1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64
65 #include "dc_dmub_srv.h"
66
67 #include "dsc.h"
68
69 #include "vm_helper.h"
70
71 #include "dce/dce_i2c.h"
72
73 #include "dmub/dmub_srv.h"
74
75 #include "dce/dmub_psr.h"
76
77 #include "dce/dmub_hw_lock_mgr.h"
78
79 #include "dc_trace.h"
80
81 #include "hw_sequencer_private.h"
82
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86
87 #include "dce/dmub_outbox.h"
88
89 #define CTX \
90 dc->ctx
91
92 #define DC_LOGGER \
93 dc->ctx->logger
94
95 static const char DC_BUILD_ID[] = "production-build";
96
97 /**
98 * DOC: Overview
99 *
100 * DC is the OS-agnostic component of the amdgpu DC driver.
101 *
102 * DC maintains and validates a set of structs representing the state of the
103 * driver and writes that state to AMD hardware
104 *
105 * Main DC HW structs:
106 *
107 * struct dc - The central struct. One per driver. Created on driver load,
108 * destroyed on driver unload.
109 *
110 * struct dc_context - One per driver.
111 * Used as a backpointer by most other structs in dc.
112 *
113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114 * plugpoints). Created on driver load, destroyed on driver unload.
115 *
116 * struct dc_sink - One per display. Created on boot or hotplug.
117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
118 * (the display directly attached). It may also have one or more remote
119 * sinks (in the Multi-Stream Transport case)
120 *
121 * struct resource_pool - One per driver. Represents the hw blocks not in the
122 * main pipeline. Not directly accessible by dm.
123 *
124 * Main dc state structs:
125 *
126 * These structs can be created and destroyed as needed. There is a full set of
127 * these structs in dc->current_state representing the currently programmed state.
128 *
129 * struct dc_state - The global DC state to track global state information,
130 * such as bandwidth values.
131 *
132 * struct dc_stream_state - Represents the hw configuration for the pipeline from
133 * a framebuffer to a display. Maps one-to-one with dc_sink.
134 *
135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
136 * and may have more in the Multi-Plane Overlay case.
137 *
138 * struct resource_context - Represents the programmable state of everything in
139 * the resource_pool. Not directly accessible by dm.
140 *
141 * struct pipe_ctx - A member of struct resource_context. Represents the
142 * internal hardware pipeline components. Each dc_plane_state has either
143 * one or two (in the pipe-split case).
144 */
145
146 /* Private functions */
147
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 if (new > *original)
151 *original = new;
152 }
153
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 uint32_t i;
157
158 for (i = 0; i < dc->link_count; i++) {
159 if (NULL != dc->links[i])
160 dc->link_srv->destroy_link(&dc->links[i]);
161 }
162 }
163
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 int i;
167 uint32_t count = 0;
168
169 for (i = 0; i < num_links; i++) {
170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 links[i]->is_internal_display)
172 count++;
173 }
174
175 return count;
176 }
177
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 uint8_t i;
181 uint8_t seamless_boot_stream_count = 0;
182
183 for (i = 0; i < ctx->stream_count; i++)
184 if (ctx->streams[i]->apply_seamless_boot_optimization)
185 seamless_boot_stream_count++;
186
187 return seamless_boot_stream_count;
188 }
189
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 struct dc *dc,
192 uint32_t num_virtual_links)
193 {
194 int i;
195 int connectors_num;
196 struct dc_bios *bios = dc->ctx->dc_bios;
197
198 dc->link_count = 0;
199
200 connectors_num = bios->funcs->get_connectors_number(bios);
201
202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203
204 if (connectors_num > ENUM_ID_COUNT) {
205 dm_error(
206 "DC: Number of connectors %d exceeds maximum of %d!\n",
207 connectors_num,
208 ENUM_ID_COUNT);
209 return false;
210 }
211
212 dm_output_to_console(
213 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 __func__,
215 connectors_num,
216 num_virtual_links);
217
218 // condition loop on link_count to allow skipping invalid indices
219 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220 struct link_init_data link_init_params = {0};
221 struct dc_link *link;
222
223 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224
225 link_init_params.ctx = dc->ctx;
226 /* next BIOS object table connector */
227 link_init_params.connector_index = i;
228 link_init_params.link_index = dc->link_count;
229 link_init_params.dc = dc;
230 link = dc->link_srv->create_link(&link_init_params);
231
232 if (link) {
233 dc->links[dc->link_count] = link;
234 link->dc = dc;
235 ++dc->link_count;
236 }
237 }
238
239 DC_LOG_DC("BIOS object table - end");
240
241 /* Create a link for each usb4 dpia port */
242 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243 struct link_init_data link_init_params = {0};
244 struct dc_link *link;
245
246 link_init_params.ctx = dc->ctx;
247 link_init_params.connector_index = i;
248 link_init_params.link_index = dc->link_count;
249 link_init_params.dc = dc;
250 link_init_params.is_dpia_link = true;
251
252 link = dc->link_srv->create_link(&link_init_params);
253 if (link) {
254 dc->links[dc->link_count] = link;
255 link->dc = dc;
256 ++dc->link_count;
257 }
258 }
259
260 for (i = 0; i < num_virtual_links; i++) {
261 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262 struct encoder_init_data enc_init = {0};
263
264 if (link == NULL) {
265 BREAK_TO_DEBUGGER();
266 goto failed_alloc;
267 }
268
269 link->link_index = dc->link_count;
270 dc->links[dc->link_count] = link;
271 dc->link_count++;
272
273 link->ctx = dc->ctx;
274 link->dc = dc;
275 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276 link->link_id.type = OBJECT_TYPE_CONNECTOR;
277 link->link_id.id = CONNECTOR_ID_VIRTUAL;
278 link->link_id.enum_id = ENUM_ID_1;
279 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
280
281 if (!link->link_enc) {
282 BREAK_TO_DEBUGGER();
283 goto failed_alloc;
284 }
285
286 link->link_status.dpcd_caps = &link->dpcd_caps;
287
288 enc_init.ctx = dc->ctx;
289 enc_init.channel = CHANNEL_ID_UNKNOWN;
290 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
291 enc_init.transmitter = TRANSMITTER_UNKNOWN;
292 enc_init.connector = link->link_id;
293 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
294 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
295 enc_init.encoder.enum_id = ENUM_ID_1;
296 virtual_link_encoder_construct(link->link_enc, &enc_init);
297 }
298
299 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
300
301 return true;
302
303 failed_alloc:
304 return false;
305 }
306
307 /* Create additional DIG link encoder objects if fewer than the platform
308 * supports were created during link construction. This can happen if the
309 * number of physical connectors is less than the number of DIGs.
310 */
create_link_encoders(struct dc * dc)311 static bool create_link_encoders(struct dc *dc)
312 {
313 bool res = true;
314 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
315 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
316 int i;
317
318 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
319 * link encoders and physical display endpoints and does not require
320 * additional link encoder objects.
321 */
322 if (num_usb4_dpia == 0)
323 return res;
324
325 /* Create as many link encoder objects as the platform supports. DPIA
326 * endpoints can be programmably mapped to any DIG.
327 */
328 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
329 for (i = 0; i < num_dig_link_enc; i++) {
330 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
331
332 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
333 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
334 (enum engine_id)(ENGINE_ID_DIGA + i));
335 if (link_enc) {
336 dc->res_pool->link_encoders[i] = link_enc;
337 dc->res_pool->dig_link_enc_count++;
338 } else {
339 res = false;
340 }
341 }
342 }
343 }
344
345 return res;
346 }
347
348 /* Destroy any additional DIG link encoder objects created by
349 * create_link_encoders().
350 * NB: Must only be called after destroy_links().
351 */
destroy_link_encoders(struct dc * dc)352 static void destroy_link_encoders(struct dc *dc)
353 {
354 unsigned int num_usb4_dpia;
355 unsigned int num_dig_link_enc;
356 int i;
357
358 if (!dc->res_pool)
359 return;
360
361 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
362 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
363
364 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
365 * link encoders and physical display endpoints and does not require
366 * additional link encoder objects.
367 */
368 if (num_usb4_dpia == 0)
369 return;
370
371 for (i = 0; i < num_dig_link_enc; i++) {
372 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
373
374 if (link_enc) {
375 link_enc->funcs->destroy(&link_enc);
376 dc->res_pool->link_encoders[i] = NULL;
377 dc->res_pool->dig_link_enc_count--;
378 }
379 }
380 }
381
dc_perf_trace_create(void)382 static struct dc_perf_trace *dc_perf_trace_create(void)
383 {
384 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
385 }
386
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
388 {
389 kfree(*perf_trace);
390 *perf_trace = NULL;
391 }
392
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
394 {
395 if (!dc || !stream || !adjust)
396 return false;
397
398 if (!dc->current_state)
399 return false;
400
401 int i;
402
403 for (i = 0; i < MAX_PIPES; i++) {
404 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
405
406 if (pipe->stream == stream && pipe->stream_res.tg) {
407 if (dc->hwss.set_long_vtotal)
408 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
409
410 return true;
411 }
412 }
413
414 return false;
415 }
416
417 /**
418 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
419 * @dc: dc reference
420 * @stream: Initial dc stream state
421 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
422 *
423 * Looks up the pipe context of dc_stream_state and updates the
424 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
425 * Rate, which is a power-saving feature that targets reducing panel
426 * refresh rate while the screen is static
427 *
428 * Return: %true if the pipe context is found and adjusted;
429 * %false if the pipe context is not found.
430 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
432 struct dc_stream_state *stream,
433 struct dc_crtc_timing_adjust *adjust)
434 {
435 int i;
436
437 /*
438 * Don't adjust DRR while there's bandwidth optimizations pending to
439 * avoid conflicting with firmware updates.
440 */
441 if (dc->ctx->dce_version > DCE_VERSION_MAX)
442 if (dc->optimized_required || dc->wm_optimized_required)
443 return false;
444
445 dc_exit_ips_for_hw_access(dc);
446
447 stream->adjust.v_total_max = adjust->v_total_max;
448 stream->adjust.v_total_mid = adjust->v_total_mid;
449 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
450 stream->adjust.v_total_min = adjust->v_total_min;
451 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
452
453 if (dc->caps.max_v_total != 0 &&
454 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
455 if (adjust->allow_otg_v_count_halt)
456 return set_long_vtotal(dc, stream, adjust);
457 else
458 return false;
459 }
460
461 for (i = 0; i < MAX_PIPES; i++) {
462 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463
464 if (pipe->stream == stream && pipe->stream_res.tg) {
465 dc->hwss.set_drr(&pipe,
466 1,
467 *adjust);
468
469 return true;
470 }
471 }
472 return false;
473 }
474
475 /**
476 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
477 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
478 *
479 * @dc: [in] dc reference
480 * @stream: [in] Initial dc stream state
481 * @refresh_rate: [in] new refresh_rate
482 *
483 * Return: %true if the pipe context is found and there is an associated
484 * timing_generator for the DC;
485 * %false if the pipe context is not found or there is no
486 * timing_generator for the DC.
487 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
489 struct dc_stream_state *stream,
490 uint32_t *refresh_rate)
491 {
492 bool status = false;
493
494 int i = 0;
495
496 dc_exit_ips_for_hw_access(dc);
497
498 for (i = 0; i < MAX_PIPES; i++) {
499 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
500
501 if (pipe->stream == stream && pipe->stream_res.tg) {
502 /* Only execute if a function pointer has been defined for
503 * the DC version in question
504 */
505 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
506 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
507
508 status = true;
509
510 break;
511 }
512 }
513 }
514
515 return status;
516 }
517
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518 bool dc_stream_get_crtc_position(struct dc *dc,
519 struct dc_stream_state **streams, int num_streams,
520 unsigned int *v_pos, unsigned int *nom_v_pos)
521 {
522 /* TODO: Support multiple streams */
523 const struct dc_stream_state *stream = streams[0];
524 int i;
525 bool ret = false;
526 struct crtc_position position;
527
528 dc_exit_ips_for_hw_access(dc);
529
530 for (i = 0; i < MAX_PIPES; i++) {
531 struct pipe_ctx *pipe =
532 &dc->current_state->res_ctx.pipe_ctx[i];
533
534 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
535 dc->hwss.get_position(&pipe, 1, &position);
536
537 *v_pos = position.vertical_count;
538 *nom_v_pos = position.nominal_vcount;
539 ret = true;
540 }
541 }
542 return ret;
543 }
544
545 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
546 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
548 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
549 {
550 union dmub_rb_cmd cmd = {0};
551
552 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
553 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
554
555 if (is_stop) {
556 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
558 } else {
559 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
560 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
561 cmd.secure_display.roi_info.x_start = rect->x;
562 cmd.secure_display.roi_info.y_start = rect->y;
563 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
564 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
565 }
566
567 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
568 }
569
570 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
572 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
573 {
574 if (is_stop)
575 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
576 else
577 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
578 }
579
580 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)581 dc_stream_forward_crc_window(struct dc_stream_state *stream,
582 struct rect *rect, bool is_stop)
583 {
584 struct dmcu *dmcu;
585 struct dc_dmub_srv *dmub_srv;
586 struct otg_phy_mux mux_mapping;
587 struct pipe_ctx *pipe;
588 int i;
589 struct dc *dc = stream->ctx->dc;
590
591 for (i = 0; i < MAX_PIPES; i++) {
592 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
593 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
594 break;
595 }
596
597 /* Stream not found */
598 if (i == MAX_PIPES)
599 return false;
600
601 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
602 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
603
604 dmcu = dc->res_pool->dmcu;
605 dmub_srv = dc->ctx->dmub_srv;
606
607 /* forward to dmub */
608 if (dmub_srv)
609 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
610 /* forward to dmcu */
611 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
612 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
613 else
614 return false;
615
616 return true;
617 }
618 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
619
620 /**
621 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
622 * @dc: DC Object
623 * @stream: The stream to configure CRC on.
624 * @crc_window: CRC window (x/y start/end) information
625 * @enable: Enable CRC if true, disable otherwise.
626 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
627 * once.
628 *
629 * By default, only CRC0 is configured, and the entire frame is used to
630 * calculate the CRC.
631 *
632 * Return: %false if the stream is not found or CRC capture is not supported;
633 * %true if the stream has been configured.
634 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)635 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
636 struct crc_params *crc_window, bool enable, bool continuous)
637 {
638 struct pipe_ctx *pipe;
639 struct crc_params param;
640 struct timing_generator *tg;
641
642 pipe = resource_get_otg_master_for_stream(
643 &dc->current_state->res_ctx, stream);
644
645 /* Stream not found */
646 if (pipe == NULL)
647 return false;
648
649 dc_exit_ips_for_hw_access(dc);
650
651 /* By default, capture the full frame */
652 param.windowa_x_start = 0;
653 param.windowa_y_start = 0;
654 param.windowa_x_end = pipe->stream->timing.h_addressable;
655 param.windowa_y_end = pipe->stream->timing.v_addressable;
656 param.windowb_x_start = 0;
657 param.windowb_y_start = 0;
658 param.windowb_x_end = pipe->stream->timing.h_addressable;
659 param.windowb_y_end = pipe->stream->timing.v_addressable;
660
661 if (crc_window) {
662 param.windowa_x_start = crc_window->windowa_x_start;
663 param.windowa_y_start = crc_window->windowa_y_start;
664 param.windowa_x_end = crc_window->windowa_x_end;
665 param.windowa_y_end = crc_window->windowa_y_end;
666 param.windowb_x_start = crc_window->windowb_x_start;
667 param.windowb_y_start = crc_window->windowb_y_start;
668 param.windowb_x_end = crc_window->windowb_x_end;
669 param.windowb_y_end = crc_window->windowb_y_end;
670 }
671
672 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
673 param.odm_mode = pipe->next_odm_pipe ? 1:0;
674
675 /* Default to the union of both windows */
676 param.selection = UNION_WINDOW_A_B;
677 param.continuous_mode = continuous;
678 param.enable = enable;
679
680 tg = pipe->stream_res.tg;
681
682 /* Only call if supported */
683 if (tg->funcs->configure_crc)
684 return tg->funcs->configure_crc(tg, ¶m);
685 DC_LOG_WARNING("CRC capture not supported.");
686 return false;
687 }
688
689 /**
690 * dc_stream_get_crc() - Get CRC values for the given stream.
691 *
692 * @dc: DC object.
693 * @stream: The DC stream state of the stream to get CRCs from.
694 * @r_cr: CRC value for the red component.
695 * @g_y: CRC value for the green component.
696 * @b_cb: CRC value for the blue component.
697 *
698 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
699 *
700 * Return:
701 * %false if stream is not found, or if CRCs are not enabled.
702 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)703 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
704 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
705 {
706 int i;
707 struct pipe_ctx *pipe;
708 struct timing_generator *tg;
709
710 dc_exit_ips_for_hw_access(dc);
711
712 for (i = 0; i < MAX_PIPES; i++) {
713 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
714 if (pipe->stream == stream)
715 break;
716 }
717 /* Stream not found */
718 if (i == MAX_PIPES)
719 return false;
720
721 tg = pipe->stream_res.tg;
722
723 if (tg->funcs->get_crc)
724 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
725 DC_LOG_WARNING("CRC capture not supported.");
726 return false;
727 }
728
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)729 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
730 enum dc_dynamic_expansion option)
731 {
732 /* OPP FMT dyn expansion updates*/
733 int i;
734 struct pipe_ctx *pipe_ctx;
735
736 dc_exit_ips_for_hw_access(dc);
737
738 for (i = 0; i < MAX_PIPES; i++) {
739 if (dc->current_state->res_ctx.pipe_ctx[i].stream
740 == stream) {
741 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
742 pipe_ctx->stream_res.opp->dyn_expansion = option;
743 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
744 pipe_ctx->stream_res.opp,
745 COLOR_SPACE_YCBCR601,
746 stream->timing.display_color_depth,
747 stream->signal);
748 }
749 }
750 }
751
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)752 void dc_stream_set_dither_option(struct dc_stream_state *stream,
753 enum dc_dither_option option)
754 {
755 struct bit_depth_reduction_params params;
756 struct dc_link *link = stream->link;
757 struct pipe_ctx *pipes = NULL;
758 int i;
759
760 for (i = 0; i < MAX_PIPES; i++) {
761 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
762 stream) {
763 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
764 break;
765 }
766 }
767
768 if (!pipes)
769 return;
770 if (option > DITHER_OPTION_MAX)
771 return;
772
773 dc_exit_ips_for_hw_access(stream->ctx->dc);
774
775 stream->dither_option = option;
776
777 memset(¶ms, 0, sizeof(params));
778 resource_build_bit_depth_reduction_params(stream, ¶ms);
779 stream->bit_depth_params = params;
780
781 if (pipes->plane_res.xfm &&
782 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
783 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
784 pipes->plane_res.xfm,
785 pipes->plane_res.scl_data.lb_params.depth,
786 &stream->bit_depth_params);
787 }
788
789 pipes->stream_res.opp->funcs->
790 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
791 }
792
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)793 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
794 {
795 int i;
796 bool ret = false;
797 struct pipe_ctx *pipes;
798
799 dc_exit_ips_for_hw_access(dc);
800
801 for (i = 0; i < MAX_PIPES; i++) {
802 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
803 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
804 dc->hwss.program_gamut_remap(pipes);
805 ret = true;
806 }
807 }
808
809 return ret;
810 }
811
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)812 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
813 {
814 int i;
815 bool ret = false;
816 struct pipe_ctx *pipes;
817
818 dc_exit_ips_for_hw_access(dc);
819
820 for (i = 0; i < MAX_PIPES; i++) {
821 if (dc->current_state->res_ctx.pipe_ctx[i].stream
822 == stream) {
823
824 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
825 dc->hwss.program_output_csc(dc,
826 pipes,
827 stream->output_color_space,
828 stream->csc_color_matrix.matrix,
829 pipes->stream_res.opp->inst);
830 ret = true;
831 }
832 }
833
834 return ret;
835 }
836
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)837 void dc_stream_set_static_screen_params(struct dc *dc,
838 struct dc_stream_state **streams,
839 int num_streams,
840 const struct dc_static_screen_params *params)
841 {
842 int i, j;
843 struct pipe_ctx *pipes_affected[MAX_PIPES];
844 int num_pipes_affected = 0;
845
846 dc_exit_ips_for_hw_access(dc);
847
848 for (i = 0; i < num_streams; i++) {
849 struct dc_stream_state *stream = streams[i];
850
851 for (j = 0; j < MAX_PIPES; j++) {
852 if (dc->current_state->res_ctx.pipe_ctx[j].stream
853 == stream) {
854 pipes_affected[num_pipes_affected++] =
855 &dc->current_state->res_ctx.pipe_ctx[j];
856 }
857 }
858 }
859
860 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
861 }
862
dc_destruct(struct dc * dc)863 static void dc_destruct(struct dc *dc)
864 {
865 // reset link encoder assignment table on destruct
866 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
867 link_enc_cfg_init(dc, dc->current_state);
868
869 if (dc->current_state) {
870 dc_state_release(dc->current_state);
871 dc->current_state = NULL;
872 }
873
874 destroy_links(dc);
875
876 destroy_link_encoders(dc);
877
878 if (dc->clk_mgr) {
879 dc_destroy_clk_mgr(dc->clk_mgr);
880 dc->clk_mgr = NULL;
881 }
882
883 dc_destroy_resource_pool(dc);
884
885 if (dc->link_srv)
886 link_destroy_link_service(&dc->link_srv);
887
888 if (dc->ctx->gpio_service)
889 dal_gpio_service_destroy(&dc->ctx->gpio_service);
890
891 if (dc->ctx->created_bios)
892 dal_bios_parser_destroy(&dc->ctx->dc_bios);
893
894 kfree(dc->ctx->logger);
895 dc_perf_trace_destroy(&dc->ctx->perf_trace);
896
897 kfree(dc->ctx);
898 dc->ctx = NULL;
899
900 kfree(dc->bw_vbios);
901 dc->bw_vbios = NULL;
902
903 kfree(dc->bw_dceip);
904 dc->bw_dceip = NULL;
905
906 kfree(dc->dcn_soc);
907 dc->dcn_soc = NULL;
908
909 kfree(dc->dcn_ip);
910 dc->dcn_ip = NULL;
911
912 kfree(dc->vm_helper);
913 dc->vm_helper = NULL;
914
915 }
916
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)917 static bool dc_construct_ctx(struct dc *dc,
918 const struct dc_init_data *init_params)
919 {
920 struct dc_context *dc_ctx;
921
922 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
923 if (!dc_ctx)
924 return false;
925
926 dc_ctx->cgs_device = init_params->cgs_device;
927 dc_ctx->driver_context = init_params->driver;
928 dc_ctx->dc = dc;
929 dc_ctx->asic_id = init_params->asic_id;
930 dc_ctx->dc_sink_id_count = 0;
931 dc_ctx->dc_stream_id_count = 0;
932 dc_ctx->dce_environment = init_params->dce_environment;
933 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
934 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
935 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
936
937 /* Create logger */
938 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
939
940 if (!dc_ctx->logger) {
941 kfree(dc_ctx);
942 return false;
943 }
944
945 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
946 dc->dml.logger = dc_ctx->logger;
947
948 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
949
950 dc_ctx->perf_trace = dc_perf_trace_create();
951 if (!dc_ctx->perf_trace) {
952 kfree(dc_ctx);
953 ASSERT_CRITICAL(false);
954 return false;
955 }
956
957 dc->ctx = dc_ctx;
958
959 dc->link_srv = link_create_link_service();
960 if (!dc->link_srv)
961 return false;
962
963 return true;
964 }
965
dc_construct(struct dc * dc,const struct dc_init_data * init_params)966 static bool dc_construct(struct dc *dc,
967 const struct dc_init_data *init_params)
968 {
969 struct dc_context *dc_ctx;
970 struct bw_calcs_dceip *dc_dceip;
971 struct bw_calcs_vbios *dc_vbios;
972 struct dcn_soc_bounding_box *dcn_soc;
973 struct dcn_ip_params *dcn_ip;
974
975 dc->config = init_params->flags;
976
977 // Allocate memory for the vm_helper
978 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
979 if (!dc->vm_helper) {
980 dm_error("%s: failed to create dc->vm_helper\n", __func__);
981 goto fail;
982 }
983
984 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
985
986 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
987 if (!dc_dceip) {
988 dm_error("%s: failed to create dceip\n", __func__);
989 goto fail;
990 }
991
992 dc->bw_dceip = dc_dceip;
993
994 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
995 if (!dc_vbios) {
996 dm_error("%s: failed to create vbios\n", __func__);
997 goto fail;
998 }
999
1000 dc->bw_vbios = dc_vbios;
1001 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1002 if (!dcn_soc) {
1003 dm_error("%s: failed to create dcn_soc\n", __func__);
1004 goto fail;
1005 }
1006
1007 dc->dcn_soc = dcn_soc;
1008
1009 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1010 if (!dcn_ip) {
1011 dm_error("%s: failed to create dcn_ip\n", __func__);
1012 goto fail;
1013 }
1014
1015 dc->dcn_ip = dcn_ip;
1016
1017 if (init_params->bb_from_dmub)
1018 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1019 else
1020 dc->dml2_options.bb_from_dmub = NULL;
1021
1022 if (!dc_construct_ctx(dc, init_params)) {
1023 dm_error("%s: failed to create ctx\n", __func__);
1024 goto fail;
1025 }
1026
1027 dc_ctx = dc->ctx;
1028
1029 /* Resource should construct all asic specific resources.
