1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for s390x - CPU-measurement Counter Facility
4 *
5 * Copyright IBM Corp. 2012, 2023
6 * Author(s): Hendrik Brueckner <brueckner@linux.ibm.com>
7 * Thomas Richter <tmricht@linux.ibm.com>
8 */
9 #define KMSG_COMPONENT "cpum_cf"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/percpu.h>
15 #include <linux/notifier.h>
16 #include <linux/init.h>
17 #include <linux/miscdevice.h>
18 #include <linux/perf_event.h>
19
20 #include <asm/cpu_mf.h>
21 #include <asm/hwctrset.h>
22 #include <asm/debug.h>
23
24 /* Perf PMU definitions for the counter facility */
25 #define PERF_CPUM_CF_MAX_CTR 0xffffUL /* Max ctr for ECCTR */
26 #define PERF_EVENT_CPUM_CF_DIAG 0xBC000UL /* Event: Counter sets */
27
28 enum cpumf_ctr_set {
29 CPUMF_CTR_SET_BASIC = 0, /* Basic Counter Set */
30 CPUMF_CTR_SET_USER = 1, /* Problem-State Counter Set */
31 CPUMF_CTR_SET_CRYPTO = 2, /* Crypto-Activity Counter Set */
32 CPUMF_CTR_SET_EXT = 3, /* Extended Counter Set */
33 CPUMF_CTR_SET_MT_DIAG = 4, /* MT-diagnostic Counter Set */
34
35 /* Maximum number of counter sets */
36 CPUMF_CTR_SET_MAX,
37 };
38
39 #define CPUMF_LCCTL_ENABLE_SHIFT 16
40 #define CPUMF_LCCTL_ACTCTL_SHIFT 0
41
ctr_set_enable(u64 * state,u64 ctrsets)42 static inline void ctr_set_enable(u64 *state, u64 ctrsets)
43 {
44 *state |= ctrsets << CPUMF_LCCTL_ENABLE_SHIFT;
45 }
46
ctr_set_disable(u64 * state,u64 ctrsets)47 static inline void ctr_set_disable(u64 *state, u64 ctrsets)
48 {
49 *state &= ~(ctrsets << CPUMF_LCCTL_ENABLE_SHIFT);
50 }
51
ctr_set_start(u64 * state,u64 ctrsets)52 static inline void ctr_set_start(u64 *state, u64 ctrsets)
53 {
54 *state |= ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT;
55 }
56
ctr_set_stop(u64 * state,u64 ctrsets)57 static inline void ctr_set_stop(u64 *state, u64 ctrsets)
58 {
59 *state &= ~(ctrsets << CPUMF_LCCTL_ACTCTL_SHIFT);
60 }
61
ctr_stcctm(enum cpumf_ctr_set set,u64 range,u64 * dest)62 static inline int ctr_stcctm(enum cpumf_ctr_set set, u64 range, u64 *dest)
63 {
64 switch (set) {
65 case CPUMF_CTR_SET_BASIC:
66 return stcctm(BASIC, range, dest);
67 case CPUMF_CTR_SET_USER:
68 return stcctm(PROBLEM_STATE, range, dest);
69 case CPUMF_CTR_SET_CRYPTO:
70 return stcctm(CRYPTO_ACTIVITY, range, dest);
71 case CPUMF_CTR_SET_EXT:
72 return stcctm(EXTENDED, range, dest);
73 case CPUMF_CTR_SET_MT_DIAG:
74 return stcctm(MT_DIAG_CLEARING, range, dest);
75 case CPUMF_CTR_SET_MAX:
76 return 3;
77 }
78 return 3;
79 }
80
81 struct cpu_cf_events {
82 refcount_t refcnt; /* Reference count */
83 atomic_t ctr_set[CPUMF_CTR_SET_MAX];
84 u64 state; /* For perf_event_open SVC */
85 u64 dev_state; /* For /dev/hwctr */
86 unsigned int flags;
87 size_t used; /* Bytes used in data */
88 size_t usedss; /* Bytes used in start/stop */
89 unsigned char start[PAGE_SIZE]; /* Counter set at event add */
90 unsigned char stop[PAGE_SIZE]; /* Counter set at event delete */
91 unsigned char data[PAGE_SIZE]; /* Counter set at /dev/hwctr */
92 unsigned int sets; /* # Counter set saved in memory */
93 };
94
95 static unsigned int cfdiag_cpu_speed; /* CPU speed for CF_DIAG trailer */
96 static debug_info_t *cf_dbg;
97
98 /*
99 * The CPU Measurement query counter information instruction contains
100 * information which varies per machine generation, but is constant and
101 * does not change when running on a particular machine, such as counter
102 * first and second version number. This is needed to determine the size
103 * of counter sets. Extract this information at device driver initialization.
104 */
105 static struct cpumf_ctr_info cpumf_ctr_info;
106
107 struct cpu_cf_ptr {
108 struct cpu_cf_events *cpucf;
109 };
110
111 static struct cpu_cf_root { /* Anchor to per CPU data */
112 refcount_t refcnt; /* Overall active events */
113 struct cpu_cf_ptr __percpu *cfptr;
114 } cpu_cf_root;
115
116 /*
117 * Serialize event initialization and event removal. Both are called from
118 * user space in task context with perf_event_open() and close()
119 * system calls.
120 *
121 * This mutex serializes functions cpum_cf_alloc_cpu() called at event
122 * initialization via cpumf_pmu_event_init() and function cpum_cf_free_cpu()
123 * called at event removal via call back function hw_perf_event_destroy()
124 * when the event is deleted. They are serialized to enforce correct
125 * bookkeeping of pointer and reference counts anchored by
126 * struct cpu_cf_root and the access to cpu_cf_root::refcnt and the
127 * per CPU pointers stored in cpu_cf_root::cfptr.
128 */
129 static DEFINE_MUTEX(pmc_reserve_mutex);
130
131 /*
132 * Get pointer to per-cpu structure.
133 *
134 * Function get_cpu_cfhw() is called from
135 * - cfset_copy_all(): This function is protected by cpus_read_lock(), so
136 * CPU hot plug remove can not happen. Event removal requires a close()
137 * first.
138 *
139 * Function this_cpu_cfhw() is called from perf common code functions:
140 * - pmu_{en|dis}able(), pmu_{add|del}()and pmu_{start|stop}():
141 * All functions execute with interrupts disabled on that particular CPU.
142 * - cfset_ioctl_{on|off}, cfset_cpu_read(): see comment cfset_copy_all().
143 *
144 * Therefore it is safe to access the CPU specific pointer to the event.
145 */
get_cpu_cfhw(int cpu)146 static struct cpu_cf_events *get_cpu_cfhw(int cpu)
147 {
148 struct cpu_cf_ptr __percpu *p = cpu_cf_root.cfptr;
149
150 if (p) {
151 struct cpu_cf_ptr *q = per_cpu_ptr(p, cpu);
152
153 return q->cpucf;
154 }
155 return NULL;
156 }
157
this_cpu_cfhw(void)158 static struct cpu_cf_events *this_cpu_cfhw(void)
159 {
160 return get_cpu_cfhw(smp_processor_id());
161 }
162
163 /* Disable counter sets on dedicated CPU */
cpum_cf_reset_cpu(void * flags)164 static void cpum_cf_reset_cpu(void *flags)
165 {
166 lcctl(0);
167 }
168
169 /* Free per CPU data when the last event is removed. */
cpum_cf_free_root(void)170 static void cpum_cf_free_root(void)
171 {
172 if (!refcount_dec_and_test(&cpu_cf_root.refcnt))
173 return;
174 free_percpu(cpu_cf_root.cfptr);
175 cpu_cf_root.cfptr = NULL;
176 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
177 on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
178 debug_sprintf_event(cf_dbg, 4, "%s root.refcnt %u cfptr %d\n",
179 __func__, refcount_read(&cpu_cf_root.refcnt),
180 !cpu_cf_root.cfptr);
181 }
182
183 /*
184 * On initialization of first event also allocate per CPU data dynamically.
185 * Start with an array of pointers, the array size is the maximum number of
186 * CPUs possible, which might be larger than the number of CPUs currently
187 * online.
188 */
cpum_cf_alloc_root(void)189 static int cpum_cf_alloc_root(void)
190 {
191 int rc = 0;
192
193 if (refcount_inc_not_zero(&cpu_cf_root.refcnt))
194 return rc;
195
196 /* The memory is already zeroed. */
197 cpu_cf_root.cfptr = alloc_percpu(struct cpu_cf_ptr);
198 if (cpu_cf_root.cfptr) {
199 refcount_set(&cpu_cf_root.refcnt, 1);
200 on_each_cpu(cpum_cf_reset_cpu, NULL, 1);
201 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
202 } else {
203 rc = -ENOMEM;
204 }
205
206 return rc;
207 }
208
209 /* Free CPU counter data structure for a PMU */
cpum_cf_free_cpu(int cpu)210 static void cpum_cf_free_cpu(int cpu)
211 {
212 struct cpu_cf_events *cpuhw;
213 struct cpu_cf_ptr *p;
214
215 mutex_lock(&pmc_reserve_mutex);
216 /*
217 * When invoked via CPU hotplug handler, there might be no events
218 * installed or that particular CPU might not have an
219 * event installed. This anchor pointer can be NULL!
220 */
221 if (!cpu_cf_root.cfptr)
222 goto out;
223 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
224 cpuhw = p->cpucf;
225 /*
226 * Might be zero when called from CPU hotplug handler and no event
227 * installed on that CPU, but on different CPUs.
