_profile(fs_info);
1640 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1641
1642 if (type & BTRFS_BLOCK_GROUP_RAID0)
1643 num_stripes = nr_devices;
1644 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1645 num_stripes = rattr->ncopies;
1646 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1647 num_stripes = 4;
1648
1649 /* Adjust for more than 1 stripe per device */
1650 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1651
1652 rcu_read_lock();
1653 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1654 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1655 &device->dev_state) ||
1656 !device->bdev ||
1657 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1658 continue;
1659
1660 if (i >= nr_devices)
1661 break;
1662
1663 avail_space = device->total_bytes - device->bytes_used;
1664
1665 /* align with stripe_len */
1666 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1667
1668 /*
1669 * Ensure we have at least min_stripe_size on top of the
1670 * reserved space on the device.
1671 */
1672 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1673 continue;
1674
1675 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1676
1677 devices_info[i].dev = device;
1678 devices_info[i].max_avail = avail_space;
1679
1680 i++;
1681 }
1682 rcu_read_unlock();
1683
1684 nr_devices = i;
1685
1686 btrfs_descending_sort_devices(devices_info, nr_devices);
1687
1688 i = nr_devices - 1;
1689 avail_space = 0;
1690 while (nr_devices >= rattr->devs_min) {
1691 num_stripes = min(num_stripes, nr_devices);
1692
1693 if (devices_info[i].max_avail >= min_stripe_size) {
1694 int j;
1695 u64 alloc_size;
1696
1697 avail_space += devices_info[i].max_avail * num_stripes;
1698 alloc_size = devices_info[i].max_avail;
1699 for (j = i + 1 - num_stripes; j <= i; j++)
1700 devices_info[j].max_avail -= alloc_size;
1701 }
1702 i--;
1703 nr_devices--;
1704 }
1705
1706 kfree(devices_info);
1707 *free_bytes = avail_space;
1708 return 0;
1709 }
1710
1711 /*
1712 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1713 *
1714 * If there's a redundant raid level at DATA block groups, use the respective
1715 * multiplier to scale the sizes.
1716 *
1717 * Unused device space usage is based on simulating the chunk allocator
1718 * algorithm that respects the device sizes and order of allocations. This is
1719 * a close approximation of the actual use but there are other factors that may
1720 * change the result (like a new metadata chunk).
1721 *
1722 * If metadata is exhausted, f_bavail will be 0.
1723 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1724 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1725 {
1726 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1727 struct btrfs_super_block *disk_super = fs_info->super_copy;
1728 struct btrfs_space_info *found;
1729 u64 total_used = 0;
1730 u64 total_free_data = 0;
1731 u64 total_free_meta = 0;
1732 u32 bits = fs_info->sectorsize_bits;
1733 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1734 unsigned factor = 1;
1735 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1736 int ret;
1737 u64 thresh = 0;
1738 int mixed = 0;
1739
1740 list_for_each_entry(found, &fs_info->space_info, list) {
1741 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1742 int i;
1743
1744 total_free_data += found->disk_total - found->disk_used;
1745 total_free_data -=
1746 btrfs_account_ro_block_groups_free_space(found);
1747
1748 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1749 if (!list_empty(&found->block_groups[i]))
1750 factor = btrfs_bg_type_to_factor(
1751 btrfs_raid_array[i].bg_flag);
1752 }
1753 }
1754
1755 /*
1756 * Metadata in mixed block group profiles are accounted in data
1757 */
1758 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1759 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1760 mixed = 1;
1761 else
1762 total_free_meta += found->disk_total -
1763 found->disk_used;
1764 }
1765
1766 total_used += found->disk_used;
1767 }
1768
1769 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1770 buf->f_blocks >>= bits;
1771 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1772
1773 /* Account global block reserve as used, it's in logical size already */
1774 spin_lock(&block_rsv->lock);
1775 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1776 if (buf->f_bfree >= block_rsv->size >> bits)
1777 buf->f_bfree -= block_rsv->size >> bits;
1778 else
1779 buf->f_bfree = 0;
1780 spin_unlock(&block_rsv->lock);
1781
1782 buf->f_bavail = div_u64(total_free_data, factor);
1783 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1784 if (ret)
1785 return ret;
1786 buf->f_bavail += div_u64(total_free_data, factor);
1787 buf->f_bavail = buf->f_bavail >> bits;
1788
1789 /*
1790 * We calculate the remaining metadata space minus global reserve. If
1791 * this is (supposedly) smaller than zero, there's no space. But this
1792 * does not hold in practice, the exhausted state happens where's still
1793 * some positive delta. So we apply some guesswork and compare the
1794 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1795 *
1796 * We probably cannot calculate the exact threshold value because this
1797 * depends on the internal reservations requested by various
1798 * operations, so some operations that consume a few metadata will
1799 * succeed even if the Avail is zero. But this is better than the other
1800 * way around.
