xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_topology.c (revision 6cca686dfce79bf5bd5c1a680ed38a9f20669e39)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34 #include <linux/crc16.h>
35 
36 #include "kfd_priv.h"
37 #include "kfd_crat.h"
38 #include "kfd_topology.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_svm.h"
41 #include "kfd_debug.h"
42 #include "amdgpu_amdkfd.h"
43 #include "amdgpu_ras.h"
44 #include "amdgpu.h"
45 
46 /* topology_device_list - Master list of all topology devices */
47 static struct list_head topology_device_list;
48 static struct kfd_system_properties sys_props;
49 
50 static DECLARE_RWSEM(topology_lock);
51 static uint32_t topology_crat_proximity_domain;
52 
53 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
54 						uint32_t proximity_domain)
55 {
56 	struct kfd_topology_device *top_dev;
57 	struct kfd_topology_device *device = NULL;
58 
59 	list_for_each_entry(top_dev, &topology_device_list, list)
60 		if (top_dev->proximity_domain == proximity_domain) {
61 			device = top_dev;
62 			break;
63 		}
64 
65 	return device;
66 }
67 
68 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
69 						uint32_t proximity_domain)
70 {
71 	struct kfd_topology_device *device = NULL;
72 
73 	down_read(&topology_lock);
74 
75 	device = kfd_topology_device_by_proximity_domain_no_lock(
76 							proximity_domain);
77 	up_read(&topology_lock);
78 
79 	return device;
80 }
81 
82 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
83 {
84 	struct kfd_topology_device *top_dev = NULL;
85 	struct kfd_topology_device *ret = NULL;
86 
87 	down_read(&topology_lock);
88 
89 	list_for_each_entry(top_dev, &topology_device_list, list)
90 		if (top_dev->gpu_id == gpu_id) {
91 			ret = top_dev;
92 			break;
93 		}
94 
95 	up_read(&topology_lock);
96 
97 	return ret;
98 }
99 
100 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
101 {
102 	struct kfd_topology_device *top_dev;
103 
104 	top_dev = kfd_topology_device_by_id(gpu_id);
105 	if (!top_dev)
106 		return NULL;
107 
108 	return top_dev->gpu;
109 }
110 
111 /* Called with write topology_lock acquired */
112 static void kfd_release_topology_device(struct kfd_topology_device *dev)
113 {
114 	struct kfd_mem_properties *mem;
115 	struct kfd_cache_properties *cache;
116 	struct kfd_iolink_properties *iolink;
117 	struct kfd_iolink_properties *p2plink;
118 	struct kfd_perf_properties *perf;
119 
120 	list_del(&dev->list);
121 
122 	while (dev->mem_props.next != &dev->mem_props) {
123 		mem = container_of(dev->mem_props.next,
124 				struct kfd_mem_properties, list);
125 		list_del(&mem->list);
126 		kfree(mem);
127 	}
128 
129 	while (dev->cache_props.next != &dev->cache_props) {
130 		cache = container_of(dev->cache_props.next,
131 				struct kfd_cache_properties, list);
132 		list_del(&cache->list);
133 		kfree(cache);
134 	}
135 
136 	while (dev->io_link_props.next != &dev->io_link_props) {
137 		iolink = container_of(dev->io_link_props.next,
138 				struct kfd_iolink_properties, list);
139 		list_del(&iolink->list);
140 		kfree(iolink);
141 	}
142 
143 	while (dev->p2p_link_props.next != &dev->p2p_link_props) {
144 		p2plink = container_of(dev->p2p_link_props.next,
145 				struct kfd_iolink_properties, list);
146 		list_del(&p2plink->list);
147 		kfree(p2plink);
148 	}
149 
150 	while (dev->perf_props.next != &dev->perf_props) {
151 		perf = container_of(dev->perf_props.next,
152 				struct kfd_perf_properties, list);
153 		list_del(&perf->list);
154 		kfree(perf);
155 	}
156 
157 	kfree(dev);
158 }
159 
160 void kfd_release_topology_device_list(struct list_head *device_list)
161 {
162 	struct kfd_topology_device *dev;
163 
164 	while (!list_empty(device_list)) {
165 		dev = list_first_entry(device_list,
166 				       struct kfd_topology_device, list);
167 		kfd_release_topology_device(dev);
168 	}
169 }
170 
171 static void kfd_release_live_view(void)
172 {
173 	kfd_release_topology_device_list(&topology_device_list);
174 	memset(&sys_props, 0, sizeof(sys_props));
175 }
176 
177 struct kfd_topology_device *kfd_create_topology_device(
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	dev = kfd_alloc_struct(dev);
183 	if (!dev) {
184 		pr_err("No memory to allocate a topology device");
185 		return NULL;
186 	}
187 
188 	INIT_LIST_HEAD(&dev->mem_props);
189 	INIT_LIST_HEAD(&dev->cache_props);
190 	INIT_LIST_HEAD(&dev->io_link_props);
191 	INIT_LIST_HEAD(&dev->p2p_link_props);
192 	INIT_LIST_HEAD(&dev->perf_props);
193 
194 	list_add_tail(&dev->list, device_list);
195 
196 	return dev;
197 }
198 
199 
200 #define sysfs_show_gen_prop(buffer, offs, fmt, ...)		\
201 		(offs += snprintf(buffer+offs, PAGE_SIZE-offs,	\
202 				  fmt, __VA_ARGS__))
203 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
204 		sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
205 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
206 		sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
207 #define sysfs_show_32bit_val(buffer, offs, value) \
208 		sysfs_show_gen_prop(buffer, offs, "%u\n", value)
209 #define sysfs_show_str_val(buffer, offs, value) \
210 		sysfs_show_gen_prop(buffer, offs, "%s\n", value)
211 
212 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
213 		char *buffer)
214 {
215 	int offs = 0;
216 
217 	/* Making sure that the buffer is an empty string */
218 	buffer[0] = 0;
219 
220 	if (attr == &sys_props.attr_genid) {
221 		sysfs_show_32bit_val(buffer, offs,
222 				     sys_props.generation_count);
223 	} else if (attr == &sys_props.attr_props) {
224 		sysfs_show_64bit_prop(buffer, offs, "platform_oem",
225 				      sys_props.platform_oem);
226 		sysfs_show_64bit_prop(buffer, offs, "platform_id",
227 				      sys_props.platform_id);
228 		sysfs_show_64bit_prop(buffer, offs, "platform_rev",
229 				      sys_props.platform_rev);
230 	} else {
231 		offs = -EINVAL;
232 	}
233 
234 	return offs;
235 }
236 
237 static void kfd_topology_kobj_release(struct kobject *kobj)
238 {
239 	kfree(kobj);
240 }
241 
242 static const struct sysfs_ops sysprops_ops = {
243 	.show = sysprops_show,
244 };
245 
246 static const struct kobj_type sysprops_type = {
247 	.release = kfd_topology_kobj_release,
248 	.sysfs_ops = &sysprops_ops,
249 };
250 
251 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
252 		char *buffer)
253 {
254 	int offs = 0;
255 	struct kfd_iolink_properties *iolink;
256 
257 	/* Making sure that the buffer is an empty string */
258 	buffer[0] = 0;
259 
260 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
261 	if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
262 		return -EPERM;
263 	sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
264 	sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
265 	sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
266 	sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
267 	sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
268 	sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
269 	sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
270 	sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
271 	sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
272 			      iolink->min_bandwidth);
273 	sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
274 			      iolink->max_bandwidth);
275 	sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
276 			      iolink->rec_transfer_size);
277 	sysfs_show_32bit_prop(buffer, offs, "recommended_sdma_engine_id_mask",
278 			      iolink->rec_sdma_eng_id_mask);
279 	sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
280 
281 	return offs;
282 }
283 
284 static const struct sysfs_ops iolink_ops = {
285 	.show = iolink_show,
286 };
287 
288 static const struct kobj_type iolink_type = {
289 	.release = kfd_topology_kobj_release,
290 	.sysfs_ops = &iolink_ops,
291 };
292 
293 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
294 		char *buffer)
295 {
296 	int offs = 0;
297 	struct kfd_mem_properties *mem;
298 
299 	/* Making sure that the buffer is an empty string */
300 	buffer[0] = 0;
301 
302 	mem = container_of(attr, struct kfd_mem_properties, attr);
303 	if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
304 		return -EPERM;
305 	sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
306 	sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
307 			      mem->size_in_bytes);
308 	sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
309 	sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
310 	sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
311 			      mem->mem_clk_max);
312 
313 	return offs;
314 }
315 
316 static const struct sysfs_ops mem_ops = {
317 	.show = mem_show,
318 };
319 
320 static const struct kobj_type mem_type = {
321 	.release = kfd_topology_kobj_release,
322 	.sysfs_ops = &mem_ops,
323 };
324 
325 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
326 		char *buffer)
327 {
328 	int offs = 0;
329 	uint32_t i, j;
330 	struct kfd_cache_properties *cache;
331 
332 	/* Making sure that the buffer is an empty string */
333 	buffer[0] = 0;
334 	cache = container_of(attr, struct kfd_cache_properties, attr);
335 	if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
336 		return -EPERM;
337 	sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
338 			cache->processor_id_low);
339 	sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
340 	sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
341 	sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
342 			      cache->cacheline_size);
343 	sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
344 			      cache->cachelines_per_tag);
345 	sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
346 	sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
