xref: /linux/drivers/md/dm-crypt.c (revision 78f4e737a53e1163ded2687a922fce138aee73f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/crc32.h>
21 #include <linux/mempool.h>
22 #include <linux/slab.h>
23 #include <linux/crypto.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/backing-dev.h>
27 #include <linux/atomic.h>
28 #include <linux/scatterlist.h>
29 #include <linux/rbtree.h>
30 #include <linux/ctype.h>
31 #include <asm/page.h>
32 #include <linux/unaligned.h>
33 #include <crypto/hash.h>
34 #include <crypto/md5.h>
35 #include <crypto/skcipher.h>
36 #include <crypto/aead.h>
37 #include <crypto/authenc.h>
38 #include <crypto/utils.h>
39 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
40 #include <linux/key-type.h>
41 #include <keys/user-type.h>
42 #include <keys/encrypted-type.h>
43 #include <keys/trusted-type.h>
44 
45 #include <linux/device-mapper.h>
46 
47 #include "dm-audit.h"
48 
49 #define DM_MSG_PREFIX "crypt"
50 
51 static DEFINE_IDA(workqueue_ida);
52 
53 /*
54  * context holding the current state of a multi-part conversion
55  */
56 struct convert_context {
57 	struct completion restart;
58 	struct bio *bio_in;
59 	struct bvec_iter iter_in;
60 	struct bio *bio_out;
61 	struct bvec_iter iter_out;
62 	atomic_t cc_pending;
63 	unsigned int tag_offset;
64 	u64 cc_sector;
65 	union {
66 		struct skcipher_request *req;
67 		struct aead_request *req_aead;
68 	} r;
69 	bool aead_recheck;
70 	bool aead_failed;
71 
72 };
73 
74 /*
75  * per bio private data
76  */
77 struct dm_crypt_io {
78 	struct crypt_config *cc;
79 	struct bio *base_bio;
80 	u8 *integrity_metadata;
81 	bool integrity_metadata_from_pool:1;
82 
83 	struct work_struct work;
84 
85 	struct convert_context ctx;
86 
87 	atomic_t io_pending;
88 	blk_status_t error;
89 	sector_t sector;
90 
91 	struct bvec_iter saved_bi_iter;
92 
93 	struct rb_node rb_node;
94 } CRYPTO_MINALIGN_ATTR;
95 
96 struct dm_crypt_request {
97 	struct convert_context *ctx;
98 	struct scatterlist sg_in[4];
99 	struct scatterlist sg_out[4];
100 	u64 iv_sector;
101 };
102 
103 struct crypt_config;
104 
105 struct crypt_iv_operations {
106 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
107 		   const char *opts);
108 	void (*dtr)(struct crypt_config *cc);
109 	int (*init)(struct crypt_config *cc);
110 	int (*wipe)(struct crypt_config *cc);
111 	int (*generator)(struct crypt_config *cc, u8 *iv,
112 			 struct dm_crypt_request *dmreq);
113 	int (*post)(struct crypt_config *cc, u8 *iv,
114 		    struct dm_crypt_request *dmreq);
115 };
116 
117 struct iv_benbi_private {
118 	int shift;
119 };
120 
121 #define LMK_SEED_SIZE 64 /* hash + 0 */
122 struct iv_lmk_private {
123 	struct crypto_shash *hash_tfm;
124 	u8 *seed;
125 };
126 
127 #define TCW_WHITENING_SIZE 16
128 struct iv_tcw_private {
129 	u8 *iv_seed;
130 	u8 *whitening;
131 };
132 
133 #define ELEPHANT_MAX_KEY_SIZE 32
134 struct iv_elephant_private {
135 	struct crypto_skcipher *tfm;
136 };
137 
138 /*
139  * Crypt: maps a linear range of a block device
140  * and encrypts / decrypts at the same time.
141  */
142 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
143 	     DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
144 	     DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
145 	     DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
146 
147 enum cipher_flags {
148 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
149 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
150 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
151 	CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */
152 };
153 
154 /*
155  * The fields in here must be read only after initialization.
156  */
157 struct crypt_config {
158 	struct dm_dev *dev;
159 	sector_t start;
160 
161 	struct percpu_counter n_allocated_pages;
162 
163 	struct workqueue_struct *io_queue;
164 	struct workqueue_struct *crypt_queue;
165 
166 	spinlock_t write_thread_lock;
167 	struct task_struct *write_thread;
168 	struct rb_root write_tree;
169 
170 	char *cipher_string;
171 	char *cipher_auth;
172 	char *key_string;
173 
174 	const struct crypt_iv_operations *iv_gen_ops;
175 	union {
176 		struct iv_benbi_private benbi;
177 		struct iv_lmk_private lmk;
178 		struct iv_tcw_private tcw;
179 		struct iv_elephant_private elephant;
180 	} iv_gen_private;
181 	u64 iv_offset;
182 	unsigned int iv_size;
183 	unsigned short sector_size;
184 	unsigned char sector_shift;
185 
186 	union {
187 		struct crypto_skcipher **tfms;
188 		struct crypto_aead **tfms_aead;
189 	} cipher_tfm;
190 	unsigned int tfms_count;
191 	int workqueue_id;
192 	unsigned long cipher_flags;
193 
194 	/*
195 	 * Layout of each crypto request:
196 	 *
197 	 *   struct skcipher_request
198 	 *      context
199 	 *      padding
200 	 *   struct dm_crypt_request
201 	 *      padding
202 	 *   IV
203 	 *
204 	 * The padding is added so that dm_crypt_request and the IV are
205 	 * correctly aligned.
206 	 */
207 	unsigned int dmreq_start;
208 
209 	unsigned int per_bio_data_size;
210 
211 	unsigned long flags;
212 	unsigned int key_size;
213 	unsigned int key_parts;      /* independent parts in key buffer */
214 	unsigned int key_extra_size; /* additional keys length */
215 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
216 
217 	unsigned int integrity_tag_size;
218 	unsigned int integrity_iv_size;
219 	unsigned int used_tag_size;
220 	unsigned int tuple_size;
221 
222 	/*
223 	 * pool for per bio private data, crypto requests,
224 	 * encryption requeusts/buffer pages and integrity tags
225 	 */
226 	unsigned int tag_pool_max_sectors;
227 	mempool_t tag_pool;
228 	mempool_t req_pool;
229 	mempool_t page_pool;
230 
231 	struct bio_set bs;
232 	struct mutex bio_alloc_lock;
233 
234 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
235 	u8 key[] __counted_by(key_size);
236 };
237 
238 #define MIN_IOS		64
239 #define MAX_TAG_SIZE	480
240 #define POOL_ENTRY_SIZE	512
241 
242 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
243 static unsigned int dm_crypt_clients_n;
244 static volatile unsigned long dm_crypt_pages_per_client;
245 #define DM_CRYPT_MEMORY_PERCENT			2
246 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
247 #define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072
248 #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072
249 
250 static unsigned int max_read_size = 0;
251 module_param(max_read_size, uint, 0644);
252 MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
253 static unsigned int max_write_size = 0;
254 module_param(max_write_size, uint, 0644);
255 MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
get_max_request_size(struct crypt_config * cc,bool wrt)256 static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
257 {
258 	unsigned val, sector_align;
259 	val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
260 	if (likely(!val))
261 		val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
262 	if (wrt || cc->used_tag_size) {
263 		if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
264 			val = BIO_MAX_VECS << PAGE_SHIFT;
265 	}
266 	sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
267 	val = round_down(val, sector_align);
268 	if (unlikely(!val))
269 		val = sector_align;
270 	return val >> SECTOR_SHIFT;
271 }
272 
273 static void crypt_endio(struct bio *clone);
274 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
275 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
276 					     struct scatterlist *sg);
277 
278 static bool crypt_integrity_aead(struct crypt_config *cc);
279 
280 /*
281  * Use this to access cipher attributes that are independent of the key.
282  */
any_tfm(struct crypt_config * cc)283 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
284 {
285 	return cc->cipher_tfm.tfms[0];
286 }
287 
any_tfm_aead(struct crypt_config * cc)288 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
289 {
290 	return cc->cipher_tfm.tfms_aead[0];
291 }
292 
293 /*
294  * Different IV generation algorithms:
295  *
296  * plain: the initial vector is the 32-bit little-endian version of the sector
297  *        number, padded with zeros if necessary.
298  *
299  * plain64: the initial vector is the 64-bit little-endian version of the sector
300  *        number, padded with zeros if necessary.
301  *
302  * plain64be: the initial vector is the 64-bit big-endian version of the sector
303  *        number, padded with zeros if necessary.
304  *
305  * essiv: "encrypted sector|salt initial vector", the sector number is
306  *        encrypted with the bulk cipher using a salt as key. The salt
307  *        should be derived from the bulk cipher's key via hashing.
308  *
309  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
310  *        (needed for LRW-32-AES and possible other narrow block modes)
311  *
312  * null: the initial vector is always zero.  Provides compatibility with
313  *       obsolete loop_fish2 devices.  Do not use for new devices.
314  *
315  * lmk:  Compatible implementation of the block chaining mode used
316  *       by the Loop-AES block device encryption system
317  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
318  *       It operates on full 512 byte sectors and uses CBC
319  *       with an IV derived from the sector number, the data and
320  *       optionally extra IV seed.
321  *       This means that after decryption the first block
322  *       of sector must be tweaked according to decrypted data.
323  *       Loop-AES can use three encryption schemes:
324  *         version 1: is plain aes-cbc mode
325  *         version 2: uses 64 multikey scheme with lmk IV generator
326  *         version 3: the same as version 2 with additional IV seed
327  *                   (it uses 65 keys, last key is used as IV seed)
328  *
329  * tcw:  Compatible implementation of the block chaining mode used
330  *       by the TrueCrypt device encryption system (prior to version 4.1).
331  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
332  *       It operates on full 512 byte sectors and uses CBC
333  *       with an IV derived from initial key and the sector number.
334  *       In addition, whitening value is applied on every sector, whitening
335  *       is calculated from initial key, sector number and mixed using CRC32.
336  *       Note that this encryption scheme is vulnerable to watermarking attacks
337  *       and should be used for old compatible containers access only.
338  *
339  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
340  *        The IV is encrypted little-endian byte-offset (with the same key
341  *        and cipher as the volume).
342  *
343  * elephant: The extended version of eboiv with additional Elephant diffuser
344  *           used with Bitlocker CBC mode.
345  *           This mode was used in older Windows systems
346  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
347  */
348 
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)349 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
350 			      struct dm_crypt_request *dmreq)
351 {
352 	memset(iv, 0, cc->iv_size);
353 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
354 
355 	return 0;
356 }
357 
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)358 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
359 				struct dm_crypt_request *dmreq)
360 {
361 	memset(iv, 0, cc->iv_size);
362 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
363 
364 	return 0;
365 }
366 
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)367 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
368 				  struct dm_crypt_request *dmreq)
369 {
370 	memset(iv, 0, cc->iv_size);
371 	/* iv_size is at least of size u64; usually it is 16 bytes */
372 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
373 
374 	return 0;
375 }
376 
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)377 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
378 			      struct dm_crypt_request *dmreq)
379 {
380 	/*
381 	 * ESSIV encryption of the IV is now handled by the crypto API,
382 	 * so just pass the plain sector number here.
383 	 */
384 	memset(iv, 0, cc->iv_size);
385 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
386 
387 	return 0;
388 }
389 
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)390 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
391 			      const char *opts)
392 {
393 	unsigned int bs;
394 	int log;
395 
396 	if (crypt_integrity_aead(cc))
397 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
398 	else
399 		bs = crypto_skcipher_blocksize(any_tfm(cc));
400 	log = ilog2(bs);
401 
402 	/*
403 	 * We need to calculate how far we must shift the sector count
404 	 * to get the cipher block count, we use this shift in _gen.
