xref: /linux/drivers/gpu/drm/amd/display/dc/hwss/dcn35/dcn35_hwseq.c (revision 7ee983c850b40043ac4751836fbd9a2b4d0c5937)
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright 2023 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dm_helpers.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "dccg.h"
32 #include "dce/dce_hwseq.h"
33 #include "clk_mgr.h"
34 #include "reg_helper.h"
35 #include "abm.h"
36 #include "hubp.h"
37 #include "dchubbub.h"
38 #include "timing_generator.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "mpc.h"
42 #include "mcif_wb.h"
43 #include "dc_dmub_srv.h"
44 #include "dcn35_hwseq.h"
45 #include "dcn35/dcn35_dccg.h"
46 #include "link_hwss.h"
47 #include "dpcd_defs.h"
48 #include "dce/dmub_outbox.h"
49 #include "link.h"
50 #include "dcn10/dcn10_hwseq.h"
51 #include "inc/link_enc_cfg.h"
52 #include "dcn30/dcn30_vpg.h"
53 #include "dce/dce_i2c_hw.h"
54 #include "dsc.h"
55 #include "dcn20/dcn20_optc.h"
56 #include "dcn30/dcn30_cm_common.h"
57 #include "dcn31/dcn31_hwseq.h"
58 #include "dcn20/dcn20_hwseq.h"
59 #include "dc_state_priv.h"
60 
61 #define DC_LOGGER_INIT(logger) \
62 	struct dal_logger *dc_logger = logger
63 
64 #define CTX \
65 	hws->ctx
66 #define REG(reg)\
67 	hws->regs->reg
68 #define DC_LOGGER \
69 	dc_logger
70 
71 
72 #undef FN
73 #define FN(reg_name, field_name) \
74 	hws->shifts->field_name, hws->masks->field_name
75 #if 0
76 static void enable_memory_low_power(struct dc *dc)
77 {
78 	struct dce_hwseq *hws = dc->hwseq;
79 	int i;
80 
81 	if (dc->debug.enable_mem_low_power.bits.dmcu) {
82 		// Force ERAM to shutdown if DMCU is not enabled
83 		if (dc->debug.disable_dmcu || dc->config.disable_dmcu) {
84 			REG_UPDATE(DMU_MEM_PWR_CNTL, DMCU_ERAM_MEM_PWR_FORCE, 3);
85 		}
86 	}
87 	/*dcn35 has default MEM_PWR enabled, make sure wake them up*/
88 	// Set default OPTC memory power states
89 	if (dc->debug.enable_mem_low_power.bits.optc) {
90 		// Shutdown when unassigned and light sleep in VBLANK
91 		REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
92 	}
93 
94 	if (dc->debug.enable_mem_low_power.bits.vga) {
95 		// Power down VGA memory
96 		REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
97 	}
98 
99 	if (dc->debug.enable_mem_low_power.bits.mpc &&
100 		dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode)
101 		dc->res_pool->mpc->funcs->set_mpc_mem_lp_mode(dc->res_pool->mpc);
102 
103 	if (dc->debug.enable_mem_low_power.bits.vpg && dc->res_pool->stream_enc[0]->vpg->funcs->vpg_powerdown) {
104 		// Power down VPGs
105 		for (i = 0; i < dc->res_pool->stream_enc_count; i++)
106 			dc->res_pool->stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->stream_enc[i]->vpg);
107 #if defined(CONFIG_DRM_AMD_DC_DP2_0)
108 		for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++)
109 			dc->res_pool->hpo_dp_stream_enc[i]->vpg->funcs->vpg_powerdown(dc->res_pool->hpo_dp_stream_enc[i]->vpg);
110 #endif
111 	}
112 
113 }
114 #endif
115 
dcn35_set_dmu_fgcg(struct dce_hwseq * hws,bool enable)116 void dcn35_set_dmu_fgcg(struct dce_hwseq *hws, bool enable)
117 {
118 	REG_UPDATE_3(DMU_CLK_CNTL,
119 		RBBMIF_FGCG_REP_DIS, !enable,
120 		IHC_FGCG_REP_DIS, !enable,
121 		LONO_FGCG_REP_DIS, !enable
122 	);
123 }
124 
dcn35_setup_hpo_hw_control(const struct dce_hwseq * hws,bool enable)125 void dcn35_setup_hpo_hw_control(const struct dce_hwseq *hws, bool enable)
126 {
127 	REG_UPDATE(HPO_TOP_HW_CONTROL, HPO_IO_EN, !!enable);
128 }
129 
dcn35_init_hw(struct dc * dc)130 void dcn35_init_hw(struct dc *dc)
131 {
132 	struct abm **abms = dc->res_pool->multiple_abms;
133 	struct dce_hwseq *hws = dc->hwseq;
134 	struct dc_bios *dcb = dc->ctx->dc_bios;
135 	struct resource_pool *res_pool = dc->res_pool;
136 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
137 	uint32_t user_level = MAX_BACKLIGHT_LEVEL;
138 	int i;
139 
140 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
141 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
142 
143 	//dcn35_set_dmu_fgcg(hws, dc->debug.enable_fine_grain_clock_gating.bits.dmu);
144 
145 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
146 		/*this calls into dmubfw to do the init*/
147 		hws->funcs.bios_golden_init(dc);
148 	}
149 
150 	// Initialize the dccg
151 	if (res_pool->dccg->funcs->dccg_init)
152 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
153 
154 	//enable_memory_low_power(dc);
155 
156 	if (dc->ctx->dc_bios->fw_info_valid) {
157 		res_pool->ref_clocks.xtalin_clock_inKhz =
158 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
159 
160 		if (res_pool->hubbub) {
161 
162 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
163 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
164 				&res_pool->ref_clocks.dccg_ref_clock_inKhz);
165 
166 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
167 				res_pool->ref_clocks.dccg_ref_clock_inKhz,
168 				&res_pool->ref_clocks.dchub_ref_clock_inKhz);
169 		} else {
170 			// Not all ASICs have DCCG sw component
171 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
172 				res_pool->ref_clocks.xtalin_clock_inKhz;
173 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
174 				res_pool->ref_clocks.xtalin_clock_inKhz;
175 		}
176 	} else
177 		ASSERT_CRITICAL(false);
178 
179 	for (i = 0; i < dc->link_count; i++) {
180 		/* Power up AND update implementation according to the
181 		 * required signal (which may be different from the
182 		 * default signal on connector).
183 		 */
184 		struct dc_link *link = dc->links[i];
185 
186 		if (link->ep_type != DISPLAY_ENDPOINT_PHY)
187 			continue;
188 
189 		link->link_enc->funcs->hw_init(link->link_enc);
190 
191 		/* Check for enabled DIG to identify enabled display */
192 		if (link->link_enc->funcs->is_dig_enabled &&
193 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
194 			link->link_status.link_active = true;
195 			if (link->link_enc->funcs->fec_is_active &&
196 					link->link_enc->funcs->fec_is_active(link->link_enc))
197 				link->fec_state = dc_link_fec_enabled;
198 		}
199 	}
200 
201 	/* we want to turn off all dp displays before doing detection */
202 	dc->link_srv->blank_all_dp_displays(dc);
203 /*
204 	if (hws->funcs.enable_power_gating_plane)
205 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
206 */
207 	if (res_pool->hubbub && res_pool->hubbub->funcs->dchubbub_init)
208 		res_pool->hubbub->funcs->dchubbub_init(dc->res_pool->hubbub);
209 	/* If taking control over from VBIOS, we may want to optimize our first
210 	 * mode set, so we need to skip powering down pipes until we know which
211 	 * pipes we want to use.
212 	 * Otherwise, if taking control is not possible, we need to power
213 	 * everything down.