347 	sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
348 
349 	offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
350 	for (i = 0; i < cache->sibling_map_size; i++)
351 		for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
352 			/* Check each bit */
353 			offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
354 						(cache->sibling_map[i] >> j) & 1);
355 
356 	/* Replace the last "," with end of line */
357 	buffer[offs-1] = '\n';
358 	return offs;
359 }
360 
361 static const struct sysfs_ops cache_ops = {
362 	.show = kfd_cache_show,
363 };
364 
365 static const struct kobj_type cache_type = {
366 	.release = kfd_topology_kobj_release,
367 	.sysfs_ops = &cache_ops,
368 };
369 
370 /****** Sysfs of Performance Counters ******/
371 
372 struct kfd_perf_attr {
373 	struct kobj_attribute attr;
374 	uint32_t data;
375 };
376 
377 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
378 			char *buf)
379 {
380 	int offs = 0;
381 	struct kfd_perf_attr *attr;
382 
383 	buf[0] = 0;
384 	attr = container_of(attrs, struct kfd_perf_attr, attr);
385 	if (!attr->data) /* invalid data for PMC */
386 		return 0;
387 	else
388 		return sysfs_show_32bit_val(buf, offs, attr->data);
389 }
390 
391 #define KFD_PERF_DESC(_name, _data)			\
392 {							\
393 	.attr  = __ATTR(_name, 0444, perf_show, NULL),	\
394 	.data = _data,					\
395 }
396 
397 static struct kfd_perf_attr perf_attr_iommu[] = {
398 	KFD_PERF_DESC(max_concurrent, 0),
399 	KFD_PERF_DESC(num_counters, 0),
400 	KFD_PERF_DESC(counter_ids, 0),
401 };
402 /****************************************/
403 
404 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
405 		char *buffer)
406 {
407 	int offs = 0;
408 	struct kfd_topology_device *dev;
409 	uint32_t log_max_watch_addr;
410 
411 	/* Making sure that the buffer is an empty string */
412 	buffer[0] = 0;
413 
414 	if (strcmp(attr->name, "gpu_id") == 0) {
415 		dev = container_of(attr, struct kfd_topology_device,
416 				attr_gpuid);
417 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
418 			return -EPERM;
419 		return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
420 	}
421 
422 	if (strcmp(attr->name, "name") == 0) {
423 		dev = container_of(attr, struct kfd_topology_device,
424 				attr_name);
425 
426 		if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
427 			return -EPERM;
428 		return sysfs_show_str_val(buffer, offs, dev->node_props.name);
429 	}
430 
431 	dev = container_of(attr, struct kfd_topology_device,
432 			attr_props);
433 	if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
434 		return -EPERM;
435 	sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
436 			      dev->node_props.cpu_cores_count);
437 	sysfs_show_32bit_prop(buffer, offs, "simd_count",
438 			      dev->gpu ? dev->node_props.simd_count : 0);
439 	sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
440 			      dev->node_props.mem_banks_count);
441 	sysfs_show_32bit_prop(buffer, offs, "caches_count",
442 			      dev->node_props.caches_count);
443 	sysfs_show_32bit_prop(buffer, offs, "io_links_count",
444 			      dev->node_props.io_links_count);
445 	sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
446 			      dev->node_props.p2p_links_count);
447 	sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
448 			      dev->node_props.cpu_core_id_base);
449 	sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
450 			      dev->node_props.simd_id_base);
451 	sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
452 			      dev->node_props.max_waves_per_simd);
453 	sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
454 			      dev->node_props.lds_size_in_kb);
455 	sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
456 			      dev->node_props.gds_size_in_kb);
457 	sysfs_show_32bit_prop(buffer, offs, "num_gws",
458 			      dev->node_props.num_gws);
459 	sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
460 			      dev->node_props.wave_front_size);
461 	sysfs_show_32bit_prop(buffer, offs, "array_count",
462 			      dev->gpu ? (dev->node_props.array_count *
463 					  NUM_XCC(dev->gpu->xcc_mask)) : 0);
464 	sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
465 			      dev->node_props.simd_arrays_per_engine);
466 	sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
467 			      dev->node_props.cu_per_simd_array);
468 	sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
469 			      dev->node_props.simd_per_cu);
470 	sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
471 			      dev->node_props.max_slots_scratch_cu);
472 	sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
473 			      dev->node_props.gfx_target_version);
474 	sysfs_show_32bit_prop(buffer, offs, "vendor_id",
475 			      dev->node_props.vendor_id);
476 	sysfs_show_32bit_prop(buffer, offs, "device_id",
477 			      dev->node_props.device_id);
478 	sysfs_show_32bit_prop(buffer, offs, "location_id",
479 			      dev->node_props.location_id);
480 	sysfs_show_32bit_prop(buffer, offs, "domain",
481 			      dev->node_props.domain);
482 	sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
483 			      dev->node_props.drm_render_minor);
484 	sysfs_show_64bit_prop(buffer, offs, "hive_id",
485 			      dev->node_props.hive_id);
486 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
487 			      dev->node_props.num_sdma_engines);
488 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
489 			      dev->node_props.num_sdma_xgmi_engines);
490 	sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
491 			      dev->node_props.num_sdma_queues_per_engine);
492 	sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
493 			      dev->node_props.num_cp_queues);
494 	sysfs_show_32bit_prop(buffer, offs, "cwsr_size",
495 			      dev->node_props.cwsr_size);
496 	sysfs_show_32bit_prop(buffer, offs, "ctl_stack_size",
497 			      dev->node_props.ctl_stack_size);
498 
499 	if (dev->gpu) {
500 		log_max_watch_addr =
501 			__ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
502 
503 		if (log_max_watch_addr) {
504 			dev->node_props.capability |=
505 					HSA_CAP_WATCH_POINTS_SUPPORTED;
506 
507 			dev->node_props.capability |=
508 				((log_max_watch_addr <<
509 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
510 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
511 		}
512 
513 		if (dev->gpu->adev->asic_type == CHIP_TONGA)
514 			dev->node_props.capability |=
515 					HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
516 
517 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0) &&
518 			(dev->gpu->adev->sdma.supported_reset & AMDGPU_RESET_TYPE_PER_QUEUE))
519 				dev->node_props.capability2 |= HSA_CAP2_PER_SDMA_QUEUE_RESET_SUPPORTED;
520 
521 		sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
522 			dev->node_props.max_engine_clk_fcompute);
523 
524 		sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
525 
526 		sysfs_show_32bit_prop(buffer, offs, "fw_version",
527 				      dev->gpu->kfd->mec_fw_version);
528 		sysfs_show_32bit_prop(buffer, offs, "capability",
529 				      dev->node_props.capability);
530 		sysfs_show_32bit_prop(buffer, offs, "capability2",
531 				      dev->node_props.capability2);
532 		sysfs_show_64bit_prop(buffer, offs, "debug_prop",
533 				      dev->node_props.debug_prop);
534 		sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
535 				      dev->gpu->kfd->sdma_fw_version);
536 		sysfs_show_64bit_prop(buffer, offs, "unique_id",
537 				      dev->gpu->xcp &&
538 				      (dev->gpu->xcp->xcp_mgr->mode !=
539 				       AMDGPU_SPX_PARTITION_MODE) ?
540 				      dev->gpu->xcp->unique_id :
541 				      dev->gpu->adev->unique_id);
542 		sysfs_show_32bit_prop(buffer, offs, "num_xcc",
543 				      NUM_XCC(dev->gpu->xcc_mask));
544 	}
545 
546 	return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
547 				     cpufreq_quick_get_max(0)/1000);
548 }
549 
550 static const struct sysfs_ops node_ops = {
551 	.show = node_show,
552 };
553 
554 static const struct kobj_type node_type = {
555 	.release = kfd_topology_kobj_release,
556 	.sysfs_ops = &node_ops,
557 };
558 
559 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
560 {
561 	sysfs_remove_file(kobj, attr);
562 	kobject_del(kobj);
563 	kobject_put(kobj);
564 }
565 
566 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
567 {
568 	struct kfd_iolink_properties *p2plink;
569 	struct kfd_iolink_properties *iolink;
570 	struct kfd_cache_properties *cache;
571 	struct kfd_mem_properties *mem;
572 	struct kfd_perf_properties *perf;
573 
574 	if (dev->kobj_iolink) {
575 		list_for_each_entry(iolink, &dev->io_link_props, list)
576 			if (iolink->kobj) {
577 				kfd_remove_sysfs_file(iolink->kobj,
578 							&iolink->attr);
579 				iolink->kobj = NULL;
580 			}
581 		kobject_del(dev->kobj_iolink);
582 		kobject_put(dev->kobj_iolink);
583 		dev->kobj_iolink = NULL;
584 	}
585 
586 	if (dev->kobj_p2plink) {
587 		list_for_each_entry(p2plink, &dev->p2p_link_props, list)
588 			if (p2plink->kobj) {
589 				kfd_remove_sysfs_file(p2plink->kobj,
590 							&p2plink->attr);
591 				p2plink->kobj = NULL;
592 			}
593 		kobject_del(dev->kobj_p2plink);
594 		kobject_put(dev->kobj_p2plink);
595 		dev->kobj_p2plink = NULL;
596 	}
597 
598 	if (dev->kobj_cache) {
599 		list_for_each_entry(cache, &dev->cache_props, list)
600 			if (cache->kobj) {
601 				kfd_remove_sysfs_file(cache->kobj,
602 							&cache->attr);
603 				cache->kobj = NULL;
604 			}
605 		kobject_del(dev->kobj_cache);
606 		kobject_put(dev->kobj_cache);
607 		dev->kobj_cache = NULL;
608 	}
609 
610 	if (dev->kobj_mem) {
611 		list_for_each_entry(mem, &dev->mem_props, list)
612 			if (mem->kobj) {
613 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
614 				mem->kobj = NULL;
615 			}