228 */
229 if (!cpuhw)
230 goto out;
231
232 if (refcount_dec_and_test(&cpuhw->refcnt)) {
233 kfree(cpuhw);
234 p->cpucf = NULL;
235 }
236 cpum_cf_free_root();
237 out:
238 mutex_unlock(&pmc_reserve_mutex);
239 }
240
241 /* Allocate CPU counter data structure for a PMU. Called under mutex lock. */
cpum_cf_alloc_cpu(int cpu)242 static int cpum_cf_alloc_cpu(int cpu)
243 {
244 struct cpu_cf_events *cpuhw;
245 struct cpu_cf_ptr *p;
246 int rc;
247
248 mutex_lock(&pmc_reserve_mutex);
249 rc = cpum_cf_alloc_root();
250 if (rc)
251 goto unlock;
252 p = per_cpu_ptr(cpu_cf_root.cfptr, cpu);
253 cpuhw = p->cpucf;
254
255 if (!cpuhw) {
256 cpuhw = kzalloc(sizeof(*cpuhw), GFP_KERNEL);
257 if (cpuhw) {
258 p->cpucf = cpuhw;
259 refcount_set(&cpuhw->refcnt, 1);
260 } else {
261 rc = -ENOMEM;
262 }
263 } else {
264 refcount_inc(&cpuhw->refcnt);
265 }
266 if (rc) {
267 /*
268 * Error in allocation of event, decrement anchor. Since
269 * cpu_cf_event in not created, its destroy() function is not
270 * invoked. Adjust the reference counter for the anchor.
271 */
272 cpum_cf_free_root();
273 }
274 unlock:
275 mutex_unlock(&pmc_reserve_mutex);
276 return rc;
277 }
278
279 /*
280 * Create/delete per CPU data structures for /dev/hwctr interface and events
281 * created by perf_event_open().
282 * If cpu is -1, track task on all available CPUs. This requires
283 * allocation of hardware data structures for all CPUs. This setup handles
284 * perf_event_open() with task context and /dev/hwctr interface.
285 * If cpu is non-zero install event on this CPU only. This setup handles
286 * perf_event_open() with CPU context.
287 */
cpum_cf_alloc(int cpu)288 static int cpum_cf_alloc(int cpu)
289 {
290 cpumask_var_t mask;
291 int rc;
292
293 if (cpu == -1) {
294 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
295 return -ENOMEM;
296 for_each_online_cpu(cpu) {
297 rc = cpum_cf_alloc_cpu(cpu);
298 if (rc) {
299 for_each_cpu(cpu, mask)
300 cpum_cf_free_cpu(cpu);
301 break;
302 }
303 cpumask_set_cpu(cpu, mask);
304 }
305 free_cpumask_var(mask);
306 } else {
307 rc = cpum_cf_alloc_cpu(cpu);
308 }
309 return rc;
310 }
311
cpum_cf_free(int cpu)312 static void cpum_cf_free(int cpu)
313 {
314 if (cpu == -1) {
315 for_each_online_cpu(cpu)
316 cpum_cf_free_cpu(cpu);
317 } else {
318 cpum_cf_free_cpu(cpu);
319 }
320 }
321
322 #define CF_DIAG_CTRSET_DEF 0xfeef /* Counter set header mark */
323 /* interval in seconds */
324
325 /* Counter sets are stored as data stream in a page sized memory buffer and
326 * exported to user space via raw data attached to the event sample data.
327 * Each counter set starts with an eight byte header consisting of:
328 * - a two byte eye catcher (0xfeef)
329 * - a one byte counter set number
330 * - a two byte counter set size (indicates the number of counters in this set)
331 * - a three byte reserved value (must be zero) to make the header the same
332 * size as a counter value.
333 * All counter values are eight byte in size.
334 *
335 * All counter sets are followed by a 64 byte trailer.
336 * The trailer consists of a:
337 * - flag field indicating valid fields when corresponding bit set
338 * - the counter facility first and second version number
339 * - the CPU speed if nonzero
340 * - the time stamp the counter sets have been collected
341 * - the time of day (TOD) base value
342 * - the machine type.
343 *
344 * The counter sets are saved when the process is prepared to be executed on a
345 * CPU and saved again when the process is going to be removed from a CPU.
346 * The difference of both counter sets are calculated and stored in the event
347 * sample data area.
348 */
349 struct cf_ctrset_entry { /* CPU-M CF counter set entry (8 byte) */
350 unsigned int def:16; /* 0-15 Data Entry Format */
351 unsigned int set:16; /* 16-31 Counter set identifier */
352 unsigned int ctr:16; /* 32-47 Number of stored counters */
353 unsigned int res1:16; /* 48-63 Reserved */
354 };
355
356 struct cf_trailer_entry { /* CPU-M CF_DIAG trailer (64 byte) */
357 /* 0 - 7 */
358 union {
359 struct {
360 unsigned int clock_base:1; /* TOD clock base set */
361 unsigned int speed:1; /* CPU speed set */
362 /* Measurement alerts */
363 unsigned int mtda:1; /* Loss of MT ctr. data alert */
364 unsigned int caca:1; /* Counter auth. change alert */
365 unsigned int lcda:1; /* Loss of counter data alert */
366 };
367 unsigned long flags; /* 0-63 All indicators */
368 };
369 /* 8 - 15 */
370 unsigned int cfvn:16; /* 64-79 Ctr First Version */
371 unsigned int csvn:16; /* 80-95 Ctr Second Version */
372 unsigned int cpu_speed:32; /* 96-127 CPU speed */
373 /* 16 - 23 */
374 unsigned long timestamp; /* 128-191 Timestamp (TOD) */
375 /* 24 - 55 */
376 union {
377 struct {
378 unsigned long progusage1;
379 unsigned long progusage2;
380 unsigned long progusage3;
381 unsigned long tod_base;
382 };
383 unsigned long progusage[4];
384 };
385 /* 56 - 63 */
386 unsigned int mach_type:16; /* Machine type */
387 unsigned int res1:16; /* Reserved */
388 unsigned int res2:32; /* Reserved */
389 };
390
391 /* Create the trailer data at the end of a page. */
cfdiag_trailer(struct cf_trailer_entry * te)392 static void cfdiag_trailer(struct cf_trailer_entry *te)
393 {
394 struct cpuid cpuid;
395
396 te->cfvn = cpumf_ctr_info.cfvn; /* Counter version numbers */
397 te->csvn = cpumf_ctr_info.csvn;
398
399 get_cpu_id(&cpuid); /* Machine type */
400 te->mach_type = cpuid.machine;
401 te->cpu_speed = cfdiag_cpu_speed;
402 if (te->cpu_speed)
403 te->speed = 1;
404 te->clock_base = 1; /* Save clock base */
405 te->tod_base = tod_clock_base.tod;
406 te->timestamp = get_tod_clock_fast();
407 }
408
409 /*
410 * The number of counters per counter set varies between machine generations,
411 * but is constant when running on a particular machine generation.
412 * Determine each counter set size at device driver initialization and
413 * retrieve it later.
414 */
415 static size_t cpumf_ctr_setsizes[CPUMF_CTR_SET_MAX];
cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)416 static void cpum_cf_make_setsize(enum cpumf_ctr_set ctrset)
417 {
418 size_t ctrset_size = 0;
419
420 switch (ctrset) {
421 case CPUMF_CTR_SET_BASIC:
422 if (cpumf_ctr_info.cfvn >= 1)
423 ctrset_size = 6;
424 break;
425 case CPUMF_CTR_SET_USER:
426 if (cpumf_ctr_info.cfvn == 1)
427 ctrset_size = 6;
428 else if (cpumf_ctr_info.cfvn >= 3)
429 ctrset_size = 2;
430 break;
431 case CPUMF_CTR_SET_CRYPTO:
432 if (cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5)
433 ctrset_size = 16;
434 else if (cpumf_ctr_info.csvn >= 6)
435 ctrset_size = 20;
436 break;
437 case CPUMF_CTR_SET_EXT:
438 if (cpumf_ctr_info.csvn == 1)
439 ctrset_size = 32;
440 else if (cpumf_ctr_info.csvn == 2)
441 ctrset_size = 48;
442 else if (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5)
443 ctrset_size = 128;
444 else if (cpumf_ctr_info.csvn >= 6 && cpumf_ctr_info.csvn <= 8)
445 ctrset_size = 160;
446 break;
447 case CPUMF_CTR_SET_MT_DIAG:
448 if (cpumf_ctr_info.csvn > 3)
449 ctrset_size = 48;
450 break;
451 case CPUMF_CTR_SET_MAX:
452 break;
453 }
454 cpumf_ctr_setsizes[ctrset] = ctrset_size;
455 }
456
457 /*
458 * Return the maximum possible counter set size (in number of 8 byte counters)
459 * depending on type and model number.
460 */
cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)461 static size_t cpum_cf_read_setsize(enum cpumf_ctr_set ctrset)
462 {
463 return cpumf_ctr_setsizes[ctrset];
464 }
465
466 /* Read a counter set. The counter set number determines the counter set and
467 * the CPUM-CF first and second version number determine the number of
468 * available counters in each counter set.
469 * Each counter set starts with header containing the counter set number and
470 * the number of eight byte counters.
471 *
472 * The functions returns the number of bytes occupied by this counter set
473 * including the header.
474 * If there is no counter in the counter set, this counter set is useless and
475 * zero is returned on this case.
476 *
477 * Note that the counter sets may not be enabled or active and the stcctm
478 * instruction might return error 3. Depending on error_ok value this is ok,
479 * for example when called from cpumf_pmu_start() call back function.
