xref: /linux/arch/x86/kernel/alternative.c (revision da23ea194db94257123f1534d487f3cdc9b5626d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9 
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/ibt.h>
13 #include <asm/set_memory.h>
14 #include <asm/nmi.h>
15 
16 int __read_mostly alternatives_patched;
17 
18 EXPORT_SYMBOL_GPL(alternatives_patched);
19 
20 #define MAX_PATCH_LEN (255-1)
21 
22 #define DA_ALL		(~0)
23 #define DA_ALT		0x01
24 #define DA_RET		0x02
25 #define DA_RETPOLINE	0x04
26 #define DA_ENDBR	0x08
27 #define DA_SMP		0x10
28 
29 static unsigned int debug_alternative;
30 
31 static int __init debug_alt(char *str)
32 {
33 	if (str && *str == '=')
34 		str++;
35 
36 	if (!str || kstrtouint(str, 0, &debug_alternative))
37 		debug_alternative = DA_ALL;
38 
39 	return 1;
40 }
41 __setup("debug-alternative", debug_alt);
42 
43 static int noreplace_smp;
44 
45 static int __init setup_noreplace_smp(char *str)
46 {
47 	noreplace_smp = 1;
48 	return 1;
49 }
50 __setup("noreplace-smp", setup_noreplace_smp);
51 
52 #define DPRINTK(type, fmt, args...)					\
53 do {									\
54 	if (debug_alternative & DA_##type)				\
55 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
56 } while (0)
57 
58 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
59 do {									\
60 	if (unlikely(debug_alternative & DA_##type)) {			\
61 		int j;							\
62 									\
63 		if (!(len))						\
64 			break;						\
65 									\
66 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
67 		for (j = 0; j < (len) - 1; j++)				\
68 			printk(KERN_CONT "%02hhx ", buf[j]);		\
69 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
70 	}								\
71 } while (0)
72 
73 static const unsigned char x86nops[] =
74 {
75 	BYTES_NOP1,
76 	BYTES_NOP2,
77 	BYTES_NOP3,
78 	BYTES_NOP4,
79 	BYTES_NOP5,
80 	BYTES_NOP6,
81 	BYTES_NOP7,
82 	BYTES_NOP8,
83 #ifdef CONFIG_64BIT
84 	BYTES_NOP9,
85 	BYTES_NOP10,
86 	BYTES_NOP11,
87 #endif
88 };
89 
90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
91 {
92 	NULL,
93 	x86nops,
94 	x86nops + 1,
95 	x86nops + 1 + 2,
96 	x86nops + 1 + 2 + 3,
97 	x86nops + 1 + 2 + 3 + 4,
98 	x86nops + 1 + 2 + 3 + 4 + 5,
99 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
101 #ifdef CONFIG_64BIT
102 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
104 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
105 #endif
106 };
107 
108 #ifdef CONFIG_FINEIBT
109 static bool cfi_paranoid __ro_after_init;
110 #endif
111 
112 #ifdef CONFIG_MITIGATION_ITS
113 
114 #ifdef CONFIG_MODULES
115 static struct module *its_mod;
116 #endif
117 static void *its_page;
118 static unsigned int its_offset;
119 struct its_array its_pages;
120 
121 static void *__its_alloc(struct its_array *pages)
122 {
123 	void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE);
124 	if (!page)
125 		return NULL;
126 
127 	void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
128 			     GFP_KERNEL);
129 	if (!tmp)
130 		return NULL;
131 
132 	pages->pages = tmp;
133 	pages->pages[pages->num++] = page;
134 
135 	return no_free_ptr(page);
136 }
137 
138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
139 static void *its_init_thunk(void *thunk, int reg)
140 {
141 	u8 *bytes = thunk;
142 	int offset = 0;
143 	int i = 0;
144 
145 #ifdef CONFIG_FINEIBT
146 	if (cfi_paranoid) {
147 		/*
148 		 * When ITS uses indirect branch thunk the fineibt_paranoid
149 		 * caller sequence doesn't fit in the caller site. So put the
150 		 * remaining part of the sequence (<ea> + JNE) into the ITS
151 		 * thunk.
152 		 */
153 		bytes[i++] = 0xea; /* invalid instruction */
154 		bytes[i++] = 0x75; /* JNE */
155 		bytes[i++] = 0xfd;
156 
157 		offset = 1;
158 	}
159 #endif
160 
161 	if (reg >= 8) {
162 		bytes[i++] = 0x41; /* REX.B prefix */
163 		reg -= 8;
164 	}
165 	bytes[i++] = 0xff;
166 	bytes[i++] = 0xe0 + reg; /* jmp *reg */
167 	bytes[i++] = 0xcc;
168 
169 	return thunk + offset;
170 }
171 
172 static void its_pages_protect(struct its_array *pages)
173 {
174 	for (int i = 0; i < pages->num; i++) {
175 		void *page = pages->pages[i];
176 		execmem_restore_rox(page, PAGE_SIZE);
177 	}
178 }
179 
180 static void its_fini_core(void)
181 {
182 	if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
183 		its_pages_protect(&its_pages);
184 	kfree(its_pages.pages);
185 }
186 
187 #ifdef CONFIG_MODULES
188 void its_init_mod(struct module *mod)
189 {
190 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
191 		return;
192 
193 	mutex_lock(&text_mutex);
194 	its_mod = mod;
195 	its_page = NULL;
196 }
197 
198 void its_fini_mod(struct module *mod)
199 {
200 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
201 		return;
202 
203 	WARN_ON_ONCE(its_mod != mod);
204 
205 	its_mod = NULL;
206 	its_page = NULL;
207 	mutex_unlock(&text_mutex);
208 
209 	if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
210 		its_pages_protect(&mod->arch.its_pages);
211 }
212 
213 void its_free_mod(struct module *mod)
214 {
215 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
216 		return;
217 
218 	for (int i = 0; i < mod->arch.its_pages.num; i++) {
219 		void *page = mod->arch.its_pages.pages[i];
220 		execmem_free(page);
221 	}
222 	kfree(mod->arch.its_pages.pages);
223 }
224 #endif /* CONFIG_MODULES */
225 
226 static void *its_alloc(void)
227 {
228 	struct its_array *pages = &its_pages;
229 	void *page;
230 
231 #ifdef CONFIG_MODULES
232 	if (its_mod)
233 		pages = &its_mod->arch.its_pages;
234 #endif
235 
236 	page = __its_alloc(pages);
237 	if (!page)
238 		return NULL;
239 
240 	if (pages == &its_pages)
241 		set_memory_x((unsigned long)page, 1);
242 
243 	return page;
244 }
245 
246 static void *its_allocate_thunk(int reg)
247 {
248 	int size = 3 + (reg / 8);
249 	void *thunk;
250 
251 #ifdef CONFIG_FINEIBT
252 	/*
253 	 * The ITS thunk contains an indirect jump and an int3 instruction so
254 	 * its size is 3 or 4 bytes depending on the register used. If CFI
255 	 * paranoid is used then 3 extra bytes are added in the ITS thunk to
256 	 * complete the fineibt_paranoid caller sequence.
257 	 */
258 	if (cfi_paranoid)
259 		size += 3;
260 #endif
261 
262 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
263 		its_page = its_alloc();
264 		if (!its_page) {
265 			pr_err("ITS page allocation failed\n");
266 			return NULL;
267 		}
268 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
269 		its_offset = 32;
270 	}
271 
272 	/*
273 	 * If the indirect branch instruction will be in the lower half
274 	 * of a cacheline, then update the offset to reach the upper half.
275 	 */
276 	if ((its_offset + size - 1) % 64 < 32)
277 		its_offset = ((its_offset - 1) | 0x3F) + 33;
278 
279 	thunk = its_page + its_offset;
280 	its_offset += size;
281 
282 	return its_init_thunk(thunk, reg);
283 }
284 
285 u8 *its_static_thunk(int reg)
286 {
287 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
288 
289 #ifdef CONFIG_FINEIBT
290 	/* Paranoid thunk starts 2 bytes before */
291 	if (cfi_paranoid)
292 		return thunk - 2;
293 #endif
294 	return thunk;
295 }
296 
297 #else
298 static inline void its_fini_core(void) {}
299 #endif /* CONFIG_MITIGATION_ITS */
300 
301 /*
302  * Nomenclature for variable names to simplify and clarify this code and ease
303  * any potential staring at it:
304  *
305  * @instr: source address of the original instructions in the kernel text as
306  * generated by the compiler.
307  *
308  * @buf: temporary buffer on which the patching operates. This buffer is
309  * eventually text-poked into the kernel image.
310  *
311  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
312  * in the .altinstr_replacement section.
313  */
314 
315 /*
316  * Fill the buffer with a single effective instruction of size @len.
317  *
318  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
319  * for every single-byte NOP, try to generate the maximally available NOP of
320  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
321  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
322  * *jump* over instead of executing long and daft NOPs.
323  */
324 static void add_nop(u8 *buf, unsigned int len)
325 {
326 	u8 *target = buf + len;
327 
328 	if (!len)
329 		return;
330 
331 	if (len <= ASM_NOP_MAX) {
332 		memcpy(buf, x86_nops[len], len);
333 		return;
334 	}
335 
336 	if (len < 128) {
337 		__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
338 		buf += JMP8_INSN_SIZE;
339 	} else {
340 		__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
341 		buf += JMP32_INSN_SIZE;
342 	}
343 
344 	for (;buf < target; buf++)
345 		*buf = INT3_INSN_OPCODE;
346 }
347 
348 /*
349  * Matches NOP and NOPL, not any of the other possible NOPs.
350  */
351 static bool insn_is_nop(struct insn *insn)
352 {
353 	/* Anything NOP, but no REP NOP */
354 	if (insn->opcode.bytes[0] == 0x90 &&
355 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
356 		return true;
357 
358 	/* NOPL */
359 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
360 		return true;
361 
362 	/* TODO: more nops */
363 
364 	return false;
365 }
366 
367 /*
368  * Find the offset of the first non-NOP instruction starting at @offset
369  * but no further than @len.
370  */
371 static int skip_nops(u8 *buf, int offset, int len)
372 {
373 	struct insn insn;
374 
375 	for (; offset < len; offset += insn.length) {
376 		if (insn_decode_kernel(&insn, &buf[offset]))
377 			break;
378 
379 		if (!insn_is_nop(&insn))
380 			break;
381 	}
382 
383 	return offset;
384 }
385 
386 /*
387  * "noinline" to cause control flow change and thus invalidate I$ and
388  * cause refetch after modification.
389  */
390 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
391 {
392 	for (int next, i = 0; i < len; i = next) {
393 		struct insn insn;
394 
395 		if (insn_decode_kernel(&insn, &buf[i]))
396 			return;
397 
398 		next = i + insn.length;
399 
400 		if (insn_is_nop(&insn)) {
401 			int nop = i;
402 
403 			/* Has the NOP already been optimized? */
404 			if (i + insn.length == len)
405 				return;
406 
407 			next = skip_nops(buf, next, len);
408 
409 			add_nop(buf + nop, next - nop);
410 			DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
411 		}
412 	}
413 }
414 
415 /*
416  * In this context, "source" is where the instructions are placed in the
417  * section .altinstr_replacement, for example during kernel build by the
418  * toolchain.
419  * "Destination" is where the instructions are being patched in by this
420  * machinery.