616 		kobject_del(dev->kobj_mem);
617 		kobject_put(dev->kobj_mem);
618 		dev->kobj_mem = NULL;
619 	}
620 
621 	if (dev->kobj_perf) {
622 		list_for_each_entry(perf, &dev->perf_props, list) {
623 			kfree(perf->attr_group);
624 			perf->attr_group = NULL;
625 		}
626 		kobject_del(dev->kobj_perf);
627 		kobject_put(dev->kobj_perf);
628 		dev->kobj_perf = NULL;
629 	}
630 
631 	if (dev->kobj_node) {
632 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
633 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
634 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
635 		kobject_del(dev->kobj_node);
636 		kobject_put(dev->kobj_node);
637 		dev->kobj_node = NULL;
638 	}
639 }
640 
641 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
642 		uint32_t id)
643 {
644 	struct kfd_iolink_properties *p2plink;
645 	struct kfd_iolink_properties *iolink;
646 	struct kfd_cache_properties *cache;
647 	struct kfd_mem_properties *mem;
648 	struct kfd_perf_properties *perf;
649 	int ret;
650 	uint32_t i, num_attrs;
651 	struct attribute **attrs;
652 
653 	if (WARN_ON(dev->kobj_node))
654 		return -EEXIST;
655 
656 	/*
657 	 * Creating the sysfs folders
658 	 */
659 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
660 	if (!dev->kobj_node)
661 		return -ENOMEM;
662 
663 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
664 			sys_props.kobj_nodes, "%d", id);
665 	if (ret < 0) {
666 		kobject_put(dev->kobj_node);
667 		return ret;
668 	}
669 
670 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
671 	if (!dev->kobj_mem)
672 		return -ENOMEM;
673 
674 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
675 	if (!dev->kobj_cache)
676 		return -ENOMEM;
677 
678 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
679 	if (!dev->kobj_iolink)
680 		return -ENOMEM;
681 
682 	dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
683 	if (!dev->kobj_p2plink)
684 		return -ENOMEM;
685 
686 	dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
687 	if (!dev->kobj_perf)
688 		return -ENOMEM;
689 
690 	/*
691 	 * Creating sysfs files for node properties
692 	 */
693 	dev->attr_gpuid.name = "gpu_id";
694 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
695 	sysfs_attr_init(&dev->attr_gpuid);
696 	dev->attr_name.name = "name";
697 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
698 	sysfs_attr_init(&dev->attr_name);
699 	dev->attr_props.name = "properties";
700 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
701 	sysfs_attr_init(&dev->attr_props);
702 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
703 	if (ret < 0)
704 		return ret;
705 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
706 	if (ret < 0)
707 		return ret;
708 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
709 	if (ret < 0)
710 		return ret;
711 
712 	i = 0;
713 	list_for_each_entry(mem, &dev->mem_props, list) {
714 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
715 		if (!mem->kobj)
716 			return -ENOMEM;
717 		ret = kobject_init_and_add(mem->kobj, &mem_type,
718 				dev->kobj_mem, "%d", i);
719 		if (ret < 0) {
720 			kobject_put(mem->kobj);
721 			return ret;
722 		}
723 
724 		mem->attr.name = "properties";
725 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
726 		sysfs_attr_init(&mem->attr);
727 		ret = sysfs_create_file(mem->kobj, &mem->attr);
728 		if (ret < 0)
729 			return ret;
730 		i++;
731 	}
732 
733 	i = 0;
734 	list_for_each_entry(cache, &dev->cache_props, list) {
735 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
736 		if (!cache->kobj)
737 			return -ENOMEM;
738 		ret = kobject_init_and_add(cache->kobj, &cache_type,
739 				dev->kobj_cache, "%d", i);
740 		if (ret < 0) {
741 			kobject_put(cache->kobj);
742 			return ret;
743 		}
744 
745 		cache->attr.name = "properties";
746 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
747 		sysfs_attr_init(&cache->attr);
748 		ret = sysfs_create_file(cache->kobj, &cache->attr);
749 		if (ret < 0)
750 			return ret;
751 		i++;
752 	}
753 
754 	i = 0;
755 	list_for_each_entry(iolink, &dev->io_link_props, list) {
756 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
757 		if (!iolink->kobj)
758 			return -ENOMEM;
759 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
760 				dev->kobj_iolink, "%d", i);
761 		if (ret < 0) {
762 			kobject_put(iolink->kobj);
763 			return ret;
764 		}
765 
766 		iolink->attr.name = "properties";
767 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
768 		sysfs_attr_init(&iolink->attr);
769 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
770 		if (ret < 0)
771 			return ret;
772 		i++;
773 	}
774 
775 	i = 0;
776 	list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
777 		p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
778 		if (!p2plink->kobj)
779 			return -ENOMEM;
780 		ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
781 				dev->kobj_p2plink, "%d", i);
782 		if (ret < 0) {
783 			kobject_put(p2plink->kobj);
784 			return ret;
785 		}
786 
787 		p2plink->attr.name = "properties";
788 		p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
789 		sysfs_attr_init(&p2plink->attr);
790 		ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
791 		if (ret < 0)
792 			return ret;
793 		i++;
794 	}
795 
796 	/* All hardware blocks have the same number of attributes. */
797 	num_attrs = ARRAY_SIZE(perf_attr_iommu);
798 	list_for_each_entry(perf, &dev->perf_props, list) {
799 		perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
800 			* num_attrs + sizeof(struct attribute_group),
801 			GFP_KERNEL);
802 		if (!perf->attr_group)
803 			return -ENOMEM;
804 
805 		attrs = (struct attribute **)(perf->attr_group + 1);
806 		if (!strcmp(perf->block_name, "iommu")) {
807 		/* Information of IOMMU's num_counters and counter_ids is shown
808 		 * under /sys/bus/event_source/devices/amd_iommu. We don't
809 		 * duplicate here.
810 		 */
811 			perf_attr_iommu[0].data = perf->max_concurrent;
812 			for (i = 0; i < num_attrs; i++)
813 				attrs[i] = &perf_attr_iommu[i].attr.attr;
814 		}
815 		perf->attr_group->name = perf->block_name;
816 		perf->attr_group->attrs = attrs;
817 		ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
818 		if (ret < 0)
819 			return ret;
820 	}
821 
822 	return 0;
823 }
824 
825 /* Called with write topology lock acquired */
826 static int kfd_build_sysfs_node_tree(void)
827 {
828 	struct kfd_topology_device *dev;
829 	int ret;
830 	uint32_t i = 0;
831 
832 	list_for_each_entry(dev, &topology_device_list, list) {
833 		ret = kfd_build_sysfs_node_entry(dev, i);
834 		if (ret < 0)
835 			return ret;
836 		i++;
837 	}
838 
839 	return 0;
840 }
841 
842 /* Called with write topology lock acquired */
843 static void kfd_remove_sysfs_node_tree(void)
844 {
845 	struct kfd_topology_device *dev;
846 
847 	list_for_each_entry(dev, &topology_device_list, list)
848 		kfd_remove_sysfs_node_entry(dev);
849 }
850 
851 static int kfd_topology_update_sysfs(void)
852 {
853 	int ret;
854 
855 	if (!sys_props.kobj_topology) {
856 		sys_props.kobj_topology =
857 				kfd_alloc_struct(sys_props.kobj_topology);
858 		if (!sys_props.kobj_topology)
859 			return -ENOMEM;
860 
861 		ret = kobject_init_and_add(sys_props.kobj_topology,
862 				&sysprops_type,  &kfd_device->kobj,
863 				"topology");
864 		if (ret < 0) {
865 			kobject_put(sys_props.kobj_topology);
866 			return ret;
867 		}
868 
869 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
870 				sys_props.kobj_topology);
871 		if (!sys_props.kobj_nodes)
872 			return -ENOMEM;
873 
874 		sys_props.attr_genid.name = "generation_id";
875 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
876 		sysfs_attr_init(&sys_props.attr_genid);
877 		ret = sysfs_create_file(sys_props.kobj_topology,
878 				&sys_props.attr_genid);
879 		if (ret < 0)
880 			return ret;
881 
882 		sys_props.attr_props.name = "system_properties";
883 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
884 		sysfs_attr_init(&sys_props.attr_props);
885 		ret = sysfs_create_file(sys_props.kobj_topology,
886 				&sys_props.attr_props);
887 		if (ret < 0)
888 			return ret;
889 	}
890 
891 	kfd_remove_sysfs_node_tree();
892 
893 	return kfd_build_sysfs_node_tree();
894 }
895 
896 static void kfd_topology_release_sysfs(void)
897 {
898 	kfd_remove_sysfs_node_tree();
899 	if (sys_props.kobj_topology) {
900 		sysfs_remove_file(sys_props.kobj_topology,
901 				&sys_props.attr_genid);
902 		sysfs_remove_file(sys_props.kobj_topology,
903 				&sys_props.attr_props);
904 		if (sys_props.kobj_nodes) {
905 			kobject_del(sys_props.kobj_nodes);
906 			kobject_put(sys_props.kobj_nodes);
907 			sys_props.kobj_nodes = NULL;
908 		}
909 		kobject_del(sys_props.kobj_topology);
910 		kobject_put(sys_props.kobj_topology);
911 		sys_props.kobj_topology = NULL;
912 	}
913 }
914 
915 /* Called with write topology_lock acquired */
916 static void kfd_topology_update_device_list(struct list_head *temp_list,
917 					struct list_head *master_list)
918 {
919 	while (!list_empty(temp_list)) {
920 		list_move_tail(temp_list->next, master_list);
921 		sys_props.num_devices++;
922 	}
923 }
924 
925 static void kfd_debug_print_topology(void)
926 {
927 	struct kfd_topology_device *dev;
928 
929 	down_read(&topology_lock);
930 
931 	dev = list_last_entry(&topology_device_list,
932 			struct kfd_topology_device, list);
933 	if (dev) {
934 		if (dev->node_props.cpu_cores_count)
935 			pr_info("Topology: Add CPU node\n");
936 		else
937 			pr_info("Topology: Add GPU node [0x%0x:0x%0x]\n",
938 				dev->node_props.vendor_id,
939 				dev->node_props.device_id);
940 	}
941 	up_read(&topology_lock);
942 }
943 
944 /* Helper function for intializing platform_xx members of
945  * kfd_system_properties. Uses OEM info from the last CPU/APU node.
