1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) "SMP alternatives: " fmt 3 4 #include <linux/mmu_context.h> 5 #include <linux/perf_event.h> 6 #include <linux/vmalloc.h> 7 #include <linux/memory.h> 8 #include <linux/execmem.h> 9 10 #include <asm/text-patching.h> 11 #include <asm/insn.h> 12 #include <asm/ibt.h> 13 #include <asm/set_memory.h> 14 #include <asm/nmi.h> 15 16 int __read_mostly alternatives_patched; 17 18 EXPORT_SYMBOL_GPL(alternatives_patched); 19 20 #define MAX_PATCH_LEN (255-1) 21 22 #define DA_ALL (~0) 23 #define DA_ALT 0x01 24 #define DA_RET 0x02 25 #define DA_RETPOLINE 0x04 26 #define DA_ENDBR 0x08 27 #define DA_SMP 0x10 28 29 static unsigned int debug_alternative; 30 31 static int __init debug_alt(char *str) 32 { 33 if (str && *str == '=') 34 str++; 35 36 if (!str || kstrtouint(str, 0, &debug_alternative)) 37 debug_alternative = DA_ALL; 38 39 return 1; 40 } 41 __setup("debug-alternative", debug_alt); 42 43 static int noreplace_smp; 44 45 static int __init setup_noreplace_smp(char *str) 46 { 47 noreplace_smp = 1; 48 return 1; 49 } 50 __setup("noreplace-smp", setup_noreplace_smp); 51 52 #define DPRINTK(type, fmt, args...) \ 53 do { \ 54 if (debug_alternative & DA_##type) \ 55 printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \ 56 } while (0) 57 58 #define DUMP_BYTES(type, buf, len, fmt, args...) \ 59 do { \ 60 if (unlikely(debug_alternative & DA_##type)) { \ 61 int j; \ 62 \ 63 if (!(len)) \ 64 break; \ 65 \ 66 printk(KERN_DEBUG pr_fmt(fmt), ##args); \ 67 for (j = 0; j < (len) - 1; j++) \ 68 printk(KERN_CONT "%02hhx ", buf[j]); \ 69 printk(KERN_CONT "%02hhx\n", buf[j]); \ 70 } \ 71 } while (0) 72 73 static const unsigned char x86nops[] = 74 { 75 BYTES_NOP1, 76 BYTES_NOP2, 77 BYTES_NOP3, 78 BYTES_NOP4, 79 BYTES_NOP5, 80 BYTES_NOP6, 81 BYTES_NOP7, 82 BYTES_NOP8, 83 #ifdef CONFIG_64BIT 84 BYTES_NOP9, 85 BYTES_NOP10, 86 BYTES_NOP11, 87 #endif 88 }; 89 90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] = 91 { 92 NULL, 93 x86nops, 94 x86nops + 1, 95 x86nops + 1 + 2, 96 x86nops + 1 + 2 + 3, 97 x86nops + 1 + 2 + 3 + 4, 98 x86nops + 1 + 2 + 3 + 4 + 5, 99 x86nops + 1 + 2 + 3 + 4 + 5 + 6, 100 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7, 101 #ifdef CONFIG_64BIT 102 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, 103 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, 104 x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, 105 #endif 106 }; 107 108 #ifdef CONFIG_FINEIBT 109 static bool cfi_paranoid __ro_after_init; 110 #endif 111 112 #ifdef CONFIG_MITIGATION_ITS 113 114 #ifdef CONFIG_MODULES 115 static struct module *its_mod; 116 #endif 117 static void *its_page; 118 static unsigned int its_offset; 119 struct its_array its_pages; 120 121 static void *__its_alloc(struct its_array *pages) 122 { 123 void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE); 124 if (!page) 125 return NULL; 126 127 void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *), 128 GFP_KERNEL); 129 if (!tmp) 130 return NULL; 131 132 pages->pages = tmp; 133 pages->pages[pages->num++] = page; 134 135 return no_free_ptr(page); 136 } 137 138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */ 139 static void *its_init_thunk(void *thunk, int reg) 140 { 141 u8 *bytes = thunk; 142 int offset = 0; 143 int i = 0; 144 145 #ifdef CONFIG_FINEIBT 146 if (cfi_paranoid) { 147 /* 148 * When ITS uses indirect branch thunk the fineibt_paranoid 149 * caller sequence doesn't fit in the caller site. So put the 150 * remaining part of the sequence (<ea> + JNE) into the ITS 151 * thunk. 152 */ 153 bytes[i++] = 0xea; /* invalid instruction */ 154 bytes[i++] = 0x75; /* JNE */ 155 bytes[i++] = 0xfd; 156 157 offset = 1; 158 } 159 #endif 160 161 if (reg >= 8) { 162 bytes[i++] = 0x41; /* REX.B prefix */ 163 reg -= 8; 164 } 165 bytes[i++] = 0xff; 166 bytes[i++] = 0xe0 + reg; /* jmp *reg */ 167 bytes[i++] = 0xcc; 168 169 return thunk + offset; 170 } 171 172 static void its_pages_protect(struct its_array *pages) 173 { 174 for (int i = 0; i < pages->num; i++) { 175 void *page = pages->pages[i]; 176 execmem_restore_rox(page, PAGE_SIZE); 177 } 178 } 179 180 static void its_fini_core(void) 181 { 182 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) 183 its_pages_protect(&its_pages); 184 kfree(its_pages.pages); 185 } 186 187 #ifdef CONFIG_MODULES 188 void its_init_mod(struct module *mod) 189 { 190 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 191 return; 192 193 mutex_lock(&text_mutex); 194 its_mod = mod; 195 its_page = NULL; 196 } 197 198 void its_fini_mod(struct module *mod) 199 { 200 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 201 return; 202 203 WARN_ON_ONCE(its_mod != mod); 204 205 its_mod = NULL; 206 its_page = NULL; 207 mutex_unlock(&text_mutex); 208 209 if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX)) 210 its_pages_protect(&mod->arch.its_pages); 211 } 212 213 void its_free_mod(struct module *mod) 214 { 215 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 216 return; 217 218 for (int i = 0; i < mod->arch.its_pages.num; i++) { 219 void *page = mod->arch.its_pages.pages[i]; 220 execmem_free(page); 221 } 222 kfree(mod->arch.its_pages.pages); 223 } 224 #endif /* CONFIG_MODULES */ 225 226 static void *its_alloc(void) 227 { 228 struct its_array *pages = &its_pages; 229 void *page; 230 231 #ifdef CONFIG_MODULES 232 if (its_mod) 233 pages = &its_mod->arch.its_pages; 234 #endif 235 236 page = __its_alloc(pages); 237 if (!page) 238 return NULL; 239 240 if (pages == &its_pages) 241 set_memory_x((unsigned long)page, 1); 242 243 return page; 244 } 245 246 static void *its_allocate_thunk(int reg) 247 { 248 int size = 3 + (reg / 8); 249 void *thunk; 250 251 #ifdef CONFIG_FINEIBT 252 /* 253 * The ITS thunk contains an indirect jump and an int3 instruction so 254 * its size is 3 or 4 bytes depending on the register used. If CFI 255 * paranoid is used then 3 extra bytes are added in the ITS thunk to 256 * complete the fineibt_paranoid caller sequence. 257 */ 258 if (cfi_paranoid) 259 size += 3; 260 #endif 261 262 if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) { 263 its_page = its_alloc(); 264 if (!its_page) { 265 pr_err("ITS page allocation failed\n"); 266 return NULL; 267 } 268 memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE); 269 its_offset = 32; 270 } 271 272 /* 273 * If the indirect branch instruction will be in the lower half 274 * of a cacheline, then update the offset to reach the upper half. 275 */ 276 if ((its_offset + size - 1) % 64 < 32) 277 its_offset = ((its_offset - 1) | 0x3F) + 33; 278 279 thunk = its_page + its_offset; 280 its_offset += size; 281 282 return its_init_thunk(thunk, reg); 283 } 284 285 u8 *its_static_thunk(int reg) 286 { 287 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 288 289 #ifdef CONFIG_FINEIBT 290 /* Paranoid thunk starts 2 bytes before */ 291 if (cfi_paranoid) 292 return thunk - 2; 293 #endif 294 return thunk; 295 } 296 297 #else 298 static inline void its_fini_core(void) {} 299 #endif /* CONFIG_MITIGATION_ITS */ 300 301 /* 302 * Nomenclature for variable names to simplify and clarify this code and ease 303 * any potential staring at it: 304 * 305 * @instr: source address of the original instructions in the kernel text as 306 * generated by the compiler. 307 * 308 * @buf: temporary buffer on which the patching operates. This buffer is 309 * eventually text-poked into the kernel image. 310 * 311 * @replacement/@repl: pointer to the opcodes which are replacing @instr, located 312 * in the .altinstr_replacement section. 313 */ 314 315 /* 316 * Fill the buffer with a single effective instruction of size @len. 317 * 318 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info) 319 * for every single-byte NOP, try to generate the maximally available NOP of 320 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for 321 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and 322 * *jump* over instead of executing long and daft NOPs. 323 */ 324 static void add_nop(u8 *buf, unsigned int len) 325 { 326 u8 *target = buf + len; 327 328 if (!len) 329 return; 330 331 if (len <= ASM_NOP_MAX) { 332 memcpy(buf, x86_nops[len], len); 333 return; 334 } 335 336 if (len < 128) { 337 __text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE); 338 buf += JMP8_INSN_SIZE; 339 } else { 340 __text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE); 341 buf += JMP32_INSN_SIZE; 342 } 343 344 for (;buf < target; buf++) 345 *buf = INT3_INSN_OPCODE; 346 } 347 348 /* 349 * Matches NOP and NOPL, not any of the other possible NOPs. 350 */ 351 static bool insn_is_nop(struct insn *insn) 352 { 353 /* Anything NOP, but no REP NOP */ 354 if (insn->opcode.bytes[0] == 0x90 && 355 (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3)) 356 return true; 357 358 /* NOPL */ 359 if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F) 360 return true; 361 362 /* TODO: more nops */ 363 364 return false; 365 } 366 367 /* 368 * Find the offset of the first non-NOP instruction starting at @offset 369 * but no further than @len. 370 */ 371 static int skip_nops(u8 *buf, int offset, int len) 372 { 373 struct insn insn; 374 375 for (; offset < len; offset += insn.length) { 376 if (insn_decode_kernel(&insn, &buf[offset])) 377 break; 378 379 if (!insn_is_nop(&insn)) 380 break; 381 } 382 383 return offset; 384 } 385 386 /* 387 * "noinline" to cause control flow change and thus invalidate I$ and 388 * cause refetch after modification. 389 */ 390 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len) 391 { 392 for (int next, i = 0; i < len; i = next) { 393 struct insn insn; 394 395 if (insn_decode_kernel(&insn, &buf[i])) 396 return; 397 398 next = i + insn.length; 399 400 if (insn_is_nop(&insn)) { 401 int nop = i; 402 403 /* Has the NOP already been optimized? */ 404 if (i + insn.length == len) 405 return; 406 407 next = skip_nops(buf, next, len); 408 409 add_nop(buf + nop, next - nop); 410 DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next); 411 } 412 } 413 } 414 415 /* 416 * In this context, "source" is where the instructions are placed in the 417 * section .altinstr_replacement, for example during kernel build by the 418 * toolchain. 419 * "Destination" is where the instructions are being patched in by this 420 * machinery. 