1801 */
1802 thresh = SZ_4M;
1803
1804 /*
1805 * We only want to claim there's no available space if we can no longer
1806 * allocate chunks for our metadata profile and our global reserve will
1807 * not fit in the free metadata space. If we aren't ->full then we
1808 * still can allocate chunks and thus are fine using the currently
1809 * calculated f_bavail.
1810 */
1811 if (!mixed && block_rsv->space_info->full &&
1812 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1813 buf->f_bavail = 0;
1814
1815 buf->f_type = BTRFS_SUPER_MAGIC;
1816 buf->f_bsize = fs_info->sectorsize;
1817 buf->f_namelen = BTRFS_NAME_LEN;
1818
1819 /* We treat it as constant endianness (it doesn't matter _which_)
1820 because we want the fsid to come out the same whether mounted
1821 on a big-endian or little-endian host */
1822 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1823 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1824 /* Mask in the root object ID too, to disambiguate subvols */
1825 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1826 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1827
1828 return 0;
1829 }
1830
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1831 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1832 {
1833 struct btrfs_fs_info *p = fc->s_fs_info;
1834 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1835
1836 return fs_info->fs_devices == p->fs_devices;
1837 }
1838
btrfs_get_tree_super(struct fs_context * fc)1839 static int btrfs_get_tree_super(struct fs_context *fc)
1840 {
1841 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1842 struct btrfs_fs_context *ctx = fc->fs_private;
1843 struct btrfs_fs_devices *fs_devices = NULL;
1844 struct btrfs_device *device;
1845 struct super_block *sb;
1846 blk_mode_t mode = sb_open_mode(fc->sb_flags);
1847 int ret;
1848
1849 btrfs_ctx_to_info(fs_info, ctx);
1850 mutex_lock(&uuid_mutex);
1851
1852 /*
1853 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1854 * either a valid device or an error.
1855 */
1856 device = btrfs_scan_one_device(fc->source, true);
1857 ASSERT(device != NULL);
1858 if (IS_ERR(device)) {
1859 mutex_unlock(&uuid_mutex);
1860 return PTR_ERR(device);
1861 }
1862 fs_devices = device->fs_devices;
1863 /*
1864 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a
1865 * locking order reversal with s_umount.
1866 *
1867 * So here we increase the holding number of fs_devices, this will ensure
1868 * the fs_devices itself won't be freed.
1869 */
1870 btrfs_fs_devices_inc_holding(fs_devices);
1871 fs_info->fs_devices = fs_devices;
1872 mutex_unlock(&uuid_mutex);
1873
1874
1875 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1876 if (IS_ERR(sb)) {
1877 mutex_lock(&uuid_mutex);
1878 btrfs_fs_devices_dec_holding(fs_devices);
1879 /*
1880 * Since the fs_devices is not opened, it can be freed at any
1881 * time after unlocking uuid_mutex. We need to avoid double
1882 * free through put_fs_context()->btrfs_free_fs_info().
1883 * So here we reset fs_info->fs_devices to NULL, and let the
1884 * regular fs_devices reclaim path to handle it.
1885 *
1886 * This applies to all later branches where no fs_devices is
1887 * opened.
1888 */
1889 fs_info->fs_devices = NULL;
1890 mutex_unlock(&uuid_mutex);
1891 return PTR_ERR(sb);
1892 }
1893
1894 set_device_specific_options(fs_info);
1895
1896 if (sb->s_root) {
1897 /*
1898 * Not the first mount of the fs thus got an existing super block.