214 	 */
215 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
216 
217 		// we want to turn off edp displays if odm is enabled and no seamless boot
218 		if (!dc->caps.seamless_odm) {
219 			for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
220 				struct timing_generator *tg = dc->res_pool->timing_generators[i];
221 				uint32_t num_opps, opp_id_src0, opp_id_src1;
222 
223 				num_opps = 1;
224 				if (tg) {
225 					if (tg->funcs->is_tg_enabled(tg) && tg->funcs->get_optc_source) {
226 						tg->funcs->get_optc_source(tg, &num_opps,
227 								&opp_id_src0, &opp_id_src1);
228 					}
229 				}
230 
231 				if (num_opps > 1) {
232 					dc->link_srv->blank_all_edp_displays(dc);
233 					break;
234 				}
235 			}
236 		}
237 
238 		hws->funcs.init_pipes(dc, dc->current_state);
239 		if (dc->res_pool->hubbub->funcs->allow_self_refresh_control &&
240 			!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter)
241 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
242 					!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
243 	}
244 	if (res_pool->dccg->funcs->dccg_root_gate_disable_control) {
245 		for (i = 0; i < res_pool->pipe_count; i++)
246 			res_pool->dccg->funcs->dccg_root_gate_disable_control(res_pool->dccg, i, 0);
247 	}
248 
249 	for (i = 0; i < res_pool->audio_count; i++) {
250 		struct audio *audio = res_pool->audios[i];
251 
252 		audio->funcs->hw_init(audio);
253 	}
254 
255 	for (i = 0; i < dc->link_count; i++) {
256 		struct dc_link *link = dc->links[i];
257 
258 		if (link->panel_cntl) {
259 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
260 			user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
261 		}
262 	}
263 	if (dc->ctx->dmub_srv) {
264 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
265 		if (abms[i] != NULL && abms[i]->funcs != NULL)
266 			abms[i]->funcs->abm_init(abms[i], backlight, user_level);
267 		}
268 	}
269 
270 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
271 	REG_WRITE(DIO_MEM_PWR_CTRL, 0);
272 
273 	// Set i2c to light sleep until engine is setup
274 	if (dc->debug.enable_mem_low_power.bits.i2c)
275 		REG_UPDATE(DIO_MEM_PWR_CTRL, I2C_LIGHT_SLEEP_FORCE, 0);
276 
277 	if (hws->funcs.setup_hpo_hw_control)
278 		hws->funcs.setup_hpo_hw_control(hws, false);
279 
280 	if (!dc->debug.disable_clock_gate) {
281 		/* enable all DCN clock gating */
282 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
283 	}
284 
285 	if (dc->debug.disable_mem_low_power) {
286 		REG_UPDATE(DC_MEM_GLOBAL_PWR_REQ_CNTL, DC_MEM_GLOBAL_PWR_REQ_DIS, 1);
287 	}
288 	if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
289 		dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
290 
291 	if (dc->clk_mgr && dc->clk_mgr->funcs->notify_wm_ranges)
292 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
293 
294 	if (dc->clk_mgr && dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled)
295 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
296 
297 
298 
299 	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
300 		dc->res_pool->hubbub->funcs->force_pstate_change_control(
301 				dc->res_pool->hubbub, false, false);
302 
303 	if (dc->res_pool->hubbub->funcs->init_crb)
304 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
305 
306 	if (dc->res_pool->hubbub->funcs->set_request_limit && dc->config.sdpif_request_limit_words_per_umc > 0)
307 		dc->res_pool->hubbub->funcs->set_request_limit(dc->res_pool->hubbub, dc->ctx->dc_bios->vram_info.num_chans, dc->config.sdpif_request_limit_words_per_umc);
308 	// Get DMCUB capabilities
309 	if (dc->ctx->dmub_srv) {
310 		dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv);
311 		dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
312 		dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch_ver;
313 		dc->caps.dmub_caps.aux_backlight_support = dc->ctx->dmub_srv->dmub->feature_caps.abm_aux_backlight_support;
314 	}
315 
316 	if (dc->res_pool->pg_cntl) {
317 		if (dc->res_pool->pg_cntl->funcs->init_pg_status)
318 			dc->res_pool->pg_cntl->funcs->init_pg_status(dc->res_pool->pg_cntl);
319 	}
320 }
321 
update_dsc_on_stream(struct pipe_ctx * pipe_ctx,bool enable)322 static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
323 {
324 	struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
325 	struct dc_stream_state *stream = pipe_ctx->stream;
326 	struct pipe_ctx *odm_pipe;
327 	int opp_cnt = 1;
328 
329 	DC_LOGGER_INIT(stream->ctx->logger);
330 
331 	ASSERT(dsc);
332 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
333 		opp_cnt++;
334 
335 	if (enable) {
336 		struct dsc_config dsc_cfg;
337 		struct dsc_optc_config dsc_optc_cfg = {0};
338 		enum optc_dsc_mode optc_dsc_mode;
339 		struct dcn_dsc_state dsc_state = {0};
340 
341 		if (!dsc) {
342 			DC_LOG_DSC("DSC is NULL for tg instance %d:", pipe_ctx->stream_res.tg->inst);
343 			return;
344 		}
345 
346 		if (dsc->funcs->dsc_read_state) {
347 			dsc->funcs->dsc_read_state(dsc, &dsc_state);
348 			if (!dsc_state.dsc_fw_en) {
349 				DC_LOG_DSC("DSC has been disabled for tg instance %d:", pipe_ctx->stream_res.tg->inst);
350 				return;
351 			}
352 		}
353 		/* Enable DSC hw block */
354 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
355 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
356 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
357 		dsc_cfg.color_depth = stream->timing.display_color_depth;
358 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
359 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
360 		ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
361 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
362 
363 		dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
364 		dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
365 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
366 			struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
367 
368 			ASSERT(odm_dsc);
369 			odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
370 			odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
371 		}
372 		dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
373 		dsc_cfg.pic_width *= opp_cnt;
374 
375 		optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
376 
377 		/* Enable DSC in OPTC */
378 		DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
379 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
380 							optc_dsc_mode,
381 							dsc_optc_cfg.bytes_per_pixel,
382 							dsc_optc_cfg.slice_width);
383 	} else {
384 		/* disable DSC in OPTC */
385 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(
386 				pipe_ctx->stream_res.tg,
387 				OPTC_DSC_DISABLED, 0, 0);
388 
389 		/* disable DSC block */
390 		dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
391 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
392 			ASSERT(odm_pipe->stream_res.dsc);
393 			odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
394 		}
395 	}
396 }
397 
398 // Given any pipe_ctx, return the total ODM combine factor, and optionally return
399 // the OPPids which are used
get_odm_config(struct pipe_ctx * pipe_ctx,unsigned int * opp_instances)400 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
401 {
402 	unsigned int opp_count = 1;
403 	struct pipe_ctx *odm_pipe;
404 
405 	// First get to the top pipe
406 	for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
407 		;
408 
409 	// First pipe is always used
410 	if (opp_instances)
411 		opp_instances[0] = odm_pipe->stream_res.opp->inst;
412 
413 	// Find and count odm pipes, if any
414 	for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
415 		if (opp_instances)
416 			opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
417 		opp_count++;
418 	}
419 
420 	return opp_count;
421 }
422 
dcn35_update_odm(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)423 void dcn35_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
424 {
425 	struct pipe_ctx *odm_pipe;
426 	int opp_cnt = 0;
427 	int opp_inst[MAX_PIPES] = {0};
428 	int odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, false);
429 	int last_odm_slice_width = resource_get_odm_slice_dst_width(pipe_ctx, true);
430 	struct mpc *mpc = dc->res_pool->mpc;
431 	int i;
432 
433 	opp_cnt = get_odm_config(pipe_ctx, opp_inst);
434 
435 	if (opp_cnt > 1)
436 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
437 				pipe_ctx->stream_res.tg,
438 				opp_inst, opp_cnt,
439 				odm_slice_width, last_odm_slice_width);
440 	else
441 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
442 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
443 
444 	if (mpc->funcs->set_out_rate_control) {
445 		for (i = 0; i < opp_cnt; ++i) {
446 			mpc->funcs->set_out_rate_control(
447 					mpc, opp_inst[i],
448 					false,
449 					0,
450 					NULL);
451 		}
452 	}
453 
454 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
455 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
456 				odm_pipe->stream_res.opp,
457 				true);
458 	}
459 
460 	if (pipe_ctx->stream_res.dsc) {
461 		struct pipe_ctx *current_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
462 
463 		update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
464 
465 		/* Check if no longer using pipe for ODM, then need to disconnect DSC for that pipe */
466 		if (!pipe_ctx->next_odm_pipe && current_pipe_ctx->next_odm_pipe &&