405 	 */
406 	if (1 << log != bs) {
407 		ti->error = "cypher blocksize is not a power of 2";
408 		return -EINVAL;
409 	}
410 
411 	if (log > 9) {
412 		ti->error = "cypher blocksize is > 512";
413 		return -EINVAL;
414 	}
415 
416 	cc->iv_gen_private.benbi.shift = 9 - log;
417 
418 	return 0;
419 }
420 
crypt_iv_benbi_dtr(struct crypt_config * cc)421 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
422 {
423 }
424 
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)425 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
426 			      struct dm_crypt_request *dmreq)
427 {
428 	__be64 val;
429 
430 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
431 
432 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
433 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
434 
435 	return 0;
436 }
437 
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)438 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
439 			     struct dm_crypt_request *dmreq)
440 {
441 	memset(iv, 0, cc->iv_size);
442 
443 	return 0;
444 }
445 
crypt_iv_lmk_dtr(struct crypt_config * cc)446 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
447 {
448 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
449 
450 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
451 		crypto_free_shash(lmk->hash_tfm);
452 	lmk->hash_tfm = NULL;
453 
454 	kfree_sensitive(lmk->seed);
455 	lmk->seed = NULL;
456 }
457 
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)458 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
459 			    const char *opts)
460 {
461 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
462 
463 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
464 		ti->error = "Unsupported sector size for LMK";
465 		return -EINVAL;
466 	}
467 
468 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
469 					   CRYPTO_ALG_ALLOCATES_MEMORY);
470 	if (IS_ERR(lmk->hash_tfm)) {
471 		ti->error = "Error initializing LMK hash";
472 		return PTR_ERR(lmk->hash_tfm);
473 	}
474 
475 	/* No seed in LMK version 2 */
476 	if (cc->key_parts == cc->tfms_count) {
477 		lmk->seed = NULL;
478 		return 0;
479 	}
480 
481 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
482 	if (!lmk->seed) {
483 		crypt_iv_lmk_dtr(cc);
484 		ti->error = "Error kmallocing seed storage in LMK";
485 		return -ENOMEM;
486 	}
487 
488 	return 0;
489 }
490 
crypt_iv_lmk_init(struct crypt_config * cc)491 static int crypt_iv_lmk_init(struct crypt_config *cc)
492 {
493 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
494 	int subkey_size = cc->key_size / cc->key_parts;
495 
496 	/* LMK seed is on the position of LMK_KEYS + 1 key */
497 	if (lmk->seed)
498 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
499 		       crypto_shash_digestsize(lmk->hash_tfm));
500 
501 	return 0;
502 }
503 
crypt_iv_lmk_wipe(struct crypt_config * cc)504 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
505 {
506 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
507 
508 	if (lmk->seed)
509 		memset(lmk->seed, 0, LMK_SEED_SIZE);
510 
511 	return 0;
512 }
513 
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)514 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
515 			    struct dm_crypt_request *dmreq,
516 			    u8 *data)
517 {
518 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
519 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
520 	union {
521 		struct md5_state md5state;
522 		u8 state[CRYPTO_MD5_STATESIZE];
523 	} u;
524 	__le32 buf[4];
525 	int i, r;
526 
527 	desc->tfm = lmk->hash_tfm;
528 
529 	r = crypto_shash_init(desc);
530 	if (r)
531 		return r;
532 
533 	if (lmk->seed) {
534 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
535 		if (r)
536 			return r;
537 	}
538 
539 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
540 	r = crypto_shash_update(desc, data + 16, 16 * 31);
541 	if (r)
542 		return r;
543 
544 	/* Sector is cropped to 56 bits here */
545 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
546 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
547 	buf[2] = cpu_to_le32(4024);
548 	buf[3] = 0;
549 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
550 	if (r)
551 		return r;
552 
553 	/* No MD5 padding here */
554 	r = crypto_shash_export(desc, &u.md5state);
555 	if (r)
556 		return r;
557 
558 	for (i = 0; i < MD5_HASH_WORDS; i++)
559 		__cpu_to_le32s(&u.md5state.hash[i]);
560 	memcpy(iv, &u.md5state.hash, cc->iv_size);
561 
562 	return 0;
563 }
564 
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)565 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
566 			    struct dm_crypt_request *dmreq)
567 {
568 	struct scatterlist *sg;
569 	u8 *src;
570 	int r = 0;
571 
572 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
573 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
574 		src = kmap_local_page(sg_page(sg));
575 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
576 		kunmap_local(src);
577 	} else
578 		memset(iv, 0, cc->iv_size);
579 
580 	return r;
581 }
582 
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)583 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
584 			     struct dm_crypt_request *dmreq)
585 {
586 	struct scatterlist *sg;
587 	u8 *dst;
588 	int r;
589 
590 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
591 		return 0;
592 
593 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
594 	dst = kmap_local_page(sg_page(sg));
595 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
596 
597 	/* Tweak the first block of plaintext sector */
598 	if (!r)
599 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
600 
601 	kunmap_local(dst);
602 	return r;
603 }
604 
crypt_iv_tcw_dtr(struct crypt_config * cc)605 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
606 {
607 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
608 
609 	kfree_sensitive(tcw->iv_seed);
610 	tcw->iv_seed = NULL;
611 	kfree_sensitive(tcw->whitening);
612 	tcw->whitening = NULL;
613 }
614 
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)615 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
616 			    const char *opts)
617 {
618 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 
620 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
621 		ti->error = "Unsupported sector size for TCW";
622 		return -EINVAL;
623 	}
624 
625 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
626 		ti->error = "Wrong key size for TCW";
627 		return -EINVAL;
628 	}
629 
630 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
631 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
632 	if (!tcw->iv_seed || !tcw->whitening) {
633 		crypt_iv_tcw_dtr(cc);
634 		ti->error = "Error allocating seed storage in TCW";
635 		return -ENOMEM;
636 	}
637 
638 	return 0;
639 }
640 
crypt_iv_tcw_init(struct crypt_config * cc)641 static int crypt_iv_tcw_init(struct crypt_config *cc)
642 {
643 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
644 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
645 
646 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
647 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
648 	       TCW_WHITENING_SIZE);
649 
650 	return 0;
651 }
652 
crypt_iv_tcw_wipe(struct crypt_config * cc)653 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
654 {
655 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
656 
657 	memset(tcw->iv_seed, 0, cc->iv_size);
658 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
659 
660 	return 0;
661 }
662 
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)663 static void crypt_iv_tcw_whitening(struct crypt_config *cc,
664 				   struct dm_crypt_request *dmreq, u8 *data)
665 {
666 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
667 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
668 	u8 buf[TCW_WHITENING_SIZE];
669 	int i;
670 
671 	/* xor whitening with sector number */
672 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
673 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
674 
675 	/* calculate crc32 for every 32bit part and xor it */
676 	for (i = 0; i < 4; i++)
677 		put_unaligned_le32(crc32(0, &buf[i * 4], 4), &buf[i * 4]);
678 	crypto_xor(&buf[0], &buf[12], 4);
679 	crypto_xor(&buf[4], &buf[8], 4);
680 
681 	/* apply whitening (8 bytes) to whole sector */
682 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
683 		crypto_xor(data + i * 8, buf, 8);
684 	memzero_explicit(buf, sizeof(buf));
685 }
686 
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)687 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
688 			    struct dm_crypt_request *dmreq)
689 {
690 	struct scatterlist *sg;
691 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
692 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
693 	u8 *src;
694 
695 	/* Remove whitening from ciphertext */
696 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
697 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
698 		src = kmap_local_page(sg_page(sg));
699 		crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
700 		kunmap_local(src);
701 	}
702 
703 	/* Calculate IV */
704 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
705 	if (cc->iv_size > 8)
706 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
707 			       cc->iv_size - 8);
708 
709 	return 0;
710 }
711 
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)712 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
713 			     struct dm_crypt_request *dmreq)
714 {
715 	struct scatterlist *sg;
716 	u8 *dst;
717 
718 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
719 		return 0;
720 
721 	/* Apply whitening on ciphertext */
722 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
723 	dst = kmap_local_page(sg_page(sg));
724 	crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
725 	kunmap_local(dst);
726 
727 	return 0;
728 }
729 
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)730 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
731 				struct dm_crypt_request *dmreq)
732 {
733 	/* Used only for writes, there must be an additional space to store IV */
734 	get_random_bytes(iv, cc->iv_size);
735 	return 0;
736 }
737 
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)738 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
739 			    const char *opts)
740 {
741 	if (crypt_integrity_aead(cc)) {
742 		ti->error = "AEAD transforms not supported for EBOIV";
743 		return -EINVAL;
744 	}
745 
746 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
747 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
748 		return -EINVAL;
749 	}
750 
751 	return 0;
752 }
753 
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)754 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
755 			    struct dm_crypt_request *dmreq)
756 {
757 	struct crypto_skcipher *tfm = any_tfm(cc);
758 	struct skcipher_request *req;
759 	struct scatterlist src, dst;
760 	DECLARE_CRYPTO_WAIT(wait);
761 	unsigned int reqsize;
762 	int err;
763 	u8 *buf;
764 
765 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
766 	reqsize = ALIGN(reqsize, __alignof__(__le64));
767 
768 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
769 	if (!req)
770 		return -ENOMEM;
771 
772 	skcipher_request_set_tfm(req, tfm);
773 
774 	buf = (u8 *)req + reqsize;
775 	memset(buf, 0, cc->iv_size);
776 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
777 
778 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
779 	sg_init_one(&dst, iv, cc->iv_size);
780 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
781 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
782 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
783 	kfree_sensitive(req);
784 
785 	return err;
786 }
787 
crypt_iv_elephant_dtr(struct crypt_config * cc)788 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
789 {
790 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
791 
792 	crypto_free_skcipher(elephant->tfm);
793 	elephant->tfm = NULL;
794 }
795 
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)796 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
797 			    const char *opts)
798 {
799 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
800 	int r;
801 
802 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
803 					      CRYPTO_ALG_ALLOCATES_MEMORY);
804 	if (IS_ERR(elephant->tfm)) {
805 		r = PTR_ERR(elephant->tfm);
806 		elephant->tfm = NULL;
807 		return r;
808 	}
809 
810 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
811 	if (r)
812 		crypt_iv_elephant_dtr(cc);
813 	return r;
814 }
815 
diffuser_disk_to_cpu(u32 * d,size_t n)816 static void diffuser_disk_to_cpu(u32 *d, size_t n)
817 {
818 #ifndef __LITTLE_ENDIAN
819 	int i;
820 
821 	for (i = 0; i < n; i++)
822 		d[i] = le32_to_cpu((__le32)d[i]);
823 #endif
824 }
825 
diffuser_cpu_to_disk(__le32 * d,size_t n)826 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
827 {
828 #ifndef __LITTLE_ENDIAN
829 	int i;
830 
831 	for (i = 0; i < n; i++)
832 		d[i] = cpu_to_le32((u32)d[i]);
833 #endif
834 }
835 
diffuser_a_decrypt(u32 * d,size_t n)836 static void diffuser_a_decrypt(u32 *d, size_t n)
837 {
838 	int i, i1, i2, i3;
839 
840 	for (i = 0; i < 5; i++) {
841 		i1 = 0;
842 		i2 = n - 2;
843 		i3 = n - 5;
844 
845 		while (i1 < (n - 1)) {
846 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
847 			i1++; i2++; i3++;
848 
849 			if (i3 >= n)
850 				i3 -= n;
851 
852 			d[i1] += d[i2] ^ d[i3];
853 			i1++; i2++; i3++;
854 
855 			if (i2 >= n)
856 				i2 -= n;
857 
858 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
859 			i1++; i2++; i3++;
860 
861 			d[i1] += d[i2] ^ d[i3];
862 			i1++; i2++; i3++;
863 		}
864 	}
865 }
866 
diffuser_a_encrypt(u32 * d,size_t n)867 static void diffuser_a_encrypt(u32 *d, size_t n)
868 {
869 	int i, i1, i2, i3;
870 
871 	for (i = 0; i < 5; i++) {
872 		i1 = n - 1;
873 		i2 = n - 2 - 1;
874 		i3 = n - 5 - 1;
875 
876 		while (i1 > 0) {
877 			d[i1] -= d[i2] ^ d[i3];
878 			i1--; i2--; i3--;
879 
880 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
881 			i1--; i2--; i3--;
882 
883 			if (i2 < 0)
884 				i2 += n;
885 
886 			d[i1] -= d[i2] ^ d[i3];
887 			i1--; i2--; i3--;
888 
889 			if (i3 < 0)
890 				i3 += n;
891 
892 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
893 			i1--; i2--; i3--;
894 		}
895 	}
896 }
897 
diffuser_b_decrypt(u32 * d,size_t n)898 static void diffuser_b_decrypt(u32 *d, size_t n)
899 {
900 	int i, i1, i2, i3;
901 
902 	for (i = 0; i < 3; i++) {
903 		i1 = 0;
904 		i2 = 2;
905 		i3 = 5;
906 
907 		while (i1 < (n - 1)) {
908 			d[i1] += d[i2] ^ d[i3];
909 			i1++; i2++; i3++;
910 
911 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
912 			i1++; i2++; i3++;
913 
914 			if (i2 >= n)
915 				i2 -= n;
916 
917 			d[i1] += d[i2] ^ d[i3];
918 			i1++; i2++; i3++;
919 
920 			if (i3 >= n)
921 				i3 -= n;
922 
923 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
924 			i1++; i2++; i3++;
925 		}
926 	}
927 }
928 
diffuser_b_encrypt(u32 * d,size_t n)929 static void diffuser_b_encrypt(u32 *d, size_t n)
930 {
931 	int i, i1, i2, i3;
932 
933 	for (i = 0; i < 3; i++) {
934 		i1 = n - 1;
935 		i2 = 2 - 1;
936 		i3 = 5 - 1;
937 
938 		while (i1 > 0) {
939 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
940 			i1--; i2--; i3--;
941 
942 			if (i3 < 0)
943 				i3 += n;
944 
945 			d[i1] -= d[i2] ^ d[i3];
946 			i1--; i2--; i3--;
947 
948 			if (i2 < 0)
949 				i2 += n;
950 
951 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
952 			i1--; i2--; i3--;
953 
954 			d[i1] -= d[i2] ^ d[i3];
955 			i1--; i2--; i3--;
956 		}
957 	}
958 }
959 
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)960 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
961 {
962 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
963 	u8 *es, *ks, *data, *data2, *data_offset;
964 	struct skcipher_request *req;
965 	struct scatterlist *sg, *sg2, src, dst;
966 	DECLARE_CRYPTO_WAIT(wait);
967 	int i, r;
968 
969 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
970 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
971 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
972 
973 	if (!req || !es || !ks) {
974 		r = -ENOMEM;
975 		goto out;
976 	}
977 
978 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
979 
980 	/* E(Ks, e(s)) */
981 	sg_init_one(&src, es, 16);
982 	sg_init_one(&dst, ks, 16);
983 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
984 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
985 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
986 	if (r)
987 		goto out;
988 
989 	/* E(Ks, e'(s)) */
990 	es[15] = 0x80;
991 	sg_init_one(&dst, &ks[16], 16);
992 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
993 	if (r)
994 		goto out;
995 
996 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
997 	data = kmap_local_page(sg_page(sg));
998 	data_offset = data + sg->offset;
999 
1000 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1001 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1002 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1003 		data2 = kmap_local_page(sg_page(sg2));
1004 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1005 		kunmap_local(data2);
1006 	}
1007 