1899 * Will reuse the returned super block, fs_info and fs_devices.
1900 *
1901 * fc->s_fs_info is not touched and will be later freed by
1902 * put_fs_context() through btrfs_free_fs_context().
1903 */
1904 ASSERT(fc->s_fs_info == fs_info);
1905
1906 mutex_lock(&uuid_mutex);
1907 btrfs_fs_devices_dec_holding(fs_devices);
1908 fs_info->fs_devices = NULL;
1909 mutex_unlock(&uuid_mutex);
1910 /*
1911 * At this stage we may have RO flag mismatch between
1912 * fc->sb_flags and sb->s_flags. Caller should detect such
1913 * mismatch and reconfigure with sb->s_umount rwsem held if
1914 * needed.
1915 */
1916 } else {
1917 struct block_device *bdev;
1918
1919 /*
1920 * The first mount of the fs thus a new superblock, fc->s_fs_info
1921 * must be NULL, and the ownership of our fs_info and fs_devices is
1922 * transferred to the super block.
1923 */
1924 ASSERT(fc->s_fs_info == NULL);
1925
1926 mutex_lock(&uuid_mutex);
1927 btrfs_fs_devices_dec_holding(fs_devices);
1928 ret = btrfs_open_devices(fs_devices, mode, sb);
1929 if (ret < 0)
1930 fs_info->fs_devices = NULL;
1931 mutex_unlock(&uuid_mutex);
1932 if (ret < 0) {
1933 deactivate_locked_super(sb);
1934 return ret;
1935 }
1936 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1937 deactivate_locked_super(sb);
1938 return -EACCES;
1939 }
1940 bdev = fs_devices->latest_dev->bdev;
1941 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1942 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1943 ret = btrfs_fill_super(sb, fs_devices);
1944 if (ret) {
1945 deactivate_locked_super(sb);
1946 return ret;
1947 }
1948 }
1949
1950 btrfs_clear_oneshot_options(fs_info);
1951
1952 fc->root = dget(sb->s_root);
1953 return 0;
1954 }
1955
1956 /*
1957 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1958 * with different ro/rw options") the following works:
1959 *
1960 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1961 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1962 *
1963 * which looks nice and innocent but is actually pretty intricate and deserves
1964 * a long comment.
1965 *
1966 * On another filesystem a subvolume mount is close to something like:
1967 *
1968 * (iii) # create rw superblock + initial mount
1969 * mount -t xfs /dev/sdb /opt/
1970 *
1971 * # create ro bind mount
1972 * mount --bind -o ro /opt/foo /mnt/foo
1973 *
1974 * # unmount initial mount
1975 * umount /opt
1976 *
1977 * Of course, there's some special subvolume sauce and there's the fact that the
1978 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1979 * it's very close and will help us understand the issue.
1980 *
1981 * The old mount API didn't cleanly distinguish between a mount being made ro
1982 * and a superblock being made ro. The only way to change the ro state of
1983 * either object was by passing ms_rdonly. If a new mount was created via
1984 * mount(2) such as:
1985 *
1986 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1987 *
1988 * the MS_RDONLY flag being specified had two effects:
1989 *
1990 * (1) MNT_READONLY was raised -> the resulting mount got
1991 * @mnt->mnt_flags |= MNT_READONLY raised.
1992 *
1993 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1994 * made the superblock ro. Note, how SB_RDONLY has the same value as
1995 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1996 *
1997 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1998 * subtree mounted ro.
1999 *
2000 * But consider the effect on the old mount API on btrfs subvolume mounting
2001 * which combines the distinct step in (iii) into a single step.
2002 *
2003 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
2004 * is issued the superblock is ro and thus even if the mount created for (ii) is
2005 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
2006 * to rw for (ii) which it did using an internal remount call.
2007 *
2008 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
2009 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
2010 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
2011 * passed by mount(8) to mount(2).
2012 *
2013 * Enter the new mount API. The new mount API disambiguates making a mount ro
2014 * and making a superblock ro.
2015 *
2016 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
2017 * fsmount() or mount_setattr() this is a pure VFS level change for a
2018 * specific mount or mount tree that is never seen by the filesystem itself.
2019 *
2020 * (4) To turn a superblock ro the "ro" flag must be used with
2021 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
2022 * in fc->sb_flags.