946  */
947 static void kfd_update_system_properties(void)
948 {
949 	struct kfd_topology_device *dev;
950 
951 	down_read(&topology_lock);
952 	dev = list_last_entry(&topology_device_list,
953 			struct kfd_topology_device, list);
954 	if (dev) {
955 		sys_props.platform_id = dev->oem_id64;
956 		sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
957 		sys_props.platform_rev = dev->oem_revision;
958 	}
959 	up_read(&topology_lock);
960 }
961 
962 static void find_system_memory(const struct dmi_header *dm, void *private)
963 {
964 	struct dmi_mem_device *memdev = container_of(dm, struct dmi_mem_device, header);
965 	struct kfd_mem_properties *mem;
966 	struct kfd_topology_device *kdev =
967 		(struct kfd_topology_device *)private;
968 
969 	if (memdev->header.type != DMI_ENTRY_MEM_DEVICE)
970 		return;
971 	if (memdev->header.length < sizeof(struct dmi_mem_device))
972 		return;
973 
974 	list_for_each_entry(mem, &kdev->mem_props, list) {
975 		if (memdev->total_width != 0xFFFF && memdev->total_width != 0)
976 			mem->width = memdev->total_width;
977 		if (memdev->speed != 0)
978 			mem->mem_clk_max = memdev->speed;
979 	}
980 }
981 
982 /* kfd_add_non_crat_information - Add information that is not currently
983  *	defined in CRAT but is necessary for KFD topology
984  * @dev - topology device to which addition info is added
985  */
986 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
987 {
988 	/* Check if CPU only node. */
989 	if (!kdev->gpu) {
990 		/* Add system memory information */
991 		dmi_walk(find_system_memory, kdev);
992 	}
993 	/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
994 }
995 
996 int kfd_topology_init(void)
997 {
998 	void *crat_image = NULL;
999 	size_t image_size = 0;
1000 	int ret;
1001 	struct list_head temp_topology_device_list;
1002 	int cpu_only_node = 0;
1003 	struct kfd_topology_device *kdev;
1004 	int proximity_domain;
1005 
1006 	/* topology_device_list - Master list of all topology devices
1007 	 * temp_topology_device_list - temporary list created while parsing CRAT
1008 	 * or VCRAT. Once parsing is complete the contents of list is moved to
1009 	 * topology_device_list
1010 	 */
1011 
1012 	/* Initialize the head for the both the lists */
1013 	INIT_LIST_HEAD(&topology_device_list);
1014 	INIT_LIST_HEAD(&temp_topology_device_list);
1015 	init_rwsem(&topology_lock);
1016 
1017 	memset(&sys_props, 0, sizeof(sys_props));
1018 
1019 	/* Proximity domains in ACPI CRAT tables start counting at
1020 	 * 0. The same should be true for virtual CRAT tables created
1021 	 * at this stage. GPUs added later in kfd_topology_add_device
1022 	 * use a counter.
1023 	 */
1024 	proximity_domain = 0;
1025 
1026 	ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1027 					    COMPUTE_UNIT_CPU, NULL,
1028 					    proximity_domain);
1029 	cpu_only_node = 1;
1030 	if (ret) {
1031 		pr_err("Error creating VCRAT table for CPU\n");
1032 		return ret;
1033 	}
1034 
1035 	ret = kfd_parse_crat_table(crat_image,
1036 				   &temp_topology_device_list,
1037 				   proximity_domain);
1038 	if (ret) {
1039 		pr_err("Error parsing VCRAT table for CPU\n");
1040 		goto err;
1041 	}
1042 
1043 	kdev = list_first_entry(&temp_topology_device_list,
1044 				struct kfd_topology_device, list);
1045 
1046 	down_write(&topology_lock);
1047 	kfd_topology_update_device_list(&temp_topology_device_list,
1048 					&topology_device_list);
1049 	topology_crat_proximity_domain = sys_props.num_devices-1;
1050 	ret = kfd_topology_update_sysfs();
1051 	up_write(&topology_lock);
1052 
1053 	if (!ret) {
1054 		sys_props.generation_count++;
1055 		kfd_update_system_properties();
1056 		kfd_debug_print_topology();
1057 	} else
1058 		pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1059 
1060 	/* For nodes with GPU, this information gets added
1061 	 * when GPU is detected (kfd_topology_add_device).
1062 	 */
1063 	if (cpu_only_node) {
1064 		/* Add additional information to CPU only node created above */
1065 		down_write(&topology_lock);
1066 		kdev = list_first_entry(&topology_device_list,
1067 				struct kfd_topology_device, list);
1068 		up_write(&topology_lock);
1069 		kfd_add_non_crat_information(kdev);
1070 	}
1071 
1072 err:
1073 	kfd_destroy_crat_image(crat_image);
1074 	return ret;
1075 }
1076 
1077 void kfd_topology_shutdown(void)
1078 {
1079 	down_write(&topology_lock);
1080 	kfd_topology_release_sysfs();
1081 	kfd_release_live_view();
1082 	up_write(&topology_lock);
1083 }
1084 
1085 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1086 {
1087 	uint32_t gpu_id;
1088 	uint32_t buf[8];
1089 	uint64_t local_mem_size;
1090 	struct kfd_topology_device *dev;
1091 	bool is_unique;
1092 	uint8_t *crc_buf;
1093 
1094 	if (!gpu)
1095 		return 0;
1096 
1097 	crc_buf = (uint8_t *)&buf;
1098 	local_mem_size = gpu->local_mem_info.local_mem_size_private +
1099 			gpu->local_mem_info.local_mem_size_public;
1100 	buf[0] = gpu->adev->pdev->devfn;
1101 	buf[1] = gpu->adev->pdev->subsystem_vendor |
1102 		(gpu->adev->pdev->subsystem_device << 16);
1103 	buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1104 	buf[3] = gpu->adev->pdev->device;
1105 	buf[4] = gpu->adev->pdev->bus->number;
1106 	buf[5] = lower_32_bits(local_mem_size);
1107 	buf[6] = upper_32_bits(local_mem_size);
1108 	buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1109 
1110 	gpu_id = crc16(0, crc_buf, sizeof(buf)) &
1111 		 ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1112 
1113 	/* There is a very small possibility when generating a
1114 	 * 16 (KFD_GPU_ID_HASH_WIDTH) bit value from 8 word buffer
1115 	 * that the value could be 0 or non-unique. So, check if
1116 	 * it is unique and non-zero. If not unique increment till
1117 	 * unique one is found. In case of overflow, restart from 1
1118 	 */
1119 
1120 	down_read(&topology_lock);
1121 	do {
1122 		is_unique = true;
1123 		if (!gpu_id)
1124 			gpu_id = 1;
1125 		list_for_each_entry(dev, &topology_device_list, list) {
1126 			if (dev->gpu && dev->gpu_id == gpu_id) {
1127 				is_unique = false;
1128 				break;
1129 			}
1130 		}
1131 		if (unlikely(!is_unique))
1132 			gpu_id = (gpu_id + 1) &
1133 				  ((1 << KFD_GPU_ID_HASH_WIDTH) - 1);
1134 	} while (!is_unique);
1135 	up_read(&topology_lock);
1136 
1137 	return gpu_id;
1138 }
1139 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1140  *		the GPU device is not already present in the topology device
1141  *		list then return NULL. This means a new topology device has to
1142  *		be created for this GPU.
1143  */
1144 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1145 {
1146 	struct kfd_topology_device *dev;
1147 	struct kfd_topology_device *out_dev = NULL;
1148 	struct kfd_mem_properties *mem;
1149 	struct kfd_cache_properties *cache;
1150 	struct kfd_iolink_properties *iolink;
1151 	struct kfd_iolink_properties *p2plink;
1152 
1153 	list_for_each_entry(dev, &topology_device_list, list) {
1154 		/* Discrete GPUs need their own topology device list
1155 		 * entries. Don't assign them to CPU/APU nodes.
1156 		 */
1157 		if (dev->node_props.cpu_cores_count)
1158 			continue;
1159 
1160 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1161 			dev->gpu = gpu;
1162 			out_dev = dev;
1163 
1164 			list_for_each_entry(mem, &dev->mem_props, list)
1165 				mem->gpu = dev->gpu;
1166 			list_for_each_entry(cache, &dev->cache_props, list)
1167 				cache->gpu = dev->gpu;
1168 			list_for_each_entry(iolink, &dev->io_link_props, list)
1169 				iolink->gpu = dev->gpu;
1170 			list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1171 				p2plink->gpu = dev->gpu;
1172 			break;
1173 		}
1174 	}
1175 	return out_dev;
1176 }
1177 
1178 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1179 {
1180 	/*
1181 	 * TODO: Generate an event for thunk about the arrival/removal
1182 	 * of the GPU
1183 	 */
1184 }
1185 
1186 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1187  *		patch this after CRAT parsing.
1188  */
1189 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1190 {
1191 	struct kfd_mem_properties *mem;
1192 	struct kfd_local_mem_info local_mem_info;
1193 
1194 	if (!dev)
1195 		return;
1196 
1197 	/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1198 	 * single bank of VRAM local memory.