421 * 422 * The source offset is: 423 * 424 * src_imm = target - src_next_ip (1) 425 * 426 * and the target offset is: 427 * 428 * dst_imm = target - dst_next_ip (2) 429 * 430 * so rework (1) as an expression for target like: 431 * 432 * target = src_imm + src_next_ip (1a) 433 * 434 * and substitute in (2) to get: 435 * 436 * dst_imm = (src_imm + src_next_ip) - dst_next_ip (3) 437 * 438 * Now, since the instruction stream is 'identical' at src and dst (it 439 * is being copied after all) it can be stated that: 440 * 441 * src_next_ip = src + ip_offset 442 * dst_next_ip = dst + ip_offset (4) 443 * 444 * Substitute (4) in (3) and observe ip_offset being cancelled out to 445 * obtain: 446 * 447 * dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset) 448 * = src_imm + src - dst + ip_offset - ip_offset 449 * = src_imm + src - dst (5) 450 * 451 * IOW, only the relative displacement of the code block matters. 452 */ 453 454 #define apply_reloc_n(n_, p_, d_) \ 455 do { \ 456 s32 v = *(s##n_ *)(p_); \ 457 v += (d_); \ 458 BUG_ON((v >> 31) != (v >> (n_-1))); \ 459 *(s##n_ *)(p_) = (s##n_)v; \ 460 } while (0) 461 462 463 static __always_inline 464 void apply_reloc(int n, void *ptr, uintptr_t diff) 465 { 466 switch (n) { 467 case 1: apply_reloc_n(8, ptr, diff); break; 468 case 2: apply_reloc_n(16, ptr, diff); break; 469 case 4: apply_reloc_n(32, ptr, diff); break; 470 default: BUG(); 471 } 472 } 473 474 static __always_inline 475 bool need_reloc(unsigned long offset, u8 *src, size_t src_len) 476 { 477 u8 *target = src + offset; 478 /* 479 * If the target is inside the patched block, it's relative to the 480 * block itself and does not need relocation. 481 */ 482 return (target < src || target > src + src_len); 483 } 484 485 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 486 { 487 for (int next, i = 0; i < instrlen; i = next) { 488 struct insn insn; 489 490 if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i]))) 491 return; 492 493 next = i + insn.length; 494 495 switch (insn.opcode.bytes[0]) { 496 case 0x0f: 497 if (insn.opcode.bytes[1] < 0x80 || 498 insn.opcode.bytes[1] > 0x8f) 499 break; 500 501 fallthrough; /* Jcc.d32 */ 502 case 0x70 ... 0x7f: /* Jcc.d8 */ 503 case JMP8_INSN_OPCODE: 504 case JMP32_INSN_OPCODE: 505 case CALL_INSN_OPCODE: 506 if (need_reloc(next + insn.immediate.value, repl, repl_len)) { 507 apply_reloc(insn.immediate.nbytes, 508 buf + i + insn_offset_immediate(&insn), 509 repl - instr); 510 } 511 512 /* 513 * Where possible, convert JMP.d32 into JMP.d8. 514 */ 515 if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) { 516 s32 imm = insn.immediate.value; 517 imm += repl - instr; 518 imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE; 519 if ((imm >> 31) == (imm >> 7)) { 520 buf[i+0] = JMP8_INSN_OPCODE; 521 buf[i+1] = (s8)imm; 522 523 memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2); 524 } 525 } 526 break; 527 } 528 529 if (insn_rip_relative(&insn)) { 530 if (need_reloc(next + insn.displacement.value, repl, repl_len)) { 531 apply_reloc(insn.displacement.nbytes, 532 buf + i + insn_offset_displacement(&insn), 533 repl - instr); 534 } 535 } 536 } 537 } 538 539 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len) 540 { 541 __apply_relocation(buf, instr, instrlen, repl, repl_len); 542 optimize_nops(instr, buf, instrlen); 543 } 544 545 /* Low-level backend functions usable from alternative code replacements. */ 546 DEFINE_ASM_FUNC(nop_func, "", .entry.text); 547 EXPORT_SYMBOL_GPL(nop_func); 548 549 noinstr void BUG_func(void) 550 { 551 BUG(); 552 } 553 EXPORT_SYMBOL(BUG_func); 554 555 #define CALL_RIP_REL_OPCODE 0xff 556 #define CALL_RIP_REL_MODRM 0x15 557 558 /* 559 * Rewrite the "call BUG_func" replacement to point to the target of the 560 * indirect pv_ops call "call *disp(%ip)". 561 */ 562 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a) 563 { 564 void *target, *bug = &BUG_func; 565 s32 disp; 566 567 if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) { 568 pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n"); 569 BUG(); 570 } 571 572 if (a->instrlen != 6 || 573 instr[0] != CALL_RIP_REL_OPCODE || 574 instr[1] != CALL_RIP_REL_MODRM) { 575 pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n"); 576 BUG(); 577 } 578 579 /* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */ 580 disp = *(s32 *)(instr + 2); 581 #ifdef CONFIG_X86_64 582 /* ff 15 00 00 00 00 call *0x0(%rip) */ 583 /* target address is stored at "next instruction + disp". */ 584 target = *(void **)(instr + a->instrlen + disp); 585 #else 586 /* ff 15 00 00 00 00 call *0x0 */ 587 /* target address is stored at disp. */ 588 target = *(void **)disp; 589 #endif 590 if (!target) 591 target = bug; 592 593 /* (BUG_func - .) + (target - BUG_func) := target - . */ 594 *(s32 *)(insn_buff + 1) += target - bug; 595 596 if (target == &nop_func) 597 return 0; 598 599 return 5; 600 } 601 602 static inline u8 * instr_va(struct alt_instr *i) 603 { 604 return (u8 *)&i->instr_offset + i->instr_offset; 605 } 606 607 /* 608 * Replace instructions with better alternatives for this CPU type. This runs 609 * before SMP is initialized to avoid SMP problems with self modifying code. 610 * This implies that asymmetric systems where APs have less capabilities than 611 * the boot processor are not handled. Tough. Make sure you disable such 612 * features by hand. 613 * 614 * Marked "noinline" to cause control flow change and thus insn cache 615 * to refetch changed I$ lines. 616 */ 617 void __init_or_module noinline apply_alternatives(struct alt_instr *start, 618 struct alt_instr *end) 619 { 620 u8 insn_buff[MAX_PATCH_LEN]; 621 u8 *instr, *replacement; 622 struct alt_instr *a, *b; 623 624 DPRINTK(ALT, "alt table %px, -> %px", start, end); 625 626 /* 627 * KASAN_SHADOW_START is defined using 628 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here. 629 * During the process, KASAN becomes confused seeing partial LA57 630 * conversion and triggers a false-positive out-of-bound report. 631 * 632 * Disable KASAN until the patching is complete. 633 */ 634 kasan_disable_current(); 635 636 /* 637 * The scan order should be from start to end. A later scanned 638 * alternative code can overwrite previously scanned alternative code. 639 * Some kernel functions (e.g. memcpy, memset, etc) use this order to 640 * patch code. 641 * 642 * So be careful if you want to change the scan order to any other 643 * order. 644 */ 645 for (a = start; a < end; a++) { 646 int insn_buff_sz = 0; 647 648 /* 649 * In case of nested ALTERNATIVE()s the outer alternative might 650 * add more padding. To ensure consistent patching find the max 651 * padding for all alt_instr entries for this site (nested 652 * alternatives result in consecutive entries). 653 */ 654 for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) { 655 u8 len = max(a->instrlen, b->instrlen); 656 a->instrlen = b->instrlen = len; 657 } 658 659 instr = instr_va(a); 660 replacement = (u8 *)&a->repl_offset + a->repl_offset; 661 BUG_ON(a->instrlen > sizeof(insn_buff)); 662 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32); 663 664 /* 665 * Patch if either: 666 * - feature is present 667 * - feature not present but ALT_FLAG_NOT is set to mean, 668 * patch if feature is *NOT* present. 669 */ 670 if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) { 671 memcpy(insn_buff, instr, a->instrlen); 672 optimize_nops(instr, insn_buff, a->instrlen); 673 text_poke_early(instr, insn_buff, a->instrlen); 674 continue; 675 } 676 677 DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x", 678 a->cpuid >> 5, 679 a->cpuid & 0x1f, 680 instr, instr, a->instrlen, 681 replacement, a->replacementlen, a->flags); 682 683 memcpy(insn_buff, replacement, a->replacementlen); 684 insn_buff_sz = a->replacementlen; 685 686 if (a->flags & ALT_FLAG_DIRECT_CALL) { 687 insn_buff_sz = alt_replace_call(instr, insn_buff, a); 688 if (insn_buff_sz < 0) 689 continue; 690 } 691 692 for (; insn_buff_sz < a->instrlen; insn_buff_sz++) 693 insn_buff[insn_buff_sz] = 0x90; 694 695 text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen); 696 697 DUMP_BYTES(ALT, instr, a->instrlen, "%px: old_insn: ", instr); 698 DUMP_BYTES(ALT, replacement, a->replacementlen, "%px: rpl_insn: ", replacement); 699 DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr); 700 701 text_poke_early(instr, insn_buff, insn_buff_sz); 702 } 703 704 kasan_enable_current(); 705 } 706 707 static inline bool is_jcc32(struct insn *insn) 708 { 709 /* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */ 710 return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80; 711 } 712 713 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL) 714 715 /* 716 * CALL/JMP *%\reg 717 */ 718 static int emit_indirect(int op, int reg, u8 *bytes) 719 { 720 int i = 0; 721 u8 modrm; 722 723 switch (op) { 724 case CALL_INSN_OPCODE: 725 modrm = 0x10; /* Reg = 2; CALL r/m */ 726 break; 727 728 case JMP32_INSN_OPCODE: 729 modrm = 0x20; /* Reg = 4; JMP r/m */ 730 break; 731 732 default: 733 WARN_ON_ONCE(1); 734 return -1; 735 } 736 737 if (reg >= 8) { 738 bytes[i++] = 0x41; /* REX.B prefix */ 739 reg -= 8; 740 } 741 742 modrm |= 0xc0; /* Mod = 3 */ 743 modrm += reg; 744 745 bytes[i++] = 0xff; /* opcode */ 746 bytes[i++] = modrm; 747 748 return i; 749 } 750 751 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes, 752 void *call_dest, void *jmp_dest) 753 { 754 u8 op = insn->opcode.bytes[0]; 755 int i = 0; 756 757 /* 758 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional 759 * tail-calls. Deal with them. 760 */ 761 if (is_jcc32(insn)) { 762 bytes[i++] = op; 763 op = insn->opcode.bytes[1]; 764 goto clang_jcc; 765 } 766 767 if (insn->length == 6) 768 bytes[i++] = 0x2e; /* CS-prefix */ 769 770 switch (op) { 771 case CALL_INSN_OPCODE: 772 __text_gen_insn(bytes+i, op, addr+i, 773 call_dest, 774 CALL_INSN_SIZE); 775 i += CALL_INSN_SIZE; 776 break; 777 778 case JMP32_INSN_OPCODE: 779 clang_jcc: 780 __text_gen_insn(bytes+i, op, addr+i, 781 jmp_dest, 782 JMP32_INSN_SIZE); 783 i += JMP32_INSN_SIZE; 784 break; 785 786 default: 787 WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr); 788 return -1; 789 } 790 791 WARN_ON_ONCE(i != insn->length); 792 793 return i; 794 } 795 796 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes) 797 { 798 return __emit_trampoline(addr, insn, bytes, 799 __x86_indirect_call_thunk_array[reg], 800 __x86_indirect_jump_thunk_array[reg]); 801 } 802 803 #ifdef CONFIG_MITIGATION_ITS 804 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 805 { 806 u8 *thunk = __x86_indirect_its_thunk_array[reg]; 807 u8 *tmp = its_allocate_thunk(reg); 808 809 if (tmp) 810 thunk = tmp; 811 812 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 813 } 814 815 /* Check if an indirect branch is at ITS-unsafe address */ 816 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 817 { 818 if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS)) 819 return false; 820 821 /* Indirect branch opcode is 2 or 3 bytes depending on reg */ 822 addr += 1 + reg / 8; 823 824 /* Lower-half of the cacheline? */ 825 return !