467 				current_pipe_ctx->next_odm_pipe->stream_res.dsc) {
468 			struct display_stream_compressor *dsc = current_pipe_ctx->next_odm_pipe->stream_res.dsc;
469 			/* disconnect DSC block from stream */
470 			dsc->funcs->dsc_disconnect(dsc);
471 		}
472 	}
473 }
474 
dcn35_dpp_root_clock_control(struct dce_hwseq * hws,unsigned int dpp_inst,bool clock_on)475 void dcn35_dpp_root_clock_control(struct dce_hwseq *hws, unsigned int dpp_inst, bool clock_on)
476 {
477 	if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpp)
478 		return;
479 
480 	if (hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control) {
481 		hws->ctx->dc->res_pool->dccg->funcs->dpp_root_clock_control(
482 			hws->ctx->dc->res_pool->dccg, dpp_inst, clock_on);
483 	}
484 }
485 
dcn35_dpstream_root_clock_control(struct dce_hwseq * hws,unsigned int dp_hpo_inst,bool clock_on)486 void dcn35_dpstream_root_clock_control(struct dce_hwseq *hws, unsigned int dp_hpo_inst, bool clock_on)
487 {
488 	if (!hws->ctx->dc->debug.root_clock_optimization.bits.dpstream)
489 		return;
490 
491 	if (hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating) {
492 		hws->ctx->dc->res_pool->dccg->funcs->set_dpstreamclk_root_clock_gating(
493 			hws->ctx->dc->res_pool->dccg, dp_hpo_inst, clock_on);
494 	}
495 }
496 
dcn35_physymclk_root_clock_control(struct dce_hwseq * hws,unsigned int phy_inst,bool clock_on)497 void dcn35_physymclk_root_clock_control(struct dce_hwseq *hws, unsigned int phy_inst, bool clock_on)
498 {
499 	if (!hws->ctx->dc->debug.root_clock_optimization.bits.physymclk)
500 		return;
501 
502 	if (hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating) {
503 		hws->ctx->dc->res_pool->dccg->funcs->set_physymclk_root_clock_gating(
504 			hws->ctx->dc->res_pool->dccg, phy_inst, clock_on);
505 	}
506 }
507 
dcn35_dsc_pg_control(struct dce_hwseq * hws,unsigned int dsc_inst,bool power_on)508 void dcn35_dsc_pg_control(
509 		struct dce_hwseq *hws,
510 		unsigned int dsc_inst,
511 		bool power_on)
512 {
513 	uint32_t power_gate = power_on ? 0 : 1;
514 	uint32_t pwr_status = power_on ? 0 : 2;
515 	uint32_t org_ip_request_cntl = 0;
516 
517 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
518 		return;
519 	if (hws->ctx->dc->debug.ignore_pg)
520 		return;
521 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
522 	if (org_ip_request_cntl == 0)
523 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
524 
525 	switch (dsc_inst) {
526 	case 0: /* DSC0 */
527 		REG_UPDATE(DOMAIN16_PG_CONFIG,
528 				DOMAIN_POWER_GATE, power_gate);
529 
530 		REG_WAIT(DOMAIN16_PG_STATUS,
531 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
532 				1, 1000);
533 		break;
534 	case 1: /* DSC1 */
535 		REG_UPDATE(DOMAIN17_PG_CONFIG,
536 				DOMAIN_POWER_GATE, power_gate);
537 
538 		REG_WAIT(DOMAIN17_PG_STATUS,
539 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
540 				1, 1000);
541 		break;
542 	case 2: /* DSC2 */
543 		REG_UPDATE(DOMAIN18_PG_CONFIG,
544 				DOMAIN_POWER_GATE, power_gate);
545 
546 		REG_WAIT(DOMAIN18_PG_STATUS,
547 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
548 				1, 1000);
549 		break;
550 	case 3: /* DSC3 */
551 		REG_UPDATE(DOMAIN19_PG_CONFIG,
552 				DOMAIN_POWER_GATE, power_gate);
553 
554 		REG_WAIT(DOMAIN19_PG_STATUS,
555 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
556 				1, 1000);
557 		break;
558 	default:
559 		BREAK_TO_DEBUGGER();
560 		break;
561 	}
562 
563 	if (org_ip_request_cntl == 0)
564 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
565 }
566 
dcn35_enable_power_gating_plane(struct dce_hwseq * hws,bool enable)567 void dcn35_enable_power_gating_plane(struct dce_hwseq *hws, bool enable)
568 {
569 	bool force_on = true; /* disable power gating */
570 	uint32_t org_ip_request_cntl = 0;
571 
572 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
573 		return;
574 	if (hws->ctx->dc->debug.ignore_pg)
575 		return;
576 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
577 	if (org_ip_request_cntl == 0)
578 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
579 	/* DCHUBP0/1/2/3/4/5 */
580 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
581 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
582 	/* DPP0/1/2/3/4/5 */
583 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
584 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
585 
586 	force_on = true; /* disable power gating */
587 	if (enable && !hws->ctx->dc->debug.disable_dsc_power_gate)
588 		force_on = false;
589 
590 	/* DCS0/1/2/3/4 */
591 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
592 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
593 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
594 	REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
595 
596 
597 }
598 
599 /* In headless boot cases, DIG may be turned
600  * on which causes HW/SW discrepancies.
601  * To avoid this, power down hardware on boot
602  * if DIG is turned on
603  */
dcn35_power_down_on_boot(struct dc * dc)604 void dcn35_power_down_on_boot(struct dc *dc)
605 {
606 	struct dc_link *edp_links[MAX_NUM_EDP];
607 	struct dc_link *edp_link = NULL;
608 	int edp_num;
609 	int i = 0;
610 
611 	dc_get_edp_links(dc, edp_links, &edp_num);
612 	if (edp_num)
613 		edp_link = edp_links[0];
614 
615 	if (edp_link && edp_link->link_enc->funcs->is_dig_enabled &&
616 			edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
617 			dc->hwseq->funcs.edp_backlight_control &&
618 			dc->hwseq->funcs.power_down &&
619 			dc->hwss.edp_power_control) {
620 		dc->hwseq->funcs.edp_backlight_control(edp_link, false);
621 		dc->hwseq->funcs.power_down(dc);
622 		dc->hwss.edp_power_control(edp_link, false);
623 	} else {
624 		for (i = 0; i < dc->link_count; i++) {
625 			struct dc_link *link = dc->links[i];
626 
627 			if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
628 					link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
629 					dc->hwseq->funcs.power_down) {
630 				dc->hwseq->funcs.power_down(dc);
631 				break;
632 			}
633 
634 		}
635 	}
636 
637 	/*
638 	 * Call update_clocks with empty context
639 	 * to send DISPLAY_OFF
640 	 * Otherwise DISPLAY_OFF may not be asserted
641 	 */
642 	if (dc->clk_mgr->funcs->set_low_power_state)
643 		dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
644 
645 	if (dc->clk_mgr->clks.pwr_state == DCN_PWR_STATE_LOW_POWER)
646 		dc_allow_idle_optimizations(dc, true);
647 }
648 
dcn35_apply_idle_power_optimizations(struct dc * dc,bool enable)649 bool dcn35_apply_idle_power_optimizations(struct dc *dc, bool enable)
650 {
651 	if (dc->debug.dmcub_emulation)
652 		return true;
653 
654 	if (enable) {
655 		uint32_t num_active_edp = 0;
656 		int i;
657 
658 		for (i = 0; i < dc->current_state->stream_count; ++i) {
659 			struct dc_stream_state *stream = dc->current_state->streams[i];
660 			struct dc_link *link = stream->link;
661 			bool is_psr = link && !link->panel_config.psr.disable_psr &&
662 				      (link->psr_settings.psr_version == DC_PSR_VERSION_1 ||
663 				       link->psr_settings.psr_version == DC_PSR_VERSION_SU_1);
664 			bool is_replay = link && link->replay_settings.replay_feature_enabled;
665 
666 			/* Ignore streams that disabled. */
667 			if (stream->dpms_off)
668 				continue;
669 
670 			/* Active external displays block idle optimizations. */
671 			if (!dc_is_embedded_signal(stream->signal))
672 				return false;
673 
674 			/* If not PWRSEQ0 can't enter idle optimizations */
675 			if (link && link->link_index != 0)
676 				return false;
677 
678 			/* Check for panel power features required for idle optimizations. */
679 			if (!is_psr && !is_replay)
680 				return false;
681 
682 			num_active_edp += 1;
683 		}
684 
685 		/* If more than one active eDP then disallow. */
686 		if (num_active_edp > 1)
687 			return false;
688 	}
689 
690 	// TODO: review other cases when idle optimization is allowed
691 	dc_dmub_srv_apply_idle_power_optimizations(dc, enable);
692 
693 	return true;
694 }
695 
dcn35_z10_restore(const struct dc * dc)696 void dcn35_z10_restore(const struct dc *dc)
697 {
698 	if (dc->debug.disable_z10)
699 		return;
700 
701 	dc_dmub_srv_apply_idle_power_optimizations(dc, false);
702 
703 	dcn31_z10_restore(dc);
704 }
705 
dcn35_init_pipes(struct dc * dc,struct dc_state * context)706 void dcn35_init_pipes(struct dc *dc, struct dc_state *context)
707 {
708 	int i;
709 	struct dce_hwseq *hws = dc->hwseq;
710 	struct hubbub *hubbub = dc->res_pool->hubbub;
711 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
712 	bool can_apply_seamless_boot = false;
713 	bool tg_enabled[MAX_PIPES] = {false};
714 
715 	for (i = 0; i < context->stream_count; i++) {
716 		if (context->streams[i]->apply_seamless_boot_optimization) {
717 			can_apply_seamless_boot = true;
718 			break;
719 		}
720 	}
721 
722 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
723 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
724 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
725 
726 		/* There is assumption that pipe_ctx is not mapping irregularly
727 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
728 		 * we will use the pipe, so don't disable
729 		 */
730 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
731 			continue;
732 
733 		/* Blank controller using driver code instead of
734 		 * command table.