1030 * This should be the only place where we need to parse the asic id
1031 */
1032 if (init_params->vbios_override)
1033 dc_ctx->dc_bios = init_params->vbios_override;
1034 else {
1035 /* Create BIOS parser */
1036 struct bp_init_data bp_init_data;
1037
1038 bp_init_data.ctx = dc_ctx;
1039 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1040
1041 dc_ctx->dc_bios = dal_bios_parser_create(
1042 &bp_init_data, dc_ctx->dce_version);
1043
1044 if (!dc_ctx->dc_bios) {
1045 ASSERT_CRITICAL(false);
1046 goto fail;
1047 }
1048
1049 dc_ctx->created_bios = true;
1050 }
1051
1052 dc->vendor_signature = init_params->vendor_signature;
1053
1054 /* Create GPIO service */
1055 dc_ctx->gpio_service = dal_gpio_service_create(
1056 dc_ctx->dce_version,
1057 dc_ctx->dce_environment,
1058 dc_ctx);
1059
1060 if (!dc_ctx->gpio_service) {
1061 ASSERT_CRITICAL(false);
1062 goto fail;
1063 }
1064
1065 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1066 if (!dc->res_pool)
1067 goto fail;
1068
1069 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1070 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1071 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1072 if (dc->caps.max_optimizable_video_width == 0)
1073 dc->caps.max_optimizable_video_width = 5120;
1074 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1075 if (!dc->clk_mgr)
1076 goto fail;
1077 #ifdef CONFIG_DRM_AMD_DC_FP
1078 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1079
1080 if (dc->res_pool->funcs->update_bw_bounding_box) {
1081 DC_FP_START();
1082 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1083 DC_FP_END();
1084 }
1085 #endif
1086
1087 if (!create_links(dc, init_params->num_virtual_links))
1088 goto fail;
1089
1090 /* Create additional DIG link encoder objects if fewer than the platform
1091 * supports were created during link construction.
1092 */
1093 if (!create_link_encoders(dc))
1094 goto fail;
1095
1096 /* Creation of current_state must occur after dc->dml
1097 * is initialized in dc_create_resource_pool because
1098 * on creation it copies the contents of dc->dml
1099 */
1100 dc->current_state = dc_state_create(dc, NULL);
1101
1102 if (!dc->current_state) {
1103 dm_error("%s: failed to create validate ctx\n", __func__);
1104 goto fail;
1105 }
1106
1107 return true;
1108
1109 fail:
1110 return false;
1111 }
1112
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1113 static void disable_all_writeback_pipes_for_stream(
1114 const struct dc *dc,
1115 struct dc_stream_state *stream,
1116 struct dc_state *context)
1117 {
1118 int i;
1119
1120 for (i = 0; i < stream->num_wb_info; i++)
1121 stream->writeback_info[i].wb_enabled = false;
1122 }
1123
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1124 static void apply_ctx_interdependent_lock(struct dc *dc,
1125 struct dc_state *context,
1126 struct dc_stream_state *stream,
1127 bool lock)
1128 {
1129 int i;
1130
1131 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1132 if (dc->hwss.interdependent_update_lock)
1133 dc->hwss.interdependent_update_lock(dc, context, lock);
1134 else {
1135 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1136 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1137 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1138
1139 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1140 if (stream == pipe_ctx->stream) {
1141 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1142 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1143 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1144 }
1145 }
1146 }
1147 }
1148
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1149 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1150 {
1151 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1152 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1153
1154 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1155 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1156 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1157 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1158 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1159 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1160 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1161 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1162 else {
1163 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1164 color_space_to_black_color(
1165 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1166 }
1167 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1168 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1169 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1170 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1171 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1172 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1173 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1174 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1175 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1176 }
1177 }
1178 }
1179
disable_dangling_plane(struct dc * dc,struct dc_state * context)1180 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1181 {
1182 int i, j;
1183 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1184 struct dc_state *current_ctx;
1185 struct pipe_ctx *pipe;
1186 struct timing_generator *tg;
1187
1188 if (dangling_context == NULL)
1189 return;
1190
1191 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1192 struct dc_stream_state *old_stream =
1193 dc->current_state->res_ctx.pipe_ctx[i].stream;
1194 bool should_disable = true;
1195 bool pipe_split_change = false;
1196
1197 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1198 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1199 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1200 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1201 else
1202 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1203 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1204
1205 for (j = 0; j < context->stream_count; j++) {
1206 if (old_stream == context->streams[j]) {
1207 should_disable = false;
1208 break;
1209 }
1210 }
1211 if (!should_disable && pipe_split_change &&
1212 dc->current_state->stream_count != context->stream_count)
1213 should_disable = true;
1214
1215 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1216 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1217 struct pipe_ctx *old_pipe, *new_pipe;
1218
1219 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1220 new_pipe = &context->res_ctx.pipe_ctx[i];
1221
1222 if (old_pipe->plane_state && !new_pipe->plane_state)
1223 should_disable = true;
1224 }
1225
1226 if (should_disable && old_stream) {
1227 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1228 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1229 tg = pipe->stream_res.tg;
1230 /* When disabling plane for a phantom pipe, we must turn on the
1231 * phantom OTG so the disable programming gets the double buffer
1232 * update. Otherwise the pipe will be left in a partially disabled
1233 * state that can result in underflow or hang when enabling it
1234 * again for different use.
1235 */
1236 if (is_phantom) {
1237 if (tg->funcs->enable_crtc) {
1238 if (dc->hwseq->funcs.blank_pixel_data)
1239 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1240 tg->funcs->enable_crtc(tg);
1241 }
1242 }
1243
1244 if (is_phantom)
1245 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1246 else
1247 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1248 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1249
1250 if (pipe->stream && pipe->plane_state) {
1251 if (!dc->debug.using_dml2)
1252 set_p_state_switch_method(dc, context, pipe);
1253 dc_update_visual_confirm_color(dc, context, pipe);
1254 }
1255
1256 if (dc->hwss.apply_ctx_for_surface) {
1257 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1258 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1259 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1260 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1261 }
1262
1263 if (dc->res_pool->funcs->prepare_mcache_programming)
1264 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1265 if (dc->hwss.program_front_end_for_ctx) {
1266 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1267 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1268 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1269 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1270 }
1271 /* We need to put the phantom OTG back into it's default (disabled) state or we
1272 * can get corruption when transition from one SubVP config to a different one.
1273 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1274 * will still get it's double buffer update.
1275 */
1276 if (is_phantom) {
1277 if (tg->funcs->disable_phantom_crtc)
1278 tg->funcs->disable_phantom_crtc(tg);
1279 }
1280 }
1281 }
1282
1283 current_ctx = dc->current_state;
1284 dc->current_state = dangling_context;
1285 dc_state_release(current_ctx);
1286 }
1287
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1288 static void disable_vbios_mode_if_required(
1289 struct dc *dc,
1290 struct dc_state *context)
1291 {
1292 unsigned int i, j;
1293
1294 /* check if timing_changed, disable stream*/
1295 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1296 struct dc_stream_state *stream = NULL;
1297 struct dc_link *link = NULL;
1298 struct pipe_ctx *pipe = NULL;
1299
1300 pipe = &context->res_ctx.pipe_ctx[i];
1301 stream = pipe->stream;
1302 if (stream == NULL)
1303 continue;
1304
1305 if (stream->apply_seamless_boot_optimization)
1306 continue;
1307
1308 // only looking for first odm pipe
1309 if (pipe->prev_odm_pipe)
1310 continue;
1311
1312 if (stream->link->local_sink &&
1313 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1314 link = stream->link;
1315 }
1316
1317 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1318 unsigned int enc_inst, tg_inst = 0;
1319 unsigned int pix_clk_100hz = 0;
1320
1321 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1322 if (enc_inst != ENGINE_ID_UNKNOWN) {
1323 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1324 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1325 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1326 dc->res_pool->stream_enc[j]);
1327 break;
1328 }
1329 }
1330
1331 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1332 dc->res_pool->dp_clock_source,
1333 tg_inst, &pix_clk_100hz);
1334
1335 if (link->link_status.link_active) {
1336 uint32_t requested_pix_clk_100hz =
1337 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1338
1339 if (pix_clk_100hz != requested_pix_clk_100hz) {
1340 dc->link_srv->set_dpms_off(pipe);
1341 pipe->stream->dpms_off = false;
1342 }
1343 }
1344 }
1345 }
1346 }
1347 }
1348
1349 /* Public functions */
1350
dc_create(const struct dc_init_data * init_params)1351 struct dc *dc_create(const struct dc_init_data *init_params)
1352 {
1353 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1354 unsigned int full_pipe_count;
1355
1356 if (!dc)
1357 return NULL;
1358
1359 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1360 dc->caps.linear_pitch_alignment = 64;
1361 if (!dc_construct_ctx(dc, init_params))
1362 goto destruct_dc;
1363 } else {
1364 if (!dc_construct(dc, init_params))
1365 goto destruct_dc;
1366
1367 full_pipe_count = dc->res_pool->pipe_count;
1368 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1369 full_pipe_count--;
1370 dc->caps.max_streams = min(
1371 full_pipe_count,
1372 dc->res_pool->stream_enc_count);
1373
1374 dc->caps.max_links = dc->link_count;
1375 dc->caps.max_audios = dc->res_pool->audio_count;
1376 dc->caps.linear_pitch_alignment = 64;
1377
1378 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1379
1380 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1381
1382 if (dc->res_pool->dmcu != NULL)
1383 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1384 }
1385
1386 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1387 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1388 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1389
1390 /* Populate versioning information */
1391 dc->versions.dc_ver = DC_VER;
1392
1393 dc->build_id = DC_BUILD_ID;
1394
1395 DC_LOG_DC("Display Core initialized\n");
1396
1397 return dc;
1398
1399 destruct_dc:
1400 dc_destruct(dc);
1401 kfree(dc);
1402 return NULL;
1403 }
1404
detect_edp_presence(struct dc * dc)1405 static void detect_edp_presence(struct dc *dc)
1406 {
1407 struct dc_link *edp_links[MAX_NUM_EDP];
1408 struct dc_link *edp_link = NULL;
1409 enum dc_connection_type type;
1410 int i;
1411 int edp_num;
1412
1413 dc_get_edp_links(dc, edp_links, &edp_num);
1414 if (!edp_num)
1415 return;
1416
1417 for (i = 0; i < edp_num; i++) {
1418 edp_link = edp_links[i];
1419 if (dc->config.edp_not_connected) {
1420 edp_link->edp_sink_present = false;
1421 } else {
1422 dc_link_detect_connection_type(edp_link, &type);
1423 edp_link->edp_sink_present = (type != dc_connection_none);
1424 }
1425 }
1426 }
1427
dc_hardware_init(struct dc * dc)1428 void dc_hardware_init(struct dc *dc)
1429 {
1430
1431 detect_edp_presence(dc);
1432 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1433 dc->hwss.init_hw(dc);
1434 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1435 }
1436
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1437 void dc_init_callbacks(struct dc *dc,
1438 const struct dc_callback_init *init_params)
1439 {
1440 dc->ctx->cp_psp = init_params->cp_psp;
1441 }
1442
dc_deinit_callbacks(struct dc * dc)1443 void dc_deinit_callbacks(struct dc *dc)
1444 {
1445 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1446 }
1447
dc_destroy(struct dc ** dc)1448 void dc_destroy(struct dc **dc)
1449 {
1450 dc_destruct(*dc);
1451 kfree(*dc);
1452 *dc = NULL;
1453 }
1454
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1455 static void enable_timing_multisync(
1456 struct dc *dc,
1457 struct dc_state *ctx)
1458 {
1459 int i, multisync_count = 0;
1460 int pipe_count = dc->res_pool->pipe_count;
1461 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1462
1463 for (i = 0; i < pipe_count; i++) {
1464 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1465 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1466 continue;
1467 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1468 continue;
1469 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1470 multisync_count++;
1471 }
1472
1473 if (multisync_count > 0) {
1474 dc->hwss.enable_per_frame_crtc_position_reset(
1475 dc, multisync_count, multisync_pipes);
1476 }
1477 }
1478
program_timing_sync(struct dc * dc,struct dc_state * ctx)1479 static void program_timing_sync(
1480 struct dc *dc,
1481 struct dc_state *ctx)
1482 {
1483 int i, j, k;
1484 int group_index = 0;
1485 int num_group = 0;
1486 int pipe_count = dc->res_pool->pipe_count;
1487 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1488
1489 for (i = 0; i < pipe_count; i++) {
1490 if (!ctx->res_ctx.pipe_ctx[i].stream
1491 || ctx->res_ctx.pipe_ctx[i].top_pipe
1492 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1493 continue;
1494
1495 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1496 }
1497
1498 for (i = 0; i < pipe_count; i++) {
1499 int group_size = 1;
1500 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1501 struct pipe_ctx *pipe_set[MAX_PIPES];
1502
1503 if (!unsynced_pipes[i])
1504 continue;
1505
1506 pipe_set[0] = unsynced_pipes[i];
1507 unsynced_pipes[i] = NULL;
1508
1509 /* Add tg to the set, search rest of the tg's for ones with
1510 * same timing, add all tgs with same timing to the group
1511 */
1512 for (j = i + 1; j < pipe_count; j++) {
1513 if (!unsynced_pipes[j])
1514 continue;
1515 if (sync_type != TIMING_SYNCHRONIZABLE &&
1516 dc->hwss.enable_vblanks_synchronization &&
1517 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1518 resource_are_vblanks_synchronizable(
1519 unsynced_pipes[j]->stream,
1520 pipe_set[0]->stream)) {
1521 sync_type = VBLANK_SYNCHRONIZABLE;
1522 pipe_set[group_size] = unsynced_pipes[j];
1523 unsynced_pipes[j] = NULL;
1524 group_size++;
1525 } else
1526 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1527 resource_are_streams_timing_synchronizable(
1528 unsynced_pipes[j]->stream,
1529 pipe_set[0]->stream)) {
1530 sync_type = TIMING_SYNCHRONIZABLE;
1531 pipe_set[group_size] = unsynced_pipes[j];
1532 unsynced_pipes[j] = NULL;
1533 group_size++;
1534 }
1535 }
1536
1537 /* set first unblanked pipe as master */
1538 for (j = 0; j < group_size; j++) {
1539 bool is_blanked;
1540
1541 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1542 is_blanked =
1543 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1544 else
1545 is_blanked =
1546 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1547 if (!is_blanked) {
1548 if (j == 0)
1549 break;
1550
1551 swap(pipe_set[0], pipe_set[j]);
1552 break;
1553 }
1554 }
1555
1556 for (k = 0; k < group_size; k++) {
1557 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1558
1559 if (!status)
1560 continue;
1561
1562 status->timing_sync_info.group_id = num_group;
1563 status->timing_sync_info.group_size = group_size;
1564 if (k == 0)
1565 status->timing_sync_info.master = true;
1566 else
1567 status->timing_sync_info.master = false;
1568
1569 }
1570
1571 /* remove any other unblanked pipes as they have already been synced */
1572 if (dc->config.use_pipe_ctx_sync_logic) {
1573 /* check pipe's syncd to decide which pipe to be removed */
1574 for (j = 1; j < group_size; j++) {
1575 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1576 group_size--;
1577 pipe_set[j] = pipe_set[group_size];
1578 j--;
1579 } else
1580 /* link slave pipe's syncd with master pipe */
1581 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1582 }
1583 } else {
1584 /* remove any other pipes by checking valid plane */
1585 for (j = j + 1; j < group_size; j++) {
1586 bool is_blanked;
1587
1588 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1589 is_blanked =
1590 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1591 else
1592 is_blanked =
1593 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1594 if (!is_blanked) {
1595 group_size--;
1596 pipe_set[j] = pipe_set[group_size];
1597 j--;
1598 }
1599 }
1600 }
1601
1602 if (group_size > 1) {
1603 if (sync_type == TIMING_SYNCHRONIZABLE) {
1604 dc->hwss.enable_timing_synchronization(
1605 dc, ctx, group_index, group_size, pipe_set);
1606 } else
1607 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1608 dc->hwss.enable_vblanks_synchronization(
1609 dc, group_index, group_size, pipe_set);
1610 }
1611 group_index++;
1612 }
1613 num_group++;
1614 }
1615 }
1616
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1617 static bool streams_changed(struct dc *dc,
1618 struct dc_stream_state *streams[],
1619 uint8_t stream_count)
1620 {
1621 uint8_t i;
1622
1623 if (stream_count != dc->current_state->stream_count)
1624 return true;
1625
1626 for (i = 0; i < dc->current_state->stream_count; i++) {
1627 if (dc->current_state->streams[i] != streams[i])
1628 return true;
1629 if (!streams[i]->link->link_state_valid)
1630 return true;
1631 }
1632
1633 return false;
1634 }
1635
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1636 bool dc_validate_boot_timing(const struct dc *dc,
1637 const struct dc_sink *sink,
1638 struct dc_crtc_timing *crtc_timing)
1639 {
1640 struct timing_generator *tg;
1641 struct stream_encoder *se = NULL;
1642
1643 struct dc_crtc_timing hw_crtc_timing = {0};
1644
1645 struct dc_link *link = sink->link;
1646 unsigned int i, enc_inst, tg_inst = 0;
1647
1648 /* Support seamless boot on EDP displays only */
1649 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1650 return false;
1651 }
1652
1653 if (dc->debug.force_odm_combine)
1654 return false;
1655
1656 /* Check for enabled DIG to identify enabled display */
1657 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1658 return false;
1659
1660 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1661
1662 if (enc_inst == ENGINE_ID_UNKNOWN)
1663 return false;
1664
1665 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1666 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1667
1668 se = dc->res_pool->stream_enc[i];
1669
1670 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1671 dc->res_pool->stream_enc[i]);
1672 break;
1673 }
1674 }
1675
1676 // tg_inst not found
1677 if (i == dc->res_pool->stream_enc_count)
1678 return false;
1679
1680 if (tg_inst >= dc->res_pool->timing_generator_count)
1681 return false;
1682
1683 if (tg_inst != link->link_enc->preferred_engine)
1684 return false;
1685
1686 tg = dc->res_pool->timing_generators[tg_inst];
1687
1688 if (!tg->funcs->get_hw_timing)
1689 return false;
1690
1691 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1692 return false;
1693
1694 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1695 return false;
1696
1697 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1698 return false;
1699
1700 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1701 return false;
1702
1703 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1704 return false;
1705
1706 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1707 return false;
1708
1709 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1710 return false;
1711
1712 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1713 return false;
1714
1715 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1716 return false;
1717
1718 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1719 return false;
1720
1721 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1722 return false;
1723
1724 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1725 return false;
1726
1727 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1728 return false;
1729
1730 /* block DSC for now, as VBIOS does not currently support DSC timings */
1731 if (crtc_timing->flags.DSC)
1732 return false;
1733
1734 if (dc_is_dp_signal(link->connector_signal)) {
1735 unsigned int pix_clk_100hz = 0;
1736 uint32_t numOdmPipes = 1;
1737 uint32_t id_src[4] = {0};
1738
1739 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1740 dc->res_pool->dp_clock_source,
1741 tg_inst, &pix_clk_100hz);
1742
1743 if (tg->funcs->get_optc_source)
1744 tg->funcs->get_optc_source(tg,
1745 &numOdmPipes, &id_src[0], &id_src[1]);
1746
1747 if (numOdmPipes == 2) {
1748 pix_clk_100hz *= 2;
1749 } else if (numOdmPipes == 4) {
1750 pix_clk_100hz *= 4;
1751 } else if (se && se->funcs->get_pixels_per_cycle) {
1752 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1753
1754 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1755 return false;
1756
1757 pix_clk_100hz *= pixels_per_cycle;
1758 }
1759
1760 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1761 // slightly due to rounding issues in 10 kHz units.