421  *
422  * The source offset is:
423  *
424  *   src_imm = target - src_next_ip                  (1)
425  *
426  * and the target offset is:
427  *
428  *   dst_imm = target - dst_next_ip                  (2)
429  *
430  * so rework (1) as an expression for target like:
431  *
432  *   target = src_imm + src_next_ip                  (1a)
433  *
434  * and substitute in (2) to get:
435  *
436  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
437  *
438  * Now, since the instruction stream is 'identical' at src and dst (it
439  * is being copied after all) it can be stated that:
440  *
441  *   src_next_ip = src + ip_offset
442  *   dst_next_ip = dst + ip_offset                   (4)
443  *
444  * Substitute (4) in (3) and observe ip_offset being cancelled out to
445  * obtain:
446  *
447  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
448  *           = src_imm + src - dst + ip_offset - ip_offset
449  *           = src_imm + src - dst                   (5)
450  *
451  * IOW, only the relative displacement of the code block matters.
452  */
453 
454 #define apply_reloc_n(n_, p_, d_)				\
455 	do {							\
456 		s32 v = *(s##n_ *)(p_);				\
457 		v += (d_);					\
458 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
459 		*(s##n_ *)(p_) = (s##n_)v;			\
460 	} while (0)
461 
462 
463 static __always_inline
464 void apply_reloc(int n, void *ptr, uintptr_t diff)
465 {
466 	switch (n) {
467 	case 1: apply_reloc_n(8, ptr, diff); break;
468 	case 2: apply_reloc_n(16, ptr, diff); break;
469 	case 4: apply_reloc_n(32, ptr, diff); break;
470 	default: BUG();
471 	}
472 }
473 
474 static __always_inline
475 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
476 {
477 	u8 *target = src + offset;
478 	/*
479 	 * If the target is inside the patched block, it's relative to the
480 	 * block itself and does not need relocation.
481 	 */
482 	return (target < src || target > src + src_len);
483 }
484 
485 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
486 {
487 	for (int next, i = 0; i < instrlen; i = next) {
488 		struct insn insn;
489 
490 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
491 			return;
492 
493 		next = i + insn.length;
494 
495 		switch (insn.opcode.bytes[0]) {
496 		case 0x0f:
497 			if (insn.opcode.bytes[1] < 0x80 ||
498 			    insn.opcode.bytes[1] > 0x8f)
499 				break;
500 
501 			fallthrough;	/* Jcc.d32 */
502 		case 0x70 ... 0x7f:	/* Jcc.d8 */
503 		case JMP8_INSN_OPCODE:
504 		case JMP32_INSN_OPCODE:
505 		case CALL_INSN_OPCODE:
506 			if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
507 				apply_reloc(insn.immediate.nbytes,
508 					    buf + i + insn_offset_immediate(&insn),
509 					    repl - instr);
510 			}
511 
512 			/*
513 			 * Where possible, convert JMP.d32 into JMP.d8.
514 			 */
515 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
516 				s32 imm = insn.immediate.value;
517 				imm += repl - instr;
518 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
519 				if ((imm >> 31) == (imm >> 7)) {
520 					buf[i+0] = JMP8_INSN_OPCODE;
521 					buf[i+1] = (s8)imm;
522 
523 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
524 				}
525 			}
526 			break;
527 		}
528 
529 		if (insn_rip_relative(&insn)) {
530 			if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
531 				apply_reloc(insn.displacement.nbytes,
532 					    buf + i + insn_offset_displacement(&insn),
533 					    repl - instr);
534 			}
535 		}
536 	}
537 }
538 
539 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
540 {
541 	__apply_relocation(buf, instr, instrlen, repl, repl_len);
542 	optimize_nops(instr, buf, instrlen);
543 }
544 
545 /* Low-level backend functions usable from alternative code replacements. */
546 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
547 EXPORT_SYMBOL_GPL(nop_func);
548 
549 noinstr void BUG_func(void)
550 {
551 	BUG();
552 }
553 EXPORT_SYMBOL(BUG_func);
554 
555 #define CALL_RIP_REL_OPCODE	0xff
556 #define CALL_RIP_REL_MODRM	0x15
557 
558 /*
559  * Rewrite the "call BUG_func" replacement to point to the target of the
560  * indirect pv_ops call "call *disp(%ip)".
561  */
562 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
563 {
564 	void *target, *bug = &BUG_func;
565 	s32 disp;
566 
567 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
568 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
569 		BUG();
570 	}
571 
572 	if (a->instrlen != 6 ||
573 	    instr[0] != CALL_RIP_REL_OPCODE ||
574 	    instr[1] != CALL_RIP_REL_MODRM) {
575 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
576 		BUG();
577 	}
578 
579 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
580 	disp = *(s32 *)(instr + 2);
581 #ifdef CONFIG_X86_64
582 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
583 	/* target address is stored at "next instruction + disp". */
584 	target = *(void **)(instr + a->instrlen + disp);
585 #else
586 	/* ff 15 00 00 00 00   call   *0x0 */
587 	/* target address is stored at disp. */
588 	target = *(void **)disp;
589 #endif
590 	if (!target)
591 		target = bug;
592 
593 	/* (BUG_func - .) + (target - BUG_func) := target - . */
594 	*(s32 *)(insn_buff + 1) += target - bug;
595 
596 	if (target == &nop_func)
597 		return 0;
598 
599 	return 5;
600 }
601 
602 static inline u8 * instr_va(struct alt_instr *i)
603 {
604 	return (u8 *)&i->instr_offset + i->instr_offset;
605 }
606 
607 /*
608  * Replace instructions with better alternatives for this CPU type. This runs
609  * before SMP is initialized to avoid SMP problems with self modifying code.
610  * This implies that asymmetric systems where APs have less capabilities than
611  * the boot processor are not handled. Tough. Make sure you disable such
612  * features by hand.
613  *
614  * Marked "noinline" to cause control flow change and thus insn cache
615  * to refetch changed I$ lines.
616  */
617 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
618 						  struct alt_instr *end)
619 {
620 	u8 insn_buff[MAX_PATCH_LEN];
621 	u8 *instr, *replacement;
622 	struct alt_instr *a, *b;
623 
624 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
625 
626 	/*
627 	 * KASAN_SHADOW_START is defined using
628 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
629 	 * During the process, KASAN becomes confused seeing partial LA57
630 	 * conversion and triggers a false-positive out-of-bound report.
631 	 *
632 	 * Disable KASAN until the patching is complete.
633 	 */
634 	kasan_disable_current();
635 
636 	/*
637 	 * The scan order should be from start to end. A later scanned
638 	 * alternative code can overwrite previously scanned alternative code.
639 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
640 	 * patch code.
641 	 *
642 	 * So be careful if you want to change the scan order to any other
643 	 * order.
644 	 */
645 	for (a = start; a < end; a++) {
646 		int insn_buff_sz = 0;
647 
648 		/*
649 		 * In case of nested ALTERNATIVE()s the outer alternative might
650 		 * add more padding. To ensure consistent patching find the max
651 		 * padding for all alt_instr entries for this site (nested
652 		 * alternatives result in consecutive entries).
653 		 */
654 		for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
655 			u8 len = max(a->instrlen, b->instrlen);
656 			a->instrlen = b->instrlen = len;
657 		}
658 
659 		instr = instr_va(a);
660 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
661 		BUG_ON(a->instrlen > sizeof(insn_buff));
662 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
663 
664 		/*
665 		 * Patch if either:
666 		 * - feature is present
667 		 * - feature not present but ALT_FLAG_NOT is set to mean,
668 		 *   patch if feature is *NOT* present.
669 		 */
670 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
671 			memcpy(insn_buff, instr, a->instrlen);
672 			optimize_nops(instr, insn_buff, a->instrlen);
673 			text_poke_early(instr, insn_buff, a->instrlen);
674 			continue;
675 		}
676 
677 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
678 			a->cpuid >> 5,
679 			a->cpuid & 0x1f,
680 			instr, instr, a->instrlen,
681 			replacement, a->replacementlen, a->flags);
682 
683 		memcpy(insn_buff, replacement, a->replacementlen);
684 		insn_buff_sz = a->replacementlen;
685 
686 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
687 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
688 			if (insn_buff_sz < 0)
689 				continue;
690 		}
691 
692 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
693 			insn_buff[insn_buff_sz] = 0x90;
694 
695 		text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
696 
697 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
698 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
699 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
700 
701 		text_poke_early(instr, insn_buff, insn_buff_sz);
702 	}
703 
704 	kasan_enable_current();
705 }
706 
707 static inline bool is_jcc32(struct insn *insn)
708 {
709 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
710 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
711 }
712 
713 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
714 
715 /*
716  * CALL/JMP *%\reg
717  */
718 static int emit_indirect(int op, int reg, u8 *bytes)
719 {
720 	int i = 0;
721 	u8 modrm;
722 
723 	switch (op) {
724 	case CALL_INSN_OPCODE:
725 		modrm = 0x10; /* Reg = 2; CALL r/m */
726 		break;
727 
728 	case JMP32_INSN_OPCODE:
729 		modrm = 0x20; /* Reg = 4; JMP r/m */
730 		break;
731 
732 	default:
733 		WARN_ON_ONCE(1);
734 		return -1;
735 	}
736 
737 	if (reg >= 8) {
738 		bytes[i++] = 0x41; /* REX.B prefix */
739 		reg -= 8;
740 	}
741 
742 	modrm |= 0xc0; /* Mod = 3 */
743 	modrm += reg;
744 
745 	bytes[i++] = 0xff; /* opcode */
746 	bytes[i++] = modrm;
747 
748 	return i;
749 }
750 
751 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
752 			     void *call_dest, void *jmp_dest)
753 {
754 	u8 op = insn->opcode.bytes[0];
755 	int i = 0;
756 
757 	/*
758 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
759 	 * tail-calls. Deal with them.
760 	 */
761 	if (is_jcc32(insn)) {
762 		bytes[i++] = op;
763 		op = insn->opcode.bytes[1];
764 		goto clang_jcc;
765 	}
766 
767 	if (insn->length == 6)
768 		bytes[i++] = 0x2e; /* CS-prefix */
769 
770 	switch (op) {
771 	case CALL_INSN_OPCODE:
772 		__text_gen_insn(bytes+i, op, addr+i,
773 				call_dest,
774 				CALL_INSN_SIZE);
775 		i += CALL_INSN_SIZE;
776 		break;
777 
778 	case JMP32_INSN_OPCODE:
779 clang_jcc:
780 		__text_gen_insn(bytes+i, op, addr+i,
781 				jmp_dest,
782 				JMP32_INSN_SIZE);
783 		i += JMP32_INSN_SIZE;
784 		break;
785 
786 	default:
787 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
788 		return -1;
789 	}
790 
791 	WARN_ON_ONCE(i != insn->length);
792 
793 	return i;
794 }
795 
796 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
797 {
798 	return __emit_trampoline(addr, insn, bytes,
799 				 __x86_indirect_call_thunk_array[reg],
800 				 __x86_indirect_jump_thunk_array[reg]);
801 }
802 
803 #ifdef CONFIG_MITIGATION_ITS
804 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
805 {
806 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
807 	u8 *tmp = its_allocate_thunk(reg);
808 
809 	if (tmp)
810 		thunk = tmp;
811 
812 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
813 }
814 
815 /* Check if an indirect branch is at ITS-unsafe address */
816 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
817 {
818 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
819 		return false;
820 
821 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
822 	addr += 1 + reg / 8;
823 
824 	/* Lower-half of the cacheline? */
825 	return !(addr & 0x20);
826 }
827 #else /* CONFIG_MITIGATION_ITS */
828 
829 #ifdef CONFIG_FINEIBT
830 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
831 {
832 	return false;
833 }
834 #endif
835 
836 #endif /* CONFIG_MITIGATION_ITS */
837 
838 /*
839  * Rewrite the compiler generated retpoline thunk calls.
840  *
841  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
842  * indirect instructions, avoiding the extra indirection.