480 */
cfdiag_getctrset(struct cf_ctrset_entry * ctrdata,int ctrset,size_t room,bool error_ok)481 static size_t cfdiag_getctrset(struct cf_ctrset_entry *ctrdata, int ctrset,
482 size_t room, bool error_ok)
483 {
484 size_t ctrset_size, need = 0;
485 int rc = 3; /* Assume write failure */
486
487 ctrdata->def = CF_DIAG_CTRSET_DEF;
488 ctrdata->set = ctrset;
489 ctrdata->res1 = 0;
490 ctrset_size = cpum_cf_read_setsize(ctrset);
491
492 if (ctrset_size) { /* Save data */
493 need = ctrset_size * sizeof(u64) + sizeof(*ctrdata);
494 if (need <= room) {
495 rc = ctr_stcctm(ctrset, ctrset_size,
496 (u64 *)(ctrdata + 1));
497 }
498 if (rc != 3 || error_ok)
499 ctrdata->ctr = ctrset_size;
500 else
501 need = 0;
502 }
503
504 return need;
505 }
506
507 static const u64 cpumf_ctr_ctl[CPUMF_CTR_SET_MAX] = {
508 [CPUMF_CTR_SET_BASIC] = 0x02,
509 [CPUMF_CTR_SET_USER] = 0x04,
510 [CPUMF_CTR_SET_CRYPTO] = 0x08,
511 [CPUMF_CTR_SET_EXT] = 0x01,
512 [CPUMF_CTR_SET_MT_DIAG] = 0x20,
513 };
514
515 /* Read out all counter sets and save them in the provided data buffer.
516 * The last 64 byte host an artificial trailer entry.
517 */
cfdiag_getctr(void * data,size_t sz,unsigned long auth,bool error_ok)518 static size_t cfdiag_getctr(void *data, size_t sz, unsigned long auth,
519 bool error_ok)
520 {
521 struct cf_trailer_entry *trailer;
522 size_t offset = 0, done;
523 int i;
524
525 memset(data, 0, sz);
526 sz -= sizeof(*trailer); /* Always room for trailer */
527 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
528 struct cf_ctrset_entry *ctrdata = data + offset;
529
530 if (!(auth & cpumf_ctr_ctl[i]))
531 continue; /* Counter set not authorized */
532
533 done = cfdiag_getctrset(ctrdata, i, sz - offset, error_ok);
534 offset += done;
535 }
536 trailer = data + offset;
537 cfdiag_trailer(trailer);
538 return offset + sizeof(*trailer);
539 }
540
541 /* Calculate the difference for each counter in a counter set. */
cfdiag_diffctrset(u64 * pstart,u64 * pstop,int counters)542 static void cfdiag_diffctrset(u64 *pstart, u64 *pstop, int counters)
543 {
544 for (; --counters >= 0; ++pstart, ++pstop)
545 if (*pstop >= *pstart)
546 *pstop -= *pstart;
547 else
548 *pstop = *pstart - *pstop + 1;
549 }
550
551 /* Scan the counter sets and calculate the difference of each counter
552 * in each set. The result is the increment of each counter during the
553 * period the counter set has been activated.
554 *
555 * Return true on success.
556 */
cfdiag_diffctr(struct cpu_cf_events * cpuhw,unsigned long auth)557 static int cfdiag_diffctr(struct cpu_cf_events *cpuhw, unsigned long auth)
558 {
559 struct cf_trailer_entry *trailer_start, *trailer_stop;
560 struct cf_ctrset_entry *ctrstart, *ctrstop;
561 size_t offset = 0;
562 int i;
563
564 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
565 ctrstart = (struct cf_ctrset_entry *)(cpuhw->start + offset);
566 ctrstop = (struct cf_ctrset_entry *)(cpuhw->stop + offset);
567
568 /* Counter set not authorized */
569 if (!(auth & cpumf_ctr_ctl[i]))
570 continue;
571 /* Counter set size zero was not saved */
572 if (!cpum_cf_read_setsize(i))
573 continue;
574
575 if (memcmp(ctrstop, ctrstart, sizeof(*ctrstop))) {
576 pr_err_once("cpum_cf_diag counter set compare error "
577 "in set %i\n", ctrstart->set);
578 return 0;
579 }
580 if (ctrstart->def == CF_DIAG_CTRSET_DEF) {
581 cfdiag_diffctrset((u64 *)(ctrstart + 1),
582 (u64 *)(ctrstop + 1), ctrstart->ctr);
583 offset += ctrstart->ctr * sizeof(u64) +
584 sizeof(*ctrstart);
585 }
586 }
587
588 /* Save time_stamp from start of event in stop's trailer */
589 trailer_start = (struct cf_trailer_entry *)(cpuhw->start + offset);
590 trailer_stop = (struct cf_trailer_entry *)(cpuhw->stop + offset);
591 trailer_stop->progusage[0] = trailer_start->timestamp;
592
593 return 1;
594 }
595
get_counter_set(u64 event)596 static enum cpumf_ctr_set get_counter_set(u64 event)
597 {
598 int set = CPUMF_CTR_SET_MAX;
599
600 if (event < 32)
601 set = CPUMF_CTR_SET_BASIC;
602 else if (event < 64)
603 set = CPUMF_CTR_SET_USER;
604 else if (event < 128)
605 set = CPUMF_CTR_SET_CRYPTO;
606 else if (event < 288)
607 set = CPUMF_CTR_SET_EXT;
608 else if (event >= 448 && event < 496)
609 set = CPUMF_CTR_SET_MT_DIAG;
610
611 return set;
612 }
613
validate_ctr_version(const u64 config,enum cpumf_ctr_set set)614 static int validate_ctr_version(const u64 config, enum cpumf_ctr_set set)
615 {
616 u16 mtdiag_ctl;
617 int err = 0;
618
619 /* check required version for counter sets */
620 switch (set) {
621 case CPUMF_CTR_SET_BASIC:
622 case CPUMF_CTR_SET_USER:
623 if (cpumf_ctr_info.cfvn < 1)
624 err = -EOPNOTSUPP;
625 break;
626 case CPUMF_CTR_SET_CRYPTO:
627 if ((cpumf_ctr_info.csvn >= 1 && cpumf_ctr_info.csvn <= 5 &&
628 config > 79) || (cpumf_ctr_info.csvn >= 6 && config > 83))
629 err = -EOPNOTSUPP;
630 break;
631 case CPUMF_CTR_SET_EXT:
632 if (cpumf_ctr_info.csvn < 1)
633 err = -EOPNOTSUPP;
634 if ((cpumf_ctr_info.csvn == 1 && config > 159) ||
635 (cpumf_ctr_info.csvn == 2 && config > 175) ||
636 (cpumf_ctr_info.csvn >= 3 && cpumf_ctr_info.csvn <= 5 &&
637 config > 255) ||
638 (cpumf_ctr_info.csvn >= 6 && config > 287))
639 err = -EOPNOTSUPP;
640 break;
641 case CPUMF_CTR_SET_MT_DIAG:
642 if (cpumf_ctr_info.csvn <= 3)
643 err = -EOPNOTSUPP;
644 /*
645 * MT-diagnostic counters are read-only. The counter set
646 * is automatically enabled and activated on all CPUs with
647 * multithreading (SMT). Deactivation of multithreading
648 * also disables the counter set. State changes are ignored
649 * by lcctl(). Because Linux controls SMT enablement through
650 * a kernel parameter only, the counter set is either disabled
651 * or enabled and active.
652 *
653 * Thus, the counters can only be used if SMT is on and the
654 * counter set is enabled and active.
655 */
656 mtdiag_ctl = cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG];
657 if (!((cpumf_ctr_info.auth_ctl & mtdiag_ctl) &&
658 (cpumf_ctr_info.enable_ctl & mtdiag_ctl) &&
659 (cpumf_ctr_info.act_ctl & mtdiag_ctl)))
660 err = -EOPNOTSUPP;
661 break;
662 case CPUMF_CTR_SET_MAX:
663 err = -EOPNOTSUPP;
664 }
665
666 return err;
667 }
668
669 /*
670 * Change the CPUMF state to active.
671 * Enable and activate the CPU-counter sets according
672 * to the per-cpu control state.
673 */
cpumf_pmu_enable(struct pmu * pmu)674 static void cpumf_pmu_enable(struct pmu *pmu)
675 {
676 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
677 int err;
678
679 if (!cpuhw || (cpuhw->flags & PMU_F_ENABLED))
680 return;
681
682 err = lcctl(cpuhw->state | cpuhw->dev_state);
683 if (err)
684 pr_err("Enabling the performance measuring unit failed with rc=%x\n", err);
685 else
686 cpuhw->flags |= PMU_F_ENABLED;
687 }
688
689 /*
690 * Change the CPUMF state to inactive.
691 * Disable and enable (inactive) the CPU-counter sets according
692 * to the per-cpu control state.