1762 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1763 return false;
1764
1765 if (!se || !se->funcs->dp_get_pixel_format)
1766 return false;
1767
1768 if (!se->funcs->dp_get_pixel_format(
1769 se,
1770 &hw_crtc_timing.pixel_encoding,
1771 &hw_crtc_timing.display_color_depth))
1772 return false;
1773
1774 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1775 return false;
1776
1777 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1778 return false;
1779 }
1780
1781 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1782 return false;
1783 }
1784
1785 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1786 return false;
1787
1788 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1789 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1790 return false;
1791 }
1792
1793 return true;
1794 }
1795
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1796 static inline bool should_update_pipe_for_stream(
1797 struct dc_state *context,
1798 struct pipe_ctx *pipe_ctx,
1799 struct dc_stream_state *stream)
1800 {
1801 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1802 }
1803
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1804 static inline bool should_update_pipe_for_plane(
1805 struct dc_state *context,
1806 struct pipe_ctx *pipe_ctx,
1807 struct dc_plane_state *plane_state)
1808 {
1809 return (pipe_ctx->plane_state == plane_state);
1810 }
1811
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1812 void dc_enable_stereo(
1813 struct dc *dc,
1814 struct dc_state *context,
1815 struct dc_stream_state *streams[],
1816 uint8_t stream_count)
1817 {
1818 int i, j;
1819 struct pipe_ctx *pipe;
1820
1821 dc_exit_ips_for_hw_access(dc);
1822
1823 for (i = 0; i < MAX_PIPES; i++) {
1824 if (context != NULL) {
1825 pipe = &context->res_ctx.pipe_ctx[i];
1826 } else {
1827 context = dc->current_state;
1828 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1829 }
1830
1831 for (j = 0; pipe && j < stream_count; j++) {
1832 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1833 dc->hwss.setup_stereo)
1834 dc->hwss.setup_stereo(pipe, dc);
1835 }
1836 }
1837 }
1838
dc_trigger_sync(struct dc * dc,struct dc_state * context)1839 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1840 {
1841 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1842 dc_exit_ips_for_hw_access(dc);
1843
1844 enable_timing_multisync(dc, context);
1845 program_timing_sync(dc, context);
1846 }
1847 }
1848
get_stream_mask(struct dc * dc,struct dc_state * context)1849 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1850 {
1851 int i;
1852 unsigned int stream_mask = 0;
1853
1854 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1855 if (context->res_ctx.pipe_ctx[i].stream)
1856 stream_mask |= 1 << i;
1857 }
1858
1859 return stream_mask;
1860 }
1861
dc_z10_restore(const struct dc * dc)1862 void dc_z10_restore(const struct dc *dc)
1863 {
1864 if (dc->hwss.z10_restore)
1865 dc->hwss.z10_restore(dc);
1866 }
1867
dc_z10_save_init(struct dc * dc)1868 void dc_z10_save_init(struct dc *dc)
1869 {
1870 if (dc->hwss.z10_save_init)
1871 dc->hwss.z10_save_init(dc);
1872 }
1873
1874 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
1875 * Prevents over allocation of DET during unlock process
1876 * e.g. 2 pipe config with different streams with a max of 20 DET segments
1877 * Before: After:
1878 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
1879 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
1880 * If Pipe0 gets updated first, 22 DET segments will be allocated
1881 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)1882 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
1883 {
1884 unsigned int i = 0;
1885 struct pipe_ctx *pipe = NULL;
1886 struct timing_generator *tg = NULL;
1887
1888 if (!dc->config.set_pipe_unlock_order)
1889 return;
1890
1891 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
1892 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1893 pipe = &context->res_ctx.pipe_ctx[i];
1894 tg = pipe->stream_res.tg;
1895
1896 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
1897 !tg->funcs->is_tg_enabled(tg) ||
1898 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
1899 continue;
1900 }
1901
1902 if (resource_calculate_det_for_stream(context, pipe) <
1903 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
1904 dc->scratch.pipes_to_unlock_first[i] = true;
1905 }
1906 }
1907 }
1908
1909 /**
1910 * dc_commit_state_no_check - Apply context to the hardware
1911 *
1912 * @dc: DC object with the current status to be updated
1913 * @context: New state that will become the current status at the end of this function
1914 *
1915 * Applies given context to the hardware and copy it into current context.
1916 * It's up to the user to release the src context afterwards.
1917 *
1918 * Return: an enum dc_status result code for the operation
1919 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1920 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1921 {
1922 struct dc_bios *dcb = dc->ctx->dc_bios;
1923 enum dc_status result = DC_ERROR_UNEXPECTED;
1924 struct pipe_ctx *pipe;
1925 int i, k, l;
1926 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1927 struct dc_state *old_state;
1928 bool subvp_prev_use = false;
1929
1930 dc_z10_restore(dc);
1931 dc_allow_idle_optimizations(dc, false);
1932
1933 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1934 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1935
1936 /* Check old context for SubVP */
1937 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1938 if (subvp_prev_use)
1939 break;
1940 }
1941
1942 for (i = 0; i < context->stream_count; i++)
1943 dc_streams[i] = context->streams[i];
1944
1945 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1946 disable_vbios_mode_if_required(dc, context);
1947 dc->hwss.enable_accelerated_mode(dc, context);
1948 }
1949
1950 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1951 context->stream_count == 0)
1952 dc->hwss.prepare_bandwidth(dc, context);
1953
1954 /* When SubVP is active, all HW programming must be done while
1955 * SubVP lock is acquired
1956 */
1957 if (dc->hwss.subvp_pipe_control_lock)
1958 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1959 if (dc->hwss.fams2_global_control_lock)
1960 dc->hwss.fams2_global_control_lock(dc, context, true);
1961
1962 if (dc->hwss.update_dsc_pg)
1963 dc->hwss.update_dsc_pg(dc, context, false);
1964
1965 disable_dangling_plane(dc, context);
1966 /* re-program planes for existing stream, in case we need to
1967 * free up plane resource for later use
1968 */
1969 if (dc->hwss.apply_ctx_for_surface) {
1970 for (i = 0; i < context->stream_count; i++) {
1971 if (context->streams[i]->mode_changed)
1972 continue;
1973 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1974 dc->hwss.apply_ctx_for_surface(
1975 dc, context->streams[i],
1976 context->stream_status[i].plane_count,
1977 context); /* use new pipe config in new context */
1978 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1979 dc->hwss.post_unlock_program_front_end(dc, context);
1980 }
1981 }
1982
1983 /* Program hardware */
1984 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1985 pipe = &context->res_ctx.pipe_ctx[i];
1986 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1987 }
1988
1989 result = dc->hwss.apply_ctx_to_hw(dc, context);
1990
1991 if (result != DC_OK) {
1992 /* Application of dc_state to hardware stopped. */
1993 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1994 return result;
1995 }
1996
1997 dc_trigger_sync(dc, context);
1998
1999 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2000 for (i = 0; i < context->stream_count; i++) {
2001 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2002
2003 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2004 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2005 }
2006
2007 determine_pipe_unlock_order(dc, context);
2008 /* Program all planes within new context*/
2009 if (dc->res_pool->funcs->prepare_mcache_programming)
2010 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2011 if (dc->hwss.program_front_end_for_ctx) {
2012 dc->hwss.interdependent_update_lock(dc, context, true);
2013 dc->hwss.program_front_end_for_ctx(dc, context);
2014 dc->hwss.interdependent_update_lock(dc, context, false);
2015 dc->hwss.post_unlock_program_front_end(dc, context);
2016 }
2017
2018 if (dc->hwss.commit_subvp_config)
2019 dc->hwss.commit_subvp_config(dc, context);
2020 if (dc->hwss.subvp_pipe_control_lock)
2021 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2022 if (dc->hwss.fams2_global_control_lock)
2023 dc->hwss.fams2_global_control_lock(dc, context, false);
2024
2025 for (i = 0; i < context->stream_count; i++) {
2026 const struct dc_link *link = context->streams[i]->link;
2027
2028 if (!context->streams[i]->mode_changed)
2029 continue;
2030
2031 if (dc->hwss.apply_ctx_for_surface) {
2032 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2033 dc->hwss.apply_ctx_for_surface(
2034 dc, context->streams[i],
2035 context->stream_status[i].plane_count,
2036 context);
2037 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2038 dc->hwss.post_unlock_program_front_end(dc, context);
2039 }
2040
2041 /*
2042 * enable stereo
2043 * TODO rework dc_enable_stereo call to work with validation sets?
2044 */
2045 for (k = 0; k < MAX_PIPES; k++) {
2046 pipe = &context->res_ctx.pipe_ctx[k];
2047
2048 for (l = 0 ; pipe && l < context->stream_count; l++) {
2049 if (context->streams[l] &&
2050 context->streams[l] == pipe->stream &&
2051 dc->hwss.setup_stereo)
2052 dc->hwss.setup_stereo(pipe, dc);
2053 }
2054 }
2055
2056 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2057 context->streams[i]->timing.h_addressable,
2058 context->streams[i]->timing.v_addressable,
2059 context->streams[i]->timing.h_total,
2060 context->streams[i]->timing.v_total,
2061 context->streams[i]->timing.pix_clk_100hz / 10);
2062 }
2063
2064 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2065
2066 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2067 context->stream_count == 0) {
2068 /* Must wait for no flips to be pending before doing optimize bw */
2069 hwss_wait_for_no_pipes_pending(dc, context);
2070 /*
2071 * optimized dispclk depends on ODM setup. Need to wait for ODM
2072 * update pending complete before optimizing bandwidth.
2073 */
2074 hwss_wait_for_odm_update_pending_complete(dc, context);
2075 /* pplib is notified if disp_num changed */
2076 dc->hwss.optimize_bandwidth(dc, context);
2077 /* Need to do otg sync again as otg could be out of sync due to otg
2078 * workaround applied during clock update
2079 */
2080 dc_trigger_sync(dc, context);
2081 }
2082
2083 if (dc->hwss.update_dsc_pg)
2084 dc->hwss.update_dsc_pg(dc, context, true);
2085
2086 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2087 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2088 else
2089 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2090
2091 context->stream_mask = get_stream_mask(dc, context);
2092
2093 if (context->stream_mask != dc->current_state->stream_mask)
2094 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2095
2096 for (i = 0; i < context->stream_count; i++)
2097 context->streams[i]->mode_changed = false;
2098
2099 /* Clear update flags that were set earlier to avoid redundant programming */
2100 for (i = 0; i < context->stream_count; i++) {
2101 context->streams[i]->update_flags.raw = 0x0;
2102 }
2103
2104 old_state = dc->current_state;
2105 dc->current_state = context;
2106
2107 dc_state_release(old_state);
2108
2109 dc_state_retain(dc->current_state);
2110
2111 return result;
2112 }
2113
2114 static bool commit_minimal_transition_state(struct dc *dc,
2115 struct dc_state *transition_base_context);
2116
2117 /**
2118 * dc_commit_streams - Commit current stream state
2119 *
2120 * @dc: DC object with the commit state to be configured in the hardware
2121 * @params: Parameters for the commit, including the streams to be committed
2122 *
2123 * Function responsible for commit streams change to the hardware.
2124 *
2125 * Return:
2126 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2127 * code.
2128 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2129 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2130 {
2131 int i, j;
2132 struct dc_state *context;
2133 enum dc_status res = DC_OK;
2134 struct dc_validation_set set[MAX_STREAMS] = {0};
2135 struct pipe_ctx *pipe;
2136 bool handle_exit_odm2to1 = false;
2137
2138 if (!params)
2139 return DC_ERROR_UNEXPECTED;
2140
2141 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2142 return res;
2143
2144 if (!streams_changed(dc, params->streams, params->stream_count) &&
2145 dc->current_state->power_source == params->power_source)
2146 return res;
2147
2148 dc_exit_ips_for_hw_access(dc);
2149
2150 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2151
2152 for (i = 0; i < params->stream_count; i++) {
2153 struct dc_stream_state *stream = params->streams[i];
2154 struct dc_stream_status *status = dc_stream_get_status(stream);
2155
2156 dc_stream_log(dc, stream);
2157
2158 set[i].stream = stream;
2159
2160 if (status) {
2161 set[i].plane_count = status->plane_count;
2162 for (j = 0; j < status->plane_count; j++)
2163 set[i].plane_states[j] = status->plane_states[j];
2164 }
2165 }
2166
2167 /* ODM Combine 2:1 power optimization is only applied for single stream
2168 * scenario, it uses extra pipes than needed to reduce power consumption
2169 * We need to switch off this feature to make room for new streams.
2170 */
2171 if (params->stream_count > dc->current_state->stream_count &&
2172 dc->current_state->stream_count == 1) {
2173 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2174 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2175 if (pipe->next_odm_pipe)
2176 handle_exit_odm2to1 = true;
2177 }
2178 }
2179
2180 if (handle_exit_odm2to1)
2181 res = commit_minimal_transition_state(dc, dc->current_state);
2182
2183 context = dc_state_create_current_copy(dc);
2184 if (!context)
2185 goto context_alloc_fail;
2186
2187 context->power_source = params->power_source;
2188
2189 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2190
2191 /*
2192 * Only update link encoder to stream assignment after bandwidth validation passed.
2193 */
2194 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign)
2195 dc->res_pool->funcs->link_encs_assign(
2196 dc, context, context->streams, context->stream_count);
2197
2198 if (res != DC_OK) {
2199 BREAK_TO_DEBUGGER();
2200 goto fail;
2201 }
2202
2203 res = dc_commit_state_no_check(dc, context);
2204
2205 for (i = 0; i < params->stream_count; i++) {
2206 for (j = 0; j < context->stream_count; j++) {
2207 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2208 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2209
2210 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2211 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2212
2213 if (!status)
2214 continue;
2215
2216 if (dc->hwss.is_abm_supported)
2217 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2218 else
2219 status->is_abm_supported = true;
2220 }
2221 }
2222 }
2223
2224 fail:
2225 dc_state_release(context);
2226
2227 context_alloc_fail:
2228
2229 DC_LOG_DC("%s Finished.\n", __func__);
2230
2231 return res;
2232 }
2233
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2234 bool dc_acquire_release_mpc_3dlut(
2235 struct dc *dc, bool acquire,
2236 struct dc_stream_state *stream,
2237 struct dc_3dlut **lut,
2238 struct dc_transfer_func **shaper)
2239 {
2240 int pipe_idx;
2241 bool ret = false;
2242 bool found_pipe_idx = false;
2243 const struct resource_pool *pool = dc->res_pool;
2244 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2245 int mpcc_id = 0;
2246
2247 if (pool && res_ctx) {
2248 if (acquire) {
2249 /*find pipe idx for the given stream*/
2250 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2251 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2252 found_pipe_idx = true;
2253 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2254 break;
2255 }
2256 }
2257 } else
2258 found_pipe_idx = true;/*for release pipe_idx is not required*/
2259
2260 if (found_pipe_idx) {
2261 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2262 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2263 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2264 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2265 }
2266 }
2267 return ret;
2268 }
2269
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2270 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2271 {
2272 int i;
2273 struct pipe_ctx *pipe;
2274
2275 for (i = 0; i < MAX_PIPES; i++) {
2276 pipe = &context->res_ctx.pipe_ctx[i];
2277
2278 // Don't check flip pending on phantom pipes
2279 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2280 continue;
2281
2282 /* Must set to false to start with, due to OR in update function */
2283 pipe->plane_state->status.is_flip_pending = false;
2284 dc->hwss.update_pending_status(pipe);
2285 if (pipe->plane_state->status.is_flip_pending)
2286 return true;
2287 }
2288 return false;
2289 }
2290
2291 /* Perform updates here which need to be deferred until next vupdate
2292 *
2293 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2294 * but forcing lut memory to shutdown state is immediate. This causes
2295 * single frame corruption as lut gets disabled mid-frame unless shutdown
2296 * is deferred until after entering bypass.
2297 */
process_deferred_updates(struct dc * dc)2298 static void process_deferred_updates(struct dc *dc)
2299 {
2300 int i = 0;
2301
2302 if (dc->debug.enable_mem_low_power.bits.cm) {
2303 ASSERT(dc->dcn_ip->max_num_dpp);
2304 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2305 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2306 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2307 }
2308 }
2309
dc_post_update_surfaces_to_stream(struct dc * dc)2310 void dc_post_update_surfaces_to_stream(struct dc *dc)
2311 {
2312 int i;
2313 struct dc_state *context = dc->current_state;
2314
2315 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2316 return;
2317
2318 post_surface_trace(dc);
2319
2320 /*
2321 * Only relevant for DCN behavior where we can guarantee the optimization
2322 * is safe to apply - retain the legacy behavior for DCE.
2323 */
2324
2325 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2326 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2327 else {
2328 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2329
2330 if (is_flip_pending_in_pipes(dc, context))
2331 return;
2332
2333 for (i = 0; i < dc->res_pool->pipe_count; i++)
2334 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2335 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2336 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2337 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2338 }
2339
2340 process_deferred_updates(dc);
2341
2342 dc->hwss.optimize_bandwidth(dc, context);
2343
2344 if (dc->hwss.update_dsc_pg)
2345 dc->hwss.update_dsc_pg(dc, context, true);
2346 }
2347
2348 dc->optimized_required = false;
2349 dc->wm_optimized_required = false;
2350 }
2351
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2352 bool dc_set_generic_gpio_for_stereo(bool enable,
2353 struct gpio_service *gpio_service)
2354 {
2355 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2356 struct gpio_pin_info pin_info;
2357 struct gpio *generic;
2358 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2359 GFP_KERNEL);
2360
2361 if (!config)
2362 return false;
2363 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2364
2365 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2366 kfree(config);
2367 return false;
2368 } else {
2369 generic = dal_gpio_service_create_generic_mux(
2370 gpio_service,
2371 pin_info.offset,
2372 pin_info.mask);
2373 }
2374
2375 if (!generic) {
2376 kfree(config);
2377 return false;
2378 }
2379
2380 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2381
2382 config->enable_output_from_mux = enable;
2383 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2384
2385 if (gpio_result == GPIO_RESULT_OK)
2386 gpio_result = dal_mux_setup_config(generic, config);
2387
2388 if (gpio_result == GPIO_RESULT_OK) {
2389 dal_gpio_close(generic);
2390 dal_gpio_destroy_generic_mux(&generic);
2391 kfree(config);
2392 return true;
2393 } else {
2394 dal_gpio_close(generic);
2395 dal_gpio_destroy_generic_mux(&generic);
2396 kfree(config);
2397 return false;
2398 }
2399 }
2400
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2401 static bool is_surface_in_context(
2402 const struct dc_state *context,
2403 const struct dc_plane_state *plane_state)
2404 {
2405 int j;
2406
2407 for (j = 0; j < MAX_PIPES; j++) {
2408 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2409
2410 if (plane_state == pipe_ctx->plane_state) {
2411 return true;
2412 }
2413 }
2414
2415 return false;
2416 }
2417
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2418 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2419 {
2420 union surface_update_flags *update_flags = &u->surface->update_flags;
2421 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2422
2423 if (!u->plane_info)
2424 return UPDATE_TYPE_FAST;
2425
2426 if (u->plane_info->color_space != u->surface->color_space) {
2427 update_flags->bits.color_space_change = 1;
2428 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2429 }
2430
2431 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2432 update_flags->bits.horizontal_mirror_change = 1;
2433 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2434 }
2435
2436 if (u->plane_info->rotation != u->surface->rotation) {
2437 update_flags->bits.rotation_change = 1;
2438 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2439 }
2440
2441 if (u->plane_info->format != u->surface->format) {
2442 update_flags->bits.pixel_format_change = 1;
2443 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2444 }
2445
2446 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2447 update_flags->bits.stereo_format_change = 1;
2448 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2449 }
2450
2451 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2452 update_flags->bits.per_pixel_alpha_change = 1;
2453 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2454 }
2455
2456 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2457 update_flags->bits.global_alpha_change = 1;
2458 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2459 }
2460
2461 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2462 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2463 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2464 /* During DCC on/off, stutter period is calculated before
2465 * DCC has fully transitioned. This results in incorrect
2466 * stutter period calculation. Triggering a full update will
2467 * recalculate stutter period.