1199 	 * for dGPUs - VCRAT reports only one bank of Local Memory
1200 	 * for APUs - If CRAT from ACPI reports more than one bank, then
1201 	 *	all the banks will report the same mem_clk_max information
1202 	 */
1203 	amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1204 					 dev->gpu->xcp);
1205 
1206 	list_for_each_entry(mem, &dev->mem_props, list)
1207 		mem->mem_clk_max = local_mem_info.mem_clk_max;
1208 }
1209 
1210 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1211 					struct kfd_topology_device *target_gpu_dev,
1212 					struct kfd_iolink_properties *link)
1213 {
1214 	/* xgmi always supports atomics between links. */
1215 	if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1216 		return;
1217 
1218 	/* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1219 	if (target_gpu_dev) {
1220 		uint32_t cap;
1221 
1222 		pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1223 				PCI_EXP_DEVCAP2, &cap);
1224 
1225 		if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1226 			     PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1227 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1228 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1229 	/* set gpu (dev) flags. */
1230 	} else {
1231 		if (!dev->gpu->kfd->pci_atomic_requested ||
1232 				dev->gpu->adev->asic_type == CHIP_HAWAII)
1233 			link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1234 				CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1235 	}
1236 }
1237 
1238 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1239 		struct kfd_iolink_properties *outbound_link,
1240 		struct kfd_iolink_properties *inbound_link)
1241 {
1242 	/* CPU -> GPU with PCIe */
1243 	if (!to_dev->gpu &&
1244 	    inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1245 		inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1246 
1247 	if (to_dev->gpu) {
1248 		/* GPU <-> GPU with PCIe and
1249 		 * Vega20 with XGMI
1250 		 */
1251 		if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1252 		    (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1253 		    KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1254 			outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1255 			inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1256 		}
1257 	}
1258 }
1259 
1260 #define REC_SDMA_NUM_GPU	8
1261 static const int rec_sdma_eng_map[REC_SDMA_NUM_GPU][REC_SDMA_NUM_GPU] = {
1262 							{ -1, 14, 12, 2, 4, 8, 10, 6 },
1263 							{ 14, -1, 2, 10, 8, 4, 6, 12 },
1264 							{ 10, 2, -1, 12, 14, 6, 4, 8 },
1265 							{ 2, 12, 10, -1, 6, 14, 8, 4 },
1266 							{ 4, 8, 14, 6, -1, 10, 12, 2 },
1267 							{ 8, 4, 6, 14, 12, -1, 2, 10 },
1268 							{ 10, 6, 4, 8, 12, 2, -1, 14 },
1269 							{ 6, 12, 8, 4, 2, 10, 14, -1 }};
1270 
1271 static void kfd_set_recommended_sdma_engines(struct kfd_topology_device *to_dev,
1272 					     struct kfd_iolink_properties *outbound_link,
1273 					     struct kfd_iolink_properties *inbound_link)
1274 {
1275 	struct kfd_node *gpu = outbound_link->gpu;
1276 	struct amdgpu_device *adev = gpu->adev;
1277 	unsigned int num_xgmi_nodes = adev->gmc.xgmi.num_physical_nodes;
1278 	unsigned int num_xgmi_sdma_engines = kfd_get_num_xgmi_sdma_engines(gpu);
1279 	unsigned int num_sdma_engines = kfd_get_num_sdma_engines(gpu);
1280 	uint32_t sdma_eng_id_mask = (1 << num_sdma_engines) - 1;
1281 	uint32_t xgmi_sdma_eng_id_mask =
1282 			((1 << num_xgmi_sdma_engines) - 1) << num_sdma_engines;
1283 
1284 	bool support_rec_eng = !amdgpu_sriov_vf(adev) && to_dev->gpu &&
1285 		adev->aid_mask && num_xgmi_nodes && gpu->kfd->num_nodes == 1 &&
1286 		num_xgmi_sdma_engines >= 6 && (!(adev->flags & AMD_IS_APU) &&
1287 		num_xgmi_nodes == 8);
1288 
1289 	if (support_rec_eng) {
1290 		int src_socket_id = adev->gmc.xgmi.physical_node_id;
1291 		int dst_socket_id = to_dev->gpu->adev->gmc.xgmi.physical_node_id;
1292 		unsigned int reshift = num_xgmi_sdma_engines == 6 ? 1 : 0;
1293 
1294 		outbound_link->rec_sdma_eng_id_mask =
1295 			1 << (rec_sdma_eng_map[src_socket_id][dst_socket_id] >> reshift);
1296 		inbound_link->rec_sdma_eng_id_mask =
1297 			1 << (rec_sdma_eng_map[dst_socket_id][src_socket_id] >> reshift);
1298 
1299 		/* If recommended engine is out of range, need to reset the mask */
1300 		if (outbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1301 			outbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1302 		if (inbound_link->rec_sdma_eng_id_mask & sdma_eng_id_mask)
1303 			inbound_link->rec_sdma_eng_id_mask = xgmi_sdma_eng_id_mask;
1304 
1305 	} else {
1306 		uint32_t engine_mask = (outbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1307 				num_xgmi_sdma_engines && to_dev->gpu) ? xgmi_sdma_eng_id_mask :
1308 				sdma_eng_id_mask;
1309 
1310 		outbound_link->rec_sdma_eng_id_mask = engine_mask;
1311 		inbound_link->rec_sdma_eng_id_mask = engine_mask;
1312 	}
1313 }
1314 
1315 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1316 {
1317 	struct kfd_iolink_properties *link, *inbound_link;
1318 	struct kfd_topology_device *peer_dev;
1319 
1320 	if (!dev || !dev->gpu)
1321 		return;
1322 
1323 	/* GPU only creates direct links so apply flags setting to all */
1324 	list_for_each_entry(link, &dev->io_link_props, list) {
1325 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1326 		kfd_set_iolink_no_atomics(dev, NULL, link);
1327 		peer_dev = kfd_topology_device_by_proximity_domain(
1328 				link->node_to);
1329 
1330 		if (!peer_dev)
1331 			continue;
1332 
1333 		/* Include the CPU peer in GPU hive if connected over xGMI. */
1334 		if (!peer_dev->gpu &&
1335 		    link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1336 			/*
1337 			 * If the GPU is not part of a GPU hive, use its pci
1338 			 * device location as the hive ID to bind with the CPU.
1339 			 */
1340 			if (!dev->node_props.hive_id)
1341 				dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1342 			peer_dev->node_props.hive_id = dev->node_props.hive_id;
1343 		}
1344 
1345 		list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1346 									list) {
1347 			if (inbound_link->node_to != link->node_from)
1348 				continue;
1349 
1350 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1351 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1352 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1353 			kfd_set_recommended_sdma_engines(peer_dev, link, inbound_link);
1354 		}
1355 	}
1356 
1357 	/* Create indirect links so apply flags setting to all */
1358 	list_for_each_entry(link, &dev->p2p_link_props, list) {
1359 		link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1360 		kfd_set_iolink_no_atomics(dev, NULL, link);
1361 		peer_dev = kfd_topology_device_by_proximity_domain(
1362 				link->node_to);
1363 
1364 		if (!peer_dev)
1365 			continue;
1366 
1367 		list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1368 									list) {
1369 			if (inbound_link->node_to != link->node_from)
1370 				continue;
1371 
1372 			inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1373 			kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1374 			kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1375 		}
1376 	}
1377 }
1378 
1379 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1380 				struct kfd_iolink_properties *p2plink)
1381 {
1382 	int ret;
1383 
1384 	p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1385 	if (!p2plink->kobj)
1386 		return -ENOMEM;
1387 
1388 	ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1389 			dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1390 	if (ret < 0) {
1391 		kobject_put(p2plink->kobj);
1392 		return ret;
1393 	}
1394 
1395 	p2plink->attr.name = "properties";
1396 	p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1397 	sysfs_attr_init(&p2plink->attr);
1398 	ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1399 	if (ret < 0)
1400 		return ret;
1401 
1402 	return 0;
1403 }
1404 
1405 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1406 {
1407 	struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1408 	struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1409 	struct kfd_topology_device *cpu_dev;
1410 	int ret = 0;
1411 	int i, num_cpu;
1412 
1413 	num_cpu = 0;
1414 	list_for_each_entry(cpu_dev, &topology_device_list, list) {
1415 		if (cpu_dev->gpu)
1416 			break;
1417 		num_cpu++;
1418 	}
1419 
1420 	if (list_empty(&kdev->io_link_props))
1421 		return -ENODATA;
1422 
1423 	gpu_link = list_first_entry(&kdev->io_link_props,
1424 				    struct kfd_iolink_properties, list);
1425 
1426 	for (i = 0; i < num_cpu; i++) {
1427 		/* CPU <--> GPU */
1428 		if (gpu_link->node_to == i)
1429 			continue;
1430 
1431 		/* find CPU <-->  CPU links */
1432 		cpu_link = NULL;
1433 		cpu_dev = kfd_topology_device_by_proximity_domain(i);
1434 		if (cpu_dev) {
1435 			list_for_each_entry(tmp_link,
1436 					&cpu_dev->io_link_props, list) {
1437 				if (tmp_link->node_to == gpu_link->node_to) {
1438 					cpu_link = tmp_link;
1439 					break;
1440 				}
1441 			}
1442 		}
1443 
1444 		if (!cpu_link)
1445 			return -ENOMEM;
1446 
1447 		/* CPU <--> CPU <--> GPU, GPU node*/
1448 		props = kfd_alloc_struct(props);
1449 		if (!props)
1450 			return -ENOMEM;
1451 
1452 		memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1453 		props->weight = gpu_link->weight + cpu_link->weight;
1454 		props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1455 		props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1456 		props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1457 		props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1458 
1459 		props->node_from = gpu_node;
1460 		props->node_to = i;
1461 		kdev->node_props.p2p_links_count++;
1462 		list_add_tail(&props->list, &kdev->p2p_link_props);
1463 		ret = kfd_build_p2p_node_entry(kdev, props);
1464 		if (ret < 0)
1465 			return ret;
1466 
1467 		/* for small Bar, no CPU --> GPU in-direct links */
1468 		if (kfd_dev_is_large_bar(kdev->gpu)) {
1469 			/* CPU <--> CPU <--> GPU, CPU node*/
1470 			props2 = kfd_alloc_struct(props2);
1471 			if (!props2)
1472 				return -ENOMEM;
1473 
1474 			memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1475 			props2->node_from = i;
1476 			props2->node_to = gpu_node;
1477 			props2->kobj = NULL;
1478 			cpu_dev->node_props.p2p_links_count++;
1479 			list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1480 			ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1481 			if (ret < 0)
1482 				return ret;
1483 		}
1484 	}
1485 	return ret;
1486 }
1487 
1488 #if defined(CONFIG_HSA_AMD_P2P)
1489 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1490 		struct kfd_topology_device *peer, int from, int to)
1491 {
1492 	struct kfd_iolink_properties *props = NULL;
1493 	struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1494 	struct kfd_topology_device *cpu_dev;
1495 	int ret = 0;
1496 
1497 	if (!amdgpu_device_is_peer_accessible(
1498 				kdev->gpu->adev,
1499 				peer->gpu->adev))
1500 		return ret;
1501 
1502 	if (list_empty(&kdev->io_link_props))
1503 		return -ENODATA;
1504 
1505 	iolink1 = list_first_entry(&kdev->io_link_props,
1506 				   struct kfd_iolink_properties, list);
1507 
1508 	if (list_empty(&peer->io_link_props))
1509 		return -ENODATA;
1510 
1511 	iolink2 = list_first_entry(&peer->io_link_props,
1512 				   struct kfd_iolink_properties, list);
1513 
1514 	props = kfd_alloc_struct(props);
1515 	if (!props)
1516 		return -ENOMEM;
1517 
1518 	memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1519 