693 */
cpumf_pmu_disable(struct pmu * pmu)694 static void cpumf_pmu_disable(struct pmu *pmu)
695 {
696 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
697 u64 inactive;
698 int err;
699
700 if (!cpuhw || !(cpuhw->flags & PMU_F_ENABLED))
701 return;
702
703 inactive = cpuhw->state & ~((1 << CPUMF_LCCTL_ENABLE_SHIFT) - 1);
704 inactive |= cpuhw->dev_state;
705 err = lcctl(inactive);
706 if (err)
707 pr_err("Disabling the performance measuring unit failed with rc=%x\n", err);
708 else
709 cpuhw->flags &= ~PMU_F_ENABLED;
710 }
711
712 /* Release the PMU if event is the last perf event */
hw_perf_event_destroy(struct perf_event * event)713 static void hw_perf_event_destroy(struct perf_event *event)
714 {
715 cpum_cf_free(event->cpu);
716 }
717
718 /* CPUMF <-> perf event mappings for kernel+userspace (basic set) */
719 static const int cpumf_generic_events_basic[] = {
720 [PERF_COUNT_HW_CPU_CYCLES] = 0,
721 [PERF_COUNT_HW_INSTRUCTIONS] = 1,
722 [PERF_COUNT_HW_CACHE_REFERENCES] = -1,
723 [PERF_COUNT_HW_CACHE_MISSES] = -1,
724 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
725 [PERF_COUNT_HW_BRANCH_MISSES] = -1,
726 [PERF_COUNT_HW_BUS_CYCLES] = -1,
727 };
728 /* CPUMF <-> perf event mappings for userspace (problem-state set) */
729 static const int cpumf_generic_events_user[] = {
730 [PERF_COUNT_HW_CPU_CYCLES] = 32,
731 [PERF_COUNT_HW_INSTRUCTIONS] = 33,
732 [PERF_COUNT_HW_CACHE_REFERENCES] = -1,
733 [PERF_COUNT_HW_CACHE_MISSES] = -1,
734 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = -1,
735 [PERF_COUNT_HW_BRANCH_MISSES] = -1,
736 [PERF_COUNT_HW_BUS_CYCLES] = -1,
737 };
738
is_userspace_event(u64 ev)739 static int is_userspace_event(u64 ev)
740 {
741 return cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
742 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev;
743 }
744
__hw_perf_event_init(struct perf_event * event,unsigned int type)745 static int __hw_perf_event_init(struct perf_event *event, unsigned int type)
746 {
747 struct perf_event_attr *attr = &event->attr;
748 struct hw_perf_event *hwc = &event->hw;
749 enum cpumf_ctr_set set;
750 u64 ev;
751
752 switch (type) {
753 case PERF_TYPE_RAW:
754 /* Raw events are used to access counters directly,
755 * hence do not permit excludes */
756 if (attr->exclude_kernel || attr->exclude_user ||
757 attr->exclude_hv)
758 return -EOPNOTSUPP;
759 ev = attr->config;
760 break;
761
762 case PERF_TYPE_HARDWARE:
763 if (is_sampling_event(event)) /* No sampling support */
764 return -ENOENT;
765 ev = attr->config;
766 if (!attr->exclude_user && attr->exclude_kernel) {
767 /*
768 * Count user space (problem-state) only
769 * Handle events 32 and 33 as 0:u and 1:u
770 */
771 if (!is_userspace_event(ev)) {
772 if (ev >= ARRAY_SIZE(cpumf_generic_events_user))
773 return -EOPNOTSUPP;
774 ev = cpumf_generic_events_user[ev];
775 }
776 } else if (!attr->exclude_kernel && attr->exclude_user) {
777 /* No support for kernel space counters only */
778 return -EOPNOTSUPP;
779 } else {
780 /* Count user and kernel space, incl. events 32 + 33 */
781 if (!is_userspace_event(ev)) {
782 if (ev >= ARRAY_SIZE(cpumf_generic_events_basic))
783 return -EOPNOTSUPP;
784 ev = cpumf_generic_events_basic[ev];
785 }
786 }
787 break;
788
789 default:
790 return -ENOENT;
791 }
792
793 if (ev == -1)
794 return -ENOENT;
795
796 if (ev > PERF_CPUM_CF_MAX_CTR)
797 return -ENOENT;
798
799 /* Obtain the counter set to which the specified counter belongs */
800 set = get_counter_set(ev);
801 switch (set) {
802 case CPUMF_CTR_SET_BASIC:
803 case CPUMF_CTR_SET_USER:
804 case CPUMF_CTR_SET_CRYPTO:
805 case CPUMF_CTR_SET_EXT:
806 case CPUMF_CTR_SET_MT_DIAG:
807 /*
808 * Use the hardware perf event structure to store the
809 * counter number in the 'config' member and the counter
810 * set number in the 'config_base' as bit mask.
811 * It is later used to enable/disable the counter(s).
812 */
813 hwc->config = ev;
814 hwc->config_base = cpumf_ctr_ctl[set];
815 break;
816 case CPUMF_CTR_SET_MAX:
817 /* The counter could not be associated to a counter set */
818 return -EINVAL;
819 }
820
821 /* Initialize for using the CPU-measurement counter facility */
822 if (cpum_cf_alloc(event->cpu))
823 return -ENOMEM;
824 event->destroy = hw_perf_event_destroy;
825
826 /*
827 * Finally, validate version and authorization of the counter set.
828 * If the particular CPU counter set is not authorized,
829 * return with -ENOENT in order to fall back to other
830 * PMUs that might suffice the event request.
831 */
832 if (!(hwc->config_base & cpumf_ctr_info.auth_ctl))
833 return -ENOENT;
834 return validate_ctr_version(hwc->config, set);
835 }
836
837 /* Events CPU_CYCLES and INSTRUCTIONS can be submitted with two different
838 * attribute::type values:
839 * - PERF_TYPE_HARDWARE:
840 * - pmu->type:
841 * Handle both type of invocations identical. They address the same hardware.
842 * The result is different when event modifiers exclude_kernel and/or
843 * exclude_user are also set.
844 */
cpumf_pmu_event_type(struct perf_event * event)845 static int cpumf_pmu_event_type(struct perf_event *event)
846 {
847 u64 ev = event->attr.config;
848
849 if (cpumf_generic_events_basic[PERF_COUNT_HW_CPU_CYCLES] == ev ||
850 cpumf_generic_events_basic[PERF_COUNT_HW_INSTRUCTIONS] == ev ||
851 cpumf_generic_events_user[PERF_COUNT_HW_CPU_CYCLES] == ev ||
852 cpumf_generic_events_user[PERF_COUNT_HW_INSTRUCTIONS] == ev)
853 return PERF_TYPE_HARDWARE;
854 return PERF_TYPE_RAW;
855 }
856
cpumf_pmu_event_init(struct perf_event * event)857 static int cpumf_pmu_event_init(struct perf_event *event)
858 {
859 unsigned int type = event->attr.type;
860 int err = -ENOENT;
861
862 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_RAW)
863 err = __hw_perf_event_init(event, type);
864 else if (event->pmu->type == type)
865 /* Registered as unknown PMU */
866 err = __hw_perf_event_init(event, cpumf_pmu_event_type(event));
867
868 return err;
869 }
870
hw_perf_event_reset(struct perf_event * event)871 static int hw_perf_event_reset(struct perf_event *event)
872 {
873 u64 prev, new;
874 int err;
875
876 prev = local64_read(&event->hw.prev_count);
877 do {
878 err = ecctr(event->hw.config, &new);
879 if (err) {
880 if (err != 3)
881 break;
882 /* The counter is not (yet) available. This
883 * might happen if the counter set to which
884 * this counter belongs is in the disabled
885 * state.
886 */
887 new = 0;
888 }
889 } while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
890
891 return err;
892 }
893
hw_perf_event_update(struct perf_event * event)894 static void hw_perf_event_update(struct perf_event *event)
895 {
896 u64 prev, new, delta;
897 int err;
898
899 prev = local64_read(&event->hw.prev_count);
900 do {
901 err = ecctr(event->hw.config, &new);
902 if (err)
903 return;
904 } while (!local64_try_cmpxchg(&event->hw.prev_count, &prev, new));
905
906 delta = (prev <= new) ? new - prev
907 : (-1ULL - prev) + new + 1; /* overflow */
908 local64_add(delta, &event->count);
909 }
910
cpumf_pmu_read(struct perf_event * event)911 static void cpumf_pmu_read(struct perf_event *event)
912 {
913 if (event->hw.state & PERF_HES_STOPPED)
914 return;
915
916 hw_perf_event_update(event);
917 }
918
cpumf_pmu_start(struct perf_event * event,int flags)919 static void cpumf_pmu_start(struct perf_event *event, int flags)
920 {
921 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
922 struct hw_perf_event *hwc = &event->hw;
923 int i;
924
925 if (!(hwc->state & PERF_HES_STOPPED))
926 return;
927
928 hwc->state = 0;
929
930 /* (Re-)enable and activate the counter set */
931 ctr_set_enable(&cpuhw->state, hwc->config_base);
932 ctr_set_start(&cpuhw->state, hwc->config_base);
933
934 /* The counter set to which this counter belongs can be already active.
935 * Because all counters in a set are active, the event->hw.prev_count
936 * needs to be synchronized. At this point, the counter set can be in
937 * the inactive or disabled state.
938 */
939 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
940 cpuhw->usedss = cfdiag_getctr(cpuhw->start,
941 sizeof(cpuhw->start),
942 hwc->config_base, true);
943 } else {
944 hw_perf_event_reset(event);
945 }
946
947 /* Increment refcount for counter sets */
948 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
949 if ((hwc->config_base & cpumf_ctr_ctl[i]))
950 atomic_inc(&cpuhw->ctr_set[i]);
951 }
952
953 /* Create perf event sample with the counter sets as raw data. The sample
954 * is then pushed to the event subsystem and the function checks for
955 * possible event overflows. If an event overflow occurs, the PMU is
956 * stopped.
957 *
958 * Return non-zero if an event overflow occurred.
959 */
cfdiag_push_sample(struct perf_event * event,struct cpu_cf_events * cpuhw)960 static int cfdiag_push_sample(struct perf_event *event,
961 struct cpu_cf_events *cpuhw)
962 {
963 struct perf_sample_data data;
964 struct perf_raw_record raw;
965 struct pt_regs regs;
966 int overflow;
967
968 /* Setup perf sample */
969 perf_sample_data_init(&data, 0, event->hw.last_period);
970 memset(®s, 0, sizeof(regs));
971 memset(&raw, 0, sizeof(raw));
972
973 if (event->attr.sample_type & PERF_SAMPLE_CPU)
974 data.cpu_entry.cpu = event->cpu;
975 if (event->attr.sample_type & PERF_SAMPLE_RAW) {
976 raw.frag.size = cpuhw->usedss;
977 raw.frag.data = cpuhw->stop;
978 perf_sample_save_raw_data(&data, event, &raw);
979 }
980
981 overflow = perf_event_overflow(event, &data, ®s);
982
983 perf_event_update_userpage(event);
984 return overflow;
985 }
986
cpumf_pmu_stop(struct perf_event * event,int flags)987 static void cpumf_pmu_stop(struct perf_event *event, int flags)
988 {
989 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
990 struct hw_perf_event *hwc = &event->hw;
991 int i;
992
993 if (!(hwc->state & PERF_HES_STOPPED)) {
994 /* Decrement reference count for this counter set and if this
995 * is the last used counter in the set, clear activation
996 * control and set the counter set state to inactive.