(addr & 0x20); 826 } 827 #else /* CONFIG_MITIGATION_ITS */ 828 829 #ifdef CONFIG_FINEIBT 830 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg) 831 { 832 return false; 833 } 834 #endif 835 836 #endif /* CONFIG_MITIGATION_ITS */ 837 838 /* 839 * Rewrite the compiler generated retpoline thunk calls. 840 * 841 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate 842 * indirect instructions, avoiding the extra indirection. 843 * 844 * For example, convert: 845 * 846 * CALL __x86_indirect_thunk_\reg 847 * 848 * into: 849 * 850 * CALL *%\reg 851 * 852 * It also tries to inline spectre_v2=retpoline,lfence when size permits. 853 */ 854 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes) 855 { 856 retpoline_thunk_t *target; 857 int reg, ret, i = 0; 858 u8 op, cc; 859 860 target = addr + insn->length + insn->immediate.value; 861 reg = target - __x86_indirect_thunk_array; 862 863 if (WARN_ON_ONCE(reg & ~0xf)) 864 return -1; 865 866 /* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */ 867 BUG_ON(reg == 4); 868 869 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) && 870 !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 871 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH)) 872 return emit_call_track_retpoline(addr, insn, reg, bytes); 873 874 return -1; 875 } 876 877 op = insn->opcode.bytes[0]; 878 879 /* 880 * Convert: 881 * 882 * Jcc.d32 __x86_indirect_thunk_\reg 883 * 884 * into: 885 * 886 * Jncc.d8 1f 887 * [ LFENCE ] 888 * JMP *%\reg 889 * [ NOP ] 890 * 1: 891 */ 892 if (is_jcc32(insn)) { 893 cc = insn->opcode.bytes[1] & 0xf; 894 cc ^= 1; /* invert condition */ 895 896 bytes[i++] = 0x70 + cc; /* Jcc.d8 */ 897 bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */ 898 899 /* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */ 900 op = JMP32_INSN_OPCODE; 901 } 902 903 /* 904 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE. 905 */ 906 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) { 907 bytes[i++] = 0x0f; 908 bytes[i++] = 0xae; 909 bytes[i++] = 0xe8; /* LFENCE */ 910 } 911 912 #ifdef CONFIG_MITIGATION_ITS 913 /* 914 * Check if the address of last byte of emitted-indirect is in 915 * lower-half of the cacheline. Such branches need ITS mitigation. 916 */ 917 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg)) 918 return emit_its_trampoline(addr, insn, reg, bytes); 919 #endif 920 921 ret = emit_indirect(op, reg, bytes + i); 922 if (ret < 0) 923 return ret; 924 i += ret; 925 926 /* 927 * The compiler is supposed to EMIT an INT3 after every unconditional 928 * JMP instruction due to AMD BTC. However, if the compiler is too old 929 * or MITIGATION_SLS isn't enabled, we still need an INT3 after 930 * indirect JMPs even on Intel. 931 */ 932 if (op == JMP32_INSN_OPCODE && i < insn->length) 933 bytes[i++] = INT3_INSN_OPCODE; 934 935 for (; i < insn->length;) 936 bytes[i++] = BYTES_NOP1; 937 938 return i; 939 } 940 941 /* 942 * Generated by 'objtool --retpoline'. 943 */ 944 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) 945 { 946 s32 *s; 947 948 for (s = start; s < end; s++) { 949 void *addr = (void *)s + *s; 950 struct insn insn; 951 int len, ret; 952 u8 bytes[16]; 953 u8 op1, op2; 954 u8 *dest; 955 956 ret = insn_decode_kernel(&insn, addr); 957 if (WARN_ON_ONCE(ret < 0)) 958 continue; 959 960 op1 = insn.opcode.bytes[0]; 961 op2 = insn.opcode.bytes[1]; 962 963 switch (op1) { 964 case 0x70 ... 0x7f: /* Jcc.d8 */ 965 /* See cfi_paranoid. */ 966 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 967 continue; 968 969 case CALL_INSN_OPCODE: 970 case JMP32_INSN_OPCODE: 971 /* Check for cfi_paranoid + ITS */ 972 dest = addr + insn.length + insn.immediate.value; 973 if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) { 974 WARN_ON_ONCE(cfi_mode != CFI_FINEIBT); 975 continue; 976 } 977 break; 978 979 case 0x0f: /* escape */ 980 if (op2 >= 0x80 && op2 <= 0x8f) 981 break; 982 fallthrough; 983 default: 984 WARN_ON_ONCE(1); 985 continue; 986 } 987 988 DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS", 989 addr, addr, insn.length, 990 addr + insn.length + insn.immediate.value); 991 992 len = patch_retpoline(addr, &insn, bytes); 993 if (len == insn.length) { 994 optimize_nops(addr, bytes, len); 995 DUMP_BYTES(RETPOLINE, ((u8*)addr), len, "%px: orig: ", addr); 996 DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr); 997 text_poke_early(addr, bytes, len); 998 } 999 } 1000 } 1001 1002 #ifdef CONFIG_MITIGATION_RETHUNK 1003 1004 bool cpu_wants_rethunk(void) 1005 { 1006 return cpu_feature_enabled(X86_FEATURE_RETHUNK); 1007 } 1008 1009 bool cpu_wants_rethunk_at(void *addr) 1010 { 1011 if (!cpu_feature_enabled(X86_FEATURE_RETHUNK)) 1012 return false; 1013 if (x86_return_thunk != its_return_thunk) 1014 return true; 1015 1016 return !((unsigned long)addr & 0x20); 1017 } 1018 1019 /* 1020 * Rewrite the compiler generated return thunk tail-calls. 1021 * 1022 * For example, convert: 1023 * 1024 * JMP __x86_return_thunk 1025 * 1026 * into: 1027 * 1028 * RET 1029 */ 1030 static int patch_return(void *addr, struct insn *insn, u8 *bytes) 1031 { 1032 int i = 0; 1033 1034 /* Patch the custom return thunks... */ 1035 if (cpu_wants_rethunk_at(addr)) { 1036 i = JMP32_INSN_SIZE; 1037 __text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i); 1038 } else { 1039 /* ... or patch them out if not needed. */ 1040 bytes[i++] = RET_INSN_OPCODE; 1041 } 1042 1043 for (; i < insn->length;) 1044 bytes[i++] = INT3_INSN_OPCODE; 1045 return i; 1046 } 1047 1048 void __init_or_module noinline apply_returns(s32 *start, s32 *end) 1049 { 1050 s32 *s; 1051 1052 if (cpu_wants_rethunk()) 1053 static_call_force_reinit(); 1054 1055 for (s = start; s < end; s++) { 1056 void *dest = NULL, *addr = (void *)s + *s; 1057 struct insn insn; 1058 int len, ret; 1059 u8 bytes[16]; 1060 u8 op; 1061 1062 ret = insn_decode_kernel(&insn, addr); 1063 if (WARN_ON_ONCE(ret < 0)) 1064 continue; 1065 1066 op = insn.opcode.bytes[0]; 1067 if (op == JMP32_INSN_OPCODE) 1068 dest = addr + insn.length + insn.immediate.value; 1069 1070 if (__static_call_fixup(addr, op, dest) || 1071 WARN_ONCE(dest != &__x86_return_thunk, 1072 "missing return thunk: %pS-%pS: %*ph", 1073 addr, dest, 5, addr)) 1074 continue; 1075 1076 DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS", 1077 addr, addr, insn.length, 1078 addr + insn.length + insn.immediate.value); 1079 1080 len = patch_return(addr, &insn, bytes); 1081 if (len == insn.length) { 1082 DUMP_BYTES(RET, ((u8*)addr), len, "%px: orig: ", addr); 1083 DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr); 1084 text_poke_early(addr, bytes, len); 1085 } 1086 } 1087 } 1088 #else /* !CONFIG_MITIGATION_RETHUNK: */ 1089 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1090 #endif /* !CONFIG_MITIGATION_RETHUNK */ 1091 1092 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1093 1094 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { } 1095 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { } 1096 1097 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */ 1098 1099 #ifdef CONFIG_X86_KERNEL_IBT 1100 1101 __noendbr bool is_endbr(u32 *val) 1102 { 1103 u32 endbr; 1104 1105 __get_kernel_nofault(&endbr, val, u32, Efault); 1106 return __is_endbr(endbr); 1107 1108 Efault: 1109 return false; 1110 } 1111 1112 #ifdef CONFIG_FINEIBT 1113 1114 static __noendbr bool exact_endbr(u32 *val) 1115 { 1116 u32 endbr; 1117 1118 __get_kernel_nofault(&endbr, val, u32, Efault); 1119 return endbr == gen_endbr(); 1120 1121 Efault: 1122 return false; 1123 } 1124 1125 #endif 1126 1127 static void poison_cfi(void *addr); 1128 1129 static void __init_or_module poison_endbr(void *addr) 1130 { 1131 u32 poison = gen_endbr_poison(); 1132 1133 if (WARN_ON_ONCE(!is_endbr(addr))) 1134 return; 1135 1136 DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr); 1137 1138 /* 1139 * When we have IBT, the lack of ENDBR will trigger #CP 1140 */ 1141 DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr); 1142 DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr); 1143 text_poke_early(addr, &poison, 4); 1144 } 1145 1146 /* 1147 * Generated by: objtool --ibt 1148 * 1149 * Seal the functions for indirect calls by clobbering the ENDBR instructions 1150 * and the kCFI hash value. 1151 */ 1152 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end) 1153 { 1154 s32 *s; 1155 1156 for (s = start; s < end; s++) { 1157 void *addr = (void *)s + *s; 1158 1159 poison_endbr(addr); 1160 if (IS_ENABLED(CONFIG_FINEIBT)) 1161 poison_cfi(addr - 16); 1162 } 1163 } 1164 1165 #else /* !CONFIG_X86_KERNEL_IBT: */ 1166 1167 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { } 1168 1169 #endif /* !CONFIG_X86_KERNEL_IBT */ 1170 1171 #ifdef CONFIG_CFI_AUTO_DEFAULT 1172 # define __CFI_DEFAULT CFI_AUTO 1173 #elif defined(CONFIG_CFI_CLANG) 1174 # define __CFI_DEFAULT CFI_KCFI 1175 #else 1176 # define __CFI_DEFAULT CFI_OFF 1177 #endif 1178 1179 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT; 1180 1181 #ifdef CONFIG_FINEIBT_BHI 1182 bool cfi_bhi __ro_after_init = false; 1183 #endif 1184 1185 #ifdef CONFIG_CFI_CLANG 1186 u32 cfi_get_func_hash(void *func) 1187 { 1188 u32 hash; 1189 1190 func -= cfi_get_offset(); 1191 switch (cfi_mode) { 1192 case CFI_FINEIBT: 1193 func += 7; 1194 break; 1195 case CFI_KCFI: 1196 func += 1; 1197 break; 1198 default: 1199 return 0; 1200 } 1201 1202 if (get_kernel_nofault(hash, func)) 1203 return 0; 1204 1205 return hash; 1206 } 1207 1208 int cfi_get_func_arity(void *func) 1209 { 1210 bhi_thunk *target; 1211 s32 disp; 1212 1213 if (cfi_mode != CFI_FINEIBT && !cfi_bhi) 1214 return 0; 1215 1216 if (get_kernel_nofault(disp, func - 4)) 1217 return 0; 1218 1219 target = func + disp; 1220 return target - __bhi_args; 1221 } 1222 #endif 1223 1224 #ifdef CONFIG_FINEIBT 1225 1226 static bool cfi_rand __ro_after_init = true; 1227 static u32 cfi_seed __ro_after_init; 1228 1229 /* 1230 * Re-hash the CFI hash with a boot-time seed while making sure the result is 1231 * not a valid ENDBR instruction. 