1520 	props->weight = iolink1->weight + iolink2->weight;
1521 	props->min_latency = iolink1->min_latency + iolink2->min_latency;
1522 	props->max_latency = iolink1->max_latency + iolink2->max_latency;
1523 	props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1524 	props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1525 
1526 	if (iolink1->node_to != iolink2->node_to) {
1527 		/* CPU->CPU  link*/
1528 		cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1529 		if (cpu_dev) {
1530 			list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1531 				if (iolink3->node_to != iolink2->node_to)
1532 					continue;
1533 
1534 				props->weight += iolink3->weight;
1535 				props->min_latency += iolink3->min_latency;
1536 				props->max_latency += iolink3->max_latency;
1537 				props->min_bandwidth = min(props->min_bandwidth,
1538 							   iolink3->min_bandwidth);
1539 				props->max_bandwidth = min(props->max_bandwidth,
1540 							   iolink3->max_bandwidth);
1541 				break;
1542 			}
1543 		} else {
1544 			WARN(1, "CPU node not found");
1545 		}
1546 	}
1547 
1548 	props->node_from = from;
1549 	props->node_to = to;
1550 	peer->node_props.p2p_links_count++;
1551 	list_add_tail(&props->list, &peer->p2p_link_props);
1552 	ret = kfd_build_p2p_node_entry(peer, props);
1553 
1554 	return ret;
1555 }
1556 #endif
1557 
1558 static int kfd_dev_create_p2p_links(void)
1559 {
1560 	struct kfd_topology_device *dev;
1561 	struct kfd_topology_device *new_dev;
1562 #if defined(CONFIG_HSA_AMD_P2P)
1563 	uint32_t i;
1564 #endif
1565 	uint32_t k;
1566 	int ret = 0;
1567 
1568 	k = 0;
1569 	list_for_each_entry(dev, &topology_device_list, list)
1570 		k++;
1571 	if (k < 2)
1572 		return 0;
1573 
1574 	new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1575 	if (WARN_ON(!new_dev->gpu))
1576 		return 0;
1577 
1578 	k--;
1579 
1580 	/* create in-direct links */
1581 	ret = kfd_create_indirect_link_prop(new_dev, k);
1582 	if (ret < 0)
1583 		goto out;
1584 
1585 	/* create p2p links */
1586 #if defined(CONFIG_HSA_AMD_P2P)
1587 	i = 0;
1588 	list_for_each_entry(dev, &topology_device_list, list) {
1589 		if (dev == new_dev)
1590 			break;
1591 		if (!dev->gpu || !dev->gpu->adev ||
1592 		    (dev->gpu->kfd->hive_id &&
1593 		     dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id &&
1594 		     amdgpu_xgmi_get_is_sharing_enabled(dev->gpu->adev, new_dev->gpu->adev)))
1595 			goto next;
1596 
1597 		/* check if node(s) is/are peer accessible in one direction or bi-direction */
1598 		ret = kfd_add_peer_prop(new_dev, dev, i, k);
1599 		if (ret < 0)
1600 			goto out;
1601 
1602 		ret = kfd_add_peer_prop(dev, new_dev, k, i);
1603 		if (ret < 0)
1604 			goto out;
1605 next:
1606 		i++;
1607 	}
1608 #endif
1609 
1610 out:
1611 	return ret;
1612 }
1613 
1614 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1615 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1616 				struct kfd_gpu_cache_info *pcache_info,
1617 				int cu_bitmask,
1618 				int cache_type, unsigned int cu_processor_id,
1619 				int cu_block)
1620 {
1621 	unsigned int cu_sibling_map_mask;
1622 	int first_active_cu;
1623 	struct kfd_cache_properties *pcache = NULL;
1624 
1625 	cu_sibling_map_mask = cu_bitmask;
1626 	cu_sibling_map_mask >>= cu_block;
1627 	cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1628 	first_active_cu = ffs(cu_sibling_map_mask);
1629 
1630 	/* CU could be inactive. In case of shared cache find the first active
1631 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1632 	 * inactive active skip it
1633 	 */
1634 	if (first_active_cu) {
1635 		pcache = kfd_alloc_struct(pcache);
1636 		if (!pcache)
1637 			return -ENOMEM;
1638 
1639 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1640 		pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1641 		pcache->cache_level = pcache_info[cache_type].cache_level;
1642 		pcache->cache_size = pcache_info[cache_type].cache_size;
1643 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1644 
1645 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1646 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1647 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1648 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1649 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1650 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1651 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1652 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1653 
1654 		/* Sibling map is w.r.t processor_id_low, so shift out
1655 		 * inactive CU
1656 		 */
1657 		cu_sibling_map_mask =
1658 			cu_sibling_map_mask >> (first_active_cu - 1);
1659 
1660 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1661 		pcache->sibling_map[1] =
1662 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1663 		pcache->sibling_map[2] =
1664 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1665 		pcache->sibling_map[3] =
1666 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1667 
1668 		pcache->sibling_map_size = 4;
1669 		*props_ext = pcache;
1670 
1671 		return 0;
1672 	}
1673 	return 1;
1674 }
1675 
1676 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
1677 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1678 				struct kfd_gpu_cache_info *pcache_info,
1679 				struct amdgpu_cu_info *cu_info,
1680 				struct amdgpu_gfx_config *gfx_info,
1681 				int cache_type, unsigned int cu_processor_id,
1682 				struct kfd_node *knode)
1683 {
1684 	unsigned int cu_sibling_map_mask = 0;
1685 	int first_active_cu;
1686 	int i, j, k, xcc, start, end;
1687 	int num_xcc = NUM_XCC(knode->xcc_mask);
1688 	struct kfd_cache_properties *pcache = NULL;
1689 	enum amdgpu_memory_partition mode;
1690 	struct amdgpu_device *adev = knode->adev;
1691 	bool found = false;
1692 
1693 	start = ffs(knode->xcc_mask) - 1;
1694 	end = start + num_xcc;
1695 
1696 	/* To find the bitmap in the first active cu in the first
1697 	 * xcc, it is based on the assumption that evrey xcc must
1698 	 * have at least one active cu.
1699 	 */
1700 	for (i = 0; i < gfx_info->max_shader_engines && !found; i++) {
1701 		for (j = 0; j < gfx_info->max_sh_per_se && !found; j++) {
1702 			if (cu_info->bitmap[start][i % 4][j % 4]) {
1703 				cu_sibling_map_mask =
1704 					cu_info->bitmap[start][i % 4][j % 4];
1705 				found = true;
1706 			}
1707 		}
1708 	}
1709 
1710 	cu_sibling_map_mask &=
1711 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
1712 	first_active_cu = ffs(cu_sibling_map_mask);
1713 
1714 	/* CU could be inactive. In case of shared cache find the first active
1715 	 * CU. and incase of non-shared cache check if the CU is inactive. If
1716 	 * inactive active skip it
1717 	 */
1718 	if (first_active_cu) {
1719 		pcache = kfd_alloc_struct(pcache);
1720 		if (!pcache)
1721 			return -ENOMEM;
1722 
1723 		memset(pcache, 0, sizeof(struct kfd_cache_properties));
1724 		pcache->processor_id_low = cu_processor_id
1725 					+ (first_active_cu - 1);
1726 		pcache->cache_level = pcache_info[cache_type].cache_level;
1727 		pcache->cacheline_size = pcache_info[cache_type].cache_line_size;
1728 
1729 		if (KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 3) ||
1730 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 4, 4) ||
1731 		    KFD_GC_VERSION(knode) == IP_VERSION(9, 5, 0))
1732 			mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1733 		else
1734 			mode = UNKNOWN_MEMORY_PARTITION_MODE;
1735 
1736 		pcache->cache_size = pcache_info[cache_type].cache_size;
1737 		/* Partition mode only affects L3 cache size */
1738 		if (mode && pcache->cache_level == 3)
1739 			pcache->cache_size /= mode;
1740 
1741 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1742 			pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1743 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1744 			pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1745 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1746 			pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1747 		if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1748 			pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1749 
1750 		/* Sibling map is w.r.t processor_id_low, so shift out
1751 		 * inactive CU
1752 		 */
1753 		cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1754 		k = 0;
1755 
1756 		for (xcc = start; xcc < end; xcc++) {
1757 			for (i = 0; i < gfx_info->max_shader_engines; i++) {
1758 				for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1759 					pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1760 					pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1761 					pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1762 					pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1763 					k += 4;
1764 
1765 					cu_sibling_map_mask = cu_info->bitmap[xcc][i % 4][j + i / 4];
1766 					cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1767 				}
1768 			}
1769 		}
1770 		pcache->sibling_map_size = k;
1771 		*props_ext = pcache;
1772 		return 0;
1773 	}
1774 	return 1;
1775 }
1776 
1777 #define KFD_MAX_CACHE_TYPES 6
1778 
1779 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1780  * tables
1781  */
1782 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1783 {
1784 	struct kfd_gpu_cache_info *pcache_info = NULL;
1785 	int i, j, k, xcc, start, end;
1786 	int ct = 0;
1787 	unsigned int cu_processor_id;
1788 	int ret;
1789 	unsigned int num_cu_shared;
1790 	struct amdgpu_cu_info *cu_info = &kdev->adev->gfx.cu_info;
1791 	struct amdgpu_gfx_config *gfx_info = &kdev->adev->gfx.config;
1792 	int gpu_processor_id;
1793 	struct kfd_cache_properties *props_ext = NULL;
1794 	int num_of_entries = 0;
1795 	int num_of_cache_types = 0;
1796 	struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1797 
1798 
1799 	gpu_processor_id = dev->node_props.simd_id_base;
1800 
1801 	memset(cache_info, 0, sizeof(cache_info));
1802 	pcache_info = cache_info;
1803 	num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1804 	if (!num_of_cache_types) {
1805 		pr_warn("no cache info found\n");
1806 		return;
1807 	}
1808 
1809 	/* For each type of cache listed in the kfd_gpu_cache_info table,
1810 	 * go through all available Compute Units.
1811 	 * The [i,j,k] loop will
1812 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
1813 	 *			will parse through all available CU
1814 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
1815 	 *			then it will consider only one CU from
1816 	 *			the shared unit
1817 	 */
1818 	start = ffs(kdev->xcc_mask) - 1;
1819 	end = start + NUM_XCC(kdev->xcc_mask);
1820 
1821 	for (ct = 0; ct < num_of_cache_types; ct++) {
1822 		cu_processor_id = gpu_processor_id;
1823 		if (pcache_info[ct].cache_level == 1) {
1824 			for (xcc = start; xcc < end; xcc++) {
1825 				for (i = 0; i < gfx_info->max_shader_engines; i++) {
1826 					for (j = 0; j < gfx_info->max_sh_per_se; j++) {
1827 						for (k = 0; k < gfx_info->max_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1828 
1829 							ret = fill_in_l1_pcache(&props_ext, pcache_info,
1830 										cu_info->bitmap[xcc][i % 4][j + i / 4], ct,
1831 										cu_processor_id, k);
1832 
1833 							if (ret < 0)
1834 								break;
1835 
1836 							if (!ret) {
1837 								num_of_entries++;
1838 								list_add_tail(&props_ext->list, &dev->cache_props);
1839 							}
1840 
1841 							/* Move to next CU block */
1842 							num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1843 								gfx_info->max_cu_per_sh) ?