1008 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1009 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1010 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1011 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1012 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1013 	}
1014 
1015 	for (i = 0; i < (cc->sector_size / 32); i++)
1016 		crypto_xor(data_offset + i * 32, ks, 32);
1017 
1018 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1019 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1020 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1021 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1022 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1023 	}
1024 
1025 	kunmap_local(data);
1026 out:
1027 	kfree_sensitive(ks);
1028 	kfree_sensitive(es);
1029 	skcipher_request_free(req);
1030 	return r;
1031 }
1032 
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1033 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1034 			    struct dm_crypt_request *dmreq)
1035 {
1036 	int r;
1037 
1038 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1039 		r = crypt_iv_elephant(cc, dmreq);
1040 		if (r)
1041 			return r;
1042 	}
1043 
1044 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1045 }
1046 
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1047 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1048 				  struct dm_crypt_request *dmreq)
1049 {
1050 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1051 		return crypt_iv_elephant(cc, dmreq);
1052 
1053 	return 0;
1054 }
1055 
crypt_iv_elephant_init(struct crypt_config * cc)1056 static int crypt_iv_elephant_init(struct crypt_config *cc)
1057 {
1058 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1059 	int key_offset = cc->key_size - cc->key_extra_size;
1060 
1061 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1062 }
1063 
crypt_iv_elephant_wipe(struct crypt_config * cc)1064 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1065 {
1066 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1067 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1068 
1069 	memset(key, 0, cc->key_extra_size);
1070 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1071 }
1072 
1073 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1074 	.generator = crypt_iv_plain_gen
1075 };
1076 
1077 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1078 	.generator = crypt_iv_plain64_gen
1079 };
1080 
1081 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1082 	.generator = crypt_iv_plain64be_gen
1083 };
1084 
1085 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1086 	.generator = crypt_iv_essiv_gen
1087 };
1088 
1089 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1090 	.ctr	   = crypt_iv_benbi_ctr,
1091 	.dtr	   = crypt_iv_benbi_dtr,
1092 	.generator = crypt_iv_benbi_gen
1093 };
1094 
1095 static const struct crypt_iv_operations crypt_iv_null_ops = {
1096 	.generator = crypt_iv_null_gen
1097 };
1098 
1099 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1100 	.ctr	   = crypt_iv_lmk_ctr,
1101 	.dtr	   = crypt_iv_lmk_dtr,
1102 	.init	   = crypt_iv_lmk_init,
1103 	.wipe	   = crypt_iv_lmk_wipe,
1104 	.generator = crypt_iv_lmk_gen,
1105 	.post	   = crypt_iv_lmk_post
1106 };
1107 
1108 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1109 	.ctr	   = crypt_iv_tcw_ctr,
1110 	.dtr	   = crypt_iv_tcw_dtr,
1111 	.init	   = crypt_iv_tcw_init,
1112 	.wipe	   = crypt_iv_tcw_wipe,
1113 	.generator = crypt_iv_tcw_gen,
1114 	.post	   = crypt_iv_tcw_post
1115 };
1116 
1117 static const struct crypt_iv_operations crypt_iv_random_ops = {
1118 	.generator = crypt_iv_random_gen
1119 };
1120 
1121 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1122 	.ctr	   = crypt_iv_eboiv_ctr,
1123 	.generator = crypt_iv_eboiv_gen
1124 };
1125 
1126 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1127 	.ctr	   = crypt_iv_elephant_ctr,
1128 	.dtr	   = crypt_iv_elephant_dtr,
1129 	.init	   = crypt_iv_elephant_init,
1130 	.wipe	   = crypt_iv_elephant_wipe,
1131 	.generator = crypt_iv_elephant_gen,
1132 	.post	   = crypt_iv_elephant_post
1133 };
1134 
1135 /*
1136  * Integrity extensions
1137  */
crypt_integrity_aead(struct crypt_config * cc)1138 static bool crypt_integrity_aead(struct crypt_config *cc)
1139 {
1140 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1141 }
1142 
crypt_integrity_hmac(struct crypt_config * cc)1143 static bool crypt_integrity_hmac(struct crypt_config *cc)
1144 {
1145 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1146 }
1147 
1148 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1149 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1150 					     struct scatterlist *sg)
1151 {
1152 	if (unlikely(crypt_integrity_aead(cc)))
1153 		return &sg[2];
1154 
1155 	return sg;
1156 }
1157 
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1158 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1159 {
1160 	struct bio_integrity_payload *bip;
1161 	unsigned int tag_len;
1162 	int ret;
1163 
1164 	if (!bio_sectors(bio) || !io->cc->tuple_size)
1165 		return 0;
1166 
1167 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1168 	if (IS_ERR(bip))
1169 		return PTR_ERR(bip);
1170 
1171 	tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1172 
1173 	bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
1174 
1175 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1176 				     tag_len, offset_in_page(io->integrity_metadata));
1177 	if (unlikely(ret != tag_len))
1178 		return -ENOMEM;
1179 
1180 	return 0;
1181 }
1182 
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1183 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1184 {
1185 #ifdef CONFIG_BLK_DEV_INTEGRITY
1186 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1187 	struct mapped_device *md = dm_table_get_md(ti->table);
1188 
1189 	/* We require an underlying device with non-PI metadata */
1190 	if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1191 		ti->error = "Integrity profile not supported.";
1192 		return -EINVAL;
1193 	}
1194 
1195 	if (bi->tuple_size < cc->used_tag_size) {
1196 		ti->error = "Integrity profile tag size mismatch.";
1197 		return -EINVAL;
1198 	}
1199 	cc->tuple_size = bi->tuple_size;
1200 	if (1 << bi->interval_exp != cc->sector_size) {
1201 		ti->error = "Integrity profile sector size mismatch.";
1202 		return -EINVAL;
1203 	}
1204 
1205 	if (crypt_integrity_aead(cc)) {
1206 		cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1207 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1208 		       cc->integrity_tag_size, cc->integrity_iv_size);
1209 
1210 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1211 			ti->error = "Integrity AEAD auth tag size is not supported.";
1212 			return -EINVAL;
1213 		}
1214 	} else if (cc->integrity_iv_size)
1215 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1216 		       cc->integrity_iv_size);
1217 
1218 	if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1219 		ti->error = "Not enough space for integrity tag in the profile.";
1220 		return -EINVAL;
1221 	}
1222 
1223 	return 0;
1224 #else
1225 	ti->error = "Integrity profile not supported.";
1226 	return -EINVAL;
1227 #endif
1228 }
1229 
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1230 static void crypt_convert_init(struct crypt_config *cc,
1231 			       struct convert_context *ctx,
1232 			       struct bio *bio_out, struct bio *bio_in,
1233 			       sector_t sector)
1234 {
1235 	ctx->bio_in = bio_in;
1236 	ctx->bio_out = bio_out;
1237 	if (bio_in)
1238 		ctx->iter_in = bio_in->bi_iter;
1239 	if (bio_out)
1240 		ctx->iter_out = bio_out->bi_iter;
1241 	ctx->cc_sector = sector + cc->iv_offset;
1242 	ctx->tag_offset = 0;
1243 	init_completion(&ctx->restart);
1244 }
1245 
dmreq_of_req(struct crypt_config * cc,void * req)1246 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1247 					     void *req)
1248 {
1249 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1250 }
1251 
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1252 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1253 {
1254 	return (void *)((char *)dmreq - cc->dmreq_start);
1255 }
1256 
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1257 static u8 *iv_of_dmreq(struct crypt_config *cc,
1258 		       struct dm_crypt_request *dmreq)
1259 {
1260 	if (crypt_integrity_aead(cc))
1261 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1262 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1263 	else
1264 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1265 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1266 }
1267 
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1268 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1269 		       struct dm_crypt_request *dmreq)
1270 {
1271 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1272 }
1273 
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1274 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1275 		       struct dm_crypt_request *dmreq)
1276 {
1277 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1278 
1279 	return (__le64 *) ptr;
1280 }
1281 
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1282 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1283 		       struct dm_crypt_request *dmreq)
1284 {
1285 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1286 		  cc->iv_size + sizeof(uint64_t);
1287 
1288 	return (unsigned int *)ptr;
1289 }
1290 
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1291 static void *tag_from_dmreq(struct crypt_config *cc,
1292 				struct dm_crypt_request *dmreq)
1293 {
1294 	struct convert_context *ctx = dmreq->ctx;
1295 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1296 
1297 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1298 		cc->tuple_size];
1299 }
1300 
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1301 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1302 			       struct dm_crypt_request *dmreq)
1303 {
1304 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1305 }
1306 
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1307 static int crypt_convert_block_aead(struct crypt_config *cc,
1308 				     struct convert_context *ctx,
1309 				     struct aead_request *req,
1310 				     unsigned int tag_offset)
1311 {
1312 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1313 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1314 	struct dm_crypt_request *dmreq;
1315 	u8 *iv, *org_iv, *tag_iv, *tag;
1316 	__le64 *sector;
1317 	int r = 0;
1318 
1319 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1320 
1321 	/* Reject unexpected unaligned bio. */
1322 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1323 		return -EIO;
1324 
1325 	dmreq = dmreq_of_req(cc, req);
1326 	dmreq->iv_sector = ctx->cc_sector;
1327 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1328 		dmreq->iv_sector >>= cc->sector_shift;
1329 	dmreq->ctx = ctx;
1330 
1331 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1332 
1333 	sector = org_sector_of_dmreq(cc, dmreq);
1334 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1335 
1336 	iv = iv_of_dmreq(cc, dmreq);
1337 	org_iv = org_iv_of_dmreq(cc, dmreq);
1338 	tag = tag_from_dmreq(cc, dmreq);
1339 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1340 
1341 	/* AEAD request:
1342 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1343 	 *  | (authenticated) | (auth+encryption) |              |
1344 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1345 	 */
1346 	sg_init_table(dmreq->sg_in, 4);
1347 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1348 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1349 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1350 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1351 
1352 	sg_init_table(dmreq->sg_out, 4);
1353 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1354 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1355 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1356 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1357 
1358 	if (cc->iv_gen_ops) {
1359 		/* For READs use IV stored in integrity metadata */
1360 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1361 			memcpy(org_iv, tag_iv, cc->iv_size);
1362 		} else {
1363 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1364 			if (r < 0)
1365 				return r;
1366 			/* Store generated IV in integrity metadata */
1367 			if (cc->integrity_iv_size)
1368 				memcpy(tag_iv, org_iv, cc->iv_size);
1369 		}
1370 		/* Working copy of IV, to be modified in crypto API */
1371 		memcpy(iv, org_iv, cc->iv_size);
1372 	}
1373 
1374 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1375 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1376 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1377 				       cc->sector_size, iv);
1378 		r = crypto_aead_encrypt(req);
1379 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1380 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1381 			       cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1382 	} else {
1383 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1384 				       cc->sector_size + cc->integrity_tag_size, iv);
1385 		r = crypto_aead_decrypt(req);
1386 	}
1387 
1388 	if (r == -EBADMSG) {
1389 		sector_t s = le64_to_cpu(*sector);
1390 
1391 		ctx->aead_failed = true;
1392 		if (ctx->aead_recheck) {
1393 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1394 				    ctx->bio_in->bi_bdev, s);
1395 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1396 					 ctx->bio_in, s, 0);
1397 		}
1398 	}
1399 
1400 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1401 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1402 
1403 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1404 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1405 
1406 	return r;
1407 }
1408 
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1409 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1410 					struct convert_context *ctx,
1411 					struct skcipher_request *req,
1412 					unsigned int tag_offset)
1413 {
1414 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1415 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1416 	struct scatterlist *sg_in, *sg_out;
1417 	struct dm_crypt_request *dmreq;
1418 	u8 *iv, *org_iv, *tag_iv;
1419 	__le64 *sector;
1420 	int r = 0;
1421 
1422 	/* Reject unexpected unaligned bio. */
1423 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1424 		return -EIO;
1425 
1426 	dmreq = dmreq_of_req(cc, req);
1427 	dmreq->iv_sector = ctx->cc_sector;
1428 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1429 		dmreq->iv_sector >>= cc->sector_shift;
1430 	dmreq->ctx = ctx;
1431 
1432 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1433 
1434 	iv = iv_of_dmreq(cc, dmreq);
1435 	org_iv = org_iv_of_dmreq(cc, dmreq);
1436 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1437 
1438 	sector = org_sector_of_dmreq(cc, dmreq);
1439 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1440 
1441 	/* For skcipher we use only the first sg item */
1442 	sg_in  = &dmreq->sg_in[0];
1443 	sg_out = &dmreq->sg_out[0];
1444 
1445 	sg_init_table(sg_in, 1);
1446 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1447 
1448 	sg_init_table(sg_out, 1);
1449 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1450 
1451 	if (cc->iv_gen_ops) {
1452 		/* For READs use IV stored in integrity metadata */
1453 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1454 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1455 		} else {
1456 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1457 			if (r < 0)
1458 				return r;
1459 			/* Data can be already preprocessed in generator */
1460 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1461 				sg_in = sg_out;
1462 			/* Store generated IV in integrity metadata */
1463 			if (cc->integrity_iv_size)
1464 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1465 		}
1466 		/* Working copy of IV, to be modified in crypto API */
1467 		memcpy(iv, org_iv, cc->iv_size);
1468 	}
1469 
1470 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1471 
1472 	if (bio_data_dir(ctx->bio_in) == WRITE)
1473 		r = crypto_skcipher_encrypt(req);
1474 	else
1475 		r = crypto_skcipher_decrypt(req);
1476 
1477 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1478 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1479 
1480 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1481 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1482 
1483 	return r;
1484 }
1485 
1486 static void kcryptd_async_done(void *async_req, int error);
1487 
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1488 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1489 				     struct convert_context *ctx)
1490 {
1491 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1492 
1493 	if (!ctx->r.req) {
1494 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1495 		if (!ctx->r.req)
1496 			return -ENOMEM;
1497 	}
1498 
1499 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1500 
1501 	/*
1502 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1503 	 * requests if driver request queue is full.