843  *
844  * For example, convert:
845  *
846  *   CALL __x86_indirect_thunk_\reg
847  *
848  * into:
849  *
850  *   CALL *%\reg
851  *
852  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
853  */
854 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
855 {
856 	retpoline_thunk_t *target;
857 	int reg, ret, i = 0;
858 	u8 op, cc;
859 
860 	target = addr + insn->length + insn->immediate.value;
861 	reg = target - __x86_indirect_thunk_array;
862 
863 	if (WARN_ON_ONCE(reg & ~0xf))
864 		return -1;
865 
866 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
867 	BUG_ON(reg == 4);
868 
869 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
870 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
871 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
872 			return emit_call_track_retpoline(addr, insn, reg, bytes);
873 
874 		return -1;
875 	}
876 
877 	op = insn->opcode.bytes[0];
878 
879 	/*
880 	 * Convert:
881 	 *
882 	 *   Jcc.d32 __x86_indirect_thunk_\reg
883 	 *
884 	 * into:
885 	 *
886 	 *   Jncc.d8 1f
887 	 *   [ LFENCE ]
888 	 *   JMP *%\reg
889 	 *   [ NOP ]
890 	 * 1:
891 	 */
892 	if (is_jcc32(insn)) {
893 		cc = insn->opcode.bytes[1] & 0xf;
894 		cc ^= 1; /* invert condition */
895 
896 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
897 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
898 
899 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
900 		op = JMP32_INSN_OPCODE;
901 	}
902 
903 	/*
904 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
905 	 */
906 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
907 		bytes[i++] = 0x0f;
908 		bytes[i++] = 0xae;
909 		bytes[i++] = 0xe8; /* LFENCE */
910 	}
911 
912 #ifdef CONFIG_MITIGATION_ITS
913 	/*
914 	 * Check if the address of last byte of emitted-indirect is in
915 	 * lower-half of the cacheline. Such branches need ITS mitigation.
916 	 */
917 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
918 		return emit_its_trampoline(addr, insn, reg, bytes);
919 #endif
920 
921 	ret = emit_indirect(op, reg, bytes + i);
922 	if (ret < 0)
923 		return ret;
924 	i += ret;
925 
926 	/*
927 	 * The compiler is supposed to EMIT an INT3 after every unconditional
928 	 * JMP instruction due to AMD BTC. However, if the compiler is too old
929 	 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
930 	 * indirect JMPs even on Intel.
931 	 */
932 	if (op == JMP32_INSN_OPCODE && i < insn->length)
933 		bytes[i++] = INT3_INSN_OPCODE;
934 
935 	for (; i < insn->length;)
936 		bytes[i++] = BYTES_NOP1;
937 
938 	return i;
939 }
940 
941 /*
942  * Generated by 'objtool --retpoline'.
943  */
944 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
945 {
946 	s32 *s;
947 
948 	for (s = start; s < end; s++) {
949 		void *addr = (void *)s + *s;
950 		struct insn insn;
951 		int len, ret;
952 		u8 bytes[16];
953 		u8 op1, op2;
954 		u8 *dest;
955 
956 		ret = insn_decode_kernel(&insn, addr);
957 		if (WARN_ON_ONCE(ret < 0))
958 			continue;
959 
960 		op1 = insn.opcode.bytes[0];
961 		op2 = insn.opcode.bytes[1];
962 
963 		switch (op1) {
964 		case 0x70 ... 0x7f:	/* Jcc.d8 */
965 			/* See cfi_paranoid. */
966 			WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
967 			continue;
968 
969 		case CALL_INSN_OPCODE:
970 		case JMP32_INSN_OPCODE:
971 			/* Check for cfi_paranoid + ITS */
972 			dest = addr + insn.length + insn.immediate.value;
973 			if (dest[-1] == 0xea && (dest[0] & 0xf0) == 0x70) {
974 				WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
975 				continue;
976 			}
977 			break;
978 
979 		case 0x0f: /* escape */
980 			if (op2 >= 0x80 && op2 <= 0x8f)
981 				break;
982 			fallthrough;
983 		default:
984 			WARN_ON_ONCE(1);
985 			continue;
986 		}
987 
988 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
989 			addr, addr, insn.length,
990 			addr + insn.length + insn.immediate.value);
991 
992 		len = patch_retpoline(addr, &insn, bytes);
993 		if (len == insn.length) {
994 			optimize_nops(addr, bytes, len);
995 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
996 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
997 			text_poke_early(addr, bytes, len);
998 		}
999 	}
1000 }
1001 
1002 #ifdef CONFIG_MITIGATION_RETHUNK
1003 
1004 bool cpu_wants_rethunk(void)
1005 {
1006 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1007 }
1008 
1009 bool cpu_wants_rethunk_at(void *addr)
1010 {
1011 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1012 		return false;
1013 	if (x86_return_thunk != its_return_thunk)
1014 		return true;
1015 
1016 	return !((unsigned long)addr & 0x20);
1017 }
1018 
1019 /*
1020  * Rewrite the compiler generated return thunk tail-calls.
1021  *
1022  * For example, convert:
1023  *
1024  *   JMP __x86_return_thunk
1025  *
1026  * into:
1027  *
1028  *   RET
1029  */
1030 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1031 {
1032 	int i = 0;
1033 
1034 	/* Patch the custom return thunks... */
1035 	if (cpu_wants_rethunk_at(addr)) {
1036 		i = JMP32_INSN_SIZE;
1037 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1038 	} else {
1039 		/* ... or patch them out if not needed. */
1040 		bytes[i++] = RET_INSN_OPCODE;
1041 	}
1042 
1043 	for (; i < insn->length;)
1044 		bytes[i++] = INT3_INSN_OPCODE;
1045 	return i;
1046 }
1047 
1048 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1049 {
1050 	s32 *s;
1051 
1052 	if (cpu_wants_rethunk())
1053 		static_call_force_reinit();
1054 
1055 	for (s = start; s < end; s++) {
1056 		void *dest = NULL, *addr = (void *)s + *s;
1057 		struct insn insn;
1058 		int len, ret;
1059 		u8 bytes[16];
1060 		u8 op;
1061 
1062 		ret = insn_decode_kernel(&insn, addr);
1063 		if (WARN_ON_ONCE(ret < 0))
1064 			continue;
1065 
1066 		op = insn.opcode.bytes[0];
1067 		if (op == JMP32_INSN_OPCODE)
1068 			dest = addr + insn.length + insn.immediate.value;
1069 
1070 		if (__static_call_fixup(addr, op, dest) ||
1071 		    WARN_ONCE(dest != &__x86_return_thunk,
1072 			      "missing return thunk: %pS-%pS: %*ph",
1073 			      addr, dest, 5, addr))
1074 			continue;
1075 
1076 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1077 			addr, addr, insn.length,
1078 			addr + insn.length + insn.immediate.value);
1079 
1080 		len = patch_return(addr, &insn, bytes);
1081 		if (len == insn.length) {
1082 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
1083 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1084 			text_poke_early(addr, bytes, len);
1085 		}
1086 	}
1087 }
1088 #else /* !CONFIG_MITIGATION_RETHUNK: */
1089 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1090 #endif /* !CONFIG_MITIGATION_RETHUNK */
1091 
1092 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1093 
1094 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
1095 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1096 
1097 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1098 
1099 #ifdef CONFIG_X86_KERNEL_IBT
1100 
1101 __noendbr bool is_endbr(u32 *val)
1102 {
1103 	u32 endbr;
1104 
1105 	__get_kernel_nofault(&endbr, val, u32, Efault);
1106 	return __is_endbr(endbr);
1107 
1108 Efault:
1109 	return false;
1110 }
1111 
1112 #ifdef CONFIG_FINEIBT
1113 
1114 static __noendbr bool exact_endbr(u32 *val)
1115 {
1116 	u32 endbr;
1117 
1118 	__get_kernel_nofault(&endbr, val, u32, Efault);
1119 	return endbr == gen_endbr();
1120 
1121 Efault:
1122 	return false;
1123 }
1124 
1125 #endif
1126 
1127 static void poison_cfi(void *addr);
1128 
1129 static void __init_or_module poison_endbr(void *addr)
1130 {
1131 	u32 poison = gen_endbr_poison();
1132 
1133 	if (WARN_ON_ONCE(!is_endbr(addr)))
1134 		return;
1135 
1136 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1137 
1138 	/*
1139 	 * When we have IBT, the lack of ENDBR will trigger #CP
1140 	 */
1141 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1142 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1143 	text_poke_early(addr, &poison, 4);
1144 }
1145 
1146 /*
1147  * Generated by: objtool --ibt
1148  *
1149  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1150  * and the kCFI hash value.
1151  */
1152 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1153 {
1154 	s32 *s;
1155 
1156 	for (s = start; s < end; s++) {
1157 		void *addr = (void *)s + *s;
1158 
1159 		poison_endbr(addr);
1160 		if (IS_ENABLED(CONFIG_FINEIBT))
1161 			poison_cfi(addr - 16);
1162 	}
1163 }
1164 
1165 #else /* !CONFIG_X86_KERNEL_IBT: */
1166 
1167 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1168 
1169 #endif /* !CONFIG_X86_KERNEL_IBT */
1170 
1171 #ifdef CONFIG_CFI_AUTO_DEFAULT
1172 # define __CFI_DEFAULT CFI_AUTO
1173 #elif defined(CONFIG_CFI_CLANG)
1174 # define __CFI_DEFAULT CFI_KCFI
1175 #else
1176 # define __CFI_DEFAULT CFI_OFF
1177 #endif
1178 
1179 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1180 
1181 #ifdef CONFIG_FINEIBT_BHI
1182 bool cfi_bhi __ro_after_init = false;
1183 #endif
1184 
1185 #ifdef CONFIG_CFI_CLANG
1186 u32 cfi_get_func_hash(void *func)
1187 {
1188 	u32 hash;
1189 
1190 	func -= cfi_get_offset();
1191 	switch (cfi_mode) {
1192 	case CFI_FINEIBT:
1193 		func += 7;
1194 		break;
1195 	case CFI_KCFI:
1196 		func += 1;
1197 		break;
1198 	default:
1199 		return 0;
1200 	}
1201 
1202 	if (get_kernel_nofault(hash, func))
1203 		return 0;
1204 
1205 	return hash;
1206 }
1207 
1208 int cfi_get_func_arity(void *func)
1209 {
1210 	bhi_thunk *target;
1211 	s32 disp;
1212 
1213 	if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1214 		return 0;
1215 
1216 	if (get_kernel_nofault(disp, func - 4))
1217 		return 0;
1218 
1219 	target = func + disp;
1220 	return target - __bhi_args;
1221 }
1222 #endif
1223 
1224 #ifdef CONFIG_FINEIBT
1225 
1226 static bool cfi_rand __ro_after_init = true;
1227 static u32  cfi_seed __ro_after_init;
1228 
1229 /*
1230  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1231  * not a valid ENDBR instruction.