997 */
998 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
999 if (!(hwc->config_base & cpumf_ctr_ctl[i]))
1000 continue;
1001 if (!atomic_dec_return(&cpuhw->ctr_set[i]))
1002 ctr_set_stop(&cpuhw->state, cpumf_ctr_ctl[i]);
1003 }
1004 hwc->state |= PERF_HES_STOPPED;
1005 }
1006
1007 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1008 if (hwc->config == PERF_EVENT_CPUM_CF_DIAG) {
1009 local64_inc(&event->count);
1010 cpuhw->usedss = cfdiag_getctr(cpuhw->stop,
1011 sizeof(cpuhw->stop),
1012 event->hw.config_base,
1013 false);
1014 if (cfdiag_diffctr(cpuhw, event->hw.config_base))
1015 cfdiag_push_sample(event, cpuhw);
1016 } else {
1017 hw_perf_event_update(event);
1018 }
1019 hwc->state |= PERF_HES_UPTODATE;
1020 }
1021 }
1022
cpumf_pmu_add(struct perf_event * event,int flags)1023 static int cpumf_pmu_add(struct perf_event *event, int flags)
1024 {
1025 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1026
1027 ctr_set_enable(&cpuhw->state, event->hw.config_base);
1028 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1029
1030 if (flags & PERF_EF_START)
1031 cpumf_pmu_start(event, PERF_EF_RELOAD);
1032
1033 return 0;
1034 }
1035
cpumf_pmu_del(struct perf_event * event,int flags)1036 static void cpumf_pmu_del(struct perf_event *event, int flags)
1037 {
1038 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1039 int i;
1040
1041 cpumf_pmu_stop(event, PERF_EF_UPDATE);
1042
1043 /* Check if any counter in the counter set is still used. If not used,
1044 * change the counter set to the disabled state. This also clears the
1045 * content of all counters in the set.
1046 *
1047 * When a new perf event has been added but not yet started, this can
1048 * clear enable control and resets all counters in a set. Therefore,
1049 * cpumf_pmu_start() always has to re-enable a counter set.
1050 */
1051 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i)
1052 if (!atomic_read(&cpuhw->ctr_set[i]))
1053 ctr_set_disable(&cpuhw->state, cpumf_ctr_ctl[i]);
1054 }
1055
1056 /* Performance monitoring unit for s390x */
1057 static struct pmu cpumf_pmu = {
1058 .task_ctx_nr = perf_sw_context,
1059 .capabilities = PERF_PMU_CAP_NO_INTERRUPT,
1060 .pmu_enable = cpumf_pmu_enable,
1061 .pmu_disable = cpumf_pmu_disable,
1062 .event_init = cpumf_pmu_event_init,
1063 .add = cpumf_pmu_add,
1064 .del = cpumf_pmu_del,
1065 .start = cpumf_pmu_start,
1066 .stop = cpumf_pmu_stop,
1067 .read = cpumf_pmu_read,
1068 };
1069
1070 static struct cfset_session { /* CPUs and counter set bit mask */
1071 struct list_head head; /* Head of list of active processes */
1072 } cfset_session = {
1073 .head = LIST_HEAD_INIT(cfset_session.head)
1074 };
1075
1076 static refcount_t cfset_opencnt = REFCOUNT_INIT(0); /* Access count */
1077 /*
1078 * Synchronize access to device /dev/hwc. This mutex protects against
1079 * concurrent access to functions cfset_open() and cfset_release().
1080 * Same for CPU hotplug add and remove events triggering
1081 * cpum_cf_online_cpu() and cpum_cf_offline_cpu().
1082 * It also serializes concurrent device ioctl access from multiple
1083 * processes accessing /dev/hwc.
1084 *
1085 * The mutex protects concurrent access to the /dev/hwctr session management
1086 * struct cfset_session and reference counting variable cfset_opencnt.
1087 */
1088 static DEFINE_MUTEX(cfset_ctrset_mutex);
1089
1090 /*
1091 * CPU hotplug handles only /dev/hwctr device.
1092 * For perf_event_open() the CPU hotplug handling is done on kernel common
1093 * code:
1094 * - CPU add: Nothing is done since a file descriptor can not be created
1095 * and returned to the user.
1096 * - CPU delete: Handled by common code via pmu_disable(), pmu_stop() and
1097 * pmu_delete(). The event itself is removed when the file descriptor is
1098 * closed.
1099 */
1100 static int cfset_online_cpu(unsigned int cpu);
1101
cpum_cf_online_cpu(unsigned int cpu)1102 static int cpum_cf_online_cpu(unsigned int cpu)
1103 {
1104 int rc = 0;
1105
1106 /*
1107 * Ignore notification for perf_event_open().
1108 * Handle only /dev/hwctr device sessions.
1109 */
1110 mutex_lock(&cfset_ctrset_mutex);
1111 if (refcount_read(&cfset_opencnt)) {
1112 rc = cpum_cf_alloc_cpu(cpu);
1113 if (!rc)
1114 cfset_online_cpu(cpu);
1115 }
1116 mutex_unlock(&cfset_ctrset_mutex);
1117 return rc;
1118 }
1119
1120 static int cfset_offline_cpu(unsigned int cpu);
1121
cpum_cf_offline_cpu(unsigned int cpu)1122 static int cpum_cf_offline_cpu(unsigned int cpu)
1123 {
1124 /*
1125 * During task exit processing of grouped perf events triggered by CPU
1126 * hotplug processing, pmu_disable() is called as part of perf context
1127 * removal process. Therefore do not trigger event removal now for
1128 * perf_event_open() created events. Perf common code triggers event
1129 * destruction when the event file descriptor is closed.
1130 *
1131 * Handle only /dev/hwctr device sessions.
1132 */
1133 mutex_lock(&cfset_ctrset_mutex);
1134 if (refcount_read(&cfset_opencnt)) {
1135 cfset_offline_cpu(cpu);
1136 cpum_cf_free_cpu(cpu);
1137 }
1138 mutex_unlock(&cfset_ctrset_mutex);
1139 return 0;
1140 }
1141
1142 /* Return true if store counter set multiple instruction is available */
stccm_avail(void)1143 static inline int stccm_avail(void)
1144 {
1145 return test_facility(142);
1146 }
1147
1148 /* CPU-measurement alerts for the counter facility */
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1149 static void cpumf_measurement_alert(struct ext_code ext_code,
1150 unsigned int alert, unsigned long unused)
1151 {
1152 struct cpu_cf_events *cpuhw;
1153
1154 if (!(alert & CPU_MF_INT_CF_MASK))
1155 return;
1156
1157 inc_irq_stat(IRQEXT_CMC);
1158
1159 /*
1160 * Measurement alerts are shared and might happen when the PMU
1161 * is not reserved. Ignore these alerts in this case.
1162 */
1163 cpuhw = this_cpu_cfhw();
1164 if (!cpuhw)
1165 return;
1166
1167 /* counter authorization change alert */
1168 if (alert & CPU_MF_INT_CF_CACA)
1169 qctri(&cpumf_ctr_info);
1170
1171 /* loss of counter data alert */
1172 if (alert & CPU_MF_INT_CF_LCDA)
1173 pr_err("CPU[%i] Counter data was lost\n", smp_processor_id());
1174
1175 /* loss of MT counter data alert */
1176 if (alert & CPU_MF_INT_CF_MTDA)
1177 pr_warn("CPU[%i] MT counter data was lost\n",
1178 smp_processor_id());
1179 }
1180
1181 static int cfset_init(void);
cpumf_pmu_init(void)1182 static int __init cpumf_pmu_init(void)
1183 {
1184 int rc;
1185
1186 /* Extract counter measurement facility information */
1187 if (!cpum_cf_avail() || qctri(&cpumf_ctr_info))
1188 return -ENODEV;
1189
1190 /* Determine and store counter set sizes for later reference */
1191 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1192 cpum_cf_make_setsize(rc);
1193
1194 /*
1195 * Clear bit 15 of cr0 to unauthorize problem-state to
1196 * extract measurement counters
1197 */
1198 system_ctl_clear_bit(0, CR0_CPUMF_EXTRACTION_AUTH_BIT);
1199
1200 /* register handler for measurement-alert interruptions */
1201 rc = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1202 cpumf_measurement_alert);
1203 if (rc) {
1204 pr_err("Registering for CPU-measurement alerts failed with rc=%i\n", rc);
1205 return rc;
1206 }
1207
1208 /* Setup s390dbf facility */
1209 cf_dbg = debug_register(KMSG_COMPONENT, 2, 1, 128);
1210 if (!cf_dbg) {
1211 pr_err("Registration of s390dbf(cpum_cf) failed\n");
1212 rc = -ENOMEM;
1213 goto out1;
1214 }
1215 debug_register_view(cf_dbg, &debug_sprintf_view);
1216
1217 cpumf_pmu.attr_groups = cpumf_cf_event_group();
1218 rc = perf_pmu_register(&cpumf_pmu, "cpum_cf", -1);
1219 if (rc) {
1220 pr_err("Registering the cpum_cf PMU failed with rc=%i\n", rc);
1221 goto out2;
1222 } else if (stccm_avail()) { /* Setup counter set device */
1223 cfset_init();
1224 }
1225
1226 rc = cpuhp_setup_state(CPUHP_AP_PERF_S390_CF_ONLINE,
1227 "perf/s390/cf:online",
1228 cpum_cf_online_cpu, cpum_cf_offline_cpu);
1229 return rc;
1230
1231 out2:
1232 debug_unregister_view(cf_dbg, &debug_sprintf_view);
1233 debug_unregister(cf_dbg);
1234 out1:
1235 unregister_external_irq(EXT_IRQ_MEASURE_ALERT, cpumf_measurement_alert);
1236 return rc;
1237 }
1238
1239 /* Support for the CPU Measurement Facility counter set extraction using
1240 * device /dev/hwctr. This allows user space programs to extract complete
1241 * counter set via normal file operations.