1504 	 */
1505 	skcipher_request_set_callback(ctx->r.req,
1506 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1507 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1508 
1509 	return 0;
1510 }
1511 
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1512 static int crypt_alloc_req_aead(struct crypt_config *cc,
1513 				 struct convert_context *ctx)
1514 {
1515 	if (!ctx->r.req_aead) {
1516 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1517 		if (!ctx->r.req_aead)
1518 			return -ENOMEM;
1519 	}
1520 
1521 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1522 
1523 	/*
1524 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1525 	 * requests if driver request queue is full.
1526 	 */
1527 	aead_request_set_callback(ctx->r.req_aead,
1528 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1529 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1530 
1531 	return 0;
1532 }
1533 
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1534 static int crypt_alloc_req(struct crypt_config *cc,
1535 			    struct convert_context *ctx)
1536 {
1537 	if (crypt_integrity_aead(cc))
1538 		return crypt_alloc_req_aead(cc, ctx);
1539 	else
1540 		return crypt_alloc_req_skcipher(cc, ctx);
1541 }
1542 
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1543 static void crypt_free_req_skcipher(struct crypt_config *cc,
1544 				    struct skcipher_request *req, struct bio *base_bio)
1545 {
1546 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1547 
1548 	if ((struct skcipher_request *)(io + 1) != req)
1549 		mempool_free(req, &cc->req_pool);
1550 }
1551 
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1552 static void crypt_free_req_aead(struct crypt_config *cc,
1553 				struct aead_request *req, struct bio *base_bio)
1554 {
1555 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1556 
1557 	if ((struct aead_request *)(io + 1) != req)
1558 		mempool_free(req, &cc->req_pool);
1559 }
1560 
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1561 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1562 {
1563 	if (crypt_integrity_aead(cc))
1564 		crypt_free_req_aead(cc, req, base_bio);
1565 	else
1566 		crypt_free_req_skcipher(cc, req, base_bio);
1567 }
1568 
1569 /*
1570  * Encrypt / decrypt data from one bio to another one (can be the same one)
1571  */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1572 static blk_status_t crypt_convert(struct crypt_config *cc,
1573 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1574 {
1575 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1576 	int r;
1577 
1578 	/*
1579 	 * if reset_pending is set we are dealing with the bio for the first time,
1580 	 * else we're continuing to work on the previous bio, so don't mess with
1581 	 * the cc_pending counter
1582 	 */
1583 	if (reset_pending)
1584 		atomic_set(&ctx->cc_pending, 1);
1585 
1586 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1587 
1588 		r = crypt_alloc_req(cc, ctx);
1589 		if (r) {
1590 			complete(&ctx->restart);
1591 			return BLK_STS_DEV_RESOURCE;
1592 		}
1593 
1594 		atomic_inc(&ctx->cc_pending);
1595 
1596 		if (crypt_integrity_aead(cc))
1597 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1598 		else
1599 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1600 
1601 		switch (r) {
1602 		/*
1603 		 * The request was queued by a crypto driver
1604 		 * but the driver request queue is full, let's wait.
1605 		 */
1606 		case -EBUSY:
1607 			if (in_interrupt()) {
1608 				if (try_wait_for_completion(&ctx->restart)) {
1609 					/*
1610 					 * we don't have to block to wait for completion,
1611 					 * so proceed
1612 					 */
1613 				} else {
1614 					/*
1615 					 * we can't wait for completion without blocking
1616 					 * exit and continue processing in a workqueue
1617 					 */
1618 					ctx->r.req = NULL;
1619 					ctx->tag_offset++;
1620 					ctx->cc_sector += sector_step;
1621 					return BLK_STS_DEV_RESOURCE;
1622 				}
1623 			} else {
1624 				wait_for_completion(&ctx->restart);
1625 			}
1626 			reinit_completion(&ctx->restart);
1627 			fallthrough;
1628 		/*
1629 		 * The request is queued and processed asynchronously,
1630 		 * completion function kcryptd_async_done() will be called.
1631 		 */
1632 		case -EINPROGRESS:
1633 			ctx->r.req = NULL;
1634 			ctx->tag_offset++;
1635 			ctx->cc_sector += sector_step;
1636 			continue;
1637 		/*
1638 		 * The request was already processed (synchronously).
1639 		 */
1640 		case 0:
1641 			atomic_dec(&ctx->cc_pending);
1642 			ctx->cc_sector += sector_step;
1643 			ctx->tag_offset++;
1644 			if (!atomic)
1645 				cond_resched();
1646 			continue;
1647 		/*
1648 		 * There was a data integrity error.
1649 		 */
1650 		case -EBADMSG:
1651 			atomic_dec(&ctx->cc_pending);
1652 			return BLK_STS_PROTECTION;
1653 		/*
1654 		 * There was an error while processing the request.
1655 		 */
1656 		default:
1657 			atomic_dec(&ctx->cc_pending);
1658 			return BLK_STS_IOERR;
1659 		}
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1666 
1667 /*
1668  * Generate a new unfragmented bio with the given size
1669  * This should never violate the device limitations (but if it did then block
1670  * core should split the bio as needed).
1671  *
1672  * This function may be called concurrently. If we allocate from the mempool
1673  * concurrently, there is a possibility of deadlock. For example, if we have
1674  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1675  * the mempool concurrently, it may deadlock in a situation where both processes
1676  * have allocated 128 pages and the mempool is exhausted.
1677  *
1678  * In order to avoid this scenario we allocate the pages under a mutex.
1679  *
1680  * In order to not degrade performance with excessive locking, we try
1681  * non-blocking allocations without a mutex first but on failure we fallback
1682  * to blocking allocations with a mutex.
1683  *
1684  * In order to reduce allocation overhead, we try to allocate compound pages in
1685  * the first pass. If they are not available, we fall back to the mempool.
1686  */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1687 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1688 {
1689 	struct crypt_config *cc = io->cc;
1690 	struct bio *clone;
1691 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1692 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1693 	unsigned int remaining_size;
1694 	unsigned int order = MAX_PAGE_ORDER;
1695 
1696 retry:
1697 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1698 		mutex_lock(&cc->bio_alloc_lock);
1699 
1700 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1701 				 GFP_NOIO, &cc->bs);
1702 	clone->bi_private = io;
1703 	clone->bi_end_io = crypt_endio;
1704 	clone->bi_ioprio = io->base_bio->bi_ioprio;
1705 	clone->bi_iter.bi_sector = cc->start + io->sector;
1706 
1707 	remaining_size = size;
1708 
1709 	while (remaining_size) {
1710 		struct page *pages;
1711 		unsigned size_to_add;
1712 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1713 		order = min(order, remaining_order);
1714 
1715 		while (order > 0) {
1716 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1717 					(1 << order) > dm_crypt_pages_per_client))
1718 				goto decrease_order;
1719 			pages = alloc_pages(gfp_mask
1720 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1721 				order);
1722 			if (likely(pages != NULL)) {
1723 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1724 				goto have_pages;
1725 			}
1726 decrease_order:
1727 			order--;
1728 		}
1729 
1730 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1731 		if (!pages) {
1732 			crypt_free_buffer_pages(cc, clone);
1733 			bio_put(clone);
1734 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1735 			order = 0;
1736 			goto retry;
1737 		}
1738 
1739 have_pages:
1740 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1741 		__bio_add_page(clone, pages, size_to_add, 0);
1742 		remaining_size -= size_to_add;
1743 	}
1744 
1745 	/* Allocate space for integrity tags */
1746 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1747 		crypt_free_buffer_pages(cc, clone);
1748 		bio_put(clone);
1749 		clone = NULL;
1750 	}
1751 
1752 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1753 		mutex_unlock(&cc->bio_alloc_lock);
1754 
1755 	return clone;
1756 }
1757 
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1758 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1759 {
1760 	struct folio_iter fi;
1761 
1762 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1763 		bio_for_each_folio_all(fi, clone) {
1764 			if (folio_test_large(fi.folio)) {
1765 				percpu_counter_sub(&cc->n_allocated_pages,
1766 						1 << folio_order(fi.folio));
1767 				folio_put(fi.folio);
1768 			} else {
1769 				mempool_free(&fi.folio->page, &cc->page_pool);
1770 			}
1771 		}
1772 	}
1773 }
1774 
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1775 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1776 			  struct bio *bio, sector_t sector)
1777 {
1778 	io->cc = cc;
1779 	io->base_bio = bio;
1780 	io->sector = sector;
1781 	io->error = 0;
1782 	io->ctx.aead_recheck = false;
1783 	io->ctx.aead_failed = false;
1784 	io->ctx.r.req = NULL;
1785 	io->integrity_metadata = NULL;
1786 	io->integrity_metadata_from_pool = false;
1787 	atomic_set(&io->io_pending, 0);
1788 }
1789 
crypt_inc_pending(struct dm_crypt_io * io)1790 static void crypt_inc_pending(struct dm_crypt_io *io)
1791 {
1792 	atomic_inc(&io->io_pending);
1793 }
1794 
1795 static void kcryptd_queue_read(struct dm_crypt_io *io);
1796 
1797 /*
1798  * One of the bios was finished. Check for completion of
1799  * the whole request and correctly clean up the buffer.
1800  */
crypt_dec_pending(struct dm_crypt_io * io)1801 static void crypt_dec_pending(struct dm_crypt_io *io)
1802 {
1803 	struct crypt_config *cc = io->cc;
1804 	struct bio *base_bio = io->base_bio;
1805 	blk_status_t error = io->error;
1806 
1807 	if (!atomic_dec_and_test(&io->io_pending))
1808 		return;
1809 
1810 	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1811 	    cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1812 		io->ctx.aead_recheck = true;
1813 		io->ctx.aead_failed = false;
1814 		io->error = 0;
1815 		kcryptd_queue_read(io);
1816 		return;
1817 	}
1818 
1819 	if (io->ctx.r.req)
1820 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1821 
1822 	if (unlikely(io->integrity_metadata_from_pool))
1823 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1824 	else
1825 		kfree(io->integrity_metadata);
1826 
1827 	base_bio->bi_status = error;
1828 
1829 	bio_endio(base_bio);
1830 }
1831 
1832 /*
1833  * kcryptd/kcryptd_io:
1834  *
1835  * Needed because it would be very unwise to do decryption in an
1836  * interrupt context.
1837  *
1838  * kcryptd performs the actual encryption or decryption.
1839  *
1840  * kcryptd_io performs the IO submission.
1841  *
1842  * They must be separated as otherwise the final stages could be
1843  * starved by new requests which can block in the first stages due
1844  * to memory allocation.
1845  *
1846  * The work is done per CPU global for all dm-crypt instances.
1847  * They should not depend on each other and do not block.
1848  */
crypt_endio(struct bio * clone)1849 static void crypt_endio(struct bio *clone)
1850 {
1851 	struct dm_crypt_io *io = clone->bi_private;
1852 	struct crypt_config *cc = io->cc;
1853 	unsigned int rw = bio_data_dir(clone);
1854 	blk_status_t error = clone->bi_status;
1855 
1856 	if (io->ctx.aead_recheck && !error) {
1857 		kcryptd_queue_crypt(io);
1858 		return;
1859 	}
1860 
1861 	/*
1862 	 * free the processed pages
1863 	 */
1864 	if (rw == WRITE || io->ctx.aead_recheck)
1865 		crypt_free_buffer_pages(cc, clone);
1866 
1867 	bio_put(clone);
1868 
1869 	if (rw == READ && !error) {
1870 		kcryptd_queue_crypt(io);
1871 		return;
1872 	}
1873 
1874 	if (unlikely(error))
1875 		io->error = error;
1876 
1877 	crypt_dec_pending(io);
1878 }
1879 
1880 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1881 
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1882 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1883 {
1884 	struct crypt_config *cc = io->cc;
1885 	struct bio *clone;
1886 
1887 	if (io->ctx.aead_recheck) {
1888 		if (!(gfp & __GFP_DIRECT_RECLAIM))
1889 			return 1;
1890 		crypt_inc_pending(io);
1891 		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1892 		if (unlikely(!clone)) {
1893 			crypt_dec_pending(io);
1894 			return 1;
1895 		}
1896 		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1897 		io->saved_bi_iter = clone->bi_iter;
1898 		dm_submit_bio_remap(io->base_bio, clone);
1899 		return 0;
1900 	}
1901 
1902 	/*
1903 	 * We need the original biovec array in order to decrypt the whole bio
1904 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1905 	 * worry about the block layer modifying the biovec array; so leverage
1906 	 * bio_alloc_clone().