1232  */
1233 static u32 cfi_rehash(u32 hash)
1234 {
1235 	hash ^= cfi_seed;
1236 	while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1237 		bool lsb = hash & 1;
1238 		hash >>= 1;
1239 		if (lsb)
1240 			hash ^= 0x80200003;
1241 	}
1242 	return hash;
1243 }
1244 
1245 static __init int cfi_parse_cmdline(char *str)
1246 {
1247 	if (!str)
1248 		return -EINVAL;
1249 
1250 	while (str) {
1251 		char *next = strchr(str, ',');
1252 		if (next) {
1253 			*next = 0;
1254 			next++;
1255 		}
1256 
1257 		if (!strcmp(str, "auto")) {
1258 			cfi_mode = CFI_AUTO;
1259 		} else if (!strcmp(str, "off")) {
1260 			cfi_mode = CFI_OFF;
1261 			cfi_rand = false;
1262 		} else if (!strcmp(str, "kcfi")) {
1263 			cfi_mode = CFI_KCFI;
1264 		} else if (!strcmp(str, "fineibt")) {
1265 			cfi_mode = CFI_FINEIBT;
1266 		} else if (!strcmp(str, "norand")) {
1267 			cfi_rand = false;
1268 		} else if (!strcmp(str, "warn")) {
1269 			pr_alert("CFI mismatch non-fatal!\n");
1270 			cfi_warn = true;
1271 		} else if (!strcmp(str, "paranoid")) {
1272 			if (cfi_mode == CFI_FINEIBT) {
1273 				cfi_paranoid = true;
1274 			} else {
1275 				pr_err("Ignoring paranoid; depends on fineibt.\n");
1276 			}
1277 		} else if (!strcmp(str, "bhi")) {
1278 #ifdef CONFIG_FINEIBT_BHI
1279 			if (cfi_mode == CFI_FINEIBT) {
1280 				cfi_bhi = true;
1281 			} else {
1282 				pr_err("Ignoring bhi; depends on fineibt.\n");
1283 			}
1284 #else
1285 			pr_err("Ignoring bhi; depends on FINEIBT_BHI=y.\n");
1286 #endif
1287 		} else {
1288 			pr_err("Ignoring unknown cfi option (%s).", str);
1289 		}
1290 
1291 		str = next;
1292 	}
1293 
1294 	return 0;
1295 }
1296 early_param("cfi", cfi_parse_cmdline);
1297 
1298 /*
1299  * kCFI						FineIBT
1300  *
1301  * __cfi_\func:					__cfi_\func:
1302  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1303  *	nop					     subl   $0x12345678,%r10d   // 7
1304  *	nop					     jne    __cfi_\func+6	// 2
1305  *	nop					     nop3			// 3
1306  *	nop
1307  *	nop
1308  *	nop
1309  *	nop
1310  *	nop
1311  *	nop
1312  *	nop
1313  *	nop
1314  *
1315  *
1316  * caller:					caller:
1317  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1318  *	addl	$-15(%r11),%r10d	 // 4	     lea    -0x10(%r11),%r11	// 4
1319  *	je	1f			 // 2	     nop4			// 4
1320  *	ud2				 // 2
1321  * 1:	cs call	__x86_indirect_thunk_r11 // 6	     call   *%r11; nop3;	// 6
1322  *
1323  */
1324 
1325 /*
1326  * <fineibt_preamble_start>:
1327  *  0:   f3 0f 1e fa             endbr64
1328  *  4:   41 81 <ea> 78 56 34 12  sub    $0x12345678, %r10d
1329  *  b:   75 f9                   jne    6 <fineibt_preamble_start+0x6>
1330  *  d:   0f 1f 00                nopl   (%rax)
1331  *
1332  * Note that the JNE target is the 0xEA byte inside the SUB, this decodes as
1333  * (bad) on x86_64 and raises #UD.
1334  */
1335 asm(	".pushsection .rodata				\n"
1336 	"fineibt_preamble_start:			\n"
1337 	"	endbr64					\n"
1338 	"	subl	$0x12345678, %r10d		\n"
1339 	"fineibt_preamble_bhi:				\n"
1340 	"	jne	fineibt_preamble_start+6	\n"
1341 	ASM_NOP3
1342 	"fineibt_preamble_end:				\n"
1343 	".popsection\n"
1344 );
1345 
1346 extern u8 fineibt_preamble_start[];
1347 extern u8 fineibt_preamble_bhi[];
1348 extern u8 fineibt_preamble_end[];
1349 
1350 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1351 #define fineibt_preamble_bhi  (fineibt_preamble_bhi - fineibt_preamble_start)
1352 #define fineibt_preamble_ud   6
1353 #define fineibt_preamble_hash 7
1354 
1355 /*
1356  * <fineibt_caller_start>:
1357  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1358  *  6:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1359  *  a:   0f 1f 40 00             nopl   0x0(%rax)
1360  */
1361 asm(	".pushsection .rodata			\n"
1362 	"fineibt_caller_start:			\n"
1363 	"	movl	$0x12345678, %r10d	\n"
1364 	"	lea	-0x10(%r11), %r11	\n"
1365 	ASM_NOP4
1366 	"fineibt_caller_end:			\n"
1367 	".popsection				\n"
1368 );
1369 
1370 extern u8 fineibt_caller_start[];
1371 extern u8 fineibt_caller_end[];
1372 
1373 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1374 #define fineibt_caller_hash 2
1375 
1376 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1377 
1378 /*
1379  * Since FineIBT does hash validation on the callee side it is prone to
1380  * circumvention attacks where a 'naked' ENDBR instruction exists that
1381  * is not part of the fineibt_preamble sequence.
1382  *
1383  * Notably the x86 entry points must be ENDBR and equally cannot be
1384  * fineibt_preamble.
1385  *
1386  * The fineibt_paranoid caller sequence adds additional caller side
1387  * hash validation. This stops such circumvention attacks dead, but at the cost
1388  * of adding a load.
1389  *
1390  * <fineibt_paranoid_start>:
1391  *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1392  *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
1393  *  a:   4d 8d 5b <f0>           lea    -0x10(%r11), %r11
1394  *  e:   75 fd                   jne    d <fineibt_paranoid_start+0xd>
1395  * 10:   41 ff d3                call   *%r11
1396  * 13:   90                      nop
1397  *
1398  * Notably LEA does not modify flags and can be reordered with the CMP,
1399  * avoiding a dependency. Again, using a non-taken (backwards) branch
1400  * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1401  * Jcc.d8, causing #UD.
1402  */
1403 asm(	".pushsection .rodata				\n"
1404 	"fineibt_paranoid_start:			\n"
1405 	"	movl	$0x12345678, %r10d		\n"
1406 	"	cmpl	-9(%r11), %r10d			\n"
1407 	"	lea	-0x10(%r11), %r11		\n"
1408 	"	jne	fineibt_paranoid_start+0xd	\n"
1409 	"fineibt_paranoid_ind:				\n"
1410 	"	call	*%r11				\n"
1411 	"	nop					\n"
1412 	"fineibt_paranoid_end:				\n"
1413 	".popsection					\n"
1414 );
1415 
1416 extern u8 fineibt_paranoid_start[];
1417 extern u8 fineibt_paranoid_ind[];
1418 extern u8 fineibt_paranoid_end[];
1419 
1420 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1421 #define fineibt_paranoid_ind  (fineibt_paranoid_ind - fineibt_paranoid_start)
1422 #define fineibt_paranoid_ud   0xd
1423 
1424 static u32 decode_preamble_hash(void *addr, int *reg)
1425 {
1426 	u8 *p = addr;
1427 
1428 	/* b8+reg 78 56 34 12          movl    $0x12345678,\reg */
1429 	if (p[0] >= 0xb8 && p[0] < 0xc0) {
1430 		if (reg)
1431 			*reg = p[0] - 0xb8;
1432 		return *(u32 *)(addr + 1);
1433 	}
1434 
1435 	return 0; /* invalid hash value */
1436 }
1437 
1438 static u32 decode_caller_hash(void *addr)
1439 {
1440 	u8 *p = addr;
1441 
1442 	/* 41 ba 88 a9 cb ed       mov    $(-0x12345678),%r10d */
1443 	if (p[0] == 0x41 && p[1] == 0xba)
1444 		return -*(u32 *)(addr + 2);
1445 
1446 	/* e8 0c 88 a9 cb ed	   jmp.d8  +12 */
1447 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1448 		return -*(u32 *)(addr + 2);
1449 
1450 	return 0; /* invalid hash value */
1451 }
1452 
1453 /* .retpoline_sites */
1454 static int cfi_disable_callers(s32 *start, s32 *end)
1455 {
1456 	/*
1457 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1458 	 * in tact for later usage. Also see decode_caller_hash() and
1459 	 * cfi_rewrite_callers().
1460 	 */
1461 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1462 	s32 *s;
1463 
1464 	for (s = start; s < end; s++) {
1465 		void *addr = (void *)s + *s;
1466 		u32 hash;
1467 
1468 		addr -= fineibt_caller_size;
1469 		hash = decode_caller_hash(addr);
1470 		if (!hash) /* nocfi callers */
1471 			continue;
1472 
1473 		text_poke_early(addr, jmp, 2);
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static int cfi_enable_callers(s32 *start, s32 *end)
1480 {
1481 	/*
1482 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1483 	 */
1484 	const u8 mov[] = { 0x41, 0xba };
1485 	s32 *s;
1486 
1487 	for (s = start; s < end; s++) {
1488 		void *addr = (void *)s + *s;
1489 		u32 hash;
1490 
1491 		addr -= fineibt_caller_size;
1492 		hash = decode_caller_hash(addr);
1493 		if (!hash) /* nocfi callers */
1494 			continue;
1495 
1496 		text_poke_early(addr, mov, 2);
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 /* .cfi_sites */
1503 static int cfi_rand_preamble(s32 *start, s32 *end)
1504 {
1505 	s32 *s;
1506 
1507 	for (s = start; s < end; s++) {
1508 		void *addr = (void *)s + *s;
1509 		u32 hash;
1510 
1511 		hash = decode_preamble_hash(addr, NULL);
1512 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1513 			 addr, addr, 5, addr))
1514 			return -EINVAL;
1515 
1516 		hash = cfi_rehash(hash);
1517 		text_poke_early(addr + 1, &hash, 4);
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1524 {
1525 	if (!arity)
1526 		return;
1527 
1528 	if (!cfi_warn && arity == 1) {
1529 		/*
1530 		 * Crazy scheme to allow arity-1 inline:
1531 		 *
1532 		 * __cfi_foo:
1533 		 *  0: f3 0f 1e fa             endbr64
1534 		 *  4: 41 81 <ea> 78 56 34 12  sub     0x12345678, %r10d
1535 		 *  b: 49 0f 45 fa             cmovne  %r10, %rdi
1536 		 *  f: 75 f5                   jne     __cfi_foo+6
1537 		 * 11: 0f 1f 00                nopl    (%rax)
1538 		 *
1539 		 * Code that direct calls to foo()+0, decodes the tail end as:
1540 		 *
1541 		 * foo:
1542 		 *  0: f5                      cmc
1543 		 *  1: 0f 1f 00                nopl    (%rax)
1544 		 *
1545 		 * which clobbers CF, but does not affect anything ABI
1546 		 * wise.
1547 		 *
1548 		 * Notably, this scheme is incompatible with permissive CFI
1549 		 * because the CMOVcc is unconditional and RDI will have been
1550 		 * clobbered.
1551 		 */
1552 		const u8 magic[9] = {
1553 			0x49, 0x0f, 0x45, 0xfa,
1554 			0x75, 0xf5,
1555 			BYTES_NOP3,
1556 		};
1557 
1558 		text_poke_early(addr + fineibt_preamble_bhi, magic, 9);
1559 
1560 		return;
1561 	}
1562 
1563 	text_poke_early(addr + fineibt_preamble_bhi,
1564 			text_gen_insn(CALL_INSN_OPCODE,
1565 				      addr + fineibt_preamble_bhi,
1566 				      __bhi_args[arity]),
1567 			CALL_INSN_SIZE);
1568 }
1569 
1570 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1571 {
1572 	s32 *s;
1573 
1574 	for (s = start; s < end; s++) {
1575 		void *addr = (void *)s + *s;
1576 		int arity;
1577 		u32 hash;
1578 
1579 		/*
1580 		 * When the function doesn't start with ENDBR the compiler will
1581 		 * have determined there are no indirect calls to it and we
1582 		 * don't need no CFI either.