1232 */ 1233 static u32 cfi_rehash(u32 hash) 1234 { 1235 hash ^= cfi_seed; 1236 while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) { 1237 bool lsb = hash & 1; 1238 hash >>= 1; 1239 if (lsb) 1240 hash ^= 0x80200003; 1241 } 1242 return hash; 1243 } 1244 1245 static __init int cfi_parse_cmdline(char *str) 1246 { 1247 if (!str) 1248 return -EINVAL; 1249 1250 while (str) { 1251 char *next = strchr(str, ','); 1252 if (next) { 1253 *next = 0; 1254 next++; 1255 } 1256 1257 if (!strcmp(str, "auto")) { 1258 cfi_mode = CFI_AUTO; 1259 } else if (!strcmp(str, "off")) { 1260 cfi_mode = CFI_OFF; 1261 cfi_rand = false; 1262 } else if (!strcmp(str, "kcfi")) { 1263 cfi_mode = CFI_KCFI; 1264 } else if (!strcmp(str, "fineibt")) { 1265 cfi_mode = CFI_FINEIBT; 1266 } else if (!strcmp(str, "norand")) { 1267 cfi_rand = false; 1268 } else if (!strcmp(str, "warn")) { 1269 pr_alert("CFI mismatch non-fatal!\n"); 1270 cfi_warn = true; 1271 } else if (!strcmp(str, "paranoid")) { 1272 if (cfi_mode == CFI_FINEIBT) { 1273 cfi_paranoid = true; 1274 } else { 1275 pr_err("Ignoring paranoid; depends on fineibt.\n"); 1276 } 1277 } else if (!strcmp(str, "bhi")) { 1278 #ifdef CONFIG_FINEIBT_BHI 1279 if (cfi_mode == CFI_FINEIBT) { 1280 cfi_bhi = true; 1281 } else { 1282 pr_err("Ignoring bhi; depends on fineibt.\n"); 1283 } 1284 #else 1285 pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n"); 1286 #endif 1287 } else { 1288 pr_err("Ignoring unknown cfi option (%s).", str); 1289 } 1290 1291 str = next; 1292 } 1293 1294 return 0; 1295 } 1296 early_param("cfi", cfi_parse_cmdline); 1297 1298 /* 1299 * kCFI FineIBT 1300 * 1301 * __cfi_\func: __cfi_\func: 1302 * movl $0x12345678,%eax // 5 endbr64 // 4 1303 * nop subl $0x12345678,%r10d // 7 1304 * nop jne __cfi_\func+6 // 2 1305 * nop nop3 // 3 1306 * nop 1307 * nop 1308 * nop 1309 * nop 1310 * nop 1311 * nop 1312 * nop 1313 * nop 1314 * 1315 * 1316 * caller: caller: 1317 * movl $(-0x12345678),%r10d // 6 movl $0x12345678,%r10d // 6 1318 * addl $-15(%r11),%r10d // 4 lea -0x10(%r11),%r11 // 4 1319 * je 1f // 2 nop4 // 4 1320 * ud2 // 2 1321 * 1: cs call __x86_indirect_thunk_r11 // 6 call *%r11; nop3; // 6 1322 * 1323 */ 1324 1325 /* 1326 * <fineibt_preamble_start>: 1327 * 0: f3 0f 1e fa endbr64 1328 * 4: 41 81 <ea> 78 56 34 12 sub $0x12345678, %r10d 1329 * b: 75 f9 jne 6 <fineibt_preamble_start+0x6> 1330 * d: 0f 1f 00 nopl (%rax) 1331 * 1332 * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as 1333 * (bad) on x86_64 and raises #UD. 1334 */ 1335 asm( ".pushsection .rodata \n" 1336 "fineibt_preamble_start: \n" 1337 " endbr64 \n" 1338 " subl $0x12345678, %r10d \n" 1339 "fineibt_preamble_bhi: \n" 1340 " jne fineibt_preamble_start+6 \n" 1341 ASM_NOP3 1342 "fineibt_preamble_end: \n" 1343 ".popsection\n" 1344 ); 1345 1346 extern u8 fineibt_preamble_start[]; 1347 extern u8 fineibt_preamble_bhi[]; 1348 extern u8 fineibt_preamble_end[]; 1349 1350 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start) 1351 #define fineibt_preamble_bhi (fineibt_preamble_bhi - fineibt_preamble_start) 1352 #define fineibt_preamble_ud 6 1353 #define fineibt_preamble_hash 7 1354 1355 /* 1356 * <fineibt_caller_start>: 1357 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1358 * 6: 4d 8d 5b f0 lea -0x10(%r11), %r11 1359 * a: 0f 1f 40 00 nopl 0x0(%rax) 1360 */ 1361 asm( ".pushsection .rodata \n" 1362 "fineibt_caller_start: \n" 1363 " movl $0x12345678, %r10d \n" 1364 " lea -0x10(%r11), %r11 \n" 1365 ASM_NOP4 1366 "fineibt_caller_end: \n" 1367 ".popsection \n" 1368 ); 1369 1370 extern u8 fineibt_caller_start[]; 1371 extern u8 fineibt_caller_end[]; 1372 1373 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start) 1374 #define fineibt_caller_hash 2 1375 1376 #define fineibt_caller_jmp (fineibt_caller_size - 2) 1377 1378 /* 1379 * Since FineIBT does hash validation on the callee side it is prone to 1380 * circumvention attacks where a 'naked' ENDBR instruction exists that 1381 * is not part of the fineibt_preamble sequence. 1382 * 1383 * Notably the x86 entry points must be ENDBR and equally cannot be 1384 * fineibt_preamble. 1385 * 1386 * The fineibt_paranoid caller sequence adds additional caller side 1387 * hash validation. This stops such circumvention attacks dead, but at the cost 1388 * of adding a load. 1389 * 1390 * <fineibt_paranoid_start>: 1391 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1392 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1393 * a: 4d 8d 5b <f0> lea -0x10(%r11), %r11 1394 * e: 75 fd jne d <fineibt_paranoid_start+0xd> 1395 * 10: 41 ff d3 call *%r11 1396 * 13: 90 nop 1397 * 1398 * Notably LEA does not modify flags and can be reordered with the CMP, 1399 * avoiding a dependency. Again, using a non-taken (backwards) branch 1400 * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the 1401 * Jcc.d8, causing #UD. 1402 */ 1403 asm( ".pushsection .rodata \n" 1404 "fineibt_paranoid_start: \n" 1405 " movl $0x12345678, %r10d \n" 1406 " cmpl -9(%r11), %r10d \n" 1407 " lea -0x10(%r11), %r11 \n" 1408 " jne fineibt_paranoid_start+0xd \n" 1409 "fineibt_paranoid_ind: \n" 1410 " call *%r11 \n" 1411 " nop \n" 1412 "fineibt_paranoid_end: \n" 1413 ".popsection \n" 1414 ); 1415 1416 extern u8 fineibt_paranoid_start[]; 1417 extern u8 fineibt_paranoid_ind[]; 1418 extern u8 fineibt_paranoid_end[]; 1419 1420 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start) 1421 #define fineibt_paranoid_ind (fineibt_paranoid_ind - fineibt_paranoid_start) 1422 #define fineibt_paranoid_ud 0xd 1423 1424 static u32 decode_preamble_hash(void *addr, int *reg) 1425 { 1426 u8 *p = addr; 1427 1428 /* b8+reg 78 56 34 12 movl $0x12345678,\reg */ 1429 if (p[0] >= 0xb8 && p[0] < 0xc0) { 1430 if (reg) 1431 *reg = p[0] - 0xb8; 1432 return *(u32 *)(addr + 1); 1433 } 1434 1435 return 0; /* invalid hash value */ 1436 } 1437 1438 static u32 decode_caller_hash(void *addr) 1439 { 1440 u8 *p = addr; 1441 1442 /* 41 ba 88 a9 cb ed mov $(-0x12345678),%r10d */ 1443 if (p[0] == 0x41 && p[1] == 0xba) 1444 return -*(u32 *)(addr + 2); 1445 1446 /* e8 0c 88 a9 cb ed jmp.d8 +12 */ 1447 if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp) 1448 return -*(u32 *)(addr + 2); 1449 1450 return 0; /* invalid hash value */ 1451 } 1452 1453 /* .retpoline_sites */ 1454 static int cfi_disable_callers(s32 *start, s32 *end) 1455 { 1456 /* 1457 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate 1458 * in tact for later usage. Also see decode_caller_hash() and 1459 * cfi_rewrite_callers(). 1460 */ 1461 const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp }; 1462 s32 *s; 1463 1464 for (s = start; s < end; s++) { 1465 void *addr = (void *)s + *s; 1466 u32 hash; 1467 1468 addr -= fineibt_caller_size; 1469 hash = decode_caller_hash(addr); 1470 if (!hash) /* nocfi callers */ 1471 continue; 1472 1473 text_poke_early(addr, jmp, 2); 1474 } 1475 1476 return 0; 1477 } 1478 1479 static int cfi_enable_callers(s32 *start, s32 *end) 1480 { 1481 /* 1482 * Re-enable kCFI, undo what cfi_disable_callers() did. 1483 */ 1484 const u8 mov[] = { 0x41, 0xba }; 1485 s32 *s; 1486 1487 for (s = start; s < end; s++) { 1488 void *addr = (void *)s + *s; 1489 u32 hash; 1490 1491 addr -= fineibt_caller_size; 1492 hash = decode_caller_hash(addr); 1493 if (!hash) /* nocfi callers */ 1494 continue; 1495 1496 text_poke_early(addr, mov, 2); 1497 } 1498 1499 return 0; 1500 } 1501 1502 /* .cfi_sites */ 1503 static int cfi_rand_preamble(s32 *start, s32 *end) 1504 { 1505 s32 *s; 1506 1507 for (s = start; s < end; s++) { 1508 void *addr = (void *)s + *s; 1509 u32 hash; 1510 1511 hash = decode_preamble_hash(addr, NULL); 1512 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1513 addr, addr, 5, addr)) 1514 return -EINVAL; 1515 1516 hash = cfi_rehash(hash); 1517 text_poke_early(addr + 1, &hash, 4); 1518 } 1519 1520 return 0; 1521 } 1522 1523 static void cfi_fineibt_bhi_preamble(void *addr, int arity) 1524 { 1525 if (!arity) 1526 return; 1527 1528 if (!cfi_warn && arity == 1) { 1529 /* 1530 * Crazy scheme to allow arity-1 inline: 1531 * 1532 * __cfi_foo: 1533 * 0: f3 0f 1e fa endbr64 1534 * 4: 41 81 <ea> 78 56 34 12 sub 0x12345678, %r10d 1535 * b: 49 0f 45 fa cmovne %r10, %rdi 1536 * f: 75 f5 jne __cfi_foo+6 1537 * 11: 0f 1f 00 nopl (%rax) 1538 * 1539 * Code that direct calls to foo()+0, decodes the tail end as: 1540 * 1541 * foo: 1542 * 0: f5 cmc 1543 * 1: 0f 1f 00 nopl (%rax) 1544 * 1545 * which clobbers CF, but does not affect anything ABI 1546 * wise. 1547 * 1548 * Notably, this scheme is incompatible with permissive CFI 1549 * because the CMOVcc is unconditional and RDI will have been 1550 * clobbered. 1551 */ 1552 const u8 magic[9] = { 1553 0x49, 0x0f, 0x45, 0xfa, 1554 0x75, 0xf5, 1555 BYTES_NOP3, 1556 }; 1557 1558 text_poke_early(addr + fineibt_preamble_bhi, magic, 9); 1559 1560 return; 1561 } 1562 1563 text_poke_early(addr + fineibt_preamble_bhi, 1564 text_gen_insn(CALL_INSN_OPCODE, 1565 addr + fineibt_preamble_bhi, 1566 __bhi_args[arity]), 1567 CALL_INSN_SIZE); 1568 } 1569 1570 static int cfi_rewrite_preamble(s32 *start, s32 *end) 1571 { 1572 s32 *s; 1573 1574 for (s = start; s < end; s++) { 1575 void *addr = (void *)s + *s; 1576 int arity; 1577 u32 hash; 1578 1579 /* 1580 * When the function doesn't start with ENDBR the compiler will 1581 * have determined there are no indirect calls to it and we 1582 * don't need no CFI either. 