1844 								pcache_info[ct].num_cu_shared :
1845 								(gfx_info->max_cu_per_sh - k);
1846 							cu_processor_id += num_cu_shared;
1847 						}
1848 					}
1849 				}
1850 			}
1851 		} else {
1852 			ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1853 						   cu_info, gfx_info, ct, cu_processor_id, kdev);
1854 
1855 			if (ret < 0)
1856 				break;
1857 
1858 			if (!ret) {
1859 				num_of_entries++;
1860 				list_add_tail(&props_ext->list, &dev->cache_props);
1861 			}
1862 		}
1863 	}
1864 	dev->node_props.caches_count += num_of_entries;
1865 	pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1866 }
1867 
1868 static int kfd_topology_add_device_locked(struct kfd_node *gpu,
1869 					  struct kfd_topology_device **dev)
1870 {
1871 	int proximity_domain = ++topology_crat_proximity_domain;
1872 	struct list_head temp_topology_device_list;
1873 	void *crat_image = NULL;
1874 	size_t image_size = 0;
1875 	int res;
1876 
1877 	res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1878 					    COMPUTE_UNIT_GPU, gpu,
1879 					    proximity_domain);
1880 	if (res) {
1881 		dev_err(gpu->adev->dev, "Error creating VCRAT\n");
1882 		topology_crat_proximity_domain--;
1883 		goto err;
1884 	}
1885 
1886 	INIT_LIST_HEAD(&temp_topology_device_list);
1887 
1888 	res = kfd_parse_crat_table(crat_image,
1889 				   &temp_topology_device_list,
1890 				   proximity_domain);
1891 	if (res) {
1892 		dev_err(gpu->adev->dev, "Error parsing VCRAT\n");
1893 		topology_crat_proximity_domain--;
1894 		goto err;
1895 	}
1896 
1897 	kfd_topology_update_device_list(&temp_topology_device_list,
1898 					&topology_device_list);
1899 
1900 	*dev = kfd_assign_gpu(gpu);
1901 	if (WARN_ON(!*dev)) {
1902 		res = -ENODEV;
1903 		goto err;
1904 	}
1905 
1906 	/* Fill the cache affinity information here for the GPUs
1907 	 * using VCRAT
1908 	 */
1909 	kfd_fill_cache_non_crat_info(*dev, gpu);
1910 
1911 	/* Update the SYSFS tree, since we added another topology
1912 	 * device
1913 	 */
1914 	res = kfd_topology_update_sysfs();
1915 	if (!res)
1916 		sys_props.generation_count++;
1917 	else
1918 		dev_err(gpu->adev->dev, "Failed to update GPU to sysfs topology. res=%d\n",
1919 			res);
1920 
1921 err:
1922 	kfd_destroy_crat_image(crat_image);
1923 	return res;
1924 }
1925 
1926 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1927 {
1928 	bool firmware_supported = true;
1929 
1930 	if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1931 			KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1932 		uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1933 						AMDGPU_MES_API_VERSION_MASK) >>
1934 						AMDGPU_MES_API_VERSION_SHIFT;
1935 		uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1936 						AMDGPU_MES_VERSION_MASK;
1937 
1938 		firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1939 		goto out;
1940 	}
1941 
1942 	/*
1943 	 * Note: Any unlisted devices here are assumed to support exception handling.
1944 	 * Add additional checks here as needed.
1945 	 */
1946 	switch (KFD_GC_VERSION(dev->gpu)) {
1947 	case IP_VERSION(9, 0, 1):
1948 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1949 		break;
1950 	case IP_VERSION(9, 1, 0):
1951 	case IP_VERSION(9, 2, 1):
1952 	case IP_VERSION(9, 2, 2):
1953 	case IP_VERSION(9, 3, 0):
1954 	case IP_VERSION(9, 4, 0):
1955 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1956 		break;
1957 	case IP_VERSION(9, 4, 1):
1958 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1959 		break;
1960 	case IP_VERSION(9, 4, 2):
1961 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1962 		break;
1963 	case IP_VERSION(10, 1, 10):
1964 	case IP_VERSION(10, 1, 2):
1965 	case IP_VERSION(10, 1, 1):
1966 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1967 		break;
1968 	case IP_VERSION(10, 3, 0):
1969 	case IP_VERSION(10, 3, 2):
1970 	case IP_VERSION(10, 3, 1):
1971 	case IP_VERSION(10, 3, 4):
1972 	case IP_VERSION(10, 3, 5):
1973 		firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1974 		break;
1975 	case IP_VERSION(10, 1, 3):
1976 	case IP_VERSION(10, 3, 3):
1977 		firmware_supported = false;
1978 		break;
1979 	default:
1980 		break;
1981 	}
1982 
1983 out:
1984 	if (firmware_supported)
1985 		dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1986 }
1987 
1988 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1989 {
1990 	dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1991 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1992 				HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1993 
1994 	dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1995 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1996 			HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1997 
1998 	if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1999 		dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
2000 
2001 	if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
2002 		if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3) ||
2003 		    KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 4))
2004 			dev->node_props.debug_prop |=
2005 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
2006 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
2007 		else
2008 			dev->node_props.debug_prop |=
2009 				HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
2010 				HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2011 
2012 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
2013 			dev->node_props.capability |=
2014 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2015 
2016 		if (!amdgpu_sriov_vf(dev->gpu->adev))
2017 			dev->node_props.capability |= HSA_CAP_PER_QUEUE_RESET_SUPPORTED;
2018 
2019 	} else {
2020 		dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
2021 					HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
2022 
2023 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 0, 0))
2024 			dev->node_props.capability |=
2025 				HSA_CAP_TRAP_DEBUG_PRECISE_ALU_OPERATIONS_SUPPORTED;
2026 
2027 		if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(12, 1, 0)) {
2028 			dev->node_props.capability |=
2029 				HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
2030 			dev->node_props.capability2 |=
2031 				HSA_CAP2_TRAP_DEBUG_LDS_OUT_OF_ADDR_RANGE_SUPPORTED;
2032 		}
2033 	}
2034 
2035 	kfd_topology_set_dbg_firmware_support(dev);
2036 }
2037 
2038 int kfd_topology_add_device(struct kfd_node *gpu)
2039 {
2040 	uint32_t gpu_id;
2041 	struct kfd_topology_device *dev;
2042 	int res = 0;
2043 	int i;
2044 	const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
2045 	struct amdgpu_gfx_config *gfx_info = &gpu->adev->gfx.config;
2046 	struct amdgpu_cu_info *cu_info = &gpu->adev->gfx.cu_info;
2047 
2048 	if (gpu->xcp && !gpu->xcp->ddev) {
2049 		dev_warn(gpu->adev->dev,
2050 			 "Won't add GPU to topology since it has no drm node assigned.");
2051 		return 0;
2052 	} else {
2053 		dev_dbg(gpu->adev->dev, "Adding new GPU to topology\n");
2054 	}
2055 
2056 	/* Check to see if this gpu device exists in the topology_device_list.
2057 	 * If so, assign the gpu to that device,
2058 	 * else create a Virtual CRAT for this gpu device and then parse that
2059 	 * CRAT to create a new topology device. Once created assign the gpu to
2060 	 * that topology device
2061 	 */
2062 	down_write(&topology_lock);
2063 	dev = kfd_assign_gpu(gpu);
2064 	if (!dev)
2065 		res = kfd_topology_add_device_locked(gpu, &dev);
2066 	up_write(&topology_lock);
2067 	if (res)
2068 		return res;
2069 
2070 	gpu_id = kfd_generate_gpu_id(gpu);
2071 	dev->gpu_id = gpu_id;
2072 	gpu->id = gpu_id;
2073 
2074 	kfd_dev_create_p2p_links();
2075 
2076 	/* TODO: Move the following lines to function
2077 	 *	kfd_add_non_crat_information
2078 	 */
2079 
2080 	/* Fill-in additional information that is not available in CRAT but
2081 	 * needed for the topology
2082 	 */
2083 	for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
2084 		dev->node_props.name[i] = __tolower(asic_name[i]);
2085 		if (asic_name[i] == '\0')
2086 			break;
2087 	}
2088 	dev->node_props.name[i] = '\0';
2089 
2090 	dev->node_props.simd_arrays_per_engine =
2091 		gfx_info->max_sh_per_se;
2092 
2093 	dev->node_props.gfx_target_version =
2094 				gpu->kfd->device_info.gfx_target_version;
2095 	dev->node_props.vendor_id = gpu->adev->pdev->vendor;
2096 	dev->node_props.device_id = gpu->adev->pdev->device;
2097 	dev->node_props.capability |=
2098 		((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
2099 			HSA_CAP_ASIC_REVISION_MASK);
2100 
2101 	dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
2102 	if (gpu->kfd->num_nodes > 1)
2103 		dev->node_props.location_id |= dev->gpu->node_id;
2104 
2105 	dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
2106 	dev->node_props.max_engine_clk_fcompute =
2107 		amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
2108 	dev->node_props.max_engine_clk_ccompute =
2109 		cpufreq_quick_get_max(0) / 1000;
2110 
2111 	if (gpu->xcp)
2112 		dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2113 	else
2114 		dev->node_props.drm_render_minor =
2115 				gpu->kfd->shared_resources.drm_render_minor;
2116 
2117 	dev->node_props.hive_id = gpu->kfd->hive_id;
2118 	dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2119 	dev->node_props.num_sdma_xgmi_engines =
2120 					kfd_get_num_xgmi_sdma_engines(gpu);
2121 	dev->node_props.num_sdma_queues_per_engine =
2122 				gpu->kfd->device_info.num_sdma_queues_per_engine -
2123 				gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2124 	dev->node_props.num_gws = (dev->gpu->gws &&
2125 		dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2126 		dev->gpu->adev->gds.gws_size : 0;
2127 	dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2128 
2129 	kfd_fill_mem_clk_max_info(dev);
2130 	kfd_fill_iolink_non_crat_info(dev);
2131 
2132 	switch (dev->gpu->adev->asic_type) {
2133 	case CHIP_KAVERI:
2134 	case CHIP_HAWAII:
2135 	case CHIP_TONGA:
2136 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2137 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2138 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2139 		break;
2140 	case CHIP_CARRIZO:
2141 	case CHIP_FIJI:
2142 	case CHIP_POLARIS10:
2143 	case CHIP_POLARIS11:
2144 	case CHIP_POLARIS12:
2145 	case CHIP_VEGAM:
2146 		pr_debug("Adding doorbell packet type capability\n");
2147 		dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2148 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2149 			HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2150 		break;
2151 	default:
2152 		if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2153 			WARN(1, "Unexpected ASIC family %u",
2154 			     dev->gpu->adev->asic_type);
2155 		else
2156 			kfd_topology_set_capabilities(dev);
2157 	}
2158 
2159 	/*
2160 	 * Overwrite ATS capability according to needs_iommu_device to fix
2161 	 * potential missing corresponding bit in CRAT of BIOS.