1583 		 */
1584 		if (!is_endbr(addr + 16))
1585 			continue;
1586 
1587 		hash = decode_preamble_hash(addr, &arity);
1588 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1589 			 addr, addr, 5, addr))
1590 			return -EINVAL;
1591 
1592 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1593 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1594 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1595 
1596 		WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1597 			  "kCFI preamble has wrong register at: %pS %*ph\n",
1598 			  addr, 5, addr);
1599 
1600 		if (cfi_bhi)
1601 			cfi_fineibt_bhi_preamble(addr, arity);
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1608 {
1609 	s32 *s;
1610 
1611 	for (s = start; s < end; s++) {
1612 		void *addr = (void *)s + *s;
1613 
1614 		if (!exact_endbr(addr + 16))
1615 			continue;
1616 
1617 		poison_endbr(addr + 16);
1618 	}
1619 }
1620 
1621 /* .retpoline_sites */
1622 static int cfi_rand_callers(s32 *start, s32 *end)
1623 {
1624 	s32 *s;
1625 
1626 	for (s = start; s < end; s++) {
1627 		void *addr = (void *)s + *s;
1628 		u32 hash;
1629 
1630 		addr -= fineibt_caller_size;
1631 		hash = decode_caller_hash(addr);
1632 		if (hash) {
1633 			hash = -cfi_rehash(hash);
1634 			text_poke_early(addr + 2, &hash, 4);
1635 		}
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1642 {
1643 	u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1644 
1645 #ifdef CONFIG_MITIGATION_ITS
1646 	u8 *tmp = its_allocate_thunk(reg);
1647 	if (tmp)
1648 		thunk = tmp;
1649 #endif
1650 
1651 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1652 }
1653 
1654 static int cfi_rewrite_callers(s32 *start, s32 *end)
1655 {
1656 	s32 *s;
1657 
1658 	BUG_ON(fineibt_paranoid_size != 20);
1659 
1660 	for (s = start; s < end; s++) {
1661 		void *addr = (void *)s + *s;
1662 		struct insn insn;
1663 		u8 bytes[20];
1664 		u32 hash;
1665 		int ret;
1666 		u8 op;
1667 
1668 		addr -= fineibt_caller_size;
1669 		hash = decode_caller_hash(addr);
1670 		if (!hash)
1671 			continue;
1672 
1673 		if (!cfi_paranoid) {
1674 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1675 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1676 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1677 			/* rely on apply_retpolines() */
1678 			continue;
1679 		}
1680 
1681 		/* cfi_paranoid */
1682 		ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1683 		if (WARN_ON_ONCE(ret < 0))
1684 			continue;
1685 
1686 		op = insn.opcode.bytes[0];
1687 		if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1688 			WARN_ON_ONCE(1);
1689 			continue;
1690 		}
1691 
1692 		memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1693 		memcpy(bytes + fineibt_caller_hash, &hash, 4);
1694 
1695 		if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1696 			emit_paranoid_trampoline(addr + fineibt_caller_size,
1697 						 &insn, 11, bytes + fineibt_caller_size);
1698 		} else {
1699 			ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind);
1700 			if (WARN_ON_ONCE(ret != 3))
1701 				continue;
1702 		}
1703 
1704 		text_poke_early(addr, bytes, fineibt_paranoid_size);
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1711 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1712 {
1713 	int ret;
1714 
1715 	if (WARN_ONCE(fineibt_preamble_size != 16,
1716 		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1717 		return;
1718 
1719 	if (cfi_mode == CFI_AUTO) {
1720 		cfi_mode = CFI_KCFI;
1721 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1722 			/*
1723 			 * FRED has much saner context on exception entry and
1724 			 * is less easy to take advantage of.
1725 			 */
1726 			if (!cpu_feature_enabled(X86_FEATURE_FRED))
1727 				cfi_paranoid = true;
1728 			cfi_mode = CFI_FINEIBT;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1734 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1735 	 * later stages fails, we're without CFI.
1736 	 */
1737 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1738 	if (ret)
1739 		goto err;
1740 
1741 	if (cfi_rand) {
1742 		if (builtin) {
1743 			cfi_seed = get_random_u32();
1744 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1745 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1746 		}
1747 
1748 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1749 		if (ret)
1750 			goto err;
1751 
1752 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1753 		if (ret)
1754 			goto err;
1755 	}
1756 
1757 	switch (cfi_mode) {
1758 	case CFI_OFF:
1759 		if (builtin)
1760 			pr_info("Disabling CFI\n");
1761 		return;
1762 
1763 	case CFI_KCFI:
1764 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1765 		if (ret)
1766 			goto err;
1767 
1768 		if (builtin)
1769 			pr_info("Using kCFI\n");
1770 		return;
1771 
1772 	case CFI_FINEIBT:
1773 		/* place the FineIBT preamble at func()-16 */
1774 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1775 		if (ret)
1776 			goto err;
1777 
1778 		/* rewrite the callers to target func()-16 */
1779 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1780 		if (ret)
1781 			goto err;
1782 
1783 		/* now that nobody targets func()+0, remove ENDBR there */
1784 		cfi_rewrite_endbr(start_cfi, end_cfi);
1785 
1786 		if (builtin) {
1787 			pr_info("Using %sFineIBT%s CFI\n",
1788 				cfi_paranoid ? "paranoid " : "",
1789 				cfi_bhi ? "+BHI" : "");
1790 		}
1791 		return;
1792 
1793 	default:
1794 		break;
1795 	}
1796 
1797 err:
1798 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1799 }
1800 
1801 static inline void poison_hash(void *addr)
1802 {
1803 	*(u32 *)addr = 0;
1804 }
1805 
1806 static void poison_cfi(void *addr)
1807 {
1808 	/*
1809 	 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1810 	 * some (static) functions for which they can determine the address
1811 	 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1812 	 *
1813 	 * As such, these functions will get sealed, but we need to be careful
1814 	 * to not unconditionally scribble the previous function.
1815 	 */
1816 	switch (cfi_mode) {
1817 	case CFI_FINEIBT:
1818 		/*
1819 		 * FineIBT prefix should start with an ENDBR.
1820 		 */
1821 		if (!is_endbr(addr))
1822 			break;
1823 
1824 		/*
1825 		 * __cfi_\func:
1826 		 *	osp nopl (%rax)
1827 		 *	subl	$0, %r10d
1828 		 *	jz	1f
1829 		 *	ud2
1830 		 * 1:	nop
1831 		 */
1832 		poison_endbr(addr);
1833 		poison_hash(addr + fineibt_preamble_hash);
1834 		break;
1835 
1836 	case CFI_KCFI:
1837 		/*
1838 		 * kCFI prefix should start with a valid hash.
1839 		 */
1840 		if (!decode_preamble_hash(addr, NULL))
1841 			break;
1842 
1843 		/*
1844 		 * __cfi_\func:
1845 		 *	movl	$0, %eax
1846 		 *	.skip	11, 0x90
1847 		 */
1848 		poison_hash(addr + 1);
1849 		break;
1850 
1851 	default:
1852 		break;
1853 	}
1854 }
1855 
1856 /*
1857  * When regs->ip points to a 0xEA byte in the FineIBT preamble,
1858  * return true and fill out target and type.
1859  *
1860  * We check the preamble by checking for the ENDBR instruction relative to the
1861  * 0xEA instruction.
1862  */
1863 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1864 {
1865 	unsigned long addr = regs->ip - fineibt_preamble_ud;
1866 	u32 hash;
1867 
1868 	if (!exact_endbr((void *)addr))
1869 		return false;
1870 
1871 	*target = addr + fineibt_preamble_size;
1872 
1873 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1874 	*type = (u32)regs->r10 + hash;
1875 
1876 	/*
1877 	 * Since regs->ip points to the middle of an instruction; it cannot
1878 	 * continue with the normal fixup.
1879 	 */
1880 	regs->ip = *target;
1881 
1882 	return true;
1883 
1884 Efault:
1885 	return false;
1886 }
1887 
1888 /*
1889  * regs->ip points to one of the UD2 in __bhi_args[].
1890  */
1891 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1892 {
1893 	unsigned long addr;
1894 	u32 hash;
1895 
1896 	if (!cfi_bhi)
1897 		return false;
1898 
1899 	if (regs->ip < (unsigned long)__bhi_args ||
1900 	    regs->ip >= (unsigned long)__bhi_args_end)
1901 		return false;
1902 
1903 	/*
1904 	 * Fetch the return address from the stack, this points to the
1905 	 * FineIBT preamble. Since the CALL instruction is in the 5 last
1906 	 * bytes of the preamble, the return address is in fact the target
1907 	 * address.
1908 	 */
1909 	__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1910 	*target = addr;
1911 
1912 	addr -= fineibt_preamble_size;
1913 	if (!exact_endbr((void *)addr))
1914 		return false;
1915 
1916 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1917 	*type = (u32)regs->r10 + hash;
1918 
1919 	/*
1920 	 * The UD2 sites are constructed with a RET immediately following,
1921 	 * as such the non-fatal case can use the regular fixup.
1922 	 */
1923 	return true;
1924 
1925 Efault:
1926 	return false;
1927 }
1928 
1929 static bool is_paranoid_thunk(unsigned long addr)
1930 {
1931 	u32 thunk;
1932 
1933 	__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1934 	return (thunk & 0x00FFFFFF) == 0xfd75ea;
1935 
1936 Efault:
1937 	return false;
1938 }
1939 
1940 /*
1941  * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
1942  * sequence, or to an invalid instruction (0xea) + Jcc.d8 for cfi_paranoid + ITS
1943  * thunk.
1944  */
1945 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
1946 {
1947 	unsigned long addr = regs->ip - fineibt_paranoid_ud;
1948 
1949 	if (!cfi_paranoid)
1950 		return false;
1951 
1952 	if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
1953 		*target = regs->r11 + fineibt_preamble_size;
1954 		*type = regs->r10;
1955 
1956 		/*
1957 		 * Since the trapping instruction is the exact, but LOCK prefixed,
1958 		 * Jcc.d8 that got us here, the normal fixup will work.