2023 *
2024 * But, currently the util-linux mount command already utilizes the new mount
2025 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
2026 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting
2027 * work with different options work we need to keep backward compatibility.
2028 */
btrfs_reconfigure_for_mount(struct fs_context * fc)2029 static int btrfs_reconfigure_for_mount(struct fs_context *fc)
2030 {
2031 int ret = 0;
2032
2033 if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY))
2034 ret = btrfs_reconfigure(fc);
2035
2036 return ret;
2037 }
2038
btrfs_get_tree_subvol(struct fs_context * fc)2039 static int btrfs_get_tree_subvol(struct fs_context *fc)
2040 {
2041 struct btrfs_fs_info *fs_info = NULL;
2042 struct btrfs_fs_context *ctx = fc->fs_private;
2043 struct fs_context *dup_fc;
2044 struct dentry *dentry;
2045 struct vfsmount *mnt;
2046 int ret = 0;
2047
2048 /*
2049 * Setup a dummy root and fs_info for test/set super. This is because
2050 * we don't actually fill this stuff out until open_ctree, but we need
2051 * then open_ctree will properly initialize the file system specific
2052 * settings later. btrfs_init_fs_info initializes the static elements
2053 * of the fs_info (locks and such) to make cleanup easier if we find a
2054 * superblock with our given fs_devices later on at sget() time.
2055 */
2056 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2057 if (!fs_info)
2058 return -ENOMEM;
2059
2060 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2061 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2062 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2063 btrfs_free_fs_info(fs_info);
2064 return -ENOMEM;
2065 }
2066 btrfs_init_fs_info(fs_info);
2067
2068 dup_fc = vfs_dup_fs_context(fc);
2069 if (IS_ERR(dup_fc)) {
2070 btrfs_free_fs_info(fs_info);
2071 return PTR_ERR(dup_fc);
2072 }
2073
2074 /*
2075 * When we do the sget_fc this gets transferred to the sb, so we only
2076 * need to set it on the dup_fc as this is what creates the super block.
2077 */
2078 dup_fc->s_fs_info = fs_info;
2079
2080 ret = btrfs_get_tree_super(dup_fc);
2081 if (ret)
2082 goto error;
2083
2084 ret = btrfs_reconfigure_for_mount(dup_fc);
2085 up_write(&dup_fc->root->d_sb->s_umount);
2086 if (ret)
2087 goto error;
2088 mnt = vfs_create_mount(dup_fc);
2089 put_fs_context(dup_fc);
2090 if (IS_ERR(mnt))
2091 return PTR_ERR(mnt);
2092
2093 /*
2094 * This free's ->subvol_name, because if it isn't set we have to
2095 * allocate a buffer to hold the subvol_name, so we just drop our
2096 * reference to it here.
2097 */
2098 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2099 ctx->subvol_name = NULL;
2100 if (IS_ERR(dentry))
2101 return PTR_ERR(dentry);
2102
2103 fc->root = dentry;
2104 return 0;
2105 error:
2106 put_fs_context(dup_fc);
2107 return ret;
2108 }
2109
btrfs_get_tree(struct fs_context * fc)2110 static int btrfs_get_tree(struct fs_context *fc)
2111 {
2112 ASSERT(fc->s_fs_info == NULL);
2113
2114 return btrfs_get_tree_subvol(fc);
2115 }
2116
btrfs_kill_super(struct super_block * sb)2117 static void btrfs_kill_super(struct super_block *sb)
2118 {
2119 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2120 kill_anon_super(sb);
2121 btrfs_free_fs_info(fs_info);
2122 }
2123
btrfs_free_fs_context(struct fs_context * fc)2124 static void btrfs_free_fs_context(struct fs_context *fc)
2125 {
2126 struct btrfs_fs_context *ctx = fc->fs_private;
2127 struct btrfs_fs_info *fs_info = fc->s_fs_info;
2128
2129 if (fs_info)
2130 btrfs_free_fs_info(fs_info);
2131
2132 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2133 kfree(ctx->subvol_name);
2134 kfree(ctx);
2135 }
2136 }
2137
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2138 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2139 {
2140 struct btrfs_fs_context *ctx = src_fc->fs_private;
2141
2142 /*
2143 * Give a ref to our ctx to this dup, as we want to keep it around for
2144 * our original fc so we can have the subvolume name or objectid.