2468 */
2469 update_flags->bits.dcc_change = 1;
2470 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2471 }
2472
2473 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2474 resource_pixel_format_to_bpp(u->surface->format)) {
2475 /* different bytes per element will require full bandwidth
2476 * and DML calculation
2477 */
2478 update_flags->bits.bpp_change = 1;
2479 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2480 }
2481
2482 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2483 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2484 update_flags->bits.plane_size_change = 1;
2485 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2486 }
2487
2488
2489 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2490 sizeof(union dc_tiling_info)) != 0) {
2491 update_flags->bits.swizzle_change = 1;
2492 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2493
2494 /* todo: below are HW dependent, we should add a hook to
2495 * DCE/N resource and validated there.
2496 */
2497 if (!dc->debug.skip_full_updated_if_possible) {
2498 /* swizzled mode requires RQ to be setup properly,
2499 * thus need to run DML to calculate RQ settings
2500 */
2501 update_flags->bits.bandwidth_change = 1;
2502 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2503 }
2504 }
2505
2506 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2507 return update_type;
2508 }
2509
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2510 static enum surface_update_type get_scaling_info_update_type(
2511 const struct dc *dc,
2512 const struct dc_surface_update *u)
2513 {
2514 union surface_update_flags *update_flags = &u->surface->update_flags;
2515
2516 if (!u->scaling_info)
2517 return UPDATE_TYPE_FAST;
2518
2519 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2520 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2521 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2522 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2523 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2524 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2525 || u->scaling_info->scaling_quality.integer_scaling !=
2526 u->surface->scaling_quality.integer_scaling) {
2527 update_flags->bits.scaling_change = 1;
2528
2529 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2530 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2531 /* Making src rect bigger requires a bandwidth change */
2532 update_flags->bits.clock_change = 1;
2533
2534 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2535 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2536 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2537 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2538 /* Making dst rect smaller requires a bandwidth change */
2539 update_flags->bits.bandwidth_change = 1;
2540
2541 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2542 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2543 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2544 /* Changing clip size of a large surface may result in MPC slice count change */
2545 update_flags->bits.bandwidth_change = 1;
2546 }
2547
2548 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2549 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2550 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2551 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2552 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2553 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2554 update_flags->bits.position_change = 1;
2555
2556 /* process every update flag before returning */
2557 if (update_flags->bits.clock_change
2558 || update_flags->bits.bandwidth_change
2559 || update_flags->bits.scaling_change)
2560 return UPDATE_TYPE_FULL;
2561
2562 if (update_flags->bits.position_change)
2563 return UPDATE_TYPE_MED;
2564
2565 return UPDATE_TYPE_FAST;
2566 }
2567
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2568 static enum surface_update_type det_surface_update(const struct dc *dc,
2569 const struct dc_surface_update *u)
2570 {
2571 const struct dc_state *context = dc->current_state;
2572 enum surface_update_type type;
2573 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2574 union surface_update_flags *update_flags = &u->surface->update_flags;
2575
2576 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2577 update_flags->raw = 0xFFFFFFFF;
2578 return UPDATE_TYPE_FULL;
2579 }
2580
2581 update_flags->raw = 0; // Reset all flags
2582
2583 type = get_plane_info_update_type(dc, u);
2584 elevate_update_type(&overall_type, type);
2585
2586 type = get_scaling_info_update_type(dc, u);
2587 elevate_update_type(&overall_type, type);
2588
2589 if (u->flip_addr) {
2590 update_flags->bits.addr_update = 1;
2591 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2592 update_flags->bits.tmz_changed = 1;
2593 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2594 }
2595 }
2596 if (u->in_transfer_func)
2597 update_flags->bits.in_transfer_func_change = 1;
2598
2599 if (u->input_csc_color_matrix)
2600 update_flags->bits.input_csc_change = 1;
2601
2602 if (u->coeff_reduction_factor)
2603 update_flags->bits.coeff_reduction_change = 1;
2604
2605 if (u->gamut_remap_matrix)
2606 update_flags->bits.gamut_remap_change = 1;
2607
2608 if (u->blend_tf)
2609 update_flags->bits.gamma_change = 1;
2610
2611 if (u->gamma) {
2612 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2613
2614 if (u->plane_info)
2615 format = u->plane_info->format;
2616 else
2617 format = u->surface->format;
2618
2619 if (dce_use_lut(format))
2620 update_flags->bits.gamma_change = 1;
2621 }
2622
2623 if (u->lut3d_func || u->func_shaper)
2624 update_flags->bits.lut_3d = 1;
2625
2626 if (u->hdr_mult.value)
2627 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2628 update_flags->bits.hdr_mult = 1;
2629 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2630 }
2631
2632 if (u->sdr_white_level_nits)
2633 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2634 update_flags->bits.sdr_white_level_nits = 1;
2635 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2636 }
2637
2638 if (u->cm2_params) {
2639 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2640 != u->surface->mcm_shaper_3dlut_setting)
2641 || (u->cm2_params->component_settings.lut1d_enable
2642 != u->surface->mcm_lut1d_enable))
2643 update_flags->bits.mcm_transfer_function_enable_change = 1;
2644 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2645 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2646 update_flags->bits.mcm_transfer_function_enable_change = 1;
2647 }
2648 if (update_flags->bits.in_transfer_func_change) {
2649 type = UPDATE_TYPE_MED;
2650 elevate_update_type(&overall_type, type);
2651 }
2652
2653 if (update_flags->bits.lut_3d &&
2654 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2655 type = UPDATE_TYPE_FULL;
2656 elevate_update_type(&overall_type, type);
2657 }
2658 if (update_flags->bits.mcm_transfer_function_enable_change) {
2659 type = UPDATE_TYPE_FULL;
2660 elevate_update_type(&overall_type, type);
2661 }
2662
2663 if (dc->debug.enable_legacy_fast_update &&
2664 (update_flags->bits.gamma_change ||
2665 update_flags->bits.gamut_remap_change ||
2666 update_flags->bits.input_csc_change ||
2667 update_flags->bits.coeff_reduction_change)) {
2668 type = UPDATE_TYPE_FULL;
2669 elevate_update_type(&overall_type, type);
2670 }
2671 return overall_type;
2672 }
2673
2674 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2675 * while both planes are flip_immediate
2676 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2677 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2678 {
2679 bool has_flip_immediate_plane = false;
2680 int i;
2681
2682 for (i = 0; i < surface_count; i++) {
2683 if (updates[i].surface->flip_immediate) {
2684 has_flip_immediate_plane = true;
2685 break;
2686 }
2687 }
2688
2689 if (has_flip_immediate_plane && surface_count > 1) {
2690 for (i = 0; i < surface_count; i++) {
2691 if (updates[i].surface->flip_immediate)
2692 updates[i].surface->update_flags.bits.addr_update = 1;
2693 }
2694 }
2695 }
2696
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2697 static enum surface_update_type check_update_surfaces_for_stream(
2698 struct dc *dc,
2699 struct dc_surface_update *updates,
2700 int surface_count,
2701 struct dc_stream_update *stream_update,
2702 const struct dc_stream_status *stream_status)
2703 {
2704 int i;
2705 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2706
2707 if (dc->idle_optimizations_allowed)
2708 overall_type = UPDATE_TYPE_FULL;
2709
2710 if (stream_status == NULL || stream_status->plane_count != surface_count)
2711 overall_type = UPDATE_TYPE_FULL;
2712
2713 if (stream_update && stream_update->pending_test_pattern) {
2714 overall_type = UPDATE_TYPE_FULL;
2715 }
2716
2717 if (stream_update && stream_update->hw_cursor_req) {
2718 overall_type = UPDATE_TYPE_FULL;
2719 }
2720
2721 /* some stream updates require passive update */
2722 if (stream_update) {
2723 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2724
2725 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2726 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2727 stream_update->integer_scaling_update)
2728 su_flags->bits.scaling = 1;
2729
2730 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2731 su_flags->bits.out_tf = 1;
2732
2733 if (stream_update->abm_level)
2734 su_flags->bits.abm_level = 1;
2735
2736 if (stream_update->dpms_off)
2737 su_flags->bits.dpms_off = 1;
2738
2739 if (stream_update->gamut_remap)
2740 su_flags->bits.gamut_remap = 1;
2741
2742 if (stream_update->wb_update)
2743 su_flags->bits.wb_update = 1;
2744
2745 if (stream_update->dsc_config)
2746 su_flags->bits.dsc_changed = 1;
2747
2748 if (stream_update->mst_bw_update)
2749 su_flags->bits.mst_bw = 1;
2750
2751 if (stream_update->stream->freesync_on_desktop &&
2752 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2753 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2754 su_flags->bits.fams_changed = 1;
2755
2756 if (stream_update->scaler_sharpener_update)
2757 su_flags->bits.scaler_sharpener = 1;
2758
2759 if (stream_update->sharpening_required)
2760 su_flags->bits.sharpening_required = 1;
2761
2762 if (su_flags->raw != 0)
2763 overall_type = UPDATE_TYPE_FULL;
2764
2765 if (stream_update->output_csc_transform || stream_update->output_color_space)
2766 su_flags->bits.out_csc = 1;
2767
2768 /* Output transfer function changes do not require bandwidth recalculation,
2769 * so don't trigger a full update
2770 */
2771 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2772 su_flags->bits.out_tf = 1;
2773 }
2774
2775 for (i = 0 ; i < surface_count; i++) {
2776 enum surface_update_type type =
2777 det_surface_update(dc, &updates[i]);
2778
2779 elevate_update_type(&overall_type, type);
2780 }
2781
2782 return overall_type;
2783 }
2784
2785 /*
2786 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2787 *
2788 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2789 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2790 enum surface_update_type dc_check_update_surfaces_for_stream(
2791 struct dc *dc,
2792 struct dc_surface_update *updates,
2793 int surface_count,
2794 struct dc_stream_update *stream_update,
2795 const struct dc_stream_status *stream_status)
2796 {
2797 int i;
2798 enum surface_update_type type;
2799
2800 if (stream_update)
2801 stream_update->stream->update_flags.raw = 0;
2802 for (i = 0; i < surface_count; i++)
2803 updates[i].surface->update_flags.raw = 0;
2804
2805 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2806 if (type == UPDATE_TYPE_FULL) {
2807 if (stream_update) {
2808 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2809 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2810 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2811 }
2812 for (i = 0; i < surface_count; i++)
2813 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2814 }
2815
2816 if (type == UPDATE_TYPE_FAST) {
2817 // If there's an available clock comparator, we use that.
2818 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2819 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2820 dc->optimized_required = true;
2821 // Else we fallback to mem compare.
2822 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2823 dc->optimized_required = true;
2824 }
2825
2826 dc->optimized_required |= dc->wm_optimized_required;
2827 }
2828
2829 return type;
2830 }
2831
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2832 static struct dc_stream_status *stream_get_status(
2833 struct dc_state *ctx,
2834 struct dc_stream_state *stream)
2835 {
2836 uint8_t i;
2837
2838 for (i = 0; i < ctx->stream_count; i++) {
2839 if (stream == ctx->streams[i]) {
2840 return &ctx->stream_status[i];
2841 }
2842 }
2843
2844 return NULL;
2845 }
2846
2847 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2848
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2849 static void copy_surface_update_to_plane(
2850 struct dc_plane_state *surface,
2851 struct dc_surface_update *srf_update)
2852 {
2853 if (srf_update->flip_addr) {
2854 surface->address = srf_update->flip_addr->address;
2855 surface->flip_immediate =
2856 srf_update->flip_addr->flip_immediate;
2857 surface->time.time_elapsed_in_us[surface->time.index] =
2858 srf_update->flip_addr->flip_timestamp_in_us -
2859 surface->time.prev_update_time_in_us;
2860 surface->time.prev_update_time_in_us =
2861 srf_update->flip_addr->flip_timestamp_in_us;
2862 surface->time.index++;
2863 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2864 surface->time.index = 0;
2865
2866 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2867 }
2868
2869 if (srf_update->scaling_info) {
2870 surface->scaling_quality =
2871 srf_update->scaling_info->scaling_quality;
2872 surface->dst_rect =
2873 srf_update->scaling_info->dst_rect;
2874 surface->src_rect =
2875 srf_update->scaling_info->src_rect;
2876 surface->clip_rect =
2877 srf_update->scaling_info->clip_rect;
2878 }
2879
2880 if (srf_update->plane_info) {
2881 surface->color_space =
2882 srf_update->plane_info->color_space;
2883 surface->format =
2884 srf_update->plane_info->format;
2885 surface->plane_size =
2886 srf_update->plane_info->plane_size;
2887 surface->rotation =
2888 srf_update->plane_info->rotation;
2889 surface->horizontal_mirror =
2890 srf_update->plane_info->horizontal_mirror;
2891 surface->stereo_format =
2892 srf_update->plane_info->stereo_format;
2893 surface->tiling_info =
2894 srf_update->plane_info->tiling_info;
2895 surface->visible =
2896 srf_update->plane_info->visible;
2897 surface->per_pixel_alpha =
2898 srf_update->plane_info->per_pixel_alpha;
2899 surface->global_alpha =
2900 srf_update->plane_info->global_alpha;
2901 surface->global_alpha_value =
2902 srf_update->plane_info->global_alpha_value;
2903 surface->dcc =
2904 srf_update->plane_info->dcc;
2905 surface->layer_index =
2906 srf_update->plane_info->layer_index;
2907 }
2908
2909 if (srf_update->gamma) {
2910 memcpy(&surface->gamma_correction.entries,
2911 &srf_update->gamma->entries,
2912 sizeof(struct dc_gamma_entries));
2913 surface->gamma_correction.is_identity =
2914 srf_update->gamma->is_identity;
2915 surface->gamma_correction.num_entries =
2916 srf_update->gamma->num_entries;
2917 surface->gamma_correction.type =
2918 srf_update->gamma->type;
2919 }
2920
2921 if (srf_update->in_transfer_func) {
2922 surface->in_transfer_func.sdr_ref_white_level =
2923 srf_update->in_transfer_func->sdr_ref_white_level;
2924 surface->in_transfer_func.tf =
2925 srf_update->in_transfer_func->tf;
2926 surface->in_transfer_func.type =
2927 srf_update->in_transfer_func->type;
2928 memcpy(&surface->in_transfer_func.tf_pts,
2929 &srf_update->in_transfer_func->tf_pts,
2930 sizeof(struct dc_transfer_func_distributed_points));
2931 }
2932
2933 if (srf_update->cm2_params) {
2934 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
2935 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
2936 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
2937 }
2938
2939 if (srf_update->func_shaper) {
2940 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
2941 sizeof(surface->in_shaper_func));
2942
2943 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
2944 surface->mcm_luts.shaper = &surface->in_shaper_func;
2945 }
2946
2947 if (srf_update->lut3d_func)
2948 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
2949 sizeof(surface->lut3d_func));
2950
2951 if (srf_update->hdr_mult.value)
2952 surface->hdr_mult =
2953 srf_update->hdr_mult;
2954
2955 if (srf_update->sdr_white_level_nits)
2956 surface->sdr_white_level_nits =
2957 srf_update->sdr_white_level_nits;
2958
2959 if (srf_update->blend_tf) {
2960 memcpy(&surface->blend_tf, srf_update->blend_tf,
2961 sizeof(surface->blend_tf));
2962
2963 if (surface->mcm_lut1d_enable)
2964 surface->mcm_luts.lut1d_func = &surface->blend_tf;
2965 }
2966
2967 if (srf_update->cm2_params || srf_update->blend_tf)
2968 surface->lut_bank_a = !surface->lut_bank_a;
2969
2970 if (srf_update->input_csc_color_matrix)
2971 surface->input_csc_color_matrix =
2972 *srf_update->input_csc_color_matrix;
2973
2974 if (srf_update->coeff_reduction_factor)
2975 surface->coeff_reduction_factor =
2976 *srf_update->coeff_reduction_factor;
2977
2978 if (srf_update->gamut_remap_matrix)
2979 surface->gamut_remap_matrix =
2980 *srf_update->gamut_remap_matrix;
2981
2982 if (srf_update->cursor_csc_color_matrix)
2983 surface->cursor_csc_color_matrix =
2984 *srf_update->cursor_csc_color_matrix;
2985 }
2986
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2987 static void copy_stream_update_to_stream(struct dc *dc,
2988 struct dc_state *context,
2989 struct dc_stream_state *stream,
2990 struct dc_stream_update *update)
2991 {
2992 struct dc_context *dc_ctx = dc->ctx;
2993
2994 if (update == NULL || stream == NULL)
2995 return;
2996
2997 if (update->src.height && update->src.width)
2998 stream->src = update->src;
2999
3000 if (update->dst.height && update->dst.width)
3001 stream->dst = update->dst;
3002
3003 if (update->out_transfer_func) {
3004 stream->out_transfer_func.sdr_ref_white_level =
3005 update->out_transfer_func->sdr_ref_white_level;
3006 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3007 stream->out_transfer_func.type =
3008 update->out_transfer_func->type;
3009 memcpy(&stream->out_transfer_func.tf_pts,
3010 &update->out_transfer_func->tf_pts,
3011 sizeof(struct dc_transfer_func_distributed_points));
3012 }
3013
3014 if (update->hdr_static_metadata)
3015 stream->hdr_static_metadata = *update->hdr_static_metadata;
3016
3017 if (update->abm_level)
3018 stream->abm_level = *update->abm_level;
3019
3020 if (update->periodic_interrupt)
3021 stream->periodic_interrupt = *update->periodic_interrupt;
3022
3023 if (update->gamut_remap)
3024 stream->gamut_remap_matrix = *update->gamut_remap;
3025
3026 /* Note: this being updated after mode set is currently not a use case
3027 * however if it arises OCSC would need to be reprogrammed at the
3028 * minimum
3029 */
3030 if (update->output_color_space)
3031 stream->output_color_space = *update->output_color_space;
3032
3033 if (update->output_csc_transform)
3034 stream->csc_color_matrix = *update->output_csc_transform;
3035
3036 if (update->vrr_infopacket)
3037 stream->vrr_infopacket = *update->vrr_infopacket;
3038
3039 if (update->hw_cursor_req)
3040 stream->hw_cursor_req = *update->hw_cursor_req;
3041
3042 if (update->allow_freesync)
3043 stream->allow_freesync = *update->allow_freesync;
3044
3045 if (update->vrr_active_variable)
3046 stream->vrr_active_variable = *update->vrr_active_variable;
3047
3048 if (update->vrr_active_fixed)
3049 stream->vrr_active_fixed = *update->vrr_active_fixed;
3050
3051 if (update->crtc_timing_adjust)
3052 stream->adjust = *update->crtc_timing_adjust;
3053
3054 if (update->dpms_off)
3055 stream->dpms_off = *update->dpms_off;
3056
3057 if (update->hfvsif_infopacket)
3058 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3059
3060 if (update->vtem_infopacket)
3061 stream->vtem_infopacket = *update->vtem_infopacket;
3062
3063 if (update->vsc_infopacket)
3064 stream->vsc_infopacket = *update->vsc_infopacket;
3065
3066 if (update->vsp_infopacket)
3067 stream->vsp_infopacket = *update->vsp_infopacket;
3068
3069 if (update->adaptive_sync_infopacket)
3070 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3071
3072 if (update->dither_option)
3073 stream->dither_option = *update->dither_option;
3074
3075 if (update->pending_test_pattern)
3076 stream->test_pattern = *update->pending_test_pattern;
3077 /* update current stream with writeback info */
3078 if (update->wb_update) {
3079 int i;
3080
3081 stream->num_wb_info = update->wb_update->num_wb_info;
3082 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3083 for (i = 0; i < stream->num_wb_info; i++)
3084 stream->writeback_info[i] =
3085 update->wb_update->writeback_info[i];
3086 }
3087 if (update->dsc_config) {
3088 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3089 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3090 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3091 update->dsc_config->num_slices_v != 0);
3092
3093 /* Use temporarry context for validating new DSC config */
3094 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3095
3096 if (dsc_validate_context) {
3097 stream->timing.dsc_cfg = *update->dsc_config;
3098 stream->timing.flags.DSC = enable_dsc;
3099 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3100 stream->timing.dsc_cfg = old_dsc_cfg;
3101 stream->timing.flags.DSC = old_dsc_enabled;
3102 update->dsc_config = NULL;
3103 }
3104
3105 dc_state_release(dsc_validate_context);
3106 } else {
3107 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3108 update->dsc_config = NULL;
3109 }
3110 }
3111 if (update->scaler_sharpener_update)
3112 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3113 if (update->sharpening_required)
3114 stream->sharpening_required = *update->sharpening_required;
3115 }
3116
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3117 static void backup_planes_and_stream_state(
3118 struct dc_scratch_space *scratch,
3119 struct dc_stream_state *stream)
3120 {
3121 int i;
3122 struct dc_stream_status *status = dc_stream_get_status(stream);
3123
3124 if (!status)
3125 return;
3126
3127 for (i = 0; i < status->plane_count; i++) {
3128 scratch->plane_states[i] = *status->plane_states[i];
3129 }
3130 scratch->stream_state = *stream;
3131 }
3132
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3133 static void restore_planes_and_stream_state(
3134 struct dc_scratch_space *scratch,
3135 struct dc_stream_state *stream)
3136 {
3137 int i;
3138 struct dc_stream_status *status = dc_stream_get_status(stream);
3139
3140 if (!status)
3141 return;
3142
3143 for (i = 0; i < status->plane_count; i++) {
3144 /* refcount will always be valid, restore everything else */
3145 struct kref refcount = status->plane_states[i]->refcount;
3146 *status->plane_states[i] = scratch->plane_states[i];
3147 status->plane_states[i]->refcount = refcount;
3148 }
3149 *stream = scratch->stream_state;
3150 }
3151
3152 /**
3153 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3154 *
3155 * @dc: Current DC state
3156 * @context: New DC state to be programmed
3157 * @surface_count: Number of surfaces that have an updated
3158 * @stream: Corresponding stream to be updated in the current flip
3159 *
3160 * Updating seamless boot flags do not need to be part of the commit sequence. This
3161 * helper function will update the seamless boot flags on each flip (if required)
3162 * outside of the HW commit sequence (fast or slow).