1959 		 */
1960 		return true;
1961 	}
1962 
1963 	/*
1964 	 * The cfi_paranoid + ITS thunk combination results in:
1965 	 *
1966 	 *  0:   41 ba 78 56 34 12       mov    $0x12345678, %r10d
1967 	 *  6:   45 3b 53 f7             cmp    -0x9(%r11), %r10d
1968 	 *  a:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1969 	 *  e:   2e e8 XX XX XX XX	 cs call __x86_indirect_paranoid_thunk_r11
1970 	 *
1971 	 * Where the paranoid_thunk looks like:
1972 	 *
1973 	 *  1d:  <ea>                    (bad)
1974 	 *  __x86_indirect_paranoid_thunk_r11:
1975 	 *  1e:  75 fd                   jne 1d
1976 	 *  __x86_indirect_its_thunk_r11:
1977 	 *  20:  41 ff eb                jmp *%r11
1978 	 *  23:  cc                      int3
1979 	 *
1980 	 */
1981 	if (is_paranoid_thunk(regs->ip)) {
1982 		*target = regs->r11 + fineibt_preamble_size;
1983 		*type = regs->r10;
1984 
1985 		regs->ip = *target;
1986 		return true;
1987 	}
1988 
1989 	return false;
1990 }
1991 
1992 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
1993 {
1994 	if (decode_fineibt_paranoid(regs, target, type))
1995 		return true;
1996 
1997 	if (decode_fineibt_bhi(regs, target, type))
1998 		return true;
1999 
2000 	return decode_fineibt_preamble(regs, target, type);
2001 }
2002 
2003 #else /* !CONFIG_FINEIBT: */
2004 
2005 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2006 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
2007 {
2008 }
2009 
2010 #ifdef CONFIG_X86_KERNEL_IBT
2011 static void poison_cfi(void *addr) { }
2012 #endif
2013 
2014 #endif /* !CONFIG_FINEIBT */
2015 
2016 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2017 		   s32 *start_cfi, s32 *end_cfi)
2018 {
2019 	return __apply_fineibt(start_retpoline, end_retpoline,
2020 			       start_cfi, end_cfi,
2021 			       /* .builtin = */ false);
2022 }
2023 
2024 #ifdef CONFIG_SMP
2025 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2026 				  u8 *text, u8 *text_end)
2027 {
2028 	const s32 *poff;
2029 
2030 	for (poff = start; poff < end; poff++) {
2031 		u8 *ptr = (u8 *)poff + *poff;
2032 
2033 		if (!*poff || ptr < text || ptr >= text_end)
2034 			continue;
2035 		/* turn DS segment override prefix into lock prefix */
2036 		if (*ptr == 0x3e)
2037 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
2038 	}
2039 }
2040 
2041 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2042 				    u8 *text, u8 *text_end)
2043 {
2044 	const s32 *poff;
2045 
2046 	for (poff = start; poff < end; poff++) {
2047 		u8 *ptr = (u8 *)poff + *poff;
2048 
2049 		if (!*poff || ptr < text || ptr >= text_end)
2050 			continue;
2051 		/* turn lock prefix into DS segment override prefix */
2052 		if (*ptr == 0xf0)
2053 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
2054 	}
2055 }
2056 
2057 struct smp_alt_module {
2058 	/* what is this ??? */
2059 	struct module	*mod;
2060 	char		*name;
2061 
2062 	/* ptrs to lock prefixes */
2063 	const s32	*locks;
2064 	const s32	*locks_end;
2065 
2066 	/* .text segment, needed to avoid patching init code ;) */
2067 	u8		*text;
2068 	u8		*text_end;
2069 
2070 	struct list_head next;
2071 };
2072 static LIST_HEAD(smp_alt_modules);
2073 static bool uniproc_patched = false;	/* protected by text_mutex */
2074 
2075 void __init_or_module alternatives_smp_module_add(struct module *mod,
2076 						  char *name,
2077 						  void *locks, void *locks_end,
2078 						  void *text,  void *text_end)
2079 {
2080 	struct smp_alt_module *smp;
2081 
2082 	mutex_lock(&text_mutex);
2083 	if (!uniproc_patched)
2084 		goto unlock;
2085 
2086 	if (num_possible_cpus() == 1)
2087 		/* Don't bother remembering, we'll never have to undo it. */
2088 		goto smp_unlock;
2089 
2090 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2091 	if (NULL == smp)
2092 		/* we'll run the (safe but slow) SMP code then ... */
2093 		goto unlock;
2094 
2095 	smp->mod	= mod;
2096 	smp->name	= name;
2097 	smp->locks	= locks;
2098 	smp->locks_end	= locks_end;
2099 	smp->text	= text;
2100 	smp->text_end	= text_end;
2101 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2102 		smp->locks, smp->locks_end,
2103 		smp->text, smp->text_end, smp->name);
2104 
2105 	list_add_tail(&smp->next, &smp_alt_modules);
2106 smp_unlock:
2107 	alternatives_smp_unlock(locks, locks_end, text, text_end);
2108 unlock:
2109 	mutex_unlock(&text_mutex);
2110 }
2111 
2112 void __init_or_module alternatives_smp_module_del(struct module *mod)
2113 {
2114 	struct smp_alt_module *item;
2115 
2116 	mutex_lock(&text_mutex);
2117 	list_for_each_entry(item, &smp_alt_modules, next) {
2118 		if (mod != item->mod)
2119 			continue;
2120 		list_del(&item->next);
2121 		kfree(item);
2122 		break;
2123 	}
2124 	mutex_unlock(&text_mutex);
2125 }
2126 
2127 void alternatives_enable_smp(void)
2128 {
2129 	struct smp_alt_module *mod;
2130 
2131 	/* Why bother if there are no other CPUs? */
2132 	BUG_ON(num_possible_cpus() == 1);
2133 
2134 	mutex_lock(&text_mutex);
2135 
2136 	if (uniproc_patched) {
2137 		pr_info("switching to SMP code\n");
2138 		BUG_ON(num_online_cpus() != 1);
2139 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2140 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2141 		list_for_each_entry(mod, &smp_alt_modules, next)
2142 			alternatives_smp_lock(mod->locks, mod->locks_end,
2143 					      mod->text, mod->text_end);
2144 		uniproc_patched = false;
2145 	}
2146 	mutex_unlock(&text_mutex);
2147 }
2148 
2149 /*
2150  * Return 1 if the address range is reserved for SMP-alternatives.
2151  * Must hold text_mutex.
2152  */
2153 int alternatives_text_reserved(void *start, void *end)
2154 {
2155 	struct smp_alt_module *mod;
2156 	const s32 *poff;
2157 	u8 *text_start = start;
2158 	u8 *text_end = end;
2159 
2160 	lockdep_assert_held(&text_mutex);
2161 
2162 	list_for_each_entry(mod, &smp_alt_modules, next) {
2163 		if (mod->text > text_end || mod->text_end < text_start)
2164 			continue;
2165 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
2166 			const u8 *ptr = (const u8 *)poff + *poff;
2167 
2168 			if (text_start <= ptr && text_end > ptr)
2169 				return 1;
2170 		}
2171 	}
2172 
2173 	return 0;
2174 }
2175 #endif /* CONFIG_SMP */
2176 
2177 /*
2178  * Self-test for the INT3 based CALL emulation code.
2179  *
2180  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2181  * properly and that there is a stack gap between the INT3 frame and the
2182  * previous context. Without this gap doing a virtual PUSH on the interrupted
2183  * stack would corrupt the INT3 IRET frame.
2184  *
2185  * See entry_{32,64}.S for more details.
2186  */
2187 
2188 /*
2189  * We define the int3_magic() function in assembly to control the calling
2190  * convention such that we can 'call' it from assembly.
2191  */
2192 
2193 extern void int3_magic(unsigned int *ptr); /* defined in asm */
2194 
2195 asm (
2196 "	.pushsection	.init.text, \"ax\", @progbits\n"
2197 "	.type		int3_magic, @function\n"
2198 "int3_magic:\n"
2199 	ANNOTATE_NOENDBR
2200 "	movl	$1, (%" _ASM_ARG1 ")\n"
2201 	ASM_RET
2202 "	.size		int3_magic, .-int3_magic\n"
2203 "	.popsection\n"
2204 );
2205 
2206 extern void int3_selftest_ip(void); /* defined in asm below */
2207 
2208 static int __init
2209 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2210 {
2211 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
2212 	struct die_args *args = data;
2213 	struct pt_regs *regs = args->regs;
2214 
2215 	OPTIMIZER_HIDE_VAR(selftest);
2216 
2217 	if (!regs || user_mode(regs))
2218 		return NOTIFY_DONE;
2219 
2220 	if (val != DIE_INT3)
2221 		return NOTIFY_DONE;
2222 
2223 	if (regs->ip - INT3_INSN_SIZE != selftest)
2224 		return NOTIFY_DONE;
2225 
2226 	int3_emulate_call(regs, (unsigned long)&int3_magic);
2227 	return NOTIFY_STOP;
2228 }
2229 
2230 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
2231 static noinline void __init int3_selftest(void)
2232 {
2233 	static __initdata struct notifier_block int3_exception_nb = {
2234 		.notifier_call	= int3_exception_notify,
2235 		.priority	= INT_MAX-1, /* last */
2236 	};
2237 	unsigned int val = 0;
2238 
2239 	BUG_ON(register_die_notifier(&int3_exception_nb));
2240 
2241 	/*
2242 	 * Basically: int3_magic(&val); but really complicated :-)
2243 	 *
2244 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
2245 	 * notifier above will emulate CALL for us.
2246 	 */
2247 	asm volatile ("int3_selftest_ip:\n\t"
2248 		      ANNOTATE_NOENDBR
2249 		      "    int3; nop; nop; nop; nop\n\t"
2250 		      : ASM_CALL_CONSTRAINT
2251 		      : __ASM_SEL_RAW(a, D) (&val)
2252 		      : "memory");
2253 
2254 	BUG_ON(val != 1);
2255 
2256 	unregister_die_notifier(&int3_exception_nb);
2257 }
2258 
2259 static __initdata int __alt_reloc_selftest_addr;
2260 
2261 extern void __init __alt_reloc_selftest(void *arg);
2262 __visible noinline void __init __alt_reloc_selftest(void *arg)
2263 {
2264 	WARN_ON(arg != &__alt_reloc_selftest_addr);
2265 }
2266 
2267 static noinline void __init alt_reloc_selftest(void)
2268 {
2269 	/*
2270 	 * Tests text_poke_apply_relocation().
2271 	 *
2272 	 * This has a relative immediate (CALL) in a place other than the first
2273 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2274 	 *
2275 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
2276 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
2277 	 *
2278 	 * Getting this wrong will either crash and burn or tickle the WARN
2279 	 * above.
2280 	 */
2281 	asm_inline volatile (
2282 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2283 		: ASM_CALL_CONSTRAINT
2284 		: [mem] "m" (__alt_reloc_selftest_addr)
2285 		: _ASM_ARG1
2286 	);
2287 }
2288 
2289 void __init alternative_instructions(void)
2290 {
2291 	u64 ibt;
2292 
2293 	int3_selftest();
2294 
2295 	/*
2296 	 * The patching is not fully atomic, so try to avoid local
2297 	 * interruptions that might execute the to be patched code.
2298 	 * Other CPUs are not running.
2299 	 */
2300 	stop_nmi();
2301 
2302 	/*
2303 	 * Don't stop machine check exceptions while patching.
2304 	 * MCEs only happen when something got corrupted and in this
2305 	 * case we must do something about the corruption.
2306 	 * Ignoring it is worse than an unlikely patching race.
2307 	 * Also machine checks tend to be broadcast and if one CPU
2308 	 * goes into machine check the others follow quickly, so we don't
2309 	 * expect a machine check to cause undue problems during to code
2310 	 * patching.
2311 	 */
2312 
2313 	/*
2314 	 * Make sure to set (artificial) features depending on used paravirt
2315 	 * functions which can later influence alternative patching.
2316 	 */
2317 	paravirt_set_cap();
2318 
2319 	/* Keep CET-IBT disabled until caller/callee are patched */
2320 	ibt = ibt_save(/*disable*/ true);
2321 
2322 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2323 			__cfi_sites, __cfi_sites_end, true);
2324 
2325 	/*
2326 	 * Rewrite the retpolines, must be done before alternatives since
2327 	 * those can rewrite the retpoline thunks.
2328 	 */
2329 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2330 	apply_returns(__return_sites, __return_sites_end);
2331 
2332 	its_fini_core();
2333 
2334 	/*
2335 	 * Adjust all CALL instructions to point to func()-10, including
2336 	 * those in .altinstr_replacement.
2337 	 */
2338 	callthunks_patch_builtin_calls();
2339 
2340 	apply_alternatives(__alt_instructions, __alt_instructions_end);
2341 
2342 	/*
2343 	 * Seal all functions that do not have their address taken.