2145 *
2146 * We unset ->source in the original fc because the dup needs it for
2147 * mounting, and then once we free the dup it'll free ->source, so we
2148 * need to make sure we're only pointing to it in one fc.
2149 */
2150 refcount_inc(&ctx->refs);
2151 fc->fs_private = ctx;
2152 fc->source = src_fc->source;
2153 src_fc->source = NULL;
2154 return 0;
2155 }
2156
2157 static const struct fs_context_operations btrfs_fs_context_ops = {
2158 .parse_param = btrfs_parse_param,
2159 .reconfigure = btrfs_reconfigure,
2160 .get_tree = btrfs_get_tree,
2161 .dup = btrfs_dup_fs_context,
2162 .free = btrfs_free_fs_context,
2163 };
2164
btrfs_init_fs_context(struct fs_context * fc)2165 static int btrfs_init_fs_context(struct fs_context *fc)
2166 {
2167 struct btrfs_fs_context *ctx;
2168
2169 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2170 if (!ctx)
2171 return -ENOMEM;
2172
2173 refcount_set(&ctx->refs, 1);
2174 fc->fs_private = ctx;
2175 fc->ops = &btrfs_fs_context_ops;
2176
2177 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2178 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2179 } else {
2180 ctx->thread_pool_size =
2181 min_t(unsigned long, num_online_cpus() + 2, 8);
2182 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2183 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2184 }
2185
2186 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2187 fc->sb_flags |= SB_POSIXACL;
2188 #endif
2189 fc->sb_flags |= SB_I_VERSION;
2190
2191 return 0;
2192 }
2193
2194 static struct file_system_type btrfs_fs_type = {
2195 .owner = THIS_MODULE,
2196 .name = "btrfs",
2197 .init_fs_context = btrfs_init_fs_context,
2198 .parameters = btrfs_fs_parameters,
2199 .kill_sb = btrfs_kill_super,
2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2201 FS_ALLOW_IDMAP | FS_MGTIME,
2202 };
2203
2204 MODULE_ALIAS_FS("btrfs");
2205
btrfs_control_open(struct inode * inode,struct file * file)2206 static int btrfs_control_open(struct inode *inode, struct file *file)
2207 {
2208 /*
2209 * The control file's private_data is used to hold the
2210 * transaction when it is started and is used to keep
2211 * track of whether a transaction is already in progress.
2212 */
2213 file->private_data = NULL;
2214 return 0;
2215 }
2216
2217 /*
2218 * Used by /dev/btrfs-control for devices ioctls.
2219 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2220 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2221 unsigned long arg)
2222 {
2223 struct btrfs_ioctl_vol_args *vol;
2224 struct btrfs_device *device = NULL;
2225 dev_t devt = 0;
2226 int ret = -ENOTTY;
2227
2228 if (!capable(CAP_SYS_ADMIN))
2229 return -EPERM;
2230
2231 vol = memdup_user((void __user *)arg, sizeof(*vol));
2232 if (IS_ERR(vol))
2233 return PTR_ERR(vol);
2234 ret = btrfs_check_ioctl_vol_args_path(vol);
2235 if (ret < 0)
2236 goto out;
2237
2238 switch (cmd) {
2239 case BTRFS_IOC_SCAN_DEV:
2240 mutex_lock(&uuid_mutex);
2241 /*
2242 * Scanning outside of mount can return NULL which would turn
2243 * into 0 error code.
2244 */
2245 device = btrfs_scan_one_device(vol->name, false);
2246 ret = PTR_ERR_OR_ZERO(device);
2247 mutex_unlock(&uuid_mutex);
2248 break;
2249 case BTRFS_IOC_FORGET_DEV:
2250 if (vol->name[0] != 0) {
2251 ret = lookup_bdev(vol->name, &devt);
2252 if (ret)
2253 break;
2254 }
2255 ret = btrfs_forget_devices(devt);
2256 break;
2257 case BTRFS_IOC_DEVICES_READY:
2258 mutex_lock(&uuid_mutex);
2259 /*
2260 * Scanning outside of mount can return NULL which would turn
2261 * into 0 error code.