1907 	 */
1908 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1909 	if (!clone)
1910 		return 1;
1911 
1912 	clone->bi_iter.bi_sector = cc->start + io->sector;
1913 	clone->bi_private = io;
1914 	clone->bi_end_io = crypt_endio;
1915 
1916 	crypt_inc_pending(io);
1917 
1918 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1919 		crypt_dec_pending(io);
1920 		bio_put(clone);
1921 		return 1;
1922 	}
1923 
1924 	dm_submit_bio_remap(io->base_bio, clone);
1925 	return 0;
1926 }
1927 
kcryptd_io_read_work(struct work_struct * work)1928 static void kcryptd_io_read_work(struct work_struct *work)
1929 {
1930 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1931 
1932 	crypt_inc_pending(io);
1933 	if (kcryptd_io_read(io, GFP_NOIO))
1934 		io->error = BLK_STS_RESOURCE;
1935 	crypt_dec_pending(io);
1936 }
1937 
kcryptd_queue_read(struct dm_crypt_io * io)1938 static void kcryptd_queue_read(struct dm_crypt_io *io)
1939 {
1940 	struct crypt_config *cc = io->cc;
1941 
1942 	INIT_WORK(&io->work, kcryptd_io_read_work);
1943 	queue_work(cc->io_queue, &io->work);
1944 }
1945 
kcryptd_io_write(struct dm_crypt_io * io)1946 static void kcryptd_io_write(struct dm_crypt_io *io)
1947 {
1948 	struct bio *clone = io->ctx.bio_out;
1949 
1950 	dm_submit_bio_remap(io->base_bio, clone);
1951 }
1952 
1953 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1954 
dmcrypt_write(void * data)1955 static int dmcrypt_write(void *data)
1956 {
1957 	struct crypt_config *cc = data;
1958 	struct dm_crypt_io *io;
1959 
1960 	while (1) {
1961 		struct rb_root write_tree;
1962 		struct blk_plug plug;
1963 
1964 		spin_lock_irq(&cc->write_thread_lock);
1965 continue_locked:
1966 
1967 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1968 			goto pop_from_list;
1969 
1970 		set_current_state(TASK_INTERRUPTIBLE);
1971 
1972 		spin_unlock_irq(&cc->write_thread_lock);
1973 
1974 		if (unlikely(kthread_should_stop())) {
1975 			set_current_state(TASK_RUNNING);
1976 			break;
1977 		}
1978 
1979 		schedule();
1980 
1981 		spin_lock_irq(&cc->write_thread_lock);
1982 		goto continue_locked;
1983 
1984 pop_from_list:
1985 		write_tree = cc->write_tree;
1986 		cc->write_tree = RB_ROOT;
1987 		spin_unlock_irq(&cc->write_thread_lock);
1988 
1989 		BUG_ON(rb_parent(write_tree.rb_node));
1990 
1991 		/*
1992 		 * Note: we cannot walk the tree here with rb_next because
1993 		 * the structures may be freed when kcryptd_io_write is called.
1994 		 */
1995 		blk_start_plug(&plug);
1996 		do {
1997 			io = crypt_io_from_node(rb_first(&write_tree));
1998 			rb_erase(&io->rb_node, &write_tree);
1999 			kcryptd_io_write(io);
2000 			cond_resched();
2001 		} while (!RB_EMPTY_ROOT(&write_tree));
2002 		blk_finish_plug(&plug);
2003 	}
2004 	return 0;
2005 }
2006 
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)2007 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2008 {
2009 	struct bio *clone = io->ctx.bio_out;
2010 	struct crypt_config *cc = io->cc;
2011 	unsigned long flags;
2012 	sector_t sector;
2013 	struct rb_node **rbp, *parent;
2014 
2015 	if (unlikely(io->error)) {
2016 		crypt_free_buffer_pages(cc, clone);
2017 		bio_put(clone);
2018 		crypt_dec_pending(io);
2019 		return;
2020 	}
2021 
2022 	/* crypt_convert should have filled the clone bio */
2023 	BUG_ON(io->ctx.iter_out.bi_size);
2024 
2025 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2026 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2027 		dm_submit_bio_remap(io->base_bio, clone);
2028 		return;
2029 	}
2030 
2031 	spin_lock_irqsave(&cc->write_thread_lock, flags);
2032 	if (RB_EMPTY_ROOT(&cc->write_tree))
2033 		wake_up_process(cc->write_thread);
2034 	rbp = &cc->write_tree.rb_node;
2035 	parent = NULL;
2036 	sector = io->sector;
2037 	while (*rbp) {
2038 		parent = *rbp;
2039 		if (sector < crypt_io_from_node(parent)->sector)
2040 			rbp = &(*rbp)->rb_left;
2041 		else
2042 			rbp = &(*rbp)->rb_right;
2043 	}
2044 	rb_link_node(&io->rb_node, parent, rbp);
2045 	rb_insert_color(&io->rb_node, &cc->write_tree);
2046 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2047 }
2048 
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2049 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2050 				       struct convert_context *ctx)
2051 
2052 {
2053 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2054 		return false;
2055 
2056 	/*
2057 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2058 	 * constraints so they do not need to be issued inline by
2059 	 * kcryptd_crypt_write_convert().
2060 	 */
2061 	switch (bio_op(ctx->bio_in)) {
2062 	case REQ_OP_WRITE:
2063 	case REQ_OP_WRITE_ZEROES:
2064 		return true;
2065 	default:
2066 		return false;
2067 	}
2068 }
2069 
kcryptd_crypt_write_continue(struct work_struct * work)2070 static void kcryptd_crypt_write_continue(struct work_struct *work)
2071 {
2072 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2073 	struct crypt_config *cc = io->cc;
2074 	struct convert_context *ctx = &io->ctx;
2075 	int crypt_finished;
2076 	blk_status_t r;
2077 
2078 	wait_for_completion(&ctx->restart);
2079 	reinit_completion(&ctx->restart);
2080 
2081 	r = crypt_convert(cc, &io->ctx, false, false);
2082 	if (r)
2083 		io->error = r;
2084 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2085 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2086 		/* Wait for completion signaled by kcryptd_async_done() */
2087 		wait_for_completion(&ctx->restart);
2088 		crypt_finished = 1;
2089 	}
2090 
2091 	/* Encryption was already finished, submit io now */
2092 	if (crypt_finished)
2093 		kcryptd_crypt_write_io_submit(io, 0);
2094 
2095 	crypt_dec_pending(io);
2096 }
2097 
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2098 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2099 {
2100 	struct crypt_config *cc = io->cc;
2101 	struct convert_context *ctx = &io->ctx;
2102 	struct bio *clone;
2103 	int crypt_finished;
2104 	blk_status_t r;
2105 
2106 	/*
2107 	 * Prevent io from disappearing until this function completes.
2108 	 */
2109 	crypt_inc_pending(io);
2110 	crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2111 
2112 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2113 	if (unlikely(!clone)) {
2114 		io->error = BLK_STS_IOERR;
2115 		goto dec;
2116 	}
2117 
2118 	io->ctx.bio_out = clone;
2119 	io->ctx.iter_out = clone->bi_iter;
2120 
2121 	if (crypt_integrity_aead(cc)) {
2122 		bio_copy_data(clone, io->base_bio);
2123 		io->ctx.bio_in = clone;
2124 		io->ctx.iter_in = clone->bi_iter;
2125 	}
2126 
2127 	crypt_inc_pending(io);
2128 	r = crypt_convert(cc, ctx,
2129 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2130 	/*
2131 	 * Crypto API backlogged the request, because its queue was full
2132 	 * and we're in softirq context, so continue from a workqueue
2133 	 * (TODO: is it actually possible to be in softirq in the write path?)
2134 	 */
2135 	if (r == BLK_STS_DEV_RESOURCE) {
2136 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2137 		queue_work(cc->crypt_queue, &io->work);
2138 		return;
2139 	}
2140 	if (r)
2141 		io->error = r;
2142 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2143 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2144 		/* Wait for completion signaled by kcryptd_async_done() */
2145 		wait_for_completion(&ctx->restart);
2146 		crypt_finished = 1;
2147 	}
2148 
2149 	/* Encryption was already finished, submit io now */
2150 	if (crypt_finished)
2151 		kcryptd_crypt_write_io_submit(io, 0);
2152 
2153 dec:
2154 	crypt_dec_pending(io);
2155 }
2156 
kcryptd_crypt_read_done(struct dm_crypt_io * io)2157 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2158 {
2159 	if (io->ctx.aead_recheck) {
2160 		if (!io->error) {
2161 			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2162 			bio_copy_data(io->base_bio, io->ctx.bio_in);
2163 		}
2164 		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2165 		bio_put(io->ctx.bio_in);
2166 	}
2167 	crypt_dec_pending(io);
2168 }
2169 
kcryptd_crypt_read_continue(struct work_struct * work)2170 static void kcryptd_crypt_read_continue(struct work_struct *work)
2171 {
2172 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2173 	struct crypt_config *cc = io->cc;
2174 	blk_status_t r;
2175 
2176 	wait_for_completion(&io->ctx.restart);
2177 	reinit_completion(&io->ctx.restart);
2178 
2179 	r = crypt_convert(cc, &io->ctx, false, false);
2180 	if (r)
2181 		io->error = r;
2182 
2183 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2184 		kcryptd_crypt_read_done(io);
2185 
2186 	crypt_dec_pending(io);
2187 }
2188 
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2189 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2190 {
2191 	struct crypt_config *cc = io->cc;
2192 	blk_status_t r;
2193 
2194 	crypt_inc_pending(io);
2195 
2196 	if (io->ctx.aead_recheck) {
2197 		r = crypt_convert(cc, &io->ctx,
2198 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2199 	} else {
2200 		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2201 				   io->sector);
2202 
2203 		r = crypt_convert(cc, &io->ctx,
2204 				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2205 	}
2206 	/*
2207 	 * Crypto API backlogged the request, because its queue was full
2208 	 * and we're in softirq context, so continue from a workqueue
2209 	 */
2210 	if (r == BLK_STS_DEV_RESOURCE) {
2211 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2212 		queue_work(cc->crypt_queue, &io->work);
2213 		return;
2214 	}
2215 	if (r)
2216 		io->error = r;
2217 
2218 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2219 		kcryptd_crypt_read_done(io);
2220 
2221 	crypt_dec_pending(io);
2222 }
2223 
kcryptd_async_done(void * data,int error)2224 static void kcryptd_async_done(void *data, int error)
2225 {
2226 	struct dm_crypt_request *dmreq = data;
2227 	struct convert_context *ctx = dmreq->ctx;
2228 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2229 	struct crypt_config *cc = io->cc;
2230 
2231 	/*
2232 	 * A request from crypto driver backlog is going to be processed now,
2233 	 * finish the completion and continue in crypt_convert().
2234 	 * (Callback will be called for the second time for this request.)
2235 	 */
2236 	if (error == -EINPROGRESS) {
2237 		complete(&ctx->restart);
2238 		return;
2239 	}
2240 
2241 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2242 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2243 
2244 	if (error == -EBADMSG) {
2245 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2246 
2247 		ctx->aead_failed = true;
2248 		if (ctx->aead_recheck) {
2249 			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2250 				    ctx->bio_in->bi_bdev, s);
2251 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2252 					 ctx->bio_in, s, 0);
2253 		}
2254 		io->error = BLK_STS_PROTECTION;
2255 	} else if (error < 0)
2256 		io->error = BLK_STS_IOERR;
2257 
2258 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2259 
2260 	if (!atomic_dec_and_test(&ctx->cc_pending))
2261 		return;
2262 
2263 	/*
2264 	 * The request is fully completed: for inline writes, let
2265 	 * kcryptd_crypt_write_convert() do the IO submission.
2266 	 */
2267 	if (bio_data_dir(io->base_bio) == READ) {
2268 		kcryptd_crypt_read_done(io);
2269 		return;
2270 	}
2271 
2272 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2273 		complete(&ctx->restart);
2274 		return;
2275 	}
2276 
2277 	kcryptd_crypt_write_io_submit(io, 1);
2278 }
2279 
kcryptd_crypt(struct work_struct * work)2280 static void kcryptd_crypt(struct work_struct *work)
2281 {
2282 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2283 
2284 	if (bio_data_dir(io->base_bio) == READ)
2285 		kcryptd_crypt_read_convert(io);
2286 	else
2287 		kcryptd_crypt_write_convert(io);
2288 }
2289 
kcryptd_queue_crypt(struct dm_crypt_io * io)2290 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2291 {
2292 	struct crypt_config *cc = io->cc;
2293 
2294 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2295 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2296 		/*
2297 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2298 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2299 		 * it is being executed with irqs disabled.
2300 		 */
2301 		if (in_hardirq() || irqs_disabled()) {
2302 			INIT_WORK(&io->work, kcryptd_crypt);
2303 			queue_work(system_bh_wq, &io->work);
2304 			return;
2305 		} else {
2306 			kcryptd_crypt(&io->work);
2307 			return;
2308 		}
2309 	}
2310 
2311 	INIT_WORK(&io->work, kcryptd_crypt);
2312 	queue_work(cc->crypt_queue, &io->work);
2313 }
2314 
crypt_free_tfms_aead(struct crypt_config * cc)2315 static void crypt_free_tfms_aead(struct crypt_config *cc)
2316 {
2317 	if (!cc->cipher_tfm.tfms_aead)
2318 		return;
2319 
2320 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2321 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2322 		cc->cipher_tfm.tfms_aead[0] = NULL;
2323 	}
2324 
2325 	kfree(cc->cipher_tfm.tfms_aead);
2326 	cc->cipher_tfm.tfms_aead = NULL;
2327 }
2328 
crypt_free_tfms_skcipher(struct crypt_config * cc)2329 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2330 {
2331 	unsigned int i;
2332 
2333 	if (!cc->cipher_tfm.tfms)
2334 		return;
2335 
2336 	for (i = 0; i < cc->tfms_count; i++)
2337 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2338 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2339 			cc->cipher_tfm.tfms[i] = NULL;
2340 		}
2341 
2342 	kfree(cc->cipher_tfm.tfms);
2343 	cc->cipher_tfm.tfms = NULL;
2344 }
2345 
crypt_free_tfms(struct crypt_config * cc)2346 static void crypt_free_tfms(struct crypt_config *cc)
2347 {
2348 	if (crypt_integrity_aead(cc))
2349 		crypt_free_tfms_aead(cc);
2350 	else
2351 		crypt_free_tfms_skcipher(cc);
2352 }
2353 
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2354 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2355 {
2356 	unsigned int i;
2357 	int err;
2358 
2359 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2360 				      sizeof(struct crypto_skcipher *),
2361 				      GFP_KERNEL);
2362 	if (!cc->cipher_tfm.tfms)
2363 		return -ENOMEM;
2364 
2365 	for (i = 0; i < cc->tfms_count; i++) {
2366 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2367 						CRYPTO_ALG_ALLOCATES_MEMORY);
2368 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2369 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2370 			crypt_free_tfms(cc);
2371 			return err;
2372 		}
2373 	}
2374 
2375 	/*
2376 	 * dm-crypt performance can vary greatly depending on which crypto
2377 	 * algorithm implementation is used.  Help people debug performance
2378 	 * problems by logging the ->cra_driver_name.