735 		 */
736 		if (tg->funcs->is_tg_enabled(tg)) {
737 			if (hws->funcs.init_blank != NULL) {
738 				hws->funcs.init_blank(dc, tg);
739 				tg->funcs->lock(tg);
740 			} else {
741 				tg->funcs->lock(tg);
742 				tg->funcs->set_blank(tg, true);
743 				hwss_wait_for_blank_complete(tg);
744 			}
745 		}
746 	}
747 
748 	/* Reset det size */
749 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
750 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
751 		struct hubp *hubp = dc->res_pool->hubps[i];
752 
753 		/* Do not need to reset for seamless boot */
754 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
755 			continue;
756 
757 		if (hubbub && hubp) {
758 			if (hubbub->funcs->program_det_size)
759 				hubbub->funcs->program_det_size(hubbub, hubp->inst, 0);
760 			if (hubbub->funcs->program_det_segments)
761 				hubbub->funcs->program_det_segments(hubbub, hubp->inst, 0);
762 		}
763 	}
764 
765 	/* num_opp will be equal to number of mpcc */
766 	for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
767 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
768 
769 		/* Cannot reset the MPC mux if seamless boot */
770 		if (pipe_ctx->stream != NULL && can_apply_seamless_boot)
771 			continue;
772 
773 		dc->res_pool->mpc->funcs->mpc_init_single_inst(
774 				dc->res_pool->mpc, i);
775 	}
776 
777 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
778 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
779 		struct hubp *hubp = dc->res_pool->hubps[i];
780 		struct dpp *dpp = dc->res_pool->dpps[i];
781 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
782 
783 		/* There is assumption that pipe_ctx is not mapping irregularly
784 		 * to non-preferred front end. If pipe_ctx->stream is not NULL,
785 		 * we will use the pipe, so don't disable
786 		 */
787 		if (can_apply_seamless_boot &&
788 			pipe_ctx->stream != NULL &&
789 			pipe_ctx->stream_res.tg->funcs->is_tg_enabled(
790 				pipe_ctx->stream_res.tg)) {
791 			// Enable double buffering for OTG_BLANK no matter if
792 			// seamless boot is enabled or not to suppress global sync
793 			// signals when OTG blanked. This is to prevent pipe from
794 			// requesting data while in PSR.
795 			tg->funcs->tg_init(tg);
796 			hubp->power_gated = true;
797 			tg_enabled[i] = true;
798 			continue;
799 		}
800 
801 		/* Disable on the current state so the new one isn't cleared. */
802 		pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
803 
804 		hubp->funcs->hubp_reset(hubp);
805 		dpp->funcs->dpp_reset(dpp);
806 
807 		pipe_ctx->stream_res.tg = tg;
808 		pipe_ctx->pipe_idx = i;
809 
810 		pipe_ctx->plane_res.hubp = hubp;
811 		pipe_ctx->plane_res.dpp = dpp;
812 		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
813 		hubp->mpcc_id = dpp->inst;
814 		hubp->opp_id = OPP_ID_INVALID;
815 		hubp->power_gated = false;
816 
817 		dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
818 		dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
819 		dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
820 		pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
821 
822 		hws->funcs.plane_atomic_disconnect(dc, context, pipe_ctx);
823 
824 		if (tg->funcs->is_tg_enabled(tg))
825 			tg->funcs->unlock(tg);
826 
827 		dc->hwss.disable_plane(dc, context, pipe_ctx);
828 
829 		pipe_ctx->stream_res.tg = NULL;
830 		pipe_ctx->plane_res.hubp = NULL;
831 
832 		if (tg->funcs->is_tg_enabled(tg)) {
833 			if (tg->funcs->init_odm)
834 				tg->funcs->init_odm(tg);
835 		}
836 
837 		tg->funcs->tg_init(tg);
838 	}
839 
840 	/* Clean up MPC tree */
841 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
842 		if (tg_enabled[i]) {
843 			if (dc->res_pool->opps[i]->mpc_tree_params.opp_list) {
844 				if (dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot) {
845 					int bot_id = dc->res_pool->opps[i]->mpc_tree_params.opp_list->mpcc_bot->mpcc_id;
846 
847 					if ((bot_id < MAX_MPCC) && (bot_id < MAX_PIPES) && (!tg_enabled[bot_id]))
848 						dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
849 				}
850 			}
851 		}
852 	}
853 
854 	if (pg_cntl != NULL) {
855 		if (pg_cntl->funcs->dsc_pg_control != NULL) {
856 			uint32_t num_opps = 0;
857 			uint32_t opp_id_src0 = OPP_ID_INVALID;
858 			uint32_t opp_id_src1 = OPP_ID_INVALID;
859 			uint32_t optc_dsc_state = 0;
860 
861 			// Step 1: To find out which OPTC is running & OPTC DSC is ON
862 			// We can't use res_pool->res_cap->num_timing_generator to check
863 			// Because it records display pipes default setting built in driver,
864 			// not display pipes of the current chip.
865 			// Some ASICs would be fused display pipes less than the default setting.
866 			// In dcnxx_resource_construct function, driver would obatin real information.
867 			for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
868 				struct timing_generator *tg = dc->res_pool->timing_generators[i];
869 
870 				if (tg->funcs->is_tg_enabled(tg)) {
871 					if (tg->funcs->get_dsc_status)
872 						tg->funcs->get_dsc_status(tg, &optc_dsc_state);
873 					// Only one OPTC with DSC is ON, so if we got one result,
874 					// we would exit this block. non-zero value is DSC enabled
875 					if (optc_dsc_state != 0) {
876 						tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
877 						break;
878 					}
879 				}
880 			}
881 
882 			// Step 2: To power down DSC but skip DSC of running OPTC
883 			for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
884 				struct dcn_dsc_state s  = {0};
885 
886 				/* avoid reading DSC state when it is not in use as it may be power gated */
887 				if (optc_dsc_state) {
888 					dc->res_pool->dscs[i]->funcs->dsc_read_state(dc->res_pool->dscs[i], &s);
889 
890 					if ((s.dsc_opp_source == opp_id_src0 || s.dsc_opp_source == opp_id_src1) &&
891 						s.dsc_clock_en && s.dsc_fw_en)
892 						continue;
893 				}
894 
895 				pg_cntl->funcs->dsc_pg_control(pg_cntl, dc->res_pool->dscs[i]->inst, false);
896 			}
897 		}
898 	}
899 }
900 
dcn35_enable_plane(struct dc * dc,struct pipe_ctx * pipe_ctx,struct dc_state * context)901 void dcn35_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx,
902 			       struct dc_state *context)
903 {
904 	/* enable DCFCLK current DCHUB */
905 	pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
906 
907 	/* initialize HUBP on power up */
908 	pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp);
909 
910 	/* make sure OPP_PIPE_CLOCK_EN = 1 */
911 	pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
912 			pipe_ctx->stream_res.opp,
913 			true);
914 	/*to do: insert PG here*/
915 	if (dc->vm_pa_config.valid) {
916 		struct vm_system_aperture_param apt;
917 
918 		apt.sys_default.quad_part = 0;
919 
920 		apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr;
921 		apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr;
922 
923 		// Program system aperture settings
924 		pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
925 	}
926 
927 	if (!pipe_ctx->top_pipe
928 		&& pipe_ctx->plane_state
929 		&& pipe_ctx->plane_state->flip_int_enabled
930 		&& pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int)
931 		pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp);
932 }
933 
934 /* disable HW used by plane.