2262 */
2263 device = btrfs_scan_one_device(vol->name, false);
2264 if (IS_ERR_OR_NULL(device)) {
2265 mutex_unlock(&uuid_mutex);
2266 if (IS_ERR(device))
2267 ret = PTR_ERR(device);
2268 else
2269 ret = 0;
2270 break;
2271 }
2272 ret = !(device->fs_devices->num_devices ==
2273 device->fs_devices->total_devices);
2274 mutex_unlock(&uuid_mutex);
2275 break;
2276 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2277 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2278 break;
2279 }
2280
2281 out:
2282 kfree(vol);
2283 return ret;
2284 }
2285
btrfs_freeze(struct super_block * sb)2286 static int btrfs_freeze(struct super_block *sb)
2287 {
2288 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2289
2290 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2291 /*
2292 * We don't need a barrier here, we'll wait for any transaction that
2293 * could be in progress on other threads (and do delayed iputs that
2294 * we want to avoid on a frozen filesystem), or do the commit
2295 * ourselves.
2296 */
2297 return btrfs_commit_current_transaction(fs_info->tree_root);
2298 }
2299
check_dev_super(struct btrfs_device * dev)2300 static int check_dev_super(struct btrfs_device *dev)
2301 {
2302 struct btrfs_fs_info *fs_info = dev->fs_info;
2303 struct btrfs_super_block *sb;
2304 u64 last_trans;
2305 u16 csum_type;
2306 int ret = 0;
2307
2308 /* This should be called with fs still frozen. */
2309 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2310
2311 /* Missing dev, no need to check. */
2312 if (!dev->bdev)
2313 return 0;
2314
2315 /* Only need to check the primary super block. */
2316 sb = btrfs_read_disk_super(dev->bdev, 0, true);
2317 if (IS_ERR(sb))
2318 return PTR_ERR(sb);
2319
2320 /* Verify the checksum. */
2321 csum_type = btrfs_super_csum_type(sb);
2322 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2323 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2324 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2325 ret = -EUCLEAN;
2326 goto out;
2327 }
2328
2329 if (btrfs_check_super_csum(fs_info, sb)) {
2330 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2331 ret = -EUCLEAN;
2332 goto out;
2333 }
2334
2335 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2336 ret = btrfs_validate_super(fs_info, sb, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 last_trans = btrfs_get_last_trans_committed(fs_info);
2341 if (btrfs_super_generation(sb) != last_trans) {
2342 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2343 btrfs_super_generation(sb), last_trans);
2344 ret = -EUCLEAN;
2345 goto out;
2346 }
2347 out:
2348 btrfs_release_disk_super(sb);
2349 return ret;
2350 }
2351
btrfs_unfreeze(struct super_block * sb)2352 static int btrfs_unfreeze(struct super_block *sb)
2353 {
2354 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2355 struct btrfs_device *device;
2356 int ret = 0;
2357
2358 /*
2359 * Make sure the fs is not changed by accident (like hibernation then
2360 * modified by other OS).
2361 * If we found anything wrong, we mark the fs error immediately.
2362 *
2363 * And since the fs is frozen, no one can modify the fs yet, thus
2364 * we don't need to hold device_list_mutex.
2365 */
2366 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2367 ret = check_dev_super(device);
2368 if (ret < 0) {
2369 btrfs_handle_fs_error(fs_info, ret,
2370 "super block on devid %llu got modified unexpectedly",
2371 device->devid);
2372 break;
2373 }
2374 }
2375 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2376
2377 /*
2378 * We still return 0, to allow VFS layer to unfreeze the fs even the
2379 * above checks failed. Since the fs is either fine or read-only, we're
2380 * safe to continue, without causing further damage.
2381 */
2382 return 0;
2383 }
2384
btrfs_show_devname(struct seq_file * m,struct dentry * root)2385 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2386 {
2387 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2388
2389 /*
2390 * There should be always a valid pointer in latest_dev, it may be stale
2391 * for a short moment in case it's being deleted but still valid until
2392 * the end of RCU grace period.