2344 	 */
2345 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2346 
2347 	ibt_restore(ibt);
2348 
2349 #ifdef CONFIG_SMP
2350 	/* Patch to UP if other cpus not imminent. */
2351 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2352 		uniproc_patched = true;
2353 		alternatives_smp_module_add(NULL, "core kernel",
2354 					    __smp_locks, __smp_locks_end,
2355 					    _text, _etext);
2356 	}
2357 
2358 	if (!uniproc_patched || num_possible_cpus() == 1) {
2359 		free_init_pages("SMP alternatives",
2360 				(unsigned long)__smp_locks,
2361 				(unsigned long)__smp_locks_end);
2362 	}
2363 #endif
2364 
2365 	restart_nmi();
2366 	alternatives_patched = 1;
2367 
2368 	alt_reloc_selftest();
2369 }
2370 
2371 /**
2372  * text_poke_early - Update instructions on a live kernel at boot time
2373  * @addr: address to modify
2374  * @opcode: source of the copy
2375  * @len: length to copy
2376  *
2377  * When you use this code to patch more than one byte of an instruction
2378  * you need to make sure that other CPUs cannot execute this code in parallel.
2379  * Also no thread must be currently preempted in the middle of these
2380  * instructions. And on the local CPU you need to be protected against NMI or
2381  * MCE handlers seeing an inconsistent instruction while you patch.
2382  */
2383 void __init_or_module text_poke_early(void *addr, const void *opcode,
2384 				      size_t len)
2385 {
2386 	unsigned long flags;
2387 
2388 	if (boot_cpu_has(X86_FEATURE_NX) &&
2389 	    is_module_text_address((unsigned long)addr)) {
2390 		/*
2391 		 * Modules text is marked initially as non-executable, so the
2392 		 * code cannot be running and speculative code-fetches are
2393 		 * prevented. Just change the code.
2394 		 */
2395 		memcpy(addr, opcode, len);
2396 	} else {
2397 		local_irq_save(flags);
2398 		memcpy(addr, opcode, len);
2399 		sync_core();
2400 		local_irq_restore(flags);
2401 
2402 		/*
2403 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
2404 		 * that causes hangs on some VIA CPUs.
2405 		 */
2406 	}
2407 }
2408 
2409 __ro_after_init struct mm_struct *text_poke_mm;
2410 __ro_after_init unsigned long text_poke_mm_addr;
2411 
2412 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2413 {
2414 	memcpy(dst, src, len);
2415 }
2416 
2417 static void text_poke_memset(void *dst, const void *src, size_t len)
2418 {
2419 	int c = *(const int *)src;
2420 
2421 	memset(dst, c, len);
2422 }
2423 
2424 typedef void text_poke_f(void *dst, const void *src, size_t len);
2425 
2426 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2427 {
2428 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2429 	struct page *pages[2] = {NULL};
2430 	struct mm_struct *prev_mm;
2431 	unsigned long flags;
2432 	pte_t pte, *ptep;
2433 	spinlock_t *ptl;
2434 	pgprot_t pgprot;
2435 
2436 	/*
2437 	 * While boot memory allocator is running we cannot use struct pages as
2438 	 * they are not yet initialized. There is no way to recover.
2439 	 */
2440 	BUG_ON(!after_bootmem);
2441 
2442 	if (!core_kernel_text((unsigned long)addr)) {
2443 		pages[0] = vmalloc_to_page(addr);
2444 		if (cross_page_boundary)
2445 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2446 	} else {
2447 		pages[0] = virt_to_page(addr);
2448 		WARN_ON(!PageReserved(pages[0]));
2449 		if (cross_page_boundary)
2450 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2451 	}
2452 	/*
2453 	 * If something went wrong, crash and burn since recovery paths are not
2454 	 * implemented.
2455 	 */
2456 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2457 
2458 	/*
2459 	 * Map the page without the global bit, as TLB flushing is done with
2460 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2461 	 */
2462 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2463 
2464 	/*
2465 	 * The lock is not really needed, but this allows to avoid open-coding.
2466 	 */
2467 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2468 
2469 	/*
2470 	 * This must not fail; preallocated in poking_init().
2471 	 */
2472 	VM_BUG_ON(!ptep);
2473 
2474 	local_irq_save(flags);
2475 
2476 	pte = mk_pte(pages[0], pgprot);
2477 	set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2478 
2479 	if (cross_page_boundary) {
2480 		pte = mk_pte(pages[1], pgprot);
2481 		set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2482 	}
2483 
2484 	/*
2485 	 * Loading the temporary mm behaves as a compiler barrier, which
2486 	 * guarantees that the PTE will be set at the time memcpy() is done.
2487 	 */
2488 	prev_mm = use_temporary_mm(text_poke_mm);
2489 
2490 	kasan_disable_current();
2491 	func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2492 	kasan_enable_current();
2493 
2494 	/*
2495 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2496 	 * were issued by using a compiler barrier.
2497 	 */
2498 	barrier();
2499 
2500 	pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2501 	if (cross_page_boundary)
2502 		pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2503 
2504 	/*
2505 	 * Loading the previous page-table hierarchy requires a serializing
2506 	 * instruction that already allows the core to see the updated version.
2507 	 * Xen-PV is assumed to serialize execution in a similar manner.
2508 	 */
2509 	unuse_temporary_mm(prev_mm);
2510 
2511 	/*
2512 	 * Flushing the TLB might involve IPIs, which would require enabled
2513 	 * IRQs, but not if the mm is not used, as it is in this point.
2514 	 */
2515 	flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2516 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2517 			   PAGE_SHIFT, false);
2518 
2519 	if (func == text_poke_memcpy) {
2520 		/*
2521 		 * If the text does not match what we just wrote then something is
2522 		 * fundamentally screwy; there's nothing we can really do about that.
2523 		 */
2524 		BUG_ON(memcmp(addr, src, len));
2525 	}
2526 
2527 	local_irq_restore(flags);
2528 	pte_unmap_unlock(ptep, ptl);
2529 	return addr;
2530 }
2531 
2532 /**
2533  * text_poke - Update instructions on a live kernel
2534  * @addr: address to modify
2535  * @opcode: source of the copy
2536  * @len: length to copy
2537  *
2538  * Only atomic text poke/set should be allowed when not doing early patching.
2539  * It means the size must be writable atomically and the address must be aligned
2540  * in a way that permits an atomic write. It also makes sure we fit on a single
2541  * page.
2542  *
2543  * Note that the caller must ensure that if the modified code is part of a
2544  * module, the module would not be removed during poking. This can be achieved
2545  * by registering a module notifier, and ordering module removal and patching
2546  * through a mutex.
2547  */
2548 void *text_poke(void *addr, const void *opcode, size_t len)
2549 {
2550 	lockdep_assert_held(&text_mutex);
2551 
2552 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2553 }
2554 
2555 /**
2556  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2557  * @addr: address to modify
2558  * @opcode: source of the copy
2559  * @len: length to copy
2560  *
2561  * Only atomic text poke/set should be allowed when not doing early patching.
2562  * It means the size must be writable atomically and the address must be aligned
2563  * in a way that permits an atomic write. It also makes sure we fit on a single
2564  * page.
2565  *
2566  * Context: should only be used by kgdb, which ensures no other core is running,
2567  *	    despite the fact it does not hold the text_mutex.
2568  */
2569 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2570 {
2571 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2572 }
2573 
2574 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2575 			    bool core_ok)
2576 {
2577 	unsigned long start = (unsigned long)addr;
2578 	size_t patched = 0;
2579 
2580 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2581 		return NULL;
2582 
2583 	while (patched < len) {
2584 		unsigned long ptr = start + patched;
2585 		size_t s;
2586 
2587 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2588 
2589 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2590 		patched += s;
2591 	}
2592 	return addr;
2593 }
2594 
2595 /**
2596  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2597  * @addr: address to modify
2598  * @opcode: source of the copy
2599  * @len: length to copy, could be more than 2x PAGE_SIZE
2600  *
2601  * Not safe against concurrent execution; useful for JITs to dump
2602  * new code blocks into unused regions of RX memory. Can be used in
2603  * conjunction with synchronize_rcu_tasks() to wait for existing
2604  * execution to quiesce after having made sure no existing functions
2605  * pointers are live.
2606  */
2607 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2608 {
2609 	mutex_lock(&text_mutex);
2610 	addr = text_poke_copy_locked(addr, opcode, len, false);
2611 	mutex_unlock(&text_mutex);
2612 	return addr;
2613 }
2614 
2615 /**
2616  * text_poke_set - memset into (an unused part of) RX memory
2617  * @addr: address to modify
2618  * @c: the byte to fill the area with
2619  * @len: length to copy, could be more than 2x PAGE_SIZE
2620  *
2621  * This is useful to overwrite unused regions of RX memory with illegal
2622  * instructions.
2623  */
2624 void *text_poke_set(void *addr, int c, size_t len)
2625 {
2626 	unsigned long start = (unsigned long)addr;
2627 	size_t patched = 0;
2628 
2629 	if (WARN_ON_ONCE(core_kernel_text(start)))
2630 		return NULL;
2631 
2632 	mutex_lock(&text_mutex);
2633 	while (patched < len) {
2634 		unsigned long ptr = start + patched;
2635 		size_t s;
2636 
2637 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2638 
2639 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2640 		patched += s;
2641 	}
2642 	mutex_unlock(&text_mutex);
2643 	return addr;
2644 }
2645 
2646 static void do_sync_core(void *info)
2647 {
2648 	sync_core();
2649 }
2650 
2651 void smp_text_poke_sync_each_cpu(void)
2652 {
2653 	on_each_cpu(do_sync_core, NULL, 1);
2654 }
2655 
2656 /*
2657  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2658  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2659  * opcode to Jcc.d8, using len to distinguish.
2660  */
2661 struct smp_text_poke_loc {
2662 	/* addr := _stext + rel_addr */
2663 	s32 rel_addr;
2664 	s32 disp;
2665 	u8 len;
2666 	u8 opcode;
2667 	const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2668 	/* see smp_text_poke_batch_finish() */
2669 	u8 old;
2670 };
2671 
2672 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2673 
2674 static struct smp_text_poke_array {
2675 	struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2676 	int nr_entries;
2677 } text_poke_array;
2678 
2679 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2680 
2681 /*
2682  * These four __always_inline annotations imply noinstr, necessary
2683  * due to smp_text_poke_int3_handler() being noinstr:
2684  */
2685 
2686 static __always_inline bool try_get_text_poke_array(void)
2687 {
2688 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2689 
2690 	if (!raw_atomic_inc_not_zero(refs))
2691 		return false;
2692 
2693 	return true;
2694 }
2695 
2696 static __always_inline void put_text_poke_array(void)
2697 {
2698 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2699 
2700 	smp_mb__before_atomic();
2701 	raw_atomic_dec(refs);
2702 }
2703 
2704 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2705 {
2706 	return _stext + tpl->rel_addr;
2707 }
2708 
2709 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2710 {
2711 	if (tpl_a < text_poke_addr(tpl_b))
2712 		return -1;
2713 	if (tpl_a > text_poke_addr(tpl_b))
2714 		return 1;
2715 	return 0;
2716 }
2717 
2718 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2719 {
2720 	struct smp_text_poke_loc *tpl;
2721 	int ret = 0;
2722 	void *ip;
2723 
2724 	if (user_mode(regs))
2725 		return 0;
2726 
2727 	/*
2728 	 * Having observed our INT3 instruction, we now must observe
2729 	 * text_poke_array with non-zero refcount:
2730 	 *
2731 	 *	text_poke_array_refs = 1		INT3
2732 	 *	WMB			RMB
2733 	 *	write INT3		if (text_poke_array_refs != 0)
2734 	 */
2735 	smp_rmb();
2736 
2737 	if (!try_get_text_poke_array())
2738 		return 0;
2739 
2740 	/*
2741 	 * Discount the INT3. See smp_text_poke_batch_finish().