935  * note:  cannot disable until disconnect is complete
936  */
dcn35_plane_atomic_disable(struct dc * dc,struct pipe_ctx * pipe_ctx)937 void dcn35_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
938 {
939 	struct hubp *hubp = pipe_ctx->plane_res.hubp;
940 	struct dpp *dpp = pipe_ctx->plane_res.dpp;
941 
942 	dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
943 
944 	/* In flip immediate with pipe splitting case GSL is used for
945 	 * synchronization so we must disable it when the plane is disabled.
946 	 */
947 	if (pipe_ctx->stream_res.gsl_group != 0)
948 		dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false);
949 /*
950 	if (hubp->funcs->hubp_update_mall_sel)
951 		hubp->funcs->hubp_update_mall_sel(hubp, 0, false);
952 */
953 	dc->hwss.set_flip_control_gsl(pipe_ctx, false);
954 
955 	hubp->funcs->hubp_clk_cntl(hubp, false);
956 
957 	dpp->funcs->dpp_dppclk_control(dpp, false, false);
958 /*to do, need to support both case*/
959 	hubp->power_gated = true;
960 
961 	hubp->funcs->hubp_reset(hubp);
962 	dpp->funcs->dpp_reset(dpp);
963 
964 	pipe_ctx->stream = NULL;
965 	memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
966 	memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
967 	pipe_ctx->top_pipe = NULL;
968 	pipe_ctx->bottom_pipe = NULL;
969 	pipe_ctx->plane_state = NULL;
970 }
971 
dcn35_disable_plane(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)972 void dcn35_disable_plane(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
973 {
974 	struct dce_hwseq *hws = dc->hwseq;
975 	bool is_phantom = dc_state_get_pipe_subvp_type(state, pipe_ctx) == SUBVP_PHANTOM;
976 	struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL;
977 
978 	DC_LOGGER_INIT(dc->ctx->logger);
979 
980 	if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
981 		return;
982 
983 	if (hws->funcs.plane_atomic_disable)
984 		hws->funcs.plane_atomic_disable(dc, pipe_ctx);
985 
986 	/* Turn back off the phantom OTG after the phantom plane is fully disabled
987 	 */
988 	if (is_phantom)
989 		if (tg && tg->funcs->disable_phantom_crtc)
990 			tg->funcs->disable_phantom_crtc(tg);
991 
992 	DC_LOG_DC("Power down front end %d\n",
993 					pipe_ctx->pipe_idx);
994 }
995 
dcn35_calc_blocks_to_gate(struct dc * dc,struct dc_state * context,struct pg_block_update * update_state)996 void dcn35_calc_blocks_to_gate(struct dc *dc, struct dc_state *context,
997 	struct pg_block_update *update_state)
998 {
999 	bool hpo_frl_stream_enc_acquired = false;
1000 	bool hpo_dp_stream_enc_acquired = false;
1001 	int i = 0, j = 0;
1002 	int edp_num = 0;
1003 	struct dc_link *edp_links[MAX_NUM_EDP] = { NULL };
1004 
1005 	memset(update_state, 0, sizeof(struct pg_block_update));
1006 
1007 	for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) {
1008 		if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] &&
1009 				dc->res_pool->hpo_dp_stream_enc[i]) {
1010 			hpo_dp_stream_enc_acquired = true;
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (!hpo_frl_stream_enc_acquired && !hpo_dp_stream_enc_acquired)
1016 		update_state->pg_res_update[PG_HPO] = true;
1017 
1018 	update_state->pg_res_update[PG_DWB] = true;
1019 
1020 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1021 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1022 
1023 		for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++)
1024 			update_state->pg_pipe_res_update[j][i] = true;
1025 
1026 		if (!pipe_ctx)
1027 			continue;
1028 
1029 		if (pipe_ctx->plane_res.hubp)
1030 			update_state->pg_pipe_res_update[PG_HUBP][pipe_ctx->plane_res.hubp->inst] = false;
1031 
1032 		if (pipe_ctx->plane_res.dpp && pipe_ctx->plane_res.hubp)
1033 			update_state->pg_pipe_res_update[PG_DPP][pipe_ctx->plane_res.hubp->inst] = false;
1034 
1035 		if (pipe_ctx->plane_res.dpp || pipe_ctx->stream_res.opp)
1036 			update_state->pg_pipe_res_update[PG_MPCC][pipe_ctx->plane_res.mpcc_inst] = false;
1037 
1038 		if (pipe_ctx->stream_res.dsc) {
1039 			update_state->pg_pipe_res_update[PG_DSC][pipe_ctx->stream_res.dsc->inst] = false;
1040 			if (dc->caps.sequential_ono) {
1041 				update_state->pg_pipe_res_update[PG_HUBP][pipe_ctx->stream_res.dsc->inst] = false;
1042 				update_state->pg_pipe_res_update[PG_DPP][pipe_ctx->stream_res.dsc->inst] = false;
1043 			}
1044 		}
1045 
1046 		if (pipe_ctx->stream_res.opp)
1047 			update_state->pg_pipe_res_update[PG_OPP][pipe_ctx->stream_res.opp->inst] = false;
1048 
1049 		if (pipe_ctx->stream_res.hpo_dp_stream_enc)
1050 			update_state->pg_pipe_res_update[PG_DPSTREAM][pipe_ctx->stream_res.hpo_dp_stream_enc->inst] = false;
1051 	}
1052 
1053 	for (i = 0; i < dc->link_count; i++) {
1054 		update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true;
1055 		if (dc->links[i]->type != dc_connection_none)
1056 			update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = false;
1057 	}
1058 
1059 	/*domain24 controls all the otg, mpc, opp, as long as one otg is still up, avoid enabling OTG PG*/
1060 	for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1061 		struct timing_generator *tg = dc->res_pool->timing_generators[i];
1062 		if (tg && tg->funcs->is_tg_enabled(tg)) {
1063 			update_state->pg_pipe_res_update[PG_OPTC][i] = false;
1064 			break;
1065 		}
1066 	}
1067 
1068 	dc_get_edp_links(dc, edp_links, &edp_num);
1069 	if (edp_num == 0 ||
1070 		((!edp_links[0] || !edp_links[0]->edp_sink_present) &&
1071 			(!edp_links[1] || !edp_links[1]->edp_sink_present))) {
1072 		/*eDP not exist on this config, keep Domain24 power on, for S0i3, this will be handled in dmubfw*/
1073 		update_state->pg_pipe_res_update[PG_OPTC][0] = false;
1074 	}
1075 
1076 	if (dc->caps.sequential_ono) {
1077 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1078 			if (!update_state->pg_pipe_res_update[PG_HUBP][i] &&
1079 			    !update_state->pg_pipe_res_update[PG_DPP][i]) {
1080 				for (j = i - 1; j >= 0; j--) {
1081 					update_state->pg_pipe_res_update[PG_HUBP][j] = false;
1082 					update_state->pg_pipe_res_update[PG_DPP][j] = false;
1083 				}
1084 
1085 				break;
1086 			}
1087 		}
1088 	}
1089 }
1090 
dcn35_calc_blocks_to_ungate(struct dc * dc,struct dc_state * context,struct pg_block_update * update_state)1091 void dcn35_calc_blocks_to_ungate(struct dc *dc, struct dc_state *context,
1092 	struct pg_block_update *update_state)
1093 {
1094 	bool hpo_frl_stream_enc_acquired = false;
1095 	bool hpo_dp_stream_enc_acquired = false;
1096 	int i = 0, j = 0;
1097 
1098 	memset(update_state, 0, sizeof(struct pg_block_update));
1099 
1100 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1101 		struct pipe_ctx *cur_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1102 		struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
1103 
1104 		if (cur_pipe == NULL || new_pipe == NULL)
1105 			continue;
1106 
1107 		if ((!cur_pipe->plane_state && new_pipe->plane_state) ||