1583 */ 1584 if (!is_endbr(addr + 16)) 1585 continue; 1586 1587 hash = decode_preamble_hash(addr, &arity); 1588 if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n", 1589 addr, addr, 5, addr)) 1590 return -EINVAL; 1591 1592 text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size); 1593 WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678); 1594 text_poke_early(addr + fineibt_preamble_hash, &hash, 4); 1595 1596 WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity, 1597 "kCFI preamble has wrong register at: %pS %*ph\n", 1598 addr, 5, addr); 1599 1600 if (cfi_bhi) 1601 cfi_fineibt_bhi_preamble(addr, arity); 1602 } 1603 1604 return 0; 1605 } 1606 1607 static void cfi_rewrite_endbr(s32 *start, s32 *end) 1608 { 1609 s32 *s; 1610 1611 for (s = start; s < end; s++) { 1612 void *addr = (void *)s + *s; 1613 1614 if (!exact_endbr(addr + 16)) 1615 continue; 1616 1617 poison_endbr(addr + 16); 1618 } 1619 } 1620 1621 /* .retpoline_sites */ 1622 static int cfi_rand_callers(s32 *start, s32 *end) 1623 { 1624 s32 *s; 1625 1626 for (s = start; s < end; s++) { 1627 void *addr = (void *)s + *s; 1628 u32 hash; 1629 1630 addr -= fineibt_caller_size; 1631 hash = decode_caller_hash(addr); 1632 if (hash) { 1633 hash = -cfi_rehash(hash); 1634 text_poke_early(addr + 2, &hash, 4); 1635 } 1636 } 1637 1638 return 0; 1639 } 1640 1641 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes) 1642 { 1643 u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2; 1644 1645 #ifdef CONFIG_MITIGATION_ITS 1646 u8 *tmp = its_allocate_thunk(reg); 1647 if (tmp) 1648 thunk = tmp; 1649 #endif 1650 1651 return __emit_trampoline(addr, insn, bytes, thunk, thunk); 1652 } 1653 1654 static int cfi_rewrite_callers(s32 *start, s32 *end) 1655 { 1656 s32 *s; 1657 1658 BUG_ON(fineibt_paranoid_size != 20); 1659 1660 for (s = start; s < end; s++) { 1661 void *addr = (void *)s + *s; 1662 struct insn insn; 1663 u8 bytes[20]; 1664 u32 hash; 1665 int ret; 1666 u8 op; 1667 1668 addr -= fineibt_caller_size; 1669 hash = decode_caller_hash(addr); 1670 if (!hash) 1671 continue; 1672 1673 if (!cfi_paranoid) { 1674 text_poke_early(addr, fineibt_caller_start, fineibt_caller_size); 1675 WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678); 1676 text_poke_early(addr + fineibt_caller_hash, &hash, 4); 1677 /* rely on apply_retpolines() */ 1678 continue; 1679 } 1680 1681 /* cfi_paranoid */ 1682 ret = insn_decode_kernel(&insn, addr + fineibt_caller_size); 1683 if (WARN_ON_ONCE(ret < 0)) 1684 continue; 1685 1686 op = insn.opcode.bytes[0]; 1687 if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) { 1688 WARN_ON_ONCE(1); 1689 continue; 1690 } 1691 1692 memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size); 1693 memcpy(bytes + fineibt_caller_hash, &hash, 4); 1694 1695 if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) { 1696 emit_paranoid_trampoline(addr + fineibt_caller_size, 1697 &insn, 11, bytes + fineibt_caller_size); 1698 } else { 1699 ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind); 1700 if (WARN_ON_ONCE(ret != 3)) 1701 continue; 1702 } 1703 1704 text_poke_early(addr, bytes, fineibt_paranoid_size); 1705 } 1706 1707 return 0; 1708 } 1709 1710 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 1711 s32 *start_cfi, s32 *end_cfi, bool builtin) 1712 { 1713 int ret; 1714 1715 if (WARN_ONCE(fineibt_preamble_size != 16, 1716 "FineIBT preamble wrong size: %ld", fineibt_preamble_size)) 1717 return; 1718 1719 if (cfi_mode == CFI_AUTO) { 1720 cfi_mode = CFI_KCFI; 1721 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) { 1722 /* 1723 * FRED has much saner context on exception entry and 1724 * is less easy to take advantage of. 1725 */ 1726 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 1727 cfi_paranoid = true; 1728 cfi_mode = CFI_FINEIBT; 1729 } 1730 } 1731 1732 /* 1733 * Rewrite the callers to not use the __cfi_ stubs, such that we might 1734 * rewrite them. This disables all CFI. If this succeeds but any of the 1735 * later stages fails, we're without CFI. 1736 */ 1737 ret = cfi_disable_callers(start_retpoline, end_retpoline); 1738 if (ret) 1739 goto err; 1740 1741 if (cfi_rand) { 1742 if (builtin) { 1743 cfi_seed = get_random_u32(); 1744 cfi_bpf_hash = cfi_rehash(cfi_bpf_hash); 1745 cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash); 1746 } 1747 1748 ret = cfi_rand_preamble(start_cfi, end_cfi); 1749 if (ret) 1750 goto err; 1751 1752 ret = cfi_rand_callers(start_retpoline, end_retpoline); 1753 if (ret) 1754 goto err; 1755 } 1756 1757 switch (cfi_mode) { 1758 case CFI_OFF: 1759 if (builtin) 1760 pr_info("Disabling CFI\n"); 1761 return; 1762 1763 case CFI_KCFI: 1764 ret = cfi_enable_callers(start_retpoline, end_retpoline); 1765 if (ret) 1766 goto err; 1767 1768 if (builtin) 1769 pr_info("Using kCFI\n"); 1770 return; 1771 1772 case CFI_FINEIBT: 1773 /* place the FineIBT preamble at func()-16 */ 1774 ret = cfi_rewrite_preamble(start_cfi, end_cfi); 1775 if (ret) 1776 goto err; 1777 1778 /* rewrite the callers to target func()-16 */ 1779 ret = cfi_rewrite_callers(start_retpoline, end_retpoline); 1780 if (ret) 1781 goto err; 1782 1783 /* now that nobody targets func()+0, remove ENDBR there */ 1784 cfi_rewrite_endbr(start_cfi, end_cfi); 1785 1786 if (builtin) { 1787 pr_info("Using %sFineIBT%s CFI\n", 1788 cfi_paranoid ? "paranoid " : "", 1789 cfi_bhi ? "+BHI" : ""); 1790 } 1791 return; 1792 1793 default: 1794 break; 1795 } 1796 1797 err: 1798 pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n"); 1799 } 1800 1801 static inline void poison_hash(void *addr) 1802 { 1803 *(u32 *)addr = 0; 1804 } 1805 1806 static void poison_cfi(void *addr) 1807 { 1808 /* 1809 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes, 1810 * some (static) functions for which they can determine the address 1811 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR. 1812 * 1813 * As such, these functions will get sealed, but we need to be careful 1814 * to not unconditionally scribble the previous function. 1815 */ 1816 switch (cfi_mode) { 1817 case CFI_FINEIBT: 1818 /* 1819 * FineIBT prefix should start with an ENDBR. 1820 */ 1821 if (!is_endbr(addr)) 1822 break; 1823 1824 /* 1825 * __cfi_\func: 1826 * osp nopl (%rax) 1827 * subl $0, %r10d 1828 * jz 1f 1829 * ud2 1830 * 1: nop 1831 */ 1832 poison_endbr(addr); 1833 poison_hash(addr + fineibt_preamble_hash); 1834 break; 1835 1836 case CFI_KCFI: 1837 /* 1838 * kCFI prefix should start with a valid hash. 1839 */ 1840 if (!decode_preamble_hash(addr, NULL)) 1841 break; 1842 1843 /* 1844 * __cfi_\func: 1845 * movl $0, %eax 1846 * .skip 11, 0x90 1847 */ 1848 poison_hash(addr + 1); 1849 break; 1850 1851 default: 1852 break; 1853 } 1854 } 1855 1856 /* 1857 * When regs->ip points to a 0xEA byte in the FineIBT preamble, 1858 * return true and fill out target and type. 1859 * 1860 * We check the preamble by checking for the ENDBR instruction relative to the 1861 * 0xEA instruction. 1862 */ 1863 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type) 1864 { 1865 unsigned long addr = regs->ip - fineibt_preamble_ud; 1866 u32 hash; 1867 1868 if (!exact_endbr((void *)addr)) 1869 return false; 1870 1871 *target = addr + fineibt_preamble_size; 1872 1873 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1874 *type = (u32)regs->r10 + hash; 1875 1876 /* 1877 * Since regs->ip points to the middle of an instruction; it cannot 1878 * continue with the normal fixup. 1879 */ 1880 regs->ip = *target; 1881 1882 return true; 1883 1884 Efault: 1885 return false; 1886 } 1887 1888 /* 1889 * regs->ip points to one of the UD2 in __bhi_args[]. 1890 */ 1891 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type) 1892 { 1893 unsigned long addr; 1894 u32 hash; 1895 1896 if (!cfi_bhi) 1897 return false; 1898 1899 if (regs->ip < (unsigned long)__bhi_args || 1900 regs->ip >= (unsigned long)__bhi_args_end) 1901 return false; 1902 1903 /* 1904 * Fetch the return address from the stack, this points to the 1905 * FineIBT preamble. Since the CALL instruction is in the 5 last 1906 * bytes of the preamble, the return address is in fact the target 1907 * address. 1908 */ 1909 __get_kernel_nofault(&addr, regs->sp, unsigned long, Efault); 1910 *target = addr; 1911 1912 addr -= fineibt_preamble_size; 1913 if (!exact_endbr((void *)addr)) 1914 return false; 1915 1916 __get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault); 1917 *type = (u32)regs->r10 + hash; 1918 1919 /* 1920 * The UD2 sites are constructed with a RET immediately following, 1921 * as such the non-fatal case can use the regular fixup. 1922 */ 1923 return true; 1924 1925 Efault: 1926 return false; 1927 } 1928 1929 static bool is_paranoid_thunk(unsigned long addr) 1930 { 1931 u32 thunk; 1932 1933 __get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault); 1934 return (thunk & 0x00FFFFFF) == 0xfd75ea; 1935 1936 Efault: 1937 return false; 1938 } 1939 1940 /* 1941 * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[] 1942 * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS 1943 * thunk. 1944 */ 1945 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type) 1946 { 1947 unsigned long addr = regs->ip - fineibt_paranoid_ud; 1948 1949 if (!cfi_paranoid) 1950 return false; 1951 1952 if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) { 1953 *target = regs->r11 + fineibt_preamble_size; 1954 *type = regs->r10; 1955 1956 /* 1957 * Since the trapping instruction is the exact, but LOCK prefixed, 1958 * Jcc.d8 that got us here, the normal fixup will work. 1959 */ 1960 return true; 1961 } 1962 1963 /* 1964 * The cfi_paranoid + ITS thunk combination results in: 1965 * 1966 * 0: 41 ba 78 56 34 12 mov $0x12345678, %r10d 1967 * 6: 45 3b 53 f7 cmp -0x9(%r11), %r10d 1968 * a: 4d 8d 5b f0 lea -0x10(%r11), %r11 1969 * e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11 1970 * 1971 * Where the paranoid_thunk looks like: 1972 * 1973 * 1d: <ea> (bad) 1974 * __x86_indirect_paranoid_thunk_r11: 1975 * 1e: 75 fd jne 1d 1976 * __x86_indirect_its_thunk_r11: 1977 * 20: 41 ff eb jmp *%r11 1978 * 23: cc int3 1979 * 1980 */ 1981 if (is_paranoid_thunk(regs->ip)) { 1982 *target = regs->r11 + fineibt_preamble_size; 1983 *type = regs->r10; 1984 1985 regs->ip = *target; 1986 return true; 1987 } 1988 1989 return false; 1990 } 1991 1992 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type) 1993 { 1994 if (decode_fineibt_paranoid(regs, target, type)) 1995 return true; 1996 1997 if (decode_fineibt_bhi(regs, target, type)) 1998 return true; 1999 2000 return decode_fineibt_preamble(regs, target, type); 2001 } 2002 2003 #else /* !CONFIG_FINEIBT: */ 2004 2005 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2006 s32 *start_cfi, s32 *end_cfi, bool builtin) 2007 { 2008 } 2009 2010 #ifdef CONFIG_X86_KERNEL_IBT 2011 static void poison_cfi(void *addr) { } 2012 #endif 2013 2014 #endif /* !CONFIG_FINEIBT */ 2015 2016 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline, 2017 s32 *start_cfi, s32 *end_cfi) 2018 { 2019 return __apply_fineibt(start_retpoline, end_retpoline, 2020 start_cfi, end_cfi, 2021 /* .builtin = */ false); 2022 } 2023 2024 #ifdef CONFIG_SMP 2025 static void alternatives_smp_lock(const s32 *start, const s32 *end, 2026 u8 *text, u8 *text_end) 2027 { 2028 const s32 *poff; 2029 2030 for (poff = start; poff < end; poff++) { 2031 u8 *ptr = (u8 *)poff + *poff; 2032 2033 if (!*poff || ptr < text || ptr >= text_end) 2034 continue; 2035 /* turn DS segment override prefix into lock prefix */ 2036 if (*ptr == 0x3e) 2037 text_poke(ptr, ((unsigned char []){0xf0}), 1); 2038 } 2039 } 2040 2041 static void alternatives_smp_unlock(const s32 *start, const s32 *end, 2042 u8 *text, u8 *text_end) 2043 { 2044 const s32 *poff; 2045 2046 for (poff = start; poff < end; poff++) { 2047 u8 *ptr = (u8 *)poff + *poff; 2048 2049 if (!