3163 *
3164 * Return: void
3165 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3166 static void update_seamless_boot_flags(struct dc *dc,
3167 struct dc_state *context,
3168 int surface_count,
3169 struct dc_stream_state *stream)
3170 {
3171 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3172 /* Optimize seamless boot flag keeps clocks and watermarks high until
3173 * first flip. After first flip, optimization is required to lower
3174 * bandwidth. Important to note that it is expected UEFI will
3175 * only light up a single display on POST, therefore we only expect
3176 * one stream with seamless boot flag set.
3177 */
3178 if (stream->apply_seamless_boot_optimization) {
3179 stream->apply_seamless_boot_optimization = false;
3180
3181 if (get_seamless_boot_stream_count(context) == 0)
3182 dc->optimized_required = true;
3183 }
3184 }
3185 }
3186
3187 /**
3188 * update_planes_and_stream_state() - The function takes planes and stream
3189 * updates as inputs and determines the appropriate update type. If update type
3190 * is FULL, the function allocates a new context, populates and validates it.
3191 * Otherwise, it updates current dc context. The function will return both
3192 * new_context and new_update_type back to the caller. The function also backs
3193 * up both current and new contexts into corresponding dc state scratch memory.
3194 * TODO: The function does too many things, and even conditionally allocates dc
3195 * context memory implicitly. We should consider to break it down.
3196 *
3197 * @dc: Current DC state
3198 * @srf_updates: an array of surface updates
3199 * @surface_count: surface update count
3200 * @stream: Corresponding stream to be updated
3201 * @stream_update: stream update
3202 * @new_update_type: [out] determined update type by the function
3203 * @new_context: [out] new context allocated and validated if update type is
3204 * FULL, reference to current context if update type is less than FULL.
3205 *
3206 * Return: true if a valid update is populated into new_context, false
3207 * otherwise.
3208 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3209 static bool update_planes_and_stream_state(struct dc *dc,
3210 struct dc_surface_update *srf_updates, int surface_count,
3211 struct dc_stream_state *stream,
3212 struct dc_stream_update *stream_update,
3213 enum surface_update_type *new_update_type,
3214 struct dc_state **new_context)
3215 {
3216 struct dc_state *context;
3217 int i, j;
3218 enum surface_update_type update_type;
3219 const struct dc_stream_status *stream_status;
3220 struct dc_context *dc_ctx = dc->ctx;
3221
3222 stream_status = dc_stream_get_status(stream);
3223
3224 if (!stream_status) {
3225 if (surface_count) /* Only an error condition if surf_count non-zero*/
3226 ASSERT(false);
3227
3228 return false; /* Cannot commit surface to stream that is not committed */
3229 }
3230
3231 context = dc->current_state;
3232 update_type = dc_check_update_surfaces_for_stream(
3233 dc, srf_updates, surface_count, stream_update, stream_status);
3234 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3235 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3236 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3237 */
3238 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3239 if (update_type == UPDATE_TYPE_FULL)
3240 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3241
3242 /* update current stream with the new updates */
3243 copy_stream_update_to_stream(dc, context, stream, stream_update);
3244
3245 /* do not perform surface update if surface has invalid dimensions
3246 * (all zero) and no scaling_info is provided
3247 */
3248 if (surface_count > 0) {
3249 for (i = 0; i < surface_count; i++) {
3250 if ((srf_updates[i].surface->src_rect.width == 0 ||
3251 srf_updates[i].surface->src_rect.height == 0 ||
3252 srf_updates[i].surface->dst_rect.width == 0 ||
3253 srf_updates[i].surface->dst_rect.height == 0) &&
3254 (!srf_updates[i].scaling_info ||
3255 srf_updates[i].scaling_info->src_rect.width == 0 ||
3256 srf_updates[i].scaling_info->src_rect.height == 0 ||
3257 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3258 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3259 DC_ERROR("Invalid src/dst rects in surface update!\n");
3260 return false;
3261 }
3262 }
3263 }
3264
3265 if (update_type >= update_surface_trace_level)
3266 update_surface_trace(dc, srf_updates, surface_count);
3267
3268 for (i = 0; i < surface_count; i++)
3269 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3270
3271 if (update_type >= UPDATE_TYPE_FULL) {
3272 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3273
3274 for (i = 0; i < surface_count; i++)
3275 new_planes[i] = srf_updates[i].surface;
3276
3277 /* initialize scratch memory for building context */
3278 context = dc_state_create_copy(dc->current_state);
3279 if (context == NULL) {
3280 DC_ERROR("Failed to allocate new validate context!\n");
3281 return false;
3282 }
3283
3284 /* For each full update, remove all existing phantom pipes first.
3285 * Ensures that we have enough pipes for newly added MPO planes
3286 */
3287 dc_state_remove_phantom_streams_and_planes(dc, context);
3288 dc_state_release_phantom_streams_and_planes(dc, context);
3289
3290 /*remove old surfaces from context */
3291 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3292
3293 BREAK_TO_DEBUGGER();
3294 goto fail;
3295 }
3296
3297 /* add surface to context */
3298 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3299
3300 BREAK_TO_DEBUGGER();
3301 goto fail;
3302 }
3303 }
3304
3305 /* save update parameters into surface */
3306 for (i = 0; i < surface_count; i++) {
3307 struct dc_plane_state *surface = srf_updates[i].surface;
3308
3309 if (update_type != UPDATE_TYPE_MED)
3310 continue;
3311 if (surface->update_flags.bits.position_change) {
3312 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3313 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3314
3315 if (pipe_ctx->plane_state != surface)
3316 continue;
3317
3318 resource_build_scaling_params(pipe_ctx);
3319 }
3320 }
3321 }
3322
3323 if (update_type == UPDATE_TYPE_FULL) {
3324 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3325 BREAK_TO_DEBUGGER();
3326 goto fail;
3327 }
3328 }
3329 update_seamless_boot_flags(dc, context, surface_count, stream);
3330
3331 *new_context = context;
3332 *new_update_type = update_type;
3333 if (update_type == UPDATE_TYPE_FULL)
3334 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3335
3336 return true;
3337
3338 fail:
3339 dc_state_release(context);
3340
3341 return false;
3342
3343 }
3344
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3345 static void commit_planes_do_stream_update(struct dc *dc,
3346 struct dc_stream_state *stream,
3347 struct dc_stream_update *stream_update,
3348 enum surface_update_type update_type,
3349 struct dc_state *context)
3350 {
3351 int j;
3352
3353 // Stream updates
3354 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3355 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3356
3357 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3358
3359 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3360 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3361
3362 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3363 stream_update->vrr_infopacket ||
3364 stream_update->vsc_infopacket ||
3365 stream_update->vsp_infopacket ||
3366 stream_update->hfvsif_infopacket ||
3367 stream_update->adaptive_sync_infopacket ||
3368 stream_update->vtem_infopacket) {
3369 resource_build_info_frame(pipe_ctx);
3370 dc->hwss.update_info_frame(pipe_ctx);
3371
3372 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3373 dc->link_srv->dp_trace_source_sequence(
3374 pipe_ctx->stream->link,
3375 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3376 }
3377
3378 if (stream_update->hdr_static_metadata &&
3379 stream->use_dynamic_meta &&
3380 dc->hwss.set_dmdata_attributes &&
3381 pipe_ctx->stream->dmdata_address.quad_part != 0)
3382 dc->hwss.set_dmdata_attributes(pipe_ctx);
3383
3384 if (stream_update->gamut_remap)
3385 dc_stream_set_gamut_remap(dc, stream);
3386
3387 if (stream_update->output_csc_transform)
3388 dc_stream_program_csc_matrix(dc, stream);
3389
3390 if (stream_update->dither_option) {
3391 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3392 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3393 &pipe_ctx->stream->bit_depth_params);
3394 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3395 &stream->bit_depth_params,
3396 &stream->clamping);
3397 while (odm_pipe) {
3398 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3399 &stream->bit_depth_params,
3400 &stream->clamping);
3401 odm_pipe = odm_pipe->next_odm_pipe;
3402 }
3403 }
3404
3405 if (stream_update->cursor_attributes)
3406 program_cursor_attributes(dc, stream);
3407
3408 if (stream_update->cursor_position)
3409 program_cursor_position(dc, stream);
3410
3411 /* Full fe update*/
3412 if (update_type == UPDATE_TYPE_FAST)
3413 continue;
3414
3415 if (stream_update->dsc_config)
3416 dc->link_srv->update_dsc_config(pipe_ctx);
3417
3418 if (stream_update->mst_bw_update) {
3419 if (stream_update->mst_bw_update->is_increase)
3420 dc->link_srv->increase_mst_payload(pipe_ctx,
3421 stream_update->mst_bw_update->mst_stream_bw);
3422 else
3423 dc->link_srv->reduce_mst_payload(pipe_ctx,
3424 stream_update->mst_bw_update->mst_stream_bw);
3425 }
3426
3427 if (stream_update->pending_test_pattern) {
3428 /*
3429 * test pattern params depends on ODM topology
3430 * changes that we could be applying to front
3431 * end. Since at the current stage front end
3432 * changes are not yet applied. We can only
3433 * apply test pattern in hw based on current
3434 * state and populate the final test pattern
3435 * params in new state. If current and new test
3436 * pattern params are different as result of
3437 * different ODM topology being used, it will be
3438 * detected and handle during front end
3439 * programming update.
3440 */
3441 dc->link_srv->dp_set_test_pattern(stream->link,
3442 stream->test_pattern.type,
3443 stream->test_pattern.color_space,
3444 stream->test_pattern.p_link_settings,
3445 stream->test_pattern.p_custom_pattern,
3446 stream->test_pattern.cust_pattern_size);
3447 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3448 }
3449
3450 if (stream_update->dpms_off) {
3451 if (*stream_update->dpms_off) {
3452 dc->link_srv->set_dpms_off(pipe_ctx);
3453 /* for dpms, keep acquired resources*/
3454 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3455 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3456
3457 dc->optimized_required = true;
3458
3459 } else {
3460 if (get_seamless_boot_stream_count(context) == 0)
3461 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3462 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3463 }
3464 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3465 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3466 /*
3467 * Workaround for firmware issue in some receivers where they don't pick up
3468 * correct output color space unless DP link is disabled/re-enabled
3469 */
3470 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3471 }
3472
3473 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3474 bool should_program_abm = true;
3475
3476 // if otg funcs defined check if blanked before programming
3477 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3478 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3479 should_program_abm = false;
3480
3481 if (should_program_abm) {
3482 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3483 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3484 } else {
3485 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3486 pipe_ctx->stream_res.abm, stream->abm_level);
3487 }
3488 }
3489 }
3490 }
3491 }
3492 }
3493
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3494 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3495 {
3496 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3497 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3498 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3499 return true;
3500
3501 if (stream->link->replay_settings.config.replay_supported)
3502 return true;
3503
3504 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3505 return true;
3506
3507 return false;
3508 }
3509
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3510 void dc_dmub_update_dirty_rect(struct dc *dc,
3511 int surface_count,
3512 struct dc_stream_state *stream,
3513 struct dc_surface_update *srf_updates,
3514 struct dc_state *context)
3515 {
3516 union dmub_rb_cmd cmd;
3517 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3518 unsigned int i, j;
3519 unsigned int panel_inst = 0;
3520
3521 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3522 return;
3523
3524 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3525 return;
3526
3527 memset(&cmd, 0x0, sizeof(cmd));
3528 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3529 cmd.update_dirty_rect.header.sub_type = 0;
3530 cmd.update_dirty_rect.header.payload_bytes =
3531 sizeof(cmd.update_dirty_rect) -
3532 sizeof(cmd.update_dirty_rect.header);
3533 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3534 for (i = 0; i < surface_count; i++) {
3535 struct dc_plane_state *plane_state = srf_updates[i].surface;
3536 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3537
3538 if (!srf_updates[i].surface || !flip_addr)
3539 continue;
3540 /* Do not send in immediate flip mode */
3541 if (srf_updates[i].surface->flip_immediate)
3542 continue;
3543
3544 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3545 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3546 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3547 sizeof(flip_addr->dirty_rects));
3548 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3549 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3550
3551 if (pipe_ctx->stream != stream)
3552 continue;
3553 if (pipe_ctx->plane_state != plane_state)
3554 continue;
3555
3556 update_dirty_rect->panel_inst = panel_inst;
3557 update_dirty_rect->pipe_idx = j;
3558 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3559 }
3560 }
3561 }
3562
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3563 static void build_dmub_update_dirty_rect(
3564 struct dc *dc,
3565 int surface_count,
3566 struct dc_stream_state *stream,
3567 struct dc_surface_update *srf_updates,
3568 struct dc_state *context,
3569 struct dc_dmub_cmd dc_dmub_cmd[],
3570 unsigned int *dmub_cmd_count)
3571 {
3572 union dmub_rb_cmd cmd;
3573 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3574 unsigned int i, j;
3575 unsigned int panel_inst = 0;
3576
3577 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3578 return;
3579
3580 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3581 return;
3582
3583 memset(&cmd, 0x0, sizeof(cmd));
3584 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3585 cmd.update_dirty_rect.header.sub_type = 0;
3586 cmd.update_dirty_rect.header.payload_bytes =
3587 sizeof(cmd.update_dirty_rect) -
3588 sizeof(cmd.update_dirty_rect.header);
3589 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3590 for (i = 0; i < surface_count; i++) {
3591 struct dc_plane_state *plane_state = srf_updates[i].surface;
3592 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3593
3594 if (!srf_updates[i].surface || !flip_addr)
3595 continue;
3596 /* Do not send in immediate flip mode */
3597 if (srf_updates[i].surface->flip_immediate)
3598 continue;
3599 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3600 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3601 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3602 sizeof(flip_addr->dirty_rects));
3603 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3604 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3605
3606 if (pipe_ctx->stream != stream)
3607 continue;
3608 if (pipe_ctx->plane_state != plane_state)
3609 continue;
3610 update_dirty_rect->panel_inst = panel_inst;
3611 update_dirty_rect->pipe_idx = j;
3612 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3613 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3614 (*dmub_cmd_count)++;
3615 }
3616 }
3617 }
3618
check_address_only_update(union surface_update_flags update_flags)3619 static bool check_address_only_update(union surface_update_flags update_flags)
3620 {
3621 union surface_update_flags addr_only_update_flags;
3622 addr_only_update_flags.raw = 0;
3623 addr_only_update_flags.bits.addr_update = 1;
3624
3625 return update_flags.bits.addr_update &&
3626 !(update_flags.raw & ~addr_only_update_flags.raw);
3627 }
3628
3629 /**
3630 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3631 *
3632 * @dc: Current DC state
3633 * @srf_updates: Array of surface updates
3634 * @surface_count: Number of surfaces that have an updated
3635 * @stream: Corresponding stream to be updated in the current flip
3636 * @context: New DC state to be programmed
3637 *
3638 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3639 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3640 *
3641 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3642 * to build an array of commands and have them sent while the OTG lock is acquired.
3643 *
3644 * Return: void
3645 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3646 static void build_dmub_cmd_list(struct dc *dc,
3647 struct dc_surface_update *srf_updates,
3648 int surface_count,
3649 struct dc_stream_state *stream,
3650 struct dc_state *context,
3651 struct dc_dmub_cmd dc_dmub_cmd[],
3652 unsigned int *dmub_cmd_count)
3653 {
3654 // Initialize cmd count to 0
3655 *dmub_cmd_count = 0;
3656 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3657 }
3658
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3659 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3660 struct dc_surface_update *srf_updates,
3661 int surface_count,
3662 struct dc_stream_state *stream,
3663 struct dc_state *context)
3664 {
3665 int i, j;
3666
3667 /* update dirty rect for PSR */
3668 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3669 srf_updates, context);
3670
3671 /* Perform requested Updates */
3672 for (i = 0; i < surface_count; i++) {
3673 struct dc_plane_state *plane_state = srf_updates[i].surface;
3674
3675 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3676 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3677
3678 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3679 continue;
3680
3681 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3682 continue;
3683
3684 /* update pipe context for plane */
3685 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3686 dc->hwss.update_plane_addr(dc, pipe_ctx);
3687 }
3688 }
3689
3690 /* Send commands to DMCUB */
3691 dc_dmub_srv_fams2_passthrough_flip(dc,
3692 context,
3693 stream,
3694 srf_updates,
3695 surface_count);
3696 }
3697
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3698 static void commit_planes_for_stream_fast(struct dc *dc,
3699 struct dc_surface_update *srf_updates,
3700 int surface_count,
3701 struct dc_stream_state *stream,
3702 struct dc_stream_update *stream_update,
3703 enum surface_update_type update_type,
3704 struct dc_state *context)
3705 {
3706 int i, j;
3707 struct pipe_ctx *top_pipe_to_program = NULL;
3708 struct dc_stream_status *stream_status = NULL;
3709 bool should_offload_fams2_flip = false;
3710 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3711
3712 if (should_lock_all_pipes)
3713 determine_pipe_unlock_order(dc, context);
3714
3715 if (dc->debug.fams2_config.bits.enable &&
3716 dc->debug.fams2_config.bits.enable_offload_flip &&
3717 dc_state_is_fams2_in_use(dc, context)) {
3718 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3719 should_offload_fams2_flip = true;
3720 for (i = 0; i < surface_count; i++) {
3721 if (srf_updates[i].surface &&
3722 srf_updates[i].surface->update_flags.raw &&
3723 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3724 /* more than address update, need to acquire FAMS2 lock */
3725 should_offload_fams2_flip = false;
3726 break;
3727 }
3728 }
3729 if (stream_update) {
3730 /* more than address update, need to acquire FAMS2 lock */
3731 should_offload_fams2_flip = false;
3732 }
3733 }
3734
3735 dc_exit_ips_for_hw_access(dc);
3736
3737 dc_z10_restore(dc);
3738
3739 top_pipe_to_program = resource_get_otg_master_for_stream(
3740 &context->res_ctx,
3741 stream);
3742
3743 if (!top_pipe_to_program)
3744 return;
3745
3746 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3747 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3748
3749 if (pipe->stream && pipe->plane_state) {
3750 if (!dc->debug.using_dml2)
3751 set_p_state_switch_method(dc, context, pipe);
3752
3753 if (dc->debug.visual_confirm)
3754 dc_update_visual_confirm_color(dc, context, pipe);
3755 }
3756 }
3757
3758 for (i = 0; i < surface_count; i++) {
3759 struct dc_plane_state *plane_state = srf_updates[i].surface;
3760 /*set logical flag for lock/unlock use*/
3761 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3762 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3763
3764 if (!pipe_ctx->plane_state)
3765 continue;
3766 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3767 continue;
3768
3769 pipe_ctx->plane_state->triplebuffer_flips = false;
3770 if (update_type == UPDATE_TYPE_FAST &&
3771 dc->hwss.program_triplebuffer != NULL &&
3772 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3773 /*triple buffer for VUpdate only*/
3774 pipe_ctx->plane_state->triplebuffer_flips = true;
3775 }
3776 }
3777 }
3778
3779 stream_status = dc_state_get_stream_status(context, stream);
3780
3781 if (should_offload_fams2_flip) {
3782 commit_plane_for_stream_offload_fams2_flip(dc,
3783 srf_updates,
3784 surface_count,
3785 stream,
3786 context);
3787 } else if (stream_status) {
3788 build_dmub_cmd_list(dc,
3789 srf_updates,
3790 surface_count,
3791 stream,
3792 context,
3793 context->dc_dmub_cmd,
3794 &(context->dmub_cmd_count));
3795 hwss_build_fast_sequence(dc,
3796 context->dc_dmub_cmd,
3797 context->dmub_cmd_count,
3798 context->block_sequence,
3799 &(context->block_sequence_steps),
3800 top_pipe_to_program,
3801 stream_status,
3802 context);
3803 hwss_execute_sequence(dc,
3804 context->block_sequence,
3805 context->block_sequence_steps);
3806 }
3807
3808 /* Clear update flags so next flip doesn't have redundant programming
3809 * (if there's no stream update, the update flags are not cleared).
3810 * Surface updates are cleared unconditionally at the beginning of each flip,
3811 * so no need to clear here.