1108 			(!cur_pipe->stream && new_pipe->stream) ||
1109 			(cur_pipe->stream != new_pipe->stream && new_pipe->stream)) {
1110 			// New pipe addition
1111 			for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) {
1112 				if (j == PG_HUBP && new_pipe->plane_res.hubp)
1113 					update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true;
1114 
1115 				if (j == PG_DPP && new_pipe->plane_res.dpp)
1116 					update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true;
1117 
1118 				if (j == PG_MPCC && new_pipe->plane_res.dpp)
1119 					update_state->pg_pipe_res_update[j][new_pipe->plane_res.mpcc_inst] = true;
1120 
1121 				if (j == PG_DSC && new_pipe->stream_res.dsc)
1122 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true;
1123 
1124 				if (j == PG_OPP && new_pipe->stream_res.opp)
1125 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true;
1126 
1127 				if (j == PG_OPTC && new_pipe->stream_res.tg)
1128 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true;
1129 
1130 				if (j == PG_DPSTREAM && new_pipe->stream_res.hpo_dp_stream_enc)
1131 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true;
1132 			}
1133 		} else if (cur_pipe->plane_state == new_pipe->plane_state ||
1134 				cur_pipe == new_pipe) {
1135 			//unchanged pipes
1136 			for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++) {
1137 				if (j == PG_HUBP &&
1138 					cur_pipe->plane_res.hubp != new_pipe->plane_res.hubp &&
1139 					new_pipe->plane_res.hubp)
1140 					update_state->pg_pipe_res_update[j][new_pipe->plane_res.hubp->inst] = true;
1141 
1142 				if (j == PG_DPP &&
1143 					cur_pipe->plane_res.dpp != new_pipe->plane_res.dpp &&
1144 					new_pipe->plane_res.dpp)
1145 					update_state->pg_pipe_res_update[j][new_pipe->plane_res.dpp->inst] = true;
1146 
1147 				if (j == PG_OPP &&
1148 					cur_pipe->stream_res.opp != new_pipe->stream_res.opp &&
1149 					new_pipe->stream_res.opp)
1150 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.opp->inst] = true;
1151 
1152 				if (j == PG_DSC &&
1153 					cur_pipe->stream_res.dsc != new_pipe->stream_res.dsc &&
1154 					new_pipe->stream_res.dsc)
1155 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.dsc->inst] = true;
1156 
1157 				if (j == PG_OPTC &&
1158 					cur_pipe->stream_res.tg != new_pipe->stream_res.tg &&
1159 					new_pipe->stream_res.tg)
1160 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.tg->inst] = true;
1161 
1162 				if (j == PG_DPSTREAM &&
1163 					cur_pipe->stream_res.hpo_dp_stream_enc != new_pipe->stream_res.hpo_dp_stream_enc &&
1164 					new_pipe->stream_res.hpo_dp_stream_enc)
1165 					update_state->pg_pipe_res_update[j][new_pipe->stream_res.hpo_dp_stream_enc->inst] = true;
1166 			}
1167 		}
1168 	}
1169 
1170 	for (i = 0; i < dc->link_count; i++)
1171 		if (dc->links[i]->type != dc_connection_none)
1172 			update_state->pg_pipe_res_update[PG_PHYSYMCLK][dc->links[i]->link_enc_hw_inst] = true;
1173 
1174 	for (i = 0; i < dc->res_pool->hpo_dp_stream_enc_count; i++) {
1175 		if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i] &&
1176 				dc->res_pool->hpo_dp_stream_enc[i]) {
1177 			hpo_dp_stream_enc_acquired = true;
1178 			break;
1179 		}
1180 	}
1181 
1182 	if (hpo_frl_stream_enc_acquired || hpo_dp_stream_enc_acquired)
1183 		update_state->pg_res_update[PG_HPO] = true;
1184 
1185 	if (hpo_frl_stream_enc_acquired)
1186 		update_state->pg_pipe_res_update[PG_HDMISTREAM][0] = true;
1187 
1188 	if (dc->caps.sequential_ono) {
1189 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1190 			if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1191 			    update_state->pg_pipe_res_update[PG_DPP][i]) {
1192 				for (j = i - 1; j >= 0; j--) {
1193 					update_state->pg_pipe_res_update[PG_HUBP][j] = true;
1194 					update_state->pg_pipe_res_update[PG_DPP][j] = true;
1195 				}
1196 
1197 				break;
1198 			}
1199 		}
1200 	}
1201 }
1202 
1203 /**
1204  * dcn35_hw_block_power_down() - power down sequence
1205  *
1206  * The following sequence describes the ON-OFF (ONO) for power down:
1207  *
1208  *	ONO Region 3, DCPG 25: hpo - SKIPPED
1209  *	ONO Region 4, DCPG 0: dchubp0, dpp0
1210  *	ONO Region 6, DCPG 1: dchubp1, dpp1
1211  *	ONO Region 8, DCPG 2: dchubp2, dpp2
1212  *	ONO Region 10, DCPG 3: dchubp3, dpp3
1213  *	ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will pwr dwn at IPS2 entry
1214  *	ONO Region 5, DCPG 16: dsc0
1215  *	ONO Region 7, DCPG 17: dsc1
1216  *	ONO Region 9, DCPG 18: dsc2
1217  *	ONO Region 11, DCPG 19: dsc3
1218  *	ONO Region 2, DCPG 24: mpc opp optc dwb
1219  *	ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED. will be pwr dwn after lono timer is armed
1220  *
1221  * If sequential ONO is specified the order is modified from ONO Region 11 -> ONO Region 0 descending.
1222  *
1223  * @dc: Current DC state
1224  * @update_state: update PG sequence states for HW block
1225  */
dcn35_hw_block_power_down(struct dc * dc,struct pg_block_update * update_state)1226 void dcn35_hw_block_power_down(struct dc *dc,
1227 	struct pg_block_update *update_state)
1228 {
1229 	int i = 0;
1230 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1231 
1232 	if (!pg_cntl)
1233 		return;
1234 	if (dc->debug.ignore_pg)
1235 		return;
1236 
1237 	if (update_state->pg_res_update[PG_HPO]) {
1238 		if (pg_cntl->funcs->hpo_pg_control)
1239 			pg_cntl->funcs->hpo_pg_control(pg_cntl, false);
1240 	}
1241 
1242 	if (!dc->caps.sequential_ono) {
1243 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1244 			if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1245 			    update_state->pg_pipe_res_update[PG_DPP][i]) {
1246 				if (pg_cntl->funcs->hubp_dpp_pg_control)
1247 					pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false);
1248 			}
1249 		}
1250 
1251 		for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1252 			if (update_state->pg_pipe_res_update[PG_DSC][i]) {
1253 				if (pg_cntl->funcs->dsc_pg_control)
1254 					pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false);
1255 			}
1256 		}
1257 	} else {
1258 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1259 			if (update_state->pg_pipe_res_update[PG_DSC][i]) {
1260 				if (pg_cntl->funcs->dsc_pg_control)
1261 					pg_cntl->funcs->dsc_pg_control(pg_cntl, i, false);
1262 			}
1263 
1264 			if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1265 			    update_state->pg_pipe_res_update[PG_DPP][i]) {
1266 				if (pg_cntl->funcs->hubp_dpp_pg_control)
1267 					pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, false);
1268 			}
1269 		}
1270 	}
1271 
1272 	/*this will need all the clients to unregister optc interruts let dmubfw handle this*/
1273 	if (pg_cntl->funcs->plane_otg_pg_control)
1274 		pg_cntl->funcs->plane_otg_pg_control(pg_cntl, false);
1275 
1276 	//domain22, 23, 25 currently always on.