*poff || ptr < text || ptr >= text_end) 2050 continue; 2051 /* turn lock prefix into DS segment override prefix */ 2052 if (*ptr == 0xf0) 2053 text_poke(ptr, ((unsigned char []){0x3E}), 1); 2054 } 2055 } 2056 2057 struct smp_alt_module { 2058 /* what is this ??? */ 2059 struct module *mod; 2060 char *name; 2061 2062 /* ptrs to lock prefixes */ 2063 const s32 *locks; 2064 const s32 *locks_end; 2065 2066 /* .text segment, needed to avoid patching init code ;) */ 2067 u8 *text; 2068 u8 *text_end; 2069 2070 struct list_head next; 2071 }; 2072 static LIST_HEAD(smp_alt_modules); 2073 static bool uniproc_patched = false; /* protected by text_mutex */ 2074 2075 void __init_or_module alternatives_smp_module_add(struct module *mod, 2076 char *name, 2077 void *locks, void *locks_end, 2078 void *text, void *text_end) 2079 { 2080 struct smp_alt_module *smp; 2081 2082 mutex_lock(&text_mutex); 2083 if (!uniproc_patched) 2084 goto unlock; 2085 2086 if (num_possible_cpus() == 1) 2087 /* Don't bother remembering, we'll never have to undo it. */ 2088 goto smp_unlock; 2089 2090 smp = kzalloc(sizeof(*smp), GFP_KERNEL); 2091 if (NULL == smp) 2092 /* we'll run the (safe but slow) SMP code then ... */ 2093 goto unlock; 2094 2095 smp->mod = mod; 2096 smp->name = name; 2097 smp->locks = locks; 2098 smp->locks_end = locks_end; 2099 smp->text = text; 2100 smp->text_end = text_end; 2101 DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n", 2102 smp->locks, smp->locks_end, 2103 smp->text, smp->text_end, smp->name); 2104 2105 list_add_tail(&smp->next, &smp_alt_modules); 2106 smp_unlock: 2107 alternatives_smp_unlock(locks, locks_end, text, text_end); 2108 unlock: 2109 mutex_unlock(&text_mutex); 2110 } 2111 2112 void __init_or_module alternatives_smp_module_del(struct module *mod) 2113 { 2114 struct smp_alt_module *item; 2115 2116 mutex_lock(&text_mutex); 2117 list_for_each_entry(item, &smp_alt_modules, next) { 2118 if (mod != item->mod) 2119 continue; 2120 list_del(&item->next); 2121 kfree(item); 2122 break; 2123 } 2124 mutex_unlock(&text_mutex); 2125 } 2126 2127 void alternatives_enable_smp(void) 2128 { 2129 struct smp_alt_module *mod; 2130 2131 /* Why bother if there are no other CPUs? */ 2132 BUG_ON(num_possible_cpus() == 1); 2133 2134 mutex_lock(&text_mutex); 2135 2136 if (uniproc_patched) { 2137 pr_info("switching to SMP code\n"); 2138 BUG_ON(num_online_cpus() != 1); 2139 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP); 2140 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP); 2141 list_for_each_entry(mod, &smp_alt_modules, next) 2142 alternatives_smp_lock(mod->locks, mod->locks_end, 2143 mod->text, mod->text_end); 2144 uniproc_patched = false; 2145 } 2146 mutex_unlock(&text_mutex); 2147 } 2148 2149 /* 2150 * Return 1 if the address range is reserved for SMP-alternatives. 2151 * Must hold text_mutex. 2152 */ 2153 int alternatives_text_reserved(void *start, void *end) 2154 { 2155 struct smp_alt_module *mod; 2156 const s32 *poff; 2157 u8 *text_start = start; 2158 u8 *text_end = end; 2159 2160 lockdep_assert_held(&text_mutex); 2161 2162 list_for_each_entry(mod, &smp_alt_modules, next) { 2163 if (mod->text > text_end || mod->text_end < text_start) 2164 continue; 2165 for (poff = mod->locks; poff < mod->locks_end; poff++) { 2166 const u8 *ptr = (const u8 *)poff + *poff; 2167 2168 if (text_start <= ptr && text_end > ptr) 2169 return 1; 2170 } 2171 } 2172 2173 return 0; 2174 } 2175 #endif /* CONFIG_SMP */ 2176 2177 /* 2178 * Self-test for the INT3 based CALL emulation code. 2179 * 2180 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up 2181 * properly and that there is a stack gap between the INT3 frame and the 2182 * previous context. Without this gap doing a virtual PUSH on the interrupted 2183 * stack would corrupt the INT3 IRET frame. 2184 * 2185 * See entry_{32,64}.S for more details. 2186 */ 2187 2188 /* 2189 * We define the int3_magic() function in assembly to control the calling 2190 * convention such that we can 'call' it from assembly. 2191 */ 2192 2193 extern void int3_magic(unsigned int *ptr); /* defined in asm */ 2194 2195 asm ( 2196 " .pushsection .init.text, \"ax\", @progbits\n" 2197 " .type int3_magic, @function\n" 2198 "int3_magic:\n" 2199 ANNOTATE_NOENDBR 2200 " movl $1, (%" _ASM_ARG1 ")\n" 2201 ASM_RET 2202 " .size int3_magic, .-int3_magic\n" 2203 " .popsection\n" 2204 ); 2205 2206 extern void int3_selftest_ip(void); /* defined in asm below */ 2207 2208 static int __init 2209 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data) 2210 { 2211 unsigned long selftest = (unsigned long)&int3_selftest_ip; 2212 struct die_args *args = data; 2213 struct pt_regs *regs = args->regs; 2214 2215 OPTIMIZER_HIDE_VAR(selftest); 2216 2217 if (!regs || user_mode(regs)) 2218 return NOTIFY_DONE; 2219 2220 if (val != DIE_INT3) 2221 return NOTIFY_DONE; 2222 2223 if (regs->ip - INT3_INSN_SIZE != selftest) 2224 return NOTIFY_DONE; 2225 2226 int3_emulate_call(regs, (unsigned long)&int3_magic); 2227 return NOTIFY_STOP; 2228 } 2229 2230 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */ 2231 static noinline void __init int3_selftest(void) 2232 { 2233 static __initdata struct notifier_block int3_exception_nb = { 2234 .notifier_call = int3_exception_notify, 2235 .priority = INT_MAX-1, /* last */ 2236 }; 2237 unsigned int val = 0; 2238 2239 BUG_ON(register_die_notifier(&int3_exception_nb)); 2240 2241 /* 2242 * Basically: int3_magic(&val); but really complicated :-) 2243 * 2244 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb 2245 * notifier above will emulate CALL for us. 2246 */ 2247 asm volatile ("int3_selftest_ip:\n\t" 2248 ANNOTATE_NOENDBR 2249 " int3; nop; nop; nop; nop\n\t" 2250 : ASM_CALL_CONSTRAINT 2251 : __ASM_SEL_RAW(a, D) (&val) 2252 : "memory"); 2253 2254 BUG_ON(val != 1); 2255 2256 unregister_die_notifier(&int3_exception_nb); 2257 } 2258 2259 static __initdata int __alt_reloc_selftest_addr; 2260 2261 extern void __init __alt_reloc_selftest(void *arg); 2262 __visible noinline void __init __alt_reloc_selftest(void *arg) 2263 { 2264 WARN_ON(arg != &__alt_reloc_selftest_addr); 2265 } 2266 2267 static noinline void __init alt_reloc_selftest(void) 2268 { 2269 /* 2270 * Tests text_poke_apply_relocation(). 2271 * 2272 * This has a relative immediate (CALL) in a place other than the first 2273 * instruction and additionally on x86_64 we get a RIP-relative LEA: 2274 * 2275 * lea 0x0(%rip),%rdi # 5d0: R_X86_64_PC32 .init.data+0x5566c 2276 * call +0 # 5d5: R_X86_64_PLT32 __alt_reloc_selftest-0x4 2277 * 2278 * Getting this wrong will either crash and burn or tickle the WARN 2279 * above. 2280 */ 2281 asm_inline volatile ( 2282 ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS) 2283 : ASM_CALL_CONSTRAINT 2284 : [mem] "m" (__alt_reloc_selftest_addr) 2285 : _ASM_ARG1 2286 ); 2287 } 2288 2289 void __init alternative_instructions(void) 2290 { 2291 u64 ibt; 2292 2293 int3_selftest(); 2294 2295 /* 2296 * The patching is not fully atomic, so try to avoid local 2297 * interruptions that might execute the to be patched code. 2298 * Other CPUs are not running. 2299 */ 2300 stop_nmi(); 2301 2302 /* 2303 * Don't stop machine check exceptions while patching. 2304 * MCEs only happen when something got corrupted and in this 2305 * case we must do something about the corruption. 2306 * Ignoring it is worse than an unlikely patching race. 2307 * Also machine checks tend to be broadcast and if one CPU 2308 * goes into machine check the others follow quickly, so we don't 2309 * expect a machine check to cause undue problems during to code 2310 * patching. 2311 */ 2312 2313 /* 2314 * Make sure to set (artificial) features depending on used paravirt 2315 * functions which can later influence alternative patching. 2316 */ 2317 paravirt_set_cap(); 2318 2319 /* Keep CET-IBT disabled until caller/callee are patched */ 2320 ibt = ibt_save(/*disable*/ true); 2321 2322 __apply_fineibt(__retpoline_sites, __retpoline_sites_end, 2323 __cfi_sites, __cfi_sites_end, true); 2324 2325 /* 2326 * Rewrite the retpolines, must be done before alternatives since 2327 * those can rewrite the retpoline thunks. 2328 */ 2329 apply_retpolines(__retpoline_sites, __retpoline_sites_end); 2330 apply_returns(__return_sites, __return_sites_end); 2331 2332 its_fini_core(); 2333 2334 /* 2335 * Adjust all CALL instructions to point to func()-10, including 2336 * those in .altinstr_replacement. 2337 */ 2338 callthunks_patch_builtin_calls(); 2339 2340 apply_alternatives(__alt_instructions, __alt_instructions_end); 2341 2342 /* 2343 * Seal all functions that do not have their address taken. 2344 */ 2345 apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end); 2346 2347 ibt_restore(ibt); 2348 2349 #ifdef CONFIG_SMP 2350 /* Patch to UP if other cpus not imminent. */ 2351 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) { 2352 uniproc_patched = true; 2353 alternatives_smp_module_add(NULL, "core kernel", 2354 __smp_locks, __smp_locks_end, 2355 _text, _etext); 2356 } 2357 2358 if (!uniproc_patched || num_possible_cpus() == 1) { 2359 free_init_pages("SMP alternatives", 2360 (unsigned long)__smp_locks, 2361 (unsigned long)__smp_locks_end); 2362 } 2363 #endif 2364 2365 restart_nmi(); 2366 alternatives_patched = 1; 2367 2368 alt_reloc_selftest(); 2369 } 2370 2371 /** 2372 * text_poke_early - Update instructions on a live kernel at boot time 2373 * @addr: address to modify 2374 * @opcode: source of the copy 2375 * @len: length to copy 2376 * 2377 * When you use this code to patch more than one byte of an instruction 2378 * you need to make sure that other CPUs cannot execute this code in parallel. 2379 * Also no thread must be currently preempted in the middle of these 2380 * instructions. And on the local CPU you need to be protected against NMI or 2381 * MCE handlers seeing an inconsistent instruction while you patch. 