3812 */
3813 if (top_pipe_to_program->stream)
3814 top_pipe_to_program->stream->update_flags.raw = 0;
3815 }
3816
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3817 static void commit_planes_for_stream(struct dc *dc,
3818 struct dc_surface_update *srf_updates,
3819 int surface_count,
3820 struct dc_stream_state *stream,
3821 struct dc_stream_update *stream_update,
3822 enum surface_update_type update_type,
3823 struct dc_state *context)
3824 {
3825 int i, j;
3826 struct pipe_ctx *top_pipe_to_program = NULL;
3827 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3828 bool subvp_prev_use = false;
3829 bool subvp_curr_use = false;
3830 uint8_t current_stream_mask = 0;
3831
3832 if (should_lock_all_pipes)
3833 determine_pipe_unlock_order(dc, context);
3834 // Once we apply the new subvp context to hardware it won't be in the
3835 // dc->current_state anymore, so we have to cache it before we apply
3836 // the new SubVP context
3837 subvp_prev_use = false;
3838 dc_exit_ips_for_hw_access(dc);
3839
3840 dc_z10_restore(dc);
3841 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
3842 hwss_process_outstanding_hw_updates(dc, dc->current_state);
3843
3844 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3845 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3846
3847 if (pipe->stream && pipe->plane_state) {
3848 if (!dc->debug.using_dml2)
3849 set_p_state_switch_method(dc, context, pipe);
3850
3851 if (dc->debug.visual_confirm)
3852 dc_update_visual_confirm_color(dc, context, pipe);
3853 }
3854 }
3855
3856 if (update_type == UPDATE_TYPE_FULL) {
3857 dc_allow_idle_optimizations(dc, false);
3858
3859 if (get_seamless_boot_stream_count(context) == 0)
3860 dc->hwss.prepare_bandwidth(dc, context);
3861
3862 if (dc->hwss.update_dsc_pg)
3863 dc->hwss.update_dsc_pg(dc, context, false);
3864
3865 context_clock_trace(dc, context);
3866 }
3867
3868 if (update_type == UPDATE_TYPE_FULL)
3869 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
3870
3871 top_pipe_to_program = resource_get_otg_master_for_stream(
3872 &context->res_ctx,
3873 stream);
3874 ASSERT(top_pipe_to_program != NULL);
3875 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3876 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3877
3878 // Check old context for SubVP
3879 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3880 if (subvp_prev_use)
3881 break;
3882 }
3883
3884 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3885 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3886
3887 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3888 subvp_curr_use = true;
3889 break;
3890 }
3891 }
3892
3893 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3894 struct pipe_ctx *mpcc_pipe;
3895 struct pipe_ctx *odm_pipe;
3896
3897 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3898 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3899 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3900 }
3901
3902 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3903 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3904
3905 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3906 if (top_pipe_to_program &&
3907 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3908 if (should_use_dmub_lock(stream->link)) {
3909 union dmub_hw_lock_flags hw_locks = { 0 };
3910 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3911
3912 hw_locks.bits.lock_dig = 1;
3913 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3914
3915 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3916 true,
3917 &hw_locks,
3918 &inst_flags);
3919 } else
3920 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3921 top_pipe_to_program->stream_res.tg);
3922 }
3923
3924 if (dc->hwss.wait_for_dcc_meta_propagation) {
3925 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
3926 }
3927
3928 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3929 if (dc->hwss.subvp_pipe_control_lock)
3930 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3931
3932 if (dc->hwss.fams2_global_control_lock)
3933 dc->hwss.fams2_global_control_lock(dc, context, true);
3934
3935 dc->hwss.interdependent_update_lock(dc, context, true);
3936 } else {
3937 if (dc->hwss.subvp_pipe_control_lock)
3938 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3939
3940 if (dc->hwss.fams2_global_control_lock)
3941 dc->hwss.fams2_global_control_lock(dc, context, true);
3942
3943 /* Lock the top pipe while updating plane addrs, since freesync requires
3944 * plane addr update event triggers to be synchronized.
3945 * top_pipe_to_program is expected to never be NULL
3946 */
3947 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3948 }
3949
3950 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3951
3952 // Stream updates
3953 if (stream_update)
3954 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3955
3956 if (surface_count == 0) {
3957 /*
3958 * In case of turning off screen, no need to program front end a second time.
3959 * just return after program blank.
3960 */
3961 if (dc->hwss.apply_ctx_for_surface)
3962 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3963 if (dc->hwss.program_front_end_for_ctx)
3964 dc->hwss.program_front_end_for_ctx(dc, context);
3965
3966 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3967 dc->hwss.interdependent_update_lock(dc, context, false);
3968 } else {
3969 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3970 }
3971 dc->hwss.post_unlock_program_front_end(dc, context);
3972
3973 if (update_type != UPDATE_TYPE_FAST)
3974 if (dc->hwss.commit_subvp_config)
3975 dc->hwss.commit_subvp_config(dc, context);
3976
3977 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3978 * move the SubVP lock to after the phantom pipes have been setup
3979 */
3980 if (dc->hwss.subvp_pipe_control_lock)
3981 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3982 NULL, subvp_prev_use);
3983
3984 if (dc->hwss.fams2_global_control_lock)
3985 dc->hwss.fams2_global_control_lock(dc, context, false);
3986
3987 return;
3988 }
3989
3990 if (update_type != UPDATE_TYPE_FAST) {
3991 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3992 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3993
3994 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3995 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3996 pipe_ctx->stream && pipe_ctx->plane_state) {
3997 /* Only update visual confirm for SUBVP and Mclk switching here.
3998 * The bar appears on all pipes, so we need to update the bar on all displays,
3999 * so the information doesn't get stale.
4000 */
4001 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4002 pipe_ctx->plane_res.hubp->inst);
4003 }
4004 }
4005 }
4006
4007 for (i = 0; i < surface_count; i++) {
4008 struct dc_plane_state *plane_state = srf_updates[i].surface;
4009
4010 /*set logical flag for lock/unlock use*/
4011 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4012 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4013 if (!pipe_ctx->plane_state)
4014 continue;
4015 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4016 continue;
4017 pipe_ctx->plane_state->triplebuffer_flips = false;
4018 if (update_type == UPDATE_TYPE_FAST &&
4019 dc->hwss.program_triplebuffer != NULL &&
4020 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4021 /*triple buffer for VUpdate only*/
4022 pipe_ctx->plane_state->triplebuffer_flips = true;
4023 }
4024 }
4025 if (update_type == UPDATE_TYPE_FULL) {
4026 /* force vsync flip when reconfiguring pipes to prevent underflow */
4027 plane_state->flip_immediate = false;
4028 plane_state->triplebuffer_flips = false;
4029 }
4030 }
4031
4032 // Update Type FULL, Surface updates
4033 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4034 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4035
4036 if (!pipe_ctx->top_pipe &&
4037 !pipe_ctx->prev_odm_pipe &&
4038 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4039 struct dc_stream_status *stream_status = NULL;
4040
4041 if (!pipe_ctx->plane_state)
4042 continue;
4043
4044 /* Full fe update*/
4045 if (update_type == UPDATE_TYPE_FAST)
4046 continue;
4047
4048 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4049 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4050 /*turn off triple buffer for full update*/
4051 dc->hwss.program_triplebuffer(
4052 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4053 }
4054 stream_status =
4055 stream_get_status(context, pipe_ctx->stream);
4056
4057 if (dc->hwss.apply_ctx_for_surface && stream_status)
4058 dc->hwss.apply_ctx_for_surface(
4059 dc, pipe_ctx->stream, stream_status->plane_count, context);
4060 }
4061 }
4062 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4063 dc->hwss.program_front_end_for_ctx(dc, context);
4064 if (dc->debug.validate_dml_output) {
4065 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4066 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4067 if (cur_pipe->stream == NULL)
4068 continue;
4069
4070 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4071 cur_pipe->plane_res.hubp, dc->ctx,
4072 &context->res_ctx.pipe_ctx[i].rq_regs,
4073 &context->res_ctx.pipe_ctx[i].dlg_regs,
4074 &context->res_ctx.pipe_ctx[i].ttu_regs);
4075 }
4076 }
4077 }
4078
4079 // Update Type FAST, Surface updates
4080 if (update_type == UPDATE_TYPE_FAST) {
4081 if (dc->hwss.set_flip_control_gsl)
4082 for (i = 0; i < surface_count; i++) {
4083 struct dc_plane_state *plane_state = srf_updates[i].surface;
4084
4085 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4086 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4087
4088 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4089 continue;
4090
4091 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4092 continue;
4093
4094 // GSL has to be used for flip immediate
4095 dc->hwss.set_flip_control_gsl(pipe_ctx,
4096 pipe_ctx->plane_state->flip_immediate);
4097 }
4098 }
4099
4100 /* Perform requested Updates */
4101 for (i = 0; i < surface_count; i++) {
4102 struct dc_plane_state *plane_state = srf_updates[i].surface;
4103
4104 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4105 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4106
4107 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4108 continue;
4109
4110 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4111 continue;
4112
4113 if (srf_updates[i].cm2_params &&
4114 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4115 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4116 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4117 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4118 dc->hwss.trigger_3dlut_dma_load)
4119 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4120
4121 /*program triple buffer after lock based on flip type*/
4122 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4123 /*only enable triplebuffer for fast_update*/
4124 dc->hwss.program_triplebuffer(
4125 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4126 }
4127 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4128 dc->hwss.update_plane_addr(dc, pipe_ctx);
4129 }
4130 }
4131 }
4132
4133 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4134 dc->hwss.interdependent_update_lock(dc, context, false);
4135 } else {
4136 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4137 }
4138
4139 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4140 if (top_pipe_to_program &&
4141 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4142 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4143 top_pipe_to_program->stream_res.tg,
4144 CRTC_STATE_VACTIVE);
4145 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4146 top_pipe_to_program->stream_res.tg,
4147 CRTC_STATE_VBLANK);
4148 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4149 top_pipe_to_program->stream_res.tg,
4150 CRTC_STATE_VACTIVE);
4151
4152 if (should_use_dmub_lock(stream->link)) {
4153 union dmub_hw_lock_flags hw_locks = { 0 };
4154 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4155
4156 hw_locks.bits.lock_dig = 1;
4157 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4158
4159 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4160 false,
4161 &hw_locks,
4162 &inst_flags);
4163 } else
4164 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4165 top_pipe_to_program->stream_res.tg);
4166 }
4167
4168 if (subvp_curr_use) {
4169 /* If enabling subvp or transitioning from subvp->subvp, enable the
4170 * phantom streams before we program front end for the phantom pipes.
4171 */
4172 if (update_type != UPDATE_TYPE_FAST) {
4173 if (dc->hwss.enable_phantom_streams)
4174 dc->hwss.enable_phantom_streams(dc, context);
4175 }
4176 }
4177
4178 if (update_type != UPDATE_TYPE_FAST)
4179 dc->hwss.post_unlock_program_front_end(dc, context);
4180
4181 if (subvp_prev_use && !subvp_curr_use) {
4182 /* If disabling subvp, disable phantom streams after front end
4183 * programming has completed (we turn on phantom OTG in order
4184 * to complete the plane disable for phantom pipes).
4185 */
4186
4187 if (dc->hwss.disable_phantom_streams)
4188 dc->hwss.disable_phantom_streams(dc, context);
4189 }
4190
4191 if (update_type != UPDATE_TYPE_FAST)
4192 if (dc->hwss.commit_subvp_config)
4193 dc->hwss.commit_subvp_config(dc, context);
4194 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4195 * move the SubVP lock to after the phantom pipes have been setup
4196 */
4197 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4198 if (dc->hwss.subvp_pipe_control_lock)
4199 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4200 if (dc->hwss.fams2_global_control_lock)
4201 dc->hwss.fams2_global_control_lock(dc, context, false);
4202 } else {
4203 if (dc->hwss.subvp_pipe_control_lock)
4204 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4205 if (dc->hwss.fams2_global_control_lock)
4206 dc->hwss.fams2_global_control_lock(dc, context, false);
4207 }
4208
4209 // Fire manual trigger only when bottom plane is flipped
4210 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4211 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4212
4213 if (!pipe_ctx->plane_state)
4214 continue;
4215
4216 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4217 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4218 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4219 pipe_ctx->plane_state->skip_manual_trigger)
4220 continue;
4221
4222 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4223 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4224 }
4225
4226 current_stream_mask = get_stream_mask(dc, context);
4227 if (current_stream_mask != context->stream_mask) {
4228 context->stream_mask = current_stream_mask;
4229 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4230 }
4231 }
4232
4233 /**
4234 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4235 *
4236 * @dc: Used to get the current state status
4237 * @stream: Target stream, which we want to remove the attached planes
4238 * @srf_updates: Array of surface updates
4239 * @surface_count: Number of surface update
4240 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4241 *
4242 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4243 * the MPO if used simultaneously in some specific configurations (e.g.,
4244 * 4k@144). This function checks if the incoming context requires applying a
4245 * transition state with unnecessary pipe splitting and ODM disabled to
4246 * circumvent our hardware limitations to prevent this edge case. If the OPP
4247 * associated with an MPCC might change due to plane additions, this function
4248 * returns true.
4249 *
4250 * Return:
4251 * Return true if OPP and MPCC might change, otherwise, return false.
4252 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4253 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4254 struct dc_stream_state *stream,
4255 struct dc_surface_update *srf_updates,
4256 int surface_count,
4257 bool *is_plane_addition)
4258 {
4259
4260 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4261 bool force_minimal_pipe_splitting = false;
4262 bool subvp_active = false;
4263 uint32_t i;
4264
4265 *is_plane_addition = false;
4266
4267 if (cur_stream_status &&
4268 dc->current_state->stream_count > 0 &&
4269 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4270 /* determine if minimal transition is required due to MPC*/
4271 if (surface_count > 0) {
4272 if (cur_stream_status->plane_count > surface_count) {
4273 force_minimal_pipe_splitting = true;
4274 } else if (cur_stream_status->plane_count < surface_count) {
4275 force_minimal_pipe_splitting = true;
4276 *is_plane_addition = true;
4277 }
4278 }
4279 }
4280
4281 if (cur_stream_status &&
4282 dc->current_state->stream_count == 1 &&
4283 dc->debug.enable_single_display_2to1_odm_policy) {
4284 /* determine if minimal transition is required due to dynamic ODM*/
4285 if (surface_count > 0) {
4286 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4287 force_minimal_pipe_splitting = true;
4288 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4289 force_minimal_pipe_splitting = true;
4290 *is_plane_addition = true;
4291 }
4292 }
4293 }
4294
4295 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4296 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4297
4298 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4299 subvp_active = true;
4300 break;
4301 }
4302 }
4303
4304 /* For SubVP when adding or removing planes we need to add a minimal transition
4305 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4306 * must use the minimal transition path to disable the pipe correctly.
4307 *
4308 * We want to use the minimal transition whenever subvp is active, not only if
4309 * a plane is being added / removed from a subvp stream (MPO plane can be added
4310 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4311 * a min transition to disable subvp.
4312 */
4313 if (cur_stream_status && subvp_active) {
4314 /* determine if minimal transition is required due to SubVP*/
4315 if (cur_stream_status->plane_count > surface_count) {
4316 force_minimal_pipe_splitting = true;
4317 } else if (cur_stream_status->plane_count < surface_count) {
4318 force_minimal_pipe_splitting = true;
4319 *is_plane_addition = true;
4320 }
4321 }
4322
4323 return force_minimal_pipe_splitting;
4324 }
4325
4326 struct pipe_split_policy_backup {
4327 bool dynamic_odm_policy;
4328 bool subvp_policy;
4329 enum pipe_split_policy mpc_policy;
4330 char force_odm[MAX_PIPES];
4331 };
4332
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4333 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4334 struct dc_state *context,
4335 struct pipe_split_policy_backup *policy)
4336 {
4337 int i;
4338
4339 if (!dc->config.is_vmin_only_asic) {
4340 policy->mpc_policy = dc->debug.pipe_split_policy;
4341 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4342 }
4343 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4344 dc->debug.enable_single_display_2to1_odm_policy = false;
4345 policy->subvp_policy = dc->debug.force_disable_subvp;
4346 dc->debug.force_disable_subvp = true;
4347 for (i = 0; i < context->stream_count; i++) {
4348 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4349 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4350 context->streams[i]->debug.force_odm_combine_segments = 0;
4351 }
4352 }
4353
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4354 static void restore_minimal_pipe_split_policy(struct dc *dc,
4355 struct dc_state *context,
4356 struct pipe_split_policy_backup *policy)
4357 {
4358 uint8_t i;
4359
4360 if (!dc->config.is_vmin_only_asic)
4361 dc->debug.pipe_split_policy = policy->mpc_policy;
4362 dc->debug.enable_single_display_2to1_odm_policy =
4363 policy->dynamic_odm_policy;
4364 dc->debug.force_disable_subvp = policy->subvp_policy;
4365 for (i = 0; i < context->stream_count; i++)
4366 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4367 }
4368
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4369 static void release_minimal_transition_state(struct dc *dc,
4370 struct dc_state *minimal_transition_context,
4371 struct dc_state *base_context,
4372 struct pipe_split_policy_backup *policy)
4373 {
4374 restore_minimal_pipe_split_policy(dc, base_context, policy);
4375 dc_state_release(minimal_transition_context);
4376 }
4377
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4378 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4379 {
4380 uint8_t i;
4381 int j;
4382 struct dc_stream_status *stream_status;
4383
4384 for (i = 0; i < context->stream_count; i++) {
4385 stream_status = &context->stream_status[i];
4386
4387 for (j = 0; j < stream_status->plane_count; j++)
4388 stream_status->plane_states[j]->flip_immediate = false;
4389 }
4390 }
4391
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4392 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4393 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4394 {
4395 struct dc_state *minimal_transition_context = NULL;
4396
4397 minimal_transition_context = dc_state_create_copy(base_context);
4398 if (!minimal_transition_context)
4399 return NULL;
4400
4401 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4402 /* commit minimal state */
4403 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4404 /* prevent underflow and corruption when reconfiguring pipes */
4405 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4406 } else {
4407 /*
4408 * This should never happen, minimal transition state should
4409 * always be validated first before adding pipe split features.
4410 */
4411 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4412 BREAK_TO_DEBUGGER();
4413 minimal_transition_context = NULL;
4414 }
4415 return minimal_transition_context;
4416 }
4417
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4418 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4419 struct dc *dc,
4420 struct dc_state *initial_state,
4421 struct dc_state *intermediate_state,
4422 struct dc_state *final_state)
4423 {
4424 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4425 intermediate_state) &&
4426 dc->hwss.is_pipe_topology_transition_seamless(dc,
4427 intermediate_state, final_state);
4428 }
4429
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4430 static void swap_and_release_current_context(struct dc *dc,
4431 struct dc_state *new_context, struct dc_stream_state *stream)
4432 {
4433
4434 int i;
4435 struct dc_state *old = dc->current_state;
4436 struct pipe_ctx *pipe_ctx;
4437
4438 /* Since memory free requires elevated IRQ, an interrupt
4439 * request is generated by mem free. If this happens
4440 * between freeing and reassigning the context, our vsync
4441 * interrupt will call into dc and cause a memory
4442 * corruption. Hence, we first reassign the context,
4443 * then free the old context.
4444 */
4445 dc->current_state = new_context;
4446 dc_state_release(old);
4447
4448 // clear any forced full updates
4449 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4450 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4451
4452 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4453 pipe_ctx->plane_state->force_full_update = false;
4454 }
4455 }
4456
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4457 static int initialize_empty_surface_updates(
4458 struct dc_stream_state *stream,
4459 struct dc_surface_update *srf_updates)
4460 {
4461 struct dc_stream_status *status = dc_stream_get_status(stream);
4462 int i;
4463
4464 if (!status)
4465 return 0;
4466
4467 for (i = 0; i < status->plane_count; i++)
4468 srf_updates[i].surface = status->plane_states[i];
4469
4470 return status->plane_count;
4471 }
4472
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4473 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4474 struct dc_state *new_context,
4475 struct dc_stream_state *stream,
4476 struct dc_surface_update *srf_updates,
4477 int surface_count)
4478 {
4479 bool success = false;
4480 struct pipe_split_policy_backup policy;
4481 struct dc_state *intermediate_context =
4482 create_minimal_transition_state(dc, new_context,
4483 &policy);
4484
4485 if (intermediate_context) {
4486 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4487 dc,
4488 dc->current_state,
4489 intermediate_context,
4490 new_context)) {
4491 DC_LOG_DC("commit minimal transition state: base = new state\n");
4492 commit_planes_for_stream(dc, srf_updates,
4493 surface_count, stream, NULL,
4494 UPDATE_TYPE_FULL, intermediate_context);
4495 swap_and_release_current_context(
4496 dc, intermediate_context, stream);
4497 dc_state_retain(dc->current_state);
4498 success = true;
4499 }
4500 release_minimal_transition_state(
4501 dc, intermediate_context, new_context, &policy);
4502 }
4503 return success;
4504 }
4505
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4506 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4507 struct dc_state *new_context, struct dc_stream_state *stream)
4508 {
4509 bool success = false;
4510 struct pipe_split_policy_backup policy;
4511 struct dc_state *intermediate_context;
4512 struct dc_state *old_current_state = dc->current_state;
4513 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4514 int surface_count;
4515
4516 /*
4517 * Both current and new contexts share the same stream and plane state
4518 * pointers. When new context is validated, stream and planes get
4519 * populated with new updates such as new plane addresses. This makes
4520 * the current context no longer valid because stream and planes are
4521 * modified from the original. We backup current stream and plane states
4522 * into scratch space whenever we are populating new context. So we can
4523 * restore the original values back by calling the restore function now.
4524 * This restores back the original stream and plane states associated
4525 * with the current state.
4526 */
4527 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4528 dc_state_retain(old_current_state);
4529 intermediate_context = create_minimal_transition_state(dc,
4530 old_current_state, &policy);
4531
4532 if (intermediate_context) {
4533 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4534 dc,
4535 dc->current_state,
4536 intermediate_context,
4537 new_context)) {
4538 DC_LOG_DC("commit minimal transition state: base = current state\n");
4539 surface_count = initialize_empty_surface_updates(
4540 stream, srf_updates);
4541 commit_planes_for_stream(dc, srf_updates,
4542 surface_count, stream, NULL,
4543 UPDATE_TYPE_FULL, intermediate_context);
4544 swap_and_release_current_context(
4545 dc, intermediate_context, stream);
4546 dc_state_retain(dc->current_state);
4547 success = true;
4548 }
4549 release_minimal_transition_state(dc, intermediate_context,
4550 old_current_state, &policy);
4551 }
4552 dc_state_release(old_current_state);
4553 /*
4554 * Restore stream and plane states back to the values associated with
4555 * new context.