1277 
1278 }
1279 
1280 /**
1281  * dcn35_hw_block_power_up() - power up sequence
1282  *
1283  * The following sequence describes the ON-OFF (ONO) for power up:
1284  *
1285  *	ONO Region 0, DCPG 22: dccg dio dcio - SKIPPED
1286  *	ONO Region 2, DCPG 24: mpc opp optc dwb
1287  *	ONO Region 5, DCPG 16: dsc0
1288  *	ONO Region 7, DCPG 17: dsc1
1289  *	ONO Region 9, DCPG 18: dsc2
1290  *	ONO Region 11, DCPG 19: dsc3
1291  *	ONO Region 1, DCPG 23: dchubbub dchvm dchubbubmem - SKIPPED. PMFW will power up at IPS2 exit
1292  *	ONO Region 4, DCPG 0: dchubp0, dpp0
1293  *	ONO Region 6, DCPG 1: dchubp1, dpp1
1294  *	ONO Region 8, DCPG 2: dchubp2, dpp2
1295  *	ONO Region 10, DCPG 3: dchubp3, dpp3
1296  *	ONO Region 3, DCPG 25: hpo - SKIPPED
1297  *
1298  * If sequential ONO is specified the order is modified from ONO Region 0 -> ONO Region 11 ascending.
1299  *
1300  * @dc: Current DC state
1301  * @update_state: update PG sequence states for HW block
1302  */
dcn35_hw_block_power_up(struct dc * dc,struct pg_block_update * update_state)1303 void dcn35_hw_block_power_up(struct dc *dc,
1304 	struct pg_block_update *update_state)
1305 {
1306 	int i = 0;
1307 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1308 
1309 	if (!pg_cntl)
1310 		return;
1311 	if (dc->debug.ignore_pg)
1312 		return;
1313 	//domain22, 23, 25 currently always on.
1314 	/*this will need all the clients to unregister optc interruts let dmubfw handle this*/
1315 	if (pg_cntl->funcs->plane_otg_pg_control)
1316 		pg_cntl->funcs->plane_otg_pg_control(pg_cntl, true);
1317 
1318 	if (!dc->caps.sequential_ono) {
1319 		for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++)
1320 			if (update_state->pg_pipe_res_update[PG_DSC][i]) {
1321 				if (pg_cntl->funcs->dsc_pg_control)
1322 					pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true);
1323 			}
1324 	}
1325 
1326 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1327 		if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1328 			update_state->pg_pipe_res_update[PG_DPP][i]) {
1329 			if (pg_cntl->funcs->hubp_dpp_pg_control)
1330 				pg_cntl->funcs->hubp_dpp_pg_control(pg_cntl, i, true);
1331 		}
1332 
1333 		if (dc->caps.sequential_ono) {
1334 			if (update_state->pg_pipe_res_update[PG_DSC][i]) {
1335 				if (pg_cntl->funcs->dsc_pg_control)
1336 					pg_cntl->funcs->dsc_pg_control(pg_cntl, i, true);
1337 			}
1338 		}
1339 	}
1340 	if (update_state->pg_res_update[PG_HPO]) {
1341 		if (pg_cntl->funcs->hpo_pg_control)
1342 			pg_cntl->funcs->hpo_pg_control(pg_cntl, true);
1343 	}
1344 }
dcn35_root_clock_control(struct dc * dc,struct pg_block_update * update_state,bool power_on)1345 void dcn35_root_clock_control(struct dc *dc,
1346 	struct pg_block_update *update_state, bool power_on)
1347 {
1348 	int i = 0;
1349 	struct pg_cntl *pg_cntl = dc->res_pool->pg_cntl;
1350 
1351 	if (!pg_cntl)
1352 		return;
1353 	/*enable root clock first when power up*/
1354 	if (power_on) {
1355 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1356 			if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1357 				update_state->pg_pipe_res_update[PG_DPP][i]) {
1358 				if (dc->hwseq->funcs.dpp_root_clock_control)
1359 					dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on);
1360 			}
1361 			if (update_state->pg_pipe_res_update[PG_DPSTREAM][i])
1362 				if (dc->hwseq->funcs.dpstream_root_clock_control)
1363 					dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on);
1364 		}
1365 
1366 		for (i = 0; i < dc->res_pool->dig_link_enc_count; i++)
1367 			if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i])
1368 				if (dc->hwseq->funcs.physymclk_root_clock_control)
1369 					dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on);
1370 
1371 	}
1372 	for (i = 0; i < dc->res_pool->res_cap->num_dsc; i++) {
1373 		if (update_state->pg_pipe_res_update[PG_DSC][i]) {
1374 			if (power_on) {
1375 				if (dc->res_pool->dccg->funcs->enable_dsc)
1376 					dc->res_pool->dccg->funcs->enable_dsc(dc->res_pool->dccg, i);
1377 			} else {
1378 				if (dc->res_pool->dccg->funcs->disable_dsc)
1379 					dc->res_pool->dccg->funcs->disable_dsc(dc->res_pool->dccg, i);
1380 			}
1381 		}
1382 	}
1383 	/*disable root clock first when power down*/
1384 	if (!power_on) {
1385 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1386 			if (update_state->pg_pipe_res_update[PG_HUBP][i] &&
1387 				update_state->pg_pipe_res_update[PG_DPP][i]) {
1388 				if (dc->hwseq->funcs.dpp_root_clock_control)
1389 					dc->hwseq->funcs.dpp_root_clock_control(dc->hwseq, i, power_on);
1390 			}
1391 			if (update_state->pg_pipe_res_update[PG_DPSTREAM][i])
1392 				if (dc->hwseq->funcs.dpstream_root_clock_control)
1393 					dc->hwseq->funcs.dpstream_root_clock_control(dc->hwseq, i, power_on);
1394 		}
1395 
1396 		for (i = 0; i < dc->res_pool->dig_link_enc_count; i++)
1397 			if (update_state->pg_pipe_res_update[PG_PHYSYMCLK][i])
1398 				if (dc->hwseq->funcs.physymclk_root_clock_control)
1399 					dc->hwseq->funcs.physymclk_root_clock_control(dc->hwseq, i, power_on);
1400 
1401 	}
1402 }
1403 
dcn35_prepare_bandwidth(struct dc * dc,struct dc_state * context)1404 void dcn35_prepare_bandwidth(
1405 		struct dc *dc,
1406 		struct dc_state *context)
1407 {
1408 	struct pg_block_update pg_update_state;
1409 
1410 	if (dc->hwss.calc_blocks_to_ungate) {
1411 		dc->hwss.calc_blocks_to_ungate(dc, context, &pg_update_state);
1412 
1413 		if (dc->hwss.root_clock_control)
1414 			dc->hwss.root_clock_control(dc, &pg_update_state, true);
1415 		/*power up required HW block*/
1416 		if (dc->hwss.hw_block_power_up)
1417 			dc->hwss.hw_block_power_up(dc, &pg_update_state);
1418 	}
1419 
1420 	dcn20_prepare_bandwidth(dc, context);
1421 }
1422 
dcn35_optimize_bandwidth(struct dc * dc,struct dc_state * context)1423 void dcn35_optimize_bandwidth(
1424 		struct dc *dc,
1425 		struct dc_state *context)
1426 {
1427 	struct pg_block_update pg_update_state;
1428 
1429 	dcn20_optimize_bandwidth(dc, context);
1430 
1431 	if (dc->hwss.calc_blocks_to_gate) {
1432 		dc->hwss.calc_blocks_to_gate(dc, context, &pg_update_state);
1433 		/*try to power down unused block*/
1434 		if (dc->hwss.hw_block_power_down)
1435 			dc->hwss.hw_block_power_down(dc, &pg_update_state);
1436 
1437 		if (dc->hwss.root_clock_control)
1438 			dc->hwss.root_clock_control(dc, &pg_update_state, false);
1439 	}
1440 }
1441 
dcn35_set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1442 void dcn35_set_drr(struct pipe_ctx **pipe_ctx,
1443 		int num_pipes, struct dc_crtc_timing_adjust adjust)
1444 {
1445 	int i = 0;
1446 	struct drr_params params = {0};
1447 	// DRR set trigger event mapped to OTG_TRIG_A
1448 	unsigned int event_triggers = 0x2;//Bit[1]: OTG_TRIG_A
1449 	// Note DRR trigger events are generated regardless of whether num frames met.