2382 */ 2383 void __init_or_module text_poke_early(void *addr, const void *opcode, 2384 size_t len) 2385 { 2386 unsigned long flags; 2387 2388 if (boot_cpu_has(X86_FEATURE_NX) && 2389 is_module_text_address((unsigned long)addr)) { 2390 /* 2391 * Modules text is marked initially as non-executable, so the 2392 * code cannot be running and speculative code-fetches are 2393 * prevented. Just change the code. 2394 */ 2395 memcpy(addr, opcode, len); 2396 } else { 2397 local_irq_save(flags); 2398 memcpy(addr, opcode, len); 2399 sync_core(); 2400 local_irq_restore(flags); 2401 2402 /* 2403 * Could also do a CLFLUSH here to speed up CPU recovery; but 2404 * that causes hangs on some VIA CPUs. 2405 */ 2406 } 2407 } 2408 2409 __ro_after_init struct mm_struct *text_poke_mm; 2410 __ro_after_init unsigned long text_poke_mm_addr; 2411 2412 static void text_poke_memcpy(void *dst, const void *src, size_t len) 2413 { 2414 memcpy(dst, src, len); 2415 } 2416 2417 static void text_poke_memset(void *dst, const void *src, size_t len) 2418 { 2419 int c = *(const int *)src; 2420 2421 memset(dst, c, len); 2422 } 2423 2424 typedef void text_poke_f(void *dst, const void *src, size_t len); 2425 2426 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len) 2427 { 2428 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE; 2429 struct page *pages[2] = {NULL}; 2430 struct mm_struct *prev_mm; 2431 unsigned long flags; 2432 pte_t pte, *ptep; 2433 spinlock_t *ptl; 2434 pgprot_t pgprot; 2435 2436 /* 2437 * While boot memory allocator is running we cannot use struct pages as 2438 * they are not yet initialized. There is no way to recover. 2439 */ 2440 BUG_ON(!after_bootmem); 2441 2442 if (!core_kernel_text((unsigned long)addr)) { 2443 pages[0] = vmalloc_to_page(addr); 2444 if (cross_page_boundary) 2445 pages[1] = vmalloc_to_page(addr + PAGE_SIZE); 2446 } else { 2447 pages[0] = virt_to_page(addr); 2448 WARN_ON(!PageReserved(pages[0])); 2449 if (cross_page_boundary) 2450 pages[1] = virt_to_page(addr + PAGE_SIZE); 2451 } 2452 /* 2453 * If something went wrong, crash and burn since recovery paths are not 2454 * implemented. 2455 */ 2456 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1])); 2457 2458 /* 2459 * Map the page without the global bit, as TLB flushing is done with 2460 * flush_tlb_mm_range(), which is intended for non-global PTEs. 2461 */ 2462 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL); 2463 2464 /* 2465 * The lock is not really needed, but this allows to avoid open-coding. 2466 */ 2467 ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl); 2468 2469 /* 2470 * This must not fail; preallocated in poking_init(). 2471 */ 2472 VM_BUG_ON(!ptep); 2473 2474 local_irq_save(flags); 2475 2476 pte = mk_pte(pages[0], pgprot); 2477 set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte); 2478 2479 if (cross_page_boundary) { 2480 pte = mk_pte(pages[1], pgprot); 2481 set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte); 2482 } 2483 2484 /* 2485 * Loading the temporary mm behaves as a compiler barrier, which 2486 * guarantees that the PTE will be set at the time memcpy() is done. 2487 */ 2488 prev_mm = use_temporary_mm(text_poke_mm); 2489 2490 kasan_disable_current(); 2491 func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len); 2492 kasan_enable_current(); 2493 2494 /* 2495 * Ensure that the PTE is only cleared after the instructions of memcpy 2496 * were issued by using a compiler barrier. 2497 */ 2498 barrier(); 2499 2500 pte_clear(text_poke_mm, text_poke_mm_addr, ptep); 2501 if (cross_page_boundary) 2502 pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1); 2503 2504 /* 2505 * Loading the previous page-table hierarchy requires a serializing 2506 * instruction that already allows the core to see the updated version. 2507 * Xen-PV is assumed to serialize execution in a similar manner. 2508 */ 2509 unuse_temporary_mm(prev_mm); 2510 2511 /* 2512 * Flushing the TLB might involve IPIs, which would require enabled 2513 * IRQs, but not if the mm is not used, as it is in this point. 2514 */ 2515 flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr + 2516 (cross_page_boundary ? 2 : 1) * PAGE_SIZE, 2517 PAGE_SHIFT, false); 2518 2519 if (func == text_poke_memcpy) { 2520 /* 2521 * If the text does not match what we just wrote then something is 2522 * fundamentally screwy; there's nothing we can really do about that. 2523 */ 2524 BUG_ON(memcmp(addr, src, len)); 2525 } 2526 2527 local_irq_restore(flags); 2528 pte_unmap_unlock(ptep, ptl); 2529 return addr; 2530 } 2531 2532 /** 2533 * text_poke - Update instructions on a live kernel 2534 * @addr: address to modify 2535 * @opcode: source of the copy 2536 * @len: length to copy 2537 * 2538 * Only atomic text poke/set should be allowed when not doing early patching. 2539 * It means the size must be writable atomically and the address must be aligned 2540 * in a way that permits an atomic write. It also makes sure we fit on a single 2541 * page. 2542 * 2543 * Note that the caller must ensure that if the modified code is part of a 2544 * module, the module would not be removed during poking. This can be achieved 2545 * by registering a module notifier, and ordering module removal and patching 2546 * through a mutex. 2547 */ 2548 void *text_poke(void *addr, const void *opcode, size_t len) 2549 { 2550 lockdep_assert_held(&text_mutex); 2551 2552 return __text_poke(text_poke_memcpy, addr, opcode, len); 2553 } 2554 2555 /** 2556 * text_poke_kgdb - Update instructions on a live kernel by kgdb 2557 * @addr: address to modify 2558 * @opcode: source of the copy 2559 * @len: length to copy 2560 * 2561 * Only atomic text poke/set should be allowed when not doing early patching. 2562 * It means the size must be writable atomically and the address must be aligned 2563 * in a way that permits an atomic write. It also makes sure we fit on a single 2564 * page. 2565 * 2566 * Context: should only be used by kgdb, which ensures no other core is running, 2567 * despite the fact it does not hold the text_mutex. 2568 */ 2569 void *text_poke_kgdb(void *addr, const void *opcode, size_t len) 2570 { 2571 return __text_poke(text_poke_memcpy, addr, opcode, len); 2572 } 2573 2574 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, 2575 bool core_ok) 2576 { 2577 unsigned long start = (unsigned long)addr; 2578 size_t patched = 0; 2579 2580 if (WARN_ON_ONCE(!core_ok && core_kernel_text(start))) 2581 return NULL; 2582 2583 while (patched < len) { 2584 unsigned long ptr = start + patched; 2585 size_t s; 2586 2587 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2588 2589 __text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s); 2590 patched += s; 2591 } 2592 return addr; 2593 } 2594 2595 /** 2596 * text_poke_copy - Copy instructions into (an unused part of) RX memory 2597 * @addr: address to modify 2598 * @opcode: source of the copy 2599 * @len: length to copy, could be more than 2x PAGE_SIZE 2600 * 2601 * Not safe against concurrent execution; useful for JITs to dump 2602 * new code blocks into unused regions of RX memory. Can be used in 2603 * conjunction with synchronize_rcu_tasks() to wait for existing 2604 * execution to quiesce after having made sure no existing functions 2605 * pointers are live. 2606 */ 2607 void *text_poke_copy(void *addr, const void *opcode, size_t len) 2608 { 2609 mutex_lock(&text_mutex); 2610 addr = text_poke_copy_locked(addr, opcode, len, false); 2611 mutex_unlock(&text_mutex); 2612 return addr; 2613 } 2614 2615 /** 2616 * text_poke_set - memset into (an unused part of) RX memory 2617 * @addr: address to modify 2618 * @c: the byte to fill the area with 2619 * @len: length to copy, could be more than 2x PAGE_SIZE 2620 * 2621 * This is useful to overwrite unused regions of RX memory with illegal 2622 * instructions. 2623 */ 2624 void *text_poke_set(void *addr, int c, size_t len) 2625 { 2626 unsigned long start = (unsigned long)addr; 2627 size_t patched = 0; 2628 2629 if (WARN_ON_ONCE(core_kernel_text(start))) 2630 return NULL; 2631 2632 mutex_lock(&text_mutex); 2633 while (patched < len) { 2634 unsigned long ptr = start + patched; 2635 size_t s; 2636 2637 s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched); 2638 2639 __text_poke(text_poke_memset, (void *)ptr, (void *)&c, s); 2640 patched += s; 2641 } 2642 mutex_unlock(&text_mutex); 2643 return addr; 2644 } 2645 2646 static void do_sync_core(void *info) 2647 { 2648 sync_core(); 2649 } 2650 2651 void smp_text_poke_sync_each_cpu(void) 2652 { 2653 on_each_cpu(do_sync_core, NULL, 1); 2654 } 2655 2656 /* 2657 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of 2658 * this thing. When len == 6 everything is prefixed with 0x0f and we map 2659 * opcode to Jcc.d8, using len to distinguish. 2660 */ 2661 struct smp_text_poke_loc { 2662 /* addr := _stext + rel_addr */ 2663 s32 rel_addr; 2664 s32 disp; 2665 u8 len; 2666 u8 opcode; 2667 const u8 text[TEXT_POKE_MAX_OPCODE_SIZE]; 2668 /* see smp_text_poke_batch_finish() */ 2669 u8 old; 2670 }; 2671 2672 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc)) 2673 2674 static struct smp_text_poke_array { 2675 struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX]; 2676 int nr_entries; 2677 } text_poke_array; 2678 2679 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs); 2680 2681 /* 2682 * These four __always_inline annotations imply noinstr, necessary 2683 * due to smp_text_poke_int3_handler() being noinstr: 2684 */ 2685 2686 static __always_inline bool try_get_text_poke_array(void) 2687 { 2688 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2689 2690 if (!raw_atomic_inc_not_zero(refs)) 2691 return false; 2692 2693 return true; 2694 } 2695 2696 static __always_inline void put_text_poke_array(void) 2697 { 2698 atomic_t *refs = this_cpu_ptr(&text_poke_array_refs); 2699 2700 smp_mb__before_atomic(); 2701 raw_atomic_dec(refs); 2702 } 2703 2704 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl) 2705 { 2706 return _stext + tpl->rel_addr; 2707 } 2708 2709 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b) 2710 { 2711 if (tpl_a < text_poke_addr(tpl_b)) 2712 return -1; 2713 if (tpl_a > text_poke_addr(tpl_b)) 2714 return 1; 2715 return 0; 2716 } 2717 2718 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs) 2719 { 2720 struct smp_text_poke_loc *tpl; 2721 int ret = 0; 2722 void *ip; 2723 2724 if (user_mode(regs)) 2725 return 0; 2726 2727 /* 2728 * Having observed our INT3 instruction, we now must observe 2729 * text_poke_array with non-zero refcount: 2730 * 2731 * text_poke_array_refs = 1 INT3 2732 * WMB RMB 2733 * write INT3 if (text_poke_array_refs != 0) 2734 */ 2735 smp_rmb(); 2736 2737 if (!try_get_text_poke_array()) 2738 return 0; 2739 2740 /* 2741 * Discount the INT3. See smp_text_poke_batch_finish(). 2742 */ 2743 ip = (void *) regs->ip - INT3_INSN_SIZE; 2744 2745 /* 2746 * Skip the binary search if there is a single member in the vector. 2747 */ 2748 if (unlikely(text_poke_array.nr_entries > 1)) { 2749 tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries, 2750 sizeof(struct smp_text_poke_loc), 2751 patch_cmp); 2752 if (!tpl) 2753 goto out_put; 2754 } else { 2755 tpl = text_poke_array.vec; 2756 if (text_poke_addr(tpl) != ip) 2757 goto out_put; 2758 } 2759 2760 ip += tpl->len; 2761 2762 switch (tpl->opcode) { 2763 case INT3_INSN_OPCODE: 2764 /* 2765 * Someone poked an explicit INT3, they'll want to handle it, 2766 * do not consume. 