4556 */
4557 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4558 return success;
4559 }
4560
4561 /**
4562 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4563 * on current or new context
4564 *
4565 * @dc: DC structure, used to get the current state
4566 * @new_context: New context
4567 * @stream: Stream getting the update for the flip
4568 * @srf_updates: Surface updates
4569 * @surface_count: Number of surfaces
4570 *
4571 * The function takes in current state and new state and determine a minimal
4572 * transition state as the intermediate step which could make the transition
4573 * between current and new states seamless. If found, it will commit the minimal
4574 * transition state and update current state to this minimal transition state
4575 * and return true, if not, it will return false.
4576 *
4577 * Return:
4578 * Return True if the minimal transition succeeded, false otherwise
4579 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4580 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4581 struct dc_state *new_context,
4582 struct dc_stream_state *stream,
4583 struct dc_surface_update *srf_updates,
4584 int surface_count)
4585 {
4586 bool success = commit_minimal_transition_based_on_new_context(
4587 dc, new_context, stream, srf_updates,
4588 surface_count);
4589 if (!success)
4590 success = commit_minimal_transition_based_on_current_context(dc,
4591 new_context, stream);
4592 if (!success)
4593 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4594 return success;
4595 }
4596
4597 /**
4598 * commit_minimal_transition_state - Create a transition pipe split state
4599 *
4600 * @dc: Used to get the current state status
4601 * @transition_base_context: New transition state
4602 *
4603 * In some specific configurations, such as pipe split on multi-display with
4604 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4605 * programming when moving to new planes. To mitigate those types of problems,
4606 * this function adds a transition state that minimizes pipe usage before
4607 * programming the new configuration. When adding a new plane, the current
4608 * state requires the least pipes, so it is applied without splitting. When
4609 * removing a plane, the new state requires the least pipes, so it is applied
4610 * without splitting.
4611 *
4612 * Return:
4613 * Return false if something is wrong in the transition state.
4614 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4615 static bool commit_minimal_transition_state(struct dc *dc,
4616 struct dc_state *transition_base_context)
4617 {
4618 struct dc_state *transition_context;
4619 struct pipe_split_policy_backup policy;
4620 enum dc_status ret = DC_ERROR_UNEXPECTED;
4621 unsigned int i, j;
4622 unsigned int pipe_in_use = 0;
4623 bool subvp_in_use = false;
4624 bool odm_in_use = false;
4625
4626 /* check current pipes in use*/
4627 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4628 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4629
4630 if (pipe->plane_state)
4631 pipe_in_use++;
4632 }
4633
4634 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4635 * pipe, we must use the minimal transition.
4636 */
4637 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4638 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4639
4640 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4641 subvp_in_use = true;
4642 break;
4643 }
4644 }
4645
4646 /* If ODM is enabled and we are adding or removing planes from any ODM
4647 * pipe, we must use the minimal transition.
4648 */
4649 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4650 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4651
4652 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4653 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4654 break;
4655 }
4656 }
4657
4658 /* When the OS add a new surface if we have been used all of pipes with odm combine
4659 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4660 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4661 * call it again. Otherwise return true to skip.
4662 *
4663 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4664 * enter/exit MPO when DCN still have enough resources.
4665 */
4666 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4667 return true;
4668
4669 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4670 dc->current_state == transition_base_context ? "current" : "new",
4671 subvp_in_use ? "Subvp In Use" :
4672 odm_in_use ? "ODM in Use" :
4673 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4674 "Unknown");
4675
4676 dc_state_retain(transition_base_context);
4677 transition_context = create_minimal_transition_state(dc,
4678 transition_base_context, &policy);
4679 if (transition_context) {
4680 ret = dc_commit_state_no_check(dc, transition_context);
4681 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4682 }
4683 dc_state_release(transition_base_context);
4684
4685 if (ret != DC_OK) {
4686 /* this should never happen */
4687 BREAK_TO_DEBUGGER();
4688 return false;
4689 }
4690
4691 /* force full surface update */
4692 for (i = 0; i < dc->current_state->stream_count; i++) {
4693 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4694 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4695 }
4696 }
4697
4698 return true;
4699 }
4700
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4701 void populate_fast_updates(struct dc_fast_update *fast_update,
4702 struct dc_surface_update *srf_updates,
4703 int surface_count,
4704 struct dc_stream_update *stream_update)
4705 {
4706 int i = 0;
4707
4708 if (stream_update) {
4709 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4710 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4711 } else {
4712 fast_update[0].out_transfer_func = NULL;
4713 fast_update[0].output_csc_transform = NULL;
4714 }
4715
4716 for (i = 0; i < surface_count; i++) {
4717 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4718 fast_update[i].gamma = srf_updates[i].gamma;
4719 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4720 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4721 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4722 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4723 }
4724 }
4725
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4726 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4727 {
4728 int i;
4729
4730 if (fast_update[0].out_transfer_func ||
4731 fast_update[0].output_csc_transform)
4732 return true;
4733
4734 for (i = 0; i < surface_count; i++) {
4735 if (fast_update[i].flip_addr ||
4736 fast_update[i].gamma ||
4737 fast_update[i].gamut_remap_matrix ||
4738 fast_update[i].input_csc_color_matrix ||
4739 fast_update[i].cursor_csc_color_matrix ||
4740 fast_update[i].coeff_reduction_factor)
4741 return true;
4742 }
4743
4744 return false;
4745 }
4746
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4747 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4748 {
4749 int i;
4750
4751 if (fast_update[0].out_transfer_func ||
4752 fast_update[0].output_csc_transform)
4753 return true;
4754
4755 for (i = 0; i < surface_count; i++) {
4756 if (fast_update[i].input_csc_color_matrix ||
4757 fast_update[i].gamma ||
4758 fast_update[i].gamut_remap_matrix ||
4759 fast_update[i].coeff_reduction_factor ||
4760 fast_update[i].cursor_csc_color_matrix)
4761 return true;
4762 }
4763
4764 return false;
4765 }
4766
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4767 static bool full_update_required(struct dc *dc,
4768 struct dc_surface_update *srf_updates,
4769 int surface_count,
4770 struct dc_stream_update *stream_update,
4771 struct dc_stream_state *stream)
4772 {
4773
4774 int i;
4775 struct dc_stream_status *stream_status;
4776 const struct dc_state *context = dc->current_state;
4777
4778 for (i = 0; i < surface_count; i++) {
4779 if (srf_updates &&
4780 (srf_updates[i].plane_info ||
4781 srf_updates[i].scaling_info ||
4782 (srf_updates[i].hdr_mult.value &&
4783 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4784 (srf_updates[i].sdr_white_level_nits &&
4785 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4786 srf_updates[i].in_transfer_func ||
4787 srf_updates[i].func_shaper ||
4788 srf_updates[i].lut3d_func ||
4789 srf_updates[i].surface->force_full_update ||
4790 (srf_updates[i].flip_addr &&
4791 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4792 (srf_updates[i].cm2_params &&
4793 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4794 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4795 !is_surface_in_context(context, srf_updates[i].surface)))
4796 return true;
4797 }
4798
4799 if (stream_update &&
4800 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4801 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4802 stream_update->integer_scaling_update) ||
4803 stream_update->hdr_static_metadata ||
4804 stream_update->abm_level ||
4805 stream_update->periodic_interrupt ||
4806 stream_update->vrr_infopacket ||
4807 stream_update->vsc_infopacket ||
4808 stream_update->vsp_infopacket ||
4809 stream_update->hfvsif_infopacket ||
4810 stream_update->vtem_infopacket ||
4811 stream_update->adaptive_sync_infopacket ||
4812 stream_update->dpms_off ||
4813 stream_update->allow_freesync ||
4814 stream_update->vrr_active_variable ||
4815 stream_update->vrr_active_fixed ||
4816 stream_update->gamut_remap ||
4817 stream_update->output_color_space ||
4818 stream_update->dither_option ||
4819 stream_update->wb_update ||
4820 stream_update->dsc_config ||
4821 stream_update->mst_bw_update ||
4822 stream_update->func_shaper ||
4823 stream_update->lut3d_func ||
4824 stream_update->pending_test_pattern ||
4825 stream_update->crtc_timing_adjust ||
4826 stream_update->scaler_sharpener_update))
4827 return true;
4828
4829 if (stream) {
4830 stream_status = dc_stream_get_status(stream);
4831 if (stream_status == NULL || stream_status->plane_count != surface_count)
4832 return true;
4833 }
4834 if (dc->idle_optimizations_allowed)
4835 return true;
4836
4837 return false;
4838 }
4839
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4840 static bool fast_update_only(struct dc *dc,
4841 struct dc_fast_update *fast_update,
4842 struct dc_surface_update *srf_updates,
4843 int surface_count,
4844 struct dc_stream_update *stream_update,
4845 struct dc_stream_state *stream)
4846 {
4847 return fast_updates_exist(fast_update, surface_count)
4848 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4849 }
4850
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4851 static bool update_planes_and_stream_v1(struct dc *dc,
4852 struct dc_surface_update *srf_updates, int surface_count,
4853 struct dc_stream_state *stream,
4854 struct dc_stream_update *stream_update,
4855 struct dc_state *state)
4856 {
4857 const struct dc_stream_status *stream_status;
4858 enum surface_update_type update_type;
4859 struct dc_state *context;
4860 struct dc_context *dc_ctx = dc->ctx;
4861 int i, j;
4862 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4863
4864 dc_exit_ips_for_hw_access(dc);
4865
4866 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4867 stream_status = dc_stream_get_status(stream);
4868 context = dc->current_state;
4869
4870 update_type = dc_check_update_surfaces_for_stream(
4871 dc, srf_updates, surface_count, stream_update, stream_status);
4872 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
4873 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
4874 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
4875 */
4876 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
4877
4878 if (update_type >= UPDATE_TYPE_FULL) {
4879
4880 /* initialize scratch memory for building context */
4881 context = dc_state_create_copy(state);
4882 if (context == NULL) {
4883 DC_ERROR("Failed to allocate new validate context!\n");
4884 return false;
4885 }
4886
4887 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4888 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4889 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4890
4891 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4892 new_pipe->plane_state->force_full_update = true;
4893 }
4894 } else if (update_type == UPDATE_TYPE_FAST) {
4895 /*
4896 * Previous frame finished and HW is ready for optimization.
4897 */
4898 dc_post_update_surfaces_to_stream(dc);
4899 }
4900
4901 for (i = 0; i < surface_count; i++) {
4902 struct dc_plane_state *surface = srf_updates[i].surface;
4903
4904 copy_surface_update_to_plane(surface, &srf_updates[i]);
4905
4906 if (update_type >= UPDATE_TYPE_MED) {
4907 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4908 struct pipe_ctx *pipe_ctx =
4909 &context->res_ctx.pipe_ctx[j];
4910
4911 if (pipe_ctx->plane_state != surface)
4912 continue;
4913
4914 resource_build_scaling_params(pipe_ctx);
4915 }
4916 }
4917 }
4918
4919 copy_stream_update_to_stream(dc, context, stream, stream_update);
4920
4921 if (update_type >= UPDATE_TYPE_FULL) {
4922 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4923 DC_ERROR("Mode validation failed for stream update!\n");
4924 dc_state_release(context);
4925 return false;
4926 }
4927 }
4928
4929 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4930
4931 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4932 !dc->debug.enable_legacy_fast_update) {
4933 commit_planes_for_stream_fast(dc,
4934 srf_updates,
4935 surface_count,
4936 stream,
4937 stream_update,
4938 update_type,
4939 context);
4940 } else {
4941 commit_planes_for_stream(
4942 dc,
4943 srf_updates,
4944 surface_count,
4945 stream,
4946 stream_update,
4947 update_type,
4948 context);
4949 }
4950 /*update current_State*/
4951 if (dc->current_state != context) {
4952
4953 struct dc_state *old = dc->current_state;
4954
4955 dc->current_state = context;
4956 dc_state_release(old);
4957
4958 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4959 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4960
4961 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4962 pipe_ctx->plane_state->force_full_update = false;
4963 }
4964 }
4965
4966 /* Legacy optimization path for DCE. */
4967 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4968 dc_post_update_surfaces_to_stream(dc);
4969 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4970 }
4971 return true;
4972 }
4973
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4974 static bool update_planes_and_stream_v2(struct dc *dc,
4975 struct dc_surface_update *srf_updates, int surface_count,
4976 struct dc_stream_state *stream,
4977 struct dc_stream_update *stream_update)
4978 {
4979 struct dc_state *context;
4980 enum surface_update_type update_type;
4981 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4982
4983 /* In cases where MPO and split or ODM are used transitions can
4984 * cause underflow. Apply stream configuration with minimal pipe
4985 * split first to avoid unsupported transitions for active pipes.
4986 */
4987 bool force_minimal_pipe_splitting = 0;
4988 bool is_plane_addition = 0;
4989 bool is_fast_update_only;
4990
4991 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4992 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4993 surface_count, stream_update, stream);
4994 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4995 dc,
4996 stream,
4997 srf_updates,
4998 surface_count,
4999 &is_plane_addition);
5000
5001 /* on plane addition, minimal state is the current one */
5002 if (force_minimal_pipe_splitting && is_plane_addition &&
5003 !commit_minimal_transition_state(dc, dc->current_state))
5004 return false;
5005
5006 if (!update_planes_and_stream_state(
5007 dc,
5008 srf_updates,
5009 surface_count,
5010 stream,
5011 stream_update,
5012 &update_type,
5013 &context))
5014 return false;
5015
5016 /* on plane removal, minimal state is the new one */
5017 if (force_minimal_pipe_splitting && !is_plane_addition) {
5018 if (!commit_minimal_transition_state(dc, context)) {
5019 dc_state_release(context);
5020 return false;
5021 }
5022 update_type = UPDATE_TYPE_FULL;
5023 }
5024
5025 if (dc->hwss.is_pipe_topology_transition_seamless &&
5026 !dc->hwss.is_pipe_topology_transition_seamless(
5027 dc, dc->current_state, context))
5028 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5029 srf_updates, surface_count);
5030
5031 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5032 commit_planes_for_stream_fast(dc,
5033 srf_updates,
5034 surface_count,
5035 stream,
5036 stream_update,
5037 update_type,
5038 context);
5039 } else {
5040 if (!stream_update &&
5041 dc->hwss.is_pipe_topology_transition_seamless &&
5042 !dc->hwss.is_pipe_topology_transition_seamless(
5043 dc, dc->current_state, context)) {
5044 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5045 BREAK_TO_DEBUGGER();
5046 }
5047 commit_planes_for_stream(
5048 dc,
5049 srf_updates,
5050 surface_count,
5051 stream,
5052 stream_update,
5053 update_type,
5054 context);
5055 }
5056 if (dc->current_state != context)
5057 swap_and_release_current_context(dc, context, stream);
5058 return true;
5059 }
5060
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5061 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5062 struct dc_surface_update *srf_updates, int surface_count,
5063 struct dc_stream_state *stream,
5064 struct dc_stream_update *stream_update,
5065 enum surface_update_type update_type)
5066 {
5067 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5068
5069 ASSERT(update_type < UPDATE_TYPE_FULL);
5070 populate_fast_updates(fast_update, srf_updates, surface_count,
5071 stream_update);
5072 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5073 stream_update, stream) &&
5074 !dc->debug.enable_legacy_fast_update)
5075 commit_planes_for_stream_fast(dc,
5076 srf_updates,
5077 surface_count,
5078 stream,
5079 stream_update,
5080 update_type,
5081 dc->current_state);
5082 else
5083 commit_planes_for_stream(
5084 dc,
5085 srf_updates,
5086 surface_count,
5087 stream,
5088 stream_update,
5089 update_type,
5090 dc->current_state);
5091 }
5092
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5093 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5094 struct dc_surface_update *srf_updates, int surface_count,
5095 struct dc_stream_state *stream,
5096 struct dc_stream_update *stream_update,
5097 enum surface_update_type update_type,
5098 struct dc_state *new_context)
5099 {
5100 ASSERT(update_type >= UPDATE_TYPE_FULL);
5101 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5102 dc->current_state, new_context))
5103 /*
5104 * It is required by the feature design that all pipe topologies
5105 * using extra free pipes for power saving purposes such as
5106 * dynamic ODM or SubVp shall only be enabled when it can be
5107 * transitioned seamlessly to AND from its minimal transition
5108 * state. A minimal transition state is defined as the same dc
5109 * state but with all power saving features disabled. So it uses
5110 * the minimum pipe topology. When we can't seamlessly
5111 * transition from state A to state B, we will insert the
5112 * minimal transition state A' or B' in between so seamless
5113 * transition between A and B can be made possible.
5114 */
5115 commit_minimal_transition_state_in_dc_update(dc, new_context,
5116 stream, srf_updates, surface_count);
5117
5118 commit_planes_for_stream(
5119 dc,
5120 srf_updates,
5121 surface_count,
5122 stream,
5123 stream_update,
5124 update_type,
5125 new_context);
5126 }
5127
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5128 static bool update_planes_and_stream_v3(struct dc *dc,
5129 struct dc_surface_update *srf_updates, int surface_count,
5130 struct dc_stream_state *stream,
5131 struct dc_stream_update *stream_update)
5132 {
5133 struct dc_state *new_context;
5134 enum surface_update_type update_type;
5135
5136 /*
5137 * When this function returns true and new_context is not equal to
5138 * current state, the function allocates and validates a new dc state
5139 * and assigns it to new_context. The function expects that the caller
5140 * is responsible to free this memory when new_context is no longer
5141 * used. We swap current with new context and free current instead. So
5142 * new_context's memory will live until the next full update after it is
5143 * replaced by a newer context. Refer to the use of
5144 * swap_and_free_current_context below.
5145 */
5146 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5147 stream, stream_update, &update_type,
5148 &new_context))
5149 return false;
5150
5151 if (new_context == dc->current_state) {
5152 commit_planes_and_stream_update_on_current_context(dc,
5153 srf_updates, surface_count, stream,
5154 stream_update, update_type);
5155 } else {
5156 commit_planes_and_stream_update_with_new_context(dc,
5157 srf_updates, surface_count, stream,
5158 stream_update, update_type, new_context);
5159 swap_and_release_current_context(dc, new_context, stream);
5160 }
5161
5162 return true;
5163 }
5164
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5165 static void clear_update_flags(struct dc_surface_update *srf_updates,
5166 int surface_count, struct dc_stream_state *stream)
5167 {
5168 int i;
5169
5170 if (stream)
5171 stream->update_flags.raw = 0;
5172
5173 for (i = 0; i < surface_count; i++)
5174 if (srf_updates[i].surface)
5175 srf_updates[i].surface->update_flags.raw = 0;
5176 }
5177
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5178 bool dc_update_planes_and_stream(struct dc *dc,
5179 struct dc_surface_update *srf_updates, int surface_count,
5180 struct dc_stream_state *stream,
5181 struct dc_stream_update *stream_update)
5182 {
5183 bool ret = false;
5184
5185 dc_exit_ips_for_hw_access(dc);
5186 /*
5187 * update planes and stream version 3 separates FULL and FAST updates
5188 * to their own sequences. It aims to clean up frequent checks for
5189 * update type resulting unnecessary branching in logic flow. It also
5190 * adds a new commit minimal transition sequence, which detects the need
5191 * for minimal transition based on the actual comparison of current and
5192 * new states instead of "predicting" it based on per feature software
5193 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5194 * minimal transition sequence is made universal to any power saving
5195 * features that would use extra free pipes such as Dynamic ODM/MPC
5196 * Combine, MPO or SubVp. Therefore there is no longer a need to
5197 * specially handle compatibility problems with transitions among those
5198 * features as they are now transparent to the new sequence.
5199 */
5200 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5201 ret = update_planes_and_stream_v3(dc, srf_updates,
5202 surface_count, stream, stream_update);
5203 else
5204 ret = update_planes_and_stream_v2(dc, srf_updates,
5205 surface_count, stream, stream_update);
5206
5207 if (ret)
5208 clear_update_flags(srf_updates, surface_count, stream);
5209
5210 return ret;
5211 }
5212
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5213 void dc_commit_updates_for_stream(struct dc *dc,
5214 struct dc_surface_update *srf_updates,
5215 int surface_count,
5216 struct dc_stream_state *stream,
5217 struct dc_stream_update *stream_update,
5218 struct dc_state *state)
5219 {
5220 bool ret = false;
5221
5222 dc_exit_ips_for_hw_access(dc);
5223 /* TODO: Since change commit sequence can have a huge impact,
5224 * we decided to only enable it for DCN3x. However, as soon as
5225 * we get more confident about this change we'll need to enable
5226 * the new sequence for all ASICs.