2379 	 */
2380 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2381 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2382 	return 0;
2383 }
2384 
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2385 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2386 {
2387 	int err;
2388 
2389 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2390 	if (!cc->cipher_tfm.tfms)
2391 		return -ENOMEM;
2392 
2393 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2394 						CRYPTO_ALG_ALLOCATES_MEMORY);
2395 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2396 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2397 		crypt_free_tfms(cc);
2398 		return err;
2399 	}
2400 
2401 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2403 	return 0;
2404 }
2405 
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2406 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2407 {
2408 	if (crypt_integrity_aead(cc))
2409 		return crypt_alloc_tfms_aead(cc, ciphermode);
2410 	else
2411 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2412 }
2413 
crypt_subkey_size(struct crypt_config * cc)2414 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2415 {
2416 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2417 }
2418 
crypt_authenckey_size(struct crypt_config * cc)2419 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2420 {
2421 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2422 }
2423 
2424 /*
2425  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2426  * the key must be for some reason in special format.
2427  * This funcion converts cc->key to this special format.
2428  */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2429 static void crypt_copy_authenckey(char *p, const void *key,
2430 				  unsigned int enckeylen, unsigned int authkeylen)
2431 {
2432 	struct crypto_authenc_key_param *param;
2433 	struct rtattr *rta;
2434 
2435 	rta = (struct rtattr *)p;
2436 	param = RTA_DATA(rta);
2437 	param->enckeylen = cpu_to_be32(enckeylen);
2438 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2439 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2440 	p += RTA_SPACE(sizeof(*param));
2441 	memcpy(p, key + enckeylen, authkeylen);
2442 	p += authkeylen;
2443 	memcpy(p, key, enckeylen);
2444 }
2445 
crypt_setkey(struct crypt_config * cc)2446 static int crypt_setkey(struct crypt_config *cc)
2447 {
2448 	unsigned int subkey_size;
2449 	int err = 0, i, r;
2450 
2451 	/* Ignore extra keys (which are used for IV etc) */
2452 	subkey_size = crypt_subkey_size(cc);
2453 
2454 	if (crypt_integrity_hmac(cc)) {
2455 		if (subkey_size < cc->key_mac_size)
2456 			return -EINVAL;
2457 
2458 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2459 				      subkey_size - cc->key_mac_size,
2460 				      cc->key_mac_size);
2461 	}
2462 
2463 	for (i = 0; i < cc->tfms_count; i++) {
2464 		if (crypt_integrity_hmac(cc))
2465 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2466 				cc->authenc_key, crypt_authenckey_size(cc));
2467 		else if (crypt_integrity_aead(cc))
2468 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2469 					       cc->key + (i * subkey_size),
2470 					       subkey_size);
2471 		else
2472 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2473 						   cc->key + (i * subkey_size),
2474 						   subkey_size);
2475 		if (r)
2476 			err = r;
2477 	}
2478 
2479 	if (crypt_integrity_hmac(cc))
2480 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2481 
2482 	return err;
2483 }
2484 
2485 #ifdef CONFIG_KEYS
2486 
contains_whitespace(const char * str)2487 static bool contains_whitespace(const char *str)
2488 {
2489 	while (*str)
2490 		if (isspace(*str++))
2491 			return true;
2492 	return false;
2493 }
2494 
set_key_user(struct crypt_config * cc,struct key * key)2495 static int set_key_user(struct crypt_config *cc, struct key *key)
2496 {
2497 	const struct user_key_payload *ukp;
2498 
2499 	ukp = user_key_payload_locked(key);
2500 	if (!ukp)
2501 		return -EKEYREVOKED;
2502 
2503 	if (cc->key_size != ukp->datalen)
2504 		return -EINVAL;
2505 
2506 	memcpy(cc->key, ukp->data, cc->key_size);
2507 
2508 	return 0;
2509 }
2510 
set_key_encrypted(struct crypt_config * cc,struct key * key)2511 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2512 {
2513 	const struct encrypted_key_payload *ekp;
2514 
2515 	ekp = key->payload.data[0];
2516 	if (!ekp)
2517 		return -EKEYREVOKED;
2518 
2519 	if (cc->key_size != ekp->decrypted_datalen)
2520 		return -EINVAL;
2521 
2522 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2523 
2524 	return 0;
2525 }
2526 
set_key_trusted(struct crypt_config * cc,struct key * key)2527 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2528 {
2529 	const struct trusted_key_payload *tkp;
2530 
2531 	tkp = key->payload.data[0];
2532 	if (!tkp)
2533 		return -EKEYREVOKED;
2534 
2535 	if (cc->key_size != tkp->key_len)
2536 		return -EINVAL;
2537 
2538 	memcpy(cc->key, tkp->key, cc->key_size);
2539 
2540 	return 0;
2541 }
2542 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2543 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2544 {
2545 	char *new_key_string, *key_desc;
2546 	int ret;
2547 	struct key_type *type;
2548 	struct key *key;
2549 	int (*set_key)(struct crypt_config *cc, struct key *key);
2550 
2551 	/*
2552 	 * Reject key_string with whitespace. dm core currently lacks code for
2553 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2554 	 */
2555 	if (contains_whitespace(key_string)) {
2556 		DMERR("whitespace chars not allowed in key string");
2557 		return -EINVAL;
2558 	}
2559 
2560 	/* look for next ':' separating key_type from key_description */
2561 	key_desc = strchr(key_string, ':');
2562 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2563 		return -EINVAL;
2564 
2565 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2566 		type = &key_type_logon;
2567 		set_key = set_key_user;
2568 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2569 		type = &key_type_user;
2570 		set_key = set_key_user;
2571 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2572 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2573 		type = &key_type_encrypted;
2574 		set_key = set_key_encrypted;
2575 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2576 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2577 		type = &key_type_trusted;
2578 		set_key = set_key_trusted;
2579 	} else {
2580 		return -EINVAL;
2581 	}
2582 
2583 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2584 	if (!new_key_string)
2585 		return -ENOMEM;
2586 
2587 	key = request_key(type, key_desc + 1, NULL);
2588 	if (IS_ERR(key)) {
2589 		ret = PTR_ERR(key);
2590 		goto free_new_key_string;
2591 	}
2592 
2593 	down_read(&key->sem);
2594 	ret = set_key(cc, key);
2595 	up_read(&key->sem);
2596 	key_put(key);
2597 	if (ret < 0)
2598 		goto free_new_key_string;
2599 
2600 	/* clear the flag since following operations may invalidate previously valid key */
2601 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2602 
2603 	ret = crypt_setkey(cc);
2604 	if (ret)
2605 		goto free_new_key_string;
2606 
2607 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2608 	kfree_sensitive(cc->key_string);
2609 	cc->key_string = new_key_string;
2610 	return 0;
2611 
2612 free_new_key_string:
2613 	kfree_sensitive(new_key_string);
2614 	return ret;
2615 }
2616 
get_key_size(char ** key_string)2617 static int get_key_size(char **key_string)
2618 {
2619 	char *colon, dummy;
2620 	int ret;
2621 
2622 	if (*key_string[0] != ':')
2623 		return strlen(*key_string) >> 1;
2624 
2625 	/* look for next ':' in key string */
2626 	colon = strpbrk(*key_string + 1, ":");
2627 	if (!colon)
2628 		return -EINVAL;
2629 
2630 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2631 		return -EINVAL;
2632 
2633 	*key_string = colon;
2634 
2635 	/* remaining key string should be :<logon|user>:<key_desc> */
2636 
2637 	return ret;
2638 }
2639 
2640 #else
2641 
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2642 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2643 {
2644 	return -EINVAL;
2645 }
2646 
get_key_size(char ** key_string)2647 static int get_key_size(char **key_string)
2648 {
2649 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2650 }
2651 
2652 #endif /* CONFIG_KEYS */
2653 
crypt_set_key(struct crypt_config * cc,char * key)2654 static int crypt_set_key(struct crypt_config *cc, char *key)
2655 {
2656 	int r = -EINVAL;
2657 	int key_string_len = strlen(key);
2658 
2659 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2660 	if (!cc->key_size && strcmp(key, "-"))
2661 		goto out;
2662 
2663 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2664 	if (key[0] == ':') {
2665 		r = crypt_set_keyring_key(cc, key + 1);
2666 		goto out;
2667 	}
2668 
2669 	/* clear the flag since following operations may invalidate previously valid key */
2670 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2671 
2672 	/* wipe references to any kernel keyring key */
2673 	kfree_sensitive(cc->key_string);
2674 	cc->key_string = NULL;
2675 
2676 	/* Decode key from its hex representation. */
2677 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2678 		goto out;
2679 
2680 	r = crypt_setkey(cc);
2681 	if (!r)
2682 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2683 
2684 out:
2685 	/* Hex key string not needed after here, so wipe it. */
2686 	memset(key, '0', key_string_len);
2687 
2688 	return r;
2689 }
2690 
crypt_wipe_key(struct crypt_config * cc)2691 static int crypt_wipe_key(struct crypt_config *cc)
2692 {
2693 	int r;
2694 
2695 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2696 	get_random_bytes(&cc->key, cc->key_size);
2697 
2698 	/* Wipe IV private keys */
2699 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2700 		r = cc->iv_gen_ops->wipe(cc);
2701 		if (r)
2702 			return r;
2703 	}
2704 
2705 	kfree_sensitive(cc->key_string);
2706 	cc->key_string = NULL;
2707 	r = crypt_setkey(cc);
2708 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2709 
2710 	return r;
2711 }
2712 
crypt_calculate_pages_per_client(void)2713 static void crypt_calculate_pages_per_client(void)
2714 {
2715 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2716 
2717 	if (!dm_crypt_clients_n)
2718 		return;
2719 
2720 	pages /= dm_crypt_clients_n;
2721 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2722 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2723 	dm_crypt_pages_per_client = pages;
2724 }
2725 
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2726 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2727 {
2728 	struct crypt_config *cc = pool_data;
2729 	struct page *page;
2730 
2731 	/*
2732 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2733 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2734 	 * but avoids potential spinlock contention of an exact result.
2735 	 */
2736 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2737 	    likely(gfp_mask & __GFP_NORETRY))
2738 		return NULL;
2739 
2740 	page = alloc_page(gfp_mask);
2741 	if (likely(page != NULL))
2742 		percpu_counter_add(&cc->n_allocated_pages, 1);
2743 
2744 	return page;
2745 }
2746 
crypt_page_free(void * page,void * pool_data)2747 static void crypt_page_free(void *page, void *pool_data)
2748 {
2749 	struct crypt_config *cc = pool_data;
2750 
2751 	__free_page(page);
2752 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2753 }
2754 
crypt_dtr(struct dm_target * ti)2755 static void crypt_dtr(struct dm_target *ti)
2756 {
2757 	struct crypt_config *cc = ti->private;
2758 
2759 	ti->private = NULL;
2760 
2761 	if (!cc)
2762 		return;
2763 
2764 	if (cc->write_thread)
2765 		kthread_stop(cc->write_thread);
2766 
2767 	if (cc->io_queue)
2768 		destroy_workqueue(cc->io_queue);
2769 	if (cc->crypt_queue)
2770 		destroy_workqueue(cc->crypt_queue);
2771 
2772 	if (cc->workqueue_id)
2773 		ida_free(&workqueue_ida, cc->workqueue_id);
2774 
2775 	crypt_free_tfms(cc);
2776 
2777 	bioset_exit(&cc->bs);
2778 
2779 	mempool_exit(&cc->page_pool);
2780 	mempool_exit(&cc->req_pool);
2781 	mempool_exit(&cc->tag_pool);
2782 
2783 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2784 	percpu_counter_destroy(&cc->n_allocated_pages);
2785 
2786 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2787 		cc->iv_gen_ops->dtr(cc);
2788 
2789 	if (cc->dev)
2790 		dm_put_device(ti, cc->dev);
2791 
2792 	kfree_sensitive(cc->cipher_string);
2793 	kfree_sensitive(cc->key_string);
2794 	kfree_sensitive(cc->cipher_auth);
2795 	kfree_sensitive(cc->authenc_key);
2796 
2797 	mutex_destroy(&cc->bio_alloc_lock);
2798 
2799 	/* Must zero key material before freeing */
2800 	kfree_sensitive(cc);
2801 
2802 	spin_lock(&dm_crypt_clients_lock);
2803 	WARN_ON(!dm_crypt_clients_n);
2804 	dm_crypt_clients_n--;
2805 	crypt_calculate_pages_per_client();
2806 	spin_unlock(&dm_crypt_clients_lock);
2807 
2808 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2809 }
2810 
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2811 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2812 {
2813 	struct crypt_config *cc = ti->private;
2814 
2815 	if (crypt_integrity_aead(cc))
2816 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2817 	else
2818 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2819 
2820 	if (cc->iv_size)
2821 		/* at least a 64 bit sector number should fit in our buffer */
2822 		cc->iv_size = max(cc->iv_size,
2823 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2824 	else if (ivmode) {
2825 		DMWARN("Selected cipher does not support IVs");
2826 		ivmode = NULL;
2827 	}
2828 
2829 	/* Choose ivmode, see comments at iv code. */
2830 	if (ivmode == NULL)
2831 		cc->iv_gen_ops = NULL;
2832 	else if (strcmp(ivmode, "plain") == 0)
2833 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2834 	else if (strcmp(ivmode, "plain64") == 0)
2835 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2836 	else if (strcmp(ivmode, "plain64be") == 0)
2837 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2838 	else if (strcmp(ivmode, "essiv") == 0)
2839 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2840 	else if (strcmp(ivmode, "benbi") == 0)
2841 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2842 	else if (strcmp(ivmode, "null") == 0)
2843 		cc->iv_gen_ops = &crypt_iv_null_ops;
2844 	else if (strcmp(ivmode, "eboiv") == 0)
2845 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2846 	else if (strcmp(ivmode, "elephant") == 0) {
2847 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2848 		cc->key_parts = 2;
2849 		cc->key_extra_size = cc->key_size / 2;
2850 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2851 			return -EINVAL;
2852 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2853 	} else if (strcmp(ivmode, "lmk") == 0) {
2854 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2855 		/*
2856 		 * Version 2 and 3 is recognised according
2857 		 * to length of provided multi-key string.