2393 */
2394 rcu_read_lock();
2395 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2396 rcu_read_unlock();
2397
2398 return 0;
2399 }
2400
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2401 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2402 {
2403 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2404 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2405
2406 trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2407
2408 return nr;
2409 }
2410
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2411 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2412 {
2413 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2414 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2415
2416 btrfs_free_extent_maps(fs_info, nr_to_scan);
2417
2418 /* The extent map shrinker runs asynchronously, so always return 0. */
2419 return 0;
2420 }
2421
2422 static const struct super_operations btrfs_super_ops = {
2423 .drop_inode = btrfs_drop_inode,
2424 .evict_inode = btrfs_evict_inode,
2425 .put_super = btrfs_put_super,
2426 .sync_fs = btrfs_sync_fs,
2427 .show_options = btrfs_show_options,
2428 .show_devname = btrfs_show_devname,
2429 .alloc_inode = btrfs_alloc_inode,
2430 .destroy_inode = btrfs_destroy_inode,
2431 .free_inode = btrfs_free_inode,
2432 .statfs = btrfs_statfs,
2433 .freeze_fs = btrfs_freeze,
2434 .unfreeze_fs = btrfs_unfreeze,
2435 .nr_cached_objects = btrfs_nr_cached_objects,
2436 .free_cached_objects = btrfs_free_cached_objects,
2437 };
2438
2439 static const struct file_operations btrfs_ctl_fops = {
2440 .open = btrfs_control_open,
2441 .unlocked_ioctl = btrfs_control_ioctl,
2442 .compat_ioctl = compat_ptr_ioctl,
2443 .owner = THIS_MODULE,
2444 .llseek = noop_llseek,
2445 };
2446
2447 static struct miscdevice btrfs_misc = {
2448 .minor = BTRFS_MINOR,
2449 .name = "btrfs-control",
2450 .fops = &btrfs_ctl_fops
2451 };
2452
2453 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2454 MODULE_ALIAS("devname:btrfs-control");
2455
btrfs_interface_init(void)2456 static int __init btrfs_interface_init(void)
2457 {
2458 return misc_register(&btrfs_misc);
2459 }
2460
btrfs_interface_exit(void)2461 static __cold void btrfs_interface_exit(void)
2462 {
2463 misc_deregister(&btrfs_misc);
2464 }
2465
btrfs_print_mod_info(void)2466 static int __init btrfs_print_mod_info(void)
2467 {
2468 static const char options[] = ""
2469 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2470 ", experimental=on"
2471 #endif
2472 #ifdef CONFIG_BTRFS_DEBUG
2473 ", debug=on"
2474 #endif
2475 #ifdef CONFIG_BTRFS_ASSERT
2476 ", assert=on"
2477 #endif
2478 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2479 ", ref-verify=on"
2480 #endif
2481 #ifdef CONFIG_BLK_DEV_ZONED
2482 ", zoned=yes"
2483 #else
2484 ", zoned=no"
2485 #endif
2486 #ifdef CONFIG_FS_VERITY
2487 ", fsverity=yes"
2488 #else
2489 ", fsverity=no"
2490 #endif
2491 ;
2492
2493 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2494 if (btrfs_get_mod_read_policy() == NULL)
2495 pr_info("Btrfs loaded%s\n", options);
2496 else
2497 pr_info("Btrfs loaded%s, read_policy=%s\n",
2498 options, btrfs_get_mod_read_policy());
2499 #else
2500 pr_info("Btrfs loaded%s\n", options);
2501 #endif
2502
2503 return 0;
2504 }
2505
register_btrfs(void)2506 static int register_btrfs(void)
2507 {
2508 return register_filesystem(&btrfs_fs_type);
2509 }
2510
unregister_btrfs(void)2511 static void unregister_btrfs(void)
2512 {
2513 unregister_filesystem(&btrfs_fs_type);
2514 }
2515