2767 */ 2768 goto out_put; 2769 2770 case RET_INSN_OPCODE: 2771 int3_emulate_ret(regs); 2772 break; 2773 2774 case CALL_INSN_OPCODE: 2775 int3_emulate_call(regs, (long)ip + tpl->disp); 2776 break; 2777 2778 case JMP32_INSN_OPCODE: 2779 case JMP8_INSN_OPCODE: 2780 int3_emulate_jmp(regs, (long)ip + tpl->disp); 2781 break; 2782 2783 case 0x70 ... 0x7f: /* Jcc */ 2784 int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp); 2785 break; 2786 2787 default: 2788 BUG(); 2789 } 2790 2791 ret = 1; 2792 2793 out_put: 2794 put_text_poke_array(); 2795 return ret; 2796 } 2797 2798 /** 2799 * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP 2800 * 2801 * Input state: 2802 * text_poke_array.vec: vector of instructions to patch 2803 * text_poke_array.nr_entries: number of entries in the vector 2804 * 2805 * Modify multi-byte instructions by using INT3 breakpoints on SMP. 2806 * We completely avoid using stop_machine() here, and achieve the 2807 * synchronization using INT3 breakpoints and SMP cross-calls. 2808 * 2809 * The way it is done: 2810 * - For each entry in the vector: 2811 * - add an INT3 trap to the address that will be patched 2812 * - SMP sync all CPUs 2813 * - For each entry in the vector: 2814 * - update all but the first byte of the patched range 2815 * - SMP sync all CPUs 2816 * - For each entry in the vector: 2817 * - replace the first byte (INT3) by the first byte of the 2818 * replacing opcode 2819 * - SMP sync all CPUs 2820 */ 2821 void smp_text_poke_batch_finish(void) 2822 { 2823 unsigned char int3 = INT3_INSN_OPCODE; 2824 unsigned int i; 2825 int do_sync; 2826 2827 if (!text_poke_array.nr_entries) 2828 return; 2829 2830 lockdep_assert_held(&text_mutex); 2831 2832 /* 2833 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to 2834 * ensure reading a non-zero refcount provides up to date text_poke_array data. 2835 */ 2836 for_each_possible_cpu(i) 2837 atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1); 2838 2839 /* 2840 * Function tracing can enable thousands of places that need to be 2841 * updated. This can take quite some time, and with full kernel debugging 2842 * enabled, this could cause the softlockup watchdog to trigger. 2843 * This function gets called every 256 entries added to be patched. 2844 * Call cond_resched() here to make sure that other tasks can get scheduled 2845 * while processing all the functions being patched. 2846 */ 2847 cond_resched(); 2848 2849 /* 2850 * Corresponding read barrier in INT3 notifier for making sure the 2851 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching. 2852 */ 2853 smp_wmb(); 2854 2855 /* 2856 * First step: add a INT3 trap to the address that will be patched. 2857 */ 2858 for (i = 0; i < text_poke_array.nr_entries; i++) { 2859 text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]); 2860 text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE); 2861 } 2862 2863 smp_text_poke_sync_each_cpu(); 2864 2865 /* 2866 * Second step: update all but the first byte of the patched range. 2867 */ 2868 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2869 u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, }; 2870 u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1]; 2871 const u8 *new = text_poke_array.vec[i].text; 2872 int len = text_poke_array.vec[i].len; 2873 2874 if (len - INT3_INSN_SIZE > 0) { 2875 memcpy(old + INT3_INSN_SIZE, 2876 text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2877 len - INT3_INSN_SIZE); 2878 2879 if (len == 6) { 2880 _new[0] = 0x0f; 2881 memcpy(_new + 1, new, 5); 2882 new = _new; 2883 } 2884 2885 text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE, 2886 new + INT3_INSN_SIZE, 2887 len - INT3_INSN_SIZE); 2888 2889 do_sync++; 2890 } 2891 2892 /* 2893 * Emit a perf event to record the text poke, primarily to 2894 * support Intel PT decoding which must walk the executable code 2895 * to reconstruct the trace. The flow up to here is: 2896 * - write INT3 byte 2897 * - IPI-SYNC 2898 * - write instruction tail 2899 * At this point the actual control flow will be through the 2900 * INT3 and handler and not hit the old or new instruction. 2901 * Intel PT outputs FUP/TIP packets for the INT3, so the flow 2902 * can still be decoded. Subsequently: 2903 * - emit RECORD_TEXT_POKE with the new instruction 2904 * - IPI-SYNC 2905 * - write first byte 2906 * - IPI-SYNC 2907 * So before the text poke event timestamp, the decoder will see 2908 * either the old instruction flow or FUP/TIP of INT3. After the 2909 * text poke event timestamp, the decoder will see either the 2910 * new instruction flow or FUP/TIP of INT3. Thus decoders can 2911 * use the timestamp as the point at which to modify the 2912 * executable code. 2913 * The old instruction is recorded so that the event can be 2914 * processed forwards or backwards. 2915 */ 2916 perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len); 2917 } 2918 2919 if (do_sync) { 2920 /* 2921 * According to Intel, this core syncing is very likely 2922 * not necessary and we'd be safe even without it. But 2923 * better safe than sorry (plus there's not only Intel). 2924 */ 2925 smp_text_poke_sync_each_cpu(); 2926 } 2927 2928 /* 2929 * Third step: replace the first byte (INT3) by the first byte of the 2930 * replacing opcode. 2931 */ 2932 for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) { 2933 u8 byte = text_poke_array.vec[i].text[0]; 2934 2935 if (text_poke_array.vec[i].len == 6) 2936 byte = 0x0f; 2937 2938 if (byte == INT3_INSN_OPCODE) 2939 continue; 2940 2941 text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE); 2942 do_sync++; 2943 } 2944 2945 if (do_sync) 2946 smp_text_poke_sync_each_cpu(); 2947 2948 /* 2949 * Remove and wait for refs to be zero. 2950 * 2951 * Notably, if after step-3 above the INT3 got removed, then the 2952 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3 2953 * handlers and the below spin-wait will not happen. 2954 * 2955 * IOW. unless the replacement instruction is INT3, this case goes 2956 * unused. 2957 */ 2958 for_each_possible_cpu(i) { 2959 atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i); 2960 2961 if (unlikely(!atomic_dec_and_test(refs))) 2962 atomic_cond_read_acquire(refs, !VAL); 2963 } 2964 2965 /* They are all completed: */ 2966 text_poke_array.nr_entries = 0; 2967 } 2968 2969 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 2970 { 2971 struct smp_text_poke_loc *tpl; 2972 struct insn insn; 2973 int ret, i = 0; 2974 2975 tpl = &text_poke_array.vec[text_poke_array.nr_entries++]; 2976 2977 if (len == 6) 2978 i = 1; 2979 memcpy((void *)tpl->text, opcode+i, len-i); 2980 if (!emulate) 2981 emulate = opcode; 2982 2983 ret = insn_decode_kernel(&insn, emulate); 2984 BUG_ON(ret < 0); 2985 2986 tpl->rel_addr = addr - (void *)_stext; 2987 tpl->len = len; 2988 tpl->opcode = insn.opcode.bytes[0]; 2989 2990 if (is_jcc32(&insn)) { 2991 /* 2992 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish. 2993 */ 2994 tpl->opcode = insn.opcode.bytes[1] - 0x10; 2995 } 2996 2997 switch (tpl->opcode) { 2998 case RET_INSN_OPCODE: 2999 case JMP32_INSN_OPCODE: 3000 case JMP8_INSN_OPCODE: 3001 /* 3002 * Control flow instructions without implied execution of the 3003 * next instruction can be padded with INT3. 3004 */ 3005 for (i = insn.length; i < len; i++) 3006 BUG_ON(tpl->text[i] != INT3_INSN_OPCODE); 3007 break; 3008 3009 default: 3010 BUG_ON(len != insn.length); 3011 } 3012 3013 switch (tpl->opcode) { 3014 case INT3_INSN_OPCODE: 3015 case RET_INSN_OPCODE: 3016 break; 3017 3018 case CALL_INSN_OPCODE: 3019 case JMP32_INSN_OPCODE: 3020 case JMP8_INSN_OPCODE: 3021 case 0x70 ... 0x7f: /* Jcc */ 3022 tpl->disp = insn.immediate.value; 3023 break; 3024 3025 default: /* assume NOP */ 3026 switch (len) { 3027 case 2: /* NOP2 -- emulate as JMP8+0 */ 3028 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3029 tpl->opcode = JMP8_INSN_OPCODE; 3030 tpl->disp = 0; 3031 break; 3032 3033 case 5: /* NOP5 -- emulate as JMP32+0 */ 3034 BUG_ON(memcmp(emulate, x86_nops[len], len)); 3035 tpl->opcode = JMP32_INSN_OPCODE; 3036 tpl->disp = 0; 3037 break; 3038 3039 default: /* unknown instruction */ 3040 BUG(); 3041 } 3042 break; 3043 } 3044 } 3045 3046 /* 3047 * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing 3048 * early if needed. 3049 */ 3050 static bool text_poke_addr_ordered(void *addr) 3051 { 3052 WARN_ON_ONCE(!addr); 3053 3054 if (!text_poke_array.nr_entries) 3055 return true; 3056 3057 /* 3058 * If the last current entry's address is higher than the 3059 * new entry's address we'd like to add, then ordering 3060 * is violated and we must first flush all pending patching 3061 * requests: 3062 */ 3063 if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr) 3064 return false; 3065 3066 return true; 3067 } 3068 3069 /** 3070 * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched 3071 * @addr: address to patch 3072 * @opcode: opcode of new instruction 3073 * @len: length to copy 3074 * @emulate: instruction to be emulated 3075 * 3076 * Add a new instruction to the current queue of to-be-patched instructions 3077 * the kernel maintains. The patching request will not be executed immediately, 3078 * but becomes part of an array of patching requests, optimized for batched 3079 * execution. All pending patching requests will be executed on the next 3080 * smp_text_poke_batch_finish() call. 3081 */ 3082 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate) 3083 { 3084 if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr)) 3085 smp_text_poke_batch_finish(); 3086 __smp_text_poke_batch_add(addr, opcode, len, emulate); 3087 } 3088 3089 /** 3090 * smp_text_poke_single() -- update instruction on live kernel on SMP immediately 3091 * @addr: address to patch 3092 * @opcode: opcode of new instruction 3093 * @len: length to copy 3094 * @emulate: instruction to be emulated 3095 * 3096 * Update a single instruction with the vector in the stack, avoiding 3097 * dynamically allocated memory. This function should be used when it is 3098 * not possible to allocate memory for a vector. The single instruction 3099 * is patched in immediately. 3100 */ 3101 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate) 3102 { 3103 smp_text_poke_batch_add(addr, opcode, len, emulate); 3104 smp_text_poke_batch_finish(); 3105 } 3106