2858 		 * If present (version 3), last key is used as IV seed.
2859 		 * All keys (including IV seed) are always the same size.
2860 		 */
2861 		if (cc->key_size % cc->key_parts) {
2862 			cc->key_parts++;
2863 			cc->key_extra_size = cc->key_size / cc->key_parts;
2864 		}
2865 	} else if (strcmp(ivmode, "tcw") == 0) {
2866 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2867 		cc->key_parts += 2; /* IV + whitening */
2868 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2869 	} else if (strcmp(ivmode, "random") == 0) {
2870 		cc->iv_gen_ops = &crypt_iv_random_ops;
2871 		/* Need storage space in integrity fields. */
2872 		cc->integrity_iv_size = cc->iv_size;
2873 	} else {
2874 		ti->error = "Invalid IV mode";
2875 		return -EINVAL;
2876 	}
2877 
2878 	return 0;
2879 }
2880 
2881 /*
2882  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2883  * The HMAC is needed to calculate tag size (HMAC digest size).
2884  * This should be probably done by crypto-api calls (once available...)
2885  */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2886 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2887 {
2888 	char *start, *end, *mac_alg = NULL;
2889 	struct crypto_ahash *mac;
2890 
2891 	if (!strstarts(cipher_api, "authenc("))
2892 		return 0;
2893 
2894 	start = strchr(cipher_api, '(');
2895 	end = strchr(cipher_api, ',');
2896 	if (!start || !end || ++start > end)
2897 		return -EINVAL;
2898 
2899 	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2900 	if (!mac_alg)
2901 		return -ENOMEM;
2902 
2903 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2904 	kfree(mac_alg);
2905 
2906 	if (IS_ERR(mac))
2907 		return PTR_ERR(mac);
2908 
2909 	if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2910 		cc->key_mac_size = crypto_ahash_digestsize(mac);
2911 	crypto_free_ahash(mac);
2912 
2913 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2914 	if (!cc->authenc_key)
2915 		return -ENOMEM;
2916 
2917 	return 0;
2918 }
2919 
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2920 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2921 				char **ivmode, char **ivopts)
2922 {
2923 	struct crypt_config *cc = ti->private;
2924 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2925 	int ret = -EINVAL;
2926 
2927 	cc->tfms_count = 1;
2928 
2929 	/*
2930 	 * New format (capi: prefix)
2931 	 * capi:cipher_api_spec-iv:ivopts
2932 	 */
2933 	tmp = &cipher_in[strlen("capi:")];
2934 
2935 	/* Separate IV options if present, it can contain another '-' in hash name */
2936 	*ivopts = strrchr(tmp, ':');
2937 	if (*ivopts) {
2938 		**ivopts = '\0';
2939 		(*ivopts)++;
2940 	}
2941 	/* Parse IV mode */
2942 	*ivmode = strrchr(tmp, '-');
2943 	if (*ivmode) {
2944 		**ivmode = '\0';
2945 		(*ivmode)++;
2946 	}
2947 	/* The rest is crypto API spec */
2948 	cipher_api = tmp;
2949 
2950 	/* Alloc AEAD, can be used only in new format. */
2951 	if (crypt_integrity_aead(cc)) {
2952 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2953 		if (ret < 0) {
2954 			ti->error = "Invalid AEAD cipher spec";
2955 			return ret;
2956 		}
2957 	}
2958 
2959 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2960 		cc->tfms_count = 64;
2961 
2962 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2963 		if (!*ivopts) {
2964 			ti->error = "Digest algorithm missing for ESSIV mode";
2965 			return -EINVAL;
2966 		}
2967 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2968 			       cipher_api, *ivopts);
2969 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2970 			ti->error = "Cannot allocate cipher string";
2971 			return -ENOMEM;
2972 		}
2973 		cipher_api = buf;
2974 	}
2975 
2976 	cc->key_parts = cc->tfms_count;
2977 
2978 	/* Allocate cipher */
2979 	ret = crypt_alloc_tfms(cc, cipher_api);
2980 	if (ret < 0) {
2981 		ti->error = "Error allocating crypto tfm";
2982 		return ret;
2983 	}
2984 
2985 	if (crypt_integrity_aead(cc))
2986 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2987 	else
2988 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2989 
2990 	return 0;
2991 }
2992 
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2993 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2994 				char **ivmode, char **ivopts)
2995 {
2996 	struct crypt_config *cc = ti->private;
2997 	char *tmp, *cipher, *chainmode, *keycount;
2998 	char *cipher_api = NULL;
2999 	int ret = -EINVAL;
3000 	char dummy;
3001 
3002 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3003 		ti->error = "Bad cipher specification";
3004 		return -EINVAL;
3005 	}
3006 
3007 	/*
3008 	 * Legacy dm-crypt cipher specification
3009 	 * cipher[:keycount]-mode-iv:ivopts
3010 	 */
3011 	tmp = cipher_in;
3012 	keycount = strsep(&tmp, "-");
3013 	cipher = strsep(&keycount, ":");
3014 
3015 	if (!keycount)
3016 		cc->tfms_count = 1;
3017 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3018 		 !is_power_of_2(cc->tfms_count)) {
3019 		ti->error = "Bad cipher key count specification";
3020 		return -EINVAL;
3021 	}
3022 	cc->key_parts = cc->tfms_count;
3023 
3024 	chainmode = strsep(&tmp, "-");
3025 	*ivmode = strsep(&tmp, ":");
3026 	*ivopts = tmp;
3027 
3028 	/*
3029 	 * For compatibility with the original dm-crypt mapping format, if
3030 	 * only the cipher name is supplied, use cbc-plain.
3031 	 */
3032 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3033 		chainmode = "cbc";
3034 		*ivmode = "plain";
3035 	}
3036 
3037 	if (strcmp(chainmode, "ecb") && !*ivmode) {
3038 		ti->error = "IV mechanism required";
3039 		return -EINVAL;
3040 	}
3041 
3042 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3043 	if (!cipher_api)
3044 		goto bad_mem;
3045 
3046 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3047 		if (!*ivopts) {
3048 			ti->error = "Digest algorithm missing for ESSIV mode";
3049 			kfree(cipher_api);
3050 			return -EINVAL;
3051 		}
3052 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3053 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3054 	} else {
3055 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3056 			       "%s(%s)", chainmode, cipher);
3057 	}
3058 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3059 		kfree(cipher_api);
3060 		goto bad_mem;
3061 	}
3062 
3063 	/* Allocate cipher */
3064 	ret = crypt_alloc_tfms(cc, cipher_api);
3065 	if (ret < 0) {
3066 		ti->error = "Error allocating crypto tfm";
3067 		kfree(cipher_api);
3068 		return ret;
3069 	}
3070 	kfree(cipher_api);
3071 
3072 	return 0;
3073 bad_mem:
3074 	ti->error = "Cannot allocate cipher strings";
3075 	return -ENOMEM;
3076 }
3077 
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3078 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3079 {
3080 	struct crypt_config *cc = ti->private;
3081 	char *ivmode = NULL, *ivopts = NULL;
3082 	int ret;
3083 
3084 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3085 	if (!cc->cipher_string) {
3086 		ti->error = "Cannot allocate cipher strings";
3087 		return -ENOMEM;
3088 	}
3089 
3090 	if (strstarts(cipher_in, "capi:"))
3091 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3092 	else
3093 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3094 	if (ret)
3095 		return ret;
3096 
3097 	/* Initialize IV */
3098 	ret = crypt_ctr_ivmode(ti, ivmode);
3099 	if (ret < 0)
3100 		return ret;
3101 
3102 	/* Initialize and set key */
3103 	ret = crypt_set_key(cc, key);
3104 	if (ret < 0) {
3105 		ti->error = "Error decoding and setting key";
3106 		return ret;
3107 	}
3108 
3109 	/* Allocate IV */
3110 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3111 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3112 		if (ret < 0) {
3113 			ti->error = "Error creating IV";
3114 			return ret;
3115 		}
3116 	}
3117 
3118 	/* Initialize IV (set keys for ESSIV etc) */
3119 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3120 		ret = cc->iv_gen_ops->init(cc);
3121 		if (ret < 0) {
3122 			ti->error = "Error initialising IV";
3123 			return ret;
3124 		}
3125 	}
3126 
3127 	/* wipe the kernel key payload copy */
3128 	if (cc->key_string)
3129 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3130 
3131 	return ret;
3132 }
3133 
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3134 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3135 {
3136 	struct crypt_config *cc = ti->private;
3137 	struct dm_arg_set as;
3138 	static const struct dm_arg _args[] = {
3139 		{0, 9, "Invalid number of feature args"},
3140 	};
3141 	unsigned int opt_params, val;
3142 	const char *opt_string, *sval;
3143 	char dummy;
3144 	int ret;
3145 
3146 	/* Optional parameters */
3147 	as.argc = argc;
3148 	as.argv = argv;
3149 
3150 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3151 	if (ret)
3152 		return ret;
3153 
3154 	while (opt_params--) {
3155 		opt_string = dm_shift_arg(&as);
3156 		if (!opt_string) {
3157 			ti->error = "Not enough feature arguments";
3158 			return -EINVAL;
3159 		}
3160 
3161 		if (!strcasecmp(opt_string, "allow_discards"))
3162 			ti->num_discard_bios = 1;
3163 
3164 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3165 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3166 		else if (!strcasecmp(opt_string, "high_priority"))
3167 			set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3168 
3169 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3170 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3171 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3172 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3173 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3174 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3175 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3176 			if (val == 0 || val > MAX_TAG_SIZE) {
3177 				ti->error = "Invalid integrity arguments";
3178 				return -EINVAL;
3179 			}
3180 			cc->used_tag_size = val;
3181 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3182 			if (!strcasecmp(sval, "aead")) {
3183 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3184 			} else if (strcasecmp(sval, "none")) {
3185 				ti->error = "Unknown integrity profile";
3186 				return -EINVAL;
3187 			}
3188 
3189 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3190 			if (!cc->cipher_auth)
3191 				return -ENOMEM;
3192 		} else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3193 			if (!val) {
3194 				ti->error = "Invalid integrity_key_size argument";
3195 				return -EINVAL;
3196 			}
3197 			cc->key_mac_size = val;
3198 			set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3199 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3200 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3201 			    cc->sector_size > 4096 ||
3202 			    (cc->sector_size & (cc->sector_size - 1))) {
3203 				ti->error = "Invalid feature value for sector_size";
3204 				return -EINVAL;
3205 			}
3206 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3207 				ti->error = "Device size is not multiple of sector_size feature";
3208 				return -EINVAL;
3209 			}
3210 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3211 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3212 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3213 		else {
3214 			ti->error = "Invalid feature arguments";
3215 			return -EINVAL;
3216 		}
3217 	}
3218 
3219 	return 0;
3220 }
3221 
3222 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3223 static int crypt_report_zones(struct dm_target *ti,
3224 		struct dm_report_zones_args *args, unsigned int nr_zones)
3225 {
3226 	struct crypt_config *cc = ti->private;
3227 
3228 	return dm_report_zones(cc->dev->bdev, cc->start,
3229 			cc->start + dm_target_offset(ti, args->next_sector),
3230 			args, nr_zones);
3231 }
3232 #else
3233 #define crypt_report_zones NULL
3234 #endif
3235 
3236 /*
3237  * Construct an encryption mapping:
3238  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3239  */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3240 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3241 {
3242 	struct crypt_config *cc;
3243 	const char *devname = dm_table_device_name(ti->table);
3244 	int key_size, wq_id;
3245 	unsigned int align_mask;
3246 	unsigned int common_wq_flags;
3247 	unsigned long long tmpll;
3248 	int ret;
3249 	size_t iv_size_padding, additional_req_size;
3250 	char dummy;
3251 
3252 	if (argc < 5) {
3253 		ti->error = "Not enough arguments";
3254 		return -EINVAL;
3255 	}
3256 
3257 	key_size = get_key_size(&argv[1]);
3258 	if (key_size < 0) {
3259 		ti->error = "Cannot parse key size";
3260 		return -EINVAL;
3261 	}
3262 
3263 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3264 	if (!cc) {
3265 		ti->error = "Cannot allocate encryption context";
3266 		return -ENOMEM;
3267 	}
3268 	cc->key_size = key_size;
3269 	cc->sector_size = (1 << SECTOR_SHIFT);
3270 	cc->sector_shift = 0;
3271 
3272 	ti->private = cc;
3273 
3274 	spin_lock(&dm_crypt_clients_lock);
3275 	dm_crypt_clients_n++;
3276 	crypt_calculate_pages_per_client();
3277 	spin_unlock(&dm_crypt_clients_lock);
3278 
3279 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3280 	if (ret < 0)
3281 		goto bad;
3282 
3283 	/* Optional parameters need to be read before cipher constructor */
3284 	if (argc > 5) {
3285 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3286 		if (ret)
3287 			goto bad;
3288 	}
3289 
3290 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3291 	if (ret < 0)
3292 		goto bad;
3293 
3294 	if (crypt_integrity_aead(cc)) {
3295 		cc->dmreq_start = sizeof(struct aead_request);
3296 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3297 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3298 	} else {
3299 		cc->dmreq_start = sizeof(struct skcipher_request);
3300 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3301 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3302 	}
3303 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3304 
3305 	if (align_mask < CRYPTO_MINALIGN) {
3306 		/* Allocate the padding exactly */
3307 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3308 				& align_mask;
3309 	} else {
3310 		/*
3311 		 * If the cipher requires greater alignment than kmalloc
3312 		 * alignment, we don't know the exact position of the
3313 		 * initialization vector. We must assume worst case.