2516 /* Helper structure for long init/exit functions. */
2517 struct init_sequence {
2518 int (*init_func)(void);
2519 /* Can be NULL if the init_func doesn't need cleanup. */
2520 void (*exit_func)(void);
2521 };
2522
2523 static const struct init_sequence mod_init_seq[] = {
2524 {
2525 .init_func = btrfs_props_init,
2526 .exit_func = NULL,
2527 }, {
2528 .init_func = btrfs_init_sysfs,
2529 .exit_func = btrfs_exit_sysfs,
2530 }, {
2531 .init_func = btrfs_init_compress,
2532 .exit_func = btrfs_exit_compress,
2533 }, {
2534 .init_func = btrfs_init_cachep,
2535 .exit_func = btrfs_destroy_cachep,
2536 }, {
2537 .init_func = btrfs_init_dio,
2538 .exit_func = btrfs_destroy_dio,
2539 }, {
2540 .init_func = btrfs_transaction_init,
2541 .exit_func = btrfs_transaction_exit,
2542 }, {
2543 .init_func = btrfs_ctree_init,
2544 .exit_func = btrfs_ctree_exit,
2545 }, {
2546 .init_func = btrfs_free_space_init,
2547 .exit_func = btrfs_free_space_exit,
2548 }, {
2549 .init_func = btrfs_extent_state_init_cachep,
2550 .exit_func = btrfs_extent_state_free_cachep,
2551 }, {
2552 .init_func = extent_buffer_init_cachep,
2553 .exit_func = extent_buffer_free_cachep,
2554 }, {
2555 .init_func = btrfs_bioset_init,
2556 .exit_func = btrfs_bioset_exit,
2557 }, {
2558 .init_func = btrfs_extent_map_init,
2559 .exit_func = btrfs_extent_map_exit,
2560 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2561 }, {
2562 .init_func = btrfs_read_policy_init,
2563 .exit_func = NULL,
2564 #endif
2565 }, {
2566 .init_func = ordered_data_init,
2567 .exit_func = ordered_data_exit,
2568 }, {
2569 .init_func = btrfs_delayed_inode_init,
2570 .exit_func = btrfs_delayed_inode_exit,
2571 }, {
2572 .init_func = btrfs_auto_defrag_init,
2573 .exit_func = btrfs_auto_defrag_exit,
2574 }, {
2575 .init_func = btrfs_delayed_ref_init,
2576 .exit_func = btrfs_delayed_ref_exit,
2577 }, {
2578 .init_func = btrfs_prelim_ref_init,
2579 .exit_func = btrfs_prelim_ref_exit,
2580 }, {
2581 .init_func = btrfs_interface_init,
2582 .exit_func = btrfs_interface_exit,
2583 }, {
2584 .init_func = btrfs_print_mod_info,
2585 .exit_func = NULL,
2586 }, {
2587 .init_func = btrfs_run_sanity_tests,
2588 .exit_func = NULL,
2589 }, {
2590 .init_func = register_btrfs,
2591 .exit_func = unregister_btrfs,
2592 }
2593 };
2594
2595 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2596
btrfs_exit_btrfs_fs(void)2597 static __always_inline void btrfs_exit_btrfs_fs(void)
2598 {
2599 int i;
2600
2601 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2602 if (!mod_init_result[i])
2603 continue;
2604 if (mod_init_seq[i].exit_func)
2605 mod_init_seq[i].exit_func();
2606 mod_init_result[i] = false;
2607 }
2608 }
2609
exit_btrfs_fs(void)2610 static void __exit exit_btrfs_fs(void)
2611 {
2612 btrfs_exit_btrfs_fs();
2613 btrfs_cleanup_fs_uuids();
2614 }
2615
init_btrfs_fs(void)2616 static int __init init_btrfs_fs(void)
2617 {
2618 int ret;
2619 int i;
2620
2621 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2622 ASSERT(!mod_init_result[i]);
2623 ret = mod_init_seq[i].init_func();
2624 if (ret < 0) {
2625 btrfs_exit_btrfs_fs();
2626 return ret;
2627 }
2628 mod_init_result[i] = true;
2629 }
2630 return 0;
2631 }
2632
2633 late_initcall(init_btrfs_fs);
2634 module_exit(exit_btrfs_fs)
2635
2636 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2637 MODULE_LICENSE("GPL");
2638 MODULE_SOFTDEP("pre: crc32c");
2639 MODULE_SOFTDEP("pre: xxhash64");
2640 MODULE_SOFTDEP("pre: sha256");
2641 MODULE_SOFTDEP("pre: blake2b-256");
2642