5227 */
5228 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5229 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5230 stream, stream_update);
5231 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5232 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5233 stream, stream_update);
5234 } else
5235 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5236 stream_update, state);
5237
5238 if (ret)
5239 clear_update_flags(srf_updates, surface_count, stream);
5240 }
5241
dc_get_current_stream_count(struct dc * dc)5242 uint8_t dc_get_current_stream_count(struct dc *dc)
5243 {
5244 return dc->current_state->stream_count;
5245 }
5246
dc_get_stream_at_index(struct dc * dc,uint8_t i)5247 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5248 {
5249 if (i < dc->current_state->stream_count)
5250 return dc->current_state->streams[i];
5251 return NULL;
5252 }
5253
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5254 enum dc_irq_source dc_interrupt_to_irq_source(
5255 struct dc *dc,
5256 uint32_t src_id,
5257 uint32_t ext_id)
5258 {
5259 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5260 }
5261
5262 /*
5263 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5264 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5265 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5266 {
5267
5268 if (dc == NULL)
5269 return false;
5270
5271 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5272 }
5273
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5274 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5275 {
5276 dal_irq_service_ack(dc->res_pool->irqs, src);
5277 }
5278
dc_power_down_on_boot(struct dc * dc)5279 void dc_power_down_on_boot(struct dc *dc)
5280 {
5281 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5282 dc->hwss.power_down_on_boot) {
5283 if (dc->caps.ips_support)
5284 dc_exit_ips_for_hw_access(dc);
5285 dc->hwss.power_down_on_boot(dc);
5286 }
5287 }
5288
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5289 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5290 {
5291 if (!dc->current_state)
5292 return;
5293
5294 switch (power_state) {
5295 case DC_ACPI_CM_POWER_STATE_D0:
5296 dc_state_construct(dc, dc->current_state);
5297
5298 dc_exit_ips_for_hw_access(dc);
5299
5300 dc_z10_restore(dc);
5301
5302 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5303
5304 dc->hwss.init_hw(dc);
5305
5306 if (dc->hwss.init_sys_ctx != NULL &&
5307 dc->vm_pa_config.valid) {
5308 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5309 }
5310
5311 break;
5312 default:
5313 ASSERT(dc->current_state->stream_count == 0);
5314
5315 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5316
5317 dc_state_destruct(dc->current_state);
5318
5319 break;
5320 }
5321 }
5322
dc_resume(struct dc * dc)5323 void dc_resume(struct dc *dc)
5324 {
5325 uint32_t i;
5326
5327 for (i = 0; i < dc->link_count; i++)
5328 dc->link_srv->resume(dc->links[i]);
5329 }
5330
dc_is_dmcu_initialized(struct dc * dc)5331 bool dc_is_dmcu_initialized(struct dc *dc)
5332 {
5333 struct dmcu *dmcu = dc->res_pool->dmcu;
5334
5335 if (dmcu)
5336 return dmcu->funcs->is_dmcu_initialized(dmcu);
5337 return false;
5338 }
5339
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5340 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5341 {
5342 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5343 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5344 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5345 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5346 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5347 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5348 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5349 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5350 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5351 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5352 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5353 {
5354 if (dc->hwss.set_clock)
5355 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5356 return DC_ERROR_UNEXPECTED;
5357 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5358 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5359 {
5360 if (dc->hwss.get_clock)
5361 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5362 }
5363
5364 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5365 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5366 {
5367 int i;
5368 bool allow_active;
5369
5370 for (i = 0; i < dc->current_state->stream_count ; i++) {
5371 struct dc_link *link;
5372 struct dc_stream_state *stream = dc->current_state->streams[i];
5373
5374 link = stream->link;
5375 if (!link)
5376 continue;
5377
5378 if (link->psr_settings.psr_feature_enabled) {
5379 if (enable && !link->psr_settings.psr_allow_active) {
5380 allow_active = true;
5381 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5382 return false;
5383 } else if (!enable && link->psr_settings.psr_allow_active) {
5384 allow_active = false;
5385 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5386 return false;
5387 }
5388 }
5389 }
5390
5391 return true;
5392 }
5393
5394 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5395 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5396 {
5397 int i;
5398 bool allow_active;
5399
5400 for (i = 0; i < dc->current_state->stream_count; i++) {
5401 struct dc_link *link;
5402 struct dc_stream_state *stream = dc->current_state->streams[i];
5403
5404 link = stream->link;
5405 if (!link)
5406 continue;
5407
5408 if (link->replay_settings.replay_feature_enabled) {
5409 if (active && !link->replay_settings.replay_allow_active) {
5410 allow_active = true;
5411 if (!dc_link_set_replay_allow_active(link, &allow_active,
5412 false, false, NULL))
5413 return false;
5414 } else if (!active && link->replay_settings.replay_allow_active) {
5415 allow_active = false;
5416 if (!dc_link_set_replay_allow_active(link, &allow_active,
5417 true, false, NULL))
5418 return false;
5419 }
5420 }
5421 }
5422
5423 return true;
5424 }
5425
5426 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5427 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5428 {
5429 dc_exit_ips_for_hw_access(dc);
5430
5431 dc->config.disable_ips = disable_ips;
5432
5433 return true;
5434 }
5435
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5436 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5437 {
5438 if (dc->debug.disable_idle_power_optimizations) {
5439 DC_LOG_DEBUG("%s: disabled\n", __func__);
5440 return;
5441 }
5442
5443 if (allow != dc->idle_optimizations_allowed)
5444 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5445 dc->idle_optimizations_allowed, allow, caller_name);
5446
5447 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5448 return;
5449
5450 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5451 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5452 return;
5453
5454 if (allow == dc->idle_optimizations_allowed)
5455 return;
5456
5457 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5458 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5459 dc->idle_optimizations_allowed = allow;
5460 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5461 }
5462 }
5463
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5464 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5465 {
5466 if (dc->caps.ips_support)
5467 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5468 }
5469
dc_dmub_is_ips_idle_state(struct dc * dc)5470 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5471 {
5472 if (dc->debug.disable_idle_power_optimizations)
5473 return false;
5474
5475 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5476 return false;
5477
5478 if (!dc->ctx->dmub_srv)
5479 return false;
5480
5481 return dc->ctx->dmub_srv->idle_allowed;
5482 }
5483
5484 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5485 void dc_unlock_memory_clock_frequency(struct dc *dc)
5486 {
5487 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5488 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5489
5490 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5491 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5492 }
5493
5494 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5495 void dc_lock_memory_clock_frequency(struct dc *dc)
5496 {
5497 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5498 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5499
5500 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5501 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5502
5503 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5504 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5505 }
5506
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5507 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5508 {
5509 struct dc_state *context = dc->current_state;
5510 struct hubp *hubp;
5511 struct pipe_ctx *pipe;
5512 int i;
5513
5514 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5515 pipe = &context->res_ctx.pipe_ctx[i];
5516
5517 if (pipe->stream != NULL) {
5518 dc->hwss.disable_pixel_data(dc, pipe, true);
5519
5520 // wait for double buffer
5521 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5522 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5523 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5524
5525 hubp = pipe->plane_res.hubp;
5526 hubp->funcs->set_blank_regs(hubp, true);
5527 }
5528 }
5529 if (dc->clk_mgr->funcs->set_max_memclk)
5530 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5531 if (dc->clk_mgr->funcs->set_min_memclk)
5532 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5533
5534 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5535 pipe = &context->res_ctx.pipe_ctx[i];
5536
5537 if (pipe->stream != NULL) {
5538 dc->hwss.disable_pixel_data(dc, pipe, false);
5539
5540 hubp = pipe->plane_res.hubp;
5541 hubp->funcs->set_blank_regs(hubp, false);
5542 }
5543 }
5544 }
5545
5546
5547 /**
5548 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5549 * @dc: pointer to dc of the dm calling this
5550 * @enable: True = transition to DC mode, false = transition back to AC mode
5551 *
5552 * Some SoCs define additional clock limits when in DC mode, DM should
5553 * invoke this function when the platform undergoes a power source transition
5554 * so DC can apply/unapply the limit. This interface may be disruptive to
5555 * the onscreen content.
5556 *
5557 * Context: Triggered by OS through DM interface, or manually by escape calls.
5558 * Need to hold a dclock when doing so.
5559 *
5560 * Return: none (void function)
5561 *
5562 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5563 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5564 {
5565 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5566 bool p_state_change_support;
5567
5568 if (!dc->config.dc_mode_clk_limit_support)
5569 return;
5570
5571 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5572 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5573 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5574 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5575 }
5576 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5577 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5578
5579 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5580 if (p_state_change_support) {
5581 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5582 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5583 // else: No-Op
5584 } else {
5585 if (funcMin <= softMax)
5586 blank_and_force_memclk(dc, true, softMax);
5587 // else: No-Op
5588 }
5589 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5590 if (p_state_change_support) {
5591 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5592 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5593 // else: No-Op
5594 } else {
5595 if (funcMin <= softMax)
5596 blank_and_force_memclk(dc, true, maxDPM);
5597 // else: No-Op
5598 }
5599 }
5600 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5601 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5602 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5603 unsigned int pitch,
5604 unsigned int height,
5605 enum surface_pixel_format format,
5606 struct dc_cursor_attributes *cursor_attr)
5607 {
5608 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5609 return true;
5610 return false;
5611 }
5612
5613 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5614 void dc_hardware_release(struct dc *dc)
5615 {
5616 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5617
5618 if (dc->hwss.hardware_release)
5619 dc->hwss.hardware_release(dc);
5620 }
5621
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5622 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5623 {
5624 if (dc->current_state)
5625 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5626 }
5627
5628 /**
5629 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5630 *
5631 * @dc: [in] dc structure
5632 *
5633 * Checks whether DMUB FW supports outbox notifications, if supported DM
5634 * should register outbox interrupt prior to actually enabling interrupts
5635 * via dc_enable_dmub_outbox
5636 *
5637 * Return:
5638 * True if DMUB FW supports outbox notifications, False otherwise
5639 */
dc_is_dmub_outbox_supported(struct dc * dc)5640 bool dc_is_dmub_outbox_supported(struct dc *dc)
5641 {
5642 if (!dc->caps.dmcub_support)
5643 return false;
5644
5645 switch (dc->ctx->asic_id.chip_family) {
5646
5647 case FAMILY_YELLOW_CARP:
5648 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5649 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5650 !dc->debug.dpia_debug.bits.disable_dpia)
5651 return true;
5652 break;
5653
5654 case AMDGPU_FAMILY_GC_11_0_1:
5655 case AMDGPU_FAMILY_GC_11_5_0:
5656 if (!dc->debug.dpia_debug.bits.disable_dpia)
5657 return true;
5658 break;
5659
5660 default:
5661 break;
5662 }
5663
5664 /* dmub aux needs dmub notifications to be enabled */
5665 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5666
5667 }
5668
5669 /**
5670 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5671 *
5672 * @dc: [in] dc structure
5673 *
5674 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5675 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5676 * API shall be removed after switching.
5677 *
5678 * Return:
5679 * True if DMUB FW supports outbox notifications, False otherwise
5680 */
dc_enable_dmub_notifications(struct dc * dc)5681 bool dc_enable_dmub_notifications(struct dc *dc)
5682 {
5683 return dc_is_dmub_outbox_supported(dc);
5684 }
5685
5686 /**
5687 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5688 *
5689 * @dc: [in] dc structure
5690 *
5691 * Enables DMUB unsolicited notifications to x86 via outbox.
5692 */
dc_enable_dmub_outbox(struct dc * dc)5693 void dc_enable_dmub_outbox(struct dc *dc)
5694 {
5695 struct dc_context *dc_ctx = dc->ctx;
5696
5697 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5698 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5699 }
5700
5701 /**
5702 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5703 * Sets port index appropriately for legacy DDC
5704 * @dc: dc structure
5705 * @link_index: link index
5706 * @payload: aux payload
5707 *
5708 * Returns: True if successful, False if failure
5709 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5710 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5711 uint32_t link_index,
5712 struct aux_payload *payload)
5713 {
5714 uint8_t action;
5715 union dmub_rb_cmd cmd = {0};
5716
5717 ASSERT(payload->length <= 16);
5718
5719 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5720 cmd.dp_aux_access.header.payload_bytes = 0;
5721 /* For dpia, ddc_pin is set to NULL */
5722 if (!dc->links[link_index]->ddc->ddc_pin)
5723 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5724 else
5725 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5726
5727 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5728 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5729 cmd.dp_aux_access.aux_control.timeout = 0;
5730 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5731 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5732 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5733
5734 /* set aux action */
5735 if (payload->i2c_over_aux) {
5736 if (payload->write) {
5737 if (payload->mot)
5738 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5739 else
5740 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5741 } else {
5742 if (payload->mot)
5743 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5744 else
5745 action = DP_AUX_REQ_ACTION_I2C_READ;
5746 }
5747 } else {
5748 if (payload->write)
5749 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5750 else
5751 action = DP_AUX_REQ_ACTION_DPCD_READ;
5752 }
5753
5754 cmd.dp_aux_access.aux_control.dpaux.action = action;
5755
5756 if (payload->length && payload->write) {
5757 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5758 payload->data,
5759 payload->length
5760 );
5761 }
5762
5763 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5764
5765 return true;
5766 }
5767
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5768 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5769 uint8_t dpia_port_index)
5770 {
5771 uint8_t index, link_index = 0xFF;
5772
5773 for (index = 0; index < dc->link_count; index++) {
5774 /* ddc_hw_inst has dpia port index for dpia links
5775 * and ddc instance for legacy links
5776 */
5777 if (!dc->links[index]->ddc->ddc_pin) {
5778 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5779 link_index = index;
5780 break;
5781 }
5782 }
5783 }
5784 ASSERT(link_index != 0xFF);
5785 return link_index;
5786 }
5787
5788 /**
5789 * dc_process_dmub_set_config_async - Submits set_config command
5790 *
5791 * @dc: [in] dc structure
5792 * @link_index: [in] link_index: link index
5793 * @payload: [in] aux payload
5794 * @notify: [out] set_config immediate reply
5795 *
5796 * Submits set_config command to dmub via inbox message.
5797 *
5798 * Return:
5799 * True if successful, False if failure
5800 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5801 bool dc_process_dmub_set_config_async(struct dc *dc,
5802 uint32_t link_index,
5803 struct set_config_cmd_payload *payload,
5804 struct dmub_notification *notify)
5805 {
5806 union dmub_rb_cmd cmd = {0};
5807 bool is_cmd_complete = true;
5808
5809 /* prepare SET_CONFIG command */
5810 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5811 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5812
5813 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5814 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5815 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5816
5817 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5818 /* command is not processed by dmub */
5819 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5820 return is_cmd_complete;
5821 }
5822
5823 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5824 if (cmd.set_config_access.header.ret_status == 1)
5825 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5826 else
5827 /* cmd pending, will receive notification via outbox */
5828 is_cmd_complete = false;
5829
5830 return is_cmd_complete;
5831 }
5832
5833 /**
5834 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5835 *
5836 * @dc: [in] dc structure
5837 * @link_index: [in] link index
5838 * @mst_alloc_slots: [in] mst slots to be allotted
5839 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5840 *
5841 * Submits mst slot allocation command to dmub via inbox message
5842 *
5843 * Return:
5844 * DC_OK if successful, DC_ERROR if failure
5845 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5846 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5847 uint32_t link_index,
5848 uint8_t mst_alloc_slots,
5849 uint8_t *mst_slots_in_use)
5850 {
5851 union dmub_rb_cmd cmd = {0};
5852
5853 /* prepare MST_ALLOC_SLOTS command */
5854 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5855 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5856
5857 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5858 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5859
5860 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5861 /* command is not processed by dmub */
5862 return DC_ERROR_UNEXPECTED;
5863
5864 /* command processed by dmub, if ret_status is 1 */
5865 if (cmd.set_config_access.header.ret_status != 1)
5866 /* command processing error */
5867 return DC_ERROR_UNEXPECTED;
5868
5869 /* command processed and we have a status of 2, mst not enabled in dpia */
5870 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5871 return DC_FAIL_UNSUPPORTED_1;
5872
5873 /* previously configured mst alloc and used slots did not match */
5874 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5875 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5876 return DC_NOT_SUPPORTED;
5877 }
5878
5879 return DC_OK;
5880 }
5881
5882 /**
5883 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5884 *
5885 * @dc: [in] dc structure
5886 * @link_index: [in] link index
5887 * @tps: [in] request tps
5888 *
5889 * Submits set_tps_notification command to dmub via inbox message
5890 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5891 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5892 {
5893 union dmub_rb_cmd cmd = {0};
5894
5895 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5896 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5897 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5898 cmd.set_tps_notification.tps_notification.tps = tps;
5899
5900 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5901 }
5902
5903 /**
5904 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5905 *
5906 * @dc: [in] dc structure
5907 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5908 *
5909 * Submits dpia hpd int enable command to dmub via inbox message
5910 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5911 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5912 uint32_t hpd_int_enable)
5913 {
5914 union dmub_rb_cmd cmd = {0};
5915
5916 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5917 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5918
5919 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5920
5921 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5922 }
5923
5924 /**
5925 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5926 *
5927 * @dc: [in] dc structure
5928 *
5929 *
5930 */
dc_print_dmub_diagnostic_data(const struct dc * dc)5931 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5932 {
5933 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5934 }
5935
5936 /**
5937 * dc_disable_accelerated_mode - disable accelerated mode
5938 * @dc: dc structure
5939 */
dc_disable_accelerated_mode(struct dc * dc)5940 void dc_disable_accelerated_mode(struct dc *dc)
5941 {
5942 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5943 }
5944
5945
5946 /**
5947 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5948 * @dc: dc structure
5949 * @stream: stream where vsync int state changed
5950 * @enable: whether vsync is enabled or disabled
5951 *
5952 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5953 * interrupts after steady state is reached.
5954 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5955 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5956 {
5957 int i;
5958 int edp_num;
5959 struct pipe_ctx *pipe = NULL;
5960 struct dc_link *link = stream->sink->link;
5961 struct dc_link *edp_links[MAX_NUM_EDP];
5962
5963
5964 if (link->psr_settings.psr_feature_enabled)
5965 return;
5966
5967 if (link->replay_settings.replay_feature_enabled)
5968 return;
5969
5970 /*find primary pipe associated with stream*/
5971 for (i = 0; i < MAX_PIPES; i++) {
5972 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5973
5974 if (pipe->stream == stream && pipe->stream_res.tg)
5975 break;
5976 }
5977
5978 if (i == MAX_PIPES) {
5979 ASSERT(0);
5980 return;
5981 }
5982
5983 dc_get_edp_links(dc, edp_links, &edp_num);
5984
5985 /* Determine panel inst */
5986 for (i = 0; i < edp_num; i++) {
5987 if (edp_links[i] == link)
5988 break;
5989 }
5990
5991 if (i == edp_num) {
5992 return;
5993 }
5994
5995 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5996 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5997 }
5998
5999 /*****************************************************************************
6000 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6001 * ABM
6002 * @dc: dc structure
6003 * @stream: stream where vsync int state changed
6004 * @pData: abm hw states
6005 *
6006 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6007 bool dc_abm_save_restore(
6008 struct dc *dc,
6009 struct dc_stream_state *stream,
6010 struct abm_save_restore *pData)
6011 {
6012 int i;
6013 int edp_num;
6014 struct pipe_ctx *pipe = NULL;
6015 struct dc_link *link = stream->sink->link;
6016 struct dc_link *edp_links[MAX_NUM_EDP];
6017
6018 if (link->replay_settings.replay_feature_enabled)
6019 return false;
6020
6021 /*find primary pipe associated with stream*/
6022 for (i = 0; i < MAX_PIPES; i++) {
6023 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6024
6025 if (pipe->stream == stream && pipe->stream_res.tg)
6026 break;
6027 }
6028
6029 if (i == MAX_PIPES) {
6030 ASSERT(0);
6031 return false;
6032 }
6033
6034 dc_get_edp_links(dc, edp_links, &edp_num);
6035
6036 /* Determine panel inst */
6037 for (i = 0; i < edp_num; i++)
6038 if (edp_links[i] == link)
6039 break;
6040
6041 if (i == edp_num)
6042 return false;
6043
6044 if (pipe->stream_res.abm &&
6045 pipe->stream_res.abm->funcs->save_restore)
6046 return pipe->stream_res.abm->funcs->save_restore(
6047 pipe->stream_res.abm,
6048 i,
6049 pData);
6050 return false;
6051 }
6052
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6053 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6054 {
6055 unsigned int i;
6056 bool subvp_sw_cursor_req = false;
6057
6058 for (i = 0; i < dc->current_state->stream_count; i++) {
6059 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
6060 subvp_sw_cursor_req = true;
6061 break;
6062 }
6063 }
6064 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
6065 }
6066
6067 /**
6068 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6069 *
6070 * Called when DM wants to power on/off eDP.
6071 * Only work on links with flag skip_implict_edp_power_control is set.
6072 *
6073 * @dc: Current DC state
6074 * @edp_link: a link with eDP connector signal type
6075 * @powerOn: power on/off eDP
6076 *
6077 * Return: void
6078 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6079 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6080 bool powerOn)
6081 {
6082 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6083 return;
6084
6085 if (edp_link->skip_implict_edp_power_control == false)
6086 return;
6087
6088 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6089 }
6090
6091 /*
6092 *****************************************************************************
6093 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6094 *
6095 * Called when DM wants to make power policy decisions based on dc_state
6096 *
6097 *****************************************************************************
6098 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6099 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6100 {
6101 struct dc_power_profile profile = { 0 };
6102
6103 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6104 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6105 return profile;
6106 struct dc *dc = context->clk_mgr->ctx->dc;
6107
6108 if (dc->res_pool->funcs->get_power_profile)
6109 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6110 return profile;
6111 }
6112
6113 /*
6114 **********************************************************************************
6115 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6116 *
6117 * Called when DM wants to log detile buffer size from dc_state
6118 *
6119 **********************************************************************************
6120 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6121 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6122 {
6123 struct dc *dc = context->clk_mgr->ctx->dc;
6124
6125 if (dc->res_pool->funcs->get_det_buffer_size)
6126 return dc->res_pool->funcs->get_det_buffer_size(context);
6127 else
6128 return 0;
6129 }
6130