2162 	 */
2163 	dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2164 
2165 	/* Fix errors in CZ CRAT.
2166 	 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2167 	 *		because it doesn't consider masked out CUs
2168 	 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2169 	 */
2170 	if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2171 		dev->node_props.simd_count =
2172 			cu_info->simd_per_cu * cu_info->number;
2173 		dev->node_props.max_waves_per_simd = 10;
2174 	}
2175 
2176 	/* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2177 	dev->node_props.capability |=
2178 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2179 		HSA_CAP_SRAM_EDCSUPPORTED : 0;
2180 	dev->node_props.capability |=
2181 		((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2182 		HSA_CAP_MEM_EDCSUPPORTED : 0;
2183 
2184 	if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2185 		dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2186 			HSA_CAP_RASEVENTNOTIFY : 0;
2187 
2188 	if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2189 		dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2190 
2191 	if (dev->gpu->adev->gmc.is_app_apu ||
2192 		dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2193 		dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2194 
2195 	kfd_queue_ctx_save_restore_size(dev);
2196 
2197 	kfd_debug_print_topology();
2198 
2199 	kfd_notify_gpu_change(gpu_id, 1);
2200 
2201 	return 0;
2202 }
2203 
2204 /**
2205  * kfd_topology_update_io_links() - Update IO links after device removal.
2206  * @proximity_domain: Proximity domain value of the dev being removed.
2207  *
2208  * The topology list currently is arranged in increasing order of
2209  * proximity domain.
2210  *
2211  * Two things need to be done when a device is removed:
2212  * 1. All the IO links to this device need to be removed.
2213  * 2. All nodes after the current device node need to move
2214  *    up once this device node is removed from the topology
2215  *    list. As a result, the proximity domain values for
2216  *    all nodes after the node being deleted reduce by 1.
2217  *    This would also cause the proximity domain values for
2218  *    io links to be updated based on new proximity domain
2219  *    values.
2220  *
2221  * Context: The caller must hold write topology_lock.
2222  */
2223 static void kfd_topology_update_io_links(int proximity_domain)
2224 {
2225 	struct kfd_topology_device *dev;
2226 	struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2227 
2228 	list_for_each_entry(dev, &topology_device_list, list) {
2229 		if (dev->proximity_domain > proximity_domain)
2230 			dev->proximity_domain--;
2231 
2232 		list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2233 			/*
2234 			 * If there is an io link to the dev being deleted
2235 			 * then remove that IO link also.
2236 			 */
2237 			if (iolink->node_to == proximity_domain) {
2238 				list_del(&iolink->list);
2239 				dev->node_props.io_links_count--;
2240 			} else {
2241 				if (iolink->node_from > proximity_domain)
2242 					iolink->node_from--;
2243 				if (iolink->node_to > proximity_domain)
2244 					iolink->node_to--;
2245 			}
2246 		}
2247 
2248 		list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2249 			/*
2250 			 * If there is a p2p link to the dev being deleted
2251 			 * then remove that p2p link also.
2252 			 */
2253 			if (p2plink->node_to == proximity_domain) {
2254 				list_del(&p2plink->list);
2255 				dev->node_props.p2p_links_count--;
2256 			} else {
2257 				if (p2plink->node_from > proximity_domain)
2258 					p2plink->node_from--;
2259 				if (p2plink->node_to > proximity_domain)
2260 					p2plink->node_to--;
2261 			}
2262 		}
2263 	}
2264 }
2265 
2266 int kfd_topology_remove_device(struct kfd_node *gpu)
2267 {
2268 	struct kfd_topology_device *dev, *tmp;
2269 	uint32_t gpu_id;
2270 	int res = -ENODEV;
2271 	int i = 0;
2272 
2273 	down_write(&topology_lock);
2274 
2275 	list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2276 		if (dev->gpu == gpu) {
2277 			gpu_id = dev->gpu_id;
2278 			kfd_remove_sysfs_node_entry(dev);
2279 			kfd_release_topology_device(dev);
2280 			sys_props.num_devices--;
2281 			kfd_topology_update_io_links(i);
2282 			topology_crat_proximity_domain = sys_props.num_devices-1;
2283 			sys_props.generation_count++;
2284 			res = 0;
2285 			if (kfd_topology_update_sysfs() < 0)
2286 				kfd_topology_release_sysfs();
2287 			break;
2288 		}
2289 		i++;
2290 	}
2291 
2292 	up_write(&topology_lock);
2293 
2294 	if (!res)
2295 		kfd_notify_gpu_change(gpu_id, 0);
2296 
2297 	return res;
2298 }
2299 
2300 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2301  *	topology. If GPU device is found @idx, then valid kfd_dev pointer is
2302  *	returned through @kdev
2303  * Return -	0: On success (@kdev will be NULL for non GPU nodes)
2304  *		-1: If end of list
2305  */
2306 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2307 {
2308 
2309 	struct kfd_topology_device *top_dev;
2310 	uint8_t device_idx = 0;
2311 
2312 	*kdev = NULL;
2313 	down_read(&topology_lock);
2314 
2315 	list_for_each_entry(top_dev, &topology_device_list, list) {
2316 		if (device_idx == idx) {
2317 			*kdev = top_dev->gpu;
2318 			up_read(&topology_lock);
2319 			return 0;
2320 		}
2321 
2322 		device_idx++;
2323 	}
2324 
2325 	up_read(&topology_lock);
2326 
2327 	return -1;
2328 
2329 }
2330 
2331 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2332 {
2333 	int first_cpu_of_numa_node;
2334 
2335 	if (!cpumask || cpumask == cpu_none_mask)
2336 		return -1;
2337 	first_cpu_of_numa_node = cpumask_first(cpumask);
2338 	if (first_cpu_of_numa_node >= nr_cpu_ids)
2339 		return -1;
2340 #ifdef CONFIG_X86_64
2341 	return cpu_data(first_cpu_of_numa_node).topo.apicid;
2342 #else
2343 	return first_cpu_of_numa_node;
2344 #endif
2345 }
2346 
2347 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2348  *	of the given NUMA node (numa_node_id)
2349  * Return -1 on failure
2350  */
2351 int kfd_numa_node_to_apic_id(int numa_node_id)
2352 {
2353 	if (numa_node_id == -1) {
2354 		pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2355 		return kfd_cpumask_to_apic_id(cpu_online_mask);
2356 	}
2357 	return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2358 }
2359 
2360 /* kfd_gpu_node_num - Return kfd gpu node number at system */
2361 uint32_t kfd_gpu_node_num(void)
2362 {
2363 	struct kfd_node *dev;
2364 	u8 gpu_num  = 0;
2365 	u8 id  = 0;
2366 
2367 	while (kfd_topology_enum_kfd_devices(id, &dev) == 0) {
2368 		if (!dev || kfd_devcgroup_check_permission(dev)) {
2369 			/* Skip non GPU devices and devices to which the
2370 			 * current process have no access to
2371 			 */
2372 			id++;
2373 			continue;
2374 		}
2375 		id++;
2376 		gpu_num++;
2377 	}
2378 
2379 	return gpu_num;
2380 }
2381 
2382 #if defined(CONFIG_DEBUG_FS)
2383 
2384 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2385 {
2386 	struct kfd_topology_device *dev;
2387 	unsigned int i = 0;
2388 	int r = 0;
2389 
2390 	down_read(&topology_lock);
2391 
2392 	list_for_each_entry(dev, &topology_device_list, list) {
2393 		if (!dev->gpu) {
2394 			i++;
2395 			continue;
2396 		}
2397 
2398 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2399 		r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2400 		if (r)
2401 			break;
2402 	}
2403 
2404 	up_read(&topology_lock);
2405 
2406 	return r;
2407 }
2408 
2409 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2410 {
2411 	struct kfd_topology_device *dev;
2412 	unsigned int i = 0;
2413 	int r = 0;
2414 
2415 	down_read(&topology_lock);
2416 
2417 	list_for_each_entry(dev, &topology_device_list, list) {
2418 		if (!dev->gpu) {
2419 			i++;
2420 			continue;
2421 		}
2422 
2423 		seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2424 		r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2425 		if (r)
2426 			break;
2427 	}
2428 
2429 	up_read(&topology_lock);
2430 
2431 	return r;
2432 }
2433 
2434 #endif
2435 
2436 void kfd_update_svm_support_properties(struct amdgpu_device *adev)
2437 {
2438 	struct kfd_topology_device *dev;
2439 	int ret;
2440 
2441 	down_write(&topology_lock);
2442 	list_for_each_entry(dev, &topology_device_list, list) {
2443 		if (!dev->gpu || dev->gpu->adev != adev)
2444 			continue;
2445 
2446 		if (KFD_IS_SVM_API_SUPPORTED(adev)) {
2447 			dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2448 			ret = kfd_topology_update_sysfs();
2449 			if (!ret)
2450 				sys_props.generation_count++;
2451 			else
2452 				dev_err(adev->dev, "Failed to update SVM support properties. ret=%d\n", ret);
2453 		} else
2454 			dev->node_props.capability &= ~HSA_CAP_SVMAPI_SUPPORTED;
2455 	}
2456 	up_write(&topology_lock);
2457 }
2458