1242 */
1243
1244 struct cfset_call_on_cpu_parm { /* Parm struct for smp_call_on_cpu */
1245 unsigned int sets; /* Counter set bit mask */
1246 atomic_t cpus_ack; /* # CPUs successfully executed func */
1247 };
1248
1249 struct cfset_request { /* CPUs and counter set bit mask */
1250 unsigned long ctrset; /* Bit mask of counter set to read */
1251 cpumask_t mask; /* CPU mask to read from */
1252 struct list_head node; /* Chain to cfset_session.head */
1253 };
1254
cfset_session_init(void)1255 static void cfset_session_init(void)
1256 {
1257 INIT_LIST_HEAD(&cfset_session.head);
1258 }
1259
1260 /* Remove current request from global bookkeeping. Maintain a counter set bit
1261 * mask on a per CPU basis.
1262 * Done in process context under mutex protection.
1263 */
cfset_session_del(struct cfset_request * p)1264 static void cfset_session_del(struct cfset_request *p)
1265 {
1266 list_del(&p->node);
1267 }
1268
1269 /* Add current request to global bookkeeping. Maintain a counter set bit mask
1270 * on a per CPU basis.
1271 * Done in process context under mutex protection.
1272 */
cfset_session_add(struct cfset_request * p)1273 static void cfset_session_add(struct cfset_request *p)
1274 {
1275 list_add(&p->node, &cfset_session.head);
1276 }
1277
1278 /* The /dev/hwctr device access uses PMU_F_IN_USE to mark the device access
1279 * path is currently used.
1280 * The cpu_cf_events::dev_state is used to denote counter sets in use by this
1281 * interface. It is always or'ed in. If this interface is not active, its
1282 * value is zero and no additional counter sets will be included.
1283 *
1284 * The cpu_cf_events::state is used by the perf_event_open SVC and remains
1285 * unchanged.
1286 *
1287 * perf_pmu_enable() and perf_pmu_enable() and its call backs
1288 * cpumf_pmu_enable() and cpumf_pmu_disable() are called by the
1289 * performance measurement subsystem to enable per process
1290 * CPU Measurement counter facility.
1291 * The XXX_enable() and XXX_disable functions are used to turn off
1292 * x86 performance monitoring interrupt (PMI) during scheduling.
1293 * s390 uses these calls to temporarily stop and resume the active CPU
1294 * counters sets during scheduling.
1295 *
1296 * We do allow concurrent access of perf_event_open() SVC and /dev/hwctr
1297 * device access. The perf_event_open() SVC interface makes a lot of effort
1298 * to only run the counters while the calling process is actively scheduled
1299 * to run.
1300 * When /dev/hwctr interface is also used at the same time, the counter sets
1301 * will keep running, even when the process is scheduled off a CPU.
1302 * However this is not a problem and does not lead to wrong counter values
1303 * for the perf_event_open() SVC. The current counter value will be recorded
1304 * during schedule-in. At schedule-out time the current counter value is
1305 * extracted again and the delta is calculated and added to the event.
1306 */
1307 /* Stop all counter sets via ioctl interface */
cfset_ioctl_off(void * parm)1308 static void cfset_ioctl_off(void *parm)
1309 {
1310 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1311 struct cfset_call_on_cpu_parm *p = parm;
1312 int rc;
1313
1314 /* Check if any counter set used by /dev/hwctr */
1315 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1316 if ((p->sets & cpumf_ctr_ctl[rc])) {
1317 if (!atomic_dec_return(&cpuhw->ctr_set[rc])) {
1318 ctr_set_disable(&cpuhw->dev_state,
1319 cpumf_ctr_ctl[rc]);
1320 ctr_set_stop(&cpuhw->dev_state,
1321 cpumf_ctr_ctl[rc]);
1322 }
1323 }
1324 /* Keep perf_event_open counter sets */
1325 rc = lcctl(cpuhw->dev_state | cpuhw->state);
1326 if (rc)
1327 pr_err("Counter set stop %#llx of /dev/%s failed rc=%i\n",
1328 cpuhw->state, S390_HWCTR_DEVICE, rc);
1329 if (!cpuhw->dev_state)
1330 cpuhw->flags &= ~PMU_F_IN_USE;
1331 }
1332
1333 /* Start counter sets on particular CPU */
cfset_ioctl_on(void * parm)1334 static void cfset_ioctl_on(void *parm)
1335 {
1336 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1337 struct cfset_call_on_cpu_parm *p = parm;
1338 int rc;
1339
1340 cpuhw->flags |= PMU_F_IN_USE;
1341 ctr_set_enable(&cpuhw->dev_state, p->sets);
1342 ctr_set_start(&cpuhw->dev_state, p->sets);
1343 for (rc = CPUMF_CTR_SET_BASIC; rc < CPUMF_CTR_SET_MAX; ++rc)
1344 if ((p->sets & cpumf_ctr_ctl[rc]))
1345 atomic_inc(&cpuhw->ctr_set[rc]);
1346 rc = lcctl(cpuhw->dev_state | cpuhw->state); /* Start counter sets */
1347 if (!rc)
1348 atomic_inc(&p->cpus_ack);
1349 else
1350 pr_err("Counter set start %#llx of /dev/%s failed rc=%i\n",
1351 cpuhw->dev_state | cpuhw->state, S390_HWCTR_DEVICE, rc);
1352 }
1353
cfset_release_cpu(void * p)1354 static void cfset_release_cpu(void *p)
1355 {
1356 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1357 int rc;
1358
1359 cpuhw->dev_state = 0;
1360 rc = lcctl(cpuhw->state); /* Keep perf_event_open counter sets */
1361 if (rc)
1362 pr_err("Counter set release %#llx of /dev/%s failed rc=%i\n",
1363 cpuhw->state, S390_HWCTR_DEVICE, rc);
1364 }
1365
1366 /* This modifies the process CPU mask to adopt it to the currently online
1367 * CPUs. Offline CPUs can not be addresses. This call terminates the access
1368 * and is usually followed by close() or a new iotcl(..., START, ...) which
1369 * creates a new request structure.
1370 */
cfset_all_stop(struct cfset_request * req)1371 static void cfset_all_stop(struct cfset_request *req)
1372 {
1373 struct cfset_call_on_cpu_parm p = {
1374 .sets = req->ctrset,
1375 };
1376
1377 cpumask_and(&req->mask, &req->mask, cpu_online_mask);
1378 on_each_cpu_mask(&req->mask, cfset_ioctl_off, &p, 1);
1379 }
1380
1381 /* Release function is also called when application gets terminated without
1382 * doing a proper ioctl(..., S390_HWCTR_STOP, ...) command.
1383 */
cfset_release(struct inode * inode,struct file * file)1384 static int cfset_release(struct inode *inode, struct file *file)
1385 {
1386 mutex_lock(&cfset_ctrset_mutex);
1387 /* Open followed by close/exit has no private_data */
1388 if (file->private_data) {
1389 cfset_all_stop(file->private_data);
1390 cfset_session_del(file->private_data);
1391 kfree(file->private_data);
1392 file->private_data = NULL;
1393 }
1394 if (refcount_dec_and_test(&cfset_opencnt)) { /* Last close */
1395 on_each_cpu(cfset_release_cpu, NULL, 1);
1396 cpum_cf_free(-1);
1397 }
1398 mutex_unlock(&cfset_ctrset_mutex);
1399 return 0;
1400 }
1401
1402 /*
1403 * Open via /dev/hwctr device. Allocate all per CPU resources on the first
1404 * open of the device. The last close releases all per CPU resources.
1405 * Parallel perf_event_open system calls also use per CPU resources.
1406 * These invocations are handled via reference counting on the per CPU data
1407 * structures.
1408 */
cfset_open(struct inode * inode,struct file * file)1409 static int cfset_open(struct inode *inode, struct file *file)
1410 {
1411 int rc = 0;
1412
1413 if (!perfmon_capable())
1414 return -EPERM;
1415 file->private_data = NULL;
1416
1417 mutex_lock(&cfset_ctrset_mutex);
1418 if (!refcount_inc_not_zero(&cfset_opencnt)) { /* First open */
1419 rc = cpum_cf_alloc(-1);
1420 if (!rc) {
1421 cfset_session_init();
1422 refcount_set(&cfset_opencnt, 1);
1423 }
1424 }
1425 mutex_unlock(&cfset_ctrset_mutex);
1426
1427 /* nonseekable_open() never fails */
1428 return rc ?: nonseekable_open(inode, file);
1429 }
1430
cfset_all_start(struct cfset_request * req)1431 static int cfset_all_start(struct cfset_request *req)
1432 {
1433 struct cfset_call_on_cpu_parm p = {
1434 .sets = req->ctrset,
1435 .cpus_ack = ATOMIC_INIT(0),
1436 };
1437 cpumask_var_t mask;
1438 int rc = 0;
1439
1440 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1441 return -ENOMEM;
1442 cpumask_and(mask, &req->mask, cpu_online_mask);
1443 on_each_cpu_mask(mask, cfset_ioctl_on, &p, 1);
1444 if (atomic_read(&p.cpus_ack) != cpumask_weight(mask)) {
1445 on_each_cpu_mask(mask, cfset_ioctl_off, &p, 1);
1446 rc = -EIO;
1447 }
1448 free_cpumask_var(mask);
1449 return rc;
1450 }
1451
1452 /* Return the maximum required space for all possible CPUs in case one
1453 * CPU will be onlined during the START, READ, STOP cycles.
1454 * To find out the size of the counter sets, any one CPU will do. They
1455 * all have the same counter sets.