1450 	unsigned int num_frames = 2;
1451 
1452 	params.vertical_total_max = adjust.v_total_max;
1453 	params.vertical_total_min = adjust.v_total_min;
1454 	params.vertical_total_mid = adjust.v_total_mid;
1455 	params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num;
1456 
1457 	for (i = 0; i < num_pipes; i++) {
1458 		/* dc_state_destruct() might null the stream resources, so fetch tg
1459 		 * here first to avoid a race condition. The lifetime of the pointee
1460 		 * itself (the timing_generator object) is not a problem here.
1461 		 */
1462 		struct timing_generator *tg = pipe_ctx[i]->stream_res.tg;
1463 
1464 		if ((tg != NULL) && tg->funcs) {
1465 			if (pipe_ctx[i]->stream && pipe_ctx[i]->stream->ctx->dc->debug.static_screen_wait_frames) {
1466 				struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing;
1467 				struct dc *dc = pipe_ctx[i]->stream->ctx->dc;
1468 				unsigned int frame_rate = timing->pix_clk_100hz / (timing->h_total * timing->v_total);
1469 
1470 				if (frame_rate >= 120 && dc->caps.ips_support &&
1471 					dc->config.disable_ips != DMUB_IPS_DISABLE_ALL) {
1472 					/*ips enable case*/
1473 					num_frames = 2 * (frame_rate % 60);
1474 				}
1475 			}
1476 			if (tg->funcs->set_drr)
1477 				tg->funcs->set_drr(tg, &params);
1478 			if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1479 				if (tg->funcs->set_static_screen_control)
1480 					tg->funcs->set_static_screen_control(
1481 						tg, event_triggers, num_frames);
1482 		}
1483 	}
1484 }
dcn35_set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1485 void dcn35_set_static_screen_control(struct pipe_ctx **pipe_ctx,
1486 		int num_pipes, const struct dc_static_screen_params *params)
1487 {
1488 	unsigned int i;
1489 	unsigned int triggers = 0;
1490 
1491 	if (params->triggers.surface_update)
1492 		triggers |= 0x200;/*bit 9  : 10 0000 0000*/
1493 	if (params->triggers.cursor_update)
1494 		triggers |= 0x8;/*bit3*/
1495 	if (params->triggers.force_trigger)
1496 		triggers |= 0x1;
1497 	for (i = 0; i < num_pipes; i++)
1498 		pipe_ctx[i]->stream_res.tg->funcs->
1499 			set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1500 					triggers, params->num_frames);
1501 }
1502 
dcn35_set_long_vblank(struct pipe_ctx ** pipe_ctx,int num_pipes,uint32_t v_total_min,uint32_t v_total_max)1503 void dcn35_set_long_vblank(struct pipe_ctx **pipe_ctx,
1504 		int num_pipes, uint32_t v_total_min, uint32_t v_total_max)
1505 {
1506 	int i = 0;
1507 	struct long_vtotal_params params = {0};
1508 
1509 	params.vertical_total_max = v_total_max;
1510 	params.vertical_total_min = v_total_min;
1511 
1512 	for (i = 0; i < num_pipes; i++) {
1513 		if (!pipe_ctx[i])
1514 			continue;
1515 
1516 		if (pipe_ctx[i]->stream) {
1517 			struct dc_crtc_timing *timing = &pipe_ctx[i]->stream->timing;
1518 
1519 			if (timing)
1520 				params.vertical_blank_start = timing->v_total - timing->v_front_porch;
1521 			else
1522 				params.vertical_blank_start = 0;
1523 
1524 			if ((pipe_ctx[i]->stream_res.tg != NULL) && pipe_ctx[i]->stream_res.tg->funcs &&
1525 				pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal)
1526 				pipe_ctx[i]->stream_res.tg->funcs->set_long_vtotal(pipe_ctx[i]->stream_res.tg, &params);
1527 		}
1528 	}
1529 }
1530 
should_avoid_empty_tu(struct pipe_ctx * pipe_ctx)1531 static bool should_avoid_empty_tu(struct pipe_ctx *pipe_ctx)
1532 {
1533 	/* Calculate average pixel count per TU, return false if under ~2.00 to
1534 	 * avoid empty TUs. This is only required for DPIA tunneling as empty TUs
1535 	 * are legal to generate for native DP links. Assume TU size 64 as there
1536 	 * is currently no scenario where it's reprogrammed from HW default.
1537 	 * MTPs have no such limitation, so this does not affect MST use cases.
1538 	 */
1539 	unsigned int pix_clk_mhz;
1540 	unsigned int symclk_mhz;
1541 	unsigned int avg_pix_per_tu_x1000;
1542 	unsigned int tu_size_bytes = 64;
1543 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1544 	struct dc_link_settings *link_settings = &pipe_ctx->link_config.dp_link_settings;
1545 	const struct dc *dc = pipe_ctx->stream->link->dc;
1546 
1547 	if (pipe_ctx->stream->link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
1548 		return false;
1549 
1550 	// Not necessary for MST configurations
1551 	if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)
1552 		return false;
1553 
1554 	pix_clk_mhz = timing->pix_clk_100hz / 10000;
1555 
1556 	// If this is true, can't block due to dynamic ODM
1557 	if (pix_clk_mhz > dc->clk_mgr->bw_params->clk_table.entries[0].dispclk_mhz)
1558 		return false;
1559 
1560 	switch (link_settings->link_rate) {
1561 	case LINK_RATE_LOW:
1562 		symclk_mhz = 162;
1563 		break;
1564 	case LINK_RATE_HIGH:
1565 		symclk_mhz = 270;
1566 		break;
1567 	case LINK_RATE_HIGH2:
1568 		symclk_mhz = 540;
1569 		break;
1570 	case LINK_RATE_HIGH3:
1571 		symclk_mhz = 810;
1572 		break;
1573 	default:
1574 		// We shouldn't be tunneling any other rates, something is wrong
1575 		ASSERT(0);
1576 		return false;
1577 	}
1578 
1579 	avg_pix_per_tu_x1000 = (1000 * pix_clk_mhz * tu_size_bytes)
1580 		/ (symclk_mhz * link_settings->lane_count);
1581 
1582 	// Add small empirically-decided margin to account for potential jitter
1583 	return (avg_pix_per_tu_x1000 < 2020);
1584 }
1585 
dcn35_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx * pipe_ctx)1586 bool dcn35_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
1587 {
1588 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1589 
1590 	if (!is_h_timing_divisible_by_2(pipe_ctx->stream))
1591 		return false;
1592 
1593 	if (should_avoid_empty_tu(pipe_ctx))
1594 		return false;
1595 
1596 	if (dc_is_dp_signal(pipe_ctx->stream->signal) && !dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) &&
1597 		dc->debug.enable_dp_dig_pixel_rate_div_policy)
1598 		return true;
1599 
1600 	return false;
1601 }
1602 
1603 /*
1604  * Set powerup to true for every pipe to match pre-OS configuration.
1605  */
dcn35_calc_blocks_to_ungate_for_hw_release(struct dc * dc,struct pg_block_update * update_state)1606 static void dcn35_calc_blocks_to_ungate_for_hw_release(struct dc *dc, struct pg_block_update *update_state)
1607 {
1608 	int i = 0, j = 0;
1609 
1610 	memset(update_state, 0, sizeof(struct pg_block_update));
1611 
1612 	for (i = 0; i < dc->res_pool->pipe_count; i++)
1613 		for (j = 0; j < PG_HW_PIPE_RESOURCES_NUM_ELEMENT; j++)
1614 			update_state->pg_pipe_res_update[j][i] = true;
1615 
1616 	update_state->pg_res_update[PG_HPO] = true;
1617 	update_state->pg_res_update[PG_DWB] = true;
1618 }
1619 
1620 /*
1621  * The purpose is to power up all gatings to restore optimization to pre-OS env.
1622  * Re-use hwss func and existing PG&RCG flags to decide powerup sequence.
1623  */
dcn35_hardware_release(struct dc * dc)1624 void dcn35_hardware_release(struct dc *dc)
1625 {
1626 	struct pg_block_update pg_update_state;
1627 
1628 	dcn35_calc_blocks_to_ungate_for_hw_release(dc, &pg_update_state);
1629 
1630 	if (dc->hwss.root_clock_control)
1631 		dc->hwss.root_clock_control(dc, &pg_update_state, true);
1632 	/*power up required HW block*/
1633 	if (dc->hwss.hw_block_power_up)
1634 		dc->hwss.hw_block_power_up(dc, &pg_update_state);
1635 }
1636