3314 		 */
3315 		iv_size_padding = align_mask;
3316 	}
3317 
3318 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3319 	additional_req_size = sizeof(struct dm_crypt_request) +
3320 		iv_size_padding + cc->iv_size +
3321 		cc->iv_size +
3322 		sizeof(uint64_t) +
3323 		sizeof(unsigned int);
3324 
3325 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3326 	if (ret) {
3327 		ti->error = "Cannot allocate crypt request mempool";
3328 		goto bad;
3329 	}
3330 
3331 	cc->per_bio_data_size = ti->per_io_data_size =
3332 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3333 		      ARCH_DMA_MINALIGN);
3334 
3335 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3336 	if (ret) {
3337 		ti->error = "Cannot allocate page mempool";
3338 		goto bad;
3339 	}
3340 
3341 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3342 	if (ret) {
3343 		ti->error = "Cannot allocate crypt bioset";
3344 		goto bad;
3345 	}
3346 
3347 	mutex_init(&cc->bio_alloc_lock);
3348 
3349 	ret = -EINVAL;
3350 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3351 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3352 		ti->error = "Invalid iv_offset sector";
3353 		goto bad;
3354 	}
3355 	cc->iv_offset = tmpll;
3356 
3357 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3358 	if (ret) {
3359 		ti->error = "Device lookup failed";
3360 		goto bad;
3361 	}
3362 
3363 	ret = -EINVAL;
3364 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3365 		ti->error = "Invalid device sector";
3366 		goto bad;
3367 	}
3368 	cc->start = tmpll;
3369 
3370 	if (bdev_is_zoned(cc->dev->bdev)) {
3371 		/*
3372 		 * For zoned block devices, we need to preserve the issuer write
3373 		 * ordering. To do so, disable write workqueues and force inline
3374 		 * encryption completion.
3375 		 */
3376 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3377 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3378 
3379 		/*
3380 		 * All zone append writes to a zone of a zoned block device will
3381 		 * have the same BIO sector, the start of the zone. When the
3382 		 * cypher IV mode uses sector values, all data targeting a
3383 		 * zone will be encrypted using the first sector numbers of the
3384 		 * zone. This will not result in write errors but will
3385 		 * cause most reads to fail as reads will use the sector values
3386 		 * for the actual data locations, resulting in IV mismatch.
3387 		 * To avoid this problem, ask DM core to emulate zone append
3388 		 * operations with regular writes.
3389 		 */
3390 		DMDEBUG("Zone append operations will be emulated");
3391 		ti->emulate_zone_append = true;
3392 	}
3393 
3394 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3395 		ret = crypt_integrity_ctr(cc, ti);
3396 		if (ret)
3397 			goto bad;
3398 
3399 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3400 		if (!cc->tag_pool_max_sectors)
3401 			cc->tag_pool_max_sectors = 1;
3402 
3403 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3404 			cc->tag_pool_max_sectors * cc->tuple_size);
3405 		if (ret) {
3406 			ti->error = "Cannot allocate integrity tags mempool";
3407 			goto bad;
3408 		}
3409 
3410 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3411 	}
3412 
3413 	wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3414 	if (wq_id < 0) {
3415 		ti->error = "Couldn't get workqueue id";
3416 		ret = wq_id;
3417 		goto bad;
3418 	}
3419 	cc->workqueue_id = wq_id;
3420 
3421 	ret = -ENOMEM;
3422 	common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3423 	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3424 		common_wq_flags |= WQ_HIGHPRI;
3425 
3426 	cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3427 	if (!cc->io_queue) {
3428 		ti->error = "Couldn't create kcryptd io queue";
3429 		goto bad;
3430 	}
3431 
3432 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3433 		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3434 						  common_wq_flags | WQ_CPU_INTENSIVE,
3435 						  1, devname, wq_id);
3436 	} else {
3437 		/*
3438 		 * While crypt_queue is certainly CPU intensive, the use of
3439 		 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3440 		 */
3441 		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3442 						  common_wq_flags | WQ_UNBOUND,
3443 						  num_online_cpus(), devname, wq_id);
3444 	}
3445 	if (!cc->crypt_queue) {
3446 		ti->error = "Couldn't create kcryptd queue";
3447 		goto bad;
3448 	}
3449 
3450 	spin_lock_init(&cc->write_thread_lock);
3451 	cc->write_tree = RB_ROOT;
3452 
3453 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3454 	if (IS_ERR(cc->write_thread)) {
3455 		ret = PTR_ERR(cc->write_thread);
3456 		cc->write_thread = NULL;
3457 		ti->error = "Couldn't spawn write thread";
3458 		goto bad;
3459 	}
3460 	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3461 		set_user_nice(cc->write_thread, MIN_NICE);
3462 
3463 	ti->num_flush_bios = 1;
3464 	ti->limit_swap_bios = true;
3465 	ti->accounts_remapped_io = true;
3466 
3467 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3468 	return 0;
3469 
3470 bad:
3471 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3472 	crypt_dtr(ti);
3473 	return ret;
3474 }
3475 
crypt_map(struct dm_target * ti,struct bio * bio)3476 static int crypt_map(struct dm_target *ti, struct bio *bio)
3477 {
3478 	struct dm_crypt_io *io;
3479 	struct crypt_config *cc = ti->private;
3480 	unsigned max_sectors;
3481 
3482 	/*
3483 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3484 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3485 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3486 	 */
3487 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3488 	    bio_op(bio) == REQ_OP_DISCARD)) {
3489 		bio_set_dev(bio, cc->dev->bdev);
3490 		if (bio_sectors(bio))
3491 			bio->bi_iter.bi_sector = cc->start +
3492 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3493 		return DM_MAPIO_REMAPPED;
3494 	}
3495 
3496 	/*
3497 	 * Check if bio is too large, split as needed.
3498 	 */
3499 	max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3500 	if (unlikely(bio_sectors(bio) > max_sectors))
3501 		dm_accept_partial_bio(bio, max_sectors);
3502 
3503 	/*
3504 	 * Ensure that bio is a multiple of internal sector encryption size
3505 	 * and is aligned to this size as defined in IO hints.
3506 	 */
3507 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3508 		return DM_MAPIO_KILL;
3509 
3510 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3511 		return DM_MAPIO_KILL;
3512 
3513 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3514 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3515 
3516 	if (cc->tuple_size) {
3517 		unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3518 
3519 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3520 			io->integrity_metadata = NULL;
3521 		else
3522 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3523 
3524 		if (unlikely(!io->integrity_metadata)) {
3525 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3526 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3527 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3528 			io->integrity_metadata_from_pool = true;
3529 		}
3530 	}
3531 
3532 	if (crypt_integrity_aead(cc))
3533 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3534 	else
3535 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3536 
3537 	if (bio_data_dir(io->base_bio) == READ) {
3538 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3539 			kcryptd_queue_read(io);
3540 	} else
3541 		kcryptd_queue_crypt(io);
3542 
3543 	return DM_MAPIO_SUBMITTED;
3544 }
3545 
hex2asc(unsigned char c)3546 static char hex2asc(unsigned char c)
3547 {
3548 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3549 }
3550 
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3551 static void crypt_status(struct dm_target *ti, status_type_t type,
3552 			 unsigned int status_flags, char *result, unsigned int maxlen)
3553 {
3554 	struct crypt_config *cc = ti->private;
3555 	unsigned int i, sz = 0;
3556 	int num_feature_args = 0;
3557 
3558 	switch (type) {
3559 	case STATUSTYPE_INFO:
3560 		result[0] = '\0';
3561 		break;
3562 
3563 	case STATUSTYPE_TABLE:
3564 		DMEMIT("%s ", cc->cipher_string);
3565 
3566 		if (cc->key_size > 0) {
3567 			if (cc->key_string)
3568 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3569 			else {
3570 				for (i = 0; i < cc->key_size; i++) {
3571 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3572 					       hex2asc(cc->key[i] & 0xf));
3573 				}
3574 			}
3575 		} else
3576 			DMEMIT("-");
3577 
3578 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3579 				cc->dev->name, (unsigned long long)cc->start);
3580 
3581 		num_feature_args += !!ti->num_discard_bios;
3582 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3583 		num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3584 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3585 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3586 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3587 		num_feature_args += !!cc->used_tag_size;
3588 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3589 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3590 		num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3591 		if (num_feature_args) {
3592 			DMEMIT(" %d", num_feature_args);
3593 			if (ti->num_discard_bios)
3594 				DMEMIT(" allow_discards");
3595 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3596 				DMEMIT(" same_cpu_crypt");
3597 			if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3598 				DMEMIT(" high_priority");
3599 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3600 				DMEMIT(" submit_from_crypt_cpus");
3601 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3602 				DMEMIT(" no_read_workqueue");
3603 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3604 				DMEMIT(" no_write_workqueue");
3605 			if (cc->used_tag_size)
3606 				DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3607 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3608 				DMEMIT(" sector_size:%d", cc->sector_size);
3609 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3610 				DMEMIT(" iv_large_sectors");
3611 			if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3612 				DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3613 		}
3614 		break;
3615 
3616 	case STATUSTYPE_IMA:
3617 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3618 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3619 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3620 		DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3621 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3622 		       'y' : 'n');
3623 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3624 		       'y' : 'n');
3625 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3626 		       'y' : 'n');
3627 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3628 		       'y' : 'n');
3629 
3630 		if (cc->used_tag_size)
3631 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3632 			       cc->used_tag_size, cc->cipher_auth);
3633 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3634 			DMEMIT(",sector_size=%d", cc->sector_size);
3635 		if (cc->cipher_string)
3636 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3637 
3638 		DMEMIT(",key_size=%u", cc->key_size);
3639 		DMEMIT(",key_parts=%u", cc->key_parts);
3640 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3641 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3642 		DMEMIT(";");
3643 		break;
3644 	}
3645 }
3646 
crypt_postsuspend(struct dm_target * ti)3647 static void crypt_postsuspend(struct dm_target *ti)
3648 {
3649 	struct crypt_config *cc = ti->private;
3650 
3651 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3652 }
3653 
crypt_preresume(struct dm_target * ti)3654 static int crypt_preresume(struct dm_target *ti)
3655 {
3656 	struct crypt_config *cc = ti->private;
3657 
3658 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3659 		DMERR("aborting resume - crypt key is not set.");
3660 		return -EAGAIN;
3661 	}
3662 
3663 	return 0;
3664 }
3665 
crypt_resume(struct dm_target * ti)3666 static void crypt_resume(struct dm_target *ti)
3667 {
3668 	struct crypt_config *cc = ti->private;
3669 
3670 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3671 }
3672 
3673 /* Message interface
3674  *	key set <key>
3675  *	key wipe
3676  */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3677 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3678 			 char *result, unsigned int maxlen)
3679 {
3680 	struct crypt_config *cc = ti->private;
3681 	int key_size, ret = -EINVAL;
3682 
3683 	if (argc < 2)
3684 		goto error;
3685 
3686 	if (!strcasecmp(argv[0], "key")) {
3687 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3688 			DMWARN("not suspended during key manipulation.");
3689 			return -EINVAL;
3690 		}
3691 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3692 			/* The key size may not be changed. */
3693 			key_size = get_key_size(&argv[2]);
3694 			if (key_size < 0 || cc->key_size != key_size) {
3695 				memset(argv[2], '0', strlen(argv[2]));
3696 				return -EINVAL;
3697 			}
3698 
3699 			ret = crypt_set_key(cc, argv[2]);
3700 			if (ret)
3701 				return ret;
3702 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3703 				ret = cc->iv_gen_ops->init(cc);
3704 			/* wipe the kernel key payload copy */
3705 			if (cc->key_string)
3706 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3707 			return ret;
3708 		}
3709 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3710 			return crypt_wipe_key(cc);
3711 	}
3712 
3713 error:
3714 	DMWARN("unrecognised message received.");
3715 	return -EINVAL;
3716 }
3717 
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3718 static int crypt_iterate_devices(struct dm_target *ti,
3719 				 iterate_devices_callout_fn fn, void *data)
3720 {
3721 	struct crypt_config *cc = ti->private;
3722 
3723 	return fn(ti, cc->dev, cc->start, ti->len, data);
3724 }
3725 
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3726 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3727 {
3728 	struct crypt_config *cc = ti->private;
3729 
3730 	limits->logical_block_size =
3731 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3732 	limits->physical_block_size =
3733 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3734 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3735 	limits->dma_alignment = limits->logical_block_size - 1;
3736 }
3737 
3738 static struct target_type crypt_target = {
3739 	.name   = "crypt",
3740 	.version = {1, 28, 0},
3741 	.module = THIS_MODULE,
3742 	.ctr    = crypt_ctr,
3743 	.dtr    = crypt_dtr,
3744 	.features = DM_TARGET_ZONED_HM,
3745 	.report_zones = crypt_report_zones,
3746 	.map    = crypt_map,
3747 	.status = crypt_status,
3748 	.postsuspend = crypt_postsuspend,
3749 	.preresume = crypt_preresume,
3750 	.resume = crypt_resume,
3751 	.message = crypt_message,
3752 	.iterate_devices = crypt_iterate_devices,
3753 	.io_hints = crypt_io_hints,
3754 };
3755 module_dm(crypt);
3756 
3757 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3758 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3759 MODULE_LICENSE("GPL");
3760