1456 */
cfset_needspace(unsigned int sets)1457 static size_t cfset_needspace(unsigned int sets)
1458 {
1459 size_t bytes = 0;
1460 int i;
1461
1462 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1463 if (!(sets & cpumf_ctr_ctl[i]))
1464 continue;
1465 bytes += cpum_cf_read_setsize(i) * sizeof(u64) +
1466 sizeof(((struct s390_ctrset_setdata *)0)->set) +
1467 sizeof(((struct s390_ctrset_setdata *)0)->no_cnts);
1468 }
1469 bytes = sizeof(((struct s390_ctrset_read *)0)->no_cpus) + nr_cpu_ids *
1470 (bytes + sizeof(((struct s390_ctrset_cpudata *)0)->cpu_nr) +
1471 sizeof(((struct s390_ctrset_cpudata *)0)->no_sets));
1472 return bytes;
1473 }
1474
cfset_all_copy(unsigned long arg,cpumask_t * mask)1475 static int cfset_all_copy(unsigned long arg, cpumask_t *mask)
1476 {
1477 struct s390_ctrset_read __user *ctrset_read;
1478 unsigned int cpu, cpus, rc = 0;
1479 void __user *uptr;
1480
1481 ctrset_read = (struct s390_ctrset_read __user *)arg;
1482 uptr = ctrset_read->data;
1483 for_each_cpu(cpu, mask) {
1484 struct cpu_cf_events *cpuhw = get_cpu_cfhw(cpu);
1485 struct s390_ctrset_cpudata __user *ctrset_cpudata;
1486
1487 ctrset_cpudata = uptr;
1488 rc = put_user(cpu, &ctrset_cpudata->cpu_nr);
1489 rc |= put_user(cpuhw->sets, &ctrset_cpudata->no_sets);
1490 rc |= copy_to_user(ctrset_cpudata->data, cpuhw->data,
1491 cpuhw->used);
1492 if (rc) {
1493 rc = -EFAULT;
1494 goto out;
1495 }
1496 uptr += sizeof(struct s390_ctrset_cpudata) + cpuhw->used;
1497 cond_resched();
1498 }
1499 cpus = cpumask_weight(mask);
1500 if (put_user(cpus, &ctrset_read->no_cpus))
1501 rc = -EFAULT;
1502 out:
1503 return rc;
1504 }
1505
cfset_cpuset_read(struct s390_ctrset_setdata * p,int ctrset,int ctrset_size,size_t room)1506 static size_t cfset_cpuset_read(struct s390_ctrset_setdata *p, int ctrset,
1507 int ctrset_size, size_t room)
1508 {
1509 size_t need = 0;
1510 int rc = -1;
1511
1512 need = sizeof(*p) + sizeof(u64) * ctrset_size;
1513 if (need <= room) {
1514 p->set = cpumf_ctr_ctl[ctrset];
1515 p->no_cnts = ctrset_size;
1516 rc = ctr_stcctm(ctrset, ctrset_size, (u64 *)p->cv);
1517 if (rc == 3) /* Nothing stored */
1518 need = 0;
1519 }
1520 return need;
1521 }
1522
1523 /* Read all counter sets. */
cfset_cpu_read(void * parm)1524 static void cfset_cpu_read(void *parm)
1525 {
1526 struct cpu_cf_events *cpuhw = this_cpu_cfhw();
1527 struct cfset_call_on_cpu_parm *p = parm;
1528 int set, set_size;
1529 size_t space;
1530
1531 /* No data saved yet */
1532 cpuhw->used = 0;
1533 cpuhw->sets = 0;
1534 memset(cpuhw->data, 0, sizeof(cpuhw->data));
1535
1536 /* Scan the counter sets */
1537 for (set = CPUMF_CTR_SET_BASIC; set < CPUMF_CTR_SET_MAX; ++set) {
1538 struct s390_ctrset_setdata *sp = (void *)cpuhw->data +
1539 cpuhw->used;
1540
1541 if (!(p->sets & cpumf_ctr_ctl[set]))
1542 continue; /* Counter set not in list */
1543 set_size = cpum_cf_read_setsize(set);
1544 space = sizeof(cpuhw->data) - cpuhw->used;
1545 space = cfset_cpuset_read(sp, set, set_size, space);
1546 if (space) {
1547 cpuhw->used += space;
1548 cpuhw->sets += 1;
1549 }
1550 }
1551 }
1552
cfset_all_read(unsigned long arg,struct cfset_request * req)1553 static int cfset_all_read(unsigned long arg, struct cfset_request *req)
1554 {
1555 struct cfset_call_on_cpu_parm p;
1556 cpumask_var_t mask;
1557 int rc;
1558
1559 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1560 return -ENOMEM;
1561
1562 p.sets = req->ctrset;
1563 cpumask_and(mask, &req->mask, cpu_online_mask);
1564 on_each_cpu_mask(mask, cfset_cpu_read, &p, 1);
1565 rc = cfset_all_copy(arg, mask);
1566 free_cpumask_var(mask);
1567 return rc;
1568 }
1569
cfset_ioctl_read(unsigned long arg,struct cfset_request * req)1570 static long cfset_ioctl_read(unsigned long arg, struct cfset_request *req)
1571 {
1572 int ret = -ENODATA;
1573
1574 if (req && req->ctrset)
1575 ret = cfset_all_read(arg, req);
1576 return ret;
1577 }
1578
cfset_ioctl_stop(struct file * file)1579 static long cfset_ioctl_stop(struct file *file)
1580 {
1581 struct cfset_request *req = file->private_data;
1582 int ret = -ENXIO;
1583
1584 if (req) {
1585 cfset_all_stop(req);
1586 cfset_session_del(req);
1587 kfree(req);
1588 file->private_data = NULL;
1589 ret = 0;
1590 }
1591 return ret;
1592 }
1593
cfset_ioctl_start(unsigned long arg,struct file * file)1594 static long cfset_ioctl_start(unsigned long arg, struct file *file)
1595 {
1596 struct s390_ctrset_start __user *ustart;
1597 struct s390_ctrset_start start;
1598 struct cfset_request *preq;
1599 void __user *umask;
1600 unsigned int len;
1601 int ret = 0;
1602 size_t need;
1603
1604 if (file->private_data)
1605 return -EBUSY;
1606 ustart = (struct s390_ctrset_start __user *)arg;
1607 if (copy_from_user(&start, ustart, sizeof(start)))
1608 return -EFAULT;
1609 if (start.version != S390_HWCTR_START_VERSION)
1610 return -EINVAL;
1611 if (start.counter_sets & ~(cpumf_ctr_ctl[CPUMF_CTR_SET_BASIC] |
1612 cpumf_ctr_ctl[CPUMF_CTR_SET_USER] |
1613 cpumf_ctr_ctl[CPUMF_CTR_SET_CRYPTO] |
1614 cpumf_ctr_ctl[CPUMF_CTR_SET_EXT] |
1615 cpumf_ctr_ctl[CPUMF_CTR_SET_MT_DIAG]))
1616 return -EINVAL; /* Invalid counter set */
1617 if (!start.counter_sets)
1618 return -EINVAL; /* No counter set at all? */
1619
1620 preq = kzalloc(sizeof(*preq), GFP_KERNEL);
1621 if (!preq)
1622 return -ENOMEM;
1623 cpumask_clear(&preq->mask);
1624 len = min_t(u64, start.cpumask_len, cpumask_size());
1625 umask = (void __user *)start.cpumask;
1626 if (copy_from_user(&preq->mask, umask, len)) {
1627 kfree(preq);
1628 return -EFAULT;
1629 }
1630 if (cpumask_empty(&preq->mask)) {
1631 kfree(preq);
1632 return -EINVAL;
1633 }
1634 need = cfset_needspace(start.counter_sets);
1635 if (put_user(need, &ustart->data_bytes)) {
1636 kfree(preq);
1637 return -EFAULT;
1638 }
1639 preq->ctrset = start.counter_sets;
1640 ret = cfset_all_start(preq);
1641 if (!ret) {
1642 cfset_session_add(preq);
1643 file->private_data = preq;
1644 } else {
1645 kfree(preq);
1646 }
1647 return ret;
1648 }
1649
1650 /* Entry point to the /dev/hwctr device interface.
1651 * The ioctl system call supports three subcommands:
1652 * S390_HWCTR_START: Start the specified counter sets on a CPU list. The
1653 * counter set keeps running until explicitly stopped. Returns the number
1654 * of bytes needed to store the counter values. If another S390_HWCTR_START
1655 * ioctl subcommand is called without a previous S390_HWCTR_STOP stop
1656 * command on the same file descriptor, -EBUSY is returned.
1657 * S390_HWCTR_READ: Read the counter set values from specified CPU list given
1658 * with the S390_HWCTR_START command.
1659 * S390_HWCTR_STOP: Stops the counter sets on the CPU list given with the
1660 * previous S390_HWCTR_START subcommand.
1661 */
cfset_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1662 static long cfset_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1663 {
1664 int ret;
1665
1666 cpus_read_lock();
1667 mutex_lock(&cfset_ctrset_mutex);
1668 switch (cmd) {
1669 case S390_HWCTR_START:
1670 ret = cfset_ioctl_start(arg, file);
1671 break;
1672 case S390_HWCTR_STOP:
1673 ret = cfset_ioctl_stop(file);
1674 break;
1675 case S390_HWCTR_READ:
1676 ret = cfset_ioctl_read(arg, file->private_data);
1677 break;
1678 default:
1679 ret = -ENOTTY;
1680 break;
1681 }
1682 mutex_unlock(&cfset_ctrset_mutex);
1683 cpus_read_unlock();
1684 return ret;
1685 }
1686
1687 static const struct file_operations cfset_fops = {
1688 .owner = THIS_MODULE,
1689 .open = cfset_open,
1690 .release = cfset_release,
1691 .unlocked_ioctl = cfset_ioctl,
1692 .compat_ioctl = cfset_ioctl,
1693 };
1694
1695 static struct miscdevice cfset_dev = {
1696 .name = S390_HWCTR_DEVICE,
1697 .minor = MISC_DYNAMIC_MINOR,
1698 .fops = &cfset_fops,
1699 .mode = 0666,
1700 };
1701
1702 /* Hotplug add of a CPU. Scan through all active processes and add
1703 * that CPU to the list of CPUs supplied with ioctl(..., START, ...).