2742 	 */
2743 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2744 
2745 	/*
2746 	 * Skip the binary search if there is a single member in the vector.
2747 	 */
2748 	if (unlikely(text_poke_array.nr_entries > 1)) {
2749 		tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2750 				      sizeof(struct smp_text_poke_loc),
2751 				      patch_cmp);
2752 		if (!tpl)
2753 			goto out_put;
2754 	} else {
2755 		tpl = text_poke_array.vec;
2756 		if (text_poke_addr(tpl) != ip)
2757 			goto out_put;
2758 	}
2759 
2760 	ip += tpl->len;
2761 
2762 	switch (tpl->opcode) {
2763 	case INT3_INSN_OPCODE:
2764 		/*
2765 		 * Someone poked an explicit INT3, they'll want to handle it,
2766 		 * do not consume.
2767 		 */
2768 		goto out_put;
2769 
2770 	case RET_INSN_OPCODE:
2771 		int3_emulate_ret(regs);
2772 		break;
2773 
2774 	case CALL_INSN_OPCODE:
2775 		int3_emulate_call(regs, (long)ip + tpl->disp);
2776 		break;
2777 
2778 	case JMP32_INSN_OPCODE:
2779 	case JMP8_INSN_OPCODE:
2780 		int3_emulate_jmp(regs, (long)ip + tpl->disp);
2781 		break;
2782 
2783 	case 0x70 ... 0x7f: /* Jcc */
2784 		int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2785 		break;
2786 
2787 	default:
2788 		BUG();
2789 	}
2790 
2791 	ret = 1;
2792 
2793 out_put:
2794 	put_text_poke_array();
2795 	return ret;
2796 }
2797 
2798 /**
2799  * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2800  *
2801  * Input state:
2802  *  text_poke_array.vec: vector of instructions to patch
2803  *  text_poke_array.nr_entries: number of entries in the vector
2804  *
2805  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2806  * We completely avoid using stop_machine() here, and achieve the
2807  * synchronization using INT3 breakpoints and SMP cross-calls.
2808  *
2809  * The way it is done:
2810  *	- For each entry in the vector:
2811  *		- add an INT3 trap to the address that will be patched
2812  *	- SMP sync all CPUs
2813  *	- For each entry in the vector:
2814  *		- update all but the first byte of the patched range
2815  *	- SMP sync all CPUs
2816  *	- For each entry in the vector:
2817  *		- replace the first byte (INT3) by the first byte of the
2818  *		  replacing opcode
2819  *	- SMP sync all CPUs
2820  */
2821 void smp_text_poke_batch_finish(void)
2822 {
2823 	unsigned char int3 = INT3_INSN_OPCODE;
2824 	unsigned int i;
2825 	int do_sync;
2826 
2827 	if (!text_poke_array.nr_entries)
2828 		return;
2829 
2830 	lockdep_assert_held(&text_mutex);
2831 
2832 	/*
2833 	 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2834 	 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2835 	 */
2836 	for_each_possible_cpu(i)
2837 		atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2838 
2839 	/*
2840 	 * Function tracing can enable thousands of places that need to be
2841 	 * updated. This can take quite some time, and with full kernel debugging
2842 	 * enabled, this could cause the softlockup watchdog to trigger.
2843 	 * This function gets called every 256 entries added to be patched.
2844 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2845 	 * while processing all the functions being patched.
2846 	 */
2847 	cond_resched();
2848 
2849 	/*
2850 	 * Corresponding read barrier in INT3 notifier for making sure the
2851 	 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2852 	 */
2853 	smp_wmb();
2854 
2855 	/*
2856 	 * First step: add a INT3 trap to the address that will be patched.
2857 	 */
2858 	for (i = 0; i < text_poke_array.nr_entries; i++) {
2859 		text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2860 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2861 	}
2862 
2863 	smp_text_poke_sync_each_cpu();
2864 
2865 	/*
2866 	 * Second step: update all but the first byte of the patched range.
2867 	 */
2868 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2869 		u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2870 		u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2871 		const u8 *new = text_poke_array.vec[i].text;
2872 		int len = text_poke_array.vec[i].len;
2873 
2874 		if (len - INT3_INSN_SIZE > 0) {
2875 			memcpy(old + INT3_INSN_SIZE,
2876 			       text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2877 			       len - INT3_INSN_SIZE);
2878 
2879 			if (len == 6) {
2880 				_new[0] = 0x0f;
2881 				memcpy(_new + 1, new, 5);
2882 				new = _new;
2883 			}
2884 
2885 			text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2886 				  new + INT3_INSN_SIZE,
2887 				  len - INT3_INSN_SIZE);
2888 
2889 			do_sync++;
2890 		}
2891 
2892 		/*
2893 		 * Emit a perf event to record the text poke, primarily to
2894 		 * support Intel PT decoding which must walk the executable code
2895 		 * to reconstruct the trace. The flow up to here is:
2896 		 *   - write INT3 byte
2897 		 *   - IPI-SYNC
2898 		 *   - write instruction tail
2899 		 * At this point the actual control flow will be through the
2900 		 * INT3 and handler and not hit the old or new instruction.
2901 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2902 		 * can still be decoded. Subsequently:
2903 		 *   - emit RECORD_TEXT_POKE with the new instruction
2904 		 *   - IPI-SYNC
2905 		 *   - write first byte
2906 		 *   - IPI-SYNC
2907 		 * So before the text poke event timestamp, the decoder will see
2908 		 * either the old instruction flow or FUP/TIP of INT3. After the
2909 		 * text poke event timestamp, the decoder will see either the
2910 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2911 		 * use the timestamp as the point at which to modify the
2912 		 * executable code.
2913 		 * The old instruction is recorded so that the event can be
2914 		 * processed forwards or backwards.
2915 		 */
2916 		perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2917 	}
2918 
2919 	if (do_sync) {
2920 		/*
2921 		 * According to Intel, this core syncing is very likely
2922 		 * not necessary and we'd be safe even without it. But
2923 		 * better safe than sorry (plus there's not only Intel).
2924 		 */
2925 		smp_text_poke_sync_each_cpu();
2926 	}
2927 
2928 	/*
2929 	 * Third step: replace the first byte (INT3) by the first byte of the
2930 	 * replacing opcode.
2931 	 */
2932 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2933 		u8 byte = text_poke_array.vec[i].text[0];
2934 
2935 		if (text_poke_array.vec[i].len == 6)
2936 			byte = 0x0f;
2937 
2938 		if (byte == INT3_INSN_OPCODE)
2939 			continue;
2940 
2941 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
2942 		do_sync++;
2943 	}
2944 
2945 	if (do_sync)
2946 		smp_text_poke_sync_each_cpu();
2947 
2948 	/*
2949 	 * Remove and wait for refs to be zero.
2950 	 *
2951 	 * Notably, if after step-3 above the INT3 got removed, then the
2952 	 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
2953 	 * handlers and the below spin-wait will not happen.
2954 	 *
2955 	 * IOW. unless the replacement instruction is INT3, this case goes
2956 	 * unused.
2957 	 */
2958 	for_each_possible_cpu(i) {
2959 		atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
2960 
2961 		if (unlikely(!atomic_dec_and_test(refs)))
2962 			atomic_cond_read_acquire(refs, !VAL);
2963 	}
2964 
2965 	/* They are all completed: */
2966 	text_poke_array.nr_entries = 0;
2967 }
2968 
2969 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
2970 {
2971 	struct smp_text_poke_loc *tpl;
2972 	struct insn insn;
2973 	int ret, i = 0;
2974 
2975 	tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
2976 
2977 	if (len == 6)
2978 		i = 1;
2979 	memcpy((void *)tpl->text, opcode+i, len-i);
2980 	if (!emulate)
2981 		emulate = opcode;
2982 
2983 	ret = insn_decode_kernel(&insn, emulate);
2984 	BUG_ON(ret < 0);
2985 
2986 	tpl->rel_addr = addr - (void *)_stext;
2987 	tpl->len = len;
2988 	tpl->opcode = insn.opcode.bytes[0];
2989 
2990 	if (is_jcc32(&insn)) {
2991 		/*
2992 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2993 		 */
2994 		tpl->opcode = insn.opcode.bytes[1] - 0x10;
2995 	}
2996 
2997 	switch (tpl->opcode) {
2998 	case RET_INSN_OPCODE:
2999 	case JMP32_INSN_OPCODE:
3000 	case JMP8_INSN_OPCODE:
3001 		/*
3002 		 * Control flow instructions without implied execution of the
3003 		 * next instruction can be padded with INT3.
3004 		 */
3005 		for (i = insn.length; i < len; i++)
3006 			BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3007 		break;
3008 
3009 	default:
3010 		BUG_ON(len != insn.length);
3011 	}
3012 
3013 	switch (tpl->opcode) {
3014 	case INT3_INSN_OPCODE:
3015 	case RET_INSN_OPCODE:
3016 		break;
3017 
3018 	case CALL_INSN_OPCODE:
3019 	case JMP32_INSN_OPCODE:
3020 	case JMP8_INSN_OPCODE:
3021 	case 0x70 ... 0x7f: /* Jcc */
3022 		tpl->disp = insn.immediate.value;
3023 		break;
3024 
3025 	default: /* assume NOP */
3026 		switch (len) {
3027 		case 2: /* NOP2 -- emulate as JMP8+0 */
3028 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3029 			tpl->opcode = JMP8_INSN_OPCODE;
3030 			tpl->disp = 0;
3031 			break;
3032 
3033 		case 5: /* NOP5 -- emulate as JMP32+0 */
3034 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3035 			tpl->opcode = JMP32_INSN_OPCODE;
3036 			tpl->disp = 0;
3037 			break;
3038 
3039 		default: /* unknown instruction */
3040 			BUG();
3041 		}
3042 		break;
3043 	}
3044 }
3045 
3046 /*
3047  * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3048  * early if needed.
3049  */
3050 static bool text_poke_addr_ordered(void *addr)
3051 {
3052 	WARN_ON_ONCE(!addr);
3053 
3054 	if (!text_poke_array.nr_entries)
3055 		return true;
3056 
3057 	/*
3058 	 * If the last current entry's address is higher than the
3059 	 * new entry's address we'd like to add, then ordering
3060 	 * is violated and we must first flush all pending patching
3061 	 * requests:
3062 	 */
3063 	if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3064 		return false;
3065 
3066 	return true;
3067 }
3068 
3069 /**
3070  * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3071  * @addr:	address to patch
3072  * @opcode:	opcode of new instruction
3073  * @len:	length to copy
3074  * @emulate:	instruction to be emulated
3075  *
3076  * Add a new instruction to the current queue of to-be-patched instructions
3077  * the kernel maintains. The patching request will not be executed immediately,
3078  * but becomes part of an array of patching requests, optimized for batched
3079  * execution. All pending patching requests will be executed on the next
3080  * smp_text_poke_batch_finish() call.
3081  */
3082 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3083 {
3084 	if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3085 		smp_text_poke_batch_finish();
3086 	__smp_text_poke_batch_add(addr, opcode, len, emulate);
3087 }
3088 
3089 /**
3090  * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3091  * @addr:	address to patch
3092  * @opcode:	opcode of new instruction
3093  * @len:	length to copy
3094  * @emulate:	instruction to be emulated
3095  *
3096  * Update a single instruction with the vector in the stack, avoiding
3097  * dynamically allocated memory. This function should be used when it is
3098  * not possible to allocate memory for a vector. The single instruction
3099  * is patched in immediately.
3100  */
3101 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3102 {
3103 	smp_text_poke_batch_add(addr, opcode, len, emulate);
3104 	smp_text_poke_batch_finish();
3105 }
3106