1704 */
cfset_online_cpu(unsigned int cpu)1705 static int cfset_online_cpu(unsigned int cpu)
1706 {
1707 struct cfset_call_on_cpu_parm p;
1708 struct cfset_request *rp;
1709
1710 if (!list_empty(&cfset_session.head)) {
1711 list_for_each_entry(rp, &cfset_session.head, node) {
1712 p.sets = rp->ctrset;
1713 cfset_ioctl_on(&p);
1714 cpumask_set_cpu(cpu, &rp->mask);
1715 }
1716 }
1717 return 0;
1718 }
1719
1720 /* Hotplug remove of a CPU. Scan through all active processes and clear
1721 * that CPU from the list of CPUs supplied with ioctl(..., START, ...).
1722 * Adjust reference counts.
1723 */
cfset_offline_cpu(unsigned int cpu)1724 static int cfset_offline_cpu(unsigned int cpu)
1725 {
1726 struct cfset_call_on_cpu_parm p;
1727 struct cfset_request *rp;
1728
1729 if (!list_empty(&cfset_session.head)) {
1730 list_for_each_entry(rp, &cfset_session.head, node) {
1731 p.sets = rp->ctrset;
1732 cfset_ioctl_off(&p);
1733 cpumask_clear_cpu(cpu, &rp->mask);
1734 }
1735 }
1736 return 0;
1737 }
1738
cfdiag_read(struct perf_event * event)1739 static void cfdiag_read(struct perf_event *event)
1740 {
1741 }
1742
get_authctrsets(void)1743 static int get_authctrsets(void)
1744 {
1745 unsigned long auth = 0;
1746 enum cpumf_ctr_set i;
1747
1748 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1749 if (cpumf_ctr_info.auth_ctl & cpumf_ctr_ctl[i])
1750 auth |= cpumf_ctr_ctl[i];
1751 }
1752 return auth;
1753 }
1754
1755 /* Setup the event. Test for authorized counter sets and only include counter
1756 * sets which are authorized at the time of the setup. Including unauthorized
1757 * counter sets result in specification exception (and panic).
1758 */
cfdiag_event_init2(struct perf_event * event)1759 static int cfdiag_event_init2(struct perf_event *event)
1760 {
1761 struct perf_event_attr *attr = &event->attr;
1762 int err = 0;
1763
1764 /* Set sample_period to indicate sampling */
1765 event->hw.config = attr->config;
1766 event->hw.sample_period = attr->sample_period;
1767 local64_set(&event->hw.period_left, event->hw.sample_period);
1768 local64_set(&event->count, 0);
1769 event->hw.last_period = event->hw.sample_period;
1770
1771 /* Add all authorized counter sets to config_base. The
1772 * the hardware init function is either called per-cpu or just once
1773 * for all CPUS (event->cpu == -1). This depends on the whether
1774 * counting is started for all CPUs or on a per workload base where
1775 * the perf event moves from one CPU to another CPU.
1776 * Checking the authorization on any CPU is fine as the hardware
1777 * applies the same authorization settings to all CPUs.
1778 */
1779 event->hw.config_base = get_authctrsets();
1780
1781 /* No authorized counter sets, nothing to count/sample */
1782 if (!event->hw.config_base)
1783 err = -EINVAL;
1784
1785 return err;
1786 }
1787
cfdiag_event_init(struct perf_event * event)1788 static int cfdiag_event_init(struct perf_event *event)
1789 {
1790 struct perf_event_attr *attr = &event->attr;
1791 int err = -ENOENT;
1792
1793 if (event->attr.config != PERF_EVENT_CPUM_CF_DIAG ||
1794 event->attr.type != event->pmu->type)
1795 goto out;
1796
1797 /* Raw events are used to access counters directly,
1798 * hence do not permit excludes.
1799 * This event is useless without PERF_SAMPLE_RAW to return counter set
1800 * values as raw data.
1801 */
1802 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv ||
1803 !(attr->sample_type & (PERF_SAMPLE_CPU | PERF_SAMPLE_RAW))) {
1804 err = -EOPNOTSUPP;
1805 goto out;
1806 }
1807
1808 /* Initialize for using the CPU-measurement counter facility */
1809 if (cpum_cf_alloc(event->cpu))
1810 return -ENOMEM;
1811 event->destroy = hw_perf_event_destroy;
1812
1813 err = cfdiag_event_init2(event);
1814 out:
1815 return err;
1816 }
1817
1818 /* Create cf_diag/events/CF_DIAG event sysfs file. This counter is used
1819 * to collect the complete counter sets for a scheduled process. Target
1820 * are complete counter sets attached as raw data to the artificial event.
1821 * This results in complete counter sets available when a process is
1822 * scheduled. Contains the delta of every counter while the process was
1823 * running.
1824 */
1825 CPUMF_EVENT_ATTR(CF_DIAG, CF_DIAG, PERF_EVENT_CPUM_CF_DIAG);
1826
1827 static struct attribute *cfdiag_events_attr[] = {
1828 CPUMF_EVENT_PTR(CF_DIAG, CF_DIAG),
1829 NULL,
1830 };
1831
1832 PMU_FORMAT_ATTR(event, "config:0-63");
1833
1834 static struct attribute *cfdiag_format_attr[] = {
1835 &format_attr_event.attr,
1836 NULL,
1837 };
1838
1839 static struct attribute_group cfdiag_events_group = {
1840 .name = "events",
1841 .attrs = cfdiag_events_attr,
1842 };
1843 static struct attribute_group cfdiag_format_group = {
1844 .name = "format",
1845 .attrs = cfdiag_format_attr,
1846 };
1847 static const struct attribute_group *cfdiag_attr_groups[] = {
1848 &cfdiag_events_group,
1849 &cfdiag_format_group,
1850 NULL,
1851 };
1852
1853 /* Performance monitoring unit for event CF_DIAG. Since this event
1854 * is also started and stopped via the perf_event_open() system call, use
1855 * the same event enable/disable call back functions. They do not
1856 * have a pointer to the perf_event structure as first parameter.
1857 *
1858 * The functions XXX_add, XXX_del, XXX_start and XXX_stop are also common.
1859 * Reuse them and distinguish the event (always first parameter) via
1860 * 'config' member.
1861 */
1862 static struct pmu cf_diag = {
1863 .task_ctx_nr = perf_sw_context,
1864 .event_init = cfdiag_event_init,
1865 .pmu_enable = cpumf_pmu_enable,
1866 .pmu_disable = cpumf_pmu_disable,
1867 .add = cpumf_pmu_add,
1868 .del = cpumf_pmu_del,
1869 .start = cpumf_pmu_start,
1870 .stop = cpumf_pmu_stop,
1871 .read = cfdiag_read,
1872
1873 .attr_groups = cfdiag_attr_groups
1874 };
1875
1876 /* Calculate memory needed to store all counter sets together with header and
1877 * trailer data. This is independent of the counter set authorization which
1878 * can vary depending on the configuration.
1879 */
cfdiag_maxsize(struct cpumf_ctr_info * info)1880 static size_t cfdiag_maxsize(struct cpumf_ctr_info *info)
1881 {
1882 size_t max_size = sizeof(struct cf_trailer_entry);
1883 enum cpumf_ctr_set i;
1884
1885 for (i = CPUMF_CTR_SET_BASIC; i < CPUMF_CTR_SET_MAX; ++i) {
1886 size_t size = cpum_cf_read_setsize(i);
1887
1888 if (size)
1889 max_size += size * sizeof(u64) +
1890 sizeof(struct cf_ctrset_entry);
1891 }
1892 return max_size;
1893 }
1894
1895 /* Get the CPU speed, try sampling facility first and CPU attributes second. */
cfdiag_get_cpu_speed(void)1896 static void cfdiag_get_cpu_speed(void)
1897 {
1898 unsigned long mhz;
1899
1900 if (cpum_sf_avail()) { /* Sampling facility first */
1901 struct hws_qsi_info_block si;
1902
1903 memset(&si, 0, sizeof(si));
1904 if (!qsi(&si)) {
1905 cfdiag_cpu_speed = si.cpu_speed;
1906 return;
1907 }
1908 }
1909
1910 /* Fallback: CPU speed extract static part. Used in case
1911 * CPU Measurement Sampling Facility is turned off.
1912 */
1913 mhz = __ecag(ECAG_CPU_ATTRIBUTE, 0);
1914 if (mhz != -1UL)
1915 cfdiag_cpu_speed = mhz & 0xffffffff;
1916 }
1917
cfset_init(void)1918 static int cfset_init(void)
1919 {
1920 size_t need;
1921 int rc;
1922
1923 cfdiag_get_cpu_speed();
1924 /* Make sure the counter set data fits into predefined buffer. */
1925 need = cfdiag_maxsize(&cpumf_ctr_info);
1926 if (need > sizeof(((struct cpu_cf_events *)0)->start)) {
1927 pr_err("Insufficient memory for PMU(cpum_cf_diag) need=%zu\n",
1928 need);
1929 return -ENOMEM;
1930 }
1931
1932 rc = misc_register(&cfset_dev);
1933 if (rc) {
1934 pr_err("Registration of /dev/%s failed rc=%i\n",
1935 cfset_dev.name, rc);
1936 goto out;
1937 }
1938
1939 rc = perf_pmu_register(&cf_diag, "cpum_cf_diag", -1);
1940 if (rc) {
1941 misc_deregister(&cfset_dev);
1942 pr_err("Registration of PMU(cpum_cf_diag) failed with rc=%i\n",
1943 rc);
1944 }
1945 out:
1946 return rc;
1947 }
1948
1949 device_initcall(